This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fermionic steering and its monogamy relations in Schwarzschild spacetime

Shu-Min Wu1, Hao-Sheng Zeng2111Email: [email protected] 1 Department of Physics, Liaoning Normal University, Dalian 116029, China
2 Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract

Using two different types of quantification for quantum steering, we study the influence of Hawking radiation on quantum steering for fermionic fields in Schwarzschild spacetime. The degradation for the steering between physically accessible observers and the generation for the steering between physically accessible and inaccessible observers induced by Hawking radiation are studied. We also reveal the difference between the two types of quantification for steering, and find some monogamy relations between steering and entanglement. Furthermore, we show the different properties between fermionic steering and bosonic steering in Schwarzschild spacetime.

pacs:
04.70.Dy, 03.65.Ud,04.62.+v

I Introduction

Einstein-Podolsky-Rosen steering, firstly introduced by Schrödinger in 1935, is an intermediate type of quantum correlation between Bell non-locality and quantum entanglement Q1 ; Q2 . Quantum steering is a special quantum phenomenon, which allows an observer by measuring his subsystem to control the remote subsystem owned by another observer. Since Wiseman etal.etal. in 2007 firstly gave the resource definition of quantum steering via the local hidden state (LHS) model Q3 , quantum steering has attracted renewed interest Q4 ; Q5 ; Q6 ; Q7 ; Q8 ; Q9 ; Q10 ; Q11 ; Q12 ; Q13 . Various inequalities for detecting quantum steering of quantum states have been proposed Q14 ; Q15 ; Q16 ; Q17 ; Q18 ; Q19 . Unlike quantum entanglement, the asymmetry of quantum steering in quantum systems, such as one-way steering and two-way steering, has been demonstrated experimentally Q20 ; Q21 ; Q22 ; Q23 . One-way steering and two-way steering are very important quantum resources, which may be used in quantum information processing Q24 ; Q25 ; Q26 .

General relativity from the Einstein’s theory has made great achievements and its predictions have been gradually verified in physics and astronomy. One of the most famous predictions is that black holes exist in our universe. Black holes may be created by the gravitational collapse of sufficiently massive stars. Recently, the Advanced LIGO and Virgo detectors detected the gravitational wave (GW150914) from a binary black hole merger system for the first time, which indirectly confirms the existence of black holes and Einstein’s general relativity Q27 . Moreover, the first photo of the supermassive black hole in the center of the giant elliptical galaxy M87 was taken by the Event Horizon Telescope Q28 ; Q29 ; Q30 ; Q31 ; Q32 ; Q33 . Soon after, Holoien etal.etal. shown that a star gets torn apart by a black hole Q34 . Because black holes are too far away from us and have special properties, it is covered with a mysterious veil and is the cutting-edge research field, such as the lost information paradox of black holes Q35 ; Q36 ; Q37 . Hawking predicted that the vacuum fluctuations near the event horizon cause black holes to evaporate. In other words, particle-antiparticle pairs near the event horizon are generated. Hawking speculated that antiparticle falls into the black hole and particle escapes from the black hole. Obviously, the Hawking radiation underlies the lost information paradox of black holes.

The combination of relativity theory and another fundamental theory of modern physics, quantum information, gave birth to relativistic quantum information. It is believed that the study of quantum information in a relativistic framework is not only helpful in understanding concepts of quantum correlation and coherence Q38 ; Q39 ; Q40 ; Q41 ; Q42 ; Q43 ; Q44 ; Q45 ; Q46 ; Q47 ; Q48 ; Q49 ; Q50 ; Q51 ; Q52 ; Dong1 ; Dong2 ; Dong3 ; Dong4 ; Dong5 ; Dong6 ; Dong7 ; MLO ; MLO1 , but also plays an important role in the investigation of the lost information paradox of black holes Q35 ; Q36 ; Q37 . It has been already shown that in the relativistic quantum information, the bosonic and fermionic fields have different behaviors. For example, in the limit of infinite acceleration, bosonic entanglement vanishes Q38 , while fermionic entanglement can survive Q39 ; With the increase of acceleration, bosonic discord appears irreversible decoherence Q46 , while fermionic discord occurs the phenomenon of freeze Q47 . Compared with quantum entanglement, quantum steering has richer properties, such as no-way steering, one-way steering, two-way steering and asymmetric steering. Therefore, studying bosonic and fermionic steering, and comparing them in the relativistic framework are more intriguing.

In this work, we will study the influence of Hawking radiation on quantum steering for fermionic fields in Schwarzschild spacetime. We assume that Alice and Bob share a maximally entangled state of Dirac fields in flat Minkowski spacetime. Afterwards, Alice continues to stay at an asymptotically flat region, while Bob hovers near the event horizon of the black hole; at the same time, the Anti-Bob inside the event horizon is generated. We will calculate fermionic steering and obtain the analytic expressions in the curved spacetime. We then study the degradation of steering between Alice and Bob, the production of steering between Alice and Anti-Bob, Bob and Anti-Bob. We also study the redistribution of steering between different subsystems and try to find some monogamy relations for steering and entanglement.

The paper is organized as follows. In Sec.II, we briefly introduce the quantification of bipartite steering. In Sec.III, we discuss the quantization of Dirac fields in the background of a Schwarzschild black hole. In Sec.IV, we study the evolution of steering between different subsystems and their redistribution rules, and make a comparison with the counterpart of bosonic fields in the background of a Schwarzschild black hole. In Sec.IV, we study the monogamy relations between fermionic steering and entanglement in Schwarzschild spacetime. Finally the summary is arranged in Sec.VI.

II Quantification of bipartite steering

II.1 Quantification of steering based on entropy uncertainty relation

According to the definition of quantum steering given by Wiseman etal.etal., one can say that Alice can steer Bob’s state if the results presented by Alice and Bob have correlations that violate the local-hidden-state (LHS) model Q3 . Consider a state ρAB\rho_{AB} of the discrete-variable compound system ABAB, with subsystems AA and BB held by Alice and Bob respectively. Let R^A\hat{R}^{A} and R^B\hat{R}^{B} are the discrete observables for subsystems AA and BB, with possible outcomes {RA}\{R^{A}\} and {RB}\{R^{B}\}. The LHS model may be written as Q14

H(RB|RA)λP(λ)HQ(RB|λ),\displaystyle H(R^{B}|R^{A})\geq\sum_{\lambda}P(\lambda)H_{Q}(R^{B}|\lambda), (1)

where H(RB|RA)H(R^{B}|R^{A}) is the conditional entropy of variable R^B\hat{R}^{B} given R^A\hat{R}^{A} to be RAR^{A}, and HQ(RB|λ)H_{Q}(R^{B}|\lambda) is the discrete Shannon entropy of the probability distribution PQ(RB|λ)P_{Q}(R^{B}|\lambda) that measures R^B\hat{R}^{B} to be RBR^{B} given the details of preparation in the hidden variable λ\lambda.

In the NN-dimensional Hilbert space, any pair of discrete observables RR and SS with the eigenbases RiR_{i} and SiS_{i} (i=1,2,..,Ni=1,2,..,N) satisfy the entropy uncertainty relation

HQ(R)+HQ(S)log(U),\displaystyle H_{Q}(R)+H_{Q}(S)\geq\log(\mathrm{U}), (2)

where Umini,j1|Ri|Sj|2\mathrm{U}\equiv{\rm{min}}_{i,j}\frac{1}{|\langle R_{i}|S_{j}\rangle|^{2}}. From above two equations, one can obtain the entropy-based steering inequality

H(RB|RA)+H(SB|SA)log(UB),\displaystyle H(R^{B}|R^{A})+H(S^{B}|S^{A})\geq\log(\mathrm{U}^{B}), (3)

where UB\mathrm{U}^{B} denotes the value of U\mathrm{U} associated with observables RBR^{B} and SBS^{B}. This steering inequality that involves a pair of discrete observables may be generalized to the more general case that involves arbitrary number of mutually unbiased observables. Especially for the complete set of pairwise complementary Pauli operators XX, YY and ZZ, there exists the steering inequality from Alice to Bob Q14

IAB=H(σxB|σxA)+H(σyB|σyA)+H(σzB|σzA)2.\displaystyle I^{A\rightarrow B}=H(\sigma_{x}^{B}|\sigma_{x}^{A})+H(\sigma_{y}^{B}|\sigma_{y}^{A})+H(\sigma_{z}^{B}|\sigma_{z}^{A})\geq 2. (4)

If this steering equality is violated, we say that Alice can steer Bob. To quantify the ability that Alice steers Bob, one introduce the quantity

SAB=max{0,IAB2Imax2}.\displaystyle S^{A\rightarrow B}={\rm{max}}\bigg{\{}0,\frac{I^{A\rightarrow B}-2}{I_{\rm{max}}-2}\bigg{\}}. (5)

The factor ImaxI_{\rm{max}} is to guarantee the normalization of quantum steerability, which is equal to 6 for the maximally entangled state considered in our text.

