This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Far Field Asymptotics of Nematic Flows Around a Small Spherical Particle

Dmitry Golovaty Department of Mathematics, The University of Akron, Akron, OH 44124, USA Nung Kwan Yip Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
Abstract

Given a small spherical particle, we consider flow of a nematic liquid crystal in the corresponding exterior domain. Our focus is on precise far field asymptotic behavior of the flow in a parameter regime when the governing equations can be reduced to a system of linear partial differential equations. We are able to analytically characterize the velocity of the flow and compare it to the classical expression for the Stokes flow. The expression for velocity away from the particle can be computed either numerically or symbolically.

1 Introduction

This paper analyzes the flow pattern around a small spherical particle in a nematic liquid crystalline environment. Although a similar phenomenon in a classical isotropic fluid has been well-studied, the understanding in the case of a complex fluid is far from complete, despite the fact that it is of utmost importance in many physical and biological systems. Here we are particularly interested in flows around solid particles immersed in a nematic liquid crystalline medium. A typical nematic liquid crystal consists of molecules which possess a degree of orientational order but no positional order so that this medium can be thought of as an anisotropic Newtonian fluid with additional elastic properties. Hence, in order to understand the flow field around a particle, one needs to analyze the behavior of solutions to a coupled system of PDEs that describes both flow and orientational elasticity.

In a broader context, we are interested in multi-particle systems such as colloidal suspensions of both passive and active particles in complex media. The overall behavior of these systems certainly depends on both the particle-fluid and particle-particle interactions. As a typical initial step, one would consider a dilute system in which particles are far from each other. Therefore, it is crucial to understand far field interactions between the particles.

As a starting point, one then can investigate a single particle in a host medium and determine the far-field asymptotics of the corresponding flow patterns. In the present case, these asymptotics should also include the far-field orientational information about the liquid crystal. This is the situation considered in our work for the parameter regime in which we are able to obtain explicit asymptotics in the same spirit as those known for the classical Stokes flow. Our work seems to be the first to give a precise characterization of the flow around a particle immersed in a nematic liquid crystal.

First, we briefly discuss prior work on liquid crystalline flows with or without particles. The theory of nematic flows has proceeded along two somewhat different but related directions that rely on distinct continuum descriptions of the nematics. The first and most widely used approach, due to Ericksen and Leslie [1, 2], is based on the 𝕊2\mathbb{S}^{2}-valued nematic director used to model local orientation of nematic molecules, along with the velocity of the flow. The corresponding system of equations is derived by assuming local balances of mass as well as linear and angular momentum and then specifying the energy dissipation density in the form that conforms with the second law of thermodynamics. As the result, the system consists of a coupled Navier-Stokes and Ginzburg-Landau type equations. The Ericksen-Leslie model has been a subject of numerous studies [3, 4, 5, 6, 7].

The alternative approach relies on the Landau-de Gennes description of orientational elasticity that is designed to take into account certain symmetry properties of orientational distribution of nematic molecules. The Landau-de Gennes variational theory replaces the nematic director with a so-called 𝖰\mathsf{Q}-tensor—a symmetric traceless 3×33\times 3 matrix the eigenvectors of which encode orientational properties of the nematic. The energetics of 𝖰\mathsf{Q} is modeled by the Landau-de Gennes functional LdG(𝖰)\mathcal{F}_{\mathrm{LdG}}(\mathsf{Q}) – see (1). When applied to nematic flow, the evolution of 𝖰\mathsf{Q} and the velocity 𝐯{\bf v} of the nematic is given by a coupled system of the Landau-de Gennes and Navier-Stokes equations and can be derived following the procedure outlined by Sonnet and Virga (SV) on the basis of the principle of minimum constrained dissipation [8, 9, 10]. Another related but more popular model, due to Beris and Edward (BE) [11], was obtained by making use of the concept of a Poisson bracket with dissipation–in a later work, we will in fact show that the BE model is a specific example of the SV formulation. The BE model has been studied extensively in recent years, see for example, [12, 13, 14] just to name a few.

Particulate flows in a classical fluid is another widely studied subject, see [15, 16] for overview of relevant literature and mathematical theory. Motion of particles in a complex fluid, and in particular in a nematic host, has also attracted attention of many investigators, especially with the expanding interest in motion of immersed active particles [17, 18, 19, 20]. The experimental and modeling work in this field has so far outpaced the analysis effort [21, 22, 23]. The goal of the present paper is to make inroads into rigorous understanding of a nematic flow around a single particle within the framework of a 𝖰\mathsf{Q}-tensor-based model.

The details of the model are outlined in Section 2. Here we highlight some key physically justifiable assumptions that we make in order to obtain precise asymptotics of the flow pattern. These assumptions allow us to reduce the overall dynamics to a linear system of PDEs describing an anisotropic Stokes flow with elastic contribution. We emphasize that the distinction with the standard isotropic Stokes flow is not only due to orientability of the medium (described by 𝖰\mathsf{Q}) that makes the flow anisotropic, but also because the flow is coupled to the elastic properties of the medium (described by 𝖰\nabla\mathsf{Q}).

Our principal assumptions are as follows. We set both Ericksen (Er) and Reynolds (Re) numbers to be small. This means that the dynamics is dominated by the elastic effects of the nematics and the flow is highly dissipative in the sense that inertial effects are negligible. As the result, our model becomes a partially decoupled system (32)–(34) in which 𝖰\mathsf{Q} satisfies an equation that does not involve 𝐯{\bf v}. The solution of this equation can then be treated as a prescribed function which enters into an inhomogeneous linear Stokes-like equation describing the evolution of 𝐯{\bf v}.

To obtain an explicit solution for 𝖰\mathsf{Q}, we further take advantage of the small particle limit considered in [24]. In this regime, the equation for 𝖰\mathsf{Q} becomes a Laplace equation with an exact solution given by a harmonic function.

Our main result is the precise far-field asymptotics for 𝐯{\bf v} where we are able to analytically characterize the deviation of 𝐯{\bf v} from the solution for the classical Stokes flow. In particular, we are able to obtain an analytical expression for 𝐯{\bf v} that can be computed either numerically or symbolically.

The outline of our paper is as follows. In Section 2, we provide a detailed description of our model and relevant parameter regimes. In Section 3, we recall the explicit solutions for a 𝖰\mathsf{Q}-tensor and the classical Stokes flow in the exterior of a small particle that we use in subsequent sections. In Section 4, we analyze the structure of our anisotropic Stokes system. Then in Sections 5 and 6, we prove existence of solutions to the governing system of equations and analyze their far-field asymptotic behavior, in particular their deviation from the isotropic Stokes flow. Finally, in Section 7, we present numerical results. Given the generality of the model considered in this work, the analysis relies on some tedious but routine computations that we summarize in the Appendices A-D, along with verification of our numerical experiments.

We conclude this section with the list of notation and conventions that will be used in this paper. We remind the reader that we work with objects defined on 3\mathbb{R}^{3}.

  1. (a).

    For any vector u3u\in\mathbb{R}^{3}, its components are represented by uiu_{i}, for i=1,2,3i=1,2,3 and u^=u|u|\displaystyle\widehat{u}=\frac{u}{|u|} is the unit vector with the same direction as uu. Hence we have u^i=ui|u|\displaystyle\widehat{u}_{i}=\frac{u_{i}}{|u|}. Whenever there is no ambiguity, we will omit ^\,\,\widehat{}\,\,. Euclidean inner product between vectors u,v3u,v\in\mathbb{R}^{3} is denoted by uvu\cdot v. Furthermore, the symbols e1,e2e_{1},e_{2} and e3e_{3} represent the coordinate vectors of 3\mathbb{R}^{3}.

  2. (b).

    For any 𝖡,𝖢M3×3\mathsf{B},\mathsf{C}\in M^{3\times 3}, 3×33\times 3 matrices, 𝖡𝖢=tr(𝖢T𝖡)\mathsf{B}\cdot\mathsf{C}=\mathrm{tr\,}\left(\mathsf{C}^{T}\mathsf{B}\right) and |𝖡|2=𝖡𝖡|\mathsf{B}|^{2}=\mathsf{B}\cdot\mathsf{B}.

  3. (c).

    Einstein’s convention for repeated indices will be used whenever possible.

  4. (d).

    For any matrix or second order tensor field 𝖳=(𝖳ij)1i,j3\mathsf{T}=(\mathsf{T}_{ij})_{1\leq i,j\leq 3}, 𝖳i\mathsf{T}_{i} denotes its ii-th row. The divergence div𝖳\mathrm{div}\,\mathsf{T} is to be taken row-wise, i.e. for all ii, (div𝖳)i:=div𝖳i=xj𝖳ij(\mathrm{div}\,\mathsf{T})_{i}:=\mathrm{div}\,\mathsf{T}_{i}=\partial_{x_{j}}\mathsf{T}_{ij}.

  5. (e).

    A symbol such as x=(x1,x2,x3)Tx=(x_{1},x_{2},x_{3})^{T} denotes either a generic point or a dummy integration variable in 3\mathbb{R}^{3}. For convenience, we will also use rr to denote

    r=|x|=x12+x22+x32.r=|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}.
  6. (f).

    The (3-dimensional) volume integration element is denoted by

    dx=dx1dx2dx3.dx=dx_{1}dx_{2}dx_{3}.

    The (2-dimensional) area integration element is denoted by

    dσx,or simplydσ(if the variable is clear from context).d\sigma_{x},\,\,\,\text{or simply}\,\,\,d\sigma\,\,\,\text{(if the variable is clear from context).}

    The unit outward normal to the domain Ω\Omega occupied by the liquid crystal is given by ν\nu.

  7. (g).

    We use the i=xi\partial_{i}=\partial_{x_{i}} to denote spatial partial derivatives.

  8. (h).

    Sometimes we find it advantageous to use the symbol matrix,vector\big{\langle}\text{matrix},\text{vector}\big{\rangle} and vector,vector\big{\langle}\text{vector},\text{vector}\big{\rangle} to denote the matrix-vector multiplication and the dot product, respectively.

  9. (i).

    The symbol ``:"``:" will be used to denote a generic tensor contraction. It will be explicitly defined whenever necessary.

  10. (j).

    The symbol ``"``\lesssim" will be used to refer to an inequality that holds up to a multiplicative constant. This constant can change from one line to another but is not important to the ultimate conclusion.

2 Problem formulation

2.1 A model for the dynamics of nematic liquid crystals

Suppose that a nematic liquid crystal occupies a region Ω3\Omega\subset\mathbb{R}^{3} and let the 𝖰\mathsf{Q}-tensor

𝖰:Ω:={𝖰M3×3():𝖰T=𝖰,tr𝖰=0}\mathsf{Q}:\Omega\to\mathcal{M}:=\left\{\mathsf{Q}\in M^{3\times 3}(\mathbb{R}):\mathsf{Q}^{T}=\mathsf{Q},\ \mathrm{tr\,}{\mathsf{Q}}=0\right\}

and the velocity 𝐯:Ω3{\bf v}:\Omega\to\mathbb{R}^{3} describe the local state of the nematic. We introduce the Landau-de Gennes energy density and the corresponding energy functional as:

LdG(𝖰,𝖰)=K2|𝖰|2+f(𝖰),LdG(𝖰)=LdG(𝖰,𝖰)d3x.\mathcal{E}_{\mathrm{LdG}}(\nabla\mathsf{Q},\mathsf{Q})=\frac{K}{2}{|\nabla\mathsf{Q}|}^{2}+f(\mathsf{Q}),\quad\mathcal{F}_{\mathrm{LdG}}(\mathsf{Q})=\int\mathcal{E}_{\mathrm{LdG}}(\nabla\mathsf{Q},\mathsf{Q})\,d^{3}x. (1)

The parameter KK is the elastic constant of the liquid crystal. The nonlinear Landau-de Gennes potential ff is given by

f(𝖰)=A2tr𝖰2+B3tr𝖰3+C4(tr𝖰2)2,f(\mathsf{Q})=-\frac{A}{2}\mathrm{tr\,}\mathsf{Q}^{2}+\frac{B}{3}\mathrm{tr\,}\mathsf{Q}^{3}+\frac{C}{4}{\left(\mathrm{tr\,}\mathsf{Q}^{2}\right)}^{2}, (2)

with A,C>0A,C>0. The minimum of ff over \mathcal{M} is attained at the nematic states given by

s(nn13𝖨),wheren𝕊2ands={B+B2+24AC4Cfor B>0,B+B2+24AC4Cfor B<0.s_{*}\left({n_{*}}\otimes{n_{*}}-\frac{1}{3}\mathsf{I}\right),\,\,\,\text{where}\,\,\,{n_{*}}\in{\mathbb{S}}^{2}\,\,\,\text{and}\,\,\,s_{*}=\left\{\begin{array}[]{ll}-\frac{B+\sqrt{B^{2}+24AC}}{4C}&\text{for $B>0$},\\ \frac{-B+\sqrt{B^{2}+24AC}}{4C}&\text{for $B<0$}.\end{array}\right. (3)

Let

𝖰̊=𝖰˙+𝖰𝖶𝖶𝖰,𝖠=12(𝐯+𝐯T),𝖶=12(𝐯𝐯T)\mathring{\mathsf{Q}}=\dot{\mathsf{Q}}+\mathsf{Q}\mathsf{W}-\mathsf{W}\mathsf{Q},\quad\mathsf{A}=\frac{1}{2}\left(\nabla{\bf v}+\nabla{\bf v}^{T}\right),\quad\mathsf{W}=\frac{1}{2}\left(\nabla{\bf v}-\nabla{\bf v}^{T}\right) (4)

where 𝖰˙\dot{\mathsf{Q}} denotes the convective derivative

𝖰˙=t𝖰+𝐯𝖰.\dot{\mathsf{Q}}=\partial_{t}\mathsf{Q}+{\bf v}\cdot\nabla\mathsf{Q}.

The expression 𝖰̊\mathring{\mathsf{Q}} will be used below instead of 𝖰˙\dot{\mathsf{Q}} because it is frame indifferent [10, Section 2.1.3, Eq. (2.87), Section 4.1.3]. The 3×33\times 3-matrices 𝖠\mathsf{A} and 𝖶\mathsf{W} are respectively symmetric and skew-symmetric, and the expressions such as 𝖰𝖶\mathsf{Q}\mathsf{W} and so forth refer to matrix multiplications. From the definition of 𝖰̊\mathring{\mathsf{Q}}, we infer that it is also a symmetric, traceless matrix.

