This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Field-free ultrafast magnetization reversal of a nanodevice by a chirped current pulse via spin-orbit torque

Y. D. Liu Center for Spintronics and Quantum System, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China    M. T. Islam [email protected] Center for Spintronics and Quantum System, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China Physics Discipline, Khulna University, Khulna 9208, Bangladesh    T. Min [email protected] Center for Spintronics and Quantum System, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China    X. S. Wang School of Physics and Electronics, Hunan University, Changsha 410082, China    X. R. Wang Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong HKUST Shenzhen Research Institute, Shenzhen 518057, China
Abstract

We investigated the magnetization reversal of a perpendicularly magnetized nanodevice using a chirped current pulse (CCP) via spin-orbit torques (SOT). Our findings demonstrate that both the field-like (FL) and damping-like (DL) components of SOT in CCP can efficiently induce ultrafast magnetization reversal without any symmetry-breaking means. For a wide frequency range of the CCP, the minimal current density obtained is significantly smaller compared to the current density of conventional SOT-reversal. This ultrafast reversal is due to the CCP triggering enhanced energy absorption (emission) of the magnetization from (to) the FL- and DL-components of SOT before (after) crossing over the energy barrier. We also verified the robustness of the CCP-driven magnetization reversal at room temperature. Moreover, this strategy can be extended to switch the magnetic states of perpendicular synthetic antiferromagnetic (SAF) and ferrimagnetic (SFi) nanodevices. Therefore, these studies enrich the basic understanding of field-free SOT-reversal and provide a novel way to realize ultrafast SOT-MRAM devices with various free layer designs: ferromagnetic, SAF, and SFi.

preprint: APS/123-QED

I Introduction

In recent decades, spin transfer torque (STT) has been the primary means of manipulating the magnetic states of ferromagnetic (FM) and antiferromagnetic (AFM) materials using spin-polarized current [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. However, spin-orbit torque (SOT) has emerged as an efficient alternative means of controlling and manipulating the states of FM/AFM materials using electric current [20, 16, 21, 22, 14]. SOT-switching offers promising advantages over STT-switching, such as high-speed and energy-efficient switching without the need for the switching current to pass through a tunnel barrier, which is necessary for magnetic random access memory (MRAM) [16, 17, 23, 14].

Typically, to obtain SOT-switching, a current is applied in a heavy-metal (HM)/topological insulator(TI) layer on which a FM/AFM free layer is placed [17, 24, 25, 26]. The transverse spin currents generated in the HM/TI layer due to the spin-Hall effect [27] or Rashba effect [25] pass through the free layer positioned on top of the HM layer and induce SOT, consisting of mutually orthogonal field-like (FL) and Slonczewski (damping-like, DL) torques, on the free layer magnetization. However, in most conventional SOT-reversal studies, only the DL-torque component is utilized [28, 24, 29], which results in a high minimal current density required for the desired reversal rate. Additionally, conventional SOT-switching requires an external field or other means (e.g., lateral asymmetric introduced by the thickness variation of layers and an exchange bias field created by antiferromagnetic) to ensure deterministic switching [30, 23, 31]. Recent experimental works have shown that the FL-torque (τFL\tau_{\text{FL}}) can be significantly larger than the DL-torque (τDL\tau_{\text{DL}}) (i.e., |τFL/τDL|4|\tau_{\text{FL}}/\tau_{DL}|\approx 4) in certain nanostructure (e.g.,Ta/CoFeB/Mgo), and the substantial FL-torque can induce magnetization reversal [32, 33, 34, 35, 36, 37, 38]. For dominant FL-torque reversal, a properly designed chirped current pulse, analogous to the chirped magnetic field pulse-induced magnetization switching [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], can be an efficient alternative to drive ultrafast field-free magnetization reversal. However, a recent study [50] proposed a theoretical current pulse based on the constraint of the shortest time, which is difficult to realize practically to obtain the ideal balance of the FL- and DL-torques. Another recent study [51] identified an analytical in-plane current pulse to switch magnetization by balancing the FL- and DL-components of SOT during the switching process. However, the main parameters of this current pulse change with time, making it complex to realize in practice. Therefore, it is still desirable to find a simpler setup with a clear physical mechanism for field-free, fast, and energy-efficient SOT-reversal from the viewpoint of fundamental understanding and applications.

In this study, we investigate magnetization reversal of a perpendicularly magnetized nanodevice by a chirped current pulse (CCP) via SOT. Our findings demonstrate that both FL- and DL-components of SOT in CCP can be efficiently utilized to induce ultrafast magnetization reversal without any symmetry-breaking means. For a wide frequency range of the CCP, the obtained minimal current density is significantly smaller compared to the current density of conventional SOT-reversal and the theoretical limit [50]. This ultrafast reversal is due to the mechanism that the CCP triggers the enhanced energy absorption (emission) of the magnetization from (to) the FL- and DL-components of SOT before (after) crossing over the energy barrier. We also verify the robustness of the CCP-driven magnetization reversal at room temperature. Moreover, this strategy can be extended to switch the magnetic states of perpendicular synthetic antiferromagnetic (SAF) and ferrimagnetic (SFi) nanodevices. Therefore, these studies enrich the basic understanding of field-free SOT-reversal as well as provide a novel way to realize the ultrafast SOT-MRAM device with various free layer designs: ferromagnetic, SAF, and SFi.

Refer to caption
Figure 1: (a) Schematic representation of the nanodevice with SOT components on 𝐦\mathbf{m} which is perpendicular to xyxy-plane initially. Two components of 𝐉\mathbf{J} are applied along +x+x and +y+y directions in the HM. (b) Temporal change of the orthogonal components of the normalized electric current which flow in the heavy metal layer. (c) The frequency sweeping profile (+fin+f_{\text{in}} to fin-f_{\text{in}}) of CCP with time.

II Model and methodology

The nanodevice under consideration consists of a ferromagnetic free layer and a heavy metal (HM) layer, as shown in Fig. 1(a). The free layer’s magnetization 𝐦\mathbf{m} is perpendicular to the xyxy-plane, with two energy minima along the +zz and -zz directions due to easy-axis anisotropy. To reverse the magnetization from one stable state to another, a time-dependent rotating electric current pulse 𝐉=J[cosϕj(t)𝐱^+sinϕj(t)𝐲^]\mathbf{J}=J\left[\cos\phi_{\text{j}}(t)\hat{\mathbf{x}}+\sin\phi_{\text{j}}(t)\hat{\mathbf{y}}\right] is applied, with its two components along the +xx and +yy directions in the HM layer. The magnitude of 𝐉\mathbf{J} remains constant, and the phase angle ϕj(t)\phi_{\text{j}}(t) between 𝐉\mathbf{J} and x^\hat{x} varies with time. As the current passes through the HM layer, a transverse spin current is generated due to the spin Hall or Rashba effects, which exerts an effective torque on the magnetization [52, 53, 54]. This torque consists of field-like (FL) and damping-like (DL) components, as shown in Fig. 1(a),

𝝉=τDL𝐦×(𝐦×𝐩)τFL(𝐦×𝐩),\pmb{\tau}=-\tau_{\text{DL}}\mathbf{m}\times(\mathbf{m}\times\mathbf{p})-\tau_{\text{FL}}(\mathbf{m}\times\mathbf{p}), (1)

τDL=(/2e)(J/Msd)c\tau_{\text{DL}}=(\hbar/2e)(J/M_{\text{s}}d)c^{\parallel} and τFL=(/2e)(J/Msd)c\tau_{\text{FL}}=(\hbar/2e)(J/M_{\text{s}}d)c^{\perp} magnitudes (in the unit of magnetic field) of the DL and FL-torques , respectively, dd is the thickness of the ferromagnetic layer, cc^{\parallel} and cc^{\perp} are the efficiencies of DL and FL torque respectively. In this study, we use relative strength ξ=3\xi=-3 which is the ratio of the τFL\tau_{\text{FL}} to τDL\tau_{\text{DL}}. 𝐩=J^×z^\mathbf{p}=\hat{J}\times\hat{z} is the spin-polarization direction, where J^\hat{J} is the electric current direction.

