This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Fast Radio Bursts: Electromagnetic Counterparts to Extreme Mass Ratio Inspirals

Rui-Nan Li School of Astronomy and Space Science, Nanjing University Nanjing 210023, People’s Republic of China Zhen-Yin Zhao School of Astronomy and Space Science, Nanjing University Nanjing 210023, People’s Republic of China Zhifu Gao Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, People’s Republic of China Fa-Yin Wang School of Astronomy and Space Science, Nanjing University Nanjing 210023, People’s Republic of China Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, People’s Republic of China Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
Abstract

Recent observations discovered that some repeating fast radio bursts (FRBs) show a large value and complex variations of Faraday rotation measures (RMs). The binary systems containing a supermassive black hole (SMBH) and a neutron star (NS) can be used to explain such RM variations. Meanwhile, such systems produce low-frequency gravitational wave (GW) signals, which are one of the primary interests of three proposed space-based GW detectors: the Laser Interferometer Space Antenna (LISA), Tianqin and Taiji. These signals are known as extreme mass ratio inspirals (EMRIs). Therefore, FRBs can serve as candidates of electromagnetic (EM) counterparts for EMRI signals. In this letter, we study the EMRI signals in this binary system, which can be detected up to z0.04z\sim 0.04 by LISA and Tianqin for the most optimistic case. Assuming the cosmic comb model for FRB production, the total event rate can be as high as 1\sim 1 Gpc-3 yr-1. EMRI signals associated with FRBs can be used to reveal the progenitor of FRBs. It is also a new type of standard siren, which can be used as an independent cosmological probe.

Radio transient sources(2008) — Neutron stars(1108) — Magnetars(992) — Gravitational wave sources (677)

1 Introduction

Fast Radio Bursts (FRBs) are bright pulses with large dispersion measures (DMs) at radio frequency, with millisecond-duration randomly occurring at cosmological distances (Petroff et al., 2019; Xiao et al., 2021; Zhang, 2022). FRB was first discovered in 2007 (Lorimer et al., 2007), and some FRBs were observed to be active repeatedly (Spitler et al., 2016). Whether there are two intrinsically different categories, repeating one and non-repeating one, has not been confirmed yet. Up to now, over 600 FRBs have been reported (CHIME/FRB Collaboration et al., 2020). However, their physical origins are still poorly known. It has been speculated that the central engines of FRBs are magnetars (Popov & Postnov, 2013; Kulkarni et al., 2014; Murase et al., 2016; Katz, 2016; Metzger et al., 2017; Wang & Yu, 2017; Beloborodov, 2017; Lu & Kumar, 2018; Yang & Zhang, 2018; Wadiasingh & Timokhin, 2019; Wang et al., 2020). The discovery of FRB 20200428 produced by Galactic magnetar SGR J1935+2154 confirmed that at least some FRBs are from magnetars (Bochenek et al., 2020; CHIME/FRB Collaboration et al., 2020).

The variations of the RM and DM can provide us with important information about the surrounding environment of FRBs. Long-term monitoring of repeating FRBs revealed that the majority of them show large RM variations, suggesting them in dynamical magneto-ionic environments (Mckinven et al., 2023). FRB 20121102 has a large RM (105radm2\sim 10^{5}~{}\rm{rad}~{}m^{-2}) (Michilli et al., 2018), which decreased by 30% in about two years (Hilmarsson et al., 2021) and 70% till to 2023 (Feng et al., 2023). It may be caused by the wind nebula of a young magnetar (Margalit & Metzger, 2018; Zhao & Wang, 2021), the ejecta from the progenitors (massive stars or compact binary mergers Piro & Gaensler 2018; Zhao et al. 2021), or the outflow from an SMBH (Zhang, 2018; Katz, 2020; Yang et al., 2023). FRB 20201124A showed a short-time variation of RM (Xu et al., 2022) and the first local RM reversal (Wang et al., 2022). A magnetar/Be star binary is promising to explain the unusual features of FRB 20201124A (Wang et al., 2022; Lu et al., 2023), including the RM variation and reversal, depolarization and Faraday conversion. FRB 20190520B was found to reside in a dwarf galaxy at redshift z=0.241z=0.241. It has a lager host DM 900pccm3\sim 900~{}\rm{pc}~{}\rm{cm}^{-3} (Niu et al., 2022), which may be related to a young supernova remnant (Zhao & Wang, 2021; Katz, 2022). FRB 20190520B showed a large value of RM and the RM reversal (Anna-Thomas et al., 2023), which can be explained in massive binary models (Wang et al., 2022; Zhao et al., 2023; Anna-Thomas et al., 2023). FRB 20180301A also showed a varying RM with reversal, which also indicates a binary origin (Kumar et al., 2023). However, a binary origin is not necessary to interpret the RM fluctuations. As shown by Beniamini et al. (2022), if the FRB passes through a region with turbulent and even weakly magnetized plasma can result in stochastic RM fluctuations.

Extremely large RMs also have been observed in the vicinity of massive black holes. For example, PSR J1745-2900, which resides 0.12 pc from Sgr A{A^{\ast}} was estimated to have an RM = 6.69×104radm2-6.69\times 10^{4}~{}\rm{rad}~{}m^{-2} (Eatough et al., 2013). The RM variation is about 3500 radm2\rm{rad}~{}m^{-2} (Desvignes et al., 2018). PSR J1746-2850, which is close to Sgr A, is reported to have RM =12234radm2=-12234~{}\rm{rad}~{}m^{-2} with variation of 300400300-400 radm2\rm{rad}~{}m^{-2} (Abbate et al., 2023). So it is possible that some FRB sources may be near SMBHs. Combining with the evidence that one magnetar can result in producing of FRB-like bursts, we consider an FRB-generating magnetar orbiting an SMBH, called EMRI.

EMRI is one of the main sources expected for the future space-borne GW detector LISA to detect (Amaro-Seoane et al., 2017, 2023). When a neutron star (NS) inspirals into an SMBH, the system emits significant amounts of continuous gravitational waves (GWs) along each orbit in the frequency domain to which LISA will be most sensitive. Such GWs can be regarded as ‘standard siren’ if the information about redshift is available. In this case, it is natural to seek the EM counterpart of GW carrying the redshift information. Although it is currently believed that there are no such EM counterparts of EMRI signals in most cases, some models have proposed that EMRI can be associated with EM signals. For example, a new formation channel of EMRIs with tidal disruption flares as EM counterparts was proposed by Wang et al. (2019). Quasi-periodic eruptions generated from the Roche lobe overflows of an evolved star of white dwarf orbiting an SMBH can be detected as EMRI sources with EM counterparts (King, 2020; Zhao et al., 2022). Recently, some indications for the EM counterpart of GWs have been found. For instance, GW 190425, a binary NS merger event, was reported to be associated with a one-off FRB 20190425A with the chance probability 2.8σ2.8~{}\sigma (Moroianu et al., 2023). However, this association was questioned by Bhardwaj et al. (2023). Sridhar et al. (2021) and Katz (2023) proposed that periodic FRBs can be produced from the extreme mass ratio binaries that contain ordinary stars and intermediate mass black holes. In this letter, we propose that FRBs may be the EM counterparts of EMRIs.