We consider the incompressible flow of the nematic in Ω\Omega described by the following system of equations

[left=\empheqlbrace]\displaystyle[left=\empheqlbrace] LdG𝖰div[LdG𝖰]Λ𝖨+ζ1𝖰̊+ζ2𝖠+ζ32(𝖠𝖰+𝖰𝖠)+ζ9(𝖠𝖰)𝖰=0,\displaystyle\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\mathsf{Q}}-\mathrm{div}\,\left[\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\nabla\mathsf{Q}}\right]-\Lambda\mathsf{I}+\zeta_{1}\mathring{\mathsf{Q}}+\zeta_{2}\mathsf{A}+\frac{\zeta_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\zeta_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}=0, (5)
ρ𝐯˙+div[p𝖨𝖳SVv𝖳el]=0,\displaystyle\rho\,\dot{\bf v}+\mathrm{div}\,\left[p\mathsf{I}-\mathsf{T}^{\mathrm{v}}_{\text{SV}}-\mathsf{T}^{\mathrm{el}}\right]=0, (6)
div𝐯=0,\displaystyle\mathrm{div}\,{\bf v}=0, (7)

where we have

LdG𝖰\displaystyle\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\mathsf{Q}} =\displaystyle= A𝖰+B(𝖰213|𝖰|2𝖨)+C|𝖰|2𝖰,\displaystyle-A\mathsf{Q}+B\left(\mathsf{Q}^{2}-\frac{1}{3}|\mathsf{Q}|^{2}\mathsf{I}\right)+C|\mathsf{Q}|^{2}\mathsf{Q}, (8)
div[LdG𝖰]\displaystyle\mathrm{div}\,\left[\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\nabla\mathsf{Q}}\right] =\displaystyle= K𝖰.\displaystyle K\triangle\mathsf{Q}. (9)

The parameter ρ\rho denotes the density of the nematic and ζ1\zeta_{1} through ζ11\zeta_{11} are the viscosity coefficients of the nematic with ζ8\zeta_{8} being the isotropic viscosity. The pressure pp and the function Λ\Lambda are the Lagrange multipliers corresponding, respectively, to the incompressibility and tracelessness constraints for 𝐯{\bf v} and 𝖰\mathsf{Q}. The viscous and elastic stress tensors are

𝖳SVv\displaystyle\mathsf{T}^{\mathrm{v}}_{\text{SV}} =\displaystyle= ζ1(𝖰𝖰̊𝖰̊𝖰)+ζ2(𝖰̊+𝖰𝖠𝖠𝖰)+ζ32(𝖰𝖰̊+𝖰̊𝖰+𝖰2𝖠𝖠𝖰2)\displaystyle\zeta_{1}\left(\mathsf{Q}\mathring{\mathsf{Q}}-\mathring{\mathsf{Q}}\mathsf{Q}\right)+\zeta_{2}\left(\mathring{\mathsf{Q}}+\mathsf{Q}\mathsf{A}-\mathsf{A}\mathsf{Q}\right)+\frac{\zeta_{3}}{2}\left(\mathsf{Q}\mathring{\mathsf{Q}}+\mathring{\mathsf{Q}}\mathsf{Q}+\mathsf{Q}^{2}\mathsf{A}-\mathsf{A}\mathsf{Q}^{2}\right) (10)
+ζ4(𝖰𝖠+𝖠𝖰)+ζ5(𝖰2𝖠+𝖠𝖰2)+ζ6(𝖠𝖰)𝖰+ζ7|𝖰|2𝖠+ζ8𝖠\displaystyle+\zeta_{4}\left(\mathsf{Q}\mathsf{A}+\mathsf{A}\mathsf{Q}\right)+\zeta_{5}\left(\mathsf{Q}^{2}\mathsf{A}+\mathsf{A}\mathsf{Q}^{2}\right)+\zeta_{6}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}+\zeta_{7}{|\mathsf{Q}|}^{2}\mathsf{A}+\zeta_{8}\mathsf{A}
+ζ9(𝖰̊𝖰)𝖰+ζ10((𝖰2𝖠)𝖰+(𝖰𝖠)𝖰2)+ζ11|𝖰|2(𝖠𝖰)𝖰\displaystyle+\zeta_{9}(\mathring{{\mathsf{Q}}}\cdot\mathsf{Q})\mathsf{Q}+\zeta_{10}\left(\left(\mathsf{Q}^{2}\cdot\mathsf{A}\right)\mathsf{Q}+\left(\mathsf{Q}\cdot\mathsf{A}\right)\mathsf{Q}^{2}\right)+\zeta_{11}|\mathsf{Q}|^{2}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}

and

𝖳el\displaystyle\mathsf{T}^{\mathrm{el}} =\displaystyle= LdG(j𝖰mn)(i𝖰mn)𝐞i𝐞j=K(j𝖰mn)(i𝖰mn)𝐞i𝐞j\displaystyle-\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\left(\partial_{j}\mathsf{Q}_{mn}\right)}\left(\partial_{i}\mathsf{Q}_{mn}\right){\mathbf{e}}_{i}\otimes{\mathbf{e}}_{j}=-K(\partial_{j}\mathsf{Q}_{mn})(\partial_{i}\mathsf{Q}_{mn}){\mathbf{e}}_{i}\otimes{\mathbf{e}}_{j} (11)
=\displaystyle= K(i𝖰j𝖰)𝐞i𝐞j\displaystyle-K\left(\partial_{i}\mathsf{Q}\cdot\partial_{j}\mathsf{Q}\right){\mathbf{e}}_{i}\otimes{\mathbf{e}}_{j}
=:\displaystyle=: K(𝖰𝖰),\displaystyle-K\left(\nabla\mathsf{Q}\odot\nabla\mathsf{Q}\right),

respectively, so that (𝖰𝖰)ij=i𝖰j𝖰\left(\nabla\mathsf{Q}\odot\nabla\mathsf{Q}\right)_{ij}=\partial_{i}\mathsf{Q}\cdot\partial_{j}\mathsf{Q} component-wise.

The model (5)–(7) is established in [10, Section 4.1.3], where a dissipation function R=R(𝖰;𝖠,𝖰̊)R=R(\mathsf{Q};\mathsf{A},\mathring{\mathsf{Q}}) is introduced from which the viscous stress tensor (10) can be derived. In particular, the following general form of a dissipation function is proposed in [10, Eq. (4.23)]:

R(𝖰;𝖠,𝖰̊)=ζ12𝖰̊𝖰̊+ζ2𝖠𝖰̊+ζ3(𝖰̊𝖰)𝖠+ζ4𝖰𝖠2+ζ5𝖰2𝖠2+ζ62(𝖰𝖠)2+ζ72|𝖠|2|𝖰|2+ζ82|𝖠|2+ζ9(𝖰̊𝖰)(𝖠𝖰)+ζ10(𝖰2𝖠)(𝖰𝖠)+ζ112|𝖰|2(𝖠𝖰)2.R(\mathsf{Q};\mathsf{A},\mathring{\mathsf{Q}})=\frac{\zeta_{1}}{2}\mathring{\mathsf{Q}}\cdot\mathring{\mathsf{Q}}+\zeta_{2}\mathsf{A}\cdot\mathring{\mathsf{Q}}+\zeta_{3}(\mathring{\mathsf{Q}}\mathsf{Q})\cdot\mathsf{A}+\zeta_{4}\mathsf{Q}\cdot\mathsf{A}^{2}+\zeta_{5}\mathsf{Q}^{2}\cdot\mathsf{A}^{2}+\frac{\zeta_{6}}{2}(\mathsf{Q}\cdot\mathsf{A})^{2}\\ +\frac{\zeta_{7}}{2}{|\mathsf{A}|}^{2}{|\mathsf{Q}|}^{2}+\frac{\zeta_{8}}{2}{|\mathsf{A}|}^{2}+\zeta_{9}(\mathring{\mathsf{Q}}\cdot\mathsf{Q})(\mathsf{A}\cdot\mathsf{Q})+\zeta_{10}\left(\mathsf{Q}^{2}\cdot\mathsf{A}\right)\left(\mathsf{Q}\cdot\mathsf{A}\right)+\frac{\zeta_{11}}{2}|\mathsf{Q}|^{2}(\mathsf{A}\cdot\mathsf{Q})^{2}. (12)

We remark that [10] considers only the terms involving ζ1\zeta_{1} to ζ8\zeta_{8} so that RR is exactly quadratic in the rates 𝖰̊\mathring{\mathsf{Q}} and 𝖠\mathsf{A} and at most quadratic in 𝖰\mathsf{Q} but the idea can certainly be generalized. In particular, RR can involve a linear combination of nineteen invariants of the tensor triple (𝖰,𝖰̊,𝖠)(\mathsf{Q},\mathring{\mathsf{Q}},\mathsf{A}) [10, p. 223]. A simpler version of (12), introduced in [25], given by ζ3=ζ5=ζ7=0\zeta_{3}=\zeta_{5}=\zeta_{7}=0, also appears in [10, Eq. (4.25)]. Here, we include the terms with coefficients ζ9\zeta_{9} to ζ11\zeta_{11} because with these terms the model (5)-(7) subsumes the model in [11], derived by Beris and Edward. In a forthcoming work, we will show that the Beris-Edward model is, in fact, a particular version of (5)-(7), corresponding to a specific choice of dissipation constants ζi\zeta_{i}, i=1,,11i=1,\ldots,11.

The above Sonnet-Virga model is derived using a variational framework together with the Principle of Minimum Constrained Dissipation [10, Section 2.2, Eqn. (2.172), (2.178), (2.179)]. Using RR, we can rewrite (5)-(7) as – see also [10, Eq. (4.21) and (4.22)]:

[left=\empheqlbrace]\displaystyle[left=\empheqlbrace] LdG𝖰div[LdG𝖰]+R𝖰̊=0,\displaystyle\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\mathsf{Q}}-\mathrm{div}\,\left[\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\nabla\mathsf{Q}}\right]+\frac{\partial R}{\partial\mathring{\mathsf{Q}}}=0, (13)
ρ𝐯˙div[𝖳]=0,\displaystyle\rho\,\dot{\bf v}-\mathrm{div}\,\left[\mathsf{T}\right]=0, (14)
div𝐯=0,\displaystyle\mathrm{div}\,{\bf v}=0, (15)

where

𝖳=p𝖨+𝖳SVv+𝖳el\mathsf{T}=-p\mathsf{I}+\mathsf{T}_{\text{SV}}^{\text{v}}+\mathsf{T}^{\text{el}} (16)

and

𝖳SVv=R𝖠+𝖰R𝖰̊R𝖰̊𝖰and𝖳el=𝖰LdG(𝖰).\mathsf{T}^{\mathrm{v}}_{\text{SV}}=\frac{\partial R}{\partial\mathsf{A}}+\mathsf{Q}\frac{\partial R}{\partial\mathring{\mathsf{Q}}}-\frac{\partial R}{\partial\mathring{\mathsf{Q}}}\mathsf{Q}\,\,\,\,\,\,\text{and}\,\,\,\,\,\,\mathsf{T}^{\text{el}}=-\nabla\mathsf{Q}\odot\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\left(\nabla\mathsf{Q}\right)}. (17)

To complete the description of the model, we point out that the dissipation function RR has to be positive semidefinite. The set of conditions satisfied by 𝖰\mathsf{Q} and ζi,i=1,,11\zeta_{i},\ i=1,\ldots,11 to ensure that this property holds is too complicated to list here but some of these conditions can be found in [10, pp. 221-222]. However, if RR only has the terms associated with ζ1,ζ2\zeta_{1},\zeta_{2} and ζ8\zeta_{8}, i.e.

R(𝖰;𝖠,𝖰̊)=ζ12𝖰̊𝖰̊+ζ2𝖠𝖰̊+ζ82|𝖠|2,R(\mathsf{Q};\mathsf{A},\mathring{\mathsf{Q}})=\frac{\zeta_{1}}{2}\mathring{\mathsf{Q}}\cdot\mathring{\mathsf{Q}}+\zeta_{2}\mathsf{A}\cdot\mathring{\mathsf{Q}}+\frac{\zeta_{8}}{2}{|\mathsf{A}|}^{2},

then RR is positive semidefinite if and only if

ζ1>0andζ22ζ1ζ8.\zeta_{1}>0\,\,\,\text{and}\,\,\,\zeta_{2}^{2}\leq\zeta_{1}\zeta_{8}. (18)

2.2 Non-dimensionalization

Suppose LL is the characteristic length of the system and vv is the characteristic velocity. With these, we introduce

x~=xL,𝐯~=𝐯v,t~=vtL,f~(𝖰)=f(𝖰)C,and~LdG=L2KLdG,\tilde{x}=\frac{x}{L},\quad\tilde{{\bf v}}=\frac{{\bf v}}{v},\quad\tilde{t}=\frac{vt}{L},\quad\tilde{f}(\mathsf{Q})=\frac{f(\mathsf{Q})}{C},\,\,\,\text{and}\,\,\,\tilde{\mathcal{E}}_{\mathrm{LdG}}={\frac{L^{2}}{K}\mathcal{E}_{\mathrm{LdG}}},

so that

t=vLt~,x=1Lx~,𝖰=𝖰~,𝖠=vL𝖠~,𝖶~=vL𝖶~,𝖰˙=vL𝖰~˙,𝖰̊=vL𝖰~̊,\partial_{t}=\frac{v}{L}\partial_{\tilde{t}},\quad\partial_{x}=\frac{1}{L}\partial_{\tilde{x}},\quad\mathsf{Q}=\tilde{\mathsf{Q}},\quad\mathsf{A}=\frac{v}{L}\tilde{\mathsf{A}},\quad\tilde{\mathsf{W}}=\frac{v}{L}\tilde{\mathsf{W}},\quad\dot{\mathsf{Q}}=\frac{v}{L}\dot{\widetilde{\mathsf{Q}}},\quad\mathring{\mathsf{Q}}=\frac{v}{L}\mathring{\widetilde{\mathsf{Q}}},
f~(𝖰)=A2Ctr𝖰2+B3Ctr𝖰3+14(tr𝖰2)2,and~LdG(𝖰~)=12|~Q~|2+CL2Kf~(𝖰~).\tilde{f}(\mathsf{Q})=-\frac{A}{2C}\mathrm{tr\,}\mathsf{Q}^{2}+\frac{B}{3C}\mathrm{tr\,}\mathsf{Q}^{3}+\frac{1}{4}{\left(\mathrm{tr\,}\mathsf{Q}^{2}\right)}^{2},\quad\text{and}\quad\tilde{\mathcal{E}}_{\mathrm{LdG}}(\tilde{\mathsf{Q}})=\frac{1}{2}{|\tilde{\nabla}\tilde{Q}|}^{2}+\frac{CL^{2}}{K}\tilde{f}(\tilde{\mathsf{Q}}).