In this paper, we study symmetric X-state

ρx=(ρ1100ρ140ρ22ρ2300ρ23ρ330ρ1400ρ44),\displaystyle\rho_{x}=\left(\!\!\begin{array}[]{cccc}\rho_{11}&0&0&\rho_{14}\\ 0&\rho_{22}&\rho_{23}&0\\ 0&\rho_{23}&\rho_{33}&0\\ \rho_{14}&0&0&\rho_{44}\end{array}\!\!\right), (10)

where the real entries satisfy ρij=ρji\rho_{ij}=\rho_{ji}. This X-state can also be expressed in the form

ρx=14[II+pσzI+qIσz+i=13ciσiσi],\displaystyle\rho_{x}=\frac{1}{4}\bigg{[}I\otimes I+p\sigma_{z}\otimes I+qI\otimes\sigma_{z}+\sum_{i=1}^{3}c_{i}\sigma_{i}\otimes\sigma_{i}\bigg{]}, (11)

where c1=2(ρ14+ρ23)c_{1}=2(\rho_{14}+\rho_{23}), c2=2(ρ23ρ14)c_{2}=2(\rho_{23}-\rho_{14}), c3=ρ11ρ22ρ33+ρ44c_{3}=\rho_{11}-\rho_{22}-\rho_{33}+\rho_{44}, p=ρ11+ρ22ρ33ρ44p=\rho_{11}+\rho_{22}-\rho_{33}-\rho_{44} and q=ρ11ρ22+ρ33ρ44q=\rho_{11}-\rho_{22}+\rho_{33}-\rho_{44}. For this state, IABI^{A\rightarrow B} in Eq.(5) gives by

IAB\displaystyle I^{A\rightarrow B} =\displaystyle= 12[(1+c3+p+q)log(1+c3+p+q)\displaystyle\frac{1}{2}[(1+c_{3}+p+q)\log(1+c_{3}+p+q) (12)
+\displaystyle+ (1+c3pq)log(1+c3pq)\displaystyle(1+c_{3}-p-q)\log(1+c_{3}-p-q)
+\displaystyle+ (1c3p+q)log(1c3p+q)\displaystyle(1-c_{3}-p+q)\log(1-c_{3}-p+q)
+\displaystyle+ (1c3+pq)log(1c3+pq)]\displaystyle(1-c_{3}+p-q)\log(1-c_{3}+p-q)]
+\displaystyle+ i=1,2[(1+ci)log(1+ci)+(1ci)log(1ci)]\displaystyle\sum_{i=1,2}[(1+c_{i})\log(1+c_{i})+(1-c_{i})\log(1-c_{i})]
\displaystyle- (1+p)log(1+p)(1p)log(1p),\displaystyle(1+p)\log(1+p)-(1-p)\log(1-p),

with the base of logarithms being 22. The steerability from Bob to Alice can be obtained by exchanging the roles of AA and BB, which is given by

SBA=max{0,IBA2Imax2},\displaystyle S^{B\rightarrow A}={\rm{max}}\bigg{\{}0,\frac{I^{B\rightarrow A}-2}{I_{\rm{max}}-2}\bigg{\}}, (13)

with

IBA\displaystyle I^{B\rightarrow A} =\displaystyle= 12[(1+c3+p+q)log(1+c3+p+q)\displaystyle\frac{1}{2}[(1+c_{3}+p+q)\log(1+c_{3}+p+q) (14)
+\displaystyle+ (1+c3pq)log(1+c3pq)\displaystyle(1+c_{3}-p-q)\log(1+c_{3}-p-q)
+\displaystyle+ (1c3p+q)log(1c3p+q)\displaystyle(1-c_{3}-p+q)\log(1-c_{3}-p+q)
+\displaystyle+ (1c3+pq)log(1c3+pq)]\displaystyle(1-c_{3}+p-q)\log(1-c_{3}+p-q)]
+\displaystyle+ i=1,2[(1+ci)log(1+ci)+(1ci)log(1ci)]\displaystyle\sum_{i=1,2}[(1+c_{i})\log(1+c_{i})+(1-c_{i})\log(1-c_{i})]
\displaystyle- (1+q)log(1+q)(1q)log(1q).\displaystyle(1+q)\log(1+q)-(1-q)\log(1-q).

Unlike quantum entanglement, quantum steering may not be symmetrical, i.e. SABSBAS^{A\rightarrow B}\neq S^{B\rightarrow A}. Based on the asymmetry of quantum steering, we distinguish the quantum steering into three cases: (i) no-way steering SAB=SBA=0S^{A\rightarrow B}=S^{B\rightarrow A}=0; (ii) one-way steering SAB>0S^{A\rightarrow B}>0 and SBA=0S^{B\rightarrow A}=0, or vice versa SBA>0S^{B\rightarrow A}>0 and SAB=0S^{A\rightarrow B}=0; (iii) two-way steering SAB>0S^{A\rightarrow B}>0 and SBA>0S^{B\rightarrow A}>0. This means that, compared with other quantum correlations, quantum steering has richer properties.

II.2 Quantification of steering based on quantum entanglement

Firstly, we mention that quantum entanglement of bipartite states can be effectively identified by the concurrence. For the X-state ρx\rho_{x} given by Eq.(10), the concurrence can be expressed as LLL45

C(ρx)=2max{|ρ14|ρ22ρ33,|ρ23|ρ11ρ44}.\displaystyle C(\rho_{x})=2\max\{|\rho_{14}|-\sqrt{\rho_{22}\rho_{33}},|\rho_{23}|-\sqrt{\rho_{11}\rho_{44}}\}. (15)

Next, for any two-qubit state ρAB\rho_{AB} shared by Alice and Bob, the steering from Bob to Alice can be witnessed if the density matrix τAB1\tau_{AB}^{1} defined as LLL46 ; LLLL46

τAB1=ρAB3+333(ρAI2),\displaystyle\tau_{AB}^{1}=\frac{\rho_{AB}}{\sqrt{3}}+\frac{3-\sqrt{3}}{3}(\rho_{A}\otimes\frac{I}{2}), (16)

is entangled. Here ρA\rho_{A} is Alice’s reduced density matrix, namely ρA=TrB(ρAB)\rho_{A}=\rm{Tr}_{B}(\rho_{AB}), and II denotes the two-dimension identity matrix for Bob’s qubit. Similarly, the corresponding steering from Alice to Bob can be witnessed if the state τAB2\tau_{AB}^{2} defined as

τAB2=ρAB3+333(I2ρB),\displaystyle\tau_{AB}^{2}=\frac{\rho_{AB}}{\sqrt{3}}+\frac{3-\sqrt{3}}{3}(\frac{I}{2}\otimes\rho_{B}), (17)

is entangled, where ρB=TrA(ρAB)\rho_{B}=\rm{Tr}_{A}(\rho_{AB}).

Now, for the X-state ρx\rho_{x} given by Eq.(10), the matrix τAB1\tau_{AB}^{1} can be written as

τAB1,x=(33ρ11+r0033ρ14033ρ22+r33ρ230033ρ2333ρ33+s033ρ140033ρ44+s)),\displaystyle\tau_{AB}^{1,x}=\left(\!\!\begin{array}[]{cccc}\frac{\sqrt{3}}{3}\rho_{11}+r&0&0&\frac{\sqrt{3}}{3}\rho_{14}\\ 0&\frac{\sqrt{3}}{3}\rho_{22}+r&\frac{\sqrt{3}}{3}\rho_{23}&0\\ 0&\frac{\sqrt{3}}{3}\rho_{23}&\frac{\sqrt{3}}{3}\rho_{33}+s&0\\ \frac{\sqrt{3}}{3}\rho_{14}&0&0&\frac{\sqrt{3}}{3}\rho_{44}+s)\end{array}\!\!\right), (22)

with r=(33)6(ρ11+ρ22)r=\frac{(3-\sqrt{3})}{6}(\rho_{11}+\rho_{22}) and s=(33)6(ρ33+ρ44)s=\frac{(3-\sqrt{3})}{6}(\rho_{33}+\rho_{44}). According to Eq.(15), as long as one of the following inequalities,

|ρ14|2>QaQb,\displaystyle|\rho_{14}|^{2}>Q_{a}-Q_{b}, (23)

or

|ρ23|2>QcQb,\displaystyle|\rho_{23}|^{2}>Q_{c}-Q_{b}, (24)

is satisfied, then the state τAB1,x\tau_{AB}^{1,x} is entangled, where

Qa=232ρ11ρ44+2+32ρ22ρ33+14(ρ11+ρ44)(ρ22+ρ33),\displaystyle Q_{a}=\frac{2-\sqrt{3}}{2}\rho_{11}\rho_{44}+\frac{2+\sqrt{3}}{2}\rho_{22}\rho_{33}+\frac{1}{4}(\rho_{11}+\rho_{44})(\rho_{22}+\rho_{33}),
Qb=14(ρ11ρ44)(ρ22ρ33),\displaystyle Q_{b}=\frac{1}{4}(\rho_{11}-\rho_{44})(\rho_{22}-\rho_{33}),
Qc=2+32ρ11ρ44+232ρ22ρ33+14(ρ11+ρ44)(ρ22+ρ33).\displaystyle Q_{c}=\frac{2+\sqrt{3}}{2}\rho_{11}\rho_{44}+\frac{2-\sqrt{3}}{2}\rho_{22}\rho_{33}+\frac{1}{4}(\rho_{11}+\rho_{44})(\rho_{22}+\rho_{33}).