In presence of the electric current density, 𝐉\mathbf{J}, the magnetization dynamics is described by the explicit Landau-Lifshitz-Gilbert equation [55]

1+α2γd𝐦dt=\displaystyle\dfrac{1+\alpha^{2}}{\gamma}\dfrac{d\mathbf{m}}{dt}= 𝐦×𝐇effα𝐦×(𝐦×𝐇eff)\displaystyle-\mathbf{m}\times\mathbf{H}_{\text{eff}}-\alpha\mathbf{m}\times(\mathbf{m}\times\mathbf{H}_{\text{eff}})
τDL[(1+ξα)𝐦×(𝐦×𝐩)+(ξα)(𝐦×𝐩)],\displaystyle-\tau_{\text{DL}}[(1+\xi\alpha)\mathbf{m}\times(\mathbf{m}\times\mathbf{p})+(\xi-\alpha)(\mathbf{m}\times\mathbf{p})], (2)

where α\alpha and γ\gamma are the Gilbert damping constant and gyromagnetic ratio respectively. The effective field 𝐇eff\mathbf{H}_{\text{eff}} comes from the exchange field 2Aμ0Ms2𝐦\dfrac{2A}{\mu_{0}M_{\text{s}}}\nabla^{2}\mathbf{m}, and the easy-axis anisotropy field HkH_{k} along z^\hat{z} direction.

Refer to caption
Figure 2: (a) Red line shows the temporal change of mzm_{z} under the CCP with fin{f_{\text{in}}} = 16.8 GHz, J=20J=20 MA/cm2 and η=\eta= 0.22 GHz and black line represents the m stays initial state for 1D current of J=20J=20 MA/cm2. (b) For fixed fin{f_{\text{in}}} = 16.8 GHz, the phase diagram (Jη\textbf{J}-\eta) of magnetization switching in terms of current amplitude J{J} and η\eta of CCP. (c) For fixed η=\eta= 0.22 GHz, the switching time, tst_{s} as a function of fin{f_{\text{in}}} for different JJ.

From the Eq. (2), it is noted that the DL and FL-torque fields interact with the magnetization in two different means, specifically, the DL torque compels the magnetization along yy-axis while the field from FL-torque generates the precession of magnetization around zz-axis. However, there are the studies [56, 37] which have taken into account the FL-torque as a dominant driving force as in some heavy metal, the FL-torque is significant.

The spin-orbit torque is a non-conservative force which works on the magnetization. Under this non-conservative force, the energy changing rate (with dimension) of the system is presented as (refers to Appendix for detail derivation)

ϵ˙=\displaystyle\dot{\epsilon}= αγμ0MS1+α2[|𝐇eff|2(𝐦𝐇eff)2]+ϵ˙SOT.\displaystyle-\frac{\alpha\gamma\mu_{0}M_{S}}{1+\alpha^{2}}[|\mathbf{H}_{\text{eff}}|^{2}-(\mathbf{m}\cdot\mathbf{H}_{\text{eff}})^{2}]+\dot{\epsilon}_{\text{SOT}}. (3)

The first term can be zero or negative as it is proportional to α-\alpha, and |𝐇eff||\mathbf{H}_{\text{eff}}| is always no larger than |𝐦𝐇eff||\mathbf{m}\cdot\mathbf{H}_{\text{eff}}|. This term reflects energy dissipation due to the Gilbert damping. The second term, ϵ˙SOT=γμ0MSaj1+α2𝐇eff[(1+ξα)𝐦×(𝐦×𝐩)+(ξα)(𝐦×𝐩)]\dot{\epsilon}_{\text{SOT}}=-\frac{\gamma\mu_{0}M_{S}a_{j}}{1+\alpha^{2}}\mathbf{H}_{\text{eff}}\cdot[(1+\xi\alpha)\mathbf{m}\times(\mathbf{m}\times\mathbf{p})+(\xi-\alpha)(\mathbf{m}\times\mathbf{p})], can be either positive or negative, contributed by the effective SOT which is generated by the time dependent spin current. Alternatively, the equivalent fields of the FL- and DL-torque can either supply the energy to the magnetization or extract the energy (by negative work done) from the magnetization, depending on the angle between the instantaneous magnetization direction 𝐦\mathbf{m} and spin polarization direction 𝐩\mathbf{p} [48, 57].

Without any external forces, the easy-axis anisotropy allows the magnetization 𝐦\mathbf{m} of the free layer to stay in two equilibrium states/energy minima, 𝐦𝐳^\mathbf{m}\parallel\hat{\mathbf{z}} and 𝐦𝐳^\mathbf{m}\parallel-\hat{\mathbf{z}}. The main objective of deterministic switching is to move the 𝐦\mathbf{m} from one stable state to another. Across the path of switching, 𝐦\mathbf{m} requires to climb the energy barrier and cross the equator of energy barrier at 𝐦z=0\mathbf{m}_{z}=0 and then, because of the Gilbert damping, 𝐦\mathbf{m} goes down to another stable state. So the ultrafast and energy efficient reversal might be obtain if the 𝐦\mathbf{m} resonantly absorbs energy from external source to reach at the equator and then releases the energy by the negative work-done. In the context of magnetic field driven, such fast and the energy efficient reversal has been demonstrated by the linear down chirped/cosine chirped microwave pulse [48, 57] through the physics of the microwave energy absorption (emission) by (from) the 𝐦\mathbf{m} before (after) the equator of energy barrier. To avail the similar mechanism, we employ the CCP (cosine) to utilize FL and DL-torque fields effectively. The CCP can be recast as the form

𝐉(t)=J[cosϕj(t)𝐱^+sinϕj(t)𝐲^],\mathbf{J}(t)=J\left[\cos\phi_{\text{j}}(t)\hat{\mathbf{x}}+\sin\phi_{\text{j}}(t)\hat{\mathbf{y}}\right], (4)

where JJ is the magnitude of the electric current and ϕj(t)\phi_{\text{j}}(t) is the time-dependent phase angle. ϕj(t)\phi_{\text{j}}(t) is considered as 2πfincos(2πηt)t2\pi f_{\text{in}}\cos\left(2\pi\eta t\right)t, where η\eta (in GHz unit) is the controlling parameter. The frequency of CCP seeps from initial finf_{\text{in}} to final fin-f_{\text{in}} with the seeping rate k(t)k(t) (in units of ns2\text{ns}^{-2}) while k(t)k(t) takes the form fin[(4πη)sin(2πηt)+(2πη)2tcos(2πηt)]-f_{\text{in}}\left[\left({4\pi}\eta\right)\sin\left({2\pi\eta t}\right)+\left({2\pi}\eta\right)^{2}t\cos\left({2\pi\eta t}\right)\right]. The time- dependent frequency is represented as f(t)=12πdϕjdt=fin[cos(2πηt)(2πηt)sin(2πηt)]f(t)=\dfrac{1}{2\pi}\dfrac{d\phi_{\text{j}}}{dt}=f_{\text{in}}\left[\cos\left(2\pi\eta t\right)-\left(2\pi\eta t\right)\sin\left(2\pi\eta t\right)\right] which is shown in Fig. 1(c). If the pulse duration (time requires to sweep +fin+f_{\text{in}} to final fin-f_{\text{in}}) is tpt_{p}, by solving the condition cos(2πηtp)(2πηtp)sin(2πηtp)=1\cos(2\pi\eta t_{p})-(2\pi\eta t_{p})\sin(2\pi\eta t_{p})=-1, we get a relation between tpt_{p} and η\eta as follows,

tp=1.3072πη.t_{p}=\frac{1.307}{2\pi\eta}. (5)