This letter is organized as follows. The relative FRB progenitor models are discussed in Section 2. The EMRI signals produced in the NS-SMBH system are given in Section 3. The event rate is estimated in Section 4. Discussions and conclusions are given in Section 5

2 FRB progenitor models

Since the discovery of FRB 20200428, progenitors related to magnetars have received increasing attention. Several magnetar progenitor models were proposed, for more details see reviews by Xiao et al. (2021) and Zhang (2020). Here we focus only on the single magnetar model proposed by Kumar & Bošnjak (2020) and the cosmic comb model proposed by Zhang (2017).

2.1 Single magnetar model

The coherent curvature radiation in the magnetosphere may be a possible radiation mechanism of FRBs. In this model, the disturbance near the surface of the magnetar launches an Alfve´\acute{e}n wave packet, and a fraction of the wave energy is converted into coherent radio radiation. Alfve´\acute{e}n waves with the non-zero component of transverse wave-vector require an electric current along the magnetic field, which can be supplied by the counter-streaming electron-positron pairs moving at near the speed of light at larger radii as the plasma density decreases with distance from the magnetar surface. The bunch formation is attributed to the two-stream instability. When the Alfve´\acute{e}n waves reach the radius where electron-positron pairs are insufficient to supply the required current, a strong electric field forms accelerating the particle bunches along the field. The coherent FRB radiation is then produced. This model has been applied to FRB 20200428, which is associated with a magnetar (Lu et al., 2020a; Wang, 2020)

2.2 Cosmic comb model

The cosmic comb is a model taking two-body interaction into consideration to produce FRBs (Zhang, 2017). In this model, an NS may produce a bright FRB if its magnetosphere is combed by a close, strong plasma stream toward the anti-stream direction. The radiation is detectable only in the inferior conjunction configuration. The plasma stream could be an outflow from an SMBH. In this model, the properties of FRBs are determined by the stream energy flux received by the NS (Zhang, 2017). Due to the need for the NS magnetic field to be modified, the ram pressure of the stream is required to be greater than the magnetic pressure of the NS magnetosphere. For a non-relativistic and cold flow, the condition can be expressed as

Pram>B28π.P_{\mathrm{ram}}>\frac{B^{2}}{8\pi}. (1)

If a dipolar magnetic configuration of the NS is assumed, the magnetic pressure is

BLC28π=Bs28π(ΩRsc)63.4ergcm3Bs,122P6,\frac{B_{\mathrm{LC}}^{2}}{8\pi}=\frac{B_{s}^{2}}{8\pi}\left(\frac{\Omega R_{s}}{c}\right)^{6}\simeq 3.4~{}\mathrm{erg}~{}\mathrm{cm}^{-3}B_{s,12}^{2}P^{-6}, (2)

where BLCB_{\rm{LC}} is the magnetic field strength at the light cylinder, BsB_{\rm{s}} and RsR_{\rm{s}} are the surface magnetic field strength and radius of NS, and Ω\Omega and PP are the angular frequency and rotation period of the NS, respectively. If the above condition is satisfied, the plasma stream arrives and significantly modifies the surface magnetic field of the NS toward the anti-stream direction. After that, magnetic reconnections may be triggered, releasing considerable energy that is adequate to accelerate the particles moving along the magnetic field at relativistic speeds within a short timescale. Eventually, an FRB can be produced through the coherent curvature radiation mechanism.

3 EMRI signals

We consider a system in which an NS moves along a highly eccentric orbit around the central SMBH, and the orbital pericenter decays owing to the GW radiation, producing the EMRI signals that may be detected by LISA and Tianqin. In such a system, except for the EMRI signals, there are two different ways to produce an FRB. Firstly, the outflow from the SMBH may comb the magnetosphere of NS, producing a bright FRB according to the cosmic comb model. Secondly, an FRB can be produced in the magnetosphere of NS according to the model of Kumar & Bošnjak (2020).

3.1 Constraints on orbit

It is worth noting that only the scenario an FRB is generated through the cosmic comb model sets limits on the orbit of the binary system. The scenario in which an FRB is produced directly from the magnetosphere without interacting with the SMBH outflow places no restrictions on the orbit. The following discussion in this subsection is only for the cosmic comb scenario.

The mass loss rate of an SMBH can be expressed in the form of Eddington accretion rate M˙Edd\dot{M}_{\mathrm{Edd}} with a dimensionless parameter ff reads (Yang et al., 2023)

M˙=fM˙Edd=4πGmpϵBHσTcfMBH2.2×103Myr1f(MBH105M).\dot{M}=f\dot{M}_{\mathrm{Edd}}=\frac{4\pi Gm_{\rm{p}}}{\epsilon_{\mathrm{BH}}\sigma_{T}c}fM_{\mathrm{BH}}\simeq 2.2\times 10^{-3}~{}\mathrm{M}_{\odot}\mathrm{yr}^{-1}f\left(\frac{M_{\mathrm{BH}}}{10^{5}\mathrm{M}_{\odot}}\right). (3)

We consider an outflow from the SMBH with a typical dimensionless velocity β=v/c=β2/102\beta=v/c=\beta_{-2}/10^{2}. The ram pressure of the stream at the semi-major axis of orbit aa is given by (Zhang, 2017)

Pram1.6ergcm3(M˙Myr1)β2(a102pc)2.P_{\mathrm{ram}}\simeq 1.6~{}\mathrm{erg}~{}\mathrm{\textrm{cm}^{-3}}\left(\frac{\dot{M}}{M_{\odot}\mathrm{yr}^{-1}}\right)\beta_{-2}\left(\frac{a}{10^{-2}\mathrm{pc}}\right)^{-2}. (4)

Substituting Equation (2) and Equation (4) into Equation (1), we find that the ram pressure can be modified as

Bs,132P60.46(M˙Myr1)β2(a102pc)2.B_{\rm{s,13}}^{2}P^{-6}\leq 0.46\left(\frac{\dot{M}}{M_{\odot}\mathrm{yr}^{-1}}\right)\beta_{-2}\left(\frac{a}{10^{-2}\mathrm{pc}}\right)^{-2}. (5)

When the typical parameters of NS (i.e. Bs,PB_{s},P) are given, the comb condition Pram>PB,LCP_{\rm{ram}}>P_{\rm{B,LC}} can be used to constrain the semi-axis aa

a102pc(1.012×103(MBH105M)fβ2Bs,132P6)12.\frac{a}{10^{-2}\rm{pc}}\leq\left({1.012\times 10^{-3}\left(\frac{M_{\mathrm{BH}}}{10^{5}~{}M_{\odot}}\right)f\beta_{-2}B_{\text{s,13}}^{-2}P^{6}}\right)^{\frac{1}{2}}. (6)

For the RM contribution, it can be estimated as (Yang et al., 2023)

RM\displaystyle\mathrm{RM}\sim e32πme2c4Brnea1.6×105radm2f×(MBH105M)(β21)1(Br1mG)(a102pc)1,\displaystyle\frac{e^{3}}{2\pi m_{e}^{2}c^{4}}B_{\rm{r}}n_{\rm{e}}a\simeq 1.6\times 10^{5}~{}\mathrm{rad}~{}\mathrm{m}^{-2}f\times\left(\frac{M_{\mathrm{BH}}}{10^{5}~{}M_{\odot}}\right)\left(\frac{\beta_{-2}}{1}\right)^{-1}\left(\frac{B_{r}}{1~{}\mathrm{mG}}\right)\left(\frac{a}{10^{-2}~{}\mathrm{pc}}\right)^{-1}, (7)

where BrB_{r} is the magnetic field of SMBH at rar\sim a. We take Equation (6) as the upper limit of the separation between the NS and the SMBH, and fix β2\beta_{-2} to 11. We consider the distances of NSs to be far from the gravitational radius of SMBHs. Therefore, relativistic corrections do not need to be considered here. Combing with Equation (7), we can estimate the lower limit of RM contributed by the SMBH outflow as