The forms of f~\tilde{f} and ~LdG\tilde{\mathcal{E}}_{\mathrm{LdG}} are consistent with the following change of variable relation for the Ginzburg-Landau functional,

LdG(𝖰)=K2|𝖰|2+f(𝖰)dx=KL12|~𝖰~|2+CL2Kf~(𝖰~)dx~=KL~LdG(Q~)𝑑x~.\mathcal{F}_{\mathrm{LdG}}(\mathsf{Q})=\int\frac{K}{2}|\nabla\mathsf{Q}|^{2}+f(\mathsf{Q})\,dx=KL\int\frac{1}{2}|\tilde{\nabla}\tilde{\mathsf{Q}}|^{2}+\frac{CL^{2}}{K}\tilde{f}(\tilde{\mathsf{Q}})\,d\tilde{x}=KL\int\tilde{\mathcal{E}}_{\mathrm{LdG}}(\tilde{Q})\,d\tilde{x}.

If we further introduce ε=1LKC\displaystyle{\varepsilon}=\frac{1}{L}\sqrt{\frac{K}{C}} as the ratio between the nematic correlation length KC\displaystyle\sqrt{\frac{K}{C}} and LL, we can then write the energy density in the following non-dimensional form,

~LdG(~𝖰~,𝖰~)=12|~Q~|2+1ε2f~(𝖰~).\tilde{\mathcal{E}}_{\mathrm{LdG}}(\tilde{\nabla}\tilde{\mathsf{Q}},\tilde{\mathsf{Q}})=\frac{1}{2}{|\tilde{\nabla}\tilde{Q}|}^{2}+\frac{1}{{\varepsilon}^{2}}\tilde{f}(\tilde{\mathsf{Q}}).

If ε1{\varepsilon}\ll 1, then the potential function imposes a heavy penalty on deviations of 𝖰\mathsf{Q} from the nematic states (3).

The nondimensional system of the governing equations (5)-(7) is then

~LdG𝖰~div~[~LdG~𝖰~]Λ~𝖨+Er(γ1𝖰~̊+γ2𝖠~+γ32(𝖠~𝖰~+𝖰~𝖠~)+γ9(𝖠~𝖰~)𝖰~)=0,\displaystyle\frac{\partial\tilde{\mathcal{E}}_{\mathrm{LdG}}}{\partial\tilde{\mathsf{Q}}}-\widetilde{\mathrm{div}\,}\left[\frac{\partial\tilde{\mathcal{E}}_{\mathrm{LdG}}}{\partial\tilde{\nabla}\tilde{\mathsf{Q}}}\right]-\tilde{\Lambda}\mathsf{I}+\mathrm{Er}\left(\gamma_{1}\mathring{\tilde{\mathsf{Q}}}+\gamma_{2}\tilde{\mathsf{A}}+\frac{\gamma_{3}}{2}(\tilde{\mathsf{A}}\tilde{\mathsf{Q}}+\tilde{\mathsf{Q}}\tilde{\mathsf{A}})+\gamma_{9}(\tilde{\mathsf{A}}\cdot\tilde{\mathsf{Q}})\tilde{\mathsf{Q}}\right)=0, (19)
Re𝐯~˙+div~[p~𝖨𝖳~SVv1Er𝖳~el]=0,\displaystyle\mathrm{Re}\,\dot{\tilde{{\bf v}}}+\widetilde{\mathrm{div}\,}\left[\tilde{p}\mathsf{I}-\tilde{\mathsf{T}}^{\mathrm{v}}_{\text{SV}}-\frac{1}{\mathrm{Er}}\tilde{\mathsf{T}}^{\mathrm{el}}\right]=0, (20)
div~𝐯~=0,\displaystyle\widetilde{\mathrm{div}\,}\tilde{\bf v}=0, (21)

where the nondimensional viscous and elastic stress tensors are

𝖳~SVv\displaystyle\tilde{\mathsf{T}}^{\mathrm{v}}_{\text{SV}} =\displaystyle= γ1(𝖰~𝖰~̊𝖰~̊𝖰~)+γ2(𝖰~̊+𝖰~𝖠~𝖠~𝖰~)+γ32(𝖰~𝖰~̊+𝖰~̊𝖰~+𝖰~2𝖠~𝖠~𝖰~2)\displaystyle\gamma_{1}\left(\tilde{\mathsf{Q}}\mathring{\tilde{\mathsf{Q}}}-\mathring{\tilde{\mathsf{Q}}}\tilde{\mathsf{Q}}\right)+\gamma_{2}\left(\mathring{\tilde{\mathsf{Q}}}+\tilde{\mathsf{Q}}\tilde{\mathsf{A}}-\tilde{\mathsf{A}}\tilde{\mathsf{Q}}\right)+\frac{\gamma_{3}}{2}\left(\tilde{\mathsf{Q}}\mathring{\tilde{\mathsf{Q}}}+\mathring{\tilde{\mathsf{Q}}}\tilde{\mathsf{Q}}+\tilde{\mathsf{Q}}^{2}\tilde{\mathsf{A}}-\tilde{\mathsf{A}}\tilde{\mathsf{Q}}^{2}\right) (22)
+γ4(𝖰~𝖠~+𝖠~𝖰~)+γ5(𝖰~2𝖠~+𝖠~𝖰~2)+γ6(𝖠~𝖰~)𝖰+γ7|𝖰~|2𝖠~+𝖠~\displaystyle+\gamma_{4}\left(\tilde{\mathsf{Q}}\tilde{\mathsf{A}}+\tilde{\mathsf{A}}\tilde{\mathsf{Q}}\right)+\gamma_{5}\left(\tilde{\mathsf{Q}}^{2}\tilde{\mathsf{A}}+\tilde{\mathsf{A}}\tilde{\mathsf{Q}}^{2}\right)+\gamma_{6}(\tilde{\mathsf{A}}\cdot\tilde{\mathsf{Q}})\mathsf{Q}+\gamma_{7}{|\tilde{\mathsf{Q}}|}^{2}\tilde{\mathsf{A}}+\tilde{\mathsf{A}}
+γ9(𝖰~̊𝖰~)𝖰~+γ10((𝖰~2𝖠~)𝖰~+(𝖰~𝖠~)𝖰~2)+γ11|𝖰~|2(𝖠~𝖰~)𝖰~\displaystyle+\gamma_{9}(\mathring{\tilde{\mathsf{Q}}}\cdot\tilde{\mathsf{Q}})\tilde{\mathsf{Q}}+\gamma_{10}\left(\left(\tilde{\mathsf{Q}}^{2}\cdot\tilde{\mathsf{A}}\right)\tilde{\mathsf{Q}}+\left(\tilde{\mathsf{Q}}\cdot\tilde{\mathsf{A}}\right)\tilde{\mathsf{Q}}^{2}\right)+\gamma_{11}|\tilde{\mathsf{Q}}|^{2}(\tilde{\mathsf{A}}\cdot\tilde{\mathsf{Q}})\tilde{\mathsf{Q}}

and

𝖳~el=~𝖰~~𝖰~,\tilde{\mathsf{T}}^{\mathrm{el}}=-\tilde{\nabla}\tilde{\mathsf{Q}}\odot\tilde{\nabla}\tilde{\mathsf{Q}}, (23)

respectively. In the above, the nondimensional groups

Er=ζ8vLK and Re=ρvLζ8\mathrm{Er}=\frac{\zeta_{8}vL}{K}\,\,\,\mbox{ and }\,\,\,\mathrm{Re}=\frac{\rho vL}{\zeta_{8}} (24)

are respectively, the Ericksen and Reynolds number with

γi=ζiζ8,i=1,,7,9,,11.\gamma_{i}=\frac{\zeta_{i}}{\zeta_{8}},\ i=1,\ldots,7,9,\ldots,11. (25)

We note that the constant Er\mathrm{Er} gives the ratio between the viscous and elastic forces while Re\mathrm{Re} gives the ratio between the inertial and viscous forces.

For the rest of the paper, we will refer to our nondimensionalized system (19)–(21) but for simplicity omit the tildes in all variables.

2.3 Decoupling of the governing equations

In this section, we introduce physical regimes in which the far-field behavior of 𝖰\mathsf{Q} and 𝐯{\bf v} can be explicitly characterized. In particular, we will assume that the Ericksen number is small so that – as we will see shortly – the equation for the 𝖰\mathsf{Q}-tensor decouples from the equation for the velocity 𝐯{\bf v}. To this end, observe that

div𝖳el\displaystyle\mathrm{div}\,\mathsf{T}^{\mathrm{el}} =\displaystyle= div((i𝖰j𝖰)𝐞i𝐞j)=j(i𝖰j𝖰)𝐞i\displaystyle-\mathrm{div}\,\left(\left(\partial_{i}\mathsf{Q}\cdot\partial_{j}\mathsf{Q}\right){\mathbf{e}}_{i}\otimes{\mathbf{e}}_{j}\right)=-\partial_{j}(\partial_{i}\mathsf{Q}\cdot\partial_{j}\mathsf{Q}){\mathbf{e}}_{i} (26)
=\displaystyle= (12|𝖰|2)(i𝖰Δ𝖰)𝐞i,\displaystyle-\nabla\left(\frac{1}{2}|\nabla\mathsf{Q}|^{2}\right)-\left(\partial_{i}\mathsf{Q}\cdot\Delta\mathsf{Q}\right){\mathbf{e}}_{i},

from which div𝖳el\mathrm{div}\,\mathsf{T}^{\mathrm{el}} can be eliminated. More precisely, using (19), we have

i𝖰Δ𝖰=1ε2f𝖰i𝖰+Er(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰,\partial_{i}\mathsf{Q}\cdot\Delta\mathsf{Q}=\frac{1}{{\varepsilon}^{2}}\frac{\partial f}{\partial\mathsf{Q}}\cdot\partial_{i}\mathsf{Q}+\mathrm{Er}\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}, (27)

where the Λ𝖨\Lambda\mathsf{I} disappears as tr𝖰=0\mathrm{tr\,}{\mathsf{Q}}=0: Λ𝖨iQ=Λitr𝖰=0\Lambda\mathsf{I}\cdot\partial_{i}Q=\Lambda\partial_{i}\text{tr}{\mathsf{Q}}=0. Combining (26) and (27), we have

div𝖳el\displaystyle\mathrm{div}\,\mathsf{T}^{\mathrm{el}}
=\displaystyle= (12|𝖰|2+1ε2f(𝖰))Er(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰𝐞i\displaystyle-\nabla\left(\frac{1}{2}|\nabla\mathsf{Q}|^{2}+\frac{1}{{\varepsilon}^{2}}f(\mathsf{Q})\right)-\mathrm{Er}\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}
=\displaystyle= LdG(𝖰)Er(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰𝐞i.\displaystyle-\nabla\mathcal{E}_{\mathrm{LdG}}(\mathsf{Q})-\mathrm{Er}\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}.

Hence

div(p𝖨+𝖳SVv+1Er𝖳el)=\displaystyle\mathrm{div}\,\left(-p\mathsf{I}+\mathsf{T}^{\mathrm{v}}_{\text{SV}}+\frac{1}{\mathrm{Er}}\mathsf{T}^{\mathrm{el}}\right)\,\,\,=\,\,\, div(p𝖨1ErLdG(𝖰)𝖨+𝖳SVv)\displaystyle\mathrm{div}\,\left(-p\mathsf{I}-\frac{1}{\mathrm{Er}}\mathcal{E}_{\mathrm{LdG}}(\mathsf{Q})\mathsf{I}+\mathsf{T}^{\mathrm{v}}_{\text{SV}}\right)
(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰𝐞i.\displaystyle-\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}. (28)

Absorbing the gradient of the Landau-de Gennes energy density into the pressure field leads to the following form of our system (19)–(21):

[left=\empheqlbrace]\displaystyle[left=\empheqlbrace] LdG𝖰div[LdG𝖰]Λ𝖨+Er(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)=0,\displaystyle\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\mathsf{Q}}-\mathrm{div}\,\left[\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\nabla\mathsf{Q}}\right]-\Lambda\mathsf{I}+\mathrm{Er}\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)=0,
Re𝐯˙+div[p𝖨𝖳SVv]+(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰𝐞i=0,\displaystyle\mathrm{Re}\,\dot{\bf v}+\mathrm{div}\,\left[p\mathsf{I}-\mathsf{T}^{\mathrm{v}}_{\text{SV}}\right]+\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}=0,
div𝐯=0.\displaystyle\mathrm{div}\,{\bf v}=0.

In this paper, we consider a specific regime of the above system so that the far-field spatial behavior can be revealed explicitly. This is described as follows.

  1. (a).

    The Ericksen number is small, i.e. Er0\mathrm{Er}\to 0, so that the elastic stress in the liquid crystal dominates the viscous stress. Formally, this leads to

    [left=\empheqlbrace]\displaystyle[left=\empheqlbrace] LdG𝖰div[LdG𝖰]=0,\displaystyle\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\mathsf{Q}}-\mathrm{div}\,\left[\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\nabla\mathsf{Q}}\right]=0,
    Re𝐯˙+div[p𝖨𝖳SVv]+(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰𝐞i=0,\displaystyle\mathrm{Re}\,\dot{\bf v}+\mathrm{div}\,\left[p\mathsf{I}-\mathsf{T}^{\mathrm{v}}_{\text{SV}}\right]+\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}=0,
    div𝐯=0\displaystyle\mathrm{div}\,{\bf v}=0

    where there is no need for Λ𝖨\Lambda\mathsf{I} as the tracelessness condition for 𝖰\mathsf{Q} is already incorporated in (8). Note that the first equation is the Euler-Lagrange equation for the Landau-de Gennes energy and it is decoupled from the equation for the velocity. In other words, the tensor field 𝖰\mathsf{Q} serves as the inhomogeneous source term for the velocity field 𝐯{\bf v}.

  2. (b).

    The characteristic length of the problem is much smaller than the nematic correlation length, i.e., ε\varepsilon\to\infty so that LdG𝖰=1ε2f(𝖰)0\displaystyle\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\mathsf{Q}}=\frac{1}{\varepsilon^{2}}\nabla f(\mathsf{Q})\approx 0. Hence we are led to the following system:

    [left=\empheqlbrace]\displaystyle[left=\empheqlbrace] Δ𝖰=0,\displaystyle-\Delta\mathsf{Q}=0, (29)
    Re𝐯˙+div[p𝖨𝖳SVv]=(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰𝐞i,\displaystyle\mathrm{Re}\,\dot{\bf v}+\mathrm{div}\,\left[p\mathsf{I}-\mathsf{T}^{\mathrm{v}}_{\text{SV}}\right]=-\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}, (30)
    div𝐯=0,\displaystyle\mathrm{div}\,{\bf v}=0, (31)

    Note that now 𝖰\mathsf{Q} is harmonic. We remark that the positive semidefiniteness of the dissipation function is ensured if among others, the inequality (18) is satisfied. However, as 𝖰\mathsf{Q} is fixed or actually “prescribed” by (29) in our asymptotic regime, these inequalities can simply be replaced by the condition that all the coefficients, γ1\gamma_{1} through γ11\gamma_{11} are sufficiently small.

  3. (c).

