This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

[1]\fnmDmitry \surGribanov

[1]\orgdivLaboratory of Algorithms and Technologies for Network Analysis, \orgnameHSE University, \orgaddress\street136 Rodionova Ulitsa, \cityNizhny Novgorod, \postcode603093, \countryRussian Federation

2]\orgnameLobachevsky State University of Nizhny Novgorod, \orgaddress\street23 Gagarina Avenue, \cityNizhny Novgorod, \postcode603950, \countryRussian Federation

3]\orgnameMathematics of Future Technologies Center, Lobachevsky State University of Nizhni Novgorod, \orgaddress\street23 Gagarina Avenue, \cityNizhny Novgorod, \postcode603950, \countryRussian Federation

Faster Algorithms for Sparse ILP and Hypergraph Multi-Packing/Multi-Cover Problems

[email protected]    \fnmIvan \surShumilov [email protected]    \fnmDmitry \surMalyshev [email protected]    \fnmNikolai \surZolotykh [email protected] * [ [
Abstract

In our paper, we consider the following general problems: check feasibility, count the number of feasible solutions, find an optimal solution, and count the number of optimal solutions in 𝒫n\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}, assuming that 𝒫\operatorname{\mathcal{P}} is a polyhedron, defined by systems AxbAx\leq b or Ax=b,x𝟎Ax=b,\,x\geq\operatorname{\mathbf{0}} with a sparse matrix AA. We develop algorithms for these problems that outperform state of the art ILP and counting algorithms on sparse instances with bounded elements.

We use known and new methods to develop new exponential algorithms for Edge/Vertex Multi-Packing/Multi-Cover Problems on graphs and hypergraphs. This framework consists of many different problems, such as the Stable Multi-set, Vertex Multi-cover, Dominating Multi-set, Set Multi-cover, Multi-set Multi-cover, and Hypergraph Multi-matching problems, which are natural generalizations of the standard Stable Set, Vertex Cover, Dominating Set, Set Cover, and Maximum Matching problems.

keywords:
Integer Linear Programming, Counting Problem, Parameterized Complexity, Multipacking, Multicover, Stable Set, Vertex Cover, Dominating Set, Multiset Multicover, Hypergraph Matching, Sparse Matrix

1 Introduction

Let a polyhedron 𝒫\operatorname{\mathcal{P}} be defined by one of the following ways:

  1. (i)

    System in the canonical form:

    𝒫={xn:Axb},where Am×n and bm;\operatorname{\mathcal{P}}=\{x\in\operatorname{\mathbb{R}}^{n}\colon Ax\leq b\},\quad\text{where $A\in\operatorname{\mathbb{Z}}^{m\times n}$ and $b\in\operatorname{\mathbb{Q}}^{m}$;} (Canon-Form)
  2. (ii)

    System in the standard form:

    𝒫={x0n:Ax=b},where Ak×n and bk.\operatorname{\mathcal{P}}=\{x\in\operatorname{\mathbb{R}}_{\geq 0}^{n}\colon Ax=b\},\quad\text{where $A\in\operatorname{\mathbb{Z}}^{k\times n}$ and $b\in\operatorname{\mathbb{Q}}^{k}$.} (Standard-Form)

If 𝒫\operatorname{\mathcal{P}} is defined by a system in the form Standard-Form with an additional constraint xux\leq u, for given u0nu\in\operatorname{\mathbb{Z}}^{n}_{\geq 0}, we call such a system as the system in the standard form with box constraints. We consider the following problems:

Problem 1 (Feasibility).
Find a point xx inside 𝒫n\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n} or declare that 𝒫n=\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}=\emptyset. (Feasibility-IP)
Problem 2 (Counting).
Compute the value of |𝒫n|\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert} or declare that |𝒫n|=+\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}=+\infty. (Count-IP)
Problem 3 (Optimization).

Given cnc\in\operatorname{\mathbb{Z}}^{n}, compute some x𝒫nx^{*}\in\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}, such that

cx=max{cx:x𝒫n}.c^{\top}x^{*}=\max\{c^{\top}x\colon x\in\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\}. (Opt-IP)

Or declare that 𝒫n=\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}=\emptyset or that the maximization problem is unbounded.

Problem 4 (Optimization and Counting).

Given cnc\in\operatorname{\mathbb{Z}}^{n}, compute the number of xx^{*}, such that

cx=max{cx:x𝒫n},c^{\top}x^{*}=\max\{c^{\top}x\colon x\in\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\}, (Opt-And-Count-IP)

and find an example of xx^{*}, if such exists. Or declare that 𝒫n=\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}=\emptyset or that the maximization problem is unbounded.

In our work, we analyze these problems under the assumption that the matrix AA is sparse. To estimate the sparsity of AA, it is convenient to use the maximum number of non-zero elements in rows and columns of AA:

rs(A):=maxiAi0andcs(A):=maxjAj0.\operatorname{rs}(A)\mathrel{\mathop{\mathchar 58\relax}}=\max_{i}\|A_{i*}\|_{0}\quad\text{and}\quad\operatorname{cs}(A)\mathrel{\mathop{\mathchar 58\relax}}=\max_{j}\|A_{*j}\|_{0}.

Here, x0=|{i:xi0}|\|x\|_{0}=\mathinner{\!\left\lvert\{i\colon x_{i}\not=0\}\right\rvert} denotes the number of non-zeros in a vector xx and AiA_{i*}, AjA_{*j} denote the ii-th row and the jj-th column of AA, respectively. Additionally, we define the total sparsity of AA as the minimum of the above parameters:

ts(A)=min{rs(A),cs(A)}.\operatorname{ts}(A)=\min\bigl{\{}\operatorname{rs}(A),\,\operatorname{cs}(A)\bigr{\}}.

For our purposes, we sometimes need to use slightly weaker parameters that estimate the number of non-zero elements in non-degenerate square sub-matrices. The reason is that the matrix AA can have duplicate rows and columns in some problem definitions. We want to avoid these multiplicities, estimating the sparsity of the matrices. For arbitrary Am×nA\in\operatorname{\mathbb{Z}}^{m\times n}, we define

rs¯(A):=max{rs(B):B is non-degenerate sub-matrix of A},\displaystyle\operatorname{\overline{\operatorname{rs}}}(A)\mathrel{\mathop{\mathchar 58\relax}}=\max\{\operatorname{rs}(B)\colon\text{$B$ is non-degenerate sub-matrix of $A$}\},
cs¯(A):=max{cs(B):B is non-degenerate sub-matrix of A}and\displaystyle\operatorname{\overline{\operatorname{cs}}}(A)\mathrel{\mathop{\mathchar 58\relax}}=\max\{\operatorname{cs}(B)\colon\text{$B$ is non-degenerate sub-matrix of $A$}\}\quad\text{and}
ts¯(A)=min{rs¯(A),cs¯(A)}.\displaystyle\operatorname{\overline{\operatorname{ts}}}(A)=\min\bigl{\{}\operatorname{\overline{\operatorname{rs}}}(A),\,\operatorname{\overline{\operatorname{cs}}}(A)\bigr{\}}.

Clearly, the new sparsity parameters are more general than the standard rs(A)\operatorname{rs}(A) and cs(A)\operatorname{cs}(A):

ts¯(A)ts(A).\operatorname{\overline{\operatorname{ts}}}(A)\leq\operatorname{ts}(A).

Other parameters that are useful in expressing our results and have some connections with sparsity are matrix norms. We recall the definitions. The maximum absolute value of entries of a matrix AA (also known as the matrix max\max-norm) is denoted by Amax=maxi,j|Aij|\|A\|_{\max}=\max_{i,j}\mathinner{\!\left\lvert A_{i\,j}\right\rvert}. For a matrix AA, by Ap\|A\|_{p} we denote the matrix norm, induced by the lpl_{p} vector norm. It is known that

A1=maxiAi1=maxij|Aij|and\displaystyle\|A\|_{1}=\max_{i}\|A_{i*}\|_{1}=\max_{i}\sum_{j}\mathinner{\!\left\lvert A_{ij}\right\rvert}\quad\text{and}
A=maxjAj1=maxji|Aij|.\displaystyle\|A\|_{\infty}=\max_{j}\|A_{*j}\|_{1}=\max_{j}\sum_{i}\mathinner{\!\left\lvert A_{ij}\right\rvert}.

Again, we need a similar definition of a norm with respect to non-degenerate sub-matrices BB of AA:

γp(A)=max{Bp:B is a non-degenerate sub-matrix of A}.\gamma_{p}(A)=\max\{\|B\|_{p}\colon\text{$B$ is a non-degenerate sub-matrix of $A$}\}.

Surprisingly, the maximum number of vertices in polyhedra defined by systems in the canonical or the standard forms with a fixed AA and varying bb is also closely connected with sparsity parameters of the matrix AA (see Lemma 4). The corresponding matrix parameter is denoted by ν(A)\nu(A):

ν(A)=maxbm|vert(𝒫(A,b))|,where\displaystyle\nu(A)=\max\limits_{b\in\operatorname{\mathbb{Q}}^{m}}\mathinner{\!\left\lvert\operatorname{vert}\bigl{(}\operatorname{\mathcal{P}}(A,b)\bigr{)}\right\rvert},\quad\text{where}
𝒫(A,b)={xn:Axb}or𝒫(A,b)={x0n:Ax=b}.\displaystyle\operatorname{\mathcal{P}}(A,b)=\{x\in\operatorname{\mathbb{R}}^{n}\colon Ax\leq b\}\quad\text{or}\quad\operatorname{\mathcal{P}}(A,b)=\{x\in\operatorname{\mathbb{R}}_{\geq 0}^{n}\colon Ax=b\}.

The last important matrix parameters that will be used in our paper are the values of matrix sub-determinants. These parameters are related to sparsity via the Hadamard’s inequality.

Definition 1.

For a matrix Am×nA\in\operatorname{\mathbb{Z}}^{m\times n}, by

Δk(A)=max{|det(A𝒥)|:{1,,m},𝒥{1,,n},||=|𝒥|=k},\Delta_{k}(A)=\max\left\{\mathinner{\!\left\lvert\det(A_{\operatorname{\mathcal{I}}\operatorname{\mathcal{J}}})\right\rvert}\colon\operatorname{\mathcal{I}}\subseteq\{1,\dots,m\},\;\operatorname{\mathcal{J}}\subseteq\{1,\dots,n\},\;\mathinner{\!\left\lvert\operatorname{\mathcal{I}}\right\rvert}=\mathinner{\!\left\lvert\operatorname{\mathcal{J}}\right\rvert}=k\right\},

we denote the maximum absolute value of determinants of all the k×kk\times k sub-matrices of AA. Here, the symbol A𝒥A_{\operatorname{\mathcal{I}}\operatorname{\mathcal{J}}} denotes the sub-matrix of AA, which is generated by all the rows with indices in \operatorname{\mathcal{I}} and all the columns with indices in 𝒥\operatorname{\mathcal{J}}. Note that Δ1(A)=Amax\Delta_{1}(A)=\|A\|_{\max}. The maximum absolute value of sub-determinants of all orders is denoted by Δtot(A)\Delta_{tot}(A), i.e. Δtot(A)=maxkΔk(A)\Delta_{tot}(A)=\max_{k}\Delta_{k}(A). By Δgcd(A,k)\Delta_{\gcd}(A,k), we denote the greatest common divisor of determinants of all the k×kk\times k sub-matrices of AA. Additionally, let Δ(A)=Δrank(A)(A)\Delta(A)=\Delta_{\operatorname{rank}(A)}(A) and Δgcd(A)=Δgcd(A,rank(A))\Delta_{\gcd}(A)=\Delta_{\gcd}(A,\operatorname{rank}(A)). The matrix AA with Δ(A)Δ\Delta(A)\leq\Delta, for some Δ>0\Delta>0, is called Δ\Delta-modular.

Due to the Hadamard’s inequality and since det(B)=det(B)\det(B)=\det(B^{\top}) and x2x1\|x\|_{2}\leq\|x\|_{1}, for any Bn×nB\in\operatorname{\mathbb{R}}^{n\times n} and xnx\in\operatorname{\mathbb{R}}^{n}, the following inequalities connect Δk(A)\Delta_{k}(A), the matrix norms, and ts(A)\operatorname{ts}(A):

Δk(A)min{γ1(A),γ(A)}kmin{A1,A}k,\displaystyle\Delta_{k}(A)\leq\min\bigl{\{}\gamma_{1}(A),\gamma_{\infty}(A)\}^{k}\leq\min\bigl{\{}\|A\|_{1},\|A\|_{\infty}\}^{k}, (1)
Δk(A)(Amax)kts¯(A)k/2(Amax)kts(A)k/2.\displaystyle\Delta_{k}(A)\leq\bigl{(}\|A\|_{\max}\bigr{)}^{k}\cdot\operatorname{\overline{\operatorname{ts}}}(A)^{k/2}\leq\bigl{(}\|A\|_{\max}\bigr{)}^{k}\cdot\operatorname{ts}(A)^{k/2}. (2)

Denoting γ1,(A)=min{γ1(A),γ(A)}\operatorname{\gamma_{1,\infty}}(A)=\min\bigl{\{}\gamma_{1}(A),\gamma_{\infty}(A)\}, the inequality (1) becomes

Δk(A)γ1,(A)k.\Delta_{k}(A)\leq\operatorname{\gamma_{1,\infty}}(A)^{k}. (3)

For the reader’s convenience, we have put all the notations used in our work into the separate Table 1. Additionally, for the sake of simplicity, in the remainder of the paper we will use the following short notations with respect to the definitions Canon-Form and Standard-Form: Δ:=Δ(A)\Delta\mathrel{\mathop{\mathchar 58\relax}}=\Delta(A), Δi:=Δi(A)\Delta_{i}\mathrel{\mathop{\mathchar 58\relax}}=\Delta_{i}(A), for i{1,,n}i\in\{1,\dots,n\}, Δtot:=Δtot(A)\Delta_{tot}\mathrel{\mathop{\mathchar 58\relax}}=\Delta_{tot}(A), ν:=ν(A)\nu\mathrel{\mathop{\mathchar 58\relax}}=\nu(A), Δgcd:=Δgcd(A)\Delta_{\gcd}\mathrel{\mathop{\mathchar 58\relax}}=\Delta_{\gcd}(A), γp:=γp(A)\gamma_{p}\mathrel{\mathop{\mathchar 58\relax}}=\gamma_{p}(A), for p{1,,+}p\in\{1,\dots,+\infty\}, γ1,:=γ1,(A)\operatorname{\gamma_{1,\infty}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\gamma_{1,\infty}}(A), rs¯:=rs¯(A)\operatorname{\overline{\operatorname{rs}}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\overline{\operatorname{rs}}}(A), cs¯:=cs¯(A)\operatorname{\overline{\operatorname{cs}}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\overline{\operatorname{cs}}}(A), ts¯:=ts¯(A)\operatorname{\overline{\operatorname{ts}}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\overline{\operatorname{ts}}}(A).

Table 1: Global and Specific Notations
Notation:Notation\mathrel{\mathop{\mathchar 58\relax}} Description:
rs(A)\operatorname{rs}(A) Maximum number of non-zeroes in rows of AA:
rs(A)=maxiAi0\operatorname{rs}(A)=\max_{i}\|A_{i*}\|_{0}.
cs(A)\operatorname{cs}(A) Maximum number of non-zeroes in columns of AA:
rs(A)=maxjAj0\operatorname{rs}(A)=\max_{j}\|A_{*j}\|_{0}.
ts(A)\operatorname{ts}(A) The total sparsity of AA defined as
ts(A)=min{rs(A),cs(A)}.\operatorname{ts}(A)=\min\bigl{\{}\operatorname{rs}(A),\operatorname{cs}(A)\bigr{\}}.
rs¯(A)\operatorname{\overline{\operatorname{rs}}}(A) Maximum number of non-zeroes in rows of non-degenerate sub-matrices of AA:
rs¯(A)=max{rs(B):B is a non-degenerate sub-matrix of A}\operatorname{\overline{\operatorname{rs}}}(A)=\max\bigl{\{}\operatorname{rs}(B)\colon\text{$B$ is a non-degenerate sub-matrix of $A$}\bigr{\}}.
cs¯(A)\operatorname{\overline{\operatorname{cs}}}(A) Maximum number of non-zeroes in columns of non-degenerate sub-matrices of AA:
cs¯(A)=max{cs(B):B is a non-degenerate sub-matrix of A}\operatorname{\overline{\operatorname{cs}}}(A)=\max\bigl{\{}\operatorname{cs}(B)\colon\text{$B$ is a non-degenerate sub-matrix of $A$}\bigr{\}}.
ts¯(A)\operatorname{\overline{\operatorname{ts}}}(A) The total sparsity of AA with respect to non-degenerate sub-matrices of AA,
defined as ts¯(A)=min{rs¯(A),cs¯(A)}.\operatorname{\overline{\operatorname{ts}}}(A)=\min\bigl{\{}\operatorname{\overline{\operatorname{rs}}}(A),\operatorname{\overline{\operatorname{cs}}}(A)\bigr{\}}.
γp(A)\gamma_{p}(A) The maximum p\|\cdot\|_{p}-norm of non-degenerate sub-matrices of AA:
γp(A)=max{Bp:B is a non-degenerate sub-matrix of A}.\gamma_{p}(A)=\max\{\|B\|_{p}\colon\text{$B$ is a non-degenerate sub-matrix of $A$}\}.
γ1,(A)\operatorname{\gamma_{1,\infty}}(A) γ1,(A)=min{γ1(A),γ(A)}\operatorname{\gamma_{1,\infty}}(A)=\min\bigl{\{}\gamma_{1}(A),\gamma_{\infty}(A)\}.
ν(A)\nu(A) The maximum number of vertices in polyhedra
with a fixed matrix AA and a varying r.h.s. bb:
ν(A)=maxbm|vert(𝒫(A,b))|\nu(A)=\max\limits_{b\in\operatorname{\mathbb{Q}}^{m}}\mathinner{\!\left\lvert\operatorname{vert}\bigl{(}\operatorname{\mathcal{P}}(A,b)\bigr{)}\right\rvert}, where
𝒫(A,b)={xn:Axb}or𝒫(A,b)={x0n:Ax=b}.\operatorname{\mathcal{P}}(A,b)=\{x\in\operatorname{\mathbb{R}}^{n}\colon Ax\leq b\}\quad\text{or}\quad\operatorname{\mathcal{P}}(A,b)=\{x\in\operatorname{\mathbb{R}}_{\geq 0}^{n}\colon Ax=b\}.
Δk(A)\Delta_{k}(A) The maximum absolute value of k×kk\times k sub-determinants of AA:
Δk(A)=max{|det(A𝒥)|:{1,,m},𝒥{1,,n},||=|𝒥|=k}\Delta_{k}(A)=\max\left\{\mathinner{\!\left\lvert\det(A_{\operatorname{\mathcal{I}}\operatorname{\mathcal{J}}})\right\rvert}\colon\operatorname{\mathcal{I}}\subseteq\{1,\dots,m\},\;\operatorname{\mathcal{J}}\subseteq\{1,\dots,n\},\;\mathinner{\!\left\lvert\operatorname{\mathcal{I}}\right\rvert}=\mathinner{\!\left\lvert\operatorname{\mathcal{J}}\right\rvert}=k\right\}.
Δ(A)\Delta(A) The maximum absolute value of rank-order sub-determinants of AA:
Δ(A)=Δrank(A)(A)\Delta(A)=\Delta_{\operatorname{rank}(A)}(A).
Δtot(A)\Delta_{tot}(A) The maximum absolute value of all sub-determinants of AA:
Δtot(A)=maxkΔk(A)\Delta_{tot}(A)=\max_{k}\Delta_{k}(A).
Δgcd(A)\Delta_{\gcd}(A) The greatest common divisor of rank-order sub-determinants of AA.
ϕ\phi The input bit-encoding length of a corresponding computational problem.
disc(A)\operatorname{disc}(A) The discrepancy of AA:
disc(A)=minz{1/2, 1/2}nAz\operatorname{disc}(A)=\min\limits_{z\in\{-1/2,\,1/2\}^{n}}\left\|Az\right\|_{\infty}.
herdisc(A)\operatorname{herdisc}(A) The hereditary discrepancy of AA:
herdisc(A)=max{1,,n}disc(A)\operatorname{herdisc}(A)=\max\limits_{\operatorname{\mathcal{I}}\subset\{1,\dots,n\}}\operatorname{disc}(A_{\operatorname{\mathcal{I}}}).
detlb(A)\operatorname{detlb}(A) detlb(A)=maxtΔt(A)t\operatorname{detlb}(A)=\max_{t}\sqrt[t]{\Delta_{t}(A)}.
𝔫\operatorname{\mathfrak{n}} The number of vertices in a corresponding hypergraph,
i.e. 𝔫=|𝒱|\operatorname{\mathfrak{n}}=\mathinner{\!\left\lvert\operatorname{\mathcal{V}}\right\rvert}, for a hypergraph =(𝒱,)\operatorname{\mathcal{H}}=(\operatorname{\mathcal{V}},\operatorname{\mathscr{E}}).
𝔪\operatorname{\mathfrak{m}} The number of hyperedges in a corresponding hypergraph,
i.e. 𝔪=||\operatorname{\mathfrak{m}}=\mathinner{\!\left\lvert\operatorname{\mathscr{E}}\right\rvert}, for a hypergraph =(𝒱,)\operatorname{\mathcal{H}}=(\operatorname{\mathcal{V}},\operatorname{\mathscr{E}}).
𝔡\operatorname{\mathfrak{d}} The maximum vertex degree of a corresponding hypergraph,
𝔡=maxv𝒱deg(v)\operatorname{\mathfrak{d}}=\max_{v\in\operatorname{\mathcal{V}}}\deg(v), for a hypergraph =(𝒱,)\operatorname{\mathcal{H}}=(\operatorname{\mathcal{V}},\operatorname{\mathscr{E}}),
where deg(v)\deg(v) counts only unique (non-parallel) edges that are incident to vv.
𝔯\operatorname{\mathfrak{r}} The maximum hyperedge cardinality of a corresponding hypergraph,
i.e. 𝔯=max||\operatorname{\mathfrak{r}}=\max_{\operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}}}\mathinner{\!\left\lvert\operatorname{\mathcal{E}}\right\rvert}, for a hypergraph =(𝒱,)\operatorname{\mathcal{H}}=(\operatorname{\mathcal{V}},\operatorname{\mathscr{E}}).
Δ,Δi,Δtot,ν,Δgcd,\Delta,\Delta_{i},\Delta_{tot},\nu,\Delta_{\gcd}, The short notations with respect to the corresponding matrix AA:
γp,γ1,,rs¯,cs¯,ts¯\gamma_{p},\operatorname{\gamma_{1,\infty}},\operatorname{\overline{\operatorname{rs}}},\operatorname{\overline{\operatorname{cs}}},\operatorname{\overline{\operatorname{ts}}} Δ:=Δ(A)\Delta\mathrel{\mathop{\mathchar 58\relax}}=\Delta(A), Δi:=Δi(A)\Delta_{i}\mathrel{\mathop{\mathchar 58\relax}}=\Delta_{i}(A), Δtot:=Δtot(A)\Delta_{tot}\mathrel{\mathop{\mathchar 58\relax}}=\Delta_{tot}(A),
ν:=ν(A)\nu\mathrel{\mathop{\mathchar 58\relax}}=\nu(A), Δgcd:=Δgcd(A)\Delta_{\gcd}\mathrel{\mathop{\mathchar 58\relax}}=\Delta_{\gcd}(A), γp:=γp(A)\gamma_{p}\mathrel{\mathop{\mathchar 58\relax}}=\gamma_{p}(A), γ1,:=γ1,(A)\operatorname{\gamma_{1,\infty}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\gamma_{1,\infty}}(A),
rs¯:=rs¯(A)\operatorname{\overline{\operatorname{rs}}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\overline{\operatorname{rs}}}(A), cs¯:=cs¯(A)\operatorname{\overline{\operatorname{cs}}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\overline{\operatorname{cs}}}(A), ts¯:=ts¯(A)\operatorname{\overline{\operatorname{ts}}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\overline{\operatorname{ts}}}(A).

2 Results on Sparse ILP Problems and the Related Work

2.1 General ILP Problems

Very recently a major breakthrough has been occurred in the ILP complexity theory: based on the works [1, 2, 3] due to Dadush, Peikert & Vempala and [4] due to Regev & Stephens-Davidowitz, V. Reis and T. Rothvoss have proven in [5] that the problem Opt-IP can be solved in log(n)O(n)poly(ϕ)\log(n)^{O(n)}\cdot\operatorname{poly}(\phi)111The notation ϕ=size(A,b,c)\phi=\operatorname{size}(A,b,c) denotes the input bit-encoding length.-time beating the previous O(n)npoly(ϕ)O(n)^{n}\cdot\operatorname{poly}(\phi)-time state of the art algorithm due to Dadush, Peikert & Vempala [1, 2]. Note that the complexity results of the works [5, 1, 2] are valid for even more general IP problems, where one needs to optimize a convex function defined by the subgradient oracle on a convex region defined by the strict hyperplane separation oracle. Surprisingly, due to Basu & Oertel [6], the ILP complexity in the oracle-model is 2O(n)poly(ϕ)2^{O(n)}\cdot\operatorname{poly}(\phi). There exist some more general formulations of IP problems that allow polynomial algorithms in fixed dimension, see for example [7, 8, 9]. It is a long-standing open problem to provide a 2O(n)poly(ϕ)2^{O(n)}\cdot\operatorname{poly}(\phi)-time ILP algorithm.