RMlowlim=5.03×103radm2Bs,13P3(f106)12(MBH105M)12(Br1mG).{\mathrm{RM_{lowlim}}=5.03\times 10^{3}~{}\mathrm{rad~{}m^{-2}}B_{\mathrm{s,13}}P^{-3}\left(\frac{f}{10^{-6}}\right)^{\frac{1}{2}}\left(\frac{M_{\mathrm{BH}}}{10^{5}M_{\odot}}\right)^{\frac{1}{2}}\left(\frac{B_{\mathrm{r}}}{\operatorname{1mG}}\right)}. (8)

The derived RM and DM should be consistent with the observations of those FRBs that may be in the vicinities of SMBHs. This kind of FRB has relatively large RMs and DMs. According to current observations, only FRB 20121102 (Michilli et al., 2018; Zhang, 2018) and FRB 20190520B (Dai et al., 2022; Anna-Thomas et al., 2023) could satisfy this criterion. So we set the accessible range below

1.6×104f(MBH105M)(a102pc)1RMlowlim,1.6\times 10^{4}f\left(\frac{M_{\rm{BH}}}{10^{5}M_{\odot}}\right)\left(\frac{a}{10^{-2}\rm{pc}}\right)^{-1}\geq\rm{RM}_{\rm{lowlim}}, (9)
DM2f(MBH105M)(a1pc)1(10103).{\mathrm{DM}\sim 2f\left(\frac{M_{\rm{BH}}}{10^{5}M_{\odot}}\right)\left(\frac{a}{1pc}\right)^{-1}\sim\left(10-10^{3}\right)}. (10)

DM is estimated from the Equation (49) in Yang et al. (2023). Besides, in a binary system containing an SMBH, the semi-major axis aa is supposed to satisfy the condition that the pericenter pp, which can be expressed as p=a(1e)p=a\left(1-e\right), should be much larger than the gravitational radius rgr_{g} to prevent the companion star from falling into the horizon of the SMBH

a(1e)rg=2GMBHc2.a(1-e)\gg r_{g}=\frac{2GM_{\rm{BH}}}{c^{2}}. (11)

EMRI begins with the scattering capture of NS by SMBH, this process tends to result in a high initial eccentricity orbit, which is expected to maintain the GW radiation in the LISA band (Gair et al., 2017). So we take a higher eccentricity range, 0.5e10.5\leq e\leq 1. Considering reasonable values of ee, we can roughly derive

a4GMBHc2.a\gg\frac{4GM_{\rm{BH}}}{c^{2}}. (12)

Once the value of ff is determined, the upper limit value of aa can be simply derived by using Equation (6). Assuming the outflow of the low-luminosity SMBHs have similar properties with the Sgr A* (Ressler et al., 2023), we set a range of dimensionless parameter ff characterizing mass loss rate from 10710^{-7} to 10210^{-2} (Wada et al., 2021). Here we will take a narrower range because a large value of ff (i.e. typically greater than 10410^{-4}) corresponds to an overlarge RMlowlim\rm{RM}_{lowlim}, which has never appeared in previous observations. The possible range of the dimensionless parameter ff can be estimated as

f(1×1071×104).f\sim\left(1\times 10^{-7}-1\times 10^{-4}\right). (13)

However, f=107f=10^{-7} corresponds to an extremely short merge time (e.g. 1yr\leq 1\rm{yr}). Hence, we set the value of ff from 10610^{-6} to 10410^{-4} which is a much more reasonable range.

3.2 S/N of EMRIs

The strength of EMRI is determined by the strain amplitude h0h_{0}. The low-frequency signals in the LISA and Tianqin band will last for many years, which means that the nthn^{th} harmonic of the binary will spend approximately fn2/fn˙f_{n}^{2}/\dot{{f_{n}}} cycles near the fundamental frequency fnf_{n}.

To account for the integration of the accumulated signal, the characteristic strain amplitude is used to represent the amplitude detected by the detector over the entire mission time (Finn & Thorne, 2000)

hc,n2=(fn2f˙n)hn2.h_{c,n}^{2}=\left(\frac{f_{n}^{2}}{\dot{f}_{n}}\right)h_{n}^{2}. (14)

This formula is used to derive the GW strain amplitude at each instantaneous moment

hc,n2=1(πDL)22Gc3E˙nf˙n,h_{c,n}^{2}=\frac{1}{\left(\pi D_{L}\right)^{2}}\frac{2G}{c^{3}}\frac{\dot{E}_{n}}{\dot{f}_{n}}, (15)

where DLD_{\rm{L}} is the luminosity distance, En˙\dot{E_{\rm{n}}} is the power of the nthn^{th} harmonic, fn˙=2P˙/P2\dot{f_{n}}=-2\dot{P}/P^{2} is the chirp rate, and PP is the period of the orbit. The S/N can be estimated by (Robson et al., 2019)

(S/N)2=fGW1fGW2hc2(fGW)hn2(fGW)d(lnfGW),(\mathrm{S}/\mathrm{N})^{2}=\int_{f_{GW1}}^{f_{GW2}}\frac{h_{c}^{2}(f_{GW})}{h_{n}^{2}(f_{GW})}d(\ln f_{GW}), (16)

where hn2=fGWSn(fGW)h_{n}^{2}=f_{GW}S_{n}(f_{GW}) is the spectral density of the detector. The S/N also can be expressed as

(S/N)2=hc2ΔfGWfGW2Sn(fGW).\mathrm{(S/N)}^{2}=\frac{h_{c}^{2}\Delta f_{GW}}{f_{GW}^{2}S_{n}(f_{GW})}. (17)

The effective strain is defined as (Barack & Cutler, 2004)

heff=hcΔfGW/fGW.h_{\rm{eff}}=h_{c}\sqrt{\Delta f_{GW}/f_{GW}}. (18)

The heffh_{\rm{eff}} can be expressed by hnh_{n} (Chen et al., 2022)

heff=hntLISAfGW=hnNobs,h_{\rm{eff}}=h_{n}\sqrt{t_{\mathrm{\rm{LISA}}}f_{GW}}=h_{n}\sqrt{N_{\mathrm{\rm{obs}}}}, (19)

where NobsN_{\rm{obs}} is the number of GW cycles during the whole observing time of LISA, the more cycles that LISA observes the higher the signal-noise ratio will be. We assume the 4 yr mission time of LISA (Amaro-Seoane et al., 2023). For incoherent search and coherent search of LISA, the threshold of S/N is 20 and 121412-14 respectively. Here we set the threshold of the coherent search S/N to be 12. For Tianqin, the threshold of S/N\rm{S/N} is 10 (Moroianu et al., 2023).

