This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Present address: Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

Ferromagnetic inter-layer coupling in FeSe1-xSx superconductors revealed by inelastic neutron scattering

Mingwei Ma [email protected] Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China    Philippe Bourges Université Paris-Saclay, CNRS, CEA, Laboratoire Léon Brillouin, 91191, Gif-sur-Yvette, France    Yvan Sidis Université Paris-Saclay, CNRS, CEA, Laboratoire Léon Brillouin, 91191, Gif-sur-Yvette, France    Jinzhao Sun International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China    Guoqing Wang International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China    Kazuki Iida Neutron Science and Technology Centre, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan    Kazuya Kamazawa Neutron Science and Technology Centre, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan    Jitae T. Park Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, D-85748 Garching, Germany    Frederic Bourdarot Université Grenoble Alpes, CEA, IRIG, MEM, MDN, 38000 Grenoble, France    Zhian Ren Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China    Yuan Li [email protected] International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract

FeSe1-xSx superconductors are commonly considered layered van der Waals materials with negligible inter-layer coupling. Here, using inelastic neutron scattering to study spin excitations in single-crystal samples, we reveal that the magnetic coupling between adjacent Fe layers is not only significant, as it affects excitations up to 15 meV, but also ferromagnetic in nature, making the system different from most unconventional superconductors including iron pnictides. Our observation provides a new standpoint to understand the absence of magnetic order in FeSe1-xSx. Since intercalating between the Fe layers is known to enhance superconductivity and suppress the inter-layer coupling, superconductivity appears to be a more robust phenomenon in the two-dimensional limit than antiferromagnetic order.

pacs:
74.70.Xa, 78.70.Nx, 74.20.Rp, 74.25.Ha
preprint: Preprint

𝐈.\mathbf{I.} 𝐈𝐧𝐭𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧\mathbf{Introduction}

A common thread for understanding unconventional superconductivity is magnetic interactions Scalapino (2012); Tranquada et al. (2014); Dai (2015), about which inelastic neutron scattering (INS) measurements of spin excitations can provide useful information. Since unconventional superconductors are mostly layered materials, a distinct aspect of such information is the nature and strength of inter-layer magnetic coupling, as manifested by magnetic excitations’ momentum dependence along the 𝐜\mathbf{c^{*}} direction.

Taking the well-known spin resonant mode Eschrig (2006) as example, sinusoidal modulation of its intensity along 𝐜\mathbf{c^{*}} in Co/Ni-doped BaFe2As2 Chi et al. (2009); Li et al. (2009); Pratt et al. (2010), NaFe0.985Co0.015As Zhang et al. (2013), and CeCoIn5{\mathrm{CeCoIn}}_{5} Stock et al. (2008), as well as its dispersion in BaFe2(As1-xPx)2 Lee et al. (2013), can be attributed to antiferromagnetic spin correlations or interactions between adjacent quintessential layers of atoms that are responsible for both the superconductivity and the magnetism. Such antiferromagnetic coupling is also found in superconductors with two quintessential layers (i.e., FeAs or Cu2O layers) within the primitive cell, such as CaKFe4As4, YBa2Cu3O6+δ and Bi2Sr2CaCu2O8+δ Fong et al. (1996); Tranquada et al. (1992); Chou et al. (1991); Pailhès et al. (2003); Xie et al. (2018); Capogna et al. (2007); Pailhès et al. (2004). When the inter-layer coupling is negligible, the spin excitations are observed to be nearly independent of momentum transfer along 𝐜\mathbf{c^{*}}, as found in FeSe0.4Te0.6 Qiu et al. (2009), RbxFe2-ySe2 Friemel et al. (2012), LaOFeAs Ramazanoglu et al. (2013), LiFeAs Qureshi et al. (2012), and Li0.8Fe0.2ODFeSe Pan et al. (2017); Ma et al. (2017a).

Refer to caption
Figure 1: (a) Crystal structure of FeSe. (b) Temperature dependence of resistivity and intensity of (2, 2, 0) Bragg peak of FeSe1-xSx. The elastic neutron scattering for measuring (2, 2, 0) Bragg peak were carried on 4F1 spectrometer for FeSe at the Laboratoire Léon Brillouin, Saclay, France and the IN22 spectrometer for FeSe0.93S0.07 at the Institut Laue-Langevin, Grenoble, France. They were both mounted in (HH, KK, 0) scattering plane.