The asymptotically fastest algorithm for the problem Count-IP in a fixed dimension can be obtained, using the approach of A. Barvinok [10] with modifications, due to Dyer & Kannan [11] and Barvinok & Pommersheim [12]. A complete exposition of Barvinok’s approach can be found in [13, 12, 14, 15, 16], additional discussions and connections with "dual"-type counting algorithms could be found in the book [17], due to J. Lasserre. An important notion of the half-open sign decomposition and other variants of Barvinok’s algorithm that is more efficient in practice is given by Köppe & Verdoolaege in [18]. The paper [14] of Barvinok & Woods gives important generalizations of the original techniques and adapts them to a wider range of problems to handle projections of polytopes. Using the fastest deterministic Shortest Lattice Vector Problem (SVP) solver by Micciancio & Voulgaris [19], the computational complexity of Barvinok’s algorithm can be upper bounded by

ν2O(n)(log2(Δ))nlog(n).\nu\cdot 2^{O(n)}\cdot\bigl{(}\log_{2}(\Delta)\bigr{)}^{n\log(n)}. (4)

Here we can parameterize by ν\nu, because any polyhedron can be transformed to an integer-equivalent simple polyhedron, using a slight perturbation of the r.h.s. vector bb (see, for example, Theorem 9, due to Megiddo & Chandrasekaran [20] and Remark 3). Let us assume that 𝒫\operatorname{\mathcal{P}} is defined by the form Canon-Form. Due to the seminal work of P. McMullen [21], the number of vertices attains its maximum at the class of polytopes, which is dual to the class of cyclic polytopes. Together with the formula from [22, Section 4.7] for the number of facets of a cyclic polytope, it follows that the maximum number of vertices in an nn-dimensional polyhedron with mm facets is bounded by

ξ(n,m)={mms(mss), for n=2s2(ms1s), for n=2s+1=O(mn)n/2.\xi(n,m)=\begin{cases}\frac{m}{m-s}\binom{m-s}{s},\text{ for }n=2s\\ 2\binom{m-s-1}{s},\text{ for }n=2s+1\\ \end{cases}=O\left(\frac{m}{n}\right)^{n/2}.

Therefore, νξ(n,m)\nu\leq\xi(n,m) and ν=O(m/n)n/2\nu=O(m/n)^{n/2}. Due to [23, Chapter 3.2, Theorem 3.2], we have Δ=2O(ϕ)\Delta=2^{O(\phi)}. Using the notation ϕ\phi, the bound (4) becomes

O(mn)n/2(log2(Δ))nlog(n)=O(mn)n/2ϕnlog(n),O\Bigl{(}\frac{m}{n}\Bigr{)}^{n/2}\cdot\bigl{(}\log_{2}(\Delta)\bigr{)}^{n\log(n)}\quad=\quad O\Bigl{(}\frac{m}{n}\Bigr{)}^{n/2}\cdot\phi^{n\log(n)}, (5)

which gives a polynomial-time algorithm in a fixed dimension for the problem Count-IP.

The papers [24, 25, 26, 27] deal with the parameter Δ\Delta to give pseudo-polynomial algorithms, which will be more effective in a varying dimension. Recently, it was shown by Gribanov and Malyshev in [25] that the Count-IP problem can be solved with an algorithm whose computational complexity is polynomial in ν\nu, nn, and Δ\Delta. Unfortunately, the paper [25] contains an inaccuracy, which makes its main conclusion incorrect. This inaccuracy was eliminated in [28]. The main result of [28] (and [25]) is represented by the following

Theorem 1 (Gribanov, Shumilov & Malyshev[28]).

Let 𝒫\operatorname{\mathcal{P}} be a polytope, given by a system in the standard or the canonical forms and d:=dim(𝒫)d\mathrel{\mathop{\mathchar 58\relax}}=\dim(\operatorname{\mathcal{P}}). Then, the problem Count-IP can be solved by a randomized algorithm with the expected arithmetic complexity bound

O(ν2d4Δ4log2(Δ)).O\bigr{(}\nu^{2}\cdot d^{4}\cdot\Delta^{4}\cdot\log_{2}(\Delta)\bigl{)}.

We improve the last result in Theorem 2 of our paper, and it will be our main tool for sparse problems. A fully self-contained proof of this theorem will be given in Subsection 6.3. Wherever it will be necessary to refer to the original article with an inaccuracy, we will cite the full proof of the relevant statement in Appendix.

Theorem 2.

Under assumptions of Theorem 1, the problem Count-IP can be solved by a randomized algorithm with the expected arithmetic complexity bound:

O(ν2d4Δ3).O\bigl{(}\nu^{2}\cdot d^{4}\cdot\Delta^{3}\bigr{)}.

Using Theorem 1 and different ways to estimate ν\nu, the paper [25] gives new interesting arithmetic complexity bounds for the Feasibility-IP and Count-IP problems. Let us present them, taking into account the improvement made in the Theorem 2:

  • The bound

    O(mn)nn4Δ3O\Bigl{(}\frac{m}{n}\Bigr{)}^{n}\cdot n^{4}\cdot\Delta^{3}

    for systems in the form Canon-Form that is polynomial in mm and Δ\Delta, for any fixed nn. In comparison with the bound (5), this bound has a much better dependence on nn, considering Δ\Delta as a parameter. For example, taking m=O(n)m=O(n) and Δ=2O(n)\Delta=2^{O(n)}, the above bound becomes 2O(n)2^{O(n)}, which is even faster, than the state of the art algorithm for the problem Feasibility-IP, due to Reis & Rothvoss [5], with the complexity bound log(n)O(n)poly(ϕ)\log(n)^{O(n)}\cdot\operatorname{poly}(\phi);

  • The general bound, for systems in the canonical or the standard forms,

    O(n)4+nΔ3+2nO(n)^{4+n}\cdot\Delta^{3+2n}

    that is polynomial on Δ\Delta, for any fixed nn;

  • The bound

    O(n/k)2kn4Δ3O\bigl{(}n/k\bigr{)}^{2k}\cdot n^{4}\cdot\Delta^{3} (6)

    for systems in the form Standard-Form, which is also valid for systems in the form Canon-Form with k=mnk=m-n, that is polynomial on nn and Δ\Delta, for k=O(1)k=O(1). Taking k=1k=1, it gives an O(n6Δ3)O\bigl{(}n^{6}\cdot\Delta^{3}\bigr{)}-algorithm to compute the number of integer points in a simplex. The last result can be used to count solutions of the Unbounded Subset-Sum problem, which is formulated as follows. Given numbers w1,,wnw_{1},\dots,w_{n} and WW, we need to count the number of ways to exchange the value WW by the values wiw_{i}, assuming that each value wiw_{i} can be used unlimitedly. It can be done by algorithms with the arithmetic complexity bound

    O(n6wmax3).O(n^{6}\cdot w_{\max}^{3}).

    Moreover, this result can be used to handle the kk-dimensional variant of the Unbounded Subset-Sum problem, when the costs wiw_{i} and WW are represented by kk-dimensional vectors. Using the Hadamard’s bound, it gives the following arithmetic complexity bound:

    O(n)2(k+2)kk/2wmax3k,O(n)^{2(k+2)}\cdot k^{-k/2}\cdot w_{\max}^{3k},

    where wmax=maxiwiw_{\max}=\max_{i}\|w_{i}\|_{\infty}. Note that the earlier paper of Lasserre & Zeron [29] also gives a counting FPT-algorithm for the Unbounded Subset-Sum problem, parameterized by wmaxw_{\max}, but an exact complexity bound was not given.

In the current work, we try to estimate the value of ν\nu in a different way, to handle ILP problems with sparse matrices. Additionally, we generalize Theorem 2 to work with the problem Opt-And-Count-IP. The resulting theorem is the following:

Theorem 3.

Let 𝒫\operatorname{\mathcal{P}} be a polyhedron, defined by the system in Canon-Form. Then, the problems Feasibility-IP and Count-IP can be solved by an algorithm, whose complexity can be estimated by the following formulas

(γ1,)5n4npoly(ϕ),\displaystyle\bigl{(}\operatorname{\gamma_{1,\infty}}\bigr{)}^{5n}\cdot 4^{n}\cdot\operatorname{poly}(\phi),
(Amax)5n(ts¯)3.5n4npoly(ϕ).\displaystyle\bigl{(}\|A\|_{\max}\bigr{)}^{5n}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{3.5n}\cdot 4^{n}\cdot\operatorname{poly}(\phi).

The problem Opt-And-Count-IP can be solved by an algorithm, whose complexity can be estimated by the following formulas (under the assumption that c𝟎c\not=\operatorname{\mathbf{0}})

(γ1,)7n(c)324npoly(ϕ),\displaystyle\bigl{(}\operatorname{\gamma_{1,\infty}}\bigr{)}^{7n}\cdot\bigl{(}\|c\|_{\infty}\bigr{)}^{3}\cdot 2^{4n}\cdot\operatorname{poly}(\phi),
(Amax)7n(c)3(ts¯)5.5n24npoly(ϕ).\displaystyle\bigl{(}\|A\|_{\max}\bigr{)}^{7n}\cdot\bigl{(}\|c\|_{\infty}\bigr{)}^{3}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{5.5n}\cdot 2^{4n}\cdot\operatorname{poly}(\phi).

The theorem’s proof is given in Subsection 6.5. This new complexity bounds, applied to the problems in the form Canon-Form, are emphasized in Table 2. As the reader could see, with respect to the problem Feasibility-IP, under the assumptions γ1,logε(n)\gamma_{1,\infty}\leq\log^{\varepsilon}(n) or Amaxlogε(n)\|A\|_{\max}\leq\log^{\varepsilon}(n) and ts¯logε(n)\operatorname{\overline{\operatorname{ts}}}\leq\log^{\varepsilon}(n), for some ε>0\varepsilon>0, our complexity bounds outperform the state of the art complexity bound log(n)O(n)poly(ϕ)\log(n)^{O(n)}\cdot\operatorname{poly}(\phi). With respect to the problem Count-IP, under the assumption Amax=no(log(n))\|A\|_{\max}=n^{o(\log(n))}, our complexity bounds outperform the state of the art complexity bound O(m/n)n/2ϕnlog(n)O(m/n)^{n/2}\cdot\phi^{n\log(n)}.

Table 2: The complexity bounds for the problems Feasibility-IP, Count-IP, Opt-IP, and Opt-And-Count-IP in the form Canon-Form
Problems: Time:111The multiplicative factor poly(ϕ)\operatorname{poly}(\phi) is skipped. Reference:
Feasibility-IP and Opt-IP log(n)O(n)\log(n)^{O(n)} Reis & Rothvoss [5]
Count-IP O(m/n)n/2ϕnlog(n)O\bigl{(}m/n\bigr{)}^{n/2}\cdot\phi^{n\log(n)} Barvinok et al. [12, 10, 11]
Feasibility-IP and Count-IP (γ1,)5n4n\bigl{(}\operatorname{\gamma_{1,\infty}}\bigr{)}^{5n}\cdot 4^{n} this work
(Amax)5nts¯(A)3.5n4n\bigl{(}\|A\|_{\max}\bigr{)}^{5n}\cdot\operatorname{\overline{\operatorname{ts}}}(A)^{3.5n}\cdot 4^{n}
Opt-And-Count-IP (γ1,)7n(c)324n\bigl{(}\operatorname{\gamma_{1,\infty}}\bigr{)}^{7n}\cdot\bigl{(}\|c\|_{\infty}\bigr{)}^{3}\cdot 2^{4n} this work
(Amax)7n(c)3(ts¯)5.5n24n\bigl{(}\|A\|_{\max}\bigr{)}^{7n}\cdot\bigl{(}\|c\|_{\infty}\bigr{)}^{3}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{5.5n}\cdot 2^{4n}

The following corollary, which is a straightforward consequence of Theorem 3, shows that, under some assumptions, the Count-IP and Opt-And-Count-IP problems can be solved by a faster algorithm than the complexity bound (5) gives.

Corollary 1.

In the notation of Theorem 3, assuming that Amax=nO(1)\|A\|_{\max}=n^{O(1)} and c=nO(n)\|c\|_{\infty}=n^{O(n)}, the problems Count-IP and Opt-And-Count-IP can be solved by algorithms with the complexity bound nO(n)poly(ϕ).n^{O(n)}\cdot\operatorname{poly}(\phi).

2.1.1 About our Method

The current paper continues the series of works [28, 25, 27], which are aimed to present efficient pseudopolynomial algorithms for the problems Count-IP and Opt-And-Count-IP, based on using rational generating functions together with the seminal Brion’s theorem. As it was already mentioned, this approach was used by Barvinok in his seminal work [10] to present the first polynomial-time in a fixed dimension algorithm for the problems Count-IP and Opt-And-Count-IP.

The most important feature of a new approach, introduced in [28, 25], is that we do not compute the rational generating function of the set 𝒫n\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}. Instead of doing this, we directly compute a compact generating function of the exponential series 𝔣(𝒫;τ)=z𝒫nec,z\operatorname{\mathfrak{f}}(\operatorname{\mathcal{P}};\tau)=\sum\limits_{z\in\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}}e^{\langle c,z\rangle} that depends only on a single variable τ\tau. The exponential generating function can be obtained from the original rational generating function, substituting xi=eciτx_{i}=e^{c_{i}\tau}, for some cnc\in\operatorname{\mathbb{R}}^{n}. The new function forgets the structure of the set 𝒫d\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{d}, but it is still useful for counting. For example, two monomials x11x22x_{1}^{1}x_{2}^{2} and x12x21x_{1}^{2}x_{2}^{1} glue to one exponential term 2e3τ2e^{3\tau} after the map xi=eciτx_{i}=e^{c_{i}\tau} with c=(1,1)c=(1,1)^{\top}. Our method to compute 𝔣(𝒫;τ)\operatorname{\mathfrak{f}}(\operatorname{\mathcal{P}};\tau) is based on the Brion’s theorem and a novel dynamic programming technique that processes tangent cones of 𝒫\operatorname{\mathcal{P}}. The dynamic programming table is indexed by the dimensionality of the subproblems and the elements of the Gomory group associated with a corresponding tangent cone.

Let us discuss a secondary part of a new method that may also have an independent interest. For a given set 𝒜\operatorname{\mathcal{A}} of mm non-zero vectors in n\operatorname{\mathbb{Q}}^{n}, let us consider the problem to compute a vector znz\in\operatorname{\mathbb{Z}}^{n}, such that az0a^{\top}z\not=0, for all a𝒜a\in\operatorname{\mathcal{A}}. Preferably, the value of z\|z\|_{\infty} should be as small as possible. Due to the original work of A. Barvinok [10], the vector zz could be found by a polynomial-time algorithm as a point on the moment curve. The paper [18] of Köppe & Verdoolaege gives an alternative method, based on "irrational decompositions" from the work [30] of Köppe. These polynomial-time methods can generate zz with the only guaranty zMn\|z\|_{\infty}\leq M^{n}, for some constant MmM\geq m. However, due to De Loera, Hemmecke, Tauzer & Yoshida [31], the vector zz with sufficiently small components can be effectively chosen by a randomized algorithm. Unfortunately, the paper [31] does not give exact theoretical bounds that are needed to develop pseudopolynomial algorithms. In turn, the paper [28] presents a new and very simple randomized polynomial-time algorithm that generates the desired vector zz with z|𝒜|\|z\|_{\infty}\leq\mathinner{\!\left\lvert\operatorname{\mathcal{A}}\right\rvert}. The precise description of this fact is emphasized in Theorem 10.

Compared to the previous papers [28, 25] in the series, the current paper gives a more efficient dynamic programming computational scheme. Additionally, we give a new bound on the number of vertices of a rational polyhedron that is helpful to prove our complexity bounds and can have an independent interest.

2.1.2 Other Related Work on Sparse and Δ\Delta-modular ILPs

Due to Kratsch [32], the sparse ILP problems attain a polynomial kernalization with respect to the parameter n+un+u, where uu is the maximum variable range. More precisely, it was shown that any ILP can be reduced to an equivalent ILP with O(urnr)O(u^{r}\cdot n^{r}) variables and constraints with the coefficients bit-encoding length O(log(nu))O(\log(nu)), where r:=rs(A)r\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{rs}(A). On the contrary, if the range uu is unbounded, then rr-row-sparse ILP problems do not admit a polynomial kernelization unless NPcoNP/polyNP\subseteq coNP/poly.

There are many other interesting works about the ILP’s complexity with respect to the parameter Δ\Delta. Since a good survey is given in the work [26], we mention only the most remarkable results. The first paper that discovers fundamental properties of the bimodular ILP problem (Δ=2\Delta=2) is [33], due to Veselov & Chirkov. Using results of [33], a strong polynomial-time solvability of the bimodular ILP problem was proved by Artmann, Weismantel & Zenklusen in [34]. Unfortunately, not much is known for Δ3\Delta\geq 3. Very recently, it was shown by Fiorini, Joret, Weltge & Yuditsky in [35] that the ILP problem is polynomial-time solvable, for any fixed Δ\Delta, if the matrix AA has at most 22 non-zeros per row or per column. Previously, a weaker result, based on the same reduction, was known, due to Alekseev & Zakharova [36]. It states that any ILP with a {0,1}\{0,1\}-matrix AA, which has at most two non-zeros per row and a fixed value of Δ(𝟏A)\Delta\binom{\operatorname{\mathbf{1}}^{\top}}{A}, can be solved by a linear-time algorithm.

Additionally, we note that, due to Bock, Faenza, Moldenhauer & Ruiz-Vargas [37], there are no polynomial-time algorithms for the ILP problems with Δ=Ω(nε)\Delta=\Omega(n^{\varepsilon}), for any ε>0\varepsilon>0, unless the ETH (the Exponential Time Hypothesis) is false. The last fact is the reason why we need to use both parameters ν\nu and Δ\Delta. Due to [37], the complexity bound poly(Δ,ϕ)\operatorname{poly}(\Delta,\phi) is unlikely to exist, while the bound poly(ν,Δ,ϕ)\operatorname{poly}(\nu,\Delta,\phi) is presented in Theorem 2, which is used in Theorem 3 to develop efficient algorithms for sparse problems.

2.2 ILP Problems with a Bounded Co-dimension

In this subsection, we consider ILP problems in the form Standard-Form. Since in our definition k=rank(A)k=\operatorname{rank}(A), it is essential to call the parameter kk as the co-dimension of 𝒫\operatorname{\mathcal{P}}. We are interested in the complexity bounds for bounded values of kk. Let us survey some remarkable results. The following result, due to Gribanov et al. [26, see Theorem 8 and Corollary 9], gives a parameterization by kk and Δ\Delta.

Theorem 4 (Gribanov et al. [26]).

Assume that some k×kk\times k non-degenerate sub-matrix BB of AA is given and η=Δ/|det(B)|\eta=\Delta/\mathinner{\!\left\lvert\det(B)\right\rvert}. Then, the problem Opt-IP can be solved by an algorithm with the arithmetic complexity bound

O(k)k+1η2kΔ2log(Δgcd)log(kΔ).O(k)^{k+1}\cdot\eta^{2k}\cdot\Delta^{2}\cdot\log(\Delta_{\gcd})\cdot\log(k\cdot\Delta).

As it was noted in [26], due to [38], we can assume that η=O(log(k))k\eta=O(\log(k))^{k}, and the previous complexity bound becomes

O(log(k))2k2kk+1Δ2log(Δgcd)log(kΔ).O\bigl{(}\log(k)\bigr{)}^{2k^{2}}\cdot k^{k+1}\cdot\Delta^{2}\cdot\log(\Delta_{\gcd})\cdot\log(k\cdot\Delta).

For the case when AA only has non-negative elements, the basic dynamic-programming scheme from [39] can be used to derive an algorithm, parameterized by b\|b\|_{\infty} and kk. Using fast (min,+)(\min,+)-convolution algorithms (see, for example, [40] or [41]), the same complexity bound can be used for systems in the Standard-Form form with box constraints. We emphasize it in the following statement:

Proposition 1.

The problem Opt-IP in the form Standard-Form with box constraints can be solved by an algorithm with the arithmetic complexity bound

O(n(b+1)k).O\Bigl{(}n\cdot\bigl{(}\|b\|_{\infty}+1\bigr{)}^{k}\Bigr{)}.

Due to the works [42] and [43] of Cunningham & Geelen and Fomin et al., the parameter kk in the term (b+1)k\bigl{(}\|b\|_{\infty}+1\bigr{)}^{k} can be replaced by stronger parameters 2ω2\omega or ρ+1\rho+1, where ω\omega is the branch-width and ρ\rho is the path-width of the column matroid of AA.

The approach, which is most important for us in this Subsection, is based on the notion of the hereditary discrepancy of AA.

Definition 2.

For a matrix Ak×nA\in\operatorname{\mathbb{R}}^{k\times n}, its discrepancy and its hereditary discrepancy are defined by the formulas

disc(A)=minz{1/2, 1/2}nAz,\displaystyle\operatorname{disc}(A)=\min_{z\in\{-1/2,\,1/2\}^{n}}\left\|Az\right\|_{\infty},
herdisc(A)=max{1,,n}disc(A).\displaystyle\operatorname{herdisc}(A)=\max_{\operatorname{\mathcal{I}}\subset\{1,\dots,n\}}\operatorname{disc}(A_{*\operatorname{\mathcal{I}}}).

The paper [44], due to Jansen and Rohwedder, gives a powerful ILP algorithm, parameterized by herdisc(A)\operatorname{herdisc}(A) and kk, which will be our second main tool.

Theorem 5 (Jansen & Rohwedder [44]).

Let H=herdisc(A)H=\operatorname{herdisc}(A) and assume that there exists an optimal solution xx^{*} of the problem Opt-IP with x1K\|x^{*}\|_{1}\leq K. Then, the problem Opt-IP can be solved by an algorithm with the complexity bound

O(H)2klog(K).O(H)^{2k}\cdot\log(K).

Different bounds on herdisc(A)\operatorname{herdisc}(A) can be used to develop different complexity bounds for ILP problems. Due to the works [45] and [46] of Lovász, Spencer, & Vesztergombi, and Spencer, it is known that

herdisc(A)2disc(A)ηkAmax,whereηk12k.\operatorname{herdisc}(A)\leq 2\operatorname{disc}(A)\leq\eta_{k}\cdot\|A\|_{\max},\quad\text{where}\quad\eta_{k}\leq 12\cdot\sqrt{k}. (7)

Due to Beck and Fiala [47], the value of herdisc(A)\operatorname{herdisc}(A) is bounded by the l1l_{1}-norm of columns. More precisely,

herdisc(A)<A.\operatorname{herdisc}(A)<\|A\|_{\infty}. (8)

Additionally, Beck and Fiala conjectured that herdisc(A)=O(A)\operatorname{herdisc}(A)=O\bigl{(}\sqrt{\|A\|_{\infty}}\bigr{)} and settling this has been an elusive open problem. The best known result in this direction is due to Banaszczyk [48]:

herdisc(A)=O(Alog(n)).\operatorname{herdisc}(A)=O\Bigl{(}\sqrt{\|A\|_{\infty}\cdot\log(n)}\Bigr{)}. (9)

The important matrix characteristic that is closely related to herdisc(A)\operatorname{herdisc}(A) is detlb(A)\operatorname{detlb}(A). Due to Lovász, Spencer, & Vesztergombi [45], it can be defined as follows:

detlb(A)=maxt{1,,k}Δt(A)t,\operatorname{detlb}(A)=\max\limits_{t\in\{1,\dots,k\}}\sqrt[t]{\Delta_{t}(A)},

and it was shown in [45] that herdisc(A)(1/2)detlb(A)\operatorname{herdisc}(A)\geq(1/2)\cdot\operatorname{detlb}(A). Matoušek in [49] showed that detlb(A)\operatorname{detlb}(A) can be used to produce tight upper bounds on herdisc(A)\operatorname{herdisc}(A). The result of Matoušek was improved by Jiang & Reis in [50]:

herdisc(A)=O(detlb(A)log(k)log(n)).\operatorname{herdisc}(A)=O\Bigl{(}\operatorname{detlb}(A)\cdot\sqrt{\log(k)\cdot\log(n)}\Bigr{)}. (10)

Next, let us consider the problems Count-IP and Opt-And-Count-IP. Clearly, the number of vertices in a polyhedron, defined by a system in the Canon-Form, can be estimated by (nk)=O(n/k)k\binom{n}{k}=O(n/k)^{k}. The last fact in combination with Theorem 2 results in the following corollary, which gives a parameterization by Δ\Delta and kk.

Corollary 2.

Assume that 𝒫\operatorname{\mathcal{P}} is bounded, then the problem Count-IP can be solved by an algorithm with the arithmetic complexity bound O(n/k)2k(nk)4Δ3O(n/k)^{2k}\cdot(n-k)^{4}\cdot\Delta^{3}.

Remark 1.

Note that if we already know an optimal solution xx^{*} of the problem Opt-IP, we can solve the problem Opt-And-Count-IP, using Corollary 2 just by adding the equality cx=cxc^{\top}x=c^{\top}x^{*} to the problem’s definition. Clearly, the resulting arithmetic complexity bound is

O(n/k)2(k+1)(nk)4(c)3Δ3.O(n/k)^{2(k+1)}\cdot(n-k)^{4}\cdot\bigl{(}\|c\|_{\infty}\bigr{)}^{3}\cdot\Delta^{3}. (11)

The next theorem considers the ILP problems in the standard form with sparse AA. In this theorem, we just summarize the combinations of Theorem 5 with the different bounds on herdisc(A)\operatorname{herdisc}(A). Additionally, we use Corollary 2 to solve the counting-type problems. Note that the 55-th complexity bound of the next theorem has already been proven in [44], we put it here for the sake of completeness.