For this study, we have used the micromagnetic simulation package, MuMax3 [58] to solve the LLG equation numerically. From the viewpoint of experimental realization, we choose the material parameters: saturation magnetization, Ms=106M_{\text{s}}=10^{6} A/m, perpendicular anisotropy Ku=8×105K_{\text{u}}=8\times 10^{5} J/m3 or hani=1.6h_{\text{ani}}=1.6 T, γ=1.76×1011\gamma=1.76\times 10^{11} rad/T/s, exchange constant Aex=1.5×1011A_{\text{ex}}=1.5\times 10^{-11} J/m, and Gilbert damping α\alpha= 0.01. The system we focused on has a dimension of 20×20×1.220\times 20\times 1.2 nm3, and it was discretized with a mesh size of 1×1×1.21\times 1\times 1.2 nm3.

Refer to caption
Figure 3: Phase diagrams of the rate of energy change ϵ˙\dot{\epsilon} in terms of θ\theta and Φ\Phi for different ξ(τFL/τFL)\xi(\tau_{\text{FL}}/\tau_{\text{FL}}) (a) -0.1, (b) -1, (c) -3 and (d) -10. The color bar represents ϵ˙\dot{\epsilon} while yellow (blue) color indicates +ϵ˙+\dot{\epsilon} (-ϵ˙\dot{\epsilon}).

III Numerical Results

Initially the magnetization 𝐦\mathbf{m} stays in one equilibrium state (mz=1m_{\text{z}}=1) and its resonant frequency, based on the system configuration and the uniaxial anisotropy (hanih_{\text{ani}}), is determined as γ2π[haniμ0(NzNx)Ms]=16.8\dfrac{\gamma}{2\pi}\left[h_{\text{ani}}-\mu_{0}(N_{z}-N_{x})M_{\text{s}}\right]=16.8 GHz. To induce the magnetization switching, we apply the chirped current pulse (CCP) to the heavy metal (HM) layer by choosing the initial frequency of the CCP as fin=16.8f_{\text{in}}=16.8 GHz so that it closely matches the magnetization precession frequency. Then we investigate the CCP driven switching with different values of the current JJ and η\eta. Interestingly, with the minimal J=20J=20 MA/cm2 and the optimal η=\eta=0.22 GHz , the CCP is capable of inducing the fast and efficient deterministic switching (red line) which is shown as in the Fig. 2(a). For fixed fin=16.8f_{\text{in}}=16.8 GHz and the switching time window ts=t_{s}=1.5 ns, Fig. 2(b) depicts phase diagram (JηJ-\eta ) in terms of JJ and η\eta in which blue (red) color indicates the switched, mz=1m_{\text{z}}=-1 (not switched, mz=1m_{\text{z}}=1) state. It is found that the critical switching density linearly increases with the increase of η\eta. Later on, for different JJ (20, 25 and 30 MA/cm2) of CCP with η=\eta=0.22 GHz, we investigate the magnetization switching by tuning finf_{\text{in}} presented in the Fig. 2(c). It is found, for each current, there is a range of finf_{\text{in}} (indicated by vertical lines) around 16.816.8 GHz for which the fast reversal is obtained. So, there is a great flexibility of choosing the parameters of the CCP which broadens the path of experimental realization. The pulse width of CCP is tp=0.92t_{p}=0.92 ns , refers to the Eq. (5), which is close to switching time 0.94 ns and for deterministic switching, the pulse width does not require to be precised. In addition, this strategy does not require the external field as like the conventional SOT switching which shows the remarkable advantage.

To compare with the conventional switching, we apply 1D current along yy direction with same magnitude but the 𝐦\mathbf{m} does not switch rather it stays in the initial state (black line) as shown in the Fig. 2(a). Then we increase the current JJ and for J=200J=200 MA/cm2 (which is ten times larger then the amplitude of the CCP), 𝐦\mathbf{m} reverses but its switched back (not shown) i.e., to obtain deterministic switching, the external field is required. To get a better sense about our strategy, we compare the obtained minimal JJ to the theoretical limit of the current density refers to the study [50] and found that the CCP with the minimal J=20J=20 MA/cm2, leads the fast switching, which is close to the theoretical limit, J=7J=7 MA/cm2 obtained for the same parameters. Although J=20J=20 MA/cm2 is required to switch perpendicular magnetization of high anisotropy field hani=1.6h_{\text{ani}}=1.6 T. So it is expected that the minimal JJ would be reduced to the practically feasible range for the material of comparatively lower anisotropy field.

To elucidate the physical mechanism of the CCP driven fast reversal, we express the second term of the (3) in the following form

ϵ˙SOT=\displaystyle\dot{\epsilon}_{\text{SOT}}= αγμ0MS1+α2(MsNzz+2Kuμ0Ms)cosθsinθ\displaystyle-\frac{\alpha\gamma\mu_{0}M_{S}}{1+\alpha^{2}}(M_{s}N_{zz}+\frac{2K_{u}}{\mu_{0}M_{s}})\cos\theta\sin\theta
[(1+ξα)cosθcosΦ(t)+(ξα)sinΦ(t)],\displaystyle[(1+\xi\alpha)\cos\theta\cos\Phi(t)+(\xi-\alpha)\sin\Phi(t)], (6)

where θ\theta and ϕm\phi_{\text{m}} are a polar and azimuthal angles of 𝐦\mathbf{m}. Φ(t)=ϕp(t)ϕm(t)\Phi(t)=\phi_{\text{p}}(t)-\phi_{\text{m}}(t) is the relative phase angle between the in-plane components of 𝐦\mathbf{m} and spin polarization direction 𝐩\mathbf{p} while ϕp(t)\phi_{\text{p}}(t) is phase angle of 𝐩\mathbf{p}. For the fixed material parameters, the rate of energy contribution from SOT components, ϵ˙\dot{\epsilon} is found to be dependent on θ\theta and the Φ(t)\Phi(t). For different values of ξ(τFL/τFL)\xi(\tau_{\text{FL}}/\tau_{\text{FL}}), we analytically determine the ϵ˙\dot{\epsilon} as a function of θ\theta, varies from 0 (initial state) to 180 (reversed state) and Φ(t)\Phi(t), varies from -180 to 180 and thus draw the phase diagrams of ϵ˙\dot{\epsilon} in terms of θ\theta and Φ\Phi as shown in the Fig. 3. Particularly, the phase diagrams of ϵ˙\dot{\epsilon} for ξ=0.1\xi=-0.1, 1.0-1.0, 3.0-3.0 and 10.0-10.0 are depicted in Figs. 3(a)-(d) respectively in which the color bars represent the energy changing rate ±ϵ˙\pm\dot{\epsilon}. Yellow and blue colors indicate +ϵ˙SOT+\dot{\epsilon}_{\text{SOT}} (energy supplies to 𝐦\mathbf{m} by the SOT components) and ϵ˙SOT-\dot{\epsilon}_{\text{SOT}} (energy extracts from 𝐦\mathbf{m} by the SOT components) respectively. For the dominant DL-torque, i.e., ξ=0.1\xi=-0.1, yellow color in Fig. 3(a) represents that the energy absorption is occurred at Φ=0\Phi=0 before and after the equator which will not induce the deterministic switching. Then if we include the FL-torque component, that is, for ξ=1.0\xi=-1.0 (for equal contribution of SOT components), the energy absorption (emission) would be at smaller (larger) than Φ=90\Phi=-90^{\circ} as indicated by horizontal red line in Fig. 3(b). Of course, it will be difficult to maintain two different Φ(t)\Phi(t) before and after the equator. If we further increase the FL-SOT component, i.e., for ξ=3.0\xi=-3.0 (dominant FL-torque) as in Fig. 3(c), the maximum energy absorption (emission) before (after) the equator would be occurred at around Φ(t)=90\Phi(t)=-90^{\circ} as indicated by horizontal rel line. So, it is predicted that Φ(t)\Phi(t) is required to maintain around -90 such that the energy absorption rate, +ϵ˙SOT+\dot{\epsilon}_{\text{SOT}} (the energy emission rateϵ˙SOT-\dot{\epsilon}_{\text{SOT}}) before (after) crossing the equator (θ=90\theta=90^{\circ}) becomes maximum which will lead fast and an energy-efficient switching. Finally, for ξ=10.0\xi=-10.0 (almost with FL-torque) as in Fig. 3(d), the maximum energy absorption (emission) is occurred at Φ=90\Phi=-90^{\circ} which is similar prediction to the studies of microwave chirped pulse [48, 57].

