This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

FILTRA: Rethinking Steerable CNN by Filter Transform
Appendix

A Verification of Lemma LABEL:lm:condition on (LABEL:eq:irrep-cn-kernel)

(LABEL:eq:irrep-cn-kernel) can be verified to follow Lemma LABEL:lm:condition as:

𝖪kregCN(ϕ+θi1)=diag(P(i1)𝖪)βk,c.f. (LABEL:eq:cn-trivial-proof2)=P(i1)diag(𝖪)P(i1)1βk=ρregCN(g)𝖪kregCNψ0,k(g)1,c.f. (LABEL:eq:beta-rotate0).\displaystyle\begin{split}&\mathsf{K}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}(\phi+\theta_{i_{1}})=\operatorname{diag}\big{(}P(i_{1})\mathsf{K}\big{)}\beta_{k},\quad\text{c.f. \eqref{eq:cn-trivial-proof2}}\\ &=P(i_{1})\operatorname{diag}(\mathsf{K})P(i_{1})^{-1}\beta_{k}=\rho^{\mathrm{C}_{N}}_{\text{reg}}(g)\mathsf{K}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}\psi_{0,k}(g)^{-1},\quad\text{c.f. \eqref{eq:beta-rotate0}.}\end{split} (27)

We can also verify this for

𝖪¯kregCN=diag(𝖪¯)βk.\overline{\mathsf{K}}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}=\operatorname{diag}(\overline{\mathsf{K}})\beta_{k}. (28)

B Verification of Lemma LABEL:lm:condition on (LABEL:eq:irrep-dn-kernel)

First note it is easy to verify that for i0=0i_{0}=0, i.e. g=(0,i1)g=(0,i_{1}), the Lemma LABEL:lm:condition holds in the same way as (LABEL:eq:cn-irrep-proof),

𝖪j,kregDN(ϕ+θ)\displaystyle\mathsf{K}^{\mathrm{D}_{N}}_{j,k\rightarrow\text{reg}}(\phi+\theta) =ρregDN(g)𝖪j,kregDNψj,k(g)1.\displaystyle=\rho^{\mathrm{D}_{N}}_{\text{reg}}(g)\mathsf{K}^{\mathrm{D}_{N}}_{j,k\rightarrow\text{reg}}{\psi_{j,k}(g)}^{-1}. (29)

We then generalize (LABEL:eq:trivial-exchange) on 𝖪kregCN\mathsf{K}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}} and 𝖪¯kregCN\overline{\mathsf{K}}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}} given a reflected action g=(1,i1)g=(1,i_{1}):

𝖪kregCN(ϕ+θi1)\displaystyle\mathsf{K}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}(-\phi+\theta_{i_{1}}) =diag(𝖪(ϕ+θi1))βk=B(i1)diag(𝖪¯)B(i1)1βk,c.f. (LABEL:eq:beta-rotate1)\displaystyle=\operatorname{diag}\big{(}\mathsf{K}(-\phi+\theta_{i_{1}})\big{)}\beta_{k}=B(i_{1})\operatorname{diag}(\overline{\mathsf{K}})B(i_{1})^{-1}\beta_{k},\quad\text{c.f. \eqref{eq:beta-rotate1}} (30a)
=B(i1)diag(𝖪¯)βkψ0,k(g)1=B(i1)diag(𝖪¯CN)βkψ1,k(g)1\displaystyle=B(i_{1})\operatorname{diag}(\overline{\mathsf{K}})\beta_{k}\psi_{0,k}(g)^{-1}=-B(i_{1})\operatorname{diag}(\overline{\mathsf{K}}^{\mathrm{C}_{N}})\beta_{k}\psi_{1,k}(g)^{-1} (30b)
=B(i1)diag(𝖪CN)βkψ0,k(g)1=B(i1)diag(𝖪CN)βkψ1,k(g)1.\displaystyle=B(i_{1})\operatorname{diag}(\mathsf{K}^{\mathrm{C}_{N}})\beta_{k}\psi_{0,k}(g)^{-1}=-B(i_{1})\operatorname{diag}(\mathsf{K}^{\mathrm{C}_{N}})\beta_{k}\psi_{1,k}(g)^{-1}. (30c)