Theorem 6.

Let 𝒫\operatorname{\mathcal{P}} be a polyhedron, defined by the form Standard-Form. The problems Feasibility-IP and Opt-IP can be solved by algorithms with the following complexity bounds:

  1. 1.

    O(γ)2k=O(Amax)2k(cs¯)2kO\bigl{(}\gamma_{\infty}\bigr{)}^{2k}=O\bigl{(}\|A\|_{\max}\bigr{)}^{2k}\cdot\bigl{(}\operatorname{\overline{\operatorname{cs}}}\bigr{)}^{2k},

  2. 2.

    O(γ)k2kloglog(n)=O(Amax)k(cs¯)k2kloglog(n)O\bigl{(}\gamma_{\infty}\bigr{)}^{k}\cdot 2^{k\cdot\log\log(n)}=O\bigl{(}\|A\|_{\max}\bigr{)}^{k}\cdot\bigl{(}\operatorname{\overline{\operatorname{cs}}}\bigr{)}^{k}\cdot 2^{k\cdot\log\log(n)},

  3. 3.

    O(γ1)2k2klog(log(k)log(n))O\bigl{(}\gamma_{1}\bigr{)}^{2k}\cdot 2^{k\cdot\log(\log(k)\cdot\log(n))},

  4. 4.

    O(Amax)2k(rs¯)k2klog(log(k)log(n))O\bigl{(}\|A\|_{\max}\bigr{)}^{2k}\cdot\bigl{(}\operatorname{\overline{\operatorname{rs}}}\bigr{)}^{k}\cdot 2^{k\cdot\log\bigl{(}\log(k)\cdot\log(n)\bigr{)}},

  5. 5.

    O(Amax)2kkkO\bigl{(}\|A\|_{\max}\bigr{)}^{2k}\cdot k^{k}.

The problem Count-IP can be solved by algorithms with the following complexity bounds:

  1. 6.

    O(n/k)2k(γ1,)3kO(n/k)^{2k}\cdot\bigl{(}\operatorname{\gamma_{1,\infty}}\bigr{)}^{3k},

  2. 7.

    O(n/k)2k(Amax)3k(ts¯)1.5kO(n/k)^{2k}\cdot\bigl{(}\|A\|_{\max}\bigr{)}^{3k}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{1.5k}.

The problem Opt-And-Count-IP can be solved by the same algorithm with the cost of an additional multiplicative term (c)3\bigl{(}\|c\|_{\infty}\bigr{)}^{3} in the complexity bound. Everywhere in the complexity bounds, we skip the poly(ϕ)\operatorname{poly}(\phi) multiplicative term.

Proof.

Due to Theorem 5, the problems Feasibility-IP and Opt-IP can be solved by algorithms with the arithmetic complexity bound O(H)2klog(K)O(H)^{2k}\cdot\log(K), where H=herdisc(A)H=\operatorname{herdisc}(A) and K=x1K=\|x^{*}\|_{1}, for any optimal solution xx^{*}. It is known that the problem has an optimal solution xx^{*} with size(x)=poly(ϕ)size(x^{*})=\operatorname{poly}(\phi), so log(K)=poly(ϕ)\log(K)=\operatorname{poly}(\phi).

Now, the 11-st bound follows from the inequality (8). The 22-nd bound follows from the inequality (9). To establish the 33-rd and the 44-th bounds, we use the equality (10). Due to the inequalities (2) and (3), we clearly have detlb(A)Amaxrs¯,anddetlb(A)A1\operatorname{detlb}(A)\leq\|A\|_{\max}\cdot\sqrt{\operatorname{\overline{\operatorname{rs}}}},\quad\text{and}\quad\operatorname{detlb}(A)\leq\|A\|_{1}. Putting these bounds to (10), it gives the 33-rd and the 44-th complexity bounds. The 55-th complexity bound directly follows from the inequality (7).

Now, let us consider the problems Count-IP and Opt-And-Count-IP. The 66-th and 77-th complexity bounds straightforwardly follow from the bounds (3), (2) respectively and Corollary 2. To satisfy its prerequisites, 𝒫\operatorname{\mathcal{P}} needs to be bounded. If 𝒫\operatorname{\mathcal{P}} is unbounded, then we can check that |𝒫n|=0\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}=0, using the algorithm for the problem Feasibility-IP. As it was already mentioned, its complexity can be estimated by O(Amax)2kkkO\bigl{(}\|A\|_{\max}\bigr{)}^{2k}\cdot k^{k}, which has no effect on the desired bound. In the opposite case, we have |𝒫n|=+\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}=+\infty. So, we can assume that 𝒫\operatorname{\mathcal{P}} is bounded, and the result is true. Note additionally that, if 𝒫n\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\not=\emptyset, then we can use the same algorithm for the problem Feasibility-IP to find some x𝒫nx\in\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}. Finally, using the same reasoning, the complexity bounds for the problem Opt-And-Count-IP just follows from Corollary 2 and its Remark 1. ∎

2.3 ILP problems in the Form Standard-Form with Box-constraints

Finally, before we will finish the current section, let us consider ILP problems in the form Standard-Form with box constraints. Using the basic dynamic programming scheme from [51], combined with a linear-time algorithm for the (min,+)(\min,+)-convolution (see, for example, [26, Theorem 7], [40] or [41]), it is easy to prove the following proposition.

Proposition 2.

The problem Opt-IP in the form Standard-Form with box constraints can be solved by an algorithm with the arithmetic complexity bound

O(χ+k)k(Amax)k,O(\chi+k)^{k}\cdot\bigl{(}\|A\|_{\max}\bigr{)}^{k},

where χ\chi is a value of the l1l_{1}-proximity bound. That is

χ=maxxminzxz1,\chi=\max\limits_{x^{*}}\min\limits_{z^{*}}\|x^{*}-z^{*}\|_{1},

where xx^{*} and zz^{*} are optimal solutions of the LP relaxation and of the original ILP, respectively.

Different bounds on χ\chi give different algorithms, based on Proposition 2. The paper [51] of Eisenbrand & Weismantel gives χk(2kAmax+1)k\chi\leq k\cdot\bigl{(}2k\cdot\|A\|_{\max}+1\bigr{)}^{k}. The paper [52], due to Lee, Paat et al., gives χ(2k+1)kΔ\chi\leq(2k+1)^{k}\cdot\Delta. Recent result of Lee, Paat et al. [53] states that

χk(k+1)2Δ3+(k+1)Δ=O(k3Δ3).\chi\leq k\cdot(k+1)^{2}\cdot\Delta^{3}+(k+1)\cdot\Delta=O(k^{3}\cdot\Delta^{3}).

The dependence on Δ\Delta in the last bound can be reduced by Averkov & Schymura [54]

χ=O(k5Δ2).\chi=O(k^{5}\cdot\Delta^{2}). (12)

Using Proposition 2 with the bound (12), we see that the ILP in the form Standard-Form with box constraints can be solved by an algorithm with the arithmetic complexity bound

(Amax)kO(Δ)2kk5k.\bigl{(}\|A\|_{\max}\bigr{)}^{k}\cdot O(\Delta)^{2k}\cdot k^{5k}.

Using the inequalities (3) and (2), the last bound transforms to the bounds

O(k)5k(γ1,)2k2=O(γ1,)2k2+O(klog(k)),\displaystyle O(k)^{5k}\cdot(\operatorname{\gamma_{1,\infty}})^{2k^{2}}=O(\operatorname{\gamma_{1,\infty}})^{2k^{2}+O(k\log(k))},
O(k)5k(Amax)2k2+k(ts¯)k2=(Amax)2k2+k(ts¯)k2+O(klog(k)).\displaystyle O(k)^{5k}\cdot\bigl{(}\|A\|_{\max}\bigr{)}^{2k^{2}+k}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{k^{2}}=\bigl{(}\|A\|_{\max}\bigr{)}^{2k^{2}+k}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{k^{2}+O(k\log(k))}. (13)

In Table 3, we summarize all the facts, mentioned in the current subsection. The complexity bounds for the problems Feasibility-IP, Opt-IP, Count-IP, Opt-And-Count-IP without box constraints are taken from Theorem 6 and Remark 1. To handle the problems with box constraints, we just take the complexity bound (13). We also mention that the existence of algorithms for the problems Count-IP and Opt-And-Count-IP in the form Standard-Form with box constraints, parameterized by kk and polynomial by nn, is open, and it is a good direction for further research.

Table 3: New complexity bounds for ILP problems in the form Standard-Form
Problems: Time:\qquad Time\mathrel{\mathop{\mathchar 58\relax}}\qquad111The multiplicative factor poly(ϕ)\operatorname{poly}(\phi) is skipped.
Opt-IP without mult. O(γ)2k=O(Amax)2k(cs¯)2k\qquad O(\gamma_{\infty})^{2k}=O\bigl{(}\|A\|_{\max}\bigr{)}^{2k}\cdot\bigl{(}\operatorname{\overline{\operatorname{cs}}}\bigr{)}^{2k}\qquad
O(γ)k2kloglog(n)=O(Amax)k(cs¯)k2kloglog(n)\qquad O(\gamma_{\infty})^{k}\cdot 2^{k\cdot\log\log(n)}=O\bigl{(}\|A\|_{\max}\bigr{)}^{k}\cdot\bigl{(}\operatorname{\overline{\operatorname{cs}}}\bigr{)}^{k}\cdot 2^{k\cdot\log\log(n)}\qquad
O(γ1)2k2klog(log(k)log(n))\qquad O(\gamma_{1})^{2k}\cdot 2^{k\cdot\log\bigl{(}\log(k)\cdot\log(n)\bigr{)}}\qquad
O(Amax)2k(rs¯)k2klog(log(k)log(n))\qquad O\bigl{(}\|A\|_{\max}\bigr{)}^{2k}\cdot\bigl{(}\operatorname{\overline{\operatorname{rs}}}\bigr{)}^{k}\cdot 2^{k\cdot\log\bigl{(}\log(k)\cdot\log(n)\bigr{)}}\qquad
O(Amax)kkk, due to Jansen & Rohwedder [44]\qquad O\bigl{(}\|A\|_{\max}\bigr{)}^{k}\cdot k^{k},\quad\text{\color[rgb]{1,0,0} due to Jansen \& Rohwedder \cite[cite]{[\@@bibref{Number}{OnIPAndConv}{}{}]}}\qquad
Count-IP without mult. 222To solve the problem Opt-And-Count-IP, we need to pay an additional multiplicative factor (c)3\bigl{(}\|c\|_{\infty}\bigr{)}^{3}. O(n/k)2k(γ1,)3k\qquad O(n/k)^{2k}\cdot\bigl{(}\operatorname{\gamma_{1,\infty}}\bigr{)}^{3k}\qquad
O(n/k)2kO(Amax)3k(ts¯)1.5k\qquad O(n/k)^{2k}\cdot O\bigl{(}\|A\|_{\max}\bigr{)}^{3k}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{1.5k}\qquad
Opt-IP with mult. O(γ1,)2k2+O(klogk)\qquad O\bigl{(}\operatorname{\gamma_{1,\infty}}\bigr{)}^{2k^{2}+O(k\log k)}\qquad
O(Amax)2k2+k(ts¯)k2+O(klogk)\qquad O\bigl{(}\|A\|_{\max}\bigr{)}^{2k^{2}+k}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{k^{2}+O(k\log k)}\qquad
Count-IP with mult.        open problem

3 Applications: The Vertex/Edge Multi-Packing and Multi-Cover Problems on Graphs and Hypergraphs.

To define a hypergraph, we will often use the notation =(𝒱,)\operatorname{\mathcal{H}}=(\operatorname{\mathcal{V}},\operatorname{\mathscr{E}}), where 𝒱\operatorname{\mathcal{V}} is the set of vertices, represented by an arbitrary finite set, and 2𝒱\operatorname{\mathscr{E}}\subseteq 2^{\operatorname{\mathcal{V}}} is a set of hyperedges. To denote a single vertex and a single hyperedge of \operatorname{\mathcal{H}}, we will use the symbols v𝒱v\in\operatorname{\mathcal{V}} and \operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}}. Additionally, we denote 𝔫=|𝒱|\operatorname{\mathfrak{n}}=\mathinner{\!\left\lvert\operatorname{\mathcal{V}}\right\rvert}, 𝔪=||\operatorname{\mathfrak{m}}=\mathinner{\!\left\lvert\operatorname{\mathscr{E}}\right\rvert}, 𝔡=maxv𝒱deg(v)\operatorname{\mathfrak{d}}=\max_{v\in\operatorname{\mathcal{V}}}\deg(v), and 𝔯=max||\operatorname{\mathfrak{r}}=\max_{\operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}}}\mathinner{\!\left\lvert\operatorname{\mathcal{E}}\right\rvert}. In other words, the symbols 𝔫\operatorname{\mathfrak{n}}, 𝔪\operatorname{\mathfrak{m}}, 𝔡\operatorname{\mathfrak{d}}, and 𝔯\operatorname{\mathfrak{r}} denote the number of vertices, the number of hyperedges, the maximum vertex degree, and the maximum edge cardinality, respectively. We use this notation to avoid ambiguity with the notation nn, mm, and dd from the subsections, considering ILP problems.

In some problem formulations, we need to deal with hypergraphs =(𝒱,)\operatorname{\mathcal{H}}=(\operatorname{\mathcal{V}},\operatorname{\mathscr{E}}) having parallel hyperedges. That is, \operatorname{\mathscr{E}} is a multi-set of sets 2𝒱\operatorname{\mathcal{E}}\in 2^{\operatorname{\mathcal{V}}}. In this case, by deg(v)\deg(v) we denote the number of unique hyperedges that are incident to vv, and 𝔡\operatorname{\mathfrak{d}} denotes the maximum vertex degree with respect to unique hyperedges.

In our work, we consider two types of combinatorial multi-packing/multi-cover problems: vertex-based problems and edge-based problems. In vertex-based problems, we need to pack vertices into hyperedges or to cover the hyperedges by vertices. In edge-based problems, we need to pack hyperedges or to cover vertices by hyperedges. The word "multi" means that we can choose a multi-set of vertices or edges to satisfy cover constraints or to not violate packing constraints. Before we give formal definitions, we present a few examples. The Stable Multi-set problem, which was introduced by Koster and Zymolka in [55] as a natural generalization of the standard Stable Set problem, is an example of a vertex-based multi-packing problem. Similarly, the Vertex Multi-cover problem, which is a natural generalization of the standard Vertex Cover problem, is an example of a vertex-based multi-cover problem. Some properties of the Stable Multi-set problem polyhedron were investigated in [56, 57], which had given a way to construct effective branch & bound algorithms for this problem. We cannot find a reference to the paper that introduces the Vertex Multi-cover problem, but this problem can be interpreted as a blocking problem for the Stable Multi-set problem (introduction to the theory of blocking and anti-blocking can be found in [58, 59], see also [60, p. 225]).

The examples of edge-based problems are the Set Multi-cover, Multi-set Multi-cover, and Hypergraph Multi-matching problems. The Set Multi-cover problem is a natural generalization of the classic Set Cover problem, where we need to choose a multi-set of hyperedges to cover the vertices by a given number of times. In the Multi-Set Multi-Cover problem, the input hypergraph \operatorname{\mathcal{H}} can have parallel hyperedges. This problem has received quite a lot of attention in the recent papers [61, 62, 63, 64, 65, 66]. An exact O((cmax+1)𝔫𝔪)O\bigl{(}(c_{\max}+1)^{\operatorname{\mathfrak{n}}}\cdot\operatorname{\mathfrak{m}}\bigr{)} arithmetic complexity algorithm for the Multi-Set Multi-Cover problem, parameterized by 𝔫\operatorname{\mathfrak{n}} and the maximum coverage constraint number cmaxc_{\max}, is given by Hua, Wang, Yu & Lau in [64, 65]. A double exponential 22O(𝔫log𝔫)poly(ϕ)2^{2^{O(\operatorname{\mathfrak{n}}\log\operatorname{\mathfrak{n}})}}\cdot\operatorname{poly}(\phi)-complexity FPT-algorithm, parameterized by nn, is given in Bredereck et al. [61]. The last algorithm was improved to a 𝔫O(𝔫2)poly(ϕ)\operatorname{\mathfrak{n}}^{O(\operatorname{\mathfrak{n}}^{2})}\cdot\operatorname{poly}(\phi)-complexity algorithm by Knop, Kouteckỳ & Mnich in [66]. A polynomial-time approximation algorithm can be found in Gorgi et al. [63]. The Hypergraph Multi-matching problem is a very natural generalization of the Hypergraph Matching problem (see, for example, [67, 68]), which in turn is a generalization of the standard Maximum Matching problem in simple graphs. We cannot find a reference to the paper that formally introduces the Hypergraph Multi-matching problem, but, again, this problem can be interpreted as a blocking problem for the Multi-set Multi-cover problem. The papers [62, 69] give good surveys and contain new ideas to use the ILP theory in combinatorial optimization setting.

Now, let us give some formal definitions. The vertex-based multi-packing/multi-cover problems can easily be modeled, using the following template problem:

Problem 5 (Hypergraph Vertex-Based Multi-packing/Multi-cover).

Let =(𝒱,)\operatorname{\mathcal{H}}=(\operatorname{\mathcal{V}},\operatorname{\mathscr{E}}) be a hypergraph. Given numbers cc_{\operatorname{\mathcal{E}}}, p0p_{\operatorname{\mathcal{E}}}\in\operatorname{\mathbb{Z}}_{\geq 0}, for \operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}}, compute a multi-subset of 𝒱\operatorname{\mathcal{V}}, represented by natural numbers xvx_{v}, for v𝒱v\in\operatorname{\mathcal{V}}, such that

  1. (i)

    cx()pc_{\operatorname{\mathcal{E}}}\leq x(\operatorname{\mathcal{E}})\leq p_{\operatorname{\mathcal{E}}}, for any \operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}};

  2. (ii)

    x(𝒱)x(\operatorname{\mathcal{V}}) is maximized or minimized.

Here, x()=vxvx(\operatorname{\mathcal{M}})=\sum_{v\in\operatorname{\mathcal{M}}}x_{v}, for any 𝒱\operatorname{\mathcal{M}}\subseteq\operatorname{\mathcal{V}}. In other words, we need to solve the following ILP:

max{𝟏x} or min{𝟏x}\displaystyle\max\bigl{\{}\operatorname{\mathbf{1}}^{\top}x\bigr{\}}\;\text{ or }\;\min\bigl{\{}\operatorname{\mathbf{1}}^{\top}x\bigr{\}}
{cA()xpx0𝒱,\displaystyle\begin{cases}c\leq A(\operatorname{\mathcal{H}})^{\top}x\leq p\\ x\in\operatorname{\mathbb{Z}}_{\geq 0}^{\operatorname{\mathcal{V}}},\end{cases} (Vertex-Based-ILP)

where A()A(\operatorname{\mathcal{H}}) denotes the vertex-hyperedge incidence matrix of \operatorname{\mathcal{H}}, and the vectors cc and pp are composed of the values pp_{\operatorname{\mathcal{E}}} and cc_{\operatorname{\mathcal{E}}}, respectively. It is natural to think that \operatorname{\mathcal{H}} does not contain parallel hyperedges, because the multiple edge-constraints can easily be replaced by a stronger one.

If c=c_{\operatorname{\mathcal{E}}}=-\infty, for all \operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}}, and x(𝒱)x(\operatorname{\mathcal{V}}) is maximized, it can be considered as the Stable Multi-set Problem on Hypergraphs, when we need to find a multi-set of vertices of the maximum size, such that each hyperedge \operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}} is triggered at most pp_{\operatorname{\mathcal{E}}} times. Similarly, if p=+p_{\operatorname{\mathcal{E}}}=+\infty, for all \operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}}, and x(𝒱)x(\operatorname{\mathcal{V}}) is minimized, it can be considered as the Vertex Multi-cover Problem on Hypergraphs, when we need to find a multi-set of vertices of the minimum size, such that each hyperedge \operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}} is triggered at least cc_{\operatorname{\mathcal{E}}} times.

For the case, when \operatorname{\mathcal{H}} is a simple graph, these problems can be considered as very natural generalizations of the classical Stable Set and Vertex Cover problems. Following [55], the first one is called the Stable Multi-set Problem. As it was previously discussed, it is natural to call the second problem as the Vertex Multi-cover Problem.

Definition 3.

Given numbers uv0u_{v}\in\operatorname{\mathbb{Z}}_{\geq 0}, for v𝒱v\in\operatorname{\mathcal{V}}, we can add additional constraints xvuvx_{v}\leq u_{v} to any of the problems above. We call such a problem as a problem with multiplicities. Similarly, given wvw_{v}\in\operatorname{\mathbb{Z}}, for v𝒱v\in\operatorname{\mathcal{V}}, we can consider the objective function v𝒱wvxv\sum_{v\in\operatorname{\mathcal{V}}}w_{v}x_{v} instead of x(𝒱)=v𝒱xvx(\operatorname{\mathcal{V}})=\sum_{v\in\operatorname{\mathcal{V}}}x_{v}. We call such a problem as a weighted problem. The maximum weight is denoted by wmax=maxv𝒱|wv|w_{\max}=\max_{v\in\operatorname{\mathcal{V}}}\mathinner{\!\left\lvert w_{v}\right\rvert}.

Similarly, the edge-based multi-packing/multi-cover problems can be modeled using the following template problem:

Problem 6 (Hypergraph Edge-Based Multi-packing/Multi-cover).

Let =(𝒱,)\operatorname{\mathcal{H}}=(\operatorname{\mathcal{V}},\operatorname{\mathscr{E}}) be a hypergraph. Given numbers cv,pv0c_{v},p_{v}\in\operatorname{\mathbb{Z}}_{\geq 0}, for v𝒱v\in\operatorname{\mathcal{V}}, compute a multi-subset of \operatorname{\mathscr{E}}, represented by the natural numbers xx_{\operatorname{\mathcal{E}}}, for \operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}}, such that

  1. (i)

    cvx(δ(v))pvc_{v}\leq x\bigl{(}\delta(v)\bigr{)}\leq p_{v}, for any v𝒱v\in\operatorname{\mathcal{V}};

  2. (ii)

    x()x(\operatorname{\mathscr{E}}) is maximized or minimized.

Here, x()=xx(\operatorname{\mathscr{M}})=\sum_{\operatorname{\mathcal{E}}\in\operatorname{\mathscr{M}}}x_{\operatorname{\mathcal{E}}}, for any \operatorname{\mathscr{M}}\subseteq\operatorname{\mathscr{E}}, and δ(v)={:v}\delta(v)=\{\operatorname{\mathcal{E}}\in\operatorname{\mathscr{E}}\colon v\in\operatorname{\mathcal{E}}\} denotes the set of hyperedges that are incident to the vertex vv.

The problem can be represented by the following ILP:

max{𝟏x} or min{𝟏x}\displaystyle\max\bigl{\{}\operatorname{\mathbf{1}}^{\top}x\bigr{\}}\;\text{ or }\;\min\bigl{\{}\operatorname{\mathbf{1}}^{\top}x\bigr{\}}
{cA()xpx0,\displaystyle\begin{cases}c\leq A(\operatorname{\mathcal{H}})x\leq p\\ x\in\operatorname{\mathbb{Z}}_{\geq 0}^{\operatorname{\mathscr{E}}},\end{cases} (Edge-Based-ILP)

where the vectors cc, pp are composed of the values cvc_{v} and pvp_{v}. Again, it is natural to think that \operatorname{\mathcal{H}} does not contain parallel hyperedges, because the multiple edge-variables can be easily glued to one variable.

If cv=c_{v}=-\infty, for all v𝒱v\in\operatorname{\mathcal{V}}, and x()x(\operatorname{\mathscr{E}}) is maximized, it can be considered as the Hypergraph Multi-matching problem, when we need to find a multi-set of hyperedges of the maximum size, such that each vertex v𝒱v\in\operatorname{\mathcal{V}} is triggered at most pvp_{v} times. Similarly, if pv=+p_{v}=+\infty, for all v𝒱v\in\operatorname{\mathcal{V}}, and x()x(\operatorname{\mathscr{E}}) is minimized, it can be considered as the Set Multi-cover problem, when we need to find a multi-set of hyper-edges of the minimum size, such that each vertex v𝒱v\in\operatorname{\mathcal{V}} is triggered at least cvc_{v} times.

For the case, when \operatorname{\mathcal{H}} is a simple graph, these problems can be considered as very natural generalizations of the classical Matching and Edge Cover problems. It seems natural to call these problems as the Maximum Multi-matching and Edge Multi-cover problems. The definition of the Edge Multi-cover problem can be found, for example, in the work [70], due to Cohen and Nutov. For the Maximum Multi-matching problem, we did not find a correct reference.

Similarly, we can introduce the Dominating Multi-set Problem on simple graphs, which is a natural generalization of the classical Dominating Set problem. In this problem, we need to find a multi-set of vertices of the minimal size, such that all the vertices of a given graph will be covered given number of times by neighbors of the constructed vertex multi-set. The Dominating Multi-set Problem can be straightforwardly reduced to the Set Multi-cover Problem. To do that, we just need to construct the set system =(𝒱,)\operatorname{\mathcal{H}}=(\operatorname{\mathcal{V}},\operatorname{\mathscr{E}}), where 𝒱\operatorname{\mathcal{V}} coincides with the set of vertices of a given graph, and \operatorname{\mathscr{E}} is constituted by neighbors of its vertices.

Definition 4.