To understand the mechanism, one can look at the magnetization dynamics under CCP in detail. Fig. 4(a) shows the switching trajectory in which the CCP is switched off at mz=0.008{m}_{z}=-0.008, i.e., just after crossing the equator. 𝐦\mathbf{m} goes swiftly from mz=1m_{\text{z}}=1 to mz=0.008m_{\text{z}}=-0.008, after that, 𝐦\mathbf{m} changes rotating direction and goes to the ground state slowly as it requires to undergo many turns because of the damping coefficient. However, for the complete CCP, Fig. 4(b) shows the magnetization switching trajectory and found that the 𝐦\mathbf{m} rotates anticlockwise (clockwise) before (after) crossing over the equator. Note that, after passing the equator, 𝐦\mathbf{m} rotates only a few turns and thus goes to the ground state swiftly. Compare to the former case (CCP is switched off at mz=0.008{m}_{z}=-0.008), it is evident that, after passing the equator, the CCP extracts the energy from the 𝐦\mathbf{m} which leads fast relaxation to the ground sate. Thus, the underlying mechanism is that 𝐦\mathbf{m} resonantly absorbs (emits) the energy before (after) crossing the equator from (to) the fields of DL- and FL-torque components.

Refer to caption
Figure 4: (a) The trajectory of magnetization if the CCP is switched off at mz=0.008m_{\text{z}}=-0.008. (b) The trajectory of magnetization for the full CCP pulse, i.e., the CCP is applied until mzm_{\text{z}} goes to -1. (c) Red line depicts the temporal change of mzm_{\text{z}} and blue line shows the change of relative-angle Φ\Phi with time while horizontal dotted-line indicates Φ=90\Phi=-90^{{\circ}}.

To justify the mechanism, from the simulated data, we determine the azimuthal angles ϕp\phi_{\text{p}} and ϕm\phi_{\text{m}} from the in-plane components of spin current polarization 𝐩\mathbf{p} and 𝐦\mathbf{m} respectively and thus we estimate the relative phase angle, Φ(t)=ϕp(t)ϕm(t)\Phi(t)=\phi_{\text{p}}(t)-\phi_{\text{m}}(t), between the 𝐉\mathbf{J} and 𝐦\mathbf{m} which is depicted by the blue line in Fig. 4(c). The red line in Fig. 4(c) represents the transition of 𝐦\mathbf{m} from its initial state (mz=1m_{z}=1) to the equator. During this transition, the corresponding Φ(t)\Phi(t) is maintained around the range of 0 to -90, as shown by the blue line in Fig. 4(c). This behavior aligns with the expected results predicted by equation (6) or Fig. 3(a) for the given scenario. For this time interval, the energy change rates are positive (+ϵ˙SOT+\dot{\epsilon}_{\text{SOT}}) presented by the dotted blue line (contributed by DL-SOT) and dashed blue line (contributed by FL-SOT) in the Fig. 5. That is, before crossing the equator, both the DL- and FL-torques contributed energy to 𝐦\mathbf{m}. After crossing the equator, 𝐦\mathbf{m} changes precession direction and similarly the CCP also changes the sense of rotating direction. Consequently, the Φ(t)\Phi(t) again maintains around 0 to 90-90^{\circ} by balancing the fields of DL- and FL-torque components. In this time interval, ϵ˙SOT\dot{\epsilon}_{\text{SOT}} is negative shown by the dotted blue line (DL-SOT) and dashed blue line (FL-SOT) in the Fig. 5. That is, the stimulated energy emission is occurred by 𝐦\mathbf{m} through the negative work done. The total energy changing with time contributed by the full SOT is shown by solid blue line in Fig. 5. Therefore, 𝐦\mathbf{m} efficiently absorbs (emits) the energy before (after) crossing the equator from (to) the fields of DL- and FL-torque components, in other words, the CCP triggers the efficient energy absorption (emission) of the magnetization from (to) the FL- and DL-components of SOT before (after) crossing over the energy barrier.

Refer to caption
Figure 5: Red line shows change of mzm_{\text{z}} with time and plot of the energy changing rate of 𝐦\mathbf{m} which contributed by the FL-torque (dashed blue line), DL-torque (dotted blue line). Blue line shows the total energy change rate of the 𝐦\mathbf{m} contributed by both SOT components.

We also investigate the magnetization switching for a range of ξ(τFL/τDL\xi(\tau_{\text{FL}}/{\tau_{\text{DL}}}) to see how the current density of CCP changes. For fixed fin{f_{\text{in}}} = 16.8 GHz, η=\eta= 0.22 GHz and switching time window of 1.5 ns, Fig. 6(a) shows the phase diagram (Jξ\textbf{J}-\xi) of magnetization switching in terms of current amplitude J of CCP and ξ\xi with the other parameters kept similar, in which the blue region indicates the switched state and red region indicates the not-switched state (i.e., initial state). It shows that for larger ξ\xi i.e., for the FL-SOT dominated case, smaller J is enough to switch. Note that there is a range of ξ\xi(-3.6 to -2.7) (indicated by the two vertical dot lines) for which the constant current is required. This range of ξ\xi will provide an advantage for device application. However, it is suggested to use as larger value of ξ\xi as possible for an efficient CCP driven switching.

Since the temperature is present everywhere in nature. So, to satisfy the realistic condition, it is meaningful to check the strategy whether the CCP driven magnetization reversal is valid at finite/operating temperature. Purposely, we use the stochastic Landau Lifshitz Gilbert (sLLG) equation to simulate the system with finite temperature and examine the CCP ( with the parameters J=18J=18 MA/cm2, fin=16.8f_{\text{in}}=16.8 and η=0.14\eta=0.14 GHz) driven magnetization reversal at 300 K for the same material parameters as before. To find the proper estimation (using the similar approach of the studies [59, 49]), we repeat 1000 times (by changing the thermseed) of the CCP driven magnetization switching (mzm_{z}) for the same material parameters. Then take the ensemble average of mzm_{z} as shown in the Fig. 6(b) and thus find that the magnetization switching (bold black line) is valid and robust even at room temperature.