FeSe is regarded as two-dimensional material as it is composed of a stack of strongly bonded edge-sharing FeSe4-tetrahedra layers as shown in Fig. 1(a) Hsu et al. (2008). The weak van der Waals bonding between the FeSe layers allows the material to easily cleave, and it shows potential for use in heterostructure devices with a tunable superconducting transition temperature TcT_{\mathrm{c}} above 40 K Lei et al. (2016, 2017); Ying et al. (2018). Additionally, the FeSe layers can be intercalated with different charged or neutral spacer layers, or grown as monolayers on SrTiO3, leading to a significant increase of TcT_{\mathrm{c}} Lu et al. (2015); Krzton-Maziopa et al. (2012); Guo et al. (2010, 2014); Ying et al. (2012); Wang et al. (2012); He et al. (2013); Ge et al. (2015).

A unique feature of FeSe is the spontaneous fourfold symmetry breaking observed in the bulk material at the nematic temperature TsT_{\mathrm{s}} = 88 K, driven by electronic or magnetic instabilities. This nematic state, unlike in Fe-pnictides, does not exhibit long-range magnetic order under ambient pressure McQueen et al. (2009). The absence of magnetic order in FeSe has sparked interest from various perspectives, including orbital physics Baek et al. (2015) and quantum magnetism such as the spin-fluctuation induced spin-quadrupole order Yu and Si (2015), the nematic quantum paramagnetic phase Wang et al. (2015), the ferro-orbital order in the nematic phase Glasbrenner et al. (2015), the near degeneracy between magnetic fluctuations and fluctuations in the charge-current density-wave channel Chubukov et al. (2015) as well as the vertex correction Yamakawa et al. (2016).

However, there are few discussions of the absence of magnetic order in FeSe from the viewpoint of the inter-layer coupling. Here we have a try to study its inter-layer coupling revealed by INS and find that the spin resonance mode is highly modulated along cc-axis momentum transfer with maximum at integer LL = 0, ±\pm1, ±\pm2 in an opposite fashion compared to the iron pnictides. Our results suggest a ferromagnetic inter-layer coupling in FeSe.

Refer to caption
Figure 2: (a-b) Constant-energy maps of FeSe0.93S0.07 obtained at TT = 5 K and 15 K in (HH, KK) momentum plane with |L||L| \leq 0.2 and EE = 4±\pm1 meV. (c) Longitudinal scan (HH scan) at TT = 5 K and 15 K with EE = 4±\pm1 meV, |K||K| \leq 0.1 and |L||L| \leq 0.2. (d) Transverse scan (KK scan) at TT = 5 K and 15 K with EE = 4±\pm1 meV, |H1||H-1| \leq 0.1 and |L||L| \leq 0.2. (e-f) Energy dependence of two-dimensional slices along 𝐐\mathbf{Q} = (HH, 0) direction at TT = 5 K and 15 K with |K||K| \leq 0.1 and |L||L| \leq 0.2 for FeSe0.93S0.07. These data are obtained with incident energy EiE_{i} = 13.6 meV on a time of flight spectrometer 4SEASONS. Solid lines in (c-d) are Gaussian functions obtained by fitting the respective data.

𝐈𝐈.\mathbf{II.} 𝐄𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐚𝐥\mathbf{Experimental} 𝐦𝐞𝐭𝐡𝐨𝐝𝐬\mathbf{methods}

The FeSe1-xSx (x = 0, 0.07 and 0.11) single crystals have been grown by chemical vapor transport technique Li et al. (2020) and co-aligned with a mosaic within 5 for all the sample arrays as shown in Fig. S1 [See Supplementary Materials]. As displayed in Fig. 1(b) S doping causes a slight increase of TcT_{\mathrm{c}} and a substantial decrease of TsT_{\mathrm{s}} measured by resistivity and (2, 2, 0) Bragg scattering due to neutron extinction effect Hamilton (1957), and a full suppression is achieved for x \geq 0.18 Coldea (2021). Here and throughout this article, the wave vector 𝐐\mathbf{Q} is expressed in reciprocal lattice units (r. l. u.) as (HH, KK, LL). Using the orthorhombic notation of the 4-Fe Brillouin zone, the wave vector, expressed in inverse Angstrom, is 𝐐\mathbf{Q} = [(2π/a)H(2\pi/a)H, (2π/a)K(2\pi/a)K, (2π/c)L(2\pi/c)L] with lattice parameters aa \approx bb \approx 5.32 Å\mathrm{\AA} and cc \approx 5.52 Å\mathrm{\AA}.