3.2.1 Scenario 1: FRBs produced by cosmic comb model

For this scenario, FRB is produced by the interaction between the NS and the outflow from SMBH. Therefore, the NS orbit should satisfy the cosmic comb conditions discussed in Section 2.2 and Section 3.1. Considering a harsh condition to produce FRBs, we assume the companion star is a magnetar. The surface magnetic field strength of magnetar BsB_{\rm{s}} is fixed to 1014G10^{14}~{}\rm{G} and the period PP is fixed to 2s2~{}\rm{s}, which are in the ranges derived from observations (Kaneko et al., 2010; Esposito et al., 2010; Kargaltsev et al., 2012; Kaspi & Beloborodov, 2017). According to observations, we have little information about BrB_{\rm{r}} near SMBHs. It has been estimated to be about 1mG1~{}\rm{mG} at 0.12pc0.12~{}\rm{pc} from Sgr A* (Eatough et al., 2013). So we choose Br1mGB_{\rm{r}}\sim 1~{}\rm{mG} for the 106M10^{6}M_{\odot} SMBH. We assume the spatial scale lrgl\propto r_{g}, which is related to the inner disk radius with the innermost stable circular orbit. The density of matters in the outflow from SMBH can be estimated as (Porth & Fendt, 2010)

ρ=mVM˙tl3=fM˙Eddlvl3=αfMBH,\rho=\frac{m}{V}\sim\frac{\dot{M}t}{{l}^{3}}=\frac{f\dot{M}_{\mathrm{Edd}}\frac{l}{v}}{l^{3}}=\alpha\frac{f}{M_{\rm{BH}}}, (20)

where VV is the typical spatial volume, tt is the typical time scale, and α\alpha is the normalized constant. The magnetic field in the outflow is

Br=vA(4πρ)1/2,B_{\rm{r}}=v_{\rm{A}}(4\pi\rho)^{1/2}, (21)

where vAv_{\rm{A}} is the Alfve´\acute{e}n velocity. Eventually, we have the relationship between magnetic field strength and mass of SMBH, i.e., Brf0.5MBH0.5B_{\rm{r}}\propto f^{0.5}M_{\rm{BH}}^{-0.5}. We adpot this scaling relationship in our calculations. The results are shown in Table 1 for different cases with different selected parameter values. As discussed before, we fix the mass range of SMBH to (105M107M)(10^{5}M_{\odot}-10^{7}M_{\odot}). The range of dimensionless parameter of SMBH mass loss rate ff is fixed to (106104)(10^{-6}-10^{-4}). We can infer that the maximal horizon of this event is z0.04z\sim 0.04 for the optimistic case. The horizon of detection can be larger if a smaller value of aa is reached, but such a system can not exist for enough time to be detected.

Table 1: Scenario 1: FRBs produced by the cosmic comb model
Case MBHM_{\rm{BH}} ff BSB_{\rm{S}} PSP_{\rm{S}} BrB_{\rm{r}} auplima_{\rm{uplim}} e0e_{0} RMlowlim\rm{RM}_{\rm{lowlim}} DM zmaxz_{\rm{max}} tmerget_{\rm{merge}}
(105M10^{5}M_{\odot}) (10610^{-6}) (1014G10^{14}\rm{G}) (s) (mG) (10710^{-7}pc) (radm2\rm{rad~{}m^{-2}}) (pccm3\rm{pc~{}cm^{-3}}) (yr)
1 11 1010 11 22 1010 2.542.54 0.50.5 1.99×1051.99\times 10^{5} 2525 0.030.03 6161
2 1010 11 11 22 11 8.058.05 0.650.65 1.99×1041.99\times 10^{4} 2525 0.040.04 6262
3 1010 1010 11 22 3.23.2 25.425.4 0.90.9 2.01×1052.01\times 10^{5} 7979 0.010.01 61906190
4 1010 100100 11 22 1010 80.580.5 0.990.99 1.99×1061.99\times 10^{6} 250250 0.00050.0005 1.56×1071.56\times 10^{7}
5 100100 1010 11 22 11 80.580.5 0.990.99 1.99×1051.99\times 10^{5} 250250 0.0040.004 58905890
  • (1) We take the value of spin period PSP_{\rm{S}} and surface magnetic field strength BSB_{\rm{S}} of magnetars to 2 s and 1014G10^{14}\rm{G} respectively, which are well consistent with observations (Esposito et al., 2010; Kaneko et al., 2010; Kargaltsev et al., 2012; Kaspi & Beloborodov, 2017). (2) BrB_{\rm{r}} is calculated by combining the Equation (21) and the given value for the case 2. (3) DM is estimated by using the Equation (10). The upper limit of semi-axis aa is calculated using Equation (6).Those limits in Equation (11) and Equation (12) should be satisfied. (4) The lower limit of RM is calculated using Equation (8). (5) tmerget_{\rm{merge}} is calculated using equations from Peters (1964). We fix the initial value of e to e0=0.5e_{0}=0.5 and e0=0.65e_{0}=0.65 for the top two rows of the table to avoid a too-short merge time. (6) zz is defined as the distance of binary from us when the S/N\rm{S/N} of GW reaches the threshold. We take auplima_{\rm{uplim}} as the semi-axis, the corresponding zz is zmaxz_{\rm{max}}

Figure 1: The effective GW strain of EMRI events (dots) and the sensitivity curves fSn(f)\sqrt{fS_{n}(f)} of LISA and Tianqin (solid lines). Two mission times for LISA are considered (Wagg et al., 2022a, b). The numbers and colors denote different cases listed in Table 1.

In the above calculations, due to the evolution timescales being much shorter than the observation time, the orbits are considered to be static. Nevertheless, the orbits of the top two cases (i.e. cases 1 and 2) in Table 1 only last for less than 62 yr. The evolution of orbits may need to be considered. We show the results in Figure 2. The GWs may be detected at a further distance (i.e. z0.2z\sim 0.2) or at different frequencies because the orbital parameters are changing with time if the orbits are considered to be evolving.

Figure 2: The effective GW strain of EMRI events (dots) and the sensitivity curves fSn(f)\sqrt{fS_{n}(f)} of LISA and Tianqin (solid lines). Two mission times for LISA are considered (Wagg et al., 2022a, b). Panels (a) and (b) correspond to cases 1 and 2 in Table 1 when the orbital evolution is considered. The redshift of panel (a) is set to 0.080.08, and the redshift of panel (b) is set to 0.20.2.