The steering from Bob to Alice is thus witnessed. In a similar way, the steering from Alice to Bob can be witnessed through one of the inequalities,

|ρ14|2>Qa+Qb,\displaystyle|\rho_{14}|^{2}>Q_{a}+Q_{b}, (25)

or

|ρ23|2>Qc+Qb.\displaystyle|\rho_{23}|^{2}>Q_{c}+Q_{b}. (26)

Further, we introduce the quantities

TBA=max{0,83(|ρ14|2Qa+Qb),83(|ρ23|2Qc+Qb)},\displaystyle T^{B\rightarrow A}={\rm{max}}\bigg{\{}0,\frac{8}{\sqrt{3}}(|\rho_{14}|^{2}-Q_{a}+Q_{b}),\frac{8}{\sqrt{3}}(|\rho_{23}|^{2}-Q_{c}+Q_{b})\bigg{\}}, (27)

and

TAB=max{0,83(|ρ14|2QaQb),83(|ρ23|2QcQb)},\displaystyle T^{A\rightarrow B}={\rm{max}}\bigg{\{}0,\frac{8}{\sqrt{3}}(|\rho_{14}|^{2}-Q_{a}-Q_{b}),\frac{8}{\sqrt{3}}(|\rho_{23}|^{2}-Q_{c}-Q_{b})\bigg{\}}, (28)

to quantify the steerability from Bob to Alice and from Alice to Bob respectively. The factor 83\frac{8}{\sqrt{3}} guarantees that the steerability of the maximum entangled state is 11. Note that we here use the capital letter TT to describe the entanglement-based steerability, so as to distinguish from marker SS of the steerability based on entropy uncertainty relation.

III Quantization of Dirac fields in Schwarzschild spcetime

Let’s consider a Schwarzschild black hole that is given by the metric Q42

ds2\displaystyle ds^{2} =\displaystyle= (12Mr)dt2+(12Mr)1dr2\displaystyle-(1-\frac{2M}{r})dt^{2}+(1-\frac{2M}{r})^{-1}dr^{2} (29)
+r2(dθ2+sin2θdφ2),\displaystyle+r^{2}(d\theta^{2}+\sin^{2}\theta d\varphi^{2}),

where rr and MM are respectively the radius and mass of the black hole. For simplicity, we take ,G,c\hbar,G,c and kk as unity in this paper. The Dirac equation Q55 [γaea(μ+Γμ)μ]Φ=0[\gamma^{a}e_{a}{}^{\mu}(\partial_{\mu}+\Gamma_{\mu})]\Phi=0 in Schwarzschild spacetime can be written as

γ012MrΦt+γ112Mr[r+1r+M2r(r2M)]Φ\displaystyle-\frac{\gamma_{0}}{\sqrt{1-\frac{2M}{r}}}\frac{\partial\Phi}{\partial t}+\gamma_{1}\sqrt{1-\frac{2M}{r}}\bigg{[}\frac{\partial}{\partial r}+\frac{1}{r}+\frac{M}{2r(r-2M)}\bigg{]}\Phi
+γ2r(θ+cotθ2)Φ+γ3rsinθΦφ=0,\displaystyle+\frac{\gamma_{2}}{r}(\frac{\partial}{\partial\theta}+\frac{\cot\theta}{2})\Phi+\frac{\gamma_{3}}{r\sin\theta}\frac{\partial\Phi}{\partial\varphi}=0, (30)

where γi\gamma_{i} (i=0,1,2,3i=0,1,2,3) are the Dirac matrices Q56 ; Q57 .

Solving the Dirac equation near the event horizon, we obtain a set of positive (fermions) frequency outgoing solutions inside and outside regions of the event horizon Q56 ; Q57

Φ𝕜,in+ϕ(r)eiωu,\displaystyle\Phi^{+}_{{\mathbb{k}},{\rm in}}\sim\phi(r)e^{i\omega u}, (31)
Φ𝕜,out+ϕ(r)eiωu,\displaystyle\Phi^{+}_{{\mathbb{k}},{\rm out}}\sim\phi(r)e^{-i\omega u}, (32)

where ϕ(r)\phi(r) denotes four-component Dirac spinor, u=tru=t-r_{*} with r=r+2Mlnr2M2Mr_{*}=r+2M\ln\frac{r-2M}{2M} is the tortoise coordinate. 𝕜\mathbb{k} and ω\omega are the wave vector and frequency which fulfill |𝐤|=ω|\mathbf{k}|=\omega for the massless Dirac field. The Dirac field Φ\Phi can be expanded as

Φ\displaystyle\Phi =\displaystyle= d𝕜[a^𝕜inΦ𝕜,in++b^𝕜inΦ𝕜,in\displaystyle\int d\mathbb{k}[\hat{a}^{\rm in}_{\mathbb{k}}\Phi^{+}_{{\mathbb{k}},\text{in}}+\hat{b}^{\rm in{\dagger}}_{\mathbb{k}}\Phi^{-}_{{\mathbb{k}},\text{in}} (33)
+\displaystyle+ a^𝕜outΦ𝕜,out++b^𝕜outΦ𝕜,out],\displaystyle\hat{a}^{\rm out}_{\mathbb{k}}\Phi^{+}_{{\mathbb{k}},\text{out}}+\hat{b}^{\rm out{\dagger}}_{\mathbb{k}}\Phi^{-}_{{\mathbb{k}},\text{out}}],

where a^𝕜in\hat{a}^{\rm in}_{\mathbb{k}} and b^𝕜in\hat{b}^{\rm in{\dagger}}_{\mathbb{k}} are the fermion annihilation and antifermion creation operators for the quantum field in the interior of the event horizon, and a^𝕜out\hat{a}^{\rm out}_{\mathbb{k}} and b^𝕜out\hat{b}^{\rm out{\dagger}}_{\mathbb{k}} are the fermion annihilation and antifermion creation operators for the quantum field of the exterior region, respectively. These annihilation and creation operators satisfy canonical anticommutation {a^𝐤out,a^𝐤out}={b^𝐤in,b^𝐤in}=δ𝐤𝐤.\{\hat{a}^{\rm out}_{\mathbf{k}},\hat{a}^{\rm out\dagger}_{\mathbf{k^{\prime}}}\}=\{\hat{b}^{\rm in}_{\mathbf{k}},\hat{b}^{\rm in\dagger}_{\mathbf{k^{\prime}}}\}=\delta_{\mathbf{k}\mathbf{k^{\prime}}}. One can define the Schwarzschild vacuum through expression a^𝕜in|0S=a^𝕜out|0S=0\hat{a}^{\rm in}_{\mathbb{k}}|0\rangle_{S}=\hat{a}^{\rm out}_{\mathbb{k}}|0\rangle_{S}=0. Therefore, the modes Φ𝕜,in±\Phi^{\pm}_{{\mathbb{k}},{\rm in}} and Φ𝕜,out±\Phi^{\pm}_{{\mathbb{k}},{\rm out}} are usually called Schwarzschild modes.

Making an analytic continuation of Eqs.(31) and (32) in the light of Domour and Ruffini’s suggestion Q58 , one find a complete basis for positive energy modes, i.e., the Kruskal modes,.