The triple-axis INS experiments with kkf = 2.662 Å\mathrm{\AA}-1 using a focusing pyrolytic graphite (PG) monochromator and analyzer were carried out on the PUMA spectrometer at the Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Garching, Germany, the 2T spectrometer at the Laboratoire Léon Brillouin, Saclay, France and the IN22 spectrometer using the CryoPAD system at the Institut Laue-Langevin, Grenoble, France. Additional PG filters were placed between the sample and the analyzer to eliminate higher-order contaminations. FeSe1-xSx (x = 0, 0.07 and 0.11) single crystals were all mounted in the (HH, 0, LL) scattering plane.

The time of flight experiments of FeSe0.93S0.07 were performed on the 4SEASONS spectrometer Kajimoto et al. (2011) at the Material and Life Science Experimental Facility (MLF), Japan Proton Accelerator Research Complex (J-PARC), Japan. The 4SEASONS spectrometer has a multiple-EiE_{i} capability Nakamura et al. (2009); Inamura et al. (2013) with EiE_{i} = 10, 13.6, 19.4, 30.1, 52.1 and 116 meV, such that neutron scattering events with a series of different incident energies are recorded simultaneously. During the measurements at TT = 5 K, 15 K and 90 K, the sample was rotated about the vertical direction over a range ±\pm55 and a step 0.5 steps. Data accumulated at different angles were combined into a four-dimensional dataset, in which we used the Horace software packages for reduction and analysis. After a careful alignment of the measured dataset with the crystallographic coordinate system using all available nuclear Bragg reflections, the entire dataset was downfolded into a minimal, physically independent sector of the three-dimensional momentum space using the point-group symmetry of the system.

𝐈𝐈𝐈.\mathbf{III.} 𝐑𝐞𝐬𝐮𝐥𝐭𝐬\mathbf{Results} 𝐚𝐧𝐝\mathbf{and} 𝐝𝐢𝐬𝐜𝐮𝐬𝐬𝐢𝐨𝐧\mathbf{discussion}

Figure 2(a-b) shows the constant-energy maps of spin excitations for FeSe0.93S0.07 in the superconducting state (TT = 5 K) and nematic state (TT = 15 K) at EE = 4 meV in the (HH, KK) plane where the spin excitations are symmetrically located at 𝐐\mathbf{Q} = (±\pm1, 0) and (0, ±\pm1) with an elliptic distribution elongated in the transverse direction. The anisotropic distribution can also be displayed by transverse scan (KK scan) and longitudinal scan (HH scan) around 𝐐\mathbf{Q} = (1, 0) in Fig. 2(c-d) as indicated by the arrow in Fig. 2(a-b). Compared with the nematic state (TT = 15 K), in superconducting state an enhancement of the spin excitations around EE \approx 4 meV is accompanied by a suppression of magnetic response below EE \approx 2.5 meV as shown in Fig. 2(e-f), which is a hallmark of the spin resonance mode in agreement with previous INS studies on undoped FeSe Gu et al. (2022); Wang et al. (2016a, b); Ma et al. (2017b); Chen et al. (2019). The elongated distribution along transverse direction of spin resonance in (HH, KK) plane is consistent with the previous work on Ba(Fe0.963Ni0.037)2As2 Kim et al. (2013), CaFe0.88Co0.12AsF Ma et al. (2023), BaFe2(As0.7P0.3)2{\mathrm{BaFe}}_{2}{({\mathrm{As}}_{0.7}{\mathrm{P}}_{0.3})}_{2} Hu et al. (2016) where the resonance is found to peak sharply at 𝐐AF\mathbf{Q}_{\mathrm{AF}} along the longitudinal direction, but broadens along the transverse direction. Other similar constant-energy maps at EE = 2-6 meV and energy dependence measurements in EKE-K space at TT = 5 K, 15 K and 90 K are displayed in Fig. S2 [See Supplementary Materials]. When entering the tetragonal state (TT = 90 K), the magnetic signals at 𝐐\mathbf{Q} = (±\pm1, 0) and (0, ±\pm1) become weak and diffusive on a high background (BG), whereas the scattering signals at 𝐐\mathbf{Q} = (±\pm1, ±\pm1) are heavily contaminated by (1, 1, 0) phonon as displayed in Fig. S2(m-r).