Recently, the reversal of antiferromagnetic (AFM) state draws much attention as the AFM nanostructure possesses some intriguing properties like the ultrafast spin dynamics, insensitivity against external magnetic field, zero stray field [60, 61, 22, 14]. Similar to AFM system, people also focus on magnetization reversal of the synthetic antiferromagnetic (SAF) and synthetic ferrimagnetic (SFi) nanodevice due to their promising properties of zero stray field [62, 63] and high thermal stability [64, 65, 66]. So, it is interesting to check whether the above strategy works efficiently also to reverse the magnetization of SAF and SFi nanodevices. Purposely, the schematic diagrams of SAF and SFi systems are shown in Fig. 7(a) and (b) in which two ferromagnetic layers, coupled through the interlayer exchange interaction of Ruderman–Kittel–Kasuya–Yoshida (RKKY) [22], mediated by a sandwiched heavy metal layer. For SAF, the upper and lower layer have same dimension (20×20×1.220\times 20\times 1.2 nm3) and same material parameters as previously chosen for the FM system. We intend to apply the CCP in the sandwiched layer (which is heavy metal) and thus the transverse spin currents, which are generated because of the Spin-Hall effect, pass through the adjacent upper and lower ferromagnetic layers as shown in Fig. 7(a). So both transverse spin current components from the CCP can be utilized efficiently to switch magnetization of upper (up to down) and lower (down to up) layers in opposite directions. The demagnetization field of SAF system is zero, so the resonant frequency is obtained as γhani2π=44.98\frac{\gamma h_{\text{ani}}}{2\pi}=44.98 GHz. Now we investigate the magnetization reversal by applying the CCP with fin=44.98f_{\text{in}}=44.98 GHz and for different values of JJ and η\eta. Interestingly, we found that, the CCP, with finf_{\text{in}} 44.98 GHz, the minimal current J=29J=29 MA/cm2 and optimal η=0.43\eta=0.43 GHz, is capable of driving the field-free ultrafast (around 200 picosecond) magnetization reversal of the both layers. Red line in the Fig. 7(c) shows only the reversal of the upper layer while blue line shows the stimulated energy absorption/emission ϵ˙SOT\dot{\epsilon}_{\text{SOT}} by/from the magnetization. Note that the behavior of the rate of change of energy absorption/emission of 𝐦\mathbf{m} (blue line) before (after) crossing the energy barrier is similar to the FM system (solid blue line in Fig. 5). That is, the mechanism and explanation of the fast reversal of SAF under the CCP is analogous to the FM system.

Refer to caption
Figure 6: (a) For fixed fin{f_{\text{in}}}=16.8 GHz and η=\eta=0.22 GHz, the phase diagram (Jξ\textbf{J}-\xi) of magnetization switching in terms of current amplitude J of CCP and ξ\xi. With the switching time window of 1 ns, the blue region indicates the switched state and red region shows the not-switched state (i.e., initial state). (b) Bold black line shows the switching of 𝐦\mathbf{m} which is obtained from average of 1000 ensembles of magnetization switching under CCP ( with the parameters J=18J=18 MA/cm2, fin=16.8f_{\text{in}}=16.8 and η=0.14\eta=0.14 GHz) at 300 K for the same material parameters as before.
Refer to caption
Figure 7: Sketch of perpendicular synthetic (a) Antiferromagnetic (SAF) structure and (b) ferrimagnetic (SFi) structure. The rotating CCP is applied in the sandwiching a heavy metal layer. Temporal evolution of mzm_{z} (red line) of upper layer of synthetic (c) SAF and (d) SFi structure while Blue lines (in (c) and (d)) show the energy changing rate ϵ˙SOT\dot{\epsilon}_{\text{SOT}} of mzm_{z} contributed by the both DL- and FL-torques.

Later on, we examined the CCP driven switching of perpendicular SFi states with a small net magnetization as saturation magnetizations MsM_{\text{s}} of upper and lower layers are set as 1×1061\times 10^{6} A/m and 0.85×1060.85\times 10^{6} A/m respectively. In addition, other material parameters as well as the dimensions are same as the previously studied FM system. Similar to SAF, we apply the rotating CCP in the sandwich layer and thus the transverse spin currents, which are generated by the spin-Hall effect can flow in the upper and lower FM layers which are align in opposite directions as shown in the Fig. 7(b). In this way, both the spin current components (upper and lower) from the CCP can be utilized efficiently to drive the reversal of magnetic state of both layers (from up-down to down-up). Thus we interestingly found that, with the minimal current density J=17J=17 MA/cm2, finf_{\text{in}}= 44 GHz and optimal η=0.13\eta=0.13 GHz, the ultrafast reversals of 𝐦\mathbf{m} of the both layer are achieved. Red line in the Fig. 7(d) shows the switching of mzm_{z} of a single cell from the upper layer while blue line represents the trend of the energy changing rate of the magnetization of a single cell, ϵ˙SOT\dot{\epsilon}_{\text{SOT}} contributed by both DL- and FL-torque components. Note that, blue line in Fig. 7(d), the trend of the rate of change of energy absorption (emission) before (after) crossing the energy barrier is similar to the FM system (solid blue line in Fig. 5). Thus the physical mechanism and explanation of the ultrafast reversal of SFi under the CCP is analogous to the FM system. However, it is mentioned that, in compare to SAF switching, the minimal current needed for SFi switching is significantly lower.

IV Discussion and Conclusions

In this study, we investigated the parameters necessary for efficient and ultrafast switching in field-free spin-orbit torque (SOT) systems driven by a circularly polarized current pulse (CCP). We found that a wide range of initial frequencies around the ferromagnetic resonance frequency (FMR) allowed for ultrafast switching. By increasing the controlling parameter η\eta, we were able to achieve ultrafast switching, as the switching time is close to the pulse duration of the CCP. Additionally, we found that increasing the current density JJ led to more efficient energy absorption and emission. However, generating the CCP in the laboratory remains a challenge, and recent studies may provide insight into how to generate such a pulse [67, 35, 32, 25, 68, 69].

Our study demonstrated that utilizing both FL- and DL-torques in the CCP of 0.92ns can drive an ultrafast and efficient magnetization reversal in 0.94ns without any additional means of symmetry breaking. We found that the critical current density is strongly reduced in comparison to conventional SOT-reversal for a certain range of CCP frequencies. This field-free ultrafast reversal is driven by the efficient energy absorption and emission of the magnetization from and to the fields of FL- and DL-torques before and after crossing over the energy barrier. The pulse duration of the CCP is close to the reversal time and does not require precise adjustment. This CCP-driven switching is robust at room temperature.

We also extended this strategy to reverse the magnetic states of perpendicular SAF and SFi systems by applying the CCP in the sandwiched layer, acting as a spin source for upper and lower layers. We found that the CCP, with significantly lower current density, can induce field-free ultrafast and efficient switching of magnetic states of SAF and SFi systems with a similar physical mechanism. These findings enhance the basic understanding of SOT-reversal and provide a way to realize novel SOT-MRAM devices with FM, SAF, or SFi free layers.

Acknowledgements.
M.T.I. acknowledges the support of National Natural Science Foundation of China (Grant No. 12350410352) and National Key R and D Program of China (Grant No. 2021YFA1202200). X.R.W. acknowledges the support of Hong Kong RGC Grants (No. 16300522, 16300523, and 16302321). X.S.W. acknowledges support from the Natural Science Foundation of China (NSFC) (Grants No. 11804045 and No. 12174093) and the Fundamental Research Funds for the Central Universities.

Appendix A The calculation of the rate of energy change

In the appendix, we present a detailed derivation of the rate of change of energy of magnetization, dϵdt\frac{d\epsilon}{dt}, in equation (5).