Ψ𝕜,out+=e2πMωΦ𝕜,in+e2πMωΦ𝕜,out+,\displaystyle\Psi^{+}_{{\mathbb{k}},{\rm out}}=e^{-2\pi M\omega}\Phi^{-}_{{-\mathbb{k}},{\rm in}}+e^{2\pi M\omega}\Phi^{+}_{{\mathbb{k}},{\rm out}}, (34)
Ψ𝕜,in+=e2πMωΦ𝕜,out+e2πMωΦ𝕜,in+.\displaystyle\Psi^{+}_{{\mathbb{k}},{\rm in}}=e^{-2\pi M\omega}\Phi^{-}_{{-\mathbb{k}},{\rm out}}+e^{2\pi M\omega}\Phi^{+}_{{\mathbb{k}},{\rm in}}. (35)

Thus, we can also use the Kruskal modes to expand the Dirac fields in the Kruskal spacetime

Φ\displaystyle\Phi =\displaystyle= d𝕜[2cosh(4πMω)]12[c^𝕜inΨ𝕜,in++d^𝕜inΨ𝕜,in\displaystyle\int d\mathbb{k}[2\cosh(4\pi M\omega)]^{-\frac{1}{2}}[\hat{c}^{\rm in}_{\mathbb{k}}\Psi^{+}_{{\mathbb{k}},\text{in}}+\hat{d}^{\rm in{\dagger}}_{\mathbb{k}}\Psi^{-}_{{\mathbb{k}},\text{in}} (36)
+\displaystyle+ c^𝕜outΨ𝕜,out++d^𝕜outΨ𝕜,out],\displaystyle\hat{c}^{\rm out}_{\mathbb{k}}\Psi^{+}_{{\mathbb{k}},\text{out}}+\hat{d}^{\rm out{\dagger}}_{\mathbb{k}}\Psi^{-}_{{\mathbb{k}},\text{out}}],

where c^𝕜σ\hat{c}^{\sigma}_{\mathbb{k}} and d^𝕜σ\hat{d}^{\sigma{\dagger}}_{\mathbb{k}} with σ=(in,out)\sigma=(\rm in,\rm out) are the fermion annihilation and antifermion creation operators acting on the Kruskal vacuum.

Eqs.(33) and (36) represent the different decompositions of the same Dirac field in Schwarzschild and Kruskal modes, respectively, which lead to the well-known Bogoliubov transformation between the Kruskal and Schwarzschild operators,

c^𝕜out\displaystyle\hat{c}^{\rm out}_{\mathbb{k}} =\displaystyle= 1e8πMω+1a^𝕜out1e8πMω+1b^𝕜out,\displaystyle\frac{1}{\sqrt{e^{-8\pi M\omega}+1}}\hat{a}^{\rm out}_{\mathbb{k}}-\frac{1}{\sqrt{e^{8\pi M\omega}+1}}\hat{b}^{\rm out{\dagger}}_{\mathbb{k}}, (37)
c^𝕜out\displaystyle\hat{c}^{\rm out{\dagger}}_{\mathbb{k}} =\displaystyle= 1e8πMω+1a^𝕜out1e8πMω+1b^𝕜out.\displaystyle\frac{1}{\sqrt{e^{-8\pi M\omega}+1}}\hat{a}^{\rm out{\dagger}}_{\mathbb{k}}-\frac{1}{\sqrt{e^{8\pi M\omega}+1}}\hat{b}^{\rm out}_{\mathbb{k}}. (38)

The Kruskal vacuum and excited states thus can be expressed in the Schwarzschild Fock space as

|0K\displaystyle|0\rangle_{K} =\displaystyle= 1eωT+1|0out|0in+1eωT+1|1out|1in,\displaystyle\frac{1}{\sqrt{e^{-\frac{\omega}{T}}+1}}|0\rangle_{\rm out}|0\rangle_{\rm in}+\frac{1}{\sqrt{e^{\frac{\omega}{T}}+1}}|1\rangle_{\rm out}|1\rangle_{\rm in},
|1K\displaystyle|1\rangle_{K} =\displaystyle= |1out|0in,\displaystyle|1\rangle_{\rm out}|0\rangle_{\rm in}, (39)

where T=18πMT=\frac{1}{8\pi M} is the Hawking temperature, {|nout}\{|n\rangle_{\rm out}\} and {|nin}\{|n\rangle_{\rm in}\} are the Schwarzschild number states for the fermion outside the region and the antifermion inside the region of the event horizon, respectively.

For the Schwarzschild observer Bob who hovers outside the event horizon, the Hawking radiation spectrum from the viewpoint of his detector is given by Q57

NF2=K0|a^𝕜outa^𝕜out|0K=1eωT+1.\displaystyle N_{F}^{2}=\sideset{{}_{K}}{}{\mathop{\langle}}0|\hat{a}^{\rm out{\dagger}}_{\mathbb{k}}\hat{a}^{\rm out}_{\mathbb{k}}|0\rangle_{K}=\frac{1}{e^{\frac{\omega}{T}}+1}. (40)

This equation means that a Kruskal vacuum observed by the Kruskal observer Alice would be detected as a number of the generated fermions NF2N_{F}^{2} from Bob’s viewpoint. In other words, the Schwarzschild observer Bob in the exterior of the black hole can detect a thermal Fermi-Dirac statistic of fermions.

IV Fermionic steering in Schwarzschild spacetime

Consider two maximally entangled fermionic modes in the asymptotically flat region of the Schwarzschild black hole

|ϕAB=12(|0A|0B+|1A|1B),\displaystyle|\phi_{AB}\rangle=\frac{1}{\sqrt{2}}(|0\rangle_{A}|0\rangle_{B}+|1\rangle_{A}|1\rangle_{B}), (41)

where the subscripts AA and BB denote the modes which are associated with the observers Alice and Bob, respectively. After the coincidence of Alice and Bob, Alice stays stationary at the asymptotically flat region, while Bob hovers outside the event horizon of the black hole. Bob will detects a thermal Fermi-Dirac statistic of fermions and his detector is found to be excited. Using Eq.(III), we can rewrite Eq.(41) in terms of Kruskal modes for Alice and Schwarzschild modes for Bob

|ϕABB¯\displaystyle|\phi_{AB\bar{B}}\rangle =\displaystyle= 12(1eωT+1|0A|0B|0B¯+1eωT+1|0A|1B|1B¯\displaystyle\frac{1}{\sqrt{2}}(\frac{1}{\sqrt{e^{-\frac{\omega}{T}}+1}}|0\rangle_{A}|0\rangle_{B}|0\rangle_{\bar{B}}+\frac{1}{\sqrt{e^{\frac{\omega}{T}}+1}}|0\rangle_{A}|1\rangle_{B}|1\rangle_{\bar{B}} (42)
+\displaystyle+ |1A|1B|0B¯),\displaystyle|1\rangle_{A}|1\rangle_{B}|0\rangle_{\bar{B}}),

where the mode B¯\bar{B} is observed by a hypothetical observer Anti-Bob inside the event horizon of the black hole. We write its density matrix as

ρABB¯=12(𝒞200𝒞𝒮00𝒞00000000000000000𝒞𝒮00𝒮200𝒮00000000000000000𝒞00𝒮001000000000).\displaystyle\rho_{AB\bar{B}}=\frac{1}{2}\left(\!\!\begin{array}[]{cccccccc}\mathcal{C}^{2}&0&0&\mathcal{C}\mathcal{S}&0&0&\mathcal{C}&0\\ 0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0\\ \mathcal{C}\mathcal{S}&0&0&\mathcal{S}^{2}&0&0&\mathcal{S}&0\\ 0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0\\ \mathcal{C}&0&0&\mathcal{S}&0&0&1&0\\ 0&0&0&0&0&0&0&0\end{array}\!\!\right). (51)

in the orthonormal basis {|0,0,0,|0,0,1,|0,1,0,|0,1,1,|1,0,0,|1,0,1,|1,1,0,|1,1,1}\{|0,0,0\rangle,|0,0,1\rangle,|0,1,0\rangle,|0,1,1\rangle,|1,0,0\rangle,|1,0,1\rangle,|1,1,0\rangle,|1,1,1\rangle\}, where we have defined |abc=|aA|bB|cB¯|abc\rangle=|a\rangle_{A}|b\rangle_{B}|c\rangle_{\bar{B}}, and 𝒞=1eωT+1\mathcal{C}=\frac{1}{\sqrt{e^{-\frac{\omega}{T}}+1}}, 𝒮=1eωT+1\mathcal{S}=\frac{1}{\sqrt{e^{\frac{\omega}{T}}+1}} for simplicity.