Refer to caption
Figure 3: (a-b) Temperature difference of spin excitations of FeSe and FeSe0.93S0.07 between superconducting state (TT = 2 K) and nematic state (TT = 15 K) at 𝐐\mathbf{Q} = (1, 0, LL) with LL = 0, 0.5, 1, 1.5 respectively. (c-d) Tempearture difference of spin excitations of FeSe and FeSe0.93S0.07 between superconducting state (TT = 2 K) and nematic state (TT = 15 K) along LL direction at EE = 3.5 meV and 4 meV respectively. Solid lines are the guides to the eyes in (a-b) and multiple Gaussian functions fitted by the respective data in (c-d).
Refer to caption
Figure 4: (a-b) Constant-energy maps of FeSe0.93S0.07 obtained at TT = 5 K and 15 K and in (HH, LL) momentum plane with EE = 4±\pm1 meV and |K||K| \leq0.1. (c) LL scans at TT = 5 K and 15 K with EE = 4±\pm1 meV, |K||K| \leq0.1 and |H1||H-1| \leq0.1. (d) Energy dependence of FWHM for HH, KK and LL scans fitted by gaussian functions [See Fig. S3 in Supplementary Materials]. (e) The 3D distribution of spin excitation in momentum space using FWHM data from EE = 4±\pm1 meV. Solid lines in are Gaussian functions obtained by fitting the respective data.

After illustrating the anisotropic distribution of spin resonance in (HH, KK) plane, we now turn to the LL-modulation of spin resonance. Figure 3(a-b) shows the temperature difference of spin excitations of undoped FeSe and FeSe0.93S0.07 between superconducting state (TT = 2 K) and nematic state (TT = 15 K) at 𝐐\mathbf{Q} = (1, 0, LL) (LL = 0, 0.5, 1, 1.5). The spin resonance mode appears at ErE_{r} \approx 3.5 meV in FeSe, slightly enhanced at ErE_{r} \approx 4 meV in FeSe0.93S0.07. Notably, the spin resonance mode presents a stronger intensity at integer LL = 0 and 1 than that at half-integer LL. This LL-modulation of spin resonance can be further elucidated by the momentum scans along 𝐐\mathbf{Q} = (1, 0, LL) at EE = 3.5 meV for undoped FeSe [ Fig. 3(c)] and EE = 4 meV for FeSe0.93S0.07 [ Fig. 3(d)]. In addition, for a higher S doped sample FeSe0.89S0.11, the spin excitations at EE = 4 meV in superconducting state are shown in Fig. S5(e) [See Supplementary Materials].

This strongly LL-modulated spin resonance mode in superconducting state is closely related to the anisotropic distribution of low-energy spin excitations in momentum space in the nematic state (TT = 15 K). Except for an intensity enhancement due to spin resonance, the anisotropic distribution of spin excitations in momentum space in the nematic state mimics that in superconducting state as displayed in the constant energy maps in (HH, KK) plane [Fig. 2(a-b)] and (HH, LL) plane [Fig. 4(a-b)] as well as the LL scans in Fig. 4(c). The spin excitations reveal elliptic distribution elongated in the transverse direction and a more elongated ellipse in the LL direction both in superconducting and nematic state. In order to quantatively clarify the elliptic distribution of spin excitations in three-dimensional momentum space, momentum scans along HH, KK and LL directions are presented in Fig. 2(c-d), Fig. 4(c) and Fig. S3 [See Supplementary Materials] respectively. The intensity of spin excitations in the nematic state (TT = 15 K) along the longitudinal (HH), transverse (KK) and LL directions can be well fitted by Gaussian funtions, revealing the full widths at half maximum (FWHM) value κH\kappa_{H}, κK\kappa_{K} and κL\kappa_{L} as shown in Fig. 4(d). Comparing the FWHM along HH and KK directions, κH\kappa_{H} and κK\kappa_{K}, respectively, one observes that the latter is slightly larger than the former. With a 6 times larger value κL\kappa_{L} than κK\kappa_{K}, the LL dependence of intensity suggests a much more broadened distribution of spin excitations along LL direction, weakened with increasing energy and persisting up to EE \approx 15 meV as shown in Fig. S3-S4 [See Supplementary Materials]. According to the FWHM we draw the schematic diagram of three dimensional distribution of spin excitations in momentum space at TT = 15 K and EE = 4 meV as displayed in Fig. 4(e). The ellipsoids are periodically located at 𝐐\mathbf{Q} = (±\pm1, 0, LL) or (0, ±\pm1, LL) in a twinned sample where LL is integer.