    The Reynolds number is small and the system has reached stationarity, i.e. Re0\mathrm{Re}\rightarrow 0 and t𝖰=t𝐯=0\partial_{t}\mathsf{Q}=\partial_{t}{\bf v}=0. Hence the system (29)–(31) becomes

    [left=\empheqlbrace]\displaystyle[left=\empheqlbrace] Δ𝖰=0,\displaystyle-\Delta\mathsf{Q}=0, (32)
    div[p𝖨𝖳SVv]=(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰𝐞i,\displaystyle\mathrm{div}\,\left[p\mathsf{I}-\mathsf{T}^{\mathrm{v}}_{\text{SV}}\right]=-\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}, (33)
    div𝐯=0,\displaystyle\mathrm{div}\,{\bf v}=0, (34)

    Note that in this case, we have 𝖰̊=𝐯𝖰+𝖰𝖶𝖶𝖰\mathring{\mathsf{Q}}={\bf v}\cdot\nabla\mathsf{Q}+\mathsf{Q}\mathsf{W}-\mathsf{W}\mathsf{Q}. We record 𝖳SVv{\mathsf{T}}^{\mathrm{v}}_{\text{SV}} (22) here again for convenience,

    𝖳SVv\displaystyle{\mathsf{T}}^{\mathrm{v}}_{\text{SV}} =\displaystyle= γ1(𝖰𝖰̊𝖰̊𝖰)+γ2(𝖰̊+𝖰𝖠𝖠𝖰)+γ32(𝖰𝖰̊+𝖰̊𝖰+𝖰2𝖠𝖠𝖰2)\displaystyle\gamma_{1}\left(\mathsf{Q}\mathring{{\mathsf{Q}}}-\mathring{{\mathsf{Q}}}\mathsf{Q}\right)+\gamma_{2}\left(\mathring{{\mathsf{Q}}}+\mathsf{Q}\mathsf{A}-\mathsf{A}\mathsf{Q}\right)+\frac{\gamma_{3}}{2}\left(\mathsf{Q}\mathring{{\mathsf{Q}}}+\mathring{{\mathsf{Q}}}\mathsf{Q}+\mathsf{Q}^{2}\mathsf{A}-\mathsf{A}\mathsf{Q}^{2}\right) (35)
    +γ4(𝖰𝖠+𝖠𝖰)+γ5(𝖰2𝖠+𝖠𝖰2)+γ6(𝖠𝖰)𝖰+γ7|𝖰|2𝖠+𝖠\displaystyle+\gamma_{4}\left(\mathsf{Q}\mathsf{A}+\mathsf{A}\mathsf{Q}\right)+\gamma_{5}\left(\mathsf{Q}^{2}\mathsf{A}+\mathsf{A}\mathsf{Q}^{2}\right)+\gamma_{6}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}+\gamma_{7}{|\mathsf{Q}|}^{2}\mathsf{A}+\mathsf{A}
    +γ9(𝖰̊𝖰)𝖰+γ10((𝖰2𝖠)𝖰+(𝖰𝖠)𝖰2)+γ11|𝖰|2(𝖠𝖰)𝖰.\displaystyle+\gamma_{9}(\mathring{{\mathsf{Q}}}\cdot\mathsf{Q})\mathsf{Q}+\gamma_{10}\left(\left(\mathsf{Q}^{2}\cdot\mathsf{A}\right)\mathsf{Q}+\left(\mathsf{Q}\cdot\mathsf{A}\right)\mathsf{Q}^{2}\right)+\gamma_{11}|\mathsf{Q}|^{2}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}.

To conclude, the current paper analyzes the stationary system (32)-(34) in the domain exterior to a sphere of radius a>0a>0. We are particularly interested in the far-field spatial behavior of the flow.

To complete the description of the above system, we need to incorporate boundary conditions for 𝐯{\bf v} and 𝖰\mathsf{Q} which are discussed next.

2.4 Boundary conditions

We will solve the above system in the exterior domain Ω=3\𝐁a(0)\Omega=\mathbb{R}^{3}\backslash{\bf B}_{a}(0) in a moving frame. The following boundary conditions will be imposed for 𝖰\mathsf{Q} and 𝐯{\bf v}:

𝖰𝖰,𝐯𝐯as |x|.\mathsf{Q}\longrightarrow\mathsf{Q}_{*},\quad{\bf v}\longrightarrow{\bf v}_{*}\quad\text{as $|x|\longrightarrow\infty$.} (36)
on Ω:{1w𝖰ν=𝖰b𝖰,𝐯=𝐯b.\text{on $\partial\Omega$}:\quad\left\{\begin{array}[]{rl}\frac{1}{w}\frac{\partial\mathsf{Q}}{\partial\nu}&=\mathsf{Q}_{b}-\mathsf{Q},\\ {\bf v}&={\bf v}_{b}.\end{array}\right. (37)

In the above, 𝖰,𝐯\mathsf{Q}_{*},{\bf v}_{*} are the far-field states for 𝖰\mathsf{Q} and 𝐯{\bf v}, 𝖰b\mathsf{Q}_{b} and 𝐯{\bf v}_{*} are to be specified, ww is some positive number, and ν\nu is the outward unit normal for Ω\partial\Omega (or inward to 𝐁a(0)\mathbf{B}_{a}(0)). We make the following remarks about the above boundary conditions.

Remark 1

The boundary condition for 𝖰\mathsf{Q} is associated with the following surface anchoring energy:

s(𝖰)=w2Ω|𝖰𝖰b|2𝑑σ.\mathcal{F}_{s}(\mathsf{Q})=\frac{w}{2}\int_{\partial\Omega}|\mathsf{Q}-\mathsf{Q}_{b}|^{2}\,d\sigma.

We will choose 𝖰b\mathsf{Q}_{b} so as to have an explicit solution for 𝖰\mathsf{Q} – see Section 3.1.

Remark 2

The problem (29)-(31), (36)-(37) describes the flow of a nematic liquid crystal in the exterior of a colloidal particle under various scenarios. We emphasize that the quantity 𝐯b{\bf v}_{b} is defined in the frame associated with the moving particle.

  1. (a).

    For a passive particle, the condition 𝐯b=0{\bf v}_{b}=0 describes no-slip boundary conditions on the surface of a particle that is stationary with respect to an inertial frame. The second condition in (36) imposes the constant velocity 𝐯{\bf v}_{*} of the flow at infinity.

  2. (b).

    Now suppose the passive particle moves in the nematic fluid with an externally imposed velocity 𝐯c{\bf v}_{c} subject to the no-slip boundary condition, while the nematic is stationary at infinity, then the velocity on the boundary of the particle and at infinity equal 𝐯b=𝐯c{\bf v}_{b}={\bf v}_{c} and 𝐯=0{\bf v}_{*}=0, respectively. In this case, if we go to a frame moving with the particle, then the velocity of the nematic liquid crystal at infinity will equal 𝐯=𝐯c{\bf v}_{*}=-{\bf v}_{c} and the velocity on the surface of the particle will vanish, that is, 𝐯b=0{\bf v}_{b}=0. However, this change of frame will induce an additional forcing term in (33) due to the presence of the convective derivative 𝐯𝖰{\bf v}\cdot\nabla\mathsf{Q} of 𝖰\mathsf{Q}. This term will be described more explicitly in Section 4.1, in particular, equation (93).

  3. (c).

    For a general active particle, 𝐯b{\bf v}_{b} is typically prescribed and nonconstant on the surface of the particle. Similar to the previous paragraph, if the particle moves with constant velocity 𝐯c{\bf v}_{c}, then changing to a frame moving with the particle, we can replace 𝐯b{\bf v}_{b} and 𝐯{\bf v}_{*} by 𝐯b𝐯c{\bf v}_{b}-{\bf v}_{c} and 𝐯=𝐯c{\bf v}_{*}=-{\bf v}_{c}. The value of 𝐯c{\bf v}_{c} can be determined by solving the problem (29)-(31), (36)-(37) and choosing 𝐯c{\bf v}_{c} so that the total stress on the surface of the particle vanishes.

From the mathematical point of view, in dimensons three or higher, the problem (29)-(31), (36)-(37) is uniquely solvable in exterior domains for any 𝐯b{\bf v}_{b} and 𝐯{\bf v}_{*}. This is in contrast to the situation in bounded domain for which, due to the incompressibility condition, the total flux 𝐯bν𝑑σ\int{\bf v}_{b}\cdot\nu\,d\sigma at the boundary must vanish. In dimension two, in general, there is no solution in the exterior domain with a bounded velocity field. This is the origin of Stokes’ paradox.

As a final remark, we point out that it is certainly advantageous to consider our problem in the frame of the (moving) particle so that the domain does not change in time. Thus, in the case of passive particle which is the emphasis of the current paper, we set 𝐯b=0{\bf v}_{b}=0 and 𝐯{\bf v}_{*} to be some prescribed value. (As mentioned above, the extension to active particle in the current framework is achieved by setting 𝐯b{\bf v}_{b} to be some general non-constant function. See [26] for examples of such a function.) Our goal is then to compute and analyze the flow pattern of the nematic fluid.

3 Preliminary information

We will make use of a known explicit stationary solution for 𝖰\mathsf{Q} in the exterior domain Ω\Omega and investigate its role in determining the flow pattern.

3.1 Stationary state for 𝖰\mathsf{Q}.

Under the physical regime and boundary conditions considered in the Sections 2.3 and 2.4, we are looking for a 𝖰\mathsf{Q}-tensor function satisfying

𝖰\displaystyle\triangle\mathsf{Q} =\displaystyle= 0,in Ω\displaystyle 0,\quad\text{in $\Omega$}
1w𝖰ν\displaystyle\frac{1}{w}\frac{\partial\mathsf{Q}}{\partial\nu} =\displaystyle= 𝖰b𝖰on Ω,\displaystyle\mathsf{Q}_{b}-\mathsf{Q}\quad\text{on $\partial\Omega$,}
𝖰\displaystyle\mathsf{Q} =\displaystyle= 𝖰at |x|=.\displaystyle\mathsf{Q}_{*}\quad\text{at $|x|=\infty$.}

The work Alama-Bronsard-Lamy [24, Theorem 1] gives the following explicit solution:

𝖰\displaystyle\mathsf{Q} =\displaystyle= (1w1+w1r)𝖰+w3+w1r3𝖰b,r>1,\displaystyle\left(1-\frac{w}{1+w}\frac{1}{r}\right)\mathsf{Q}_{*}+\frac{w}{3+w}\frac{1}{r^{3}}\mathsf{Q}_{b},\quad r>1, (38)
where𝖰\displaystyle\text{where}\quad\mathsf{Q}_{*} =\displaystyle= s(nn𝖨3),with a given n𝕊2\displaystyle s_{*}\left({n_{*}}\otimes{n_{*}}-\frac{\mathsf{I}}{3}\right),\quad\text{with a given ${n_{*}}\in\mathbb{S}^{2}$} (39)
and𝖰b\displaystyle\text{and}\quad\mathsf{Q}_{b} =\displaystyle= s(x^x^𝖨3),x^=x|x|,\displaystyle s_{*}\left(\widehat{x}\otimes\widehat{x}-\frac{\mathsf{I}}{3}\right),\quad\widehat{x}=\frac{x}{|x|}, (40)

with parameters s,w>0s_{*},w>0 and the particle radius aa is taken to be one. Note that 𝖰\mathsf{Q} is harmonic and the boundary function 𝖰b\mathsf{Q}_{b} is of “hedgehog” type. The function 𝖰\mathsf{Q} has the following far-field spatial asymptotics

𝖰𝖰+O(1r)and𝖰O(1r2),for r1.\mathsf{Q}\sim\mathsf{Q}_{*}+O\left(\frac{1}{r}\right)\,\,\,\text{and}\,\,\,\nabla\mathsf{Q}\sim O\left(\frac{1}{r^{2}}\right),\,\,\,\text{for $r\gg 1$}. (41)

We remark that [24] derives the above equation in the small particle regime a2Ka^{2}\ll K, corresponding to ε1\varepsilon\gg 1. For large particle, a2Ka^{2}\gg K, corresponding to ε1\varepsilon\ll 1, the solution 𝖰\mathsf{Q} tends to a harmonic map into 𝕊2{\mathbb{S}}^{2} taking the form, 𝖰(x)=s(n(x)n(x)𝖨3)\mathsf{Q}(x)=s_{*}\left(n(x)\otimes n(x)-\frac{\mathsf{I}}{3}\right) [24, Theorem 2]. From the work [27], it is also shown that n(x)n(x) has comparable spatial decay as the harmonic 𝖰\mathsf{Q}.

3.2 Green’s function for classical isotropic Stokes system

We introduce here the fundamental solution (𝖤,𝗊)(\mathsf{E},\mathsf{q}) of the Stokes system which solves the system of equations,

{Δ𝖤ij(x)xi𝗊j(x)=δijδ0(x),xi𝖤ij(x)=0.\left\{\begin{array}[]{rcl}-\Delta\mathsf{E}_{ij}(x)-\frac{\partial}{\partial x_{i}}\mathsf{q}_{j}(x)&=&\delta_{ij}\delta_{0}(x),\\ \frac{\partial}{\partial x_{i}}\mathsf{E}_{ij}(x)&=&0.\end{array}\right. (42)

Following [16, Chapter 4.2, p. 238], (𝖤,𝗊)(\mathsf{E},\mathsf{q}) is given as:

𝖤(x)\displaystyle\mathsf{E}(x) =\displaystyle= 18π[𝖨r+xxr3],i.e.𝖤ij(x)=18π[δijr+xixjr3],i,j=1,2,3,\displaystyle\frac{1}{8\pi}\left[\frac{\mathsf{I}}{r}+\frac{x\otimes x}{r^{3}}\right],\quad\text{i.e.}\quad\mathsf{E}_{ij}(x)=\frac{1}{8\pi}\left[\frac{\delta_{ij}}{r}+\frac{x_{i}x_{j}}{r^{3}}\right],\,\,\,i,j=1,2,3, (43)
𝗊(x)\displaystyle\mathsf{q}(x) =\displaystyle= 14πxr3,i.e.𝗊i(x)=xir3,i=1,2,3.\displaystyle-\frac{1}{4\pi}\frac{x}{r^{3}},\quad\text{i.e.}\quad\mathsf{q}_{i}(x)=-\frac{x_{i}}{r^{3}},\,\,\,i=1,2,3. (44)

Note that

𝖤(x)1r,and𝗊(x)1r2forr1.\mathsf{E}(x)\sim\frac{1}{r},\quad\text{and}\quad\mathsf{q}(x)\sim\frac{1}{r^{2}}\quad\text{for}\quad r\gg 1.