IV.1 Physically accessible quantum steering

Since Bob is causally disconnected from the region inside the event horizon, the only information that is physically accessible to the observers is encoded in the mode AA described by Alice and the mode BB outside the event horizon described by Bob. Taking the trace over the B¯\bar{B} mode inside the event horizon, we obtain a mixed density matrix for Alice and Bob

ρAB=12(𝒞200𝒞0𝒮2000000𝒞001),\displaystyle\rho_{AB}=\frac{1}{2}\left(\!\!\begin{array}[]{cccccccc}\mathcal{C}^{2}&0&0&\mathcal{C}\\ 0&\mathcal{S}^{2}&0&0\\ 0&0&0&0\\ \mathcal{C}&0&0&1\end{array}\!\!\right), (56)

in the basis {|00,|01,|10,|11}\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}. In the following, we use two types of methods to measure steering in curved spacetime.

Firstly, according to Eqs.(5) and (13), we obtain the analytic expressions for the steerability of the SABS^{A\rightarrow B} and SBAS^{B\rightarrow A} based on entropy uncertainty relation as

SAB(ρAB)\displaystyle S^{A\rightarrow B}(\rho_{AB}) =\displaystyle= 14[2(1+𝒞)log(1+𝒞)+2(1𝒞)log(1𝒞)\displaystyle\frac{1}{4}\big{[}2(1+\mathcal{C})\log(1+\mathcal{C})+2(1-\mathcal{C})\log(1-\mathcal{C}) (57)
+\displaystyle+ 𝒞2log(𝒞2)+𝒮2log(𝒮2)],\displaystyle\mathcal{C}^{2}\log(\mathcal{C}^{2})+\mathcal{S}^{2}\log(\mathcal{S}^{2})\big{]},

and

SBA(ρAB)\displaystyle S^{B\rightarrow A}(\rho_{AB}) =\displaystyle= 14[2(1+𝒞)log(1+𝒞)+2(1𝒞)log(1𝒞)\displaystyle\frac{1}{4}\big{[}2(1+\mathcal{C})\log(1+\mathcal{C})+2(1-\mathcal{C})\log(1-\mathcal{C}) (58)
\displaystyle- (1+𝒮2)log(1+𝒮2)+𝒮2log(𝒮2)].\displaystyle(1+\mathcal{S}^{2})\log(1+\mathcal{S}^{2})+\mathcal{S}^{2}\log(\mathcal{S}^{2})].

We see that the steerability depends on the Hawking temperature TT, i.e., Hawking radiation of the black hole influences the fermionic steerability. Under the influence of Hawking radiation, the steering becomes asymmetric, i.e., the steerability from Alice to Bob is different from the steerability from Bob to Alice. In order to measure the degrees of asymmetry, we introduce the steering difference

SABΔ\displaystyle S_{AB}^{\Delta} =\displaystyle= |SAB(ρAB)SBA(ρAB)|\displaystyle|S^{A\rightarrow B}(\rho_{AB})-S^{B\rightarrow A}(\rho_{AB})|
=\displaystyle= 14[𝒞2log(𝒞2)+(1+𝒮2)log(1+𝒮2)].\displaystyle\frac{1}{4}[\mathcal{C}^{2}\log(\mathcal{C}^{2})+(1+\mathcal{S}^{2})\log(1+\mathcal{S}^{2})].

Secondly, we study another quantification of steering based on quantum entanglement in Schwarzschild spacetime. The analytic expressions for the entanglement-based steerability TABT^{A\rightarrow B}, TBAT^{B\rightarrow A} and the corresponding steering difference read

TAB(ρAB)\displaystyle T^{A\rightarrow B}(\rho_{AB}) =\displaystyle= 𝒞213𝒞2𝒮2,\displaystyle\mathcal{C}^{2}-\frac{1}{\sqrt{3}}\mathcal{C}^{2}\mathcal{S}^{2}, (60)
TBA(ρAB)\displaystyle T^{B\rightarrow A}(\rho_{AB}) =\displaystyle= 𝒞213𝒮2,\displaystyle\mathcal{C}^{2}-\frac{1}{\sqrt{3}}\mathcal{S}^{2}, (61)

and

TABΔ=|TAB(ρAB)TBA(ρAB)|=13𝒮4,\displaystyle T_{AB}^{\Delta}=|T^{A\rightarrow B}(\rho_{AB})-T^{B\rightarrow A}(\rho_{AB})|=\frac{1}{\sqrt{3}}\mathcal{S}^{4}, (62)

respectively.

Refer to caption
Refer to caption
Figure 1: The fermionic steerability and steering asymmetry between Alice and Bob as functions of the Hawking temperature TT. The parameter ω\omega is fixed as ω=1\omega=1.

In Fig.1, we plot the ABA\rightarrow B steering, BAB\rightarrow A steering and steering asymmetry as functions of the Hawking temperature TT. We find that the results for the two types of measures are consistent. With the increase of the Hawking temperature TT, the fermionic steerability between Alice and Bob decreases firstly and then approaches to the nonzero asymptotic value in the infinite Hawking temperature. The ABA\rightarrow B fermionic steerability is always bigger than the BAB\rightarrow A fermionic steerability. The steering asymmetry increases with Hawking temperature and approaches to the asymptotic values,

limTSABΔ0.0944,limTTABΔ=312,\lim_{T\rightarrow\infty}S_{AB}^{\Delta}\approx 0.0944,\hskip 28.45274pt\lim_{T\rightarrow\infty}T_{AB}^{\Delta}=\frac{\sqrt{3}}{12},

for infinite Hawking temperature. These results contrast sharply with case of bosonic fields Q53 ; Q54 ; Q59 . With the increase of Hawking temperature, the bosonic steerability reduces quickly and suffers from a“sudden death”. The ABA\rightarrow B bosonic steerability is always smaller than the BAB\rightarrow A bosonic steerability, and the bosonic steering asymmetry increases firstly and then decreases to zero when Hawking temperature increases. These clearly different results between bosonic steerability and fermionic steerability originate from the difference between the Fermi-Dirac statistic and the Bose-Einstein statistic, which perhaps are available in practice. For example, if we need the steerability from Alice to Bob over the steerability from Bob to Alice in curved spacetime, then we should use fermionic steering rather than bosonic steering.

IV.2 Physically inaccessible quantum steering

Besides the steering between Alice and Bob, we can also discuss the steering between Alice and Anti-Bob, and the steering between Bob and Anti-Bob. As Anti-Bob is inside of the event horizon, we use the term “inaccessible steering”.

(i) The fermionic steering between Alice and Anti-Bob. Tracing over the mode BB held by Bob, we obtain the density matrix for subsystem Alice and Anti-Bob

ρAB¯=12(𝒞20000𝒮2𝒮00𝒮100000).\displaystyle\rho_{A\bar{B}}=\frac{1}{2}\left(\!\!\begin{array}[]{cccccccc}\mathcal{C}^{2}&0&0&0\\ 0&\mathcal{S}^{2}&\mathcal{S}&0\\ 0&\mathcal{S}&1&0\\ 0&0&0&0\end{array}\!\!\right). (67)

Following the calculation steps in above subsection, we obtain the fermionic steering between Alice and Anti-Bob, as well as the corresponding steering asymmetry for the two types of quantifications as

SAB¯(ρAB¯)\displaystyle S^{A\rightarrow\bar{B}}(\rho_{A\bar{B}}) =\displaystyle= max{0,14[2(1+𝒮)log(1+𝒮)+2(1𝒮)log(1𝒮)\displaystyle\max\bigg{\{}0,\frac{1}{4}\big{[}2(1+\mathcal{S})\log(1+\mathcal{S})+2(1-\mathcal{S})\log(1-\mathcal{S}) (68)
+\displaystyle+ 𝒞2log(𝒞2)+𝒮2log(𝒮2)]},\displaystyle\mathcal{C}^{2}\log(\mathcal{C}^{2})+\mathcal{S}^{2}\log(\mathcal{S}^{2})\big{]}\bigg{\}},
SB¯A(ρAB)\displaystyle S^{\bar{B}\rightarrow A}(\rho_{AB}) =\displaystyle= max{0,14[2(1+𝒮)log(1+𝒮)+2(1𝒮)log(1𝒮)\displaystyle\max\bigg{\{}0,\frac{1}{4}\big{[}2(1+\mathcal{S})\log(1+\mathcal{S})+2(1-\mathcal{S})\log(1-\mathcal{S}) (69)
\displaystyle- (1+𝒞2)log(1+𝒞2)+𝒞2log(𝒞2)]},\displaystyle(1+\mathcal{C}^{2})\log(1+\mathcal{C}^{2})+\mathcal{C}^{2}\log(\mathcal{C}^{2})\big{]}\bigg{\}},
SAB¯Δ=|SAB¯(ρAB¯)SB¯A(ρAB¯)|,\displaystyle S_{A\bar{B}}^{\Delta}=|S^{A\rightarrow\bar{B}}(\rho_{A\bar{B}})-S^{\bar{B}\rightarrow A}(\rho_{A\bar{B}})|, (70)