We now discuss the implications of our observed INS results. The feature of integer-LL intensity enhancement of spin excitations in FeSe1-xSx still survives in the nematic state persisting up to EE \approx 15 meV and tells us that the spins in nearest-neighbor FeSe4 layers are parallel and fluctuate in phase, which is opposite to the antiferromagnetic order in the parent compound of Fe-pnictides with antiparallel spins of the nearest-neighbor layers along cc-axis. A ferromagnetic-like inter-layer coupling 𝐉\mathbf{J}_{\mathbf{\bot}} has to be responsible for the integer-LL intensity modulation in FeSe1-xSx.

The microscopic origin of the absence of the long-range stripe magnetic order in FeSe remains elusive. One scenario is that the stripe magnetic order in FeSe is absent due to the development of other competing instabilities, considering mainly on the in-plane frustrated magnetic interactions Yu and Si (2015); Wang et al. (2015); Glasbrenner et al. (2015); Chubukov et al. (2015); Yamakawa et al. (2016). From another point of view, a realistic three-dimensional antiferromagnetic order requires both the spin correlations in and out of plane. The FWHM of spin excitations obtained by Gaussian fitting along HH, KK and LL directions is associated with the spin-spin correlation length ξa\xi_{a}, ξb\xi_{b}, ξc\xi_{c}. The FWHM along LL scans is 6 times larger than along the transverse scans as the smaller correlation length ξc\xi_{c} is able to capture the reciprocal space broadening along the long axis LL. As it is well established that intercalating between the Fe layers can strengthen superconductivity and reduce inter-layer coupling Qiu et al. (2009); Friemel et al. (2012); Pan et al. (2017); Ma et al. (2017a); Ramazanoglu et al. (2013); Qureshi et al. (2012), it seems that superconductivity is a more robust phenomenon in the two-dimensional limit compared to antiferromagnetic order.

𝐈𝐕.\mathbf{IV.} 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧\mathbf{Conclusion}

In conclusion, the anisotropic momentum distribution of spin resonance in FeSe1-xSx mimics the low energy spin excitations in its nematic phase where superconductivity arises, which implies the close relationship between superconductivity and magnetism. The strongly LL-modulated spin resonance mode inherits the low-energy magnetic scattering in nematic state with maximum intensity at integer LL. FeSe does not order antiferromagnetically, which is unusual among Fe-based materials. The ferromagnetic nature of the inter-layer coupling might shed light on the absence of magnetic order in FeSe.

Acknowledgements.

𝐀𝐜𝐤𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞𝐦𝐞𝐧𝐭\mathbf{Acknowledgement}

The work was supported by the National Key Research and Development of China (Grant No. 2018YFA0704200, 2022YFA1602800), the National Natural Science Foundation of China (Grant No. 12004418) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000). One of the neutron scattering experiments was performed at the MLF, J-PARC, Japan, under a user program (No. 2018A0019).