The above fundamental solution can be used to produce solutions of Stokes system on the whole 3\mathbb{R}^{3}. More precisely, if (𝐮,p)({\bf u},p) solves

Δ𝐮+p\displaystyle-\Delta{\bf u}+\nabla p =\displaystyle= 𝐟,on 3,\displaystyle{\bf f},\quad\text{on $\mathbb{R}^{3}$},
div𝐮\displaystyle\mathrm{div}\,{\bf u} =\displaystyle= 0,on 3,\displaystyle 0,\quad\text{on $\mathbb{R}^{3}$},
𝐮\displaystyle{\bf u} =\displaystyle= 0,at |x|=,\displaystyle 0,\quad\text{at $|x|=\infty$},

then it is given by:

𝐮(x)=3𝖤(xy)𝐟(y)𝑑yandp(x)=3𝗊(xy)𝐟(y)dy.{\bf u}(x)=\int_{\mathbb{R}^{3}}\mathsf{E}(x-y){\bf f}(y)\,dy\quad\text{and}\quad p(x)=\int_{\mathbb{R}^{3}}-\mathsf{q}(x-y)\cdot{\bf f}(y)\,dy. (45)

The above integrals are well-defined for 𝐟{\bf f} with sufficient spatial decay, for example, 𝐟(x)11x3{\bf f}(x)\lesssim 1\wedge\frac{1}{x^{3}}. For general existence theorems in Lp(3)L^{p}(\mathbb{R}^{3}), we refer to [28, 16].

Similarly, in the case of a Stokes system in an exterior domain, for example,

Δ𝐮+p\displaystyle-\Delta{\bf u}+\nabla p =\displaystyle= 𝐟,on Ω,\displaystyle{\bf f},\quad\text{on $\Omega$},
div𝐮\displaystyle\mathrm{div}\,{\bf u} =\displaystyle= 0,on Ω,\displaystyle 0,\quad\text{on $\Omega$,}
𝐮\displaystyle{\bf u} =\displaystyle= 0,at |x|=,\displaystyle 0,\quad\text{at $|x|=\infty$},

then 𝐮{\bf u} and pp can be represented by:

𝐮(x)\displaystyle{\bf u}(x) =\displaystyle= Ω𝖤(xy)𝐟(y)𝑑y\displaystyle\int_{\Omega}\mathsf{E}(x-y){\bf f}(y)\,dy (46)
+Ω𝖤(xy),𝖳(𝐮,p)(y)νy𝑑σyΩ𝖳(𝖤,𝗊)(xy)νy,𝐮(y)𝑑σy,\displaystyle+\int_{\partial\Omega}\big{\langle}\mathsf{E}(x-y),\mathsf{T}({\bf u},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y}-\int_{\partial\Omega}\big{\langle}\mathsf{T}(\mathsf{E},\mathsf{q})(x-y)\nu_{y},{\bf u}(y)\big{\rangle}\,d\sigma_{y},
p(x)\displaystyle p(x) =\displaystyle= Ω𝗊(xy)𝐟(y)dy\displaystyle\int_{\Omega}-\mathsf{q}(x-y)\cdot{\bf f}(y)\,dy (47)
Ω𝖳(𝐮,p)(y)νy,𝗊(xy)𝑑σy+2Ωx𝗊(xy)νy,𝐮(y)𝑑σy.\displaystyle-\int_{\partial\Omega}\big{\langle}\mathsf{T}({\bf u},p)(y)\nu_{y},\mathsf{q}(x-y)\big{\rangle}\,d\sigma_{y}+2\int_{\partial\Omega}\big{\langle}\nabla_{x}\mathsf{q}(x-y)\nu_{y},{\bf u}(y)\big{\rangle}\,d\sigma_{y}.

In the above, for any given vector and scalar fields 𝐰\bf w and π\pi, we define the stress tensor as

𝖳(𝐰,π)=𝐰+(𝐰)Tπ𝖨,\mathsf{T}({\bf w},\pi)=\nabla{\bf w}+(\nabla{\bf w})^{T}-\pi\mathsf{I}, (48)

and for any matrix and vector fields 𝐌\mathbf{M} and 𝐠\mathbf{g} and vector vv, 𝖳(𝐌,𝐠)v\mathsf{T}(\mathbf{M},\mathbf{g})v is a matrix with its ii-th row given by

(𝖳(𝐌,𝐠)v)i=𝖳(𝐌i,𝐠i)v.\big{(}\mathsf{T}(\mathbf{M},\mathbf{g})v\big{)}_{i}=\mathsf{T}(\mathbf{M}_{i},\mathbf{g}_{i})v.

We also recall the convention as stated in item (i) at the end of the Introduction.

In the above and the bulk of this paper, we are dealing with solutions 𝐮{\bf u} that converge to their far-field limits with rate 1r\displaystyle\frac{1}{r}. With this in mind, we expect the following estimates for the boundary integrals,

|Ω𝖤(x,y),𝖳(𝐮,p)(y)νy𝑑σy|\displaystyle\left|\int_{\partial\Omega}\big{\langle}\mathsf{E}(x,-y),\mathsf{T}({\bf u},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y}\right| \displaystyle\lesssim 1r,\displaystyle\frac{1}{r}, (49)
|Ω𝖳(𝖤,𝗊j)(xy)νy,𝐮(y)𝑑σy|\displaystyle\left|\int_{\partial\Omega}\big{\langle}\mathsf{T}(\mathsf{E},\mathsf{q}_{j})(x-y)\nu_{y},{\bf u}(y)\big{\rangle}\,d\sigma_{y}\right| \displaystyle\lesssim 1r2,\displaystyle\frac{1}{r^{2}}, (50)
|Ω𝖳(𝐮,p)(y)νy,𝗊(xy)𝑑σy|\displaystyle\left|\int_{\partial\Omega}\big{\langle}\mathsf{T}({\bf u},p)(y)\nu_{y},\mathsf{q}(x-y)\big{\rangle}\,d\sigma_{y}\right| \displaystyle\lesssim 1r2,\displaystyle\frac{1}{r^{2}}, (51)
|Ωx𝗊(xy)νy,𝐮(y)𝑑σy|\displaystyle\left|\int_{\partial\Omega}\big{\langle}\nabla_{x}\mathsf{q}(x-y)\nu_{y},{\bf u}(y)\big{\rangle}\,d\sigma_{y}\right| \displaystyle\lesssim 1r3.\displaystyle\frac{1}{r^{3}}. (52)

Clearly (49) gives the dominating far-field behavior. It can be decomposed as:

Ω𝖤(xy),𝖳(𝐮,p)(y)νy𝑑σy\displaystyle\int_{\partial\Omega}\big{\langle}\mathsf{E}(x-y),\mathsf{T}({\bf u},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y} (53)
=\displaystyle= 𝖤(x),Ω𝖳(𝐮,p)(y)νy𝑑σy+Ω𝖤(xy)𝖤(x),𝖳(𝐮,p)(y)νy𝑑σy\displaystyle\Big{\langle}\mathsf{E}(x),\int_{\partial\Omega}\mathsf{T}({\bf u},p)(y)\nu_{y}d\sigma_{y}\Big{\rangle}+\int_{\partial\Omega}\big{\langle}\mathsf{E}(x-y)-\mathsf{E}(x),\mathsf{T}({\bf u},p)(y)\nu_{y}\big{\rangle}d\sigma_{y}
=\displaystyle= 𝖤(x),+O(1r2)\displaystyle\langle\mathsf{E}(x),{\mathcal{F}}\rangle+O\left(\frac{1}{r^{2}}\right)

where

:=Ω𝖳(𝐮,p)(y)νy𝑑σy{\mathcal{F}}:=\int_{\partial\Omega}\mathsf{T}({\bf u},p)(y)\nu_{y}d\sigma_{y} (54)

denotes the boundary stress or drag force on the particle. The decomposition (53) is the same as [29, Theorem 1, Eq. (4.2a)].

Precise far-field asymptotics of the bulk integrals and the method of solution for the Stokes system (32)–(34) will be given in Sections 6 and Appendix A.

3.3 Uniform Stokes Flow

Here we provide the solution of a uniform Stokes flow 𝐔{\bf U} with far-field velocity 𝐔{\bf U}_{*}, passing a sphere of radius aa. It solves the following system of equations:

Δ𝐔+p\displaystyle-\Delta{\bf U}+\nabla p =\displaystyle= 0,for |x|>a;\displaystyle 0,\quad\text{for $|x|>a$}; (55)
div𝐔\displaystyle\mathrm{div}\,{\bf U} =\displaystyle= 0,for |x|>a;\displaystyle 0,\quad\text{for $|x|>a$}; (56)
𝐔\displaystyle{\bf U} =\displaystyle= 0,at |x|=a;\displaystyle 0,\quad\text{at $|x|=a$}; (57)
𝐔\displaystyle{\bf U} =\displaystyle= 𝐔,at |x|=.\displaystyle{\bf U}_{*},\quad\text{at $|x|=\infty$}. (58)

Using the spherical coordinates (following the physicists’ convention) with θ\theta being the polar angle (measured from the polar axis) and ϕ\phi being the azimuthal angle (measured from the meridian plane), we can write the velocity flowing along the polar axis as 𝐔=(ur,uθ,uϕ=0){\bf U}=(u_{r},u_{\theta},u_{\phi}=0). Following [30, Section 7.2], we have

ur=1r2sinθΨθ,anduθ=1rsinθΨr,u_{r}=\frac{1}{r^{2}\sin\theta}\frac{\partial\Psi}{\partial\theta},\quad\text{and}\quad u_{\theta}=-\frac{1}{r\sin\theta}\frac{\partial\Psi}{\partial r}, (59)

where

Ψ(r,θ)\displaystyle\Psi(r,\theta) =f(r)sin2θ,f(r)=V4(2r23ar+a3r),V=|𝐔|,\displaystyle=f(r)\sin^{2}\theta,\quad f(r)=\frac{V}{4}\left(2r^{2}-3ar+\frac{a^{3}}{r}\right),\quad V=|{\bf U}_{*}|, (60)
ur\displaystyle u_{r} =V4(23ar+a3r3)2cosθ,\displaystyle=\frac{V}{4}\left(2-\frac{3a}{r}+\frac{a^{3}}{r^{3}}\right)2\cos\theta, (61)
uθ\displaystyle u_{\theta} =V4(43ara3r3)sinθ.\displaystyle=-\frac{V}{4}\left(4-\frac{3a}{r}-\frac{a^{3}}{r^{3}}\right)\sin\theta. (62)

We note that the form of ff is found by solving (2r22r2)2f(r)=0\displaystyle\left(\frac{\partial^{2}}{\partial r^{2}}-\frac{2}{r^{2}}\right)^{2}f(r)=0. The method of finding ff in a bounded (annular) domain will be presented in Appendix D.

If the flow is in the direction of the x1x_{1}-axis, i.e., 𝐔=Ve1{\bf U}_{*}=Ve_{1}, then we have in Cartesian coordinates that

𝐔\displaystyle{\bf U} =\displaystyle= V(e13a4(x1x+r2e1r3)a34(r2e13x1xr5))\displaystyle V\left({e_{1}}-\frac{3a}{4}\left(\frac{x_{1}x+r^{2}{e_{1}}}{r^{3}}\right)-\frac{a^{3}}{4}\left(\frac{r^{2}{e_{1}}-3x_{1}x}{r^{5}}\right)\right) (63)
=\displaystyle= V(e13a4(2x12+x22+x32,x1x2,x1x3r3)\displaystyle V\left({e_{1}}-\frac{3a}{4}\left(\frac{2x_{1}^{2}+x_{2}^{2}+x_{3}^{2},x_{1}x_{2},x_{1}x_{3}}{r^{3}}\right)\right.
a34(2x12+x22+x32,3x1x2,3x1x3r5))\displaystyle\left.-\frac{a^{3}}{4}\left(\frac{-2x_{1}^{2}+x_{2}^{2}+x_{3}^{2},-3x_{1}x_{2},-3x_{1}x_{3}}{r^{5}}\right)\right)
p\displaystyle p =\displaystyle= p32Var2cosθ=p32Var2x1x12+x22.\displaystyle p_{\infty}-\frac{3}{2}\frac{Va}{r^{2}}\cos\theta=p_{\infty}-\frac{3}{2}\frac{Va}{r^{2}}\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}. (64)

More generally, in vector form, we have

𝐔\displaystyle{\bf U} =\displaystyle= 𝐔3a4(xx𝐔+r2𝐔r3)a34(r2𝐔3xx𝐔r5)\displaystyle{\bf U}_{*}-\frac{3a}{4}\left(\frac{x\otimes x{\bf U}_{*}+r^{2}{\bf U}_{*}}{r^{3}}\right)-\frac{a^{3}}{4}\left(\frac{r^{2}{\bf U}_{*}-3x\otimes x{\bf U}_{*}}{r^{5}}\right) (65)
=\displaystyle= [𝖨3a4(xx+r2𝖨r3)+a34(3xxr2𝖨r5)]𝐔\displaystyle\left[\mathsf{I}-\frac{3a}{4}\left(\frac{x\otimes x+r^{2}\mathsf{I}}{r^{3}}\right)+\frac{a^{3}}{4}\left(\frac{3x\otimes x-r^{2}\mathsf{I}}{r^{5}}\right)\right]{\bf U}_{*}

Making use of the Green’s function 𝖤\mathsf{E} (43) and upon introducing

𝖥(x)=3xxr2𝖨r5,\mathsf{F}(x)=\frac{3x\otimes x-r^{2}\mathsf{I}}{r^{5}}, (66)

we have

𝐔\displaystyle{\bf U} =\displaystyle= 𝐔6πa𝖤(x)𝐔+a34𝖥(x)𝐔,\displaystyle{\bf U}_{*}-6\pi a\mathsf{E}(x){\bf U}_{*}+\frac{a^{3}}{4}\mathsf{F}(x){\bf U}_{*},

or more compactly,

𝐔=𝖤S𝐔,where𝖤S=𝖨6πa𝖤(x)+a34𝖥(x).{\bf U}=\mathsf{E}_{S}{\bf U}_{*},\,\,\,\text{where}\,\,\,\mathsf{E}_{S}=\mathsf{I}-6\pi a\mathsf{E}(x)+\frac{a^{3}}{4}\mathsf{F}(x). (67)

We note the following asymptotics,

𝖤(x)O(1r),𝖥(x)O(1r3),\mathsf{E}(x)\sim O\left(\frac{1}{r}\right),\,\,\,\mathsf{F}(x)\sim O\left(\frac{1}{r^{3}}\right),\,\,\,

so that

𝐔𝐔+O(1r),and𝐔,𝖠,𝖶O(1r2),for r1.{\bf U}\sim{\bf U}_{*}+O\left(\frac{1}{r}\right),\,\,\,\text{and}\,\,\,\nabla{\bf U},\,\mathsf{A},\,\mathsf{W}\sim O\left(\frac{1}{r^{2}}\right),\,\,\,\text{for $r\gg 1$.} (68)

Next we compute the drag force {\mathcal{F}} (54) on the moving particle. For this purpose, the components of 𝖳(𝐮,p)\mathsf{T}({\bf u},p) on 𝐁a\partial{\bf B}_{a}, expressed in spherical coordinates are:

𝖳rr\displaystyle\mathsf{T}_{rr} =\displaystyle= p+2urr=p+32Vacosθ,\displaystyle-p+2\frac{\partial u_{r}}{\partial r}=-p_{\infty}+\frac{3}{2}\frac{V}{a}\cos\theta,
𝖳rθ\displaystyle\mathsf{T}_{r\theta} =\displaystyle= rr(uθr)+1rurθ=32Uasinθ,\displaystyle r\frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)+\frac{1}{r}\frac{\partial u_{r}}{\partial\theta}=-\frac{3}{2}\frac{U}{a}\sin\theta,
𝖳rϕ\displaystyle\mathsf{T}_{r\phi} =\displaystyle= 0.\displaystyle 0.