In this context, we treat the spin-orbit torques (SOT) as an external torque, meaning that the energy associated with the effective field generated by SOT is not accounted for in the system’s energy. This enables us to concentrate solely on the inherent energy variations of the system. The effective field is defined as follows:

𝐇eff=1μ0Msϵ𝐦.\mathbf{H}_{\text{eff}}=-\frac{1}{\mu_{0}M_{s}}\frac{\partial\epsilon}{\partial\mathbf{m}}. (7)

By making suitable adaptations, the energy density can be formulated in the following manner:

ϵtϵ˙=μ0Ms𝐇eff𝐦t.\frac{\partial\epsilon}{\partial t}\equiv\dot{\epsilon}=-\mu_{0}M_{s}\mathbf{H}_{\text{eff}}\cdot\frac{\partial\mathbf{m}}{\partial t}. (8)

By substituting the explicit Landau-Lifshitz-Gilbert (LLG) equation into the above equation, we derive the following expression:

ϵ˙=\displaystyle\dot{\epsilon}= αγμ0MS1+α2[|𝐇eff|2(𝐦𝐇eff)2]γμ0MSaj1+α2𝐇eff\displaystyle-\frac{\alpha\gamma\mu_{0}M_{S}}{1+\alpha^{2}}[|\mathbf{H}_{\text{eff}}|^{2}-(\mathbf{m}\cdot\mathbf{H}_{\text{eff}})^{2}]-\frac{\gamma\mu_{0}M_{S}a_{j}}{1+\alpha^{2}}\mathbf{H}_{\text{eff}}
[(1+ξα)𝐦×(𝐦×𝐩)+(ξα)(𝐦×𝐩)]\displaystyle\cdot[(1+\xi\alpha)\mathbf{m}\times(\mathbf{m}\times\mathbf{p})+(\xi-\alpha)(\mathbf{m}\times\mathbf{p})]
=\displaystyle= ϵ˙Damp+ϵ˙SOT.\displaystyle\dot{\epsilon}_{\text{Damp}}+\dot{\epsilon}_{\text{SOT}}. (9)

The first term, EDampE_{\text{Damp}}, on the right-hand side is always negative as it is proportional to α-\alpha, and |𝐇eff||\mathbf{H}_{\text{eff}}| is always smaller than |𝐦𝐇eff||\mathbf{m}\cdot\mathbf{H}_{\text{eff}}|. The second term, ESOTE_{\text{SOT}}, represents the energy variation resulting from the influence of the SOT torque, and its sign can be positive or negative. Where 𝐦\mathbf{m} is the magnetization direction and 𝐩\mathbf{p} is the spin polarization direction which is related to the electric current direction as 𝐩=J^×z^\mathbf{p}=\hat{J}\times\hat{z}. 𝐦\mathbf{m} and 𝐩\mathbf{p} can be represented in spherical coordinates as:

𝐦=sinθcosϕm𝐱+sinθsinϕm𝐲+cosθ𝐳,\mathbf{m}=\sin\theta\cos\phi_{\text{m}}\,\mathbf{x}+\sin\theta\sin\phi_{\text{m}}\,\mathbf{y}+\cos\theta\,\mathbf{z}, (10)
𝐩=cosϕp𝐱+sinϕp𝐲.\mathbf{p}=\cos\phi_{\text{p}}\mathbf{x}+\sin\phi_{\text{p}}\mathbf{y}. (11)

Similarly, the effective field 𝐇eff\mathbf{H}_{\text{eff}} is also a function of 𝐦\mathbf{m}:

𝐇eff=\displaystyle\mathbf{H}_{\text{eff}}= MsNxxsinθcosϕm𝐱+MsNyysinθsinϕm𝐲\displaystyle M_{s}N_{xx}\sin\theta\cos\phi_{\text{m}}\,\mathbf{x}+M_{s}N_{yy}\sin\theta\sin\phi_{\text{m}}\,\mathbf{y}
+(MsNzz+2Kuμ0Ms)cosθ𝐳,\displaystyle+(M_{s}N_{zz}+\frac{2K_{u}}{\mu_{0}M_{s}})\cos\theta\,\mathbf{z}, (12)

where NxxN_{xx}, NyyN_{yy}, and NzzN_{zz} are the demagnetization factors in the x, y, and z directions respectively, satisfying the condition Nxx+Nyy+Nzz=1N_{xx}+N_{yy}+N_{zz}=1. For our system, it is typically observed that NxxN_{xx} and NyyN_{yy} tend to approach zero. As a result, the effective field can be simplified as 𝐇eff=(MsNzz+2Kuμ0Ms)cosθ𝐳\mathbf{H}_{\text{eff}}=(M_{s}N_{zz}+\frac{2K_{u}}{\mu_{0}M_{s}})\cos\theta\mathbf{z}. Substituting this expression into the equation yields the following:

ϵ˙SOT=\displaystyle\dot{\epsilon}_{\text{SOT}}= αγμ0MS1+α2(MsNzz+2Kuμ0Ms)cosθsinθ\displaystyle-\frac{\alpha\gamma\mu_{0}M_{S}}{1+\alpha^{2}}(M_{s}N_{zz}+\frac{2K_{u}}{\mu_{0}M_{s}})\cos\theta\sin\theta
[(1+ξα)cosθcos(ϕpϕm)+(ξα)sin(ϕpϕm)].\displaystyle[(1+\xi\alpha)\cos\theta\cos(\phi_{\text{p}}-\phi_{\text{m}})+(\xi-\alpha)\sin(\phi_{\text{p}}-\phi_{\text{m}})]. (13)

Let Φ=ϕpϕm\Phi=\phi_{\text{p}}-\phi_{\text{m}}, then:

ϵ˙SOT=\displaystyle\dot{\epsilon}_{\text{SOT}}= αγμ0MS1+α2(MsNzz+2Kuμ0Ms)cosθsinθ\displaystyle-\frac{\alpha\gamma\mu_{0}M_{S}}{1+\alpha^{2}}(M_{s}N_{zz}+\frac{2K_{u}}{\mu_{0}M_{s}})\cos\theta\sin\theta
[(1+ξα)cosθcosΦ+(ξα)sinΦ].\displaystyle[(1+\xi\alpha)\cos\theta\cos\Phi+(\xi-\alpha)\sin\Phi]. (14)