3.2.2 Scenario 2: FRBs produced in magnetosphere

In this situation, FRB is produced from the magnetosphere of the magnetar without interacting with the outflow. The properties of magnetar put no constraints on the orbit, so the semi-axis can be extended to a larger distance than that in scenario 1. We take two possible values of aa which can not be too large to retain the frequency of EMRI right in the sensitive band of detectors. The production of FRBs may be related to the magnetic active timescale of magnetars (Margalit et al., 2019; Wang et al., 2020), which is about 20 yr for high-mass NSs and 700 yr for normal-mass NSs (Beloborodov & Li, 2016). However, the age of SGR J1935 is estimated to be 16,000 yr (Zhou et al., 2020), which is much larger than the typical magnetic active timescale. Therefore, magnetars may emit FRBs over a long period of their lifetime. Furthermore, the dominant mechanism of magnetic field decay of magnetars is poorly constrained (Dall’Osso et al., 2012). The magnetar field decay timescales are constrained between 10310410^{3}\sim 10^{4} yr. Beniamini et al. (2019) find the typical magnetar magnetic field decay timescale to be 104\sim 10^{4} yr. From this point of view, SGR J1935 is not unique among the magnetar population. Magnetars may be capable of emitting FRBs in timescales of 10310410^{3}\sim 10^{4} yr. Because of the lack of information about the probability that a magnetar produces an FRB, here we suppose that all magnetars are equally likely to produce FRBs. However, only FRB 20200428 has been confirmed to be associated with a magnetar which is not unique compared to the general magnetar population (Margalit et al., 2020; Lu et al., 2020b). In addition to the magnetars that have been discovered, there may be more undiscovered magnetars in the vicinity of Galactic Center. Besides, in this scenario, the production of FRB and EMRI are not directly connected. Therefore, we can hardly confirm the fraction of the observed FRB population could potentially be ascribed to EMRIs. But the information provided by position, DM and RM may help us exclude some FRBs. The results are shown in Table 2. It can be seen that a larger orbit corresponds to a much smaller detection distance.

Figure 3: The effective GW strain of EMRI events (dots) and the sensitivity curves fSn(f)\sqrt{fS_{n}(f)} of LISA and Tianqin (solid lines). Two mission times for LISA are considered (Wagg et al., 2022a, b). Panels (a) and (b) correspond to cases 1 and 2 in Table 2, respectively.
Table 2: Scenario 2: FRBs produced in magnetosphere
Case MBHM_{\rm{BH}} ff BrB_{\rm{r}} aa e0e_{0} RM\rm{RM} DM zz tmerget_{\rm{merge}} Figure 3
(105M10^{5}M_{\odot}) (10410^{-4}) (mG) (pc) (radm2\rm{rad~{}m^{-2}}) (pccm3\rm{pc~{}cm^{-3}}) (yr)
1 100100 11 3.23.2 10410^{-4} 0.995 5.12×1055.12\times 10^{5} 200200 0.00030.0003 72007200 (a)(a)
2 100100 11 3.23.2 10310^{-3} 0.9995 5.12×1045.12\times 10^{4} 2020 0.000010.00001 2770027700 (b)(b)

4 Event Rate

In this work, we focus on the binaries composed of an NS and an SMBH. In the single magnetar model, once an FRB-producing magnetar was captured by the SMBH, this magnetar started to enter its inspiral phase. Then it can be counted as an event. In the cosmic comb model, when an NS is captured, it is an event. So we can derive the event rate as follows. The first step is estimating the space density of SMBH in a certain mass range. The second step is estimating the rate at which each SMBH captures NS. The third step is estimating the fraction of magnetars that can produce FRBs among the NS populations. The fourth step is adding together the event rates of the two models to get the total event rate.

The MσM-\sigma relation is (Merritt & Ferrarese, 2001)

MBH=MBH,(σσ)λ,M_{\rm{BH}}=M_{\rm{BH},\ast}\left(\frac{\sigma}{\sigma_{\ast}}\right)^{\lambda}, (22)

where λ=4.72,MBH,=3×106M,σ=90kms1\lambda=4.72,~{}M_{\rm{BH},\ast}=3\times 10^{6}M_{\odot},~{}\sigma_{\ast}=90~{}\rm{km~{}s}^{-1}, and σ\sigma represents the velocity dispersion. In addition, λ=4.02,MBH,=5×106M\lambda=4.02,M_{\rm{BH},\ast}=5\times 10^{6}M_{\odot} was proposed by Tremaine et al. (2002). Galaxy luminosity functions can be used to constrain the galaxy velocity dispersion function. Conjoining with the MBHσM_{\rm{BH}}-\sigma relation, the black hole mass function is

MBHdNdMBH=ϕϵΓ(γϵ)(MBHMBH,)γexp((MBHMBH)ϵ),M_{\rm{BH}}\frac{\mathrm{d}N}{\mathrm{~{}d}M_{\rm{BH}}}=\phi_{*}\frac{\epsilon}{\Gamma\left(\frac{\gamma}{\epsilon}\right)}\left(\frac{M_{\rm{BH}}}{M_{\rm{BH}},*}\right)^{\gamma}\exp\left(-\left(\frac{M_{\rm{BH}}}{M_{\rm{BH}}}\right)^{\epsilon}\right), (23)

where ϵ=3.08/λ\epsilon=3.08/\lambda, φ\varphi_{\ast} is invariable and represents the overall number density of galaxies and Γ(z)\Gamma(z) is the gamma function. The φ,MBH,\varphi_{\ast},M_{\rm{BH},\ast}and γ\gamma can be constrained for different types of galaxies (Aller & Richstone, 2002). For a typical SMBH mass range, 105MMBH107M10^{5}~{}M_{\odot}\leq M_{\rm{BH}}\leq 10^{7}~{}M_{\odot}, the total spatial density of black hole is approximately as

MBHdNdMBH=2×103h702Mpc3,M_{\mathrm{\rm{BH}}}\frac{dN}{dM_{\mathrm{\rm{BH}}}}=2\times 10^{-3}h_{\rm{70}}^{2}~{}\mathrm{Mpc}^{-3}, (24)

where h70H0/70kms1Mpc1h_{70}\equiv H_{0}/70~{}\rm{km~{}s}^{-1}\rm{Mpc}^{-1} is the dimensionless Hubble constant. The simulation of the Milky Way result gave a prediction that the capture rate of NS is 106yr110^{-6}~{}\rm{yr}^{-1} (Freitag, 2001), and the extreme mass ratio capture rate in a galaxy is (Gair et al., 2004)

12Mdf(m)mtFMBH,2mt(MBHMBH,)38(mM)12104F(MBHMBH,)38(mM)12yr1,\frac{1}{2}\frac{M_{\mathrm{df}}(m)}{mt}\approx\frac{FM_{\rm{BH},\ast}}{2mt}\left(\frac{M_{\rm{BH}}}{M_{\rm{BH},\ast}}\right)^{\frac{3}{8}}\left(\frac{m}{M_{\odot}}\right)^{\frac{1}{2}}\approx 10^{-4}F\left(\frac{M_{\rm{BH}}}{M_{\rm{BH},\ast}}\right)^{\frac{3}{8}}\left(\frac{m}{M_{\odot}}\right)^{-\frac{1}{2}}\mathrm{yr}^{-1}, (25)

where FF is the fraction of the total stellar mass in NS, and t1010yrt\sim 10^{10}~{}\rm{yr}. Fixing m=1.4Mm=1.4~{}M_{\odot} and F=0.01F=0.01, we can derive the event rate RR, which is shown in Table 3. The typical value is about 1 Gpc3yr1\rm{Gpc^{-3}~{}yr^{-1}}. This is the event rate of cosmic comb model.

Then we present the estimation for the event rate of single magnetar model. We firstly adopt the result that the fraction of NSs being born as magnetars is 10%\sim 10\% (Popov et al., 2010), but Beniamini et al. (2019) also estimated the fraction to be 40%\sim 40\%. Secondly, we consider the requirement that the FRB-producing magnetar should be in its active lifetime when it is captured. The active lifetime that the magnetar spends in the EMRI inspiral phase during its whole life can be roughly calculated. The age of an NS can easily reach Gyr, and the active phase only lasts for 104yr\sim 10^{4}~{}\rm{yr}. So the fraction of active magnetars can be calculated as 104yr/109yr10510^{4}\rm{yr}/10^{9}\rm{yr}\sim 10^{-5}. In such a situation, the event rate is so tiny: 106Gpc3yr110^{-6}~{}\rm{Gpc^{-3}~{}yr^{-1}} or 4×106Gpc3yr14\times 10^{-6}~{}\rm{Gpc^{-3}~{}yr^{-1}}.