With the above, \mathcal{F}, in the direction of 𝐔{\bf U}_{*}, is given by

=02π0π(Trrcosθ𝖳rθsinθ)a2sinθdθdϕ=6πaV\displaystyle{\mathcal{F}}=\int_{0}^{2\pi}\int_{0}^{\pi}\Big{(}T_{rr}\cos\theta-\mathsf{T}_{r\theta}\sin\theta\Big{)}a^{2}\sin\theta d\theta d\phi=6\pi aV (69)

or in vector form, written as,

=6πa𝐔{\mathcal{F}}=6\pi a{\bf U}_{*} (70)

which is the celebrated Stokes Law.

Remark 3

The classical isotropic Stokeslet fundamental solution given by

𝐯s=𝖤𝜶,ps=𝗊𝜶,{\bf v}_{s}=\mathsf{E}\boldsymbol{\alpha},\quad p_{s}=\mathsf{q}\cdot\boldsymbol{\alpha},

for any 𝛂3\boldsymbol{\alpha}\in\mathbb{R}^{3} corresponds to Stokes flow driven by a point source of strength 𝛂\boldsymbol{\alpha} located at the origin. Note that the far-field behavior of the Stokeslet is the same as the leading order asymptotics of classical Stokes flow in the exterior of a spherical domain. See [31] for a explanation and application of such a notion.

4 Structure of the anisotropic Stokes equation (33)

Here we will start our analysis for the stationary system (32)–(34) with boundary conditions (36)–(37). We emphasize again the feature that the tensor field 𝖰\mathsf{Q} given by (38)–(40) acts as an inhomogeneous term for the Stokes equation (33) for 𝐯{\bf v}. The key is to understand the far-field spatial behavior (r1r\gg 1) of 𝐯{\bf v}.

4.1 Decomposition of equation (33)

Here we decompose system (29)–(31) into a form amenable for asymptotic analysis. We first substitute form (38) for 𝖰\mathsf{Q} into (33) for 𝐯{\bf v} and analyze the resulting system.

  1. (a).

    Recall the decay property (41) of 𝖰\mathsf{Q}: 𝖰=𝖰+O(1r)\mathsf{Q}=\mathsf{Q}_{*}+O\left(\frac{1}{r}\right) and 𝖰=O(1r2)\nabla\mathsf{Q}=O\left(\frac{1}{r^{2}}\right). We look for a solution 𝐯{\bf v} satisfying 𝐯=𝐯+O(1r){\bf v}={\bf v}_{*}+O\left(\frac{1}{r}\right) and 𝐯=O(1r2)\nabla{\bf v}=O\left(\frac{1}{r^{2}}\right). Hence, we expect

    𝖠,𝖶\displaystyle\mathsf{A},\,\,\,\mathsf{W} \displaystyle\sim O(1r2),\displaystyle O\left(\frac{1}{r^{2}}\right),
    𝖰̊\displaystyle\mathring{\mathsf{Q}} =\displaystyle= 𝐯𝖰+𝖰𝖶𝖶𝖰\displaystyle{\bf v}\cdot\nabla\mathsf{Q}+\mathsf{Q}\mathsf{W}-\mathsf{W}\mathsf{Q}
    =\displaystyle= 𝐯𝖰+𝖰𝖶𝖶𝖰O(1r2)+(𝐯𝐯)𝖰+(𝖰𝖰)𝖶𝖶(𝖰𝖰)O(1r3)\displaystyle\underset{O\left(\frac{1}{r^{2}}\right)}{\underbrace{{\bf v}_{*}\cdot\nabla\mathsf{Q}+\mathsf{Q}_{*}\mathsf{W}-\mathsf{W}\mathsf{Q}_{*}}}+\underset{O\left(\frac{1}{r^{3}}\right)}{\underbrace{({\bf v}-{\bf v}_{*})\cdot\nabla\mathsf{Q}+(\mathsf{Q}-\mathsf{Q}_{*})\mathsf{W}-\mathsf{W}(\mathsf{Q}-\mathsf{Q}_{*})}}
    \displaystyle\sim O(1r2).\displaystyle O\left(\frac{1}{r^{2}}\right).
  2. (b).

    With the above, the right hand side of (33) becomes

    𝒟:=(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰𝐞iO(1r4).\mathcal{D}:=-\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}\sim O\left(\frac{1}{r^{4}}\right). (71)
  3. (c).

    Here we analyze the terms constituting the viscous stress 𝖳SVv\mathsf{T}^{\mathrm{v}}_{\text{SV}} given by (35).

    1. (a)

      The γ1\gamma_{1}-term:

      [𝖰𝖰̊𝖰̊𝖰]\displaystyle\left[\mathsf{Q}\mathring{\mathsf{Q}}-\mathring{\mathsf{Q}}\mathsf{Q}\right] =\displaystyle= [𝖰(𝐯𝖰+𝖰𝖶𝖶𝖰)(𝐯𝖰+𝖰𝖶𝖶𝖰)𝖰]\displaystyle\left[\mathsf{Q}\left({\bf v}\cdot\nabla\mathsf{Q}+\mathsf{Q}\mathsf{W}-\mathsf{W}\mathsf{Q}\right)-\left({\bf v}\cdot\nabla\mathsf{Q}+\mathsf{Q}\mathsf{W}-\mathsf{W}\mathsf{Q}\right)\mathsf{Q}\right] (72)
      =\displaystyle= [𝖰(𝐯𝖰)(𝐯𝖰)𝖰]+[𝖰2𝖶2𝖰𝖶𝖰+𝖶𝖰2].\displaystyle\left[\mathsf{Q}\left({\bf v}\cdot\nabla\mathsf{Q}\right)-\left({\bf v}\cdot\nabla\mathsf{Q}\right)\mathsf{Q}\right]+\left[\mathsf{Q}^{2}\mathsf{W}-2\mathsf{Q}\mathsf{W}\mathsf{Q}+\mathsf{W}\mathsf{Q}^{2}\right].

      For the first bracketed term in (72), we have the following decomposition

      [𝖰(𝐯𝖰)(𝐯𝖰)𝖰]\displaystyle\left[\mathsf{Q}\left({\bf v}\cdot\nabla\mathsf{Q}\right)-\left({\bf v}\cdot\nabla\mathsf{Q}\right)\mathsf{Q}\right] =\displaystyle= [𝖰(𝐯𝖰)(𝐯𝖰)𝖰]\displaystyle\left[\mathsf{Q}_{*}({\bf v}_{*}\cdot\nabla\mathsf{Q})-({\bf v}_{*}\cdot\nabla\mathsf{Q})\mathsf{Q}_{*}\right] (73)
      +[𝖰(𝐯𝐯)𝖰(𝐯𝐯)(𝖰)𝖰]\displaystyle+\left[\mathsf{Q}_{*}({\bf v}-{\bf v}_{*})\cdot\nabla\mathsf{Q}-({\bf v}-{\bf v}_{*})\cdot(\nabla\mathsf{Q})\mathsf{Q}_{*}\right]
      +[(𝖰𝖰)𝐯𝖰(𝐯𝖰)(𝖰𝖰)]\displaystyle+\left[(\mathsf{Q}-\mathsf{Q}_{*}){\bf v}\cdot\nabla\mathsf{Q}-({\bf v}\cdot\nabla\mathsf{Q})(\mathsf{Q}-\mathsf{Q}_{*})\right]
      =\displaystyle= [𝖰(𝐯𝖰)(𝐯𝖰)𝖰]+O(1r3)\displaystyle\left[\mathsf{Q}_{*}({\bf v}_{*}\cdot\nabla\mathsf{Q})-({\bf v}_{*}\cdot\nabla\mathsf{Q})\mathsf{Q}_{*}\right]+O\left(\frac{1}{r^{3}}\right)
      =:\displaystyle=: 𝒜1(x)+O(1r3).\displaystyle\mathcal{A}_{1}(x)+O\left(\frac{1}{r^{3}}\right).

      For the second bracketed term in (72), we have

      [𝖰2𝖶2𝖰𝖶𝖰+𝖶𝖰2]\displaystyle\left[\mathsf{Q}^{2}\mathsf{W}-2\mathsf{Q}\mathsf{W}\mathsf{Q}+\mathsf{W}\mathsf{Q}^{2}\right] =\displaystyle= [𝖰2𝖶2𝖰𝖶𝖰+𝖶𝖰2]+O(1r3)\displaystyle\left[\mathsf{Q}_{*}^{2}\mathsf{W}-2\mathsf{Q}_{*}\mathsf{W}\mathsf{Q}_{*}+\mathsf{W}\mathsf{Q}^{2}_{*}\right]+O\left(\frac{1}{r^{3}}\right) (74)
      =:\displaystyle=: 1[𝐯]+O(1r3).\displaystyle\mathcal{B}_{1}[\nabla{\bf v}]+O\left(\frac{1}{r^{3}}\right).

      In the above, 𝒜1\mathcal{A}_{1} and 1\mathcal{B}_{1} are linear in 𝐯𝖰{\bf v}_{*}\cdot\nabla\mathsf{Q} and 𝐯\nabla{\bf v} respectively, both having coefficients depending only on 𝖰\mathsf{Q}_{*}. Furthermore both 𝒜1\mathcal{A}_{1} and 1\mathcal{B}_{1} decay as r2r^{-2}. A similar structure exists for all the remaining terms in the stress tensor as it will become clear while we proceed through the rest of this computation.

    2. (b)

      The γ2\gamma_{2}-term:

      [𝖰̊+𝖰𝖠𝖠𝖰]\displaystyle\left[\mathring{\mathsf{Q}}+\mathsf{Q}\mathsf{A}-\mathsf{A}\mathsf{Q}\right]
      =\displaystyle= [𝐯𝖰+𝖰𝐯(𝐯)𝖰]\displaystyle\left[{\bf v}\cdot\nabla\mathsf{Q}+\mathsf{Q}\nabla{\bf v}-(\nabla{\bf v})\mathsf{Q}\right]
      =\displaystyle= [𝐯𝖰+𝖰𝐯(𝐯)𝖰]+[(𝐯𝐯)𝖰+(𝖰𝖰)𝐯𝐯(𝖰𝖰)]\displaystyle\left[{\bf v}_{*}\cdot\nabla\mathsf{Q}+\mathsf{Q}_{*}\nabla{\bf v}-(\nabla{\bf v})\mathsf{Q}_{*}\right]+\left[({\bf v}-{\bf v}_{*})\cdot\nabla\mathsf{Q}+(\mathsf{Q}-\mathsf{Q}_{*})\nabla{\bf v}-\nabla{\bf v}(\mathsf{Q}-\mathsf{Q}_{*})\right]
      =\displaystyle= 𝒜2(x)+2[𝐯]+O(1r3),\displaystyle\mathcal{A}_{2}(x)+\mathcal{B}_{2}[\nabla{\bf v}]+O\left(\frac{1}{r^{3}}\right),

      where

      𝒜2(x):=𝐯𝖰 and 2[𝐯]:=𝖰𝐯(𝐯)𝖰.\mathcal{A}_{2}(x):={\bf v}_{*}\cdot\nabla\mathsf{Q}\,\,\mbox{ and }\,\,\mathcal{B}_{2}[\nabla{\bf v}]:=\mathsf{Q}_{*}\nabla{\bf v}-(\nabla{\bf v})\mathsf{Q}_{*}. (75)
    3. (c)

      The γ3\gamma_{3}-term:

      12(𝖰𝖰̊+𝖰̊𝖰+𝖰2𝖠𝖠𝖰2)\displaystyle\frac{1}{2}\left(\mathsf{Q}\mathring{\mathsf{Q}}+\mathring{\mathsf{Q}}\mathsf{Q}+\mathsf{Q}^{2}\mathsf{A}-\mathsf{A}\mathsf{Q}^{2}\right)
      =\displaystyle= 12(𝖰(𝐯𝖰+𝖰𝖶𝖶𝖰)+(𝐯𝖰+𝖰𝖶𝖶𝖰)𝖰\displaystyle\frac{1}{2}\Big{(}\mathsf{Q}_{*}\big{(}{\bf v}_{*}\cdot\nabla\mathsf{Q}+\mathsf{Q}_{*}\mathsf{W}-\mathsf{W}\mathsf{Q}_{*}\big{)}+\big{(}{\bf v}_{*}\cdot\nabla\mathsf{Q}+\mathsf{Q}_{*}\mathsf{W}-\mathsf{W}\mathsf{Q}_{*}\big{)}\mathsf{Q}_{*}
      +𝖰2𝖠𝖠𝖰2)+O(1r3)\displaystyle+\mathsf{Q}_{*}^{2}\mathsf{A}-\mathsf{A}\mathsf{Q}_{*}^{2}\Big{)}+O\left(\frac{1}{r^{3}}\right)
      =\displaystyle= 12(𝖰(𝐯𝖰)+(𝐯𝖰)𝖰+𝖰2(𝐯)(𝐯)𝖰2)+O(1r3)\displaystyle\frac{1}{2}\left(\mathsf{Q}_{*}({\bf v}_{*}\cdot\nabla\mathsf{Q})+({\bf v}_{*}\cdot\nabla\mathsf{Q})\mathsf{Q}_{*}+\mathsf{Q}_{*}^{2}(\nabla{\bf v})-(\nabla{\bf v})\mathsf{Q}_{*}^{2}\right)+O\left(\frac{1}{r^{3}}\right)
      =\displaystyle= 𝒜3(x)+3[𝐯]+O(1r3),\displaystyle\mathcal{A}_{3}(x)+\mathcal{B}_{3}[\nabla{\bf v}]+O\left(\frac{1}{r^{3}}\right),

      where

      𝒜3(x)\displaystyle\mathcal{A}_{3}(x) :=12(𝖰(𝐯𝖰)+(𝐯𝖰)𝖰),\displaystyle:=\frac{1}{2}\left(\mathsf{Q}_{*}({\bf v}_{*}\cdot\nabla\mathsf{Q})+({\bf v}_{*}\cdot\nabla\mathsf{Q})\mathsf{Q}_{*}\right), (76)
      3[𝐯]\displaystyle\mathcal{B}_{3}[\nabla{\bf v}] :=12(𝖰2(𝐯)(𝐯)𝖰2).\displaystyle:=\frac{1}{2}\left(\mathsf{Q}_{*}^{2}(\nabla{\bf v})-(\nabla{\bf v})\mathsf{Q}_{*}^{2}\right).
    4. (d)