References

  • Slonczewski [1996] J. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159, L1 (1996).
  • Tsoi et al. [1998] M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Excitation of a magnetic multilayer by an electric current, Phys. Rev. Lett. 80, 4281 (1998).
  • Katine et al. [2000] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co\text{Co}/\text{Cu}/\text{Co} pillars, Phys. Rev. Lett. 84, 3149 (2000).
  • Waintal et al. [2000] X. Waintal, E. B. Myers, P. W. Brouwer, and D. C. Ralph, Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers, Phys. Rev. B 62, 12317 (2000).
  • Sun [2000] J. Z. Sun, Spin-current interaction with a monodomain magnetic body: A model study, Phys. Rev. B 62, 570 (2000).
  • Stiles and Zangwill [2002] M. D. Stiles and A. Zangwill, Anatomy of spin-transfer torque, Phys. Rev. B 66, 014407 (2002).
  • Bazaliy et al. [2004] Y. B. Bazaliy, B. A. Jones, and S.-C. Zhang, Current-induced magnetization switching in small domains of different anisotropies, Phys. Rev. B 69, 094421 (2004).
  • Koch et al. [2004] R. H. Koch, J. A. Katine, and J. Z. Sun, Time-resolved reversal of spin-transfer switching in a nanomagnet, Phys. Rev. Lett. 92, 088302 (2004).
  • Wetzels et al. [2006] W. Wetzels, G. E. W. Bauer, and O. N. Jouravlev, Efficient magnetization reversal with noisy currents, Phys. Rev. Lett. 96, 127203 (2006).
  • Ikeda et al. [2007] S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and H. Ohno, Magnetic tunnel junctions for spintronic memories and beyond, IEEE Trans. Electron Devices 54, 991 (2007).
  • Manchon and Zhang [2008] A. Manchon and S. Zhang, Theory of nonequilibrium intrinsic spin torque in a single nanomagnet, Phys. Rev. B 78, 212405 (2008).
  • Mihai Miron et al. [2010] I. Mihai Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Current-driven spin torque induced by the rashba effect in a ferromagnetic metal layer, Nat. Mater. 9, 230 (2010).
  • Wadley et al. [2016] P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, Electrical switching of an antiferromagnet, Science 351, 587 (2016).
  • Fukami et al. [2016a] S. Fukami, T. Anekawa, C. Zhang, and H. Ohno, A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration, Nat. Nanotechnol. 11, 621 (2016a).
  • Wang and Chien [2013] W. G. Wang and C. L. Chien, Voltage-induced switching in magnetic tunnel junctions with perpendicular magnetic anisotropy, J. Phys. D: Appl. Phys. 46, 074004 (2013).
  • Miron et al. [2011] I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection, Nature 476, 189 (2011).
  • Liu et al. [2012a] L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin hall effect, Phys. Rev. Lett. 109, 096602 (2012a).
  • Endoh and Honjo [2018] T. Endoh and H. Honjo, A recent progress of spintronics devices for integrated circuit applications, J. Low Power Electron. Appl. 8, 44 (2018).
  • Železný et al. [2014] J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A. Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth, Relativistic néel-order fields induced by electrical current in antiferromagnets, Phys. Rev. Lett. 113, 157201 (2014).
  • Gambardella and Miron [2011] P. Gambardella and I. M. Miron, Current-induced spin–orbit torques, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 3175 (2011).
  • Liu et al. [2012b] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-torque switching with the giant spin hall effect of tantalum, Science 336, 555 (2012b).
  • Parkin [1991] S. S. P. Parkin, Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5dtransition metals, Phys. Rev. Lett. 67, 3598 (1991).
  • Yu et al. [2014a] G. Yu, P. Upadhyaya, Y. Fan, J. G. Alzate, W. Jiang, K. L. Wong, S. Takei, S. A. Bender, L.-T. Chang, Y. Jiang, M. Lang, J. Tang, Y. Wang, Y. Tserkovnyak, P. K. Amiri, and K. L. Wang, Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields, Nat. Nanotechnol. 9, 548 (2014a).
  • Fukami et al. [2016b] S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, and H. Ohno, Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system, Nat. Mater. 15, 535 (2016b).
  • Manchon et al. [2019] A. Manchon, J. Železný, I. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, and P. Gambardella, Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems, Rev. Mod. Phys. 91, 035004 (2019).
  • Ryu et al. [2020] J. Ryu, S. Lee, K. Lee, and B. Park, Current-induced spin–orbit torques for spintronic applications, Adv. Mater. 32, 1907148 (2020).
  • Sinova et al. [2015] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. Back, and T. Jungwirth, Spin hall effects, Rev. Mod. Phys. 87, 1213 (2015).
  • Kim et al. [2012a] K.-W. Kim, S.-M. Seo, J. Ryu, K.-J. Lee, and H.-W. Lee, Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with rashba spin-orbit coupling, Phys. Rev. B 85, 180404 (2012a).
  • Chen et al. [2017] J.-Y. Chen, M. DC, D. Zhang, Z. Zhao, M. Li, and J.-P. Wang, Field-free spin-orbit torque switching of composite perpendicular CoFeB/Gd/CoFeB\text{CoFeB}/\text{Gd}/\text{CoFeB} layers utilized for three-terminal magnetic tunnel junctions, Appl. Phys. Lett. 111, 012402 (2017).
  • Yu et al. [2014b] G. Yu, L.-T. Chang, M. Akyol, P. Upadhyaya, C. He, X. Li, K. L. Wong, P. K. Amiri, and K. L. Wang, Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx]\text{Ta}/\text{CoFeB}/[\text{TaO}_{x}\text{ or }\text{MgO}/\text{TaO}_{x}] films with lateral structural asymmetry, Appl. Phys. Lett. 105, 102411 (2014b).
  • Chen et al. [2018] T.-Y. Chen, H.-I. Chan, W.-B. Liao, and C.-F. Pai, Current-induced spin-orbit torque and field-free switching in Mo-based magnetic heterostructures, Phys. Rev. Appl. 10, 044038 (2018).
  • Kim et al. [2012b] J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, and H. Ohno, Layer thickness dependence of the current-induced effective field vector in Ta||CoFeB||MgO, Nat. Mater. 12, 240 (2012b).
  • Garello et al. [2013] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures, Nat. Nanotechnol. 8, 587 (2013).
  • Avci et al. [2014] C. O. Avci, K. Garello, C. Nistor, S. Godey, B. Ballesteros, A. Mugarza, A. Barla, M. Valvidares, E. Pellegrin, A. Ghosh, I. M. Miron, O. Boulle, S. Auffret, G. Gaudin, and P. Gambardella, Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO\text{Ta}/\text{CoFeB}/\text{MgO} layers, Phys. Rev. B 89, 214419 (2014).
  • Qiu et al. [2014] X. Qiu, P. Deorani, K. Narayanapillai, K.-S. Lee, K.-J. Lee, H.-W. Lee, and H. Yang, Angular and temperature dependence of current induced spin-orbit effective fields in Ta/CoFeB/MgO\text{Ta}/\text{CoFeB}/\text{MgO} nanowires, Sci. Rep. 4, 4491 (2014).
  • Akyol et al. [2015] M. Akyol, J. G. Alzate, G. Yu, P. Upadhyaya, K. L. Wong, A. Ekicibil, P. Khalili Amiri, and K. L. Wang, Effect of the oxide layer on current-induced spin-orbit torques in Hf|CoFeB|MgO\text{Hf}|\text{CoFeB}|\text{MgO} and Hf|CoFeB|TaOx\text{Hf}|\text{CoFeB}|\text{TaO}_{x} structures, Appl. Phys. Lett. 106, 032406 (2015).