We should add together the event rates corresponding to the two models to get the total event rate. Eventually, the total event rate is estimated to be 1Gpc3yr1\sim 1~{}\rm{Gpc^{-3}~{}yr^{-1}}, which is similar to the event rate of the cosmic comb model. This is because the contribution from the cases that FRBs produced in magnetosphere is so tiny. Captures of compact objects by SMBHs serve as the standard formation channel of EMRIs. Other processes including the tidal separation of compact binaries and formation or capture of NSs in accretion disks can also form EMRIs (Amaro-Seoane et al., 2007; Maggiore, 2018). Beyond that, ‘fake plunges’ (Amaro-Seoane et al., 2013) and Hills binary disruption (Sari & Fragione, 2019) also contribute to the event rate of EMRIs significantly. Therefore, the event rate is not grossly overestimated.

Based on the detection distances of the detectors shown in Table 1 and Table 2, few events fall within the detection range in a 4-yr mission time of LISA. However, there are uncertainties in both the spatial density of SMBHs and the capture rate. The SMBH space density in our range was found to be magnitude lower using SDSS data (Sheth et al., 2003). However this extrapolation should not be reliable on account of the insufficient resolution of SDSS spectra.

Table 3: Estimated rate RR.
MBH(M)M_{\rm{BH}}(M_{\odot}) R (Gpc3yr1\rm{Gpc^{-3}~{}yr^{-1}})
10510^{5} 0.470.47
10610^{6} 1.121.12
10710^{7} 2.652.65

5 Discussion and conclusions

The host galaxies of a few FRBs were confirmed by arcsecond-scale localization by modern radio interferometers (Gordon et al., 2023). Recently, the potential host galaxies of FRB 20200223B and FRB 20190110C were proposed (Ibik et al., 2023). These observations found that most of FRBs are not located in the centers of their host galaxies. However, those FRBs with less than a few kpc offset can still be potential candidates for such systems because SMBHs may have an offset of kpc scale from the center of galaxies (Reines et al., 2020).

For scenario 1, due to the limits of the cosmic comb model, the magnetar must approach the SMBH closely (e.g. r106pcr\sim 10^{-6}~{}\rm{pc}). We use the upper limit of aa to calculate the detection range. Theoretically, we can detect the event with a smaller semi-axis aa as long as the lower limit of the orbit is met. However, binary systems with extremely small semi-axis are actually rare in the universe. For scenario 2, when the semi-axis aa is the order of 103pc10^{-3}~{}\rm{pc}, it seems hard to detect the EMRI signals. Unless the orbit has a large eccentricity (e.g.e>0.995~{}e>0.995), the peak of signal amplitude can reach the most sensitive frequency band of the detectors. In general, the maximum horizon of such events is z0.04z\sim 0.04 in the most optimistic case. If the magnetar gets closer to the SMBH, it can be extended to a further detection distance but is not likely to be detected due to the short lifetime. Under the assumption that cosmic comb model proves to be a viable model for FRB production, the total event rate can be as high as 1 Gpc-3 yr-1.

Even though there are various potential candidates for FRB progenitors, the origin of FRBs still remains mysterious. In the future, the detection of EMRIs with FRBs as the EM counterpart will help us to study FRBs. These sources are also important for cosmological applications, such as measuring the Hubble constant (Abbott et al., 2017; Yu et al., 2018; Wu et al., 2022).

acknowledgements

We thank the anonymous referee for constructive comments. We thank Yuan Feng, Chen Xian, Chen-Ran Hu, Xuan-Dong Jia, Hao-Tian Lan, Jian-Guo He and Yun-Qing Wang for their helpful discussions. This work was supported by the National Natural Science Foundation of China (grant Nos. 12273009, 12041304 and 12288102), the National SKA Program of China (grant No. 2022SKA0130100), and the China Manned Spaced Project (CMS-CSST-2021-A12).