      The γ4\gamma_{4}-term:

      𝖰𝖠+𝖠𝖰=𝖰𝖠+𝖠𝖰+O(1r3)=:4[𝐯]+O(1r3).\mathsf{Q}\mathsf{A}+\mathsf{A}\mathsf{Q}=\mathsf{Q}_{*}\mathsf{A}+\mathsf{A}\mathsf{Q}_{*}+O\left(\frac{1}{r^{3}}\right)=:\mathcal{B}_{4}[\nabla{\bf v}]+O\left(\frac{1}{r^{3}}\right). (77)
    5. (e)

      The γ5\gamma_{5}-term:

      𝖰2𝖠+𝖠𝖰2=𝖰2𝖠+𝖠𝖰2+O(1r3)=:5[𝐯]+O(1r3).\mathsf{Q}^{2}\mathsf{A}+\mathsf{A}\mathsf{Q}^{2}=\mathsf{Q}_{*}^{2}\mathsf{A}+\mathsf{A}\mathsf{Q}_{*}^{2}+O\left(\frac{1}{r^{3}}\right)=:\mathcal{B}_{5}[\nabla{\bf v}]+O\left(\frac{1}{r^{3}}\right). (78)
    6. (f)

      The γ6\gamma_{6}-term:

      (𝖠𝖰)𝖰=(𝖠𝖰)𝖰+O(1r3)=:6[𝐯]+O(1r3).(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}=(\mathsf{A}\cdot\mathsf{Q}_{*})\mathsf{Q}_{*}+O\left(\frac{1}{r^{3}}\right)=:\mathcal{B}_{6}[\nabla{\bf v}]+O\left(\frac{1}{r^{3}}\right). (79)
    7. (g)

      The γ7\gamma_{7}-term:

      |𝖰2|𝖠=|𝖰2|𝖠+O(1r3)=:7[𝐯]+O(1r3).|\mathsf{Q}^{2}|\mathsf{A}=|\mathsf{Q}^{2}_{*}|\mathsf{A}+O\left(\frac{1}{r^{3}}\right)=:\mathcal{B}_{7}[\nabla{\bf v}]+O\left(\frac{1}{r^{3}}\right). (80)
    8. (h)

      The γ9\gamma_{9}-term:

      (𝖰̊𝖰)𝖰\displaystyle(\mathring{\mathsf{Q}}\cdot\mathsf{Q})\mathsf{Q} =\displaystyle= ((𝐯𝖰+𝖰𝖶𝖶𝖰)𝖰)𝖰=((𝐯𝖰)𝖰)𝖰\displaystyle\Big{(}({\bf v}\cdot\nabla\mathsf{Q}+\mathsf{Q}\mathsf{W}-\mathsf{W}\mathsf{Q})\cdot\mathsf{Q}\Big{)}\mathsf{Q}=\Big{(}({\bf v}\cdot\nabla\mathsf{Q})\cdot\mathsf{Q}\Big{)}\mathsf{Q} (81)
      =\displaystyle= ((𝐯𝖰)𝖰)𝖰+O(1r3)\displaystyle\Big{(}({\bf v}_{*}\cdot\nabla\mathsf{Q})\cdot\mathsf{Q}_{*}\Big{)}\mathsf{Q}_{*}+O\left(\frac{1}{r^{3}}\right)
      =\displaystyle= 𝒜9(x)+O(1r3),\displaystyle\mathcal{A}_{9}(x)+O\left(\frac{1}{r^{3}}\right),

      where we have used the fact that (𝖰𝖶𝖶𝖰)𝖰=0(\mathsf{Q}\mathsf{W}-\mathsf{W}\mathsf{Q})\cdot\mathsf{Q}=0 as (𝖢𝖣𝖣𝖢)𝖢=0(\mathsf{C}\mathsf{D}-\mathsf{D}\mathsf{C})\cdot\mathsf{C}=0 for any 𝖢,𝖣M3×3\mathsf{C},\mathsf{D}\in M^{3\times 3} with 𝖢\mathsf{C} symmetric.

    9. (i)

      The γ10\gamma_{10}-term:

      (𝖰2𝖠)𝖰+(𝖰𝖠)𝖰2\displaystyle(\mathsf{Q}^{2}\cdot\mathsf{A})\mathsf{Q}+(\mathsf{Q}\cdot\mathsf{A})\mathsf{Q}^{2} =\displaystyle= (𝖰2𝖠)𝖰+(𝖰𝖠)𝖰2+O(1r3)\displaystyle(\mathsf{Q}_{*}^{2}\cdot\mathsf{A})\mathsf{Q}_{*}+(\mathsf{Q}_{*}\cdot\mathsf{A})\mathsf{Q}^{2}_{*}+O\left(\frac{1}{r^{3}}\right) (82)
      =:\displaystyle=: 10[𝐯]+O(1r3).\displaystyle\mathcal{B}_{10}[\nabla{\bf v}]+O\left(\frac{1}{r^{3}}\right).
    10. (j)

      The γ11\gamma_{11}-term:

      |𝖰|2(𝖠𝖰)𝖰\displaystyle|\mathsf{Q}|^{2}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q} =\displaystyle= |𝖰|2(𝖠𝖰)𝖰+O(1r3)=:11[𝐯]+O(1r3).\displaystyle|\mathsf{Q}_{*}|^{2}(\mathsf{A}\cdot\mathsf{Q}_{*})\mathsf{Q}_{*}+O\left(\frac{1}{r^{3}}\right)=:\mathcal{B}_{11}[\nabla{\bf v}]+O\left(\frac{1}{r^{3}}\right). (83)

    From the above, we note that

    𝒜4=𝒜5=𝒜6=𝒜7=𝒜10=𝒜11=0and9=0.\mathcal{A}_{4}=\mathcal{A}_{5}=\mathcal{A}_{6}=\mathcal{A}_{7}=\mathcal{A}_{10}=\mathcal{A}_{11}=0\,\,\text{and}\,\,\mathcal{B}_{9}=0. (84)

Taking into account the items (a)-(c) above, we can write equation (33) as

(Δ𝐯+div[γ[𝐯]+𝒜γ(x)+𝒞γ(x)])+p=𝒟γ(x)-\left(\Delta{\bf v}+\text{div}\Big{[}\mathcal{B}_{\gamma}[\nabla{\bf v}]+\mathcal{A}_{\gamma}(x)+\mathcal{C}_{\gamma}(x)\Big{]}\right)+\nabla p=\mathcal{D}_{\gamma}(x) (85)

where

γ[𝐯]\displaystyle\mathcal{B}_{\gamma}[\nabla{\bf v}] =\displaystyle= γ,𝖰[𝐯]:=i=1,8,911γii[𝐯],\displaystyle\mathcal{B}_{\gamma,\mathsf{Q}_{*}}[\nabla{\bf v}]:=\sum_{i=1,\neq 8,9}^{11}\gamma_{i}\mathcal{B}_{i}[\nabla{\bf v}], (86)
𝒜γ(x)\displaystyle\mathcal{A}_{\gamma}(x) =\displaystyle= 𝒜γ,𝖰[𝐯𝖰]:=i=1,2,3,9γi𝒜i(x)=O(1r2),\displaystyle\mathcal{A}_{\gamma,\mathsf{Q}_{*}}[{\bf v}_{*}\cdot\nabla\mathsf{Q}]:=\sum_{i=1,2,3,9}\gamma_{i}\mathcal{A}_{i}(x)=O\left(\frac{1}{r^{2}}\right), (87)
𝒞γ(x)\displaystyle\mathcal{C}_{\gamma}(x) =\displaystyle= 𝒞γ(𝐯,x):=𝖳SVv𝖠γ[𝐯]𝒜γ(x)=O(1r3),\displaystyle\mathcal{C}_{\gamma}({\bf v},x):=\mathsf{T}_{\text{SV}}^{\text{v}}-\mathsf{A}-\mathcal{B}_{\gamma}[\nabla{\bf v}]-\mathcal{A}_{\gamma}(x)=O\left(\frac{1}{r^{3}}\right), (88)
𝒟γ(x)\displaystyle\mathcal{D}_{\gamma}(x) =\displaystyle= 𝒟γ(𝐯,x):=(γ1𝖰̊+γ2𝖠+γ32(𝖠𝖰+𝖰𝖠)+γ9(𝖠𝖰)𝖰)i𝖰𝐞i\displaystyle\mathcal{D}_{\gamma}({\bf v},x):=-\left(\gamma_{1}\mathring{\mathsf{Q}}+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}(\mathsf{A}\mathsf{Q}+\mathsf{Q}\mathsf{A})+\gamma_{9}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}\right)\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}
=\displaystyle= O(1r4).\displaystyle O\left(\frac{1}{r^{4}}\right).

In the above and what follows, we will use the symbol γ\gamma to denote an expression or quantity that genuinely depends on γ1,,γ11\gamma_{1},\ldots,\gamma_{11}. Furthermore, we set

|γ|:=max{|γ1|,,|γ11|}.|\gamma|:=\max\{|\gamma_{1}|,\ldots,|\gamma_{11}|\}. (90)

We might omit γ\gamma if the dependence is clear from the context.

The advantage of representation (85)–(4.1) is highlighted as follows.

  1. (a).

    The linear form γ[]\mathcal{B}_{\gamma}[\cdot] in 𝐯\nabla{\bf v} corresponds to the leading order far-field contribution to the diffusivity matrix originating from the stress tensor. In particular, div[γ[v]]\mathrm{div}\,[\mathcal{B}_{\gamma}[\nabla v]] is linear in D2𝐯D^{2}{\bf v} with constant coefficients depending only on 𝖰\mathsf{Q}_{*}.

  2. (b).

    The term div[𝒜γ(x)]\mathrm{div}\,[\mathcal{A}_{\gamma}(x)] decays as r3r^{-3} for r1r\gg 1. It can be treated as a purely inhomogeneous forcing term involving D2𝖰D^{2}\mathsf{Q}, 𝐯{\bf v}_{*} and 𝖰\mathsf{Q}_{*}. Note that it is linear in the expression 𝐯𝖰{\bf v}_{*}\cdot\nabla\mathsf{Q} so it vanishes if 𝐯=0{\bf v}_{*}=0.

  3. (c).

    The terms div[𝒞γ(x)]\mathrm{div}\,[\mathcal{C}_{\gamma}(x)] and 𝒟γ(x)\mathcal{D}_{\gamma}(x) decay as r4r^{-4} for r1r\gg 1. They are integrable in the exterior domain Ω\Omega,

    Ω|div[𝒞γ(x)]|𝑑x,Ω|𝒟γ(x)|𝑑x<.\int_{\Omega}\big{|}\mathrm{div}\,[\mathcal{C}_{\gamma}(x)]\big{|}\,dx,\,\,\,\int_{\Omega}\big{|}\mathcal{D}_{\gamma}(x)\big{|}\,dx<\infty. (91)

We point out that the presence of 𝒜γ\mathcal{A}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma} is due to the dependence of the interacting potential function RR on 𝖰̊\mathring{\mathsf{Q}} so that only γ1,γ2,γ3\gamma_{1},\gamma_{2},\gamma_{3} and γ9\gamma_{9} appear in the expressions for 𝒜γ\mathcal{A}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma}. (See the form (12) of RR.)

For the purpose of analyzing equation (85), we will keep div[γ[𝐯]]\mathrm{div}\,\big{[}\mathcal{B}_{\gamma}[\nabla{\bf v}]\big{]} in the left hand side but move 𝒜γ,𝒞γ,𝒟γ\mathcal{A}_{\gamma},\mathcal{C}_{\gamma},\mathcal{D}_{\gamma} to the right of that equation and re-write it as:

Δ𝐯div[γ[𝐯]]+p=div[𝒜γ(x)]+div[𝒞γ(x)]+𝒟γ(x).-\Delta{\bf v}-\mathrm{div}\,\big{[}\mathcal{B}_{\gamma}[\nabla{\bf v}]\big{]}+\nabla p=\text{div}\big{[}\mathcal{A}_{\gamma}(x)\big{]}+\text{div}\big{[}\mathcal{C}_{\gamma}(x)\big{]}+\mathcal{D}_{\gamma}(x). (92)

Note that Δ𝐯div[γ[𝐯]]-\Delta{\bf v}-\mathrm{div}\,\big{[}\mathcal{B}_{\gamma}[\nabla{\bf v}]\big{]} is a second order differential operator in 𝐯{\bf v} with constant coefficients.

Before proceeding further, we will express 𝒞γ\mathcal{C}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma} in more transparent forms.

  1. (a).