Note that (30b) and (30c) both have two equivalent forms denoted with ψ0,k(g)\psi_{0,k}(g) and ψ1,k(g)\psi_{1,k}(g) respectively. Now we can show 𝖪j,kregDN\mathsf{K}^{\mathrm{D}_{N}}_{j,k\rightarrow\text{reg}} follows Lemma LABEL:lm:condition for j=0j=0, i0=1i_{0}=1, i.e. g=(1,i1)g=(1,i_{1}) as:

𝖪j,kregDN(ϕ+θi1)=[𝖪kregCN(ϕ+θi1)𝖪¯kregCN(ϕ+θi1)]\displaystyle\mathsf{K}^{\mathrm{D}_{N}}_{j,k\rightarrow\text{reg}}(-\phi+\theta_{i_{1}})=\begin{bmatrix}{\mathsf{K}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}(-\phi+\theta_{i_{1}})}^{\top}&{\overline{\mathsf{K}}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}}(-\phi+\theta_{i_{1}})^{\top}\end{bmatrix}^{\top} (31a)
=[B(i1)diag(𝖪¯CN)βkψ0,k(g)1B(i1)diag(𝖪CN)βkψ0,k(g)1]c.f. (30b)\displaystyle=\begin{bmatrix}B(i_{1})\operatorname{diag}(\overline{\mathsf{K}}^{\mathrm{C}_{N}})\beta_{k}\psi_{0,k}(g)^{-1}&B(i_{1})\operatorname{diag}(\mathsf{K}^{\mathrm{C}_{N}})\beta_{k}\psi_{0,k}(g)^{-1}\end{bmatrix}^{\top}\quad\text{c.f. \eqref{eq:irrep-exchange}} (31b)
=ρregDN(g)[𝖪kregCN𝖪¯kregCN]ψ0,k(g)1c.f. (LABEL:eq:irrep-cn-kernel), (28)\displaystyle=\rho^{\mathrm{D}_{N}}_{\text{reg}}(g)\begin{bmatrix}{\mathsf{K}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}}^{\top}&{\overline{\mathsf{K}}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}}^{\top}\end{bmatrix}^{\top}\psi_{0,k}(g)^{-1}\quad\text{c.f. \eqref{eq:irrep-cn-kernel}, \eqref{eq:irrep-cn-kernel-conj}} (31c)
=ρregDN(g)𝖪j,kregDNψ0,k(g)1.\displaystyle=\rho^{\mathrm{D}_{N}}_{\text{reg}}(g)\mathsf{K}^{\mathrm{D}_{N}}_{j,k\rightarrow\text{reg}}\psi_{0,k}(g)^{-1}. (31d)

The verification is similar for j=1j=1, i0=1i_{0}=1, i.e. g=(1,i1)g=(1,i_{1}):