By analogy with Definition 3, we introduce the weighted variants and variants with multiplicities for the all edge-based multi-packing/multi-cover problems discussed above. Note that the presence of parallel edges for these problems is not redundant and makes the corresponding problem more general. The weighted Set Multi-cover with multiplicities is known in literature as the Weighted Multi-set Multi-cover problem, see, for example, [64, 65, 66].

Let us explain our motivation with respect to the specified combinatorial problems. The classical Stable Set and Vertex Cover Problems on graphs and hypergraphs admit trivial 2O(𝔫)poly(ϕ)2^{O(\operatorname{\mathfrak{n}})}\cdot\operatorname{poly}(\phi)-complexity algorithms. However, the Stable Multi-set and Vertex Multi-cover Problems do not admit such a trivial algorithm. But, both problems can be modeled as the ILP problem (Vertex-Based-ILP) with 𝔫\operatorname{\mathfrak{n}} variables. Consequently, both problems can be solved by the previously mentioned log(𝔫)O(𝔫)poly(ϕ)\log(\operatorname{\mathfrak{n}})^{O(\operatorname{\mathfrak{n}})}\cdot\operatorname{poly}(\phi)-complexity general ILP algorithm. Here ϕ=size(c,p,w,u)\phi=\operatorname{size}(c,p,w,u).

Is it possible to give a faster algorithm? Is it possible to give a positive answer to this question, considering a more complex variant with multiplicities? We show that these problems on hypergraphs can be solved by a min{𝔡,𝔯}O(𝔫)poly(ϕ)\min\{\operatorname{\mathfrak{d}},\operatorname{\mathfrak{r}}\}^{O(\operatorname{\mathfrak{n}})}\cdot\operatorname{poly}(\phi)-complexity algorithm. Consequently, the Stable Multi-set and Vertex Multi-cover Problems on simple graphs can be solved by 2O(𝔫)poly(ϕ)2^{O(\operatorname{\mathfrak{n}})}\cdot\operatorname{poly}(\phi)-complexity algorithms. Our complexity results for these problems, together with the Multi-set Multi-cover, Hypergraph Multi-matching, and Dominating Multi-set problems, are gathered in Theorem 7.

Theorem 7.

Let us consider the Opt-And-Count-IP-variants of the problems Stable Multi-set, Vertex Multi-cover, Set Multi-cover, Hypergraph Multi-matching, and Dominating Multi-set with multiplicities (also known as the Multi-set Multi-cover problem). The following complexity bounds hold: Problems: Time:\qquad Time\mathrel{\mathop{\mathchar 58\relax}}\qquad Stable Multi-set and Vertex Multi-cover on hypergraps min{𝔡,𝔯}5.5𝔫24𝔫\qquad\min\{\operatorname{\mathfrak{d}},\operatorname{\mathfrak{r}}\}^{5.5\operatorname{\mathfrak{n}}}\cdot 2^{4\operatorname{\mathfrak{n}}}\qquad Stable Multi-set and Vertex Multi-cover on simple graphs 29𝔫\qquad 2^{9\operatorname{\mathfrak{n}}}\qquad Dominating Multi-set 𝔡5.5𝔫24𝔫\qquad{\operatorname{\mathfrak{d}}}^{5.5\operatorname{\mathfrak{n}}}\cdot 2^{4\operatorname{\mathfrak{n}}}\qquad Set Multi-cover and Hypergraph Multi-matching min{𝔡,𝔯}5.5𝔪24𝔪\qquad\min\{\operatorname{\mathfrak{d}},\operatorname{\mathfrak{r}}\}^{5.5\operatorname{\mathfrak{m}}}\cdot 2^{4\operatorname{\mathfrak{m}}}\qquad The complexity bounds for the weighted variants of the considered problems contain an additional multiplicative term wmax3w_{\max}^{3}. Everywhere in the complexity bounds, we skip the poly(ϕ)\operatorname{poly}(\phi) multiplicative term.

Proof.

To prove the theorem, we use Theorem 3 for the problems’ definitions: 5, 6, 3 and 4. This approach gives us the desired complexity bounds for all the problems, except for the Stable Multiset and Vertex Multicover problems on simple graphs. For these exceptions, we will give a more refined analysis.

We follow the proof of Theorem 3, using a more refined bound for Δ𝔫1\Delta_{\operatorname{\mathfrak{n}}-1} and Δ𝔫\Delta_{\operatorname{\mathfrak{n}}}, where A:=A(𝒢)A\mathrel{\mathop{\mathchar 58\relax}}=A(\operatorname{\mathcal{G}}) be the incidence matrix of the corresponding simple graph 𝒢\operatorname{\mathcal{G}}. Due to Grossman, Kulkarni & Schochetman [71], the absolute values of sub-determinants of a simple graph incidence matrix can be bounded in terms of the odd tulgeity of 𝒢\operatorname{\mathcal{G}}. More precisely, Δi2τ0\Delta_{i}\leq 2^{\tau_{0}}, where τ0=τ0(𝒢)\tau_{0}=\tau_{0}(\operatorname{\mathcal{G}}) is the odd tulgeity of 𝒢\operatorname{\mathcal{G}}, which is defined as the maximum number of vertex-disjoint odd cycles of 𝒢\operatorname{\mathcal{G}}. Clearly, τ0𝔫/3\tau_{0}\leq\operatorname{\mathfrak{n}}/3, so,

max{Δ𝔫1,Δ𝔫}2𝔫/3.\max\bigl{\{}\Delta_{\operatorname{\mathfrak{n}}-1},\Delta_{\operatorname{\mathfrak{n}}}\bigr{\}}\leq 2^{\operatorname{\mathfrak{n}}/3}.

Using this bound in the proof of Theorem 3, it gives the desired complexity bounds for the Stable Multiset and Vertex Multicover Problems. ∎

3.1 The Multi-set Multi-cover and Hypergraph Multi-matching Problems Parameterized by the Number of Vertices 𝔫\operatorname{\mathfrak{n}}.

In Theorem 7, we have presented min{𝔡,𝔯}5.5𝔪24𝔪poly(ϕ)\min\{\operatorname{\mathfrak{d}},\operatorname{\mathfrak{r}}\}^{5.5\operatorname{\mathfrak{m}}}\cdot 2^{4\operatorname{\mathfrak{m}}}\cdot\operatorname{poly}(\phi)-complexity algorithms for the Opt-And-Count-IP-variant of the Set Multi-cover and Hypergraph Multi-matching problems with multiplicities. Due to Knop, Kouteckỳ & Mnich [66], the weighted Opt-IP-variants of these problems admit an 𝔫O(𝔫2)poly(ϕ){\operatorname{\mathfrak{n}}}^{O(\operatorname{\mathfrak{n}}^{2})}\cdot\operatorname{poly}(\phi)-complexity algorithm, which is faster than our algorithm for 𝔪=Ω(𝔫2+ε)\operatorname{\mathfrak{m}}=\Omega({\operatorname{\mathfrak{n}}}^{2+\varepsilon}) and any ε>0\varepsilon>0. In other words, our last complexity bound is good only for sufficiently sparse hypergraphs.

So, the motivation of this subsection is to present faster algorithms for the Opt-And-Count-IP- and Opt-IP-variants of the weighted Multi-set Multi-cover and Hypergraph Multi-matching problems with and without multiplicities, parameterized by 𝔫\operatorname{\mathfrak{n}} instead of 𝔪\operatorname{\mathfrak{m}}. Our results for these problems are gathered in Table 4.

Table 4: New complexity bounds for the Set Multi-cover and Hypergraph Multi-matching problems
  Version: Time:\qquad Time\mathrel{\mathop{\mathchar 58\relax}}\qquad111The multiplicative factor poly(ϕ)\operatorname{poly}(\phi) is skipped.
  Opt-IP, without multiplicities O(𝔯)2𝔫\qquad O(\operatorname{\mathfrak{r}})^{2\operatorname{\mathfrak{n}}}\qquad
O(𝔯)𝔫2𝔫log(𝔯log(𝔫))\qquad O(\operatorname{\mathfrak{r}})^{\operatorname{\mathfrak{n}}}\cdot 2^{\operatorname{\mathfrak{n}}\cdot\log(\operatorname{\mathfrak{r}}\log(\operatorname{\mathfrak{n}}))}\qquad
O(𝔡)n2𝔫log(log(𝔡𝔫)log(𝔫))\qquad O(\operatorname{\mathfrak{d}})^{n}\cdot 2^{\operatorname{\mathfrak{n}}\cdot\log(\log(\operatorname{\mathfrak{d}}\operatorname{\mathfrak{n}})\log(\operatorname{\mathfrak{n}}))}\qquad
O(𝔫)𝔫\qquad O(\operatorname{\mathfrak{n}})^{\operatorname{\mathfrak{n}}}\qquad
  Opt-And-Count-IP, without multiplicities min{𝔯,𝔡}1.5𝔫O(𝔪/𝔫)2𝔫wmax3\qquad\min\{\operatorname{\mathfrak{r}},\operatorname{\mathfrak{d}}\}^{1.5\operatorname{\mathfrak{n}}}\cdot O(\operatorname{\mathfrak{m}}/\operatorname{\mathfrak{n}})^{2\operatorname{\mathfrak{n}}}\cdot w_{\max}^{3}\qquad
𝔯1.5𝔫O(𝔫)2𝔯𝔫+O(𝔯)wmax3\qquad{\operatorname{\mathfrak{r}}}^{1.5\operatorname{\mathfrak{n}}}\cdot O(\operatorname{\mathfrak{n}})^{2\operatorname{\mathfrak{r}}\operatorname{\mathfrak{n}}+O(\operatorname{\mathfrak{r}})}\cdot w_{\max}^{3}\qquad
O(𝔡)3.5𝔫wmax3\qquad{O(\operatorname{\mathfrak{d}})}^{3.5\operatorname{\mathfrak{n}}}\cdot w_{\max}^{3}\qquad
4𝔫2+O(𝔫)wmax3\qquad 4^{\operatorname{\mathfrak{n}}^{2}+O(\operatorname{\mathfrak{n}})}\cdot w_{\max}^{3}\qquad
  Opt-IP, with multiplicities O(min{𝔡,𝔯})𝔫2+O(𝔫log𝔫)\qquad O(\min\{\operatorname{\mathfrak{d}},\operatorname{\mathfrak{r}}\})^{\operatorname{\mathfrak{n}}^{2}+O(\operatorname{\mathfrak{n}}\log\operatorname{\mathfrak{n}})}\qquad
  Opt-And-Count-IP, with multiplicities        open problem
Remark 2.

Let us have a little discussion about the complexity bounds, presented in Table 4. Firstly, let us consider the problems without multiplicities. As the reader can see, for fixed 𝔯\operatorname{\mathfrak{r}}, the weighted Opt-IP-variant of the considered problems can be solved by 2O(𝔫)2^{O(\operatorname{\mathfrak{n}})}-complexity algorithms (the poly(ϕ)\operatorname{poly}(\phi)-term is ignored). For 𝔯=log(𝔫)O(1)\operatorname{\mathfrak{r}}=\log(\operatorname{\mathfrak{n}})^{O(1)}, the best complexity bound is 2O(𝔫loglog(𝔫))2^{O(\operatorname{\mathfrak{n}}\cdot\log\log(\operatorname{\mathfrak{n}}))}. Another interesting case is 𝔡=o(𝔫)\operatorname{\mathfrak{d}}=o(\operatorname{\mathfrak{n}}), which gives the o(𝔫)𝔫2O(𝔫loglog(𝔫))o(\operatorname{\mathfrak{n}})^{\operatorname{\mathfrak{n}}}\cdot 2^{O(\operatorname{\mathfrak{n}}\cdot\log\log(\operatorname{\mathfrak{n}}))}-complexity bound. For other values of parameters, the general O(𝔫)𝔫O(\operatorname{\mathfrak{n}})^{\operatorname{\mathfrak{n}}}-complexity bound holds.

For the unweighted Opt-And-Count-IP-variant of the considered problems, if 𝔯\operatorname{\mathfrak{r}} is fixed, then the 𝔫O(𝔫){\operatorname{\mathfrak{n}}}^{O(\operatorname{\mathfrak{n}})}-complexity algorithm exists. The same is true if 𝔡=𝔫O(1)\operatorname{\mathfrak{d}}=\operatorname{\mathfrak{n}}^{O(1)} or 𝔪=𝔫O(1)\operatorname{\mathfrak{m}}=\operatorname{\mathfrak{n}}^{O(1)}. The complexity 2O(n)2^{O(n)} is possible, if a hypergraph has constant maximum degree 𝔡=O(1)\operatorname{\mathfrak{d}}=O(1) or, if it is very sparse 𝔪=O(𝔫)\operatorname{\mathfrak{m}}=O(\operatorname{\mathfrak{n}}) and has a constant maximum hyperedge cardinality 𝔯=O(1)\operatorname{\mathfrak{r}}=O(1). For the general values of 𝔯\operatorname{\mathfrak{r}}, 𝔡\operatorname{\mathfrak{d}}, and 𝔪\operatorname{\mathfrak{m}}, it is better to use the complexity bound min{𝔡,𝔯}1.5𝔫O(𝔪/𝔫)2𝔫\min\{\operatorname{\mathfrak{d}},\operatorname{\mathfrak{r}}\}^{1.5\operatorname{\mathfrak{n}}}\cdot O(\operatorname{\mathfrak{m}}/\operatorname{\mathfrak{n}})^{2\operatorname{\mathfrak{n}}}. Since 𝔪2𝔫\operatorname{\mathfrak{m}}\leq 2^{\operatorname{\mathfrak{n}}}, it straightforwardly gives the general 4𝔫2+O(𝔫)4^{\operatorname{\mathfrak{n}}^{2}+O(\operatorname{\mathfrak{n}})}-complexity bound. Note that the considered complexity bounds for the problems without multiplicities sufficiently outperform the best complexity bound that we know nO(n2)n^{O(n^{2})}, due to Knop, Kouteckỳ, and Mnich [66].

Now, let us consider the problems with multiplicities. Note again that the weighted Set Multi-cover problem with multiplicities is also known as the weighted Multi-set Multi-cover problem. In comparison with the state of the art complexity bound 𝔫O(𝔫2)\operatorname{\mathfrak{n}}^{O(\operatorname{\mathfrak{n}}^{2})}, our bound O(min{𝔡,𝔯})𝔫2+O(𝔫log𝔫)O\bigl{(}\min\{\operatorname{\mathfrak{d}},\operatorname{\mathfrak{r}}\}\bigr{)}^{\operatorname{\mathfrak{n}}^{2}+O(\operatorname{\mathfrak{n}}\log\operatorname{\mathfrak{n}})} has a lower exponent base, and it gives a constant-estimate in the exponent power. Unfortunately, we are not able to present a complexity bound, parameterized by 𝔫\operatorname{\mathfrak{n}}, for the Opt-And-Count-IP-variant, and it seems to be an interesting open problem.

We omit proofs of the results, presented in Table 4, because they straightforwardly follow from the complexity bounds, described in Theorem 6 and Table 3. Indeed, the weighted Multi-set Multi-cover and Hypergraph Multi-matching problems with or without multiplicities can be represented by the following ILP’s in the standard form:

max{wx}{(A()I𝔫×𝔫)x=p𝟎xux𝔫+𝔪min{wx}{(A()I𝔫×𝔫)x=c𝟎xux𝔫+𝔪,\begin{gathered}\max\bigl{\{}w^{\top}x\bigr{\}}\\ \begin{cases}\bigl{(}A(\operatorname{\mathcal{H}})\;I_{\operatorname{\mathfrak{n}}\times\operatorname{\mathfrak{n}}}\bigr{)}x=p\\ \operatorname{\mathbf{0}}\leq x\leq u\\ x\in\operatorname{\mathbb{Z}}^{\operatorname{\mathfrak{n}}+\operatorname{\mathfrak{m}}}\end{cases}\end{gathered}\quad\begin{gathered}\min\bigl{\{}w^{\top}x\bigr{\}}\\ \begin{cases}\bigl{(}-A(\operatorname{\mathcal{H}})\;I_{\operatorname{\mathfrak{n}}\times\operatorname{\mathfrak{n}}}\bigr{)}x=-c\\ \operatorname{\mathbf{0}}\leq x\leq u\\ x\in\operatorname{\mathbb{Z}}^{\operatorname{\mathfrak{n}}+\operatorname{\mathfrak{m}}},\end{cases}\end{gathered}

where the constraint xux\leq u needs to be omitted for the variants without multiplicities. The co-dimension of these formulations is 𝔫\operatorname{\mathfrak{n}}. Using simple bounds 𝔪2𝔫\operatorname{\mathfrak{m}}\leq 2^{\operatorname{\mathfrak{n}}}, 𝔪𝔡𝔫\operatorname{\mathfrak{m}}\leq\operatorname{\mathfrak{d}}\operatorname{\mathfrak{n}}, and 𝔪=O(𝔫)𝔯+1\operatorname{\mathfrak{m}}=O(\operatorname{\mathfrak{n}})^{\operatorname{\mathfrak{r}}+1} that are valid for the problems without multiplicities, the desired complexity bounds of Table 4 can be easily obtained. Note that the equality 𝔪=O(𝔫)𝔯+1\operatorname{\mathfrak{m}}=O(\operatorname{\mathfrak{n}})^{\operatorname{\mathfrak{r}}+1} directly follows from the inequality 𝔪i=1𝔯(𝔫i)\operatorname{\mathfrak{m}}\leq\sum_{i=1}^{\operatorname{\mathfrak{r}}}\binom{\operatorname{\mathfrak{n}}}{i}.

4 Additional Notes: Expected ILP Complexity

It was shown by Oertel, Paat & Weismantel in [72] that, for almost all r.h.s. bmb\in\operatorname{\mathbb{Z}}^{m}, the original ILP problem in the form Canon-Form is equivalent to the problem max{cx:Axb,xn}\max\{c^{\top}x\colon A_{\operatorname{\mathcal{B}}}x\leq b_{\operatorname{\mathcal{B}}},\,x\in\operatorname{\mathbb{Z}}^{n}\}, where AA_{\operatorname{\mathcal{B}}} is a non-degenerate n×nn\times n sub-matrix of AA, induced by some optimal LP base \operatorname{\mathcal{B}}. It was noted by Shevchenko in [73, Paragraph 3.3., p. 42–43] (see also [26, Chapter 5.2]) that such a square ILP problem is equivalent to the group minimization problem, described by R. Gomory in the seminal work [74] (see also [75, Chapter 19]). Consequently, due to [74] and [75, Chapter 19], such an ILP can be solved by an algorithm with the arithmetic complexity bound

O(min{n,Δ}Δlog(Δ)),O\bigl{(}\min\{n,\Delta\}\cdot\Delta\cdot\log(\Delta)\bigr{)}, (14)

where Δ:=Δ(A)\Delta\mathrel{\mathop{\mathchar 58\relax}}=\Delta(A). The result of Oertel, Paat & Weismantel [72] was refined by Gribanov et al. in [26, Chapter 5.5.1], where a stronger probability argument was given.

A stronger result for the problems in the form Standard-Form is given in the paper of Oertel, Paat & Weismantel [76], where the distributions of the corresponding random variables are presented. Another way is to reduce the problem in the form Standard-Form to the problem in the form Canon-Form, using [26, Lemma 5]. It follows from [74] and [76] (or from [26, Lemma 5]) and result for the form Canon-Form) that, for almost all r.h.s. bkb\in\operatorname{\mathbb{Z}}^{k}, the ILP problem in the form Standard-Form of co-dimension kk can be solved by an algorithm with the arithmetic complexity bound

O((nk)Δlog(Δ)).O\bigl{(}(n-k)\cdot\Delta\cdot\log(\Delta)\bigr{)}. (15)

It is also easy to see that this fact also holds for problems with multiplicities, the simplest way is to reduce the problem into the form Canon-Form.

The bounds (14) and (15), together with the inequalities (3) and (2), give the following complexity bounds, described in Table 5, for the sparse problem Opt-IP in the canonical and the standard forms, respectively.

Table 5: Expected complexity bounds for almost all bb for the problem Opt-IP in the standard and the canonical forms
Problems: Time:\qquad Time\mathrel{\mathop{\mathchar 58\relax}}\qquad111The multiplicative factor poly(ϕ)\operatorname{poly}(\phi) is skipped.
The form Canon-Form, for almost all bmb\in\operatorname{\mathbb{Z}}^{m} (γ1,)n\qquad\bigl{(}\operatorname{\gamma_{1,\infty}}\bigr{)}^{n}\qquad
(Amax)n(ts¯)n/2\qquad\bigl{(}\|A\|_{\max}\bigr{)}^{n}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{n/2}\qquad
The form Standard-Form, for almost all bkb\in\operatorname{\mathbb{Z}}^{k} (γ1,)k\qquad\bigl{(}\operatorname{\gamma_{1,\infty}}\bigr{)}^{k}\qquad
(Amax)k(ts¯)k/2\qquad\bigl{(}\|A\|_{\max}\bigr{)}^{k}\cdot\bigl{(}\operatorname{\overline{\operatorname{ts}}}\bigr{)}^{k/2}\qquad

These bounds can be used to give expected-case complexity bounds for the combinatorial problems, described in Table 6.

Table 6: Expected complexity bounds for combinatorial packing/cover problems with multiplicities, for almost all r.h.s. pp or cc
Problems:111All the considered problems are weighted problems with multiplicities. Time:\qquad Time\mathrel{\mathop{\mathchar 58\relax}}\qquad222The multiplicative factor poly(ϕ)\operatorname{poly}(\phi) is skipped.
Stable Multi-set on hypergraps and Hypergraph Multi-matching, min{𝔡,𝔯}𝔫/2\qquad\min\{\operatorname{\mathfrak{d}},\operatorname{\mathfrak{r}}\}^{\operatorname{\mathfrak{n}}/2}\qquad
for almost all r.h.s. pp
Vertex Multi-cover on hypergraps and Multi-set Multi-cover, min{𝔡,𝔯}𝔫/2\qquad\min\{\operatorname{\mathfrak{d}},\operatorname{\mathfrak{r}}\}^{\operatorname{\mathfrak{n}}/2}\qquad
for almost all r.h.s. cc
Dominating Multi-set, for almost all r.h.s. cc 𝔡𝔫/2\qquad{\operatorname{\mathfrak{d}}}^{\operatorname{\mathfrak{n}}/2}\qquad
Stable Multi-set and Vertex Multi-cover on simple graphs,
for almost all r.h.s. p,cp,c resp. 333The bound 2𝔫/22^{\operatorname{\mathfrak{n}}/2} is trivial, to achieve the bound 2𝔫/32^{\operatorname{\mathfrak{n}}/3}, see the proof of Theorem 7. 2𝔫/3\qquad 2^{\operatorname{\mathfrak{n}}/3}\qquad

5 Summary of the Paper and Open Problems

Here we give a summary of results, notes, and implications of our work.

  • \bullet

    We show that the problems Count-IP & Opt-And-Count-IP with respect to sparse instances with bounded elements and their weaker versions Feasibility-IP & Opt-IP can be solved by algorithms that outperform the general state of the art log(n)O(n)poly(ϕ)\log(n)^{O(n)}\cdot\operatorname{poly}(\phi)-complexity algorithm for Opt-IP, due to Reis & Rothvoss [5]. Details can be found in Table 2 and Theorem 3. For example, if the matrix AA is an {1,0,1}\{-1,0,1\}-matrix, and it has constant number of non-zeroes in each row/column, then the corresponding problems Count-IP & Opt-And-Count-IP can be solved in 2O(n)poly(ϕ)2^{O(n)}\cdot\operatorname{poly}(\phi)-time.

  • \bullet

    We show that in the assumptions Amax=nO(1)\|A\|_{\max}=n^{O(1)} and c=nO(n)\|c\|_{\infty}=n^{O(n)}, the problems Count-IP and Opt-And-Count-IP can be solved by algorithms with the complexity bound nO(n)poly(ϕ)n^{O(n)}\cdot\operatorname{poly}(\phi), which outperforms the state of the art bound (5) for the problems Count-IP and Opt-And-Count-IP. For details, see Corollary 1.

  • \bullet

    We give an improved arithmetic complexity bound O(ν2n4Δ3)O(\nu^{2}\cdot n^{4}\cdot\Delta^{3}) for the problem Count-IP with respect to the older bound O(ν2n4Δ4log(Δ))O\bigl{(}\nu^{2}\cdot n^{4}\cdot\Delta^{4}\cdot\log(\Delta)\bigr{)}, see Theorem 2.

  • \bullet

    We give new algorithms for the Opt-And-Count-IP-variant of the Stable Multi-set, Vertex Multi-cover, Set Multi-cover, Multi-matching, and Dominating Multi-set problems with respect to simple graphs and hypergraphs, see the definitions 5 and 6. The weighted variants and the variants with the multiplicities of the above problems are handled, see Definitions 3 and 4. Note that the weighted Set Multi-cover problem with multiplicities is also known as the weighted Multi-set Multi-cover problem. Our algorithms outperform the general state of the art ILP algorithms, applied to these problems. Details can be found in Theorem 7.

  • \bullet

    We summarize known results and new methods to give new algorithms for the Feasibility-IP-, Count-IP-, Opt-IP-, Opt-And-Count-IP-variants of ILP problems in the standard form with and without multiplicities, parameterized by Amax\|A\|_{\max} and the co-dimension of Ax=bAx=b. The new complexity bounds outperform general-case bounds on sparse instances. Details can be found in Subsection 2.2, Table 3, and Theorem 6.