References

  • Scalapino (2012) D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).
  • Tranquada et al. (2014) J. M. Tranquada, G. Xu,  and I. A. Zaliznyak, Journal of Magnetism and Magnetic Materials 350, 148 (2014).
  • Dai (2015) P. Dai, Rev. Mod. Phys. 87, 855 (2015).
  • Eschrig (2006) M. Eschrig, Adv. Phys. 55, 47 (2006).
  • Chi et al. (2009) S. Chi, A. Schneidewind, J. Zhao, L. W. Harriger, L. Li, Y. Luo, G. Cao, Z. Xu, M. Loewenhaupt, J. Hu,  and P. Dai, Phys. Rev. Lett. 102, 107006 (2009).
  • Li et al. (2009) S. Li, Y. Chen, S. Chang, J. W. Lynn, L. Li, Y. Luo, G. Cao, Z. Xu,  and P. Dai, Phys. Rev. B 79, 174527 (2009).
  • Pratt et al. (2010) D. K. Pratt, A. Kreyssig, S. Nandi, N. Ni, A. Thaler, M. D. Lumsden, W. Tian, J. L. Zarestky, S. L. Bud’ko, P. C. Canfield, A. I. Goldman,  and R. J. McQueeney, Phys. Rev. B 81, 140510 (2010).
  • Zhang et al. (2013) C. Zhang, R. Yu, Y. Su, Y. Song, M. Wang, G. Tan, T. Egami, J. A. Fernandez-Baca, E. Faulhaber, Q. Si,  and P. Dai, Phys. Rev. Lett. 111, 207002 (2013).
  • Stock et al. (2008) C. Stock, C. Broholm, J. Hudis, H. J. Kang,  and C. Petrovic, Phys. Rev. Lett. 100, 087001 (2008).
  • Lee et al. (2013) C. H. Lee, P. Steffens, N. Qureshi, M. Nakajima, K. Kihou, A. Iyo, H. Eisaki,  and M. Braden, Phys. Rev. Lett. 111, 167002 (2013).
  • Fong et al. (1996) H. F. Fong, B. Keimer, D. Reznik, D. L. Milius,  and I. A. Aksay, Phys. Rev. B 54, 6708 (1996).
  • Tranquada et al. (1992) J. M. Tranquada, P. M. Gehring, G. Shirane, S. Shamoto,  and M. Sato, Phys. Rev. B 46, 5561 (1992).
  • Chou et al. (1991) H. Chou, J. M. Tranquada, G. Shirane, T. E. Mason, W. J. L. Buyers, S. Shamoto,  and M. Sato, Phys. Rev. B 43, 5554 (1991).
  • Pailhès et al. (2003) S. Pailhès, Y. Sidis, P. Bourges, C. Ulrich, V. Hinkov, L. P. Regnault, A. Ivanov, B. Liang, C. T. Lin, C. Bernhard,  and B. Keimer, Phys. Rev. Lett. 91, 237002 (2003).
  • Xie et al. (2018) T. Xie, Y. Wei, D. Gong, T. Fennell, U. Stuhr, R. Kajimoto, K. Ikeuchi, S. Li, J. Hu,  and H. Luo, Phys. Rev. Lett. 120, 267003 (2018).
  • Capogna et al. (2007) L. Capogna, B. Fauqué, Y. Sidis, C. Ulrich, P. Bourges, S. Pailhès, A. Ivanov, J. L. Tallon, B. Liang, C. T. Lin, A. I. Rykov,  and B. Keimer, Phys. Rev. B 75, 060502 (2007).
  • Pailhès et al. (2004) S. Pailhès, Y. Sidis, P. Bourges, V. Hinkov, A. Ivanov, C. Ulrich, L. P. Regnault,  and B. Keimer, Phys. Rev. Lett. 93, 167001 (2004).
  • Qiu et al. (2009) Y. Qiu, W. Bao, Y. Zhao, C. Broholm, V. Stanev, Z. Tesanovic, Y. C. Gasparovic, S. Chang, J. Hu, B. Qian, M. Fang,  and Z. Mao, Phys. Rev. Lett. 103, 067008 (2009).
  • Friemel et al. (2012) G. Friemel, J. T. Park, T. A. Maier, V. Tsurkan, Y. Li, J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl, A. Ivanov, B. Keimer,  and D. S. Inosov, Phys. Rev. B 85, 140511 (2012).
  • Ramazanoglu et al. (2013) M. Ramazanoglu, J. Lamsal, G. S. Tucker, J.-Q. Yan, S. Calder, T. Guidi, T. Perring, R. W. McCallum, T. A. Lograsso, A. Kreyssig, A. I. Goldman,  and R. J. McQueeney, Phys. Rev. B 87, 140509 (2013).