References

  • Abbate et al. (2023) Abbate, F., Noutsos, A., Desvignes, G., et al. 2023, arXiv e-prints, arXiv:2307.03230, doi: 10.48550/arXiv.2307.03230
  • Abbott et al. (2017) Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, Nature, 551, 85, doi: 10.1038/nature24471
  • Aller & Richstone (2002) Aller, M. C., & Richstone, D. 2002, AJ, 124, 3035, doi: 10.1086/344484
  • Amaro-Seoane et al. (2007) Amaro-Seoane, P., Gair, J. R., Freitag, M., et al. 2007, Classical and Quantum Gravity, 24, R113, doi: 10.1088/0264-9381/24/17/R01
  • Amaro-Seoane et al. (2013) Amaro-Seoane, P., Sopuerta, C. F., & Freitag, M. D. 2013, MNRAS, 429, 3155, doi: 10.1093/mnras/sts572
  • Amaro-Seoane et al. (2017) Amaro-Seoane, P., Audley, H., Babak, S., et al. 2017, arXiv e-prints, arXiv:1702.00786, doi: 10.48550/arXiv.1702.00786
  • Amaro-Seoane et al. (2023) Amaro-Seoane, P., Andrews, J., Arca Sedda, M., et al. 2023, Living Reviews in Relativity, 26, 2, doi: 10.1007/s41114-022-00041-y
  • Anna-Thomas et al. (2023) Anna-Thomas, R., Connor, L., Dai, S., et al. 2023, Science, 380, 599, doi: 10.1126/science.abo6526
  • Barack & Cutler (2004) Barack, L., & Cutler, C. 2004, Phys. Rev. D, 70, 122002, doi: 10.1103/PhysRevD.70.122002
  • Beloborodov (2017) Beloborodov, A. M. 2017, ApJ, 843, L26, doi: 10.3847/2041-8213/aa78f3
  • Beloborodov & Li (2016) Beloborodov, A. M., & Li, X. 2016, ApJ, 833, 261, doi: 10.3847/1538-4357/833/2/261
  • Beniamini et al. (2019) Beniamini, P., Hotokezaka, K., van der Horst, A., & Kouveliotou, C. 2019, MNRAS, 487, 1426, doi: 10.1093/mnras/stz1391
  • Beniamini et al. (2022) Beniamini, P., Kumar, P., & Narayan, R. 2022, MNRAS, 510, 4654, doi: 10.1093/mnras/stab3730
  • Bhardwaj et al. (2023) Bhardwaj, M., Palmese, A., Magaña Hernandez, I., D’Emilio, V., & Morisaki, S. 2023, arXiv e-prints, arXiv:2306.00948, doi: 10.48550/arXiv.2306.00948
  • Bochenek et al. (2020) Bochenek, C. D., Ravi, V., Belov, K. V., et al. 2020, Nature, 587, 59, doi: 10.1038/s41586-020-2872-x
  • Chen et al. (2022) Chen, X., Qiu, Y., Li, S., & Liu, F. K. 2022, ApJ, 930, 122, doi: 10.3847/1538-4357/ac63bf
  • CHIME/FRB Collaboration et al. (2020) CHIME/FRB Collaboration, Andersen, B. C., Bandura, K. M., et al. 2020, Nature, 587, 54, doi: 10.1038/s41586-020-2863-y
  • Dai et al. (2022) Dai, S., Feng, Y., Yang, Y. P., et al. 2022, arXiv e-prints, arXiv:2203.08151, doi: 10.48550/arXiv.2203.08151
  • Dall’Osso et al. (2012) Dall’Osso, S., Granot, J., & Piran, T. 2012, MNRAS, 422, 2878, doi: 10.1111/j.1365-2966.2012.20612.x
  • Desvignes et al. (2018) Desvignes, G., Eatough, R. P., Pen, U. L., et al. 2018, ApJ, 852, L12, doi: 10.3847/2041-8213/aaa2f8
  • Eatough et al. (2013) Eatough, R. P., Falcke, H., Karuppusamy, R., et al. 2013, Nature, 501, 391, doi: 10.1038/nature12499
  • Esposito et al. (2010) Esposito, P., Tiengo, A., de Luca, A., et al. 2010, in American Institute of Physics Conference Series, Vol. 1248, X-ray Astronomy 2009; Present Status, Multi-Wavelength Approach and Future Perspectives, ed. A. Comastri, L. Angelini, & M. Cappi, 157–158, doi: 10.1063/1.3475179
  • Feng et al. (2023) Feng, Y., Jiang, J., Zhou, D., et al. 2023, The Astronomer’s Telegram, 15980, 1
  • Finn & Thorne (2000) Finn, L. S., & Thorne, K. S. 2000, Phys. Rev. D, 62, 124021, doi: 10.1103/PhysRevD.62.124021
  • Freitag (2001) Freitag, M. 2001, Classical and Quantum Gravity, 18, 4033, doi: 10.1088/0264-9381/18/19/309
  • Gair et al. (2017) Gair, J. R., Babak, S., Sesana, A., et al. 2017, in Journal of Physics Conference Series, Vol. 840, Journal of Physics Conference Series, 012021, doi: 10.1088/1742-6596/840/1/012021
  • Gair et al. (2004) Gair, J. R., Barack, L., Creighton, T., et al. 2004, Classical and Quantum Gravity, 21, S1595, doi: 10.1088/0264-9381/21/20/003
  • Gordon et al. (2023) Gordon, A. C., Fong, W.-f., Kilpatrick, C. D., et al. 2023, arXiv e-prints, arXiv:2302.05465, doi: 10.48550/arXiv.2302.05465
  • Hilmarsson et al. (2021) Hilmarsson, G. H., Michilli, D., Spitler, L. G., et al. 2021, ApJ, 908, L10, doi: 10.3847/2041-8213/abdec0
  • Ibik et al. (2023) Ibik, A. L., Drout, M. R., Gaensler, B. M., et al. 2023, arXiv e-prints, arXiv:2304.02638, doi: 10.48550/arXiv.2304.02638
  • Kaneko et al. (2010) Kaneko, Y., Göǧüş, E., Kouveliotou, C., et al. 2010, ApJ, 710, 1335, doi: 10.1088/0004-637X/710/2/1335
  • Kargaltsev et al. (2012) Kargaltsev, O., Kouveliotou, C., Pavlov, G. G., et al. 2012, ApJ, 748, 26, doi: 10.1088/0004-637X/748/1/26
  • Kaspi & Beloborodov (2017) Kaspi, V. M., & Beloborodov, A. M. 2017, ARA&A, 55, 261, doi: 10.1146/annurev-astro-081915-023329
  • Katz (2016) Katz, J. I. 2016, ApJ, 826, 226, doi: 10.3847/0004-637X/826/2/226
  • Katz (2020) Katz, J. I. 2020, Monthly Notices of the Royal Astronomical Society: Letters, 501, L76, doi: 10.1093/mnrasl/slaa202
  • Katz (2022) Katz, J. I. 2022, MNRAS, 510, L42, doi: 10.1093/mnrasl/slab128
  • Katz (2023) —. 2023, arXiv e-prints, arXiv:2303.05578, doi: 10.48550/arXiv.2303.05578
  • King (2020) King, A. 2020, MNRAS, 493, L120, doi: 10.1093/mnrasl/slaa020
  • Kulkarni et al. (2014) Kulkarni, S. R., Ofek, E. O., Neill, J. D., Zheng, Z., & Juric, M. 2014, ApJ, 797, 70, doi: 10.1088/0004-637X/797/1/70
  • Kumar & Bošnjak (2020) Kumar, P., & Bošnjak, Ž. 2020, MNRAS, 494, 2385, doi: 10.1093/mnras/staa774
  • Kumar et al. (2023) Kumar, P., Luo, R., Price, D. C., et al. 2023, arXiv e-prints, arXiv:2304.01763, doi: 10.48550/arXiv.2304.01763
  • Lorimer et al. (2007) Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F. 2007, Science, 318, 777, doi: 10.1126/science.1147532
  • Lu & Kumar (2018) Lu, W., & Kumar, P. 2018, MNRAS, 477, 2470, doi: 10.1093/mnras/sty716
  • Lu et al. (2020a) Lu, W., Kumar, P., & Zhang, B. 2020a, MNRAS, 498, 1397, doi: 10.1093/mnras/staa2450
  • Lu et al. (2020b) —. 2020b, MNRAS, 498, 1397, doi: 10.1093/mnras/staa2450