  • \bullet

    Using our notes for sparse problems in the standard form, we give new algorithms for the Opt-IP- and Opt-And-Count-IP-variants of the Set Multi-cover and Hypergraph Multi-matching problems with and without multiplicities, parameterized by the number of vertices 𝔫\operatorname{\mathfrak{n}}. The weighted variants are handled. Tighter complexity bounds with respect to the parameters 𝔫\operatorname{\mathfrak{n}}, 𝔪\operatorname{\mathfrak{m}}, 𝔯\operatorname{\mathfrak{r}}, and 𝔡\operatorname{\mathfrak{d}} are considered. Unfortunately, we are not able to present a complexity bound, parameterized by 𝔫\operatorname{\mathfrak{n}}, for the Opt-And-Count-IP-variant with multiplicities, it seems to be an interesting open problem. Our complexity bounds for the considered problems outperform the state of the art 𝔫O(𝔫2)poly(ϕ)\operatorname{\mathfrak{n}}^{O(\operatorname{\mathfrak{n}}^{2})}\cdot\operatorname{poly}(\phi)-complexity bound, due to Knop, Kouteckỳ, and Mnich [66]. Details can be found in Subsection 3.1 and Table 4. Discussion can be found in Remark 2.

Open Problems:

  • \bullet

    As it was noted before, we are not able to present an algorithm for the problem Count-IP in the form Standard-Form with multiplicities, which will be polynomial on nn, Δ\Delta or Amax\|A\|_{\max}, for any fixed co-dimension kk. More precisely, given Ak×nA\in\operatorname{\mathbb{Z}}^{k\times n}, bkb\in\operatorname{\mathbb{Q}}^{k}, and unu\in\operatorname{\mathbb{Z}}^{n}, let us consider the polyhedron 𝒫\operatorname{\mathcal{P}}, defined by the system Ax=b, 0xuAx=b,\;0\leq x\leq u. The problem is to develop an algorithm to compute |𝒫n|\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}, whose complexity will be polynomial on nn, Δ\Delta or Amax\|A\|_{\max}, for any fixed kk. Despite considerable effort, we are not able to present such an algorithm. The main difficulty is that our methods work well only in the scenarios, when the value of |vert(𝒫)|\mathinner{\!\left\lvert\operatorname{vert}(\operatorname{\mathcal{P}})\right\rvert} is sufficiently small. But, in the current case, the value of |vert(𝒫)|\mathinner{\!\left\lvert\operatorname{vert}(\operatorname{\mathcal{P}})\right\rvert} can be equal to 2n2^{n}. Note that the positive solution for this problem can grant new more efficient algorithms for the Multi-set Multi-cover problem and its weighted variant.

  • \bullet

    Our general complexity bounds (see Theorems 3 and 6) for sparse variants of the problem Count-IP contain a term of the type (Amax)O(n)\bigl{(}\|A\|_{\max}\bigr{)}^{O(n)} or of the type (Amax)O(k)\bigl{(}\|A\|_{\max}\bigr{)}^{O(k)}. Could we develop an algorithm, which will be polynomial on Amax\|A\|_{\max} and more efficient for sparse problems with respect to the general state of the art algorithms? Could we do this for the simpler problem Feasibility-IP?

  • \bullet

    Our complexity bounds for sparse problems depend mainly on the total number of variables nn, which can by significantly bigger than an actual dimension d=dim(𝒫)d=\dim(\operatorname{\mathcal{P}}) of a polyhedron. The known state of the art algorithms can be easily adapted to work with the parameter dd instead of nn. For example, the state of the art algorithm, due to Reis & Rothvoss [5], gives the log(d)O(d)poly(ϕ)\log(d)^{O(d)}\cdot\operatorname{poly}(\phi) complexity bound. Unfortunately, at the current moment, we can not adapt our methods for sparse problems to work with the parameter dd. The difficulty is concentrated in Lemma 4, which estimates the number of vertices of a polyhedron. The proof of such a lemma, based on a parameter dd, is an interesting open question, which will guaranty the existence of an algorithm for sparse problems, parameterized by dd instead of nn.

6 Proofs of the Main Theorems 2 and 3

6.1 The Smith Normal Form

Let Am×nA\in\operatorname{\mathbb{Z}}^{m\times n} be an integer matrix of rank nn. It is a known fact (see, for example, [23, 77, 78]) that there exist unimodular matrices Pm×mP\in\operatorname{\mathbb{Z}}^{m\times m} and Qn×nQ\in\operatorname{\mathbb{Z}}^{n\times n}, such that A=P(S𝟎d×n)QA=P\dbinom{S}{\operatorname{\mathbf{0}}_{d\times n}}Q, where d=mnd=m-n and S0n×nS\in\operatorname{\mathbb{Z}}_{\geq 0}^{n\times n} is a diagonal non-degenerate matrix. Moreover, i=1kSii=Δgcd(A,k)\prod_{i=1}^{k}S_{ii}=\Delta_{\gcd}(A,k), and, consequently, SiiS(i+1)(i+1)S_{ii}\mid S_{(i+1)(i+1)}, for i{1,,n1}i\in\{1,\dots,n-1\}. The matrix (S𝟎d×n)\dbinom{S}{\operatorname{\mathbf{0}}_{d\times n}} is called the Smith Normal Form (or, shortly, the SNF) of the matrix AA. Near-optimal polynomial-time algorithms for constructing the SNF of AA are given in the work [77] due to Storjohann & Labahn.

6.2 Algebra of Rational Polyhedra and Generating Functions

Let 𝒱\operatorname{\mathcal{V}} be a Euclidean space with the inner product denoted by ,\langle\cdot,\cdot\rangle. Let Λ𝒱\Lambda\subseteq\operatorname{\mathcal{V}} be a lattice and Λ\Lambda^{\circ} be its dual.

Definition 5.

For a polyhedron 𝒫𝒱\operatorname{\mathcal{P}}\subseteq\operatorname{\mathcal{V}}, a vector c𝒱c\in\operatorname{\mathcal{V}} and an abstract variable τ\tau, we denote

𝔣(𝒫,c;τ)=z𝒫Λec,zτ.\operatorname{\mathfrak{f}}(\operatorname{\mathcal{P}},c;\tau)=\sum\limits_{z\in\operatorname{\mathcal{P}}\cap\Lambda}e^{\langle c,z\rangle\tau}.

The polar of 𝒫\operatorname{\mathcal{P}} is denoted by 𝒫={y𝒱:y,x1,x𝒫}\operatorname{\mathcal{P}}^{\circ}=\{y\in\operatorname{\mathcal{V}}\colon\langle y,x\rangle\leq 1,\forall x\in\operatorname{\mathcal{P}}\}.

Definition 6.

Let 𝒜𝒱\operatorname{\mathcal{A}}\subseteq\operatorname{\mathcal{V}} be a set. The indicator [𝒜][\operatorname{\mathcal{A}}] of 𝒜\operatorname{\mathcal{A}} is the function [𝒜]:𝒱[\operatorname{\mathcal{A}}]\colon\operatorname{\mathcal{V}}\to\operatorname{\mathbb{R}} defined by

[𝒜](x)={1, if x𝒜0, if x𝒜.[\operatorname{\mathcal{A}}](x)=\begin{cases}1\text{, if }x\in\operatorname{\mathcal{A}}\\ 0\text{, if }x\notin\operatorname{\mathcal{A}}.\end{cases}
Definition 7.

The polyhedron 𝒫𝒱\operatorname{\mathcal{P}}\subseteq\operatorname{\mathcal{V}} is called rational, if it can be defined by a system of finitely many inequalities

ai,xbi,where aiΛ and bi.\langle a_{i},x\rangle\leq b_{i},\quad\text{where $a_{i}\in\Lambda^{\circ}$ and $b_{i}\in\operatorname{\mathbb{Z}}$.}

The algebra of rational polyhedra 𝒫(𝒱)\operatorname{\mathscr{P}}(\operatorname{\mathbb{Q}}\operatorname{\mathcal{V}}) is the vector space, defined as the span of the indicator functions of all the rational polyhedra 𝒫𝒱\operatorname{\mathcal{P}}\subseteq\operatorname{\mathcal{V}}.

We recall the following restatement of the theorem proved by Lawrence [79] and independently by Khovanski & Pukhlikov [80], declared as Theorem 13.8b in [13, Section 13].

Theorem 8 (Lawrence [79], Khovanski & Pukhlikov [80]).

Let dim(𝒱)=n\dim(\operatorname{\mathcal{V}})=n and (𝒱)\operatorname{\mathscr{R}}(\operatorname{\mathcal{V}}) be the linear space of functions acting from 𝒱\operatorname{\mathcal{V}} to \operatorname{\mathbb{R}}, spanned by finite linear combinations of the following functions

cec,v(1ec,u1)(1ec,un),c\quad\to\quad\frac{e^{\langle c,v\rangle}}{\bigl{(}1-e^{\langle c,u_{1}\rangle}\bigr{)}\cdot\ldots\cdot\bigl{(}1-e^{\langle c,u_{n}\rangle}\bigr{)}},

where vΛv\in\Lambda and uiΛ{𝟎}u_{i}\in\Lambda\setminus\{\operatorname{\mathbf{0}}\}, for i{1,,n}i\in\{1,\dots,n\}. Then, there exists a linear transformation

:𝒫(𝒱)(𝒱),\operatorname{\mathcal{F}}\colon\operatorname{\mathscr{P}}(\operatorname{\mathbb{Q}}\operatorname{\mathcal{V}})\to\operatorname{\mathscr{R}}(\operatorname{\mathcal{V}}),

such that the following properties hold:

  1. (1)

    Let 𝒫𝒱\operatorname{\mathcal{P}}\subseteq\operatorname{\mathcal{V}} be a non-empty rational polyhedron without lines and let :=𝒫𝒱\operatorname{\mathcal{R}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\mathcal{R}}_{\operatorname{\mathcal{P}}}\subseteq\operatorname{\mathcal{V}} be its recession cone. Then, for all cint()c\in\operatorname{int}(\operatorname{\mathcal{R}}^{\circ}), the series

    z𝒫Λec,z\sum\limits_{z\in\operatorname{\mathcal{P}}\cap\Lambda}e^{\langle c,z\rangle}

    converges absolutely to a function ([𝒫])\operatorname{\mathcal{F}}\bigl{(}[\operatorname{\mathcal{P}}]\bigr{)}.

  2. (2)

    If 𝒫\operatorname{\mathcal{P}} contains a line, then ([𝒫])=0\operatorname{\mathcal{F}}\bigl{(}[\operatorname{\mathcal{P}}]\bigr{)}=0.

Note that hereafter we will use this Theorem 8 just with 𝒱=n\operatorname{\mathcal{V}}=\operatorname{\mathbb{R}}^{n} and Λ=n\Lambda=\operatorname{\mathbb{Z}}^{n}. The following lemma represents a core of Theorem 2 and contains a main improvement with respect to the counting algorithm from [25].

Lemma 1.

Let An×nA\in\operatorname{\mathbb{Z}}^{n\times n}, bnb\in\operatorname{\mathbb{Z}}^{n}, Δ=|det(A)|>0\Delta=\mathinner{\!\left\lvert\det(A)\right\rvert}>0. Let us consider the polyhedron 𝒫={xn:Axb}\operatorname{\mathcal{P}}=\{x\in\operatorname{\mathbb{R}}^{n}\colon Ax\leq b\}. Assume that cnc\in\operatorname{\mathbb{Z}}^{n} is given, such that c,hi>0\langle c,h_{i}\rangle>0, where hih_{i} are the columns of A=ΔA1A^{*}=\Delta\cdot A^{-1}, for i{1,,n}i\in\{1,\dots,n\}. Denote ψ=maxi{1,,n}{|c,hi|}\psi=\max\limits_{i\in\{1,\dots,n\}}\Bigl{\{}\mathinner{\!\left\lvert\langle c,h_{i}\rangle\right\rvert}\Bigr{\}}. Let, additionally, S=PAQS=PAQ be the SNF of AA, where P,Qn×nP,Q\in\operatorname{\mathbb{Z}}^{n\times n} are unimodular, and denote σ=Snn\sigma=S_{nn}.

Then, for any τ>0\tau>0, the series 𝔣(𝒫,c;τ)\operatorname{\mathfrak{f}}(\operatorname{\mathcal{P}},c;\,\tau) converges absolutely to a function of the type

i=nσψnσψϵieαiτ(1eβ1τ)(1eβ2τ)(1eβnτ),\frac{\sum\limits_{i=-n\cdot\sigma\cdot\psi}^{n\cdot\sigma\cdot\psi}\epsilon_{i}\cdot e^{\alpha_{i}\cdot\tau}}{\bigl{(}1-e^{-\beta_{1}\cdot\tau}\bigr{)}\bigl{(}1-e^{-\beta_{2}\cdot\tau}\bigr{)}\dots\bigl{(}1-e^{-\beta_{n}\cdot\tau}\bigr{)}},

where ϵi0\epsilon_{i}\in\operatorname{\mathbb{Z}}_{\geq 0}, βi>0\beta_{i}\in\operatorname{\mathbb{Z}}_{>0}, and αi\alpha_{i}\in\operatorname{\mathbb{Z}}. This representation can be found with an algorithm, having the arithmetic complexity bound

O(TSNF(n)+Δn2σψ),O\bigl{(}T_{\operatorname{\text{\rm SNF}}}(n)+\Delta\cdot n^{2}\cdot\sigma\cdot\psi\bigr{)},

where TSNF(n)T_{SNF}(n) is the arithmetic complexity of computing the SNF for n×nn\times n integer matrices.

Proof.

After the unimodular map x=Qxx=Qx^{\prime} and introducing slack variables yy, the system {xn:Axb}\{x\in\operatorname{\mathbb{Z}}^{n}\colon Ax\leq b\} becomes

{Sx+Py=Pbxny0n.\begin{cases}Sx+Py=Pb\\ x\in\operatorname{\mathbb{Z}}^{n}\\ y\in\operatorname{\mathbb{Z}}^{n}_{\geq 0}.\end{cases}

Since PP is unimodular, the last system is equivalent to the system

{Py=Pb(modSn)y0n.\begin{cases}Py=Pb\pmod{S\operatorname{\mathbb{Z}}^{n}}\\ y\in\operatorname{\mathbb{Z}}^{n}_{\geq 0}.\end{cases} (16)

Denoting 𝒢=n/Sn\operatorname{\mathcal{G}}=\operatorname{\mathbb{Z}}^{n}/S\operatorname{\mathbb{Z}}^{n}, g0=PbmodSng_{0}=Pb\bmod S\operatorname{\mathbb{Z}}^{n}, gi=PimodSng_{i}=P_{*i}\bmod S\operatorname{\mathbb{Z}}^{n}, the last system (16) can be rewritten:

{i=1nyigi=g0y0n.\begin{cases}\sum\limits_{i=1}^{n}y_{i}g_{i}=g_{0}\\ y\in\operatorname{\mathbb{Z}}_{\geq 0}^{n}.\end{cases} (17)

Note that points x𝒫nx\in\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n} and the solutions yy of the system (17) are connected by the bijective map x=A1(by)x=A^{-1}(b-y). Let ri=|gi|r_{i}=\mathinner{\!\left\lvert\langle g_{i}\rangle\right\rvert}, for i{1,,n}i\in\{1,\dots,n\}, and rmax:=maxi{1,,n}{ri}r_{\max}\mathrel{\mathop{\mathchar 58\relax}}=\max_{i\in\{1,\dots,n\}}\{r_{i}\}. Clearly, |𝒢|=|det(S)|=Δ\mathinner{\!\left\lvert\operatorname{\mathcal{G}}\right\rvert}=\mathinner{\!\left\lvert\det(S)\right\rvert}=\Delta and rmaxσr_{\max}\leq\sigma. For k{1,,n}k\in\{1,\dots,n\} and g𝒢g^{\prime}\in\operatorname{\mathcal{G}}, let k(g)\operatorname{\mathcal{M}}_{k}(g^{\prime}) be the solutions set of the auxiliary system

{i=1kyigi=gy0k,\begin{cases}\sum\limits_{i=1}^{k}y_{i}g_{i}=g^{\prime}\\ y\in\operatorname{\mathbb{Z}}_{\geq 0}^{k},\end{cases}

and define

𝔤k(g;τ)=yk(g)ec,i=1khiyiτ\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau)=\sum\limits_{y\in\operatorname{\mathcal{M}}_{k}(g^{\prime})}e^{-\langle c,\sum\limits_{i=1}^{k}h_{i}y_{i}\rangle\tau}
It follows that𝔣(𝒫,c;τ)=z𝒫nec,zτ=yn(g0)ec,A1(by)τ==ec,A1bτyn(g0)e1Δc,Ayτ=ec,A1bτ𝔤n(g0;τΔ).\text{It follows that}\quad\operatorname{\mathfrak{f}}(\operatorname{\mathcal{P}},c;\,\tau)=\sum\limits_{z\in\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}}e^{\langle c,z\rangle\tau}=\sum\limits_{y\in\operatorname{\mathcal{M}}_{n}(g_{0})}e^{\langle c,A^{-1}(b-y)\rangle\tau}=\\ =e^{\langle c,A^{-1}b\rangle\tau}\cdot\sum\limits_{y\in\operatorname{\mathcal{M}}_{n}(g_{0})}e^{-\frac{1}{\Delta}\langle c,A^{*}y\rangle\tau}=e^{\langle c,A^{-1}b\rangle\tau}\cdot\operatorname{\mathfrak{g}}_{n}\bigl{(}g_{0};\frac{\tau}{\Delta}\bigr{)}. (18)

The formulae for 𝔤k(g;τ)\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau) were formally proven in [25, see its formulae (10), (11), and (12)], we cite them in the following separate lemma. Since the original published paper [25] contained an inaccuracy in the main result, we give a self-contained proof of the lemma in Subsection B of Appendix.

Lemma 2.

The following formulae hold:

𝔤1(g;τ)=ec,sh1τ1ec,r1h1τ,where s=min{y10:y1g1=g},\displaystyle\operatorname{\mathfrak{g}}_{1}(g^{\prime};\tau)=\frac{e^{-\langle c,sh_{1}\rangle\tau}}{1-e^{-\langle c,r_{1}h_{1}\rangle\tau}},\quad\text{where $s=\min\{y_{1}\in\operatorname{\mathbb{Z}}_{\geq 0}\colon y_{1}\cdot g_{1}=g^{\prime}\}$}, (19)
𝔤k(g;τ)=11ec,rkhkτi=0rk1ec,ihkτ𝔤k1(gigk;τ),\displaystyle\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau)=\frac{1}{1-e^{-\langle c,r_{k}h_{k}\rangle\tau}}\cdot\sum\limits_{i=0}^{r_{k}-1}e^{-\langle c,ih_{k}\rangle\tau}\cdot\operatorname{\mathfrak{g}}_{k-1}(g^{\prime}-i\cdot g_{k};\tau), (20)
𝔤k(g;τ)=i=kσψkσψϵi(k,g)eiτ(1ec,r1h1τ)(1ec,r2h2τ)(1ec,rkhkτ),\displaystyle\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau)=\frac{\sum\limits_{i=-k\cdot\sigma\cdot\psi}^{k\cdot\sigma\cdot\psi}\epsilon_{i}(k,g^{\prime})\cdot e^{-i\tau}}{\bigl{(}1-e^{-\langle c,r_{1}\cdot h_{1}\rangle\tau}\bigr{)}\bigl{(}1-e^{-\langle c,r_{2}h_{2}\rangle\tau}\bigr{)}\dots\bigl{(}1-e^{-\langle c,r_{k}h_{k}\rangle\tau}\bigr{)}}, (21)

where ϵi(k,g)0\epsilon_{i}(k,g^{\prime})\in\operatorname{\mathbb{Z}}_{\geq 0} are coefficients, depending on kk and gg^{\prime}. If the set {y10:y1g1=g}\{y_{1}\in\operatorname{\mathbb{Z}}_{\geq 0}\colon y_{1}g_{1}=g^{\prime}\} is empty, we put 𝔤1(g;τ):=0\operatorname{\mathfrak{g}}_{1}(g^{\prime};\tau)\mathrel{\mathop{\mathchar 58\relax}}=0. If the vector cc is chosen such that c,hi>0\langle c,h_{i}\rangle>0, for all i{1,,n}i\in\{1,\dots,n\}, then, for any τ>0\tau>0, k{1,,n}k\in\{1,\dots,n\}, and g𝒢g^{\prime}\in\operatorname{\mathcal{G}}, the series 𝔤k(g;τ)\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau) converges absolutely to the corresponding r.h.s.  functions.

Let us estimate the complexity to compute the representation (21) of 𝔤k(g;τ)\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau), for all k{1,,n}k\in\{1,\dots,n\} and g𝒢g^{\prime}\in\operatorname{\mathcal{G}}, using the recurrence (20). In comparison to the paper [25], we will use a bit more sophisticated and efficient algorithm to do that. Consider a quotient group 𝒬k=𝒢/gk\operatorname{\mathscr{Q}}_{k}=\operatorname{\mathcal{G}}/\langle g_{k}\rangle and fix 𝒬𝒬k\operatorname{\mathcal{Q}}\in\operatorname{\mathscr{Q}}_{k}. Clearly, 𝒬=q+gk\operatorname{\mathcal{Q}}=q+\langle g_{k}\rangle, where q𝒢q\in\operatorname{\mathcal{G}} is a member of 𝒬\operatorname{\mathcal{Q}}, and rk=|𝒬|r_{k}=\mathinner{\!\left\lvert\operatorname{\mathcal{Q}}\right\rvert}. For j{0,,rk1}j\in\{0,\dots,r_{k}-1\}, define

𝔥k(j;τ)=(1ec,r1h1τ)(1ec,rkhkτ)𝔤k(q+jgk;τ).\operatorname{\mathfrak{h}}_{k}(j;\tau)=\bigl{(}1-e^{-\langle c,r_{1}h_{1}\rangle\tau}\bigr{)}\cdot\ldots\cdot\bigl{(}1-e^{-\langle c,r_{k}h_{k}\rangle\tau}\bigr{)}\cdot\operatorname{\mathfrak{g}}_{k}(q+j\cdot g_{k};\tau). (22)

For the sake of simplicity, denote xky=(xy)modrkx\ominus_{k}y=(x-y)\bmod r_{k}, then the formulas (19), (20) and (21) become

𝔥1(j;τ)=ec,sh1τ,where s=min{y10:y1g1=q+jg1},\displaystyle\operatorname{\mathfrak{h}}_{1}(j;\tau)=e^{-\langle c,sh_{1}\rangle\tau},\quad\text{where $s=\min\{y_{1}\in\operatorname{\mathbb{Z}}_{\geq 0}\colon y_{1}g_{1}=q+j\cdot g_{1}\}$}, (23)
𝔥k(j;τ)=i=0rk1ec,ihkτ𝔥k1(jki;τ),\displaystyle\operatorname{\mathfrak{h}}_{k}(j;\tau)=\sum\limits_{i=0}^{r_{k}-1}e^{-\langle c,ih_{k}\rangle\tau}\cdot\operatorname{\mathfrak{h}}_{k-1}\bigl{(}j\ominus_{k}i;\tau\bigr{)}, (24)
𝔥k(j;τ)=i=kσψkσψϵi(k,q+jgk)eiτ.\displaystyle\operatorname{\mathfrak{h}}_{k}(j;\tau)=\sum\limits_{i=-k\cdot\sigma\cdot\psi}^{k\cdot\sigma\cdot\psi}\epsilon_{i}(k,q+j\cdot g_{k})\cdot e^{-i\tau}. (25)

Assume first that k=1k=1. Then, clearly, all the values

𝔥1(0;τ),𝔥1(1;τ),,𝔥1(r11;τ)\operatorname{\mathfrak{h}}_{1}(0;\tau),\operatorname{\mathfrak{h}}_{1}(1;\tau),\dots,\operatorname{\mathfrak{h}}_{1}(r_{1}-1;\tau)

can be computed with O(r1)O(r_{1}) operations. Assume now that k2k\geq 2 and that (k1)(k-1)-th level has already been computed. By the kk-th level, we mean all the functions 𝔥k(j;τ)\operatorname{\mathfrak{h}}_{k}(j;\tau), for j{0,,rk1}j\in\{0,\dots,r_{k}-1\}. Due to the formula (25), 𝔥k(j;τ)\operatorname{\mathfrak{h}}_{k}(j;\tau) contains O(kσψ)O(k\cdot\sigma\cdot\psi) monomials. Hence, the function 𝔥k(0;τ)\operatorname{\mathfrak{h}}_{k}(0;\tau) can be computed directly using the formula (24) with O(rkkσψ)O(r_{k}\cdot k\cdot\sigma\cdot\psi) operations. For j1j\geq 1, we have

𝔥k(j;τ)=i=0rk1ec,ihkτ𝔥k1(jki;τ)==i=1rk2ec,(i+1)hkτ𝔥k1(jk(i+1);τ)==ec,hkτ𝔥k(j1;τ)+𝔥k1(j;τ)ec,rkhkτ𝔥k1(jkrk;τ)==ec,hkτ𝔥k(j1;τ)+(1ec,rkhkτ)𝔥k1(j;τ).\operatorname{\mathfrak{h}}_{k}(j;\tau)=\sum\limits_{i=0}^{r_{k}-1}e^{-\langle c,ih_{k}\rangle\tau}\cdot\operatorname{\mathfrak{h}}_{k-1}(j\ominus_{k}i;\tau)=\\ =\sum\limits_{i=-1}^{r_{k}-2}e^{-\langle c,(i+1)h_{k}\rangle\tau}\cdot\operatorname{\mathfrak{h}}_{k-1}\bigl{(}j\ominus_{k}(i+1);\tau\bigr{)}=\\ =e^{-\langle c,h_{k}\rangle\tau}\cdot\operatorname{\mathfrak{h}}_{k}(j-1;\tau)+\operatorname{\mathfrak{h}}_{k-1}(j;\tau)-e^{-\langle c,r_{k}h_{k}\rangle\tau}\cdot\operatorname{\mathfrak{h}}_{k-1}\bigl{(}j\ominus_{k}r_{k};\tau\bigr{)}=\\ =e^{-\langle c,h_{k}\rangle\tau}\cdot\operatorname{\mathfrak{h}}_{k}(j-1;\tau)+(1-e^{-\langle c,r_{k}h_{k}\rangle\tau})\cdot\operatorname{\mathfrak{h}}_{k-1}\bigl{(}j;\tau\bigr{)}. (26)

Consequently, in the assumption that the (k1)(k-1)-th level has already been computed and that hk(0;τ)h_{k}(0;\tau) is known, all the functions hk(1;τ),,hk(rk1;τ)h_{k}(1;\tau),\dots,h_{k}(r_{k}-1;\tau) can be computed with O(rkkσψ)O(r_{k}\cdot k\cdot\sigma\cdot\psi) operations, using the last formula (26).