and

TAB¯(ρAB¯)=max{0,𝒮2(113𝒞2)},\displaystyle T^{A\rightarrow\bar{B}}(\rho_{A\bar{B}})=\max\bigg{\{}0,\mathcal{S}^{2}(1-\frac{1}{\sqrt{3}}\mathcal{C}^{2})\bigg{\}}, (71)
TB¯A(ρAB¯)=max{0,𝒮213𝒞2}\displaystyle T^{\bar{B}\rightarrow A}(\rho_{A\bar{B}})=\max\bigg{\{}0,\mathcal{S}^{2}-\frac{1}{\sqrt{3}}\mathcal{C}^{2}\bigg{\}} (72)
TAB¯Δ=|TAB¯(ρAB¯)TB¯A(ρAB¯)|.\displaystyle T_{A\bar{B}}^{\Delta}=|T^{A\rightarrow\bar{B}}(\rho_{A\bar{B}})-T^{\bar{B}\rightarrow A}(\rho_{A\bar{B}})|. (73)
Refer to caption
Refer to caption
Figure 2: The fermionic steerability and steering asymmetry between Alice and Anti-Bob as functions of the Hawking temperature TT. The parameter ω\omega is fixed as ω=1\omega=1.

Fig.2 shows how the Hawking temperature TT of the black hole influences the fermionic steerability and steering asymmetry between Alice and Anti-Bob. We see that results for the two type of quantifications are basically similar. Hawking radiation can generate fermionic steering between Alice and Anti-Bob, while the temperature for generating AB¯A\rightarrow\bar{B} steering is always lower than the temperature for generating B¯A\bar{B}\rightarrow A steering. As the temperatures and speeds for generating AB¯A\rightarrow\bar{B} steering and B¯A\bar{B}\rightarrow A steering are different, the steering asymmetry appears. The steering asymmetry firstly increases to the maximum and then decreases to the nonzero asymptotic value with the increase of the Hawking temperature TT. The maximal steering asymmetry takes place at the temperature where the B¯A\bar{B}\rightarrow A steering births, i.e., takes place at the transition point from one-way steering to two-way steering. For the parameters taken in the figure, the Hawking temperatures for the maximal steering asymmetry are Ts5.8021ωT_{s}\approx 5.8021\omega [Fig.2(a)] and Tt=ωln3T_{t}=\frac{\omega}{\ln\sqrt{3}} [Fig.2(b)], respectively. The figure also shows that the steerability between Alice and Anti-Bob approaches to the finite asymptotic value when TT\rightarrow\infty, which fulfills the intriguing relations,

limTSAB¯=limTSAB,limTSB¯A=limTSBA,\lim_{T\rightarrow\infty}S^{A\rightarrow\bar{B}}=\lim_{T\rightarrow\infty}S^{A\rightarrow B},\lim_{T\rightarrow\infty}S^{\bar{B}\rightarrow A}=\lim_{T\rightarrow\infty}S^{B\rightarrow A},
limTTAB¯=limTTAB,limTTB¯A=limTTBA.\lim_{T\rightarrow\infty}T^{A\rightarrow\bar{B}}=\lim_{T\rightarrow\infty}T^{A\rightarrow B},\lim_{T\rightarrow\infty}T^{\bar{B}\rightarrow A}=\lim_{T\rightarrow\infty}T^{B\rightarrow A}.

This means that the steering status for Bob and Anti-Bob are the same when TT\rightarrow\infty.

Comparing Fig.2(a) and (b), we find that the two types of quantifications for steering also have some tiny difference. For quantification of steering based on entropy uncertainty relation, both SAB¯S^{A\rightarrow\bar{B}} and SB¯AS^{\bar{B}\rightarrow A} appear “sudden birth” behavior with the growth of the Hawking temperature. For the quantification of steering on quantum entanglement, however, only the steerability TB¯AT^{\bar{B}\rightarrow A} appear as “sudden birth”. Further, the temperature for generating two-way steering for entanglement-based quantification is lower than the case for the quantification based on entropy uncertainty relation. In this sense, we can say that the quantification of steering based on entanglement is more sensitive than the quantification of steering based on entropy uncertainty relation.

It has been shown that Hawking radiation for bosonic fields cannot generate entanglement and steering between Alice and Anti-BobQ40 ; Q54 ; QWE59 , which makes sharp contrast with the fermionic steering discussed above. We may understand the reason as follows: The Hawking radiation for bosonic fields is equivalent to a local operation on the subsystem of Bob and Anti-Bob, which cannot generate bosonic entanglement or steering between Alice and Anti-Bob. For the fermionic fields, however, the Pauli exclusion principle inhibits the production of more than one fermion in one mode. This limitation forms an interaction between Alice and Bob (or Ant-Bob). Therefore, the entanglement (or steering) between Alice and Anti-Bob can be produced Q60 .

(ii) The fermionic steering between Bob and Anti-Bob. Tracing over the mode AA, we obtain the density matrix for subsystem of Bob and Anti-Bob

ρBB¯=12(𝒞200𝒞𝒮00000010𝒞𝒮00𝒮2).\displaystyle\rho_{B\bar{B}}=\frac{1}{2}\left(\!\!\begin{array}[]{cccccccc}\mathcal{C}^{2}&0&0&\mathcal{C}\mathcal{S}\\ 0&0&0&0\\ 0&0&1&0\\ \mathcal{C}\mathcal{S}&0&0&\mathcal{S}^{2}\end{array}\!\!\right). (78)

The fermionic steering between Bob and Anti-Bob are thus calculated as

SBB¯(ρAB¯)\displaystyle S^{B\rightarrow\bar{B}}(\rho_{A\bar{B}}) =\displaystyle= max{0,14[2(1+𝒞𝒮)log(1+𝒞𝒮)+2(1𝒞𝒮)log(1𝒞𝒮)\displaystyle\max\bigg{\{}0,\frac{1}{4}\big{[}2(1+\mathcal{C}\mathcal{S})\log(1+\mathcal{C}\mathcal{S})+2(1-\mathcal{C}\mathcal{S})\log(1-\mathcal{C}\mathcal{S}) (79)
\displaystyle- (1+𝒮2)log(1+𝒮2)+𝒮2log(𝒮2)]}=0,\displaystyle(1+\mathcal{S}^{2})\log(1+\mathcal{S}^{2})+\mathcal{S}^{2}\log(\mathcal{S}^{2})\big{]}\bigg{\}}=0,
SB¯B(ρAB¯)\displaystyle S^{\bar{B}\rightarrow B}(\rho_{A\bar{B}}) =\displaystyle= max{0,14[2(1+𝒞𝒮)log(1+𝒞𝒮)+2(1𝒞𝒮)log(1𝒞𝒮)\displaystyle\max\bigg{\{}0,\frac{1}{4}\big{[}2(1+\mathcal{C}\mathcal{S})\log(1+\mathcal{C}\mathcal{S})+2(1-\mathcal{C}\mathcal{S})\log(1-\mathcal{C}\mathcal{S}) (80)
\displaystyle- (1+𝒞2)log(1+𝒞2)+𝒞2log(𝒞2)]}=0,\displaystyle(1+\mathcal{C}^{2})\log(1+\mathcal{C}^{2})+\mathcal{C}^{2}\log(\mathcal{C}^{2})\big{]}\bigg{\}}=0,

and

TBB¯(ρBB¯)=max{0,𝒮2(𝒞213)},\displaystyle T^{B\rightarrow\bar{B}}(\rho_{B\bar{B}})=\max\bigg{\{}0,\mathcal{S}^{2}\big{(}\mathcal{C}^{2}-\frac{1}{\sqrt{3}}\big{)}\bigg{\}}, (81)
TB¯B(ρBB¯)=max{0,𝒞2(𝒮213)}=0.\displaystyle T^{\bar{B}\rightarrow B}(\rho_{B\bar{B}})=\max\bigg{\{}0,\mathcal{C}^{2}\big{(}\mathcal{S}^{2}-\frac{1}{\sqrt{3}}\big{)}\bigg{\}}=0. (82)

From Eqs.(79)-(82) and combined with Fig.3, we find that Hawking radiation cannot produce fermionic steering based on entropy uncertainty relation between Bob and Anti-Bob, but can produce the entanglement-based steering TBB¯T^{B\rightarrow\bar{B}}. It again suggests that the quantification of steering based on entanglement is a more sensitive than that based on entropy uncertainty relation.