  • Lu et al. (2023) Lu, W.-J., Zhao, Z.-Y., Wang, F. Y., & Dai, Z. G. 2023, arXiv e-prints, arXiv:2309.06653, doi: 10.48550/arXiv.2309.06653
  • Maggiore (2018) Maggiore, M. 2018, Gravitational Waves: Volume 2: Astrophysics and Cosmology, doi: 10.1093/oso/9780198570899.001.0001
  • Margalit et al. (2020) Margalit, B., Beniamini, P., Sridhar, N., & Metzger, B. D. 2020, arXiv e-prints, arXiv:2005.05283. https://arxiv.org/abs/2005.05283
  • Margalit et al. (2019) Margalit, B., Berger, E., & Metzger, B. D. 2019, ApJ, 886, 110, doi: 10.3847/1538-4357/ab4c31
  • Margalit & Metzger (2018) Margalit, B., & Metzger, B. D. 2018, ApJ, 868, L4, doi: 10.3847/2041-8213/aaedad
  • Mckinven et al. (2023) Mckinven, R., Gaensler, B. M., Michilli, D., et al. 2023, arXiv e-prints, arXiv:2302.08386, doi: 10.48550/arXiv.2302.08386
  • Merritt & Ferrarese (2001) Merritt, D., & Ferrarese, L. 2001, ApJ, 547, 140, doi: 10.1086/318372
  • Metzger et al. (2017) Metzger, B. D., Berger, E., & Margalit, B. 2017, ApJ, 841, 14, doi: 10.3847/1538-4357/aa633d
  • Michilli et al. (2018) Michilli, D., Seymour, A., Hessels, J. W. T., et al. 2018, Nature, 553, 182, doi: 10.1038/nature25149
  • Moroianu et al. (2023) Moroianu, A., Wen, L., James, C. W., et al. 2023, Nature Astronomy, doi: 10.1038/s41550-023-01917-x
  • Murase et al. (2016) Murase, K., Kashiyama, K., & Mészáros, P. 2016, MNRAS, 461, 1498, doi: 10.1093/mnras/stw1328
  • Niu et al. (2022) Niu, C. H., Aggarwal, K., Li, D., et al. 2022, Nature, 606, 873, doi: 10.1038/s41586-022-04755-5
  • Peters (1964) Peters, P. C. 1964, Phys. Rev., 136, B1224, doi: 10.1103/PhysRev.136.B1224
  • Petroff et al. (2019) Petroff, E., Hessels, J. W. T., & Lorimer, D. R. 2019, A&A Rev., 27, 4, doi: 10.1007/s00159-019-0116-6
  • Piro & Gaensler (2018) Piro, A. L., & Gaensler, B. M. 2018, ApJ, 861, 150, doi: 10.3847/1538-4357/aac9bc
  • Popov et al. (2010) Popov, S. B., Pons, J. A., Miralles, J. A., Boldin, P. A., & Posselt, B. 2010, MNRAS, 401, 2675, doi: 10.1111/j.1365-2966.2009.15850.x
  • Popov & Postnov (2013) Popov, S. B., & Postnov, K. A. 2013, arXiv e-prints, arXiv:1307.4924. https://arxiv.org/abs/1307.4924
  • Porth & Fendt (2010) Porth, O., & Fendt, C. 2010, ApJ, 709, 1100, doi: 10.1088/0004-637X/709/2/1100
  • Reines et al. (2020) Reines, A. E., Condon, J. J., Darling, J., & Greene, J. E. 2020, ApJ, 888, 36, doi: 10.3847/1538-4357/ab4999
  • Ressler et al. (2023) Ressler, S. M., White, C. J., & Quataert, E. 2023, arXiv e-prints, arXiv:2303.15503, doi: 10.48550/arXiv.2303.15503
  • Robson et al. (2019) Robson, T., Cornish, N. J., & Liu, C. 2019, Classical and Quantum Gravity, 36, 105011, doi: 10.1088/1361-6382/ab1101
  • Sari & Fragione (2019) Sari, R., & Fragione, G. 2019, ApJ, 885, 24, doi: 10.3847/1538-4357/ab43df
  • Sheth et al. (2003) Sheth, R. K., Bernardi, M., Schechter, P. L., et al. 2003, ApJ, 594, 225, doi: 10.1086/376794
  • Spitler et al. (2016) Spitler, L. G., Scholz, P., Hessels, J. W. T., et al. 2016, Nature, 531, 202, doi: 10.1038/nature17168
  • Sridhar et al. (2021) Sridhar, N., Metzger, B. D., Beniamini, P., et al. 2021, ApJ, 917, 13, doi: 10.3847/1538-4357/ac0140
  • Tremaine et al. (2002) Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, ApJ, 574, 740, doi: 10.1086/341002
  • Wada et al. (2021) Wada, T., Ioka, K., & Zhang, B. 2021, ApJ, 920, 54, doi: 10.3847/1538-4357/ac127a
  • Wadiasingh & Timokhin (2019) Wadiasingh, Z., & Timokhin, A. 2019, ApJ, 879, 4, doi: 10.3847/1538-4357/ab2240
  • Wagg et al. (2022a) Wagg, T., Breivik, K., & de Mink, S. 2022a, The Journal of Open Source Software, 7, 3998, doi: 10.21105/joss.03998
  • Wagg et al. (2022b) Wagg, T., Breivik, K., & de Mink, S. E. 2022b, ApJS, 260, 52, doi: 10.3847/1538-4365/ac5c52
  • Wang et al. (2020) Wang, F. Y., Wang, Y. Y., Yang, Y.-P., et al. 2020, ApJ, 891, 72, doi: 10.3847/1538-4357/ab74d0
  • Wang & Yu (2017) Wang, F. Y., & Yu, H. 2017, J. Cosmol. Astropart. Phys., 03, 023, doi: 10.1088/1475-7516/2017/03/023
  • Wang et al. (2022) Wang, F. Y., Zhang, G. Q., Dai, Z. G., & Cheng, K. S. 2022, Nature Communications, 13, 4382, doi: 10.1038/s41467-022-31923-y
  • Wang (2020) Wang, J.-S. 2020, ApJ, 900, 172, doi: 10.3847/1538-4357/aba955
  • Wang et al. (2019) Wang, Y. Y., Wang, F. Y., Zou, Y. C., & Dai, Z. G. 2019, ApJ, 886, L22, doi: 10.3847/2041-8213/ab55e2
  • Wu et al. (2022) Wu, Q., Zhang, G.-Q., & Wang, F.-Y. 2022, MNRAS, 515, L1, doi: 10.1093/mnrasl/slac022
  • Xiao et al. (2021) Xiao, D., Wang, F., & Dai, Z. 2021, Science China Physics, Mechanics, and Astronomy, 64, 249501, doi: 10.1007/s11433-020-1661-7
  • Xu et al. (2022) Xu, H., Niu, J. R., Chen, P., et al. 2022, Nature, 609, 685, doi: 10.1038/s41586-022-05071-8
  • Yang et al. (2023) Yang, Y.-P., Xu, S., & Zhang, B. 2023, MNRAS, 520, 2039, doi: 10.1093/mnras/stad168
  • Yang & Zhang (2018) Yang, Y.-P., & Zhang, B. 2018, ApJ, 868, 31, doi: 10.3847/1538-4357/aae685
  • Yu et al. (2018) Yu, H., Ratra, B., & Wang, F.-Y. 2018, ApJ, 856, 3, doi: 10.3847/1538-4357/aab0a2
  • Zhang (2017) Zhang, B. 2017, ApJ, 836, L32, doi: 10.3847/2041-8213/aa5ded
  • Zhang (2018) —. 2018, ApJ, 854, L21, doi: 10.3847/2041-8213/aaadba
  • Zhang (2020) —. 2020, Nature, 587, 45, doi: 10.1038/s41586-020-2828-1
  • Zhang (2022) —. 2022, arXiv e-prints, arXiv:2212.03972, doi: 10.48550/arXiv.2212.03972
  • Zhao & Wang (2021) Zhao, Z. Y., & Wang, F. Y. 2021, ApJ, 923, L17, doi: 10.3847/2041-8213/ac3f2f
  • Zhao et al. (2022) Zhao, Z. Y., Wang, Y. Y., Zou, Y. C., Wang, F. Y., & Dai, Z. G. 2022, A&A, 661, A55, doi: 10.1051/0004-6361/202142519
  • Zhao et al. (2023) Zhao, Z. Y., Zhang, G. Q., Wang, F. Y., & Dai, Z. G. 2023, ApJ, 942, 102, doi: 10.3847/1538-4357/aca66b
  • Zhao et al. (2021) Zhao, Z. Y., Zhang, G. Q., Wang, Y. Y., Tu, Z.-L., & Wang, F. Y. 2021, ApJ, 907, 111, doi: 10.3847/1538-4357/abd321
  • Zhou et al. (2020) Zhou, P., Zhou, X., Chen, Y., et al. 2020, ApJ, 905, 99, doi: 10.3847/1538-4357/abc34a