  • Qureshi et al. (2012) N. Qureshi, P. Steffens, Y. Drees, A. C. Komarek, D. Lamago, Y. Sidis, L. Harnagea, H.-J. Grafe, S. Wurmehl, B. Büchner,  and M. Braden, Phys. Rev. Lett. 108, 117001 (2012).
  • Pan et al. (2017) B. Pan, Y. Shen, D. Hu, Y. Feng, J. T. Park, A. D. Christianson, Q. Wang, Y. Hao, Z. Wo, Hongliand Yin, T. A. Maier,  and J. Zhao, Nat. Commun. 8, 123 (2017).
  • Ma et al. (2017a) M. Ma, L. Wang, P. Bourges, Y. Sidis, S. Danilkin,  and Y. Li, Phys. Rev. B 95, 100504 (2017a).
  • Hsu et al. (2008) F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan,  and M.-K. Wu, Proceedings of the National Academy of Sciences 105, 14262 (2008).
  • Lei et al. (2016) B. Lei, J. H. Cui, Z. J. Xiang, C. Shang, N. Z. Wang, G. J. Ye, X. G. Luo, T. Wu, Z. Sun,  and X. H. Chen, Phys. Rev. Lett. 116, 077002 (2016).
  • Lei et al. (2017) B. Lei, N. Z. Wang, C. Shang, F. B. Meng, L. K. Ma, X. G. Luo, T. Wu, Z. Sun, Y. Wang, Z. Jiang, B. H. Mao, Z. Liu, Y. J. Yu, Y. B. Zhang,  and X. H. Chen, Phys. Rev. B 95, 020503 (2017).
  • Ying et al. (2018) T. P. Ying, M. X. Wang, X. X. Wu, Z. Y. Zhao, Z. Z. Zhang, B. Q. Song, Y. C. Li, B. Lei, Q. Li, Y. Yu, E. J. Cheng, Z. H. An, Y. Zhang, X. Y. Jia, W. Yang, X. H. Chen,  and S. Y. Li, Phys. Rev. Lett. 121, 207003 (2018).
  • Lu et al. (2015) X. F. Lu, N. Z. Wang, H. Wu, Y. P. Wu, D. Zhao, X. Z. Zeng, X. G. Luo, T. Wu, W. Bao, G. H. Zhang, F. Q. Huang, Q. Z. Huang,  and X. H. Chen, Nature Mater. 14, 325 (2015).
  • Krzton-Maziopa et al. (2012) A. Krzton-Maziopa, E. V. Pomjakushina, V. Y. Pomjakushin, F. von Rohr, A. Schilling,  and K. Conder, Journal of Physics: Condensed Matter 24, 382202 (2012).
  • Guo et al. (2010) J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He,  and X. Chen, Phys. Rev. B 82, 180520 (2010).
  • Guo et al. (2014) J. Guo, H. Lei, F. Hayashi,  and H. Hosono, Nature Commun. 5, 4756 (2014).
  • Ying et al. (2012) T. P. Ying, X. L. Chen, G. Wang, S. F. Jin, T. T. Zhou, X. F. Lai, H. Zhang,  and W. Y. Wang, Sci. Rep. 2, 426 (2012).
  • Wang et al. (2012) Q. Wang, Z. Li, W. Zhang, Z. Zhang, J. Zhang, W. Li, H. Ding, Y. Ou, P. Deng, K. Chang, J. Wen, C. Song, K. He, J. Jia, S. Ji, Y. Wang, L. Wang, X. Chen, X. Ma,  and Q. Xue, Chin. Phys. Lett. 29, 037402 (2012).
  • He et al. (2013) S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. Ou, Q. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Cheng, Z. Xu, X. Chen, X. Ma, Q. Xue,  and X. Zhou, Nature Mater. 12, 605 (2013).
  • Ge et al. (2015) J. Ge, Z. Lu, C. Liu, C. Gao, D. Qian, Q. Xue, Y. Liu,  and J. Jia, Nature Mater. 14, 285 (2015).
  • McQueen et al. (2009) T. M. McQueen, A. J. Williams, P. W. Stephens, J. Tao, Y. Zhu, V. Ksenofontov, F. Casper, C. Felser,  and R. J. Cava, Phys. Rev. Lett. 103, 057002 (2009).
  • Baek et al. (2015) S.-H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van den Brink,  and B. Büchner, Nature Mater. 14, 210 (2015).
  • Yu and Si (2015) R. Yu and Q. Si, Phys. Rev. Lett. 115, 116401 (2015).