Refer to caption
Refer to caption
Figure 3: The fermionic steerability and steering asymmetry between Bob and Anti-Bob as functions of the Hawking temperature TT. The parameter ω\omega is fixed as ω=1\omega=1.

Fig.3(b) shows that the fermionic steering TBB¯T^{B\rightarrow\bar{B}} increases from zero to the maximum and then decreases to zero again (sudden death) with the increasing of Hawking temperature. The Hawking temperature for the maximal steering is Tmax=ωln(3+1)ln(31)T_{max}=\frac{\omega}{\ln(\sqrt{3}+1)-\ln(\sqrt{3}-1)}, and for sudden death is Tdea=ωln(31)T_{dea}=\frac{-\omega}{\ln(\sqrt{3}-1)}. This result is quite different from the behavior of fermionic entanglement between Bob to Anti-Bob in a relativistic setting, where fermionic entanglement increases monotonically Q60 .

V Monogamous relation between fermionic steering and entanglement in Schwarzschild spacetime

It is well known that quantum steering is an intermediate form of quantum inseparabilities in between Bell nonlocality and quantum entanglement Q3 . Quantum states that show Bell nonlocality form a strict subset of quantum states showing quantum steering, the latter also form a strict subset of entangled states. Quantum steering is a good potential object for connecting Bell nonlocality and quantum entanglement. In this section, we try to establish the relations between fermionic steering and entanglement in Schwarzschild spacetime.

From above study, we find that with the increase of the Hawking temperature TT, the physically accessible fermionic steering between Alice and Bob decreases monotonically, and at the same time the physically inaccessible fermionic steering between Alice (Bob) and Anti-Bob increases monotonically or nonmonotonically. Also note that the entanglement has similar properties: The physically accessible fermionic entanglement decreases monotonically and the physically inaccessible fermionic entanglement increases monotonically with the growth of the Hawking temperature Q60 . A question arises naturally: Are there relations between the physically accessible steering (entanglement) and the physically inaccessible steering (entanglement)? The answer is yes. Through analytical calculation, we find some relations of this types, which can help us to understand more deeply the fermionic entanglement and steering in a relativistic setting.

From Eqs.(56), (67) and (78), we can calculate the concurrence of entanglement C(ρAB)C(\rho_{AB}) between Alice and Bob, the concurrence C(ρAB¯)C(\rho_{A\bar{B}}) between Alice and Anti-Bob, as well as the concurrence C(ρBB¯)C(\rho_{B\bar{B}}) between Bob and Anti-Bob as,

C(ρAB)=1eωT+1,C(\rho_{AB})=\frac{1}{\sqrt{e^{-\frac{\omega}{T}}+1}},
C(ρAB¯)=1eωT+1,C(\rho_{A\bar{B}})=\frac{1}{\sqrt{e^{\frac{\omega}{T}}+1}},

and

C(ρBB¯)=1eωT+eωT+2.C(\rho_{B\bar{B}})=\frac{1}{\sqrt{e^{\frac{\omega}{T}}+e^{-\frac{\omega}{T}}+2}}.

After carefully inspection, we find the following monogamy relations between fermionic steering and entanglement,

TAB(ρAB)TAB¯(ρAB¯)=C2(ρAB)C2(ρAB¯),\displaystyle T^{A\rightarrow B}(\rho_{AB})-T^{A\rightarrow\bar{B}}(\rho_{A\bar{B}})=C^{2}(\rho_{AB})-C^{2}(\rho_{A\bar{B}}), (83)
TAB(ρAB)+TAB¯(ρAB¯)=C2(ρAB)+C2(ρAB¯)23C2(ρBB¯),\displaystyle T^{A\rightarrow B}(\rho_{AB})+T^{A\rightarrow\bar{B}}(\rho_{A\bar{B}})=C^{2}(\rho_{AB})+C^{2}(\rho_{A\bar{B}})-\frac{2}{\sqrt{3}}C^{2}(\rho_{B\bar{B}}), (84)
332[TBA(ρAB)TB¯A(ρAB¯)]=C2(ρAB)C2(ρAB¯),for\displaystyle\frac{3-\sqrt{3}}{2}[T^{B\rightarrow A}(\rho_{AB})-T^{\bar{B}\rightarrow A}(\rho_{A\bar{B}})]=C^{2}(\rho_{AB})-C^{2}(\rho_{A\bar{B}}),~{}{\rm for} ωln3<T,\displaystyle\frac{\omega}{\ln\sqrt{3}}<T, (85)
3+32[TBA(ρAB)+TB¯A(ρAB¯)]=C2(ρAB)+C2(ρAB¯),for\displaystyle\frac{3+\sqrt{3}}{2}[T^{B\rightarrow A}(\rho_{AB})+T^{\bar{B}\rightarrow A}(\rho_{A\bar{B}})]=C^{2}(\rho_{AB})+C^{2}(\rho_{A\bar{B}}),~{}{\rm for} ωln3<T.\displaystyle\frac{\omega}{\ln\sqrt{3}}<T. (86)

These monogamies reveal the relation between the physically accessible correlation and the physically inaccessible correlation, as well as the relation between entanglement and steering. They suggest that the Hawking radiation can give rise to the transformation between these different types of quantum correlations.

VI Conclusions

In conclusion, we have investigated the influence of Hawking radiation on the fermionic quantum steering for the setup where Alice resides in the asymptotically flat region and Bob hovers near the event horizon of a Schwarzschild black hole. Two different types of quantification for quantum steering have been employed. The redistribution and transformation between physically accessible and inaccessible steering induced by Hawking radiation have been studied. Some monogamy relations between fermionic steering and entanglement have been found.

Firstly, we have found that Hawking radiation reduces the fermionic steerability between Alice and Bob, and make it approaching to the nonzero asymptotic values in the limit of infinite Hawking temperature. The steerability from Alice to Bob is always bigger than the steerability from Bob to Alice in the degradation process. The steering asymmetry increases with Hawking temperature and approaches to the nonzero asymptotic values for infinite Hawking temperature. For the degradation of steering between Alice and Bob, the two types of quantification for steerability behave completely consistent.

Secondly, we have found that Hawking radiation can produce fermionic steering between Alice and Anti-Bob, which approaches to the finite asymptotic values in the limit of infinite Hawking temperature. The temperature for generating AB¯A\rightarrow\bar{B} steering is lower than for generating B¯A\bar{B}\rightarrow A steering. Also, the AB¯A\rightarrow\bar{B} steerability is always greater than B¯A\bar{B}\rightarrow A steerability. The steering asymmetry firstly increases, then decreases and finally approaches to a nonzero asymptotic value when the Hawking temperature changes from zero to infinite. The maximal steering asymmetry occurs at the transition point from one-way steering to two-way steering. Note that here the two types of quantification for steering behave slightly different: The temperature for generating steering based on entanglement is lower than for generating steering based on entropy uncertainty relation, meaning that the quantification of steering based on entanglement is more sensitive than that based on entropy uncertainty relation.

Thirdly, we have also studied the effect of Hawking radiation on the steering between Bob and Anti-Bob. We have found that the two types of quantification for steering in this case behave clearly different. The steering between Bob and Anti-Bob based on entropy uncertainty relation is always zero, but the steering from Bob to Anti-Bob based on entanglement can be generated for some domain of Hawking temperature. This again suggests that the quantification of steering based on entanglement is more sensitive than that based on entropy uncertainty relation. On the other hand, quantum steering between Bob hovering near the event horizon and anti-Bob segregated by the event horizon is different from the other two forms of quantum steering, possibly because Alice stays stationary at an asymptotically flat region.

Finally, we have established some monogamy relations between fermionic steering and fermionic entanglement. These monogamies reveal the regularity for the redistribution of steering and entanglement between different subsystems under the Hawking effect, and may be useful for understanding the information paradox of black holes.

We have also made a comparison between fermionic steering studied in this context and bosonic steering studied previously under the influence of Hawking radiation. The previous study suggested that the bosonic steering between Alice and Bob suffers from sudden death in the process of degradation, and the ABA\rightarrow B bosonic steerability is always smaller than the BAB\rightarrow A bosonic steerability under the Hawking effect Q53 ; Q54 . Hawking effect cannot generate the bosonic steering between Alice and Anti-Bob Q40 ; Q54 ; QWE59 . All these results are opposite to the fermionic steering displayed in the text.

Acknowledgements.
This work is supported by the National Natural Science Foundation of China (Grant Nos.1217050862, 11275064), and 2021BSL013.