𝖪j,kregDN(ϕ+θi1)=[𝖪kregCN(ϕ+θi1)𝖪¯kregCN(ϕ+θi1)]\displaystyle\mathsf{K}^{\mathrm{D}_{N}}_{j,k\rightarrow\text{reg}}(-\phi+\theta_{i_{1}})=\begin{bmatrix}{\mathsf{K}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}(-\phi+\theta_{i_{1}})}^{\top}&-{\overline{\mathsf{K}}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}}(-\phi+\theta_{i_{1}})^{\top}\end{bmatrix}^{\top} (32a)
=[B(i1)diag(𝖪¯CN)βkψ1,k(g)1B(i1)diag(𝖪CN)βkψ1,k(g)1]c.f. (30b)\displaystyle=\begin{bmatrix}-B(i_{1})\operatorname{diag}(\overline{\mathsf{K}}^{\mathrm{C}_{N}})\beta_{k}\psi_{1,k}(g)^{-1}&B(i_{1})\operatorname{diag}(\mathsf{K}^{\mathrm{C}_{N}})\beta_{k}\psi_{1,k}(g)^{-1}\end{bmatrix}^{\top}\quad\text{c.f. \eqref{eq:irrep-exchange}} (32b)
=ρregDN(g)[𝖪kregCN𝖪¯kregCN]ψ0,k(g)1c.f. (LABEL:eq:irrep-cn-kernel), (28)\displaystyle=\rho^{\mathrm{D}_{N}}_{\text{reg}}(g)\begin{bmatrix}{\mathsf{K}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}}^{\top}&-{\overline{\mathsf{K}}^{\mathrm{C}_{N}}_{k\rightarrow\text{reg}}}^{\top}\end{bmatrix}^{\top}\psi_{0,k}(g)^{-1}\quad\text{c.f. \eqref{eq:irrep-cn-kernel}, \eqref{eq:irrep-cn-kernel-conj}} (32c)
=ρregDN(g)𝖪j,kregDNψ0,k(g)1.\displaystyle=\rho^{\mathrm{D}_{N}}_{\text{reg}}(g)\mathsf{K}^{\mathrm{D}_{N}}_{j,k\rightarrow\text{reg}}\psi_{0,k}(g)^{-1}. (32d)

C Verification of Lemma LABEL:lm:condition on (LABEL:eq:cn-regular-regular-kernel)

This kernel can be verified as follows for g=(0,i1)g=(0,i_{1}):

𝖪regregCN(ϕ+θi1)=[ρregCN(g)𝖪0regCNψ0,0(g)1,,ρregCN(g)𝖪N2regCNψ0,N2(g)1]V1\displaystyle\mathsf{K}^{\mathrm{C}_{N}}_{\text{reg}\rightarrow\text{reg}}(\phi+\theta_{i_{1}})=\begin{bmatrix}\rho^{\mathrm{C}_{N}}_{\text{reg}}(g)\mathsf{K}^{\mathrm{C}_{N}}_{0\rightarrow\text{reg}}\psi_{0,0}(g)^{-1},\cdots,\rho^{\mathrm{C}_{N}}_{\text{reg}}(g)\mathsf{K}^{\mathrm{C}_{N}}_{\lfloor\frac{N}{2}\rfloor\rightarrow\text{reg}}\psi_{0,\lfloor\frac{N}{2}\rfloor}(g)^{-1}\end{bmatrix}V^{-1} (33a)
=ρregCN(g)[𝖪0regCN𝖪N2regCN]DCNV1\displaystyle=\rho^{\mathrm{C}_{N}}_{\text{reg}}(g)\begin{bmatrix}\mathsf{K}^{\mathrm{C}_{N}}_{0\rightarrow\text{reg}}\cdots\mathsf{K}^{\mathrm{C}_{N}}_{\lfloor\frac{N}{2}\rfloor\rightarrow\text{reg}}\end{bmatrix}D^{\mathrm{C}_{N}}V^{-1} (33b)
=ρregCN(g)[𝖪0regCN𝖪N2regCN]V1VDCNV1=ρregCN(g)𝖪regregCNρregCN1.\displaystyle=\rho^{\mathrm{C}_{N}}_{\text{reg}}(g)\begin{bmatrix}\mathsf{K}^{\mathrm{C}_{N}}_{0\rightarrow\text{reg}}\cdots\mathsf{K}^{\mathrm{C}_{N}}_{\lfloor\frac{N}{2}\rfloor\rightarrow\text{reg}}\end{bmatrix}V^{-1}VD^{\mathrm{C}_{N}}V^{-1}=\rho^{\mathrm{C}_{N}}_{\text{reg}}(g)\mathsf{K}^{\mathrm{C}_{N}}_{\text{reg}\rightarrow\text{reg}}{\rho^{\mathrm{C}_{N}}_{\text{reg}}}^{-1}. (33c)