  • Wang et al. (2015) F. Wang, S. A. Kivelson,  and D.-H. Lee, Nature Phys. 11, 959 (2015).
  • Glasbrenner et al. (2015) J. K. Glasbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld, R. M. Fernandes,  and R. Valentí, Nature Phys. 11, 953 (2015).
  • Chubukov et al. (2015) A. V. Chubukov, R. M. Fernandes,  and J. Schmalian, Phys. Rev. B 91, 201105 (2015).
  • Yamakawa et al. (2016) Y. Yamakawa, S. Onari,  and H. Kontani, Phys. Rev. X 6, 021032 (2016).
  • Li et al. (2020) H. Li, M.-W. Ma, S.-B. Liu, F. Zhou,  and X.-L. Dong, Chinese Physics B 29, 127404 (2020).
  • Hamilton (1957) W. C. Hamilton, Acta Crystallographica 10, 629 (1957).
  • Coldea (2021) A. I. Coldea, Frontiers in Physics 8 (2021).
  • Kajimoto et al. (2011) R. Kajimoto, M. Nakamura, Y. Inamura, F. Mizuno, K. Nakajima, S. Ohira-Kawamura, T. Yokoo, T. Nakatani, R. Maruyama, K. Soyama, K. Shibata, K. Suzuya, S. Sato, K. Aizawa, M. Arai, S. Wakimoto, M. Ishikado, S.-i. Shamoto, M. Fujita, H. Hiraka, K. Ohoyama, K. Yamada,  and C.-H. Lee, Journal of the Physical Society of Japan 80, SB025 (2011).
  • Nakamura et al. (2009) M. Nakamura, R. Kajimoto, Y. Inamura, F. Mizuno, M. Fujita, T. Yokoo,  and M. Arai, Journal of the Physical Society of Japan 78, 093002 (2009).
  • Inamura et al. (2013) Y. Inamura, T. Nakatani, J. Suzuki,  and T. Otomo, Journal of the Physical Society of Japan 82, SA031 (2013).
  • Gu et al. (2022) Y. Gu, Q. Wang, H. Wo, Z. He, H. C. Walker, J. T. Park, M. Enderle, A. D. Christianson, W. Wang,  and J. Zhao, Phys. Rev. B 106, L060504 (2022).
  • Wang et al. (2016a) Q. Wang, Y. Shen, B. Pan, Y. Hao, M. Ma, F. Zhou, P. Steffens, K. Schmalzl, T. R. Forrest, M. Abdel-Hafiez, X. Chen, D. A. Chareev, A. N. Vasiliev, P. Bourges, Y. Sidis, H. Cao,  and J. Zhao, Nature Mater. 15, 159 (2016a).
  • Wang et al. (2016b) Q. Wang, Y. Shen, B. Pan, X. Zhang, K. Ikeuchi, K. Iida, A. D. Christianson, H. C. Walker, D. T. Adroja, M. Abdel-Hafiez, X. Chen, D. A. Chareev, A. N. Vasiliev,  and J. Zhao, Nature Commun. 7, 12182 (2016b).
  • Ma et al. (2017b) M. Ma, P. Bourges, Y. Sidis, Y. Xu, S. Li, B. Hu, J. Li, F. Wang,  and Y. Li, Phys. Rev. X 7, 021025 (2017b).
  • Chen et al. (2019) T. Chen, Y. Chen, A. Kreisel, X. Lu, A. Schneidewind, Y. Qiu, J. T. Park, J. R. Perring, Toby G.and Stewart, H. Cao, R. Zhang, Y. Li, Y. Rong, Y. Wei, B. M. Andersen, P. J. Hirschfeld, C. Broholm,  and P. Dai, Nat. Mater. 18, 709 (2019).
  • Kim et al. (2013) M. G. Kim, G. S. Tucker, D. K. Pratt, S. Ran, A. Thaler, A. D. Christianson, K. Marty, S. Calder, A. Podlesnyak, S. L. Bud’ko, P. C. Canfield, A. Kreyssig, A. I. Goldman,  and R. J. McQueeney, Phys. Rev. Lett. 110, 177002 (2013).
  • Ma et al. (2023) M. Ma, P. Bourges, Y. Sidis, A. Ivanov, G. Chen, Z. Ren,  and Y. Li, Phys. Rev. B 107, 184516 (2023).
  • Hu et al. (2016) D. Hu, Z. Yin, W. Zhang, R. A. Ewings, K. Ikeuchi, M. Nakamura, B. Roessli, Y. Wei, L. Zhao, G. Chen, S. Li, H. Luo, K. Haule, G. Kotliar,  and P. Dai, Phys. Rev. B 94, 094504 (2016).