In turn, when the functions 𝔥k(j;τ)\operatorname{\mathfrak{h}}_{k}(j;\tau), for j{0,,rk1}j\in\{0,\dots,r_{k}-1\}, are already computed, we can return to the functions 𝔤k(g;τ)\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau), for g=q+jgkg^{\prime}=q+j\cdot g_{k}, using the formula (22). It will consume additional O(rk)O(r_{k}) group operations to compute g=q+jgkg^{\prime}=q+j\cdot g_{k}. By the definition of 𝒢\operatorname{\mathcal{G}}, the arithmetic cost of a single group operation can be estimated by the number of elements on the diagonal of SS that are not equal to 11. Clearly, this number is bounded by min{n,log2(Δ)}\min\{n,\log_{2}(\Delta)\}. Consequently, the arithmetic cost of the last step is O(rkn)O(r_{k}\cdot n), which is negligible in comparison with the 𝔥k(j;τ)\operatorname{\mathfrak{h}}_{k}(j;\tau) computational cost.

Summarizing, we need O(rkkσψ)O(r_{k}\cdot k\cdot\sigma\cdot\psi) operations to compute 𝔤k(g;τ)\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau), for g=q+jgkg^{\prime}=q+j\cdot g_{k} and j{0,,rk}j\in\{0,\dots,r_{k}\}. Therefore, since |𝒬|=Δ/rk\mathinner{\!\left\lvert\operatorname{\mathscr{Q}}\right\rvert}=\Delta/r_{k}, the arithmetic computational cost to compute kk-th level of 𝔤k()\operatorname{\mathfrak{g}}_{k}(\cdot) is

O(Δkσψ),O(\Delta\cdot k\cdot\sigma\cdot\psi),

and the total arithmetic cost to compute all the levels is

O(Δn2σψ).O(\Delta\cdot n^{2}\cdot\sigma\cdot\psi).

Finally, using the formula (18), we construct the function

𝔣(𝒫,c;τ)=ec,A1bτ𝔤n(g0;τΔ)==i=kσψkσψϵie1Δ(c,Abi)τ(1ec,r1Δh1τ)(1ec,r2Δh2τ)(1ec,rnΔhnτ),\operatorname{\mathfrak{f}}(\operatorname{\mathcal{P}},c;\tau)=e^{\langle c,A^{-1}b\rangle\tau}\cdot\operatorname{\mathfrak{g}}_{n}\bigl{(}g_{0};\frac{\tau}{\Delta}\bigr{)}=\\ =\frac{\sum\limits_{i=-k\cdot\sigma\cdot\psi}^{k\cdot\sigma\cdot\psi}\epsilon_{i}\cdot e^{\frac{1}{\Delta}\bigl{(}\langle c,A^{*}b\rangle-i\bigr{)}\tau}}{\bigl{(}1-e^{-\langle c,\frac{r_{1}}{\Delta}h_{1}\rangle\tau}\bigr{)}\bigl{(}1-e^{-\langle c,\frac{r_{2}}{\Delta}h_{2}\rangle\tau}\bigr{)}\dots\bigl{(}1-e^{-\langle c,\frac{r_{n}}{\Delta}h_{n}\rangle\tau}\bigr{)}},

where ϵi:=ϵi(n,g0)\epsilon_{i}\mathrel{\mathop{\mathchar 58\relax}}=\epsilon_{i}(n,g_{0}), which gives the desired representation of 𝔣(𝒫,c;τ)\operatorname{\mathfrak{f}}(\operatorname{\mathcal{P}},c;\tau). Since 𝔤n(g0;τ)\operatorname{\mathfrak{g}}_{n}(g_{0};\tau) converges absolutely, for all τ>0\tau>0, the same is true for 𝔣(𝒫,c;τ)\operatorname{\mathfrak{f}}(\operatorname{\mathcal{P}},c;\tau). Clearly, the arithmetic cost of the last transformation is proportional to the nominator length of 𝔤n(g0;τ)\operatorname{\mathfrak{g}}_{n}(g_{0};\tau), which is O(nσψ)O(n\cdot\sigma\cdot\psi). ∎

It is known that a slight perturbation in the right-hand side of a system AxbAx\leq b can transform the polyhedron 𝒫(A,b)\operatorname{\mathcal{P}}(A,b) to a simple one. We refer to the work [20] of Megiddo & Chandrasekaran. For ε(0,1)\varepsilon\in(0,1) and i{1,,m}i\in\{1,\dots,m\}, denote tεmt_{\varepsilon}\in\operatorname{\mathbb{Q}}^{m} to be a vector with (tε)i=εi(t_{\varepsilon})_{i}=\varepsilon^{i}.

Theorem 9 (Megiddo & Chandrasekaran [20]).

For any input matrix Am×nA\in\operatorname{\mathbb{Z}}^{m\times n} with rank(A)=n\operatorname{rank}(A)=n, there exists a rational value εA(0,1)\varepsilon_{A}\in(0,1), such that, for any bmb\in\operatorname{\mathbb{Z}}^{m} and any ε(0,εA]\varepsilon\in(0,\varepsilon_{A}], the polyhedron 𝒫(A,b+tε)\operatorname{\mathcal{P}}(A,b+t_{\varepsilon}) is simple.

The value εA\varepsilon_{A} can be computed by a polynomial-time algorithm. More precisely, the algorithm needs O(logn)O(\log n) operations with numbers of size O(nlog(nAmax))O\bigl{(}n\cdot\log\bigl{(}n\mathinner{\!\left\lVert A\right\rVert}_{\max}\bigr{)}\bigr{)}.

Remark 3.

Let us discuss how to apply Theorem 9 to systems with rational r.h.s. For Am×nA\in\operatorname{\mathbb{Z}}^{m\times n} with rank(A)=n\operatorname{rank}(A)=n and bmb\in\operatorname{\mathbb{Q}}^{m}, let 𝒫:=𝒫(A,b)\operatorname{\mathcal{P}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\mathcal{P}}(A,b) be an nn-dimensional polyhedron. Let us show how to construct a vector tmt\in\operatorname{\mathbb{Q}}^{m}, such that the polyhedron 𝒫(A,b+t)\operatorname{\mathcal{P}}(A,b+t) will be simple and integrally equivalent to 𝒫\operatorname{\mathcal{P}}.

To this end, let D0m×mD\in\operatorname{\mathbb{Z}}_{\geq 0}^{m\times m} be the diagonal matrix, composed of the denominators of the corresponding components of bb. Note that 𝒫=𝒫(DA,Db)\operatorname{\mathcal{P}}=\operatorname{\mathcal{P}}(DA,Db). Next, we apply Theorem 9 to the matrix DADA, and let ε\varepsilon be the resulting perturbation value. Since DbDb is an integer and 0<ε<10<\varepsilon<1, the polyhedron 𝒫(A,b+D1tε)=𝒫(DA,Db+tε)\operatorname{\mathcal{P}}(A,b+D^{-1}t_{\varepsilon})=\operatorname{\mathcal{P}}(DA,Db+t_{\varepsilon}) is simple and integrally equivalent to 𝒫\operatorname{\mathcal{P}}. Consequently, we can put t:=D1tεt\mathrel{\mathop{\mathchar 58\relax}}=D^{-1}t_{\varepsilon}. Additionally, note that the described procedure needs only O(m)O(m) operations to calculate tt.

6.3 The Proof of Theorem 2

Proof.

Since any system in the standard form can be straightforwardly transformed to a system in the canonical form without changing the solutions set, assume that the polytope 𝒫\operatorname{\mathcal{P}} is defined by a system AxbAx\leq b, where Am×nA\in\operatorname{\mathbb{Z}}^{m\times n} and bmb\in\operatorname{\mathbb{Q}}^{m}.

Since 𝒫\operatorname{\mathcal{P}} is bounded, it follows that rank(A)=n\operatorname{rank}(A)=n. Since bb is a rational vector, we can assume that gcd(Aj)=1\gcd(A_{j})=1, for all j{1,,m}j\in\{1,\dots,m\}. Now, let us assume that dim(𝒫)<n\dim(\operatorname{\mathcal{P}})<n. Clearly, it is equivalent to the existence of an index j{1,,m}j\in\{1,\dots,m\}, such that Ajx=bjA_{j}x=b_{j}, for all x𝒫x\in\operatorname{\mathcal{P}}. Note that such jj could be found by a polynomial-time algorithm. W.l.o.g., assume that j=1j=1. Since gcd(A1)=1\gcd(A_{1})=1, there exists a unimodular matrix Qn×nQ\in\operatorname{\mathbb{Z}}^{n\times n} such that A1=(1𝟎n1)QA_{1}=(1\,\operatorname{\mathbf{0}}_{n-1})Q. After the unimodular map x=Qxx^{\prime}=Qx, the system AxbAx\leq b transforms to the integrally equivalent222Saying ”integrally equivalent” we mean that the sets of integer solutions of both systems are connected by a bijective unimodular map. system

(1𝟎n1hB)xb,\begin{pmatrix}1&\operatorname{\mathbf{0}}_{n-1}\\ h&B\\ \end{pmatrix}x\leq b,

where hm1h\in\operatorname{\mathbb{Z}}^{m-1} and B(m1)×(n1)B\in\operatorname{\mathbb{Z}}^{(m-1)\times(n-1)}. Note that Δ(B)=Δ(A)=Δ\Delta(B)=\Delta(A)=\Delta. Since the first inequality always holds as an equality on the solutions set, we can just substitute x1=b1x_{1}=b_{1}. As the result, we achieve a new integrally equivalent system with n1n-1 variables BxbBx\leq b^{\prime}, where b=b{2,,m}b1hb^{\prime}=b_{\{2,\dots,m\}}-b_{1}\cdot h.

Due to the proposed reasoning, we can assume that dim(𝒫)=n\dim(\operatorname{\mathcal{P}})=n. Let us make some more assumptions on 𝒫\operatorname{\mathcal{P}}. Due to Theorem 9 and Remark 3, using O(m)O(m) operations, we can produce a new r.h.s. vector bmb^{\prime}\in\operatorname{\mathbb{Q}}^{m}, such that a new polytope, defined by AxbAx\leq b^{\prime}, will be simple and integrally equivalent to 𝒫\operatorname{\mathcal{P}}. Consequently, we can assume that 𝒫\operatorname{\mathcal{P}} is simple. Let vvert(𝒫)v\in\operatorname{vert}(\operatorname{\mathcal{P}}), denote

𝒥(v)={j:Ajv=bj},and\displaystyle\operatorname{\mathcal{J}}(v)=\{j\colon A_{j}v=b_{j}\},\text{and}
𝒫v={xn:A𝒥(v)xb𝒥(v)}.\displaystyle\operatorname{\mathcal{P}}_{v}=\{x\in\operatorname{\mathbb{R}}^{n}\colon A_{\operatorname{\mathcal{J}}(v)}x\leq b_{\operatorname{\mathcal{J}}(v)}\}.

Since 𝒫\operatorname{\mathcal{P}} is simple, it follows that A𝒥(v)n×nA_{\operatorname{\mathcal{J}}(v)}\in\operatorname{\mathbb{Z}}^{n\times n} and 0<det(A𝒥(v))Δ0<\det(A_{\operatorname{\mathcal{J}}(v)})\leq\Delta. Due to the seminal work [81] due to Avis & Fukuda, all vertices of the simple polyhedron 𝒫\operatorname{\mathcal{P}} can be enumerated with O(mn|vert(𝒫)|)O\bigl{(}m\cdot n\cdot\mathinner{\!\left\lvert\operatorname{vert}(\operatorname{\mathcal{P}})\right\rvert}\bigr{)} arithmetic operations. Due to Lee, Paat, Stallknecht & Xu [53], a Δ\Delta-modular system has at most O(n2Δ2)O(n^{2}\cdot\Delta^{2}) inequalities, i.e. m=O(n2Δ2)m=O(n^{2}\cdot\Delta^{2}). Hence, all the polyhedra 𝒫v\operatorname{\mathcal{P}}_{v} can be constructed with O(νn3Δ2)O(\nu\cdot n^{3}\cdot\Delta^{2}) operations.

Define the set \operatorname{\mathcal{E}} of edge directions by the following way:

hh is a column of A𝒥(v) for some vvert(𝒫),h\in\operatorname{\mathcal{E}}\;\Longleftrightarrow\;h\text{ is a column of }-A^{*}_{\operatorname{\mathcal{J}}(v)}\text{ for some $v\in\operatorname{vert}(\operatorname{\mathcal{P}})$},

where B=|det(B)|B1B^{*}=\mathinner{\!\left\lvert\det(B)\right\rvert}\cdot B^{-1}, for arbitrary invertible BB. Assume that a vector cnc\in\operatorname{\mathbb{Z}}^{n} is chosen, such that ch0c^{\top}h\not=0, for each hh\in\operatorname{\mathcal{E}}, and denote ψ=maxh{|ch|}\psi=\max\limits_{h\in\operatorname{\mathcal{E}}}\bigl{\{}\mathinner{\!\left\lvert c^{\top}h\right\rvert}\bigr{\}}. Note that such a choice of the vector cc satisfies the conditions of Lemma 1 applied to any polyhedra 𝒫v\operatorname{\mathcal{P}}_{v}, for vvert(𝒫)v\in\operatorname{vert}(\operatorname{\mathcal{P}}). We use Lemma 1 to all 𝒫v\operatorname{\mathcal{P}}_{v} with the proposed choice of cc, and construct the corresponding functions fv(τ)f_{v}(\tau). Since σΔ\sigma\leq\Delta, and, due to Storjohann [77], TSNF(n)=O(n3)T_{SNF}(n)=O(n^{3}), the arithmetic complexity of the last operation can be estimated by

O(νψn2Δ2).O(\nu\cdot\psi\cdot n^{2}\cdot\Delta^{2}). (27)

Denote, additionally, f𝒫(τ)=vvert(𝒫)fv(τ)f_{\operatorname{\mathcal{P}}}(\tau)=\sum_{v\in\operatorname{vert}(\operatorname{\mathcal{P}})}f_{v}(\tau). Due to Brion’s theorem [82] (see also [13, Chapter 6]), we have

[𝒫]=vvert(𝒫)[𝒫v] modulo polyhedra with lines[\operatorname{\mathcal{P}}]=\sum\limits_{v\in\operatorname{vert}(\operatorname{\mathcal{P}})}[\operatorname{\mathcal{P}}_{v}]\operatorname{\text{\it\quad modulo polyhedra with lines}} (28)

Consequently, it follows from Theorem 8 and the last formula (28) that, for any τ\tau\in\operatorname{\mathbb{R}}, the series 𝔣(𝒫,c;τ)\operatorname{\mathfrak{f}}(\operatorname{\mathcal{P}},c;\tau) absolutely converges to the function f𝒫(τ)f_{\operatorname{\mathcal{P}}}(\tau). Therefore, to calculate |𝒫n|\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}, we need to compute limτ0f𝒫(τ)\lim\limits_{\tau\to 0}f_{\operatorname{\mathcal{P}}}(\tau). We follow to [13, Chapter 14], to compute |𝒫n|=limτ0f𝒫(τ)\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}=\lim\limits_{\tau\to 0}f_{\operatorname{\mathcal{P}}}(\tau) as a constant term in the Taylor decomposition of f𝒫(τ)f_{\operatorname{\mathcal{P}}}(\tau). Clearly, the constant term of f𝒫(τ)f_{\operatorname{\mathcal{P}}}(\tau) is just the sum of constant terms of fv(τ)f_{v}(\tau), for vvert(𝒫)v\in\operatorname{vert}(\operatorname{\mathcal{P}}). By this reason, let us fix some vv and consider

fv(τ)=i=nσψnσψϵieαiτ(1eβ1τ)(1eβ2τ)(1eβnτ),f_{v}(\tau)=\frac{\sum\limits_{i=-n\cdot\sigma\cdot\psi}^{n\cdot\sigma\cdot\psi}\epsilon_{i}\cdot e^{\alpha_{i}\cdot\tau}}{\bigl{(}1-e^{-\beta_{1}\cdot\tau}\bigr{)}\bigl{(}1-e^{-\beta_{2}\cdot\tau}\bigr{)}\dots\bigl{(}1-e^{-\beta_{n}\cdot\tau}\bigr{)}},

where ϵi0\epsilon_{i}\in\operatorname{\mathbb{Z}}_{\geq 0}, βi>0\beta_{i}\in\operatorname{\mathbb{Z}}_{>0} and αi\alpha_{i}\in\operatorname{\mathbb{Z}}. Due to [13, Chapter 14], we can see that the constant term in the Taylor decomposition for fv(τ)f_{v}(\tau) is exactly

i=nσψnσψϵiβ1βnj=0nαijj!tdnj(β1,,βn),\sum\limits_{i=-n\cdot\sigma\cdot\psi}^{n\cdot\sigma\cdot\psi}\frac{\epsilon_{i}}{\beta_{1}\dots\beta_{n}}\sum\limits_{j=0}^{n}\frac{\alpha_{i}^{j}}{j!}\cdot\operatorname{td}_{n-j}(\beta_{1},\dots,\beta_{n}), (29)

where tdj(β1,,βn)\operatorname{td}_{j}(\beta_{1},\dots,\beta_{n}) is a homogeneous polynomial of degree jj, called the jj-th Todd polynomial on β1,,βn\beta_{1},\dots,\beta_{n}. Due to [16, Theorem 7.2.8, p. 137], the values of tdj(β1,,βn)\operatorname{td}_{j}(\beta_{1},\dots,\beta_{n}), for j{1,,n}j\in\{1,\dots,n\}, can be computed with an algorithm that is polynomial in nn and the bit-encoding length of β1,,βn\beta_{1},\dots,\beta_{n}. Moreover, it follows from the theorem’s proof that the arithmetic complexity can be bounded by O(n3)O(n^{3}). Therefore, it is not hard to see that we need O(n3+n2σψ)O(n^{3}+n^{2}\cdot\sigma\cdot\psi) operations to compute the value of (29), and the total arithmetic cost to find the constant term in the Taylor’s decomposition of the whole function f𝒫(τ)f_{\operatorname{\mathcal{P}}}(\tau) is O(ν(n3+n2σψ))O\bigl{(}\nu\cdot(n^{3}+n^{2}\cdot\sigma\cdot\psi)\bigr{)}. Let us make an assumption that ψ\psi can be upper bounded by a function that grows as Ω(n)\Omega(n). In this assumption, the complexity bound O(ν(n3+n2σψ))O\bigl{(}\nu\cdot(n^{3}+n^{2}\cdot\sigma\cdot\psi)\bigr{)} is negligible with respect to (27). Hence, we can assume that the formula (27) bounds the arithmetic complexity of the algorithm at the current state.

Previously, we made the assumption that the vector cnc\in\operatorname{\mathbb{Z}}^{n} is chosen such that ch0c^{\top}h\not=0, for any hh\in\operatorname{\mathcal{E}}. Let us present an algorithm that generates a vector cc with a respectively small value of the parameter ψ=maxh{|ch|}\psi=\max\limits_{h\in\operatorname{\mathcal{E}}}\bigl{\{}\mathinner{\!\left\lvert c^{\top}h\right\rvert}\bigr{\}}. The main idea is concentrated in following Theorem 10 due to corrected version [28] of the paper [25]. Since at the current moment of time the corrections [28] are available only as a preprint, we give a self-contained proof of Theorem 10 in Subsection A of Appendix.

Theorem 10 (Theorem 2 of [25]).

Let 𝒜\operatorname{\mathcal{A}} be a set composed of mm non-zero vectors in n\operatorname{\mathbb{Q}}^{n}. Then, there exists a randomized algorithm with the expected arithmetic complexity O(nm)O(n\cdot m), which finds a vector znz\in\operatorname{\mathbb{Z}}^{n} such that:

  1. 1.

    az0a^{\top}z\not=0, for any a𝒜a\in\operatorname{\mathcal{A}};

  2. 2.

    zm\|z\|_{\infty}\leq m.

Since the polytope 𝒫\operatorname{\mathcal{P}} is assumed to be simple, each vertex vvert(𝒫)v\in\operatorname{vert}(\operatorname{\mathcal{P}}) corresponds to exactly nn edge directions. Consequently, 2||=νn2\cdot\mathinner{\!\left\lvert\operatorname{\mathcal{E}}\right\rvert}=\nu\cdot n. Choose some basis sub-matrix BB of AA. Note that Bh𝟎Bh\not=\operatorname{\mathbf{0}} and (Bh)i{Δ,,Δ}(Bh)_{i}\in\{-\Delta,\dots,\Delta\}, for any hh\in\operatorname{\mathcal{E}} and i{1,,n}i\in\{1,\dots,n\}. Next, we use Theorem 10 to the set BB\cdot\operatorname{\mathcal{E}}, which produces a vector zz, such that

  1. 1.

    zBh0z^{\top}Bh\not=0, for each hh\in\operatorname{\mathcal{E}};

  2. 2.

    zνn\|z\|_{\infty}\leq\nu\cdot n.

Now, we assign c:=Bzc\mathrel{\mathop{\mathchar 58\relax}}=B^{\top}z. By the construction, we have ch0c^{\top}h\not=0 and |ch|=|zBh|n2νΔ\mathinner{\!\left\lvert c^{\top}h\right\rvert}=\mathinner{\!\left\lvert z^{\top}Bh\right\rvert}\leq n^{2}\cdot\nu\cdot\Delta, for each hh\in\operatorname{\mathcal{E}}. Therefore, ψn2νΔ\psi\leq n^{2}\cdot\nu\cdot\Delta, which justifies the assumption on ψ\psi. Due to the formula (27), the total complexity bound becomes O(ν2n4Δ3)O(\nu^{2}\cdot n^{4}\cdot\Delta^{3}), which finishes the proof.

Remark 4.

Let us discuss an inaccuracy of the paper [25], which was corrected in the preprint [28]. It has just been proven that there exists a vector cnc\in\operatorname{\mathbb{Z}}^{n}, such that ch0c^{\top}h\not=0, for each hh\in\operatorname{\mathcal{E}}, with ψn2νΔ\psi\leq n^{2}\cdot\nu\cdot\Delta, where ψ=maxh{|ch|}\psi=\max\limits_{h\in\operatorname{\mathcal{E}}}\bigl{\{}\mathinner{\!\left\lvert c^{\top}h\right\rvert}\bigr{\}}. In turn, the paper [25] chooses the vector cnc\in\operatorname{\mathbb{Z}}^{n} by a different way that causes an error. More precisely, let BB be a basis sub-matrix of AA, corresponding to some vertex vvert(𝒫)v\in\operatorname{vert}(\operatorname{\mathcal{P}}). Since 𝒫\operatorname{\mathcal{P}} is assumed to be simple, BB is an n×nn\times n non-degenerate integer matrix. Then, the vector cc is chosen as the sum of columns of BB^{\top}. It is easy to see that ψnΔ\psi\leq n\cdot\Delta, but the statement h:ch0\forall h\in\operatorname{\mathcal{E}}\colon c^{\top}h\not=0 is not necessary to be correct for every 𝒫\operatorname{\mathcal{P}}, which is the mentioned inaccuracy.

6.4 A bound for the number of vertices of a rational polyhedron

For an arbitrary matrix Bm×nB\in\operatorname{\mathbb{R}}^{m\times n}, denote cone(B)={Bt:t0n}\operatorname{cone}(B)=\{Bt\colon t\in\operatorname{\mathbb{R}}^{n}_{\geq 0}\}. The following lemmas help to estimate the number of vertices in a polyhedron, defined by a sparse system. We will use this bound to prove Theorem 3.

Lemma 3.

Let An×nA\in\operatorname{\mathbb{Z}}^{n\times n}, det(A)0\det(A)\not=0, and :n0\|\cdot\|\colon\operatorname{\mathbb{R}}^{n}\to\operatorname{\mathbb{R}}_{\geq 0} be any vector norm, which is symmetric with respect to any coordinate, i.e. x=x2xiei\|x\|=\|x-2x_{i}\cdot e_{i}\|, for any xnx\in\operatorname{\mathbb{R}}^{n} and i{1,,n}i\in\{1,\dots,n\}. Let us consider a sector 𝒰=𝔹cone(A)\operatorname{\mathcal{U}}=\operatorname{\mathbb{B}}_{\|\cdot\|}\cap\operatorname{cone}(A), where 𝔹={xn:x1}\operatorname{\mathbb{B}}_{\|\cdot\|}=\{x\in\operatorname{\mathbb{R}}^{n}\colon\|x\|\leq 1\} is the unit ball with respect to the \|\cdot\|-norm. Then,

vol(𝒰)|det(A)|2nvol(r𝔹),\operatorname{vol}(\operatorname{\mathcal{U}})\geq\frac{\mathinner{\!\left\lvert\det(A)\right\rvert}}{2^{n}}\cdot\operatorname{vol}(r\cdot\operatorname{\mathbb{B}}_{\|\cdot\|}), (30)

where r𝔹r\cdot\operatorname{\mathbb{B}}_{\|\cdot\|} is the \|\cdot\|-ball of the maximum radius rr, inscribed into the set {xn:Ax1}\{x\in\operatorname{\mathbb{R}}^{n}\colon\|Ax\|\leq 1\}.