  • Yoon et al. [2017] J. Yoon, S.-W. Lee, J. H. Kwon, J. M. Lee, J. Son, X. Qiu, K.-J. Lee, and H. Yang, Anomalous spin-orbit torque switching due to field-like torque–assisted domain wall reflection, Sci. Adv. 3, e1603099 (2017).
  • Wang [2012] D. Wang, Spin-orbit field switching of magnetization in ferromagnetic films with perpendicular anisotropy, Appl. Phys. Lett. 100, 212405 (2012).
  • Thirion et al. [2003] C. Thirion, W. Wernsdorfer, and D. Mailly, Switching of magnetization by nonlinear resonance studied in single nanoparticles, Nat. Mater. 2, 524 (2003).
  • Rivkin and Ketterson [2006] K. Rivkin and J. B. Ketterson, Magnetization reversal in the anisotropy-dominated regime using time-dependent magnetic fields, Appl. Phys. Lett. 89, 252507 (2006).
  • Woltersdorf and Back [2007] G. Woltersdorf and C. H. Back, Microwave assisted switching of single domain Ni80Fe20\text{Ni}_{80}\text{Fe}_{20} elements, Phys. Rev. Lett. 99, 227207 (2007).
  • Sun and Wang [2006a] Z. Z. Sun and X. R. Wang, Theoretical limit of the minimal magnetization switching field and the optimal field pulse for stoner particles, Phys. Rev. Lett. 97, 077205 (2006a).
  • Sun and Wang [2006b] Z. Z. Sun and X. R. Wang, Strategy to reduce minimal magnetization switching field for stoner particles, Phys. Rev. B 73, 092416 (2006b).
  • Sun and Wang [2006c] Z. Z. Sun and X. R. Wang, Magnetization reversal through synchronization with a microwave, Phys. Rev. B 74, 132401 (2006c).
  • Barros et al. [2011] N. Barros, M. Rassam, H. Jirari, and H. Kachkachi, Optimal switching of a nanomagnet assisted by microwaves, Phys. Rev. B 83, 144418 (2011).
  • Barros et al. [2013] N. Barros, H. Rassam, and H. Kachkachi, Microwave-assisted switching of a nanomagnet: Analytical determination of the optimal microwave field, Phys. Rev. B 88, 014421 (2013).
  • Cai et al. [2013] L. Cai, D. A. Garanin, and E. M. Chudnovsky, Reversal of magnetization of a single-domain magnetic particle by the ac field of time-dependent frequency, Phys. Rev. B 87, 024418 (2013).
  • Islam et al. [2018] M. T. Islam, X. S. Wang, Y. Zhang, and X. R. Wang, Subnanosecond magnetization reversal of a magnetic nanoparticle driven by a chirp microwave field pulse, Phys. Rev. B 97, 224412 (2018).
  • Islam et al. [2021a] M. Islam, M. Pikul, and X. Wang, Thermally assisted magnetization reversal of a magnetic nanoparticle driven by a down-chirp microwave field pulse, J. Magn. Magn. Mater. 537, 168174 (2021a).
  • Zhang et al. [2018] Y. Zhang, H. Y. Yuan, X. S. Wang, and X. R. Wang, Breaking the current density threshold in spin-orbit-torque magnetic random access memory, Phys. Rev. B 97, 144416 (2018).
  • Vlasov et al. [2022] S. M. Vlasov, G. J. Kwiatkowski, I. S. Lobanov, V. M. Uzdin, and P. F. Bessarab, Optimal protocol for spin-orbit torque switching of a perpendicular nanomagnet, Phys. Rev. B 105, 134404 (2022).
  • Hirsch [1999] J. E. Hirsch, Spin hall effect, Phys. Rev. Lett. 83, 1834 (1999).
  • MacNeill et al. [2016] D. MacNeill, G. M. Stiehl, M. H. D. Guimaraes, R. A. Buhrman, J. Park, and D. C. Ralph, Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet\text{WTe}_{2}/\text{ferromagnet} bilayers, Nat. Phys. 13, 300 (2016).
  • Humphries et al. [2017] A. M. Humphries, T. Wang, E. R. J. Edwards, S. R. Allen, J. M. Shaw, H. T. Nembach, J. Q. Xiao, T. J. Silva, and X. Fan, Observation of spin-orbit effects with spin rotation symmetry, Nat. Commun. 8, 911 (2017).
  • Gilbert [2004] T. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40, 3443 (2004).
  • Legrand et al. [2015] W. Legrand, R. Ramaswamy, R. Mishra, and H. Yang, Coherent subnanosecond switching of perpendicular magnetization by the fieldlike spin-orbit torque without an external magnetic field, Phys. Rev. Appl. 3, 064012 (2015).
  • Islam et al. [2021b] M. T. Islam, M. A. S. Akanda, M. A. J. Pikul, and X. Wang, Fast magnetization reversal of a magnetic nanoparticle induced by cosine chirp microwave field pulse, J. Phys.: Condens.Matter 34, 105802 (2021b).
  • Vansteenkiste et al. [2014] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, The design and verification of mumax3, AIP Adv. 4, 107133 (2014).
  • Islam et al. [2019] M. T. Islam, X. S. Wang, and X. R. Wang, Thermal gradient driven domain wall dynamics, J. Phys.: Condens.Matter 31, 455701 (2019).
  • Jungwirth et al. [2016] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antiferromagnetic spintronics, Nat. Nanotechnol. 11, 231 (2016).
  • MacDonald and Tsoi [2011] A. H. MacDonald and M. Tsoi, Antiferromagnetic metal spintronics, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 3098 (2011).
  • Bandiera et al. [2010] S. Bandiera, R. C. Sousa, Y. Dahmane, C. Ducruet, C. Portemont, V. Baltz, S. Auffret, I. L. Prejbeanu, and B. Dieny, Comparison of synthetic antiferromagnets and hard ferromagnets as reference layer in magnetic tunnel junctions with perpendicular magnetic anisotropy, IEEE Magn. Lett. 1, 3000204 (2010).
  • Jenkins et al. [2019] S. Jenkins, A. Meo, L. E. Elliott, S. K. Piotrowski, M. Bapna, R. W. Chantrell, S. A. Majetich, and R. F. L. Evans, Magnetic stray fields in nanoscale magnetic tunnel junctions, J. Phys. D: Appl. Phys. 53, 044001 (2019).
  • Yakata et al. [2009] S. Yakata, H. Kubota, T. Sugano, T. Seki, K. Yakushiji, A. Fukushima, S. Yuasa, and K. Ando, Thermal stability and spin-transfer switchings in mgo-based magnetic tunnel junctions with ferromagnetically and antiferromagnetically coupled synthetic free layers, Appl. Phys. Lett. 95, 242504 (2009).
  • Yoshida et al. [2013] C. Yoshida, T. Takenaga, Y. Iba, Y. Yamazaki, H. Noshiro, K. Tsunoda, A. Hatada, M. Nakabayashi, A. Takahashi, M. Aoki, and T. Sugii, Enhanced thermal stability in perpendicular top-pinned magnetic tunnel junction with synthetic antiferromagnetic free layers, IEEE Trans. Magn. 49, 4363 (2013).
  • Bran et al. [2009] C. Bran, A. B. Butenko, N. S. Kiselev, U. Wolff, L. Schultz, O. Hellwig, U. K. Rößler, A. N. Bogdanov, and V. Neu, Evolution of stripe and bubble domains in antiferromagnetically coupled [(Co/Pt)8/Co/Ru]18[(\text{Co}/\text{Pt})_{8}/\text{Co}/\text{Ru}]_{18} multilayers, Phys. Rev. B 79, 024430 (2009).
  • Polley et al. [2023] D. Polley, A. Pattabi, A. Rastogi, K. Jhuria, E. Diaz, H. Singh, A. Lemaitre, M. Hehn, J. Gorchon, and J. Bokor, Picosecond spin-orbit torque–induced coherent magnetization switching in a ferromagnet, Sci. Adv. 9, eadh5562 (2023).
  • Filianina et al. [2020] M. Filianina, J.-P. Hanke, K. Lee, D.-S. Han, S. Jaiswal, A. Rajan, G. Jakob, Y. Mokrousov, and M. Kläui, Electric-field control of spin-orbit torques in perpendicularly magnetized W/CoFeB/MgO\text{W}/\text{CoFeB}/\text{MgO} films, Phys. Rev. Lett. 124, 217701 (2020).
  • Ding et al. [2020] S. Ding, A. Ross, D. Go, L. Baldrati, Z. Ren, F. Freimuth, S. Becker, F. Kammerbauer, J. Yang, G. Jakob, Y. Mokrousov, and M. Kläui, Harnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin-orbit torques, Phys. Rev. Lett. 125, 177201 (2020).