References

  • (1) E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935).
  • (2) E. Schrödinger, Proc. Cambridge Philos. Soc. 32, 446 (1936).
  • (3) H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402 (2007).
  • (4) S. P. Walborn, A. Salles, R. M. Gomes, F. Toscano, and P. H. Souto Ribeiro, Phys. Rev. Lett. 106, 130402 (2011).
  • (5) R. V. Nery, M. M. Taddei, P. Sahium, S. P. Walborn, L. Aolita, and G. H. Aguilar, Phys. Rev. Lett. 124, 120402 (2020).
  • (6) P. Skrzypczyk, M. Navascués, and D. Cavalcanti, Phys. Rev. Lett. 112, 180404 (2014).
  • (7) X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, Phys. Rev. Lett. 118, 230501 (2017).
  • (8) M. Navascués and D. Pérez-García, Phys. Rev. Lett. 109, 160405 (2012).
  • (9) S. Designolle, V. Srivastav, R. Uola, N. H. Valencia, W. McCutcheon, M. Malik, and N. Brunner, Phys. Rev. Lett. 126, 200404 (2021).
  • (10) R. V. Nery, M. M. Taddei, R. Chaves, and L. Aolita, Phys. Rev. Lett. 120, 140408 (2018).
  • (11) Z. Tian, S. Y. Chä, U. R. Fischer, Phys. Rev. A 97, 063611 (2018).
  • (12) S. M. Wu, Z. C. Li and H. S. Zeng, Laser Phys. Lett. 17, 035202 (2020).
  • (13) T. Liu, J. Jing, J. Wang, Adv. Quantum Technol. 1, 1800072 (2018).
  • (14) J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, Phys. Rev. A 87, 062103 (2013).
  • (15) Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, Phys. Rev. A 89, 032112 (2014).
  • (16) C. Ren, H. Y. Su, H. Shi, and J. Chen, Phys. Rev. A 97, 032119 (2018).
  • (17) I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, Phys. Rev. Lett. 114, 060403 (2015).
  • (18) A. G. Maity, S. Datta, and A. S. Majumdar, Phys. Rev. A 96, 052326 (2018).
  • (19) W. Y. Sun, D. Wang, and L. Ye, Laser Phys. Lett. 14, 095205 (2017).
  • (20) D. J. Saunders, S. J. Jones, H. M.Wiseman, and G. J. Pryde, Nat. Phys. 6, 845 (2010).
  • (21) V. Handchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, Nat. Photonics 6, 598 (2012).
  • (22) S. Wollmann, N. Walk, A. J. Bennet, H. M. Wiseman, and G. J. Pryde, Phys. Rev. Lett. 116, 160403 (2016).
  • (23) Y. Xiao, X. J. Ye, K. Sun, J. S. Xu, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 118, 140404 (2017).
  • (24) C. M. Li, Y. N. Chen, N. Lambert, C. Y. Chiu, and F. Nori, Phys. Rev. A 92, 062310 (2015).
  • (25) M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404 (2015).
  • (26) C. Y. Huang, N. Lambert, C. M. Li, Y. T. Lu, and F. Nori, Phys. Rev. A 99, 012302 (2019).
  • (27) B. P. Abbott et al, Phys. Rev. Lett. 116, 061102 (2016).
  • (28) The Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875, L1 (2019).
  • (29) The Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875, L2 (2019).
  • (30) The Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875, L3 (2019).
  • (31) The Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875, L4 (2019).
  • (32) The Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875, L5 (2019).
  • (33) The Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875, L6 (2019).
  • (34) T. W. S. Holoien, P. J. Vallely, K. Auchettl, K. Z. Stanek, C. S. Kochanek, K. D. French , J. L. Prieto, B. J. Shappee, J. S. Brown, M. M. Fausnaugh, Astrophysical Journal. 883, 111 (2019).
  • (35) S. W. Hawking, Phys. Rev. D 14, 2460 (1976).
  • (36) H. Terashima, Phys. Rev. D 61, 104016 (2000).
  • (37) L. Bombelli, R. K. Koul, J. Lee, and R. Sorkin, Phys. Rev. D 34, 373 (1986).
  • (38) I. Fuentes-Schuller, and R. B. Mann, Phys. Rev. Lett. 95,120404 (2005).
  • (39) P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Phys. Rev. A 74, 032326 (2006).
  • (40) G. Adesso, I. Fuentes-Schuller, and M. Ericsson, Phys. Rev. A 76, 062112 (2007).
  • (41) S. Xu, X. K. Song, J. D. Shi and L. Ye, Phys. Rev. D 89, 065022 (2014).
  • (42) E. Martín-Martínez, L. J. Garay and J. León, Phys. Rev. D 82, 064006 (2010).
  • (43) S. M. Wu and H. S. Zeng, Class. Quantum Grav. 37, 115003 (2020).
  • (44) S. M. Wu, H. S. Zeng, and H. M. Cao, Class. Quantum Grav. 38, 185007 (2021).
  • (45) Z. Tian, J. Jing, Phy. Lett. B 707, 264 (2012).
  • (46) E. G. Brown, K. Cormier, E. Martín-Martínez, and R. B. Mann, Phys. Rev. A 86, 032108 (2012).
  • (47) J. Wang, J. Deng, and J. Jing, Phys. Rev. A 81, 052120 (2010).
  • (48) Y. Dai, Z. Shen, and Y. Shi, Phys. Rev. D 94, 025012 (2016).
  • (49) M. R. Hwang, D. Park, and E. Jung, Phys. Rev. A 83, 012111 (2011).
  • (50) A. J. Torres-Arenasa, Q. Dong, G. H. Sun, W. C. Qiang, S. H. Dong, Phy. Lett. B 789, 93 (2019).
  • (51) E. Martín-Martínez and I. Fuentes, Phys. Rev. A 83, 052306 (2011).
  • (52) D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Phys. Rev. D 86, 025026 (2012).
  • (53) Q. Dong, M. A. Mercado Sanchez, G.-H. Sun, M. Toutounji, and S.-H. Dong, Chin. Phys. Lett. 36, 100301 (2019).
  • (54) Q. Dong, A. J. Torres-Arenas, G.-H. Sun, W.-C. Qiang, and S.-H. Dong, Front. Phys. 14, 21603 (2019).
  • (55) Q. Dong, A. J. Torres-Arenas, G.-H. Sun, and S.-H. Dong, Front. Phys. 15, 11602 (2020).
  • (56) Q. Dong, G.-H. Sun, M. Toutounji, and S.-H. Dong, Optik. 201, 163487 (2020).
  • (57) Q. Dong, A. A. S. Manilla, I. L. Yáñez, G.-H. Sun, and S.-H. Dong, Phys. Scr. 94, 105101 (2019).
  • (58) W.-C. Qiang, G.-H. Sun, Q. Dong, and S.-H. Dong, Phys. Rev. A 98, 022320 (2018).
  • (59) W.-C. Qiang, Q. Dong, M. A. Mercado Sanchez, G.-H. Sun, and S.-H. Dong, Quantum Inf. Process. 18, 314 (2019).
  • (60) S. M. Wu and H. S. Zeng, Eur. Phys. J. C 82, 4 (2022).
  • (61) S. M. Wu, Y. T. Cai, W. J. Peng and H. S. Zeng, Eur. Phys. J. C 82, 412 (2022).
  • (62) S. M. Hashemi Rafsanjani, M. Huber, C. J. Broadbent, and J. H. Eberly, Phys. Rev. A 86, 062303 (2012).
  • (63) D. Das, S. Sasmal, and S. Roy, Phys. Rev. A 99, 052109 (2019).
  • (64) K. Zhang, J. Wang, Phys. Rev. A 104, 042404 (2021)
  • (65) D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465 (1957).
  • (66) J. Jing, Phys. Rev. D 70, 065004 (2004).
  • (67) J. Wang, Q. Pan, J. Jing, Annals Phys. 325, 1190 (2010).
  • (68) T. Damoar and R. Ruffini, Phys. Rev. D 14, 332 (1976).
  • (69) Q. Pan, J. Jing, Phys. Rev. D 78, 065015 (2008).
  • (70) J. Wang, H. Cao, J. Jing, H. Fan, Phys. Rev. D 93, 125011 (2016).
  • (71) J. Wang, J. Jing, H. Fan, Ann. Phys-Berlin. 530, 1700261(2018).
  • (72) Y. Li, Q. Mao, and Y. Shi, Phys. Rev. A 99, 032340 (2019).
  • (73) J. Wang, Q. Pan, J. Jing, Phys. Lett. B 692, 202 (2010).