Consequently, let 𝒰1=𝔹1cone(A)\operatorname{\mathcal{U}}_{1}=\operatorname{\mathbb{B}}_{1}\cap\operatorname{cone}(A) and 𝒰=𝔹cone(A)\operatorname{\mathcal{U}}_{\infty}=\operatorname{\mathbb{B}}_{\infty}\cap\operatorname{cone}(A). Then,

vol(𝒰1)|det(A)|(2A)nvol(𝔹1)|det(A)|(2Amaxcs(A))nvol(𝔹1);\displaystyle\operatorname{vol}(\operatorname{\mathcal{U}}_{1})\geq\frac{\mathinner{\!\left\lvert\det(A)\right\rvert}}{(2\|A\|_{\infty})^{n}}\cdot\operatorname{vol}(\operatorname{\mathbb{B}}_{1})\geq\frac{\mathinner{\!\left\lvert\det(A)\right\rvert}}{\bigl{(}2\|A\|_{\max}\cdot\operatorname{cs}(A)\bigr{)}^{n}}\cdot\operatorname{vol}(\operatorname{\mathbb{B}}_{1}); (31)
vol(𝒰)|det(A)|(2A1)nvol(𝔹)|det(A)|(2Amaxrs(A))nvol(𝔹).\displaystyle\operatorname{vol}(\operatorname{\mathcal{U}}_{\infty})\geq\frac{\mathinner{\!\left\lvert\det(A)\right\rvert}}{(2\|A\|_{1})^{n}}\cdot\operatorname{vol}(\operatorname{\mathbb{B}}_{\infty})\geq\frac{\mathinner{\!\left\lvert\det(A)\right\rvert}}{\bigl{(}2\|A\|_{\max}\cdot\operatorname{rs}(A)\bigr{)}^{n}}\cdot\operatorname{vol}(\operatorname{\mathbb{B}}_{\infty}). (32)
Proof.

Let us prove the inequality (30). Clearly,

vol(𝒰)=|det(A)|vol(𝒦cone(In×n)),\operatorname{vol}(\operatorname{\mathcal{U}})=\mathinner{\!\left\lvert\det(A)\right\rvert}\cdot\operatorname{vol}\bigl{(}\operatorname{\mathcal{K}}\cap\operatorname{cone}(I_{n\times n})\bigr{)},

where 𝒦={xn:Ax1}\operatorname{\mathcal{K}}=\{x\in\operatorname{\mathbb{R}}^{n}\colon\|Ax\|\leq 1\}. By the definition of rr, we have 𝒦r𝔹\operatorname{\mathcal{K}}\supseteq r\cdot\operatorname{\mathbb{B}}_{\|\cdot\|}. Consequently,

vol(𝒰)|det(A)|vol(r𝔹cone(In×n))|det(A)|2nvol(r𝔹).\operatorname{vol}(\operatorname{\mathcal{U}})\geq\mathinner{\!\left\lvert\det(A)\right\rvert}\cdot\operatorname{vol}\bigl{(}r\cdot\operatorname{\mathbb{B}}_{\|\cdot\|}\cap\operatorname{cone}(I_{n\times n})\bigr{)}\geq\frac{\mathinner{\!\left\lvert\det(A)\right\rvert}}{2^{n}}\cdot\operatorname{vol}(r\cdot\operatorname{\mathbb{B}}_{\|\cdot\|}).

Now, let us prove the inequality (31). To this end, we just need to prove the inequality r1Ar\geq\frac{1}{\|A\|_{\infty}} with respect to the l1l_{1}-norm. Let us consider the set 𝒦\operatorname{\mathcal{K}}. It can be represented as the set of solutions of the following inequality:

i=1n|Aix|1.\sum\limits_{i=1}^{n}\mathinner{\!\left\lvert A_{i*}x\right\rvert}\leq 1. (33)

Let us consider the 2n2n points ±pi=±1Aei\pm p_{i}=\pm\frac{1}{\|A\|_{\infty}}\cdot e_{i}, for i{1,,n}i\in\{1,\dots,n\}. Substituting ±pj\pm p_{j} to the inequality (33), we have

i=1n|Aipj|=1Ai=1n|Aiej|=1Ai=1n|Aij|1.\sum\limits_{i=1}^{n}\mathinner{\!\left\lvert A_{i*}p_{j}\right\rvert}=\frac{1}{\|A\|_{\infty}}\cdot\sum\limits_{i=1}^{n}\mathinner{\!\left\lvert A_{i*}e_{j}\right\rvert}=\frac{1}{\|A\|_{\infty}}\cdot\sum\limits_{i=1}^{n}\mathinner{\!\left\lvert A_{ij}\right\rvert}\leq 1.

Hence, all the points ±pi\pm p_{i}, for i{1,,n}i\in\{1,\dots,n\}, satisfy the inequality (33). Since 𝒦\operatorname{\mathcal{K}} is convex, we have 1A𝔹1𝒦\frac{1}{\|A\|_{\infty}}\cdot\operatorname{\mathbb{B}}_{1}\subseteq\operatorname{\mathcal{K}}, and, consequently, r1Ar\geq\frac{1}{\|A\|_{\infty}}.

Finally, let us prove the inequality (32). Again, we need to show that r1A1r\geq\frac{1}{\|A\|_{1}} with respect to the l1l_{1}-norm. In the current case, the set 𝒦\operatorname{\mathcal{K}} can be represented as the set of solutions of the following system:

i{1,,n},|Aix|1.\forall i\in\{1,\dots,n\},\quad\mathinner{\!\left\lvert A_{i*}x\right\rvert}\leq 1. (34)

Let us consider the set ={1A1(±1,±1,,±1)}\operatorname{\mathcal{M}}=\{\frac{1}{\|A\|_{1}}\cdot(\pm 1,\pm 1,\dots,\pm 1)^{\top}\} of 2n2^{n} points. Substituting any point pp\in\operatorname{\mathcal{M}} to the jj-th inequality of the system (34), we have

|Ajp|i=1n|Aji||pi|=1A1i=1n|Aji|1.\mathinner{\!\left\lvert A_{j*}p\right\rvert}\leq\sum\limits_{i=1}^{n}\mathinner{\!\left\lvert A_{ji}\right\rvert}\mathinner{\!\left\lvert p_{i}\right\rvert}=\frac{1}{\|A\|_{1}}\cdot\sum\limits_{i=1}^{n}\mathinner{\!\left\lvert A_{ji}\right\rvert}\leq 1.

Hence, all the points pp\in\operatorname{\mathcal{M}} satisfy the inequality (34). Since 𝒦\operatorname{\mathcal{K}} is convex, we have 1A1𝔹𝒦\frac{1}{\|A\|_{1}}\cdot\operatorname{\mathbb{B}}_{\infty}\subseteq\operatorname{\mathcal{K}}, and, consequently, r1A1r\geq\frac{1}{\|A\|_{1}}. ∎

Lemma 4.

Let Am×nA\in\operatorname{\mathbb{Z}}^{m\times n}, bmb\in\operatorname{\mathbb{Q}}^{m}, and rank(A)=n\operatorname{rank}(A)=n. Let 𝒫\operatorname{\mathcal{P}} be a polyhedron, defined by a system AxbAx\leq b. Then, |vert(𝒫)|2nγ1,(A)n(2Amax)nts¯(A)n\mathinner{\!\left\lvert\operatorname{vert}(\operatorname{\mathcal{P}})\right\rvert}\leq 2^{n}\cdot{\operatorname{\gamma_{1,\infty}}(A)}^{n}\leq\bigl{(}2\|A\|_{\max}\bigr{)}^{n}\cdot\operatorname{\overline{\operatorname{ts}}}(A)^{n}.

Proof.

Let 𝒩(v)=cone(A𝒥(v))\operatorname{\mathcal{N}}(v)=\operatorname{cone}\bigl{(}A^{\top}_{\operatorname{\mathcal{J}}(v)}\bigr{)} be the normal cone of a vertex vvert(𝒫)v\in\operatorname{vert}(\operatorname{\mathcal{P}}), where 𝒥(v)={j{1,,m}:Ajv=bj}\operatorname{\mathcal{J}}(v)=\bigl{\{}j\in\{1,\dots,m\}\colon A_{j*}v=b_{j}\bigr{\}}. Since rank(A)=n\operatorname{rank}(A)=n, we have dim(𝒩(v))=n\dim\bigl{(}\operatorname{\mathcal{N}}(v)\bigr{)}=n, for any vvert(𝒫)v\in\operatorname{vert}(\operatorname{\mathcal{P}}). It is a known fact that dim(𝒩(v1)𝒩(v2))<n\dim\bigl{(}\operatorname{\mathcal{N}}(v_{1})\cap\operatorname{\mathcal{N}}(v_{2})\bigr{)}<n, for different v1,v2vert(𝒫)v_{1},v_{2}\in\operatorname{vert}(\operatorname{\mathcal{P}}). Next, we will use the following trivial inclusion

vvert(𝒫)𝒩(v)𝔹𝔹,\bigcup\limits_{v\in\operatorname{vert}(\operatorname{\mathcal{P}})}\operatorname{\mathcal{N}}(v)\cap\operatorname{\mathbb{B}}\subseteq\operatorname{\mathbb{B}}, (35)

where 𝔹\operatorname{\mathbb{B}} is the unit ball with respect to any vector norm :n0\|\cdot\|\colon\operatorname{\mathbb{R}}^{n}\to\operatorname{\mathbb{R}}_{\geq 0}.

Again, since rank(A)=n\operatorname{rank}(A)=n, each matrix A𝒥(v)A^{\top}_{\operatorname{\mathcal{J}}(v)} contains a non-degenerate n×nn\times n sub-matrix. Taking 𝔹:=𝔹1\operatorname{\mathbb{B}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\mathbb{B}}_{1} or 𝔹:=𝔹\operatorname{\mathbb{B}}\mathrel{\mathop{\mathchar 58\relax}}=\operatorname{\mathbb{B}}_{\infty}, by Lemma 3, we have vol(𝒩(v)𝔹)vol(𝔹)(2γ1,(A))n\operatorname{vol}(\operatorname{\mathcal{N}}(v)\cap\operatorname{\mathbb{B}})\geq\frac{\operatorname{vol}(\operatorname{\mathbb{B}})}{\bigl{(}2\operatorname{\gamma_{1,\infty}}(A)\bigr{)}^{n}}. Finally, due to (35), we have

vol(𝔹)(2γ1,(A))n|vert(𝒫)|vol(𝔹).\frac{\operatorname{vol}(\operatorname{\mathbb{B}})}{\bigl{(}2\operatorname{\gamma_{1,\infty}}(A)\bigr{)}^{n}}\cdot\mathinner{\!\left\lvert\operatorname{vert}(\operatorname{\mathcal{P}})\right\rvert}\leq\operatorname{vol}(\operatorname{\mathbb{B}}).

6.5 The Proof of Theorem 3

Proof.

Consider first the case, when 𝒫\operatorname{\mathcal{P}} is unbounded. In this case, we need only to distinguish between two possibilities: |𝒫n|=0\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}=0 and |𝒫n|=+\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}=+\infty. Due to [23, Theorem 17.1], if |𝒫n|0\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}\not=0, then there exists v𝒫nv\in\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n} such that v(n+1)Δext\|v\|_{\infty}\leq(n+1)\cdot\Delta_{ext}, where Δext=Δ(Aext)\Delta_{ext}=\Delta(A_{ext}) and Aext=(Ab)A_{ext}=\bigl{(}A\,b\bigr{)} is the extended matrix of the system AxbAx\leq b. Consequently, to transform the unbounded case to the bounded one, we just need to add the inequalities |xi|(n+1)nn/2(Aextmax)n\mathinner{\!\left\lvert x_{i}\right\rvert}\leq(n+1)\cdot n^{n/2}\cdot\bigl{(}\|A_{ext}\|_{\max}\bigr{)}^{n}, for i{1,,n}i\in\{1,\dots,n\}, to the original system AxbAx\leq b.

Now, we can assume that 𝒫\operatorname{\mathcal{P}} is bounded, and consequently rank(A)=n\operatorname{rank}(A)=n. Due to Theorem 2, the counting problem can be solved by an algorithm with the arithmetic complexity bound

O(ν2n4Δ3),O(\nu^{2}\cdot n^{4}\cdot\Delta^{3}), (36)

where ν\nu is the maximum number of vertices in polyhedra with fixed AA and varying bb. In our case, the value of ν\nu can be estimated by Lemma 4. To estimate the value of Δ\Delta, we use the inequalities (2) and (3). The inequalities for ν\nu and Δ\Delta, together with the bound (36), give the desired complexity bound for the problem Count-IP.

Let us show how to find some point zz inside 𝒫n\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n} in the case |𝒫n|>0\mathinner{\!\left\lvert\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\right\rvert}>0, to handle the problem Feasibility-IP. For α,β\alpha,\beta\in\operatorname{\mathbb{Z}}, let us consider the polytope 𝒫(α,β)\operatorname{\mathcal{P}}^{\prime}(\alpha,\beta), defined by the system AxbAx\leq b with the additional inequality αx1β\alpha\leq x_{1}\leq\beta. The maximum rank-order sub-determinants of the new system are bounded by max{Δn,Δn1}\max\{\Delta_{n},\Delta_{n-1}\}. In turn, the value of Δn1\Delta_{n-1} can be estimated in the same way, as it was done for Δn\Delta_{n}. Let vv be some vertex of 𝒫\operatorname{\mathcal{P}}, which can be found by a polynomial-time algorithm. Due to the seminal sensitivity result [83] of Cook, Gerards, Schrijver & Tardos, if 𝒫n\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n}\not=\emptyset, then there exists a point z𝒫nz\in\operatorname{\mathcal{P}}\cap\operatorname{\mathbb{Z}}^{n} such that vznΔtot\|v-z\|_{\infty}\leq n\cdot\Delta_{tot}. So, the value of z1z_{1} can be found, using the binary search with questions to the 𝒫(α,β)n\operatorname{\mathcal{P}}^{\prime}(\alpha,\beta)\cap\operatorname{\mathbb{Z}}^{n}-feasibility oracle, which can be clearly reduced to the Count-IP problem. Clearly, we need O(log(nΔtot))O(\log(n\Delta_{tot})) calls to the oracle. After the moment, when we already know the value of z1z_{1}, we just add the equality x1=z1x_{1}=z_{1} to the system AxbAx\leq b and start a similar search procedure for the value of z2z_{2}. The total number of calls to the binary search oracle to compute all the components of zz is O(nlog(nΔtot))O(n\cdot\log(n\Delta_{tot})).

Finally, let us explain how to deal with the problem Opt-And-Count-IP. Let α,β\alpha,\beta\in\operatorname{\mathbb{Z}}, consider the polytope 𝒫(α,β)\operatorname{\mathcal{P}}^{\prime}(\alpha,\beta), defined by the system AxbAx\leq b with the additional inequality αcxβ\alpha\leq c^{\top}x\leq\beta. Let A(m+2)×nA^{\prime}\in\operatorname{\mathbb{Z}}^{(m+2)\times n} be the matrix that defines 𝒫(α,β)\operatorname{\mathcal{P}}^{\prime}(\alpha,\beta), i.e. A=(ccA)A^{\prime}=(c\;-c\;A^{\top}). Expanding sub-determinants of AA^{\prime} by the cc^{\top}-row, we have Δ(A)c1Δn1(A)\Delta(A^{\prime})\leq\|c\|_{1}\cdot\Delta_{n-1}(A). Let us estimate the number of vertices in 𝒫(α,β)\operatorname{\mathcal{P}}^{\prime}(\alpha,\beta). The polytope 𝒫(α,β)\operatorname{\mathcal{P}}^{\prime}(\alpha,\beta) is the intersection of the polytope 𝒫\operatorname{\mathcal{P}} with the slab {xn:αcxβ}\{x\in\operatorname{\mathbb{R}}^{n}\colon\alpha\leq c^{\top}x\leq\beta\}. Clearly, the new vertices may appear only on edges of 𝒫\operatorname{\mathcal{P}}, by at most 22 new vertices per edge. The number of edges in 𝒫\operatorname{\mathcal{P}} is bounded by |vert(𝒫)|2/4\mathinner{\!\left\lvert\operatorname{vert}(\operatorname{\mathcal{P}})\right\rvert}^{2}/4. In turn, the value of |vert(𝒫)|2/4\mathinner{\!\left\lvert\operatorname{vert}(\operatorname{\mathcal{P}})\right\rvert}^{2}/4 can be estimated, using Lemma 4. Due to Theorem 2, the value |𝒫(α,β)n|\mathinner{\!\left\lvert\operatorname{\mathcal{P}}^{\prime}(\alpha,\beta)\cap\operatorname{\mathbb{Z}}^{n}\right\rvert} can be computed by an algorithm with the desired complexity bounds. To complete the proof, we note that, using the binary search method, the original optimization problem can be reduced to a polynomial number of feasibility questions in the set 𝒫(α,β)n\operatorname{\mathcal{P}}^{\prime}(\alpha,\beta)\cap\operatorname{\mathbb{Z}}^{n} for different α,β\alpha,\beta. ∎

Acknowledgement

Section 2 was prepared within the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE). Subsection 2.2 and Section 3 were prepared under financial support of Russian Science Foundation grant No 21-11-00194. Additionally, the authors would thank the anonymous reviewers who offered important comments that significantly improved our work.

Statements and Declarations

Competing Interests: The authors have no competing interests.

Data availability statement: The manuscript has no associated data.

Appendix A Proof of Theorem 10

Proof.

Fix a parameter rr and let ={r,,r}\operatorname{\mathcal{I}}=\{-r,\dots,r\}. For a𝒜a\in\operatorname{\mathcal{A}}, denote a={xn:ax=0}\operatorname{\mathcal{H}}_{a}=\{x\in\operatorname{\mathcal{I}}^{n}\colon a^{\top}x=0\}, and let

𝒩=na𝒜a.\operatorname{\mathcal{N}}=\operatorname{\mathcal{I}}^{n}\setminus\bigcup\limits_{a\in\operatorname{\mathcal{A}}}\operatorname{\mathcal{H}}_{a}.

Consider a polynomial f:nf\colon\operatorname{\mathbb{R}}^{n}\to\operatorname{\mathbb{R}} given by the formula

f(x)=a𝒜ax.f(x)=\prod\limits_{a\in\operatorname{\mathcal{A}}}a^{\top}x.

Clearly, ff is a homogeneous polynomial with deg(f)=|𝒜|=m\deg(f)=\mathinner{\!\left\lvert\operatorname{\mathcal{A}}\right\rvert}=m. Let ={xn:f(x)=0}\operatorname{\mathcal{R}}=\{x\in\operatorname{\mathcal{I}}^{n}\colon f(x)=0\} be the roots of ff inside n\operatorname{\mathcal{I}}^{n}. Note that =a𝒜a\operatorname{\mathcal{R}}=\bigcup_{a\in\operatorname{\mathcal{A}}}\operatorname{\mathcal{H}}_{a} and 𝒩=n\operatorname{\mathcal{N}}=\operatorname{\mathcal{I}}^{n}\setminus\operatorname{\mathcal{R}}. Due to the known Schwartz–Zippel lemma, ||deg(f)||n1=m(2r+1)n1\mathinner{\!\left\lvert\operatorname{\mathcal{R}}\right\rvert}\leq\deg(f)\cdot\mathinner{\!\left\lvert\operatorname{\mathcal{I}}\right\rvert}^{n-1}=m\cdot(2r+1)^{n-1}. Therefore, |𝒩|(2r+1)nm(2r+1)n1=(2r+1)n1(2r+1m)\mathinner{\!\left\lvert\operatorname{\mathcal{N}}\right\rvert}\geq(2r+1)^{n}-m\cdot(2r+1)^{n-1}=(2r+1)^{n-1}\cdot(2r+1-m), and consequently

|𝒩||n|2r+1m2r+1=1m2r+1.\frac{\mathinner{\!\left\lvert\operatorname{\mathcal{N}}\right\rvert}}{\mathinner{\!\left\lvert\operatorname{\mathcal{I}}^{n}\right\rvert}}\geq\frac{2r+1-m}{2r+1}=1-\frac{m}{2r+1}.

Assign r:=mr\mathrel{\mathop{\mathchar 58\relax}}=m. After that, the previous inequality becomes |𝒩||n|>1/2\frac{\mathinner{\!\left\lvert\operatorname{\mathcal{N}}\right\rvert}}{\mathinner{\!\left\lvert\operatorname{\mathcal{I}}^{n}\right\rvert}}>1/2. Now, to find a vector zz that can satisfy the claims

  1. 1.

    az0a^{\top}z\not=0, for any a𝒜a\in\operatorname{\mathcal{A}};

  2. 2.

    zm\|z\|_{\infty}\leq m;

we uniformly sample points zz inside n\operatorname{\mathcal{I}}^{n}. With a probability at least 1/21/2 it will satisfy the first claim. The second claim is satisfied automatically. Therefore, the expected number of sampling iterations is O(1)O(1). The arithmetic complexity of a single iteration is clearly bounded by O(nm)O(n\cdot m), which completes the proof. ∎

Appendix B Proof of the Lemma 2

B.1 A Recurrent Formula for the Generating Function of a Group Polyhedron

Let 𝒢\operatorname{\mathcal{G}} be an arbitrary finite Abelian group and g1,,gn𝒢g_{1},\dots,g_{n}\in\operatorname{\mathcal{G}}. Let additionally ri=|gi|r_{i}=\mathinner{\!\left\lvert\langle g_{i}\rangle\right\rvert} be the order of gig_{i}, for i{1,,n}i\in\{1,\dots,n\}, and rmax=maxi{ri}r_{\max}=\max_{i}\{r_{i}\}. For g𝒢g^{\prime}\in\operatorname{\mathcal{G}} and k{1,,n}k\in\{1,\dots,n\}, let (k,g)\operatorname{\mathcal{M}}(k,g^{\prime}) be the solutions set of the following system:

{i=1kxigi=gx0k.\begin{cases}\sum\limits_{i=1}^{k}x_{i}g_{i}=g^{\prime}\\ x\in\operatorname{\mathbb{Z}}_{\geq 0}^{k}.\end{cases} (37)

Consider the formal power series 𝔣k(g;𝐱)=z(k,g)k𝐱z.\operatorname{\mathfrak{f}}_{k}(g^{\prime};\operatorname{\mathbf{x}})=\sum\limits_{z\in\operatorname{\mathcal{M}}(k,g^{\prime})\cap\operatorname{\mathbb{Z}}^{k}}\operatorname{\mathbf{x}}^{z}. For k=1k=1, we clearly have

𝔣1(g;𝐱)=x1s1x1r1,where s=min{x10:x1g1=g}.\operatorname{\mathfrak{f}}_{1}(g^{\prime};\operatorname{\mathbf{x}})=\frac{x_{1}^{s}}{1-x_{1}^{r_{1}}},\quad\text{where $s=\min\{x_{1}\in\operatorname{\mathbb{Z}}_{\geq 0}\colon x_{1}g_{1}=g^{\prime}\}$.} (38)

If such ss does not exist, we put 𝔣1(g;𝐱):=0\operatorname{\mathfrak{f}}_{1}(g^{\prime};\operatorname{\mathbf{x}})\mathrel{\mathop{\mathchar 58\relax}}=0. Clearly, the series 𝔣1(g;𝐱)\operatorname{\mathfrak{f}}_{1}(g^{\prime};\operatorname{\mathbf{x}}) absolutely converges to the corresponding r.h.s.  function for any x1x_{1}\in\operatorname{\mathbb{C}} with |x1r1|<1\mathinner{\!\left\lvert x_{1}^{r_{1}}\right\rvert}<1. For any value of xk0x_{k}\in\operatorname{\mathbb{Z}}_{\geq 0}, the system (37) can be rewritten as

{i=1k1xigi=gxkgkx0k1.\begin{cases}\sum\limits_{i=1}^{k-1}x_{i}g_{i}=g^{\prime}-x_{k}g_{k}\\ x\in\operatorname{\mathbb{Z}}_{\geq 0}^{k-1}.\end{cases}

Hence, for k1k\geq 1, we have

𝔣k(g;𝐱)==𝔣k1(g;𝐱)+xk𝔣k1(ggk;𝐱)++xkrk1𝔣k1(ggk(rk1);𝐱)1xkrk==11xkrki=0rk1xki𝔣k1(gigk;𝐱).\operatorname{\mathfrak{f}}_{k}(g^{\prime};\operatorname{\mathbf{x}})=\\ =\frac{\operatorname{\mathfrak{f}}_{k-1}(g^{\prime};\operatorname{\mathbf{x}})+x_{k}\cdot\operatorname{\mathfrak{f}}_{k-1}(g^{\prime}-g_{k};\operatorname{\mathbf{x}})+\dots+x_{k}^{r_{k}-1}\cdot\operatorname{\mathfrak{f}}_{k-1}(g^{\prime}-g_{k}\cdot(r_{k}-1);\operatorname{\mathbf{x}})}{1-x_{k}^{r_{k}}}=\\ =\frac{1}{1-x_{k}^{r_{k}}}\cdot\sum_{i=0}^{r_{k}-1}x_{k}^{i}\cdot\operatorname{\mathfrak{f}}_{k-1}(g^{\prime}-i\cdot g_{k};\operatorname{\mathbf{x}}). (39)
Consequently,𝔣k(g;𝐱)=i1=0r11ik=0rk1ϵi1,,ikx1i1xkik(1x1r1)(1x2r2)(1xkrk),\text{Consequently,}\quad\operatorname{\mathfrak{f}}_{k}(g^{\prime};\operatorname{\mathbf{x}})=\frac{\sum\limits_{i_{1}=0}^{r_{1}-1}\dots\sum\limits_{i_{k}=0}^{r_{k}-1}\epsilon_{i_{1},\dots,i_{k}}x_{1}^{i_{1}}\dots x_{k}^{i_{k}}}{(1-x_{1}^{r_{1}})(1-x_{2}^{r_{2}})\dots(1-x_{k}^{r_{k}})}, (40)

where the numerator is a polynomial with coefficients ϵi1,,ik{0,1}\epsilon_{i_{1},\dots,i_{k}}\in\{0,1\} and degree at most (r11)(rk1)(r_{1}-1)\dots(r_{k}-1). Since a sum of absolutely convergent series is absolutely convergent, it follows from the induction principle that the series 𝔣k(g;𝐱)\operatorname{\mathfrak{f}}_{k}(g^{\prime};\operatorname{\mathbf{x}}) absolutely converges to the r.h.s.  of the formula (40) when |xiri|<1\mathinner{\!\left\lvert x_{i}^{r_{i}}\right\rvert}<1 for each i{1,,k}i\in\{1,\dots,k\}.

B.2 The group 𝒢\operatorname{\mathcal{G}}, induced by the SNF, of AA

Recall that An×nA\in\operatorname{\mathbb{Z}}^{n\times n}, 0<Δ=|det(A)|0<\Delta=\mathinner{\!\left\lvert\det(A)\right\rvert}, and h1,,hnh_{1},\dots,h_{n} are the columns of A:=ΔA1A^{*}\mathrel{\mathop{\mathchar 58\relax}}=\Delta\cdot A^{-1}. The vector cnc\in\operatorname{\mathbb{Z}}^{n} is chosen, such that c,hi>0\langle c,h_{i}\rangle>0, for each i{1,,n}i\in\{1,\dots,n\}, and ψ=maxi|c,hi|\psi=\max_{i}\mathinner{\!\left\lvert\langle c,h_{i}\rangle\right\rvert}. Additionally, let S=PAQS=PAQ be the SNF of AA, where P,Qn×nP,Q\in\operatorname{\mathbb{Z}}^{n\times n} are unimodular, and σ=Snn\sigma=S_{nn}.

Let us consider the sets (k,g)\operatorname{\mathcal{M}}(k,g^{\prime}), induced by the group system (37) with 𝒢=n/Sn\operatorname{\mathcal{G}}=\operatorname{\mathbb{Z}}^{n}/S\operatorname{\mathbb{Z}}^{n} and gi=PimodSng_{i}=P_{*i}\bmod S\operatorname{\mathbb{Z}}^{n}. Note that riσr_{i}\leq\sigma, for each i{1,,n}i\in\{1,\dots,n\}. Additionally, let us consider a new formal series, defined by

𝔣^k(g;𝐱)=z(k,g)k𝐱i=1khizi,\hat{\operatorname{\mathfrak{f}}}_{k}(g^{\prime};\operatorname{\mathbf{x}})=\sum\limits_{z\in\operatorname{\mathcal{M}}(k,g^{\prime})\cap\operatorname{\mathbb{Z}}^{k}}\operatorname{\mathbf{x}}^{-\sum\limits_{i=1}^{k}h_{i}z_{i}},

which can be derived from the series 𝔣k(g;𝐱)\operatorname{\mathfrak{f}}_{k}(g^{\prime};\operatorname{\mathbf{x}}) by the monomial substitution xi𝐱hix_{i}\to\operatorname{\mathbf{x}}^{-h_{i}}. For 𝔣^k(g;𝐱)\hat{\operatorname{\mathfrak{f}}}_{k}(g^{\prime};\operatorname{\mathbf{x}}), the formulae (38), (39) and (40) become:

𝔣^1(g;𝐱)=𝐱sh11𝐱r1h1,where s=min{y10:y1g1=g},\displaystyle\hat{\operatorname{\mathfrak{f}}}_{1}(g^{\prime};\operatorname{\mathbf{x}})=\frac{\operatorname{\mathbf{x}}^{-sh_{1}}}{1-\operatorname{\mathbf{x}}^{-r_{1}h_{1}}},\quad\text{where $s=\min\{y_{1}\in\operatorname{\mathbb{Z}}_{\geq 0}\colon y_{1}g_{1}=g^{\prime}\}$,} (41)
𝔣^k(g;𝐱)=11𝐱rkhki=0rk1𝐱ihk𝔣^k1(gigk;𝐱) and\displaystyle\hat{\operatorname{\mathfrak{f}}}_{k}(g^{\prime};\operatorname{\mathbf{x}})=\frac{1}{1-\operatorname{\mathbf{x}}^{-r_{k}h_{k}}}\cdot\sum\limits\limits_{i=0}^{r_{k}-1}\operatorname{\mathbf{x}}^{-ih_{k}}\cdot\hat{\operatorname{\mathfrak{f}}}_{k-1}(g^{\prime}-i\cdot g_{k};\operatorname{\mathbf{x}})\text{ and} (42)
𝔣^k(g;𝐱)=i1=0r11ik=0rk1ϵi1,,ik𝐱(i1h1++ikhk)(1𝐱r1h1)(1𝐱r2h2)(1𝐱rkhk).\displaystyle\hat{\operatorname{\mathfrak{f}}}_{k}(g^{\prime};\operatorname{\mathbf{x}})=\frac{\sum\limits_{i_{1}=0}^{r_{1}-1}\dots\sum\limits_{i_{k}=0}^{r_{k}-1}\epsilon_{i_{1},\dots,i_{k}}\operatorname{\mathbf{x}}^{-(i_{1}h_{1}+\dots+i_{k}h_{k})}}{(1-\operatorname{\mathbf{x}}^{-r_{1}h_{1}})(1-\operatorname{\mathbf{x}}^{-r_{2}h_{2}})\dots(1-\operatorname{\mathbf{x}}^{-r_{k}h_{k}})}. (43)

Clearly, here the absolute convergence takes place for the values of 𝐱\operatorname{\mathbf{x}} with |𝐱rihi|<1\mathinner{\!\left\lvert\operatorname{\mathbf{x}}^{-r_{i}h_{i}}\right\rvert}<1, for each i{1,,k}i\in\{1,\dots,k\}. Let us consider now the formal series

𝔤k(g;τ)=yk(g)eτc,i=1khiyi,\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau)=\sum\limits_{y\in\operatorname{\mathcal{M}}_{k}(g^{\prime})}e^{-\tau\cdot\langle c,\sum_{i=1}^{k}h_{i}y_{i}\rangle},

which can be derived from 𝔣^k(g;𝐱)\hat{\operatorname{\mathfrak{f}}}_{k}(g^{\prime};\operatorname{\mathbf{x}}) by the substitution xieτcix_{i}\to e^{\tau\cdot c_{i}}. For 𝔤k(g;τ)\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau), the formulae (41), (42), and (43) become:

𝔤1(g;τ)=ec,sh1τ1ec,r1h1τ,\displaystyle\operatorname{\mathfrak{g}}_{1}(g^{\prime};\tau)=\frac{e^{-\langle c,sh_{1}\rangle\cdot\tau}}{1-e^{-\langle c,r_{1}h_{1}\rangle\cdot\tau}}, (44)
𝔤k(g;τ)=11ec,rkhkτi=0rk1ec,ihkτ𝔤k1(gigk;τ),\displaystyle\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau)=\frac{1}{1-e^{-\langle c,r_{k}h_{k}\rangle\cdot\tau}}\cdot\sum\limits_{i=0}^{r_{k}-1}e^{-\langle c,ih_{k}\rangle\cdot\tau}\cdot\operatorname{\mathfrak{g}}_{k-1}(g^{\prime}-i\cdot g_{k};\tau), (45)
𝔤k(g;τ)=i1=0r11ik=0rk1ϵi1,,ikec,i1h1++ikhkτ(1ec,r1h1τ)(1ec,r2h2τ)(1ec,rkhkτ).\displaystyle\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau)=\frac{\sum\limits_{i_{1}=0}^{r_{1}-1}\dots\sum\limits_{i_{k}=0}^{r_{k}-1}\epsilon_{i_{1},\dots,i_{k}}e^{-\langle c,i_{1}h_{1}+\dots+i_{k}h_{k}\rangle\cdot\tau}}{\bigl{(}1-e^{-\langle c,r_{1}h_{1}\rangle\cdot\tau}\bigr{)}\bigl{(}1-e^{-\langle c,r_{2}h_{2}\rangle\cdot\tau}\bigr{)}\dots\bigl{(}1-e^{-\langle c,r_{k}h_{k}\rangle\cdot\tau}\bigr{)}}. (46)

Since the series 𝔣^k(g;𝐱)\hat{\operatorname{\mathfrak{f}}}_{k}(g^{\prime};\operatorname{\mathbf{x}}) absolutely converges, when |𝐱rihi|<1\mathinner{\!\left\lvert\operatorname{\mathbf{x}}^{-r_{i}h_{i}}\right\rvert}<1, for each i{1,,k}i\in\{1,\dots,k\}, the new one converges, for any τ>0\tau>0. Since c,hi0\langle c,h_{i}\rangle\in\operatorname{\mathbb{Z}}_{\not=0}, for each ii, the number of terms ec,τe^{-\langle c,\cdot\rangle\cdot\tau} is bounded by 2kσψ+12\cdot k\cdot\sigma\cdot\psi+1. So, after combining similar terms, the numerator’s length becomes O(kσψ)O(k\cdot\sigma\cdot\psi). In other words, there exist coefficients ϵi0\epsilon_{i}\in\operatorname{\mathbb{Z}}_{\geq 0}, such that

𝔤k(g;τ)=i=kσψkσψϵieiτ(1ec,r1h1τ)(1ec,r2h2τ)(1ec,rkhkτ).\operatorname{\mathfrak{g}}_{k}(g^{\prime};\tau)=\frac{\sum\limits_{i=-k\cdot\sigma\cdot\psi}^{k\cdot\sigma\cdot\psi}\epsilon_{i}\cdot e^{-i\cdot\tau}}{\bigl{(}1-e^{-\langle c,r_{1}\cdot h_{1}\rangle\tau}\bigr{)}\bigl{(}1-e^{-\langle c,r_{2}h_{2}\rangle\cdot\tau}\bigr{)}\dots\bigl{(}1-e^{-\langle c,r_{k}h_{k}\rangle\cdot\tau}\bigr{)}}. (47)

The formulae (44), (45), and (47) coincide with the desired formulae (19), (20), and (21). So, the proof of Lemma 2 is finished.

References

  • \bibcommenthead
  • [1] Dadush, D.: Integer Programming, Lattice Algorithms, and Deterministic Volume Estimation. Georgia Institute of Technology, ProQuest Dissertations Publishing, Ann Arbor (2012)
  • [2] Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via m-ellipsoid coverings. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 580–589 (2011). https://doi.org/10.1109/FOCS.2011.31
  • [3] Dadush, D.: On approximating the covering radius and finding dense lattice subspaces. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 1021–1026 (2019). https://doi.org/10.1145/3313276.3316397
  • [4] Regev, O., Stephens-Davidowitz, N.: A reverse minkowski theorem. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 941–953 (2017)
  • [5] Reis, V., Rothvoss, T.: The Subspace Flatness Conjecture and Faster Integer Programming (2023)
  • [6] Basu, A., Oertel, T.: Centerpoints: a link between optimization and convex geometry. SIAM Journal on Optimization 27(2), 866–889 (2017). https://doi.org/10.1137/16M1092908
  • [7] Chirkov, Y. A., Gribanov, V. D., Malyshev, S. D., Pardalos, M. P., Veselov, I. S., Zolotykh, Y. N.: On the complexity of quasiconvex integer minimization problem. Journal of Global Optimization 73(4), 761–788 (2019). https://doi.org/10.1007/s10898-018-0729-8
  • [8] Gribanov, D.V., Malyshev, D.S.: Integer conic function minimization based on the comparison oracle. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) Mathematical Optimization Theory and Operations Research, pp. 218–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_16
  • [9] Veselov, S.I., Gribanov, D.V., Zolotykh, N.Y., Chirkov, A.Y.: A polynomial algorithm for minimizing discrete convic functions in fixed dimension. Discrete Applied Mathematics 283, 11–19 (2020). https://doi.org/10.1016/j.dam.2019.10.006
  • [10] Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. In: Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pp. 566–572 (1993). https://doi.org/10.1109/SFCS.1993.366830
  • [11] Dyer, M., Kannan, R.: On barvinok’s algorithm for counting lattice points in fixed dimension. Mathematics of Operations Research 22(3), 545–549 (1997). https://doi.org/10.1287/moor.22.3.545
  • [12] Barvinok, A., Pommersheim, J.: An algorithmic theory of lattice points in polyhedra. New Perspect. Algebraic Combin. 38 (1999)
  • [13] Barvinok, A.: Integer Points in Polyhedra. European Mathematical Society, ETH-Zentrum, Zürich, Switzerland (2008)
  • [14] Barvinok, A., Woods, K.: Short rational generating functions for lattice point problems. Journal of the American Mathematical Society 16(4), 957–979 (2003)
  • [15] Beck, M., Robins, S.: Computing the Continuous Discretely. Springer, New York (2015)
  • [16] De Loera, J., Hemmecke, R., Köppe, M.: Algebraic And Geometric Ideas in the Theory of Discrete Optimization. Society for Industrial and Applied Mathematics, Philadelphia, USA (2013)
  • [17] Lasserre, J.-B.: Linear and Integer Programming Vs Linear Integration and Counting: a Duality Viewpoint. Springer, New York (2009)
  • [18] Köppe, M., Verdoolaege, S.: Computing parametric rational generating functions with a primal barvinok algorithm. The electronic journal of combinatorics 15 (2008). https://doi.org/10.37236/740
  • [19] Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. SIAM Journal on Computing 42(3), 1364–1391 (2013)
  • [20] Megiddo, N., Chandrasekaran, R.: On the ε\varepsilon-perturbation method for avoiding degeneracy. Operations Research Letters 8(6), 305–308 (1989)
  • [21] McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17(2), 179–184 (1970). https://doi.org/10.1112/S0025579300002850
  • [22] Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics. Springer, New York (2011)
  • [23] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester (1998)
  • [24] Gribanov, V. D.: An FPTAS for the Δ\Delta-Modular Multidimensional Knapsack Problem, (2021). https://doi.org/10.1007/978-3-030-77876-7_6
  • [25] Gribanov, V. D., Malyshev, S. D.: A faster algorithm for counting the integer points number in δ\delta-modular polyhedra. Siberian Electronic Mathematical Reports (2022). https://doi.org/10.33048/semi.2022.19.051
  • [26] Gribanov, V. D., Shumilov, A. I., Malyshev, S. D., Pardalos, M. P.: On δ\delta-modular integer linear problems in the canonical form and equivalent problems. J Glob Optim (2022). https://doi.org/10.1007/s10898-022-01165-9
  • [27] Gribanov, D.V., Zolotykh, N.Y.: On lattice point counting in δ\delta-modular polyhedra. Optimization Letters 16(7), 1991–2018 (2022). https://doi.org/10.1007/s11590-021-01744-x
  • [28] Gribanov, D., Shumilov, I., Malyshev, D.: A faster algorithm for counting the integer points number in Δ\Delta-modular polyhedra (corrected version) (2023)
  • [29] Lasserre, B. Jean, Zeron, S. Eduardo: Solving the knapsack problem via z-transform. Operations Research Letters 30(6), 394–400 (2002)
  • [30] Köppe, M.: A primal barvinok algorithm based on irrational decompositions. SIAM Journal on Discrete Mathematics 21(1), 220–236 (2007)
  • [31] De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. Journal of Symbolic Computation 38(4), 1273–1302 (2004). https://doi.org/10.1016/j.jsc.2003.04.003. Symbolic Computation in Algebra and Geometry
  • [32] Kratsch, S.: On polynomial kernels for sparse integer linear programs. Journal of Computer and System Sciences 82(5), 758–766 (2016)
  • [33] Veselov, S.I., Chirkov, A.J.: Integer program with bimodular matrix. Discrete Optimization 6(2), 220–222 (2009). https://doi.org/10.1016/j.disopt.2008.12.002
  • [34] Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. STOC 2017, pp. 1206–1219. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3055399.3055473
  • [35] Fiorini, S., Joret, G., Weltge, S., Yuditsky, Y.: Integer programs with bounded subdeterminants and two nonzeros per row. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 13–24 (2022). IEEE
  • [36] Alekseev, E. V., Zakharova, V. D.: Independent sets in the graphs with bounded minors of the extended incidence matrix. Journal of Applied and Industrial Mathematics 5(1), 14–18. https://doi.org/10.1134/S1990478911010029
  • [37] Bock, A., Faenza, Y., Moldenhauer, C., Ruiz-Vargas, A.J.: Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number. In: Raman, V., Suresh, S.P. (eds.) 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), vol. 29, pp. 187–198. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.187
  • [38] Di Summa, M., Eisenbrand, F., Faenza, Y., Moldenhauer, C.: On largest volume simplices and sub-determinants, pp. 315–323. https://doi.org/10.1137/1.9781611973730.23
  • [39] Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
  • [40] Gribanov, D., Shumilov, I., Malyshev, D.: Structured (min,+)(\min,+)-Convolution And Its Applications For The Shortest Vector, Closest Vector, and Separable Nonlinear Knapsack Problems (2022)
  • [41] Polak, A., Rohwedder, L., Wegrzycki, K.: Knapsack and subset sum with small items. arXiv:2105.04035v1 [cs.DS] (2021)
  • [42] Cunningham, W.H., Geelen, J.: On integer programming and the branch-width of the constraint matrix. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 158–166 (2007). Springer
  • [43] Fomin, F.V., Panolan, F., Ramanujan, M., Saurabh, S.: On the optimality of pseudo-polynomial algorithms for integer programming. Mathematical Programming, 1–33 (2022)
  • [44] Jansen, K., Rohwedder, L.: On integer programming and convolution. In: 10th Innovations in Theoretical Computer Science Conference (ITCS 2019) (2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
  • [45] Lovász, L., Spencer, J., Vesztergombi, K.: Discrepancy of set-systems and matrices. European Journal of Combinatorics 7(2), 151–160 (1986). https://doi.org/10.1016/S0195-6698(86)80041-5
  • [46] Spencer, J.: Six standard deviations suffice. Transactions of the American mathematical society 289(2), 679–706 (1985). https://doi.org/10.1090/S0002-9947-1985-0784009-0
  • [47] Beck, J., Fiala, T.: “integer-making” theorems. Discrete Applied Mathematics 3(1), 1–8 (1981)
  • [48] Banaszczyk, W.: Balancing vectors and gaussian measures of n-dimensional convex bodies. Random Structures & Algorithms 12(4), 351–360 (1998)
  • [49] Matoušek, J.: The determinant bound for discrepancy is almost tight. Proceedings of the American Mathematical Society 141(2), 451–460 (2013)
  • [50] Jiang, H., Reis, V.: A tighter relation between hereditary discrepancy and determinant lower bound. In: Symposium on Simplicity in Algorithms (SOSA), pp. 308–313 (2022). SIAM
  • [51] Eisenbrand, F., Weismantel, R.: Proximity Results and Faster Algorithms for Integer Programming Using the Steinitz Lemma. ACM Transactions on Algorithms 16(1) (2019). https://doi.org/10.1145/3340322
  • [52] Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds.) Combinatorial Optimization, pp. 115–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53262-8_10
  • [53] Lee, J., Paat, J., Stallknecht, I., Xu, L.: Polynomial upper bounds on the number of differing columns of an integer program. arXiv preprint arXiv:2105.08160v2 [math.OC] (2021)
  • [54] Averkov, G., Schymura, M.: On the maximal number of columns of δ\delta-modular matrix. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 29–42 (2022). Springer
  • [55] Koster, A.M., Zymolka, A.: Stable multi-sets. Mathematical Methods of Operations Research 56(1), 45–65 (2002). https://doi.org/10.1007/s001860200199
  • [56] Arie, K., Adrian, Z.: Polyhedral investigations on stable multi-sets. Technical Report 03–10, ZIB, Takustr. 7, 14195 Berlin (2003)
  • [57] Koster, A.M., Zymolka, A.: On cycles and the stable multi-set polytope. Discrete Optimization 2(3), 241–255 (2005). https://doi.org/10.1016/j.disopt.2005.06.004
  • [58] Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Mathematical programming 1(1), 168–194 (1971). https://doi.org/10.1007/BF01584085
  • [59] Fulkerson, D.R.: Anti-blocking polyhedra. Journal of Combinatorial Theory, Series B 12(1), 50–71 (1972). https://doi.org/10.1016/0095-8956(72)90032-9
  • [60] Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin, Heidelberg (2012)
  • [61] Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N.: Elections with few candidates: Prices, weights, and covering problems. In: International Conference on Algorithmic DecisionTheory, pp. 414–431 (2015). https://doi.org/10.1007/978-3-319-23114-3_25. Springer
  • [62] Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N.: Mixed integer programming with convex/concave constraints: Fixed-parameter tractability and applications to multicovering and voting. Theoretical Computer Science 814, 86–105 (2020). https://doi.org/10.1016/j.tcs.2020.01.017
  • [63] Gorgi, A., El Ouali, M., Srivastav, A., Hachimi, M.: Approximation algorithm for the multicovering problem. Journal of Combinatorial Optimization 41(2), 433–450 (2021). https://doi.org/10.1007/s10878-020-00688-9
  • [64] Hua, Q.-S., Wang, Y., Yu, D., Lau, F.C.: Dynamic programming based algorithms for set multicover and multiset multicover problems. Theoretical Computer Science 411(26-28), 2467–2474 (2010). https://doi.org/10.1016/j.tcs.2010.02.016
  • [65] Hua, Q.-S., Yu, D., Lau, F.C., Wang, Y.: Exact algorithms for set multicover and multiset multicover problems. In: International Symposium on Algorithms and Computation, pp. 34–44 (2009). https://doi.org/10.1007/978-3-642-10631-6_6. Springer
  • [66] Knop, D., Kouteckỳ, M., Mnich, M.: Combinatorial n-fold integer programming and applications. Mathematical Programming 184(1), 1–34 (2020). https://doi.org/10.1007/s10107-019-01402-2
  • [67] Alon, N., Yuster, R.: On a hypergraph matching problem. Graphs and Combinatorics 21(4), 377–384 (2005)
  • [68] Keevash, P., Mycroft, R.: A Geometric Theory for Hypergraph Matching. American Mathematical Society, Rhode Island (2014)
  • [69] Gavenčiak, T., Kouteckỳ, M., Knop, D.: Integer programming in parameterized complexity: Five miniatures. Discrete Optimization (2020). https://doi.org/10.1016/j.disopt.2020.100596
  • [70] Cohen, N., Nutov, Z.: Approximating minimum power edge-multi-covers. Journal of Combinatorial Optimization 30(3), 563–578 (2015)
  • [71] Grossman, J.W., Kulkarni, D.M., Schochetman, I.E.: On the minors of an incidence matrix and its smith normal form. Linear Algebra and its Applications 218, 213–224 (1995). https://doi.org/10.1016/0024-3795(93)00173-W
  • [72] Paat, J., Schlöter, M., Weismantel, R.: The integrality number of an integer program. Mathematical Programming, 1–21 (2021). https://doi.org/10.1007/s10107-021-01651-0
  • [73] Shevchenko, V.N.: Qualitative Topics in Integer Linear Programming. American Mathematical Soc., Providence, Rhode Island (1996)
  • [74] Gomory, R.E.: On the relation between integer and noninteger solutions to linear programs. Proceedings of the National Academy of Sciences 53(2), 260–265 (1965). https://doi.org/10.1073/pnas.53.2.260
  • [75] Hu, C. T.: Integer Programming and Network Flows. Addison-Wesley Publishing Company, London (1970)
  • [76] Oertel, T., Paat, J., Weismantel, R.: The distributions of functions related to parametric integer optimization. SIAM Journal on Applied Algebra and Geometry 4(3), 422–440 (2020). https://doi.org/10.1137/19M1275954
  • [77] Storjohann, A.: Near optimal algorithms for computing Smith normal forms of integer matrices. In: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. ISSAC ’96, pp. 267–274. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/236869.237084
  • [78] Zhendong, W.: Computing the Smith Forms of Integer Matrices and Solving Related Problems. University of Delaware, Newark, DE, United States (2005)
  • [79] Lawrence, J.: Rational-function-valued valuations on polyhedra. Discrete and computational geometry (New Brunswick, NJ, 1989/1990) 6, 199–208 (1991)
  • [80] Pukhlikov, A.V., Khovanskii, A.G.: The riemann–roch theorem for integrals and sums of quasipolynomials on virtual polytopes (russian). Algebra i analiz 4(4), 188–216 (1992)
  • [81] Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete & Computational Geometry 8(3), 295–313 (1992). https://doi.org/10.1007/BF02293050
  • [82] Brion, M.: Points entiers dans les polyèdres convexes. Annales scientifiques de l’École Normale Supérieure 4e s’erie 21(4), 653–663 (1988). https://doi.org/10.24033/asens.1572
  • [83] Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Mathematical Programming 34(3), 251–261 (1986). https://doi.org/10.1007/BF01582230