    For 𝒞γ\mathcal{C}_{\gamma}, from (88), we compute

    𝒞γ=\displaystyle\mathcal{C}_{\gamma}\,\,=\,\, 𝖳SV𝐯𝖠γ[𝐯]]𝒜γ(x)\displaystyle\mathsf{T}_{\text{SV}}^{\bf v}-\mathsf{A}-\mathcal{B}_{\gamma}[\nabla{\bf v}]]-\mathcal{A}_{\gamma}(x)
    =\displaystyle\,\,=\,\, γ1[(𝖰(𝐯𝖰)(𝐯𝖰)𝖰)+(𝖰2𝖶2𝖰𝖶𝖰+𝖶𝖰2)\displaystyle\gamma_{1}\Big{[}\big{(}\mathsf{Q}\left({\bf v}\cdot\nabla\mathsf{Q}\right)-\left({\bf v}\cdot\nabla\mathsf{Q}\right)\mathsf{Q}\big{)}+\big{(}\mathsf{Q}^{2}\mathsf{W}-2\mathsf{Q}\mathsf{W}\mathsf{Q}+\mathsf{W}\mathsf{Q}^{2}\big{)}
    (𝖰(𝐯𝖰)(𝐯𝖰)𝖰)(𝖰2𝖶2𝖰𝖶𝖰+𝖶𝖰2)]\displaystyle\hskip 15.0pt-\big{(}\mathsf{Q}_{*}({\bf v}_{*}\cdot\nabla\mathsf{Q})-({\bf v}_{*}\cdot\nabla\mathsf{Q})\mathsf{Q}_{*}\big{)}-\big{(}\mathsf{Q}_{*}^{2}\mathsf{W}-2\mathsf{Q}_{*}\mathsf{W}\mathsf{Q}_{*}+\mathsf{W}\mathsf{Q}^{2}_{*}\big{)}\Big{]}
    +γ2[(𝐯𝐯)𝖰+(𝖰𝖰)𝐯(𝐯)(𝖰𝖰)]\displaystyle+\gamma_{2}\Big{[}\big{(}{\bf v}-{{\bf v}_{*}}\big{)}\cdot\nabla\mathsf{Q}+\big{(}\mathsf{Q}-\mathsf{Q}_{*}\big{)}\nabla{\bf v}-(\nabla{\bf v})\big{(}\mathsf{Q}-\mathsf{Q}_{*}\big{)}\Big{]}
    +γ32[(𝖰(𝐯𝖰)+(𝐯𝖰)𝖰+𝖰2𝐯(𝐯)𝖰2)\displaystyle+\frac{\gamma_{3}}{2}\Big{[}\left(\mathsf{Q}({\bf v}\cdot\nabla\mathsf{Q})+({\bf v}\cdot\nabla\mathsf{Q})\mathsf{Q}+\mathsf{Q}^{2}\nabla{\bf v}-(\nabla{\bf v})\mathsf{Q}^{2}\right)
    (𝖰(𝐯𝖰)+(𝐯𝖰)𝖰)(𝖰2(𝐯)(𝐯)𝖰2)]\displaystyle\hskip 25.0pt-\left(\mathsf{Q}_{*}({\bf v}_{*}\cdot\nabla\mathsf{Q})+({\bf v}_{*}\cdot\nabla\mathsf{Q})\mathsf{Q}_{*}\right)-\left(\mathsf{Q}_{*}^{2}(\nabla{\bf v})-(\nabla{\bf v})\mathsf{Q}_{*}^{2}\right)\Big{]}
    +γ4[(𝖰𝖰)𝖠+𝖠(𝖰𝖰)]\displaystyle+\gamma_{4}\Big{[}(\mathsf{Q}-\mathsf{Q}_{*})\mathsf{A}+\mathsf{A}(\mathsf{Q}-\mathsf{Q}_{*})\Big{]}
    +γ5[(𝖰2𝖰2)𝖠+𝖠(𝖰2𝖰2)]\displaystyle+\gamma_{5}\Big{[}(\mathsf{Q}^{2}-\mathsf{Q}_{*}^{2})\mathsf{A}+\mathsf{A}(\mathsf{Q}^{2}-\mathsf{Q}_{*}^{2})\Big{]}
    +γ6[(𝖠𝖰)𝖰(𝖠𝖰)𝖰]\displaystyle+\gamma_{6}\Big{[}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}-(\mathsf{A}\cdot\mathsf{Q}_{*})\mathsf{Q}_{*}\Big{]}
    +γ7[(|𝖰2||𝖰2|)𝖠]\displaystyle+\gamma_{7}\Big{[}\left(|\mathsf{Q}^{2}|-|\mathsf{Q}^{2}_{*}|\right)\mathsf{A}\Big{]}
    +γ9[((𝐯𝖰)𝖰)𝖰((𝐯𝖰)𝖰)𝖰]\displaystyle+\gamma_{9}\Big{[}\big{(}({\bf v}\cdot\nabla\mathsf{Q})\cdot\mathsf{Q}\big{)}\mathsf{Q}-\Big{(}({\bf v}_{*}\cdot\nabla\mathsf{Q})\cdot\mathsf{Q}_{*}\Big{)}\mathsf{Q}_{*}\Big{]}
    +γ10[(𝖰2𝖠)𝖰+(𝖰𝖠)𝖰2(𝖰2𝖠)𝖰(𝖰𝖠)𝖰2]\displaystyle+\gamma_{10}\Big{[}(\mathsf{Q}^{2}\cdot\mathsf{A})\mathsf{Q}+(\mathsf{Q}\cdot\mathsf{A})\mathsf{Q}^{2}-(\mathsf{Q}_{*}^{2}\cdot\mathsf{A})\mathsf{Q}_{*}-(\mathsf{Q}_{*}\cdot\mathsf{A})\mathsf{Q}^{2}_{*}\Big{]}
    +γ11[|𝖰|2(𝖠𝖰)𝖰|𝖰|2(𝖠𝖰)𝖰]\displaystyle+\gamma_{11}\Big{[}|\mathsf{Q}|^{2}(\mathsf{A}\cdot\mathsf{Q})\mathsf{Q}-|\mathsf{Q}_{*}|^{2}(\mathsf{A}\cdot\mathsf{Q}_{*})\mathsf{Q}_{*}\Big{]}
    \displaystyle\,\,\sim\,\, O(1r3).\displaystyle O\left(\frac{1}{r^{3}}\right).
  2. (b).

    For 𝒟γ\mathcal{D}_{\gamma}, from (71), we have,

    𝒟γ\displaystyle\mathcal{D}_{\gamma} =\displaystyle= [γ1(𝐯𝖰+𝖰𝖶𝖶𝖰+(𝐯𝐯)𝖰+(𝖰𝖰)𝖶𝖶(𝖰𝖰))\displaystyle-\Big{[}\gamma_{1}\big{(}{\bf v}_{*}\cdot\nabla\mathsf{Q}+\mathsf{Q}_{*}\mathsf{W}-\mathsf{W}\mathsf{Q}_{*}+({\bf v}-{\bf v}_{*})\cdot\nabla\mathsf{Q}+(\mathsf{Q}-\mathsf{Q}_{*})\mathsf{W}-\mathsf{W}(\mathsf{Q}-\mathsf{Q}_{*})\big{)}
    +γ2𝖠+γ32(𝖠𝖰+𝖰𝖠+𝖠(𝖰𝖰)+(𝖰𝖰)𝖠)\displaystyle\hskip 12.0pt+\gamma_{2}\mathsf{A}+\frac{\gamma_{3}}{2}\big{(}\mathsf{A}\mathsf{Q}_{*}+\mathsf{Q}_{*}\mathsf{A}+\mathsf{A}(\mathsf{Q}-\mathsf{Q}_{*})+(\mathsf{Q}-\mathsf{Q}_{*})\mathsf{A}\big{)}
    +γ9((𝖠𝖰+𝖠(𝖰𝖰))𝖰+(𝖠𝖰+𝖠(𝖰𝖰))(𝖰𝖰))]i𝖰𝐞i\displaystyle\hskip 12.0pt+\gamma_{9}\big{(}(\mathsf{A}\cdot\mathsf{Q}_{*}+\mathsf{A}\cdot(\mathsf{Q}-\mathsf{Q}_{*}))\mathsf{Q}_{*}+(\mathsf{A}\cdot\mathsf{Q}_{*}+\mathsf{A}\cdot(\mathsf{Q}-\mathsf{Q}_{*}))(\mathsf{Q}-\mathsf{Q}_{*})\big{)}\Big{]}\cdot\partial_{i}\mathsf{Q}{\mathbf{e}}_{i}
    \displaystyle\sim O(1r4).\displaystyle O\left(\frac{1}{r^{4}}\right).

Note that given 𝖰\mathsf{Q}, both 𝒞γ\mathcal{C}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma} are linear in 𝐯{\bf v}.

Combining the above with the explicit expression (38) of 𝖰\mathsf{Q}, the terms on the right hand side of (92) take the following forms:

div𝒜γ(x)\displaystyle\mathrm{div}\,\mathcal{A}_{\gamma}(x) =\displaystyle= γ𝐅(x^)r3+O(1r4),\displaystyle\gamma\frac{{\bf F}(\hat{x})}{r^{3}}+O\left(\frac{1}{r^{4}}\right), (93)
div𝒞γ(x)+𝒟γ(x)\displaystyle\mathrm{div}\,\mathcal{C}_{\gamma}(x)+\mathcal{D}_{\gamma}(x) =\displaystyle= γ(𝐆(x^)r4+𝐇(x^):(𝐯𝐯)r3+𝐈(x^):D𝐯r2+𝐉(x^):D2𝐯r)\displaystyle\gamma\left(\frac{{\bf G}(\hat{x})}{r^{4}}+\frac{{\bf H}(\hat{x}):({\bf v}-{\bf v}_{*})}{r^{3}}+\frac{{\bf I}(\hat{x}):D{\bf v}}{r^{2}}+\frac{{\bf J}(\hat{x}):D^{2}{\bf v}}{r}\right) (94)
+O(1r5)\displaystyle+O\left(\frac{1}{r^{5}}\right)

for some spatially bounded vector or tensor fields 𝐅,𝐆,𝐇,𝐈,𝐉\bf F,G,H,I,J defined on 𝕊2\mathbb{S}^{2} which depend on 𝖰\mathsf{Q} and 𝖰\mathsf{Q}_{*} but not on 𝐯{\bf v} and 𝐯{\bf v}_{*}. We again recall the convention about the symbol ``:"``:" stated in item (i) at the end of Introduction. The precise forms of the contractions between tensors are not too important for our analysis. The key is the homogeneity in rr leading to appropriate spatial decays. The presence of γ\gamma on the right hand side refers to the fact that the terms are multiplied by γi\gamma_{i}’s. In particular, 𝒜γ,γ,𝒞γ,𝒟γ\mathcal{A}_{\gamma},\mathcal{B}_{\gamma},\mathcal{C}_{\gamma},\mathcal{D}_{\gamma} are all bounded in magnitude by O(|γ|)O(|\gamma|). Hence, if |γ|=0|\gamma|=0, then (92) simply becomes the classical isotropic Stokes equation (55).

Relating back to Section 2.4, Remark 2, note that the system (32)–(34) with boundary conditions (36)–(37) is solvable for any 𝐯b{\bf v}_{b} and 𝐯{\bf v}_{*}. From the form of 𝒜γ\mathcal{A}_{\gamma} written in (93), it seems the system becomes simpler by setting 𝐯=0{\bf v}_{*}=0. This can be achieved by a change of frame or simply consider the new vector field 𝐯=𝐯𝐯{\bf v}^{\prime}={\bf v}-{\bf v}_{*}. However, due to the presence of the convective derivative 𝐯𝖰{\bf v}\cdot\nabla\mathsf{Q} of 𝖰\mathsf{Q}, either of these procedures will necessarily give rise to the term 𝐯𝖰{\bf v}_{*}\nabla\mathsf{Q} which at leading order is embedded in 𝒜γ\mathcal{A}_{\gamma}.

4.2 Identification of div[γ[𝐯]]\mathrm{div}\,\big{[}\mathcal{B}_{\gamma}[\nabla{\bf v}]\big{]}

In this section, we express div[γ[𝐯]]\mathrm{div}\,\big{[}\mathcal{B}_{\gamma}[\nabla{\bf v}]\big{]} in (92) in more explicit form. More precisely, we will write

div[γ[𝐯]]=γ:D2𝐯\mathrm{div}\,\big{[}\mathcal{B}_{\gamma}[\nabla{\bf v}]\big{]}=\mathcal{M}_{\gamma}:D^{2}{\bf v} (95)

for some constant fourth order tensor γ\mathcal{M}_{\gamma}. Upon introducing the coordinates γ=(i,j;k,l)\mathcal{M}_{\gamma}=(\mathcal{M}_{i,j;k,l}), the right hand side of the above is understood as

(γ:D2𝐯)i=i,j;k,lkl𝐯j,for i=1,2,3.\Big{(}\mathcal{M}_{\gamma}:D^{2}{\bf v}\Big{)}_{i}=\mathcal{M}_{i,j;k,l}\partial_{kl}{\bf v}_{j},\quad\text{for $i=1,2,3$.} (96)

The main purpose of this section is to identify i,j;k,l\mathcal{M}_{i,j;k,l} explicitly. We note the following symmetry action of i,j;k,l\mathcal{M}_{i,j;k,l} with respect to kk and ll,

i,j;k,lkl𝐯j=i,j;l,kkl𝐯j.\mathcal{M}_{i,j;k,l}\partial_{kl}{\bf v}_{j}=\mathcal{M}_{i,j;l,k}\partial_{kl}{\bf v}_{j}. (97)

Furthermore, we emphasize that γ\mathcal{M}_{\gamma} will only act on incompressible vector fields 𝐯{\bf v}: j𝐯j=0\partial_{j}{\bf v}_{j}=0.

Before proceeding, using (39), we record that

𝖰ij=s(ninj13δij),𝖰2ij=s23(ninj+13δij),|𝖰|2=2s23.{\mathsf{Q}_{*}}_{ij}=s_{*}\left({n_{*}}_{i}{n_{*}}_{j}-\frac{1}{3}\delta_{ij}\right),\,\,\,{\mathsf{Q}_{*}^{2}}_{ij}=\frac{s_{*}^{2}}{3}\left({n_{*}}_{i}{n_{*}}_{j}+\frac{1}{3}\delta_{ij}\right),\,\,\,|\mathsf{Q}_{*}|^{2}=\frac{2s_{*}^{2}}{3}. (98)

With that, we compute.

  1. (a).

    div(1[𝐯]):\mathrm{div}(\mathcal{B}_{1}[\nabla{\bf v}]):

    div([𝖰2𝖶+𝖶𝖰22𝖰𝖶𝖰]i)=j[𝖰2𝖶+𝖶𝖰22𝖰𝖶𝖰]ij\displaystyle\mathrm{div}\,\left(\left[\mathsf{Q}_{*}^{2}\mathsf{W}+\mathsf{W}\mathsf{Q}_{*}^{2}-2\mathsf{Q}_{*}\mathsf{W}\mathsf{Q}_{*}\right]_{i}\right)=\partial_{j}\Big{[}\mathsf{Q}_{*}^{2}\mathsf{W}+\mathsf{W}\mathsf{Q}_{*}^{2}-2\mathsf{Q}_{*}\mathsf{W}\mathsf{Q}_{*}\Big{]}_{ij}
    =\displaystyle= j[12(𝖰2)ik(j𝐯kk𝐯j)+12(𝖰2)kj(k𝐯ii𝐯k)(𝖰)ik(l𝐯kk𝐯l)(𝖰)lj]\displaystyle\partial_{j}\Big{[}\frac{1}{2}\left(\mathsf{Q}_{*}^{2}\right)_{ik}(\partial_{j}{\bf v}_{k}-\partial_{k}{\bf v}_{j})+\frac{1}{2}\left(\mathsf{Q}_{*}^{2}\right)_{kj}\big{(}\partial_{k}{\bf v}_{i}-\partial_{i}{\bf v}_{k}\Big{)}-{\left(\mathsf{Q}_{*}\right)}_{ik}(\partial_{l}{\bf v}_{k}-\partial_{k}{\bf v}_{l}){\left(\mathsf{Q}_{*}\right)}_{lj}\Big{]}
    =\displaystyle= 12(𝖰2)ikjj𝐯k+12(𝖰2)kj(kj𝐯iij𝐯k)(𝖰)ik(𝖰)lj(jl𝐯kjk𝐯l)\displaystyle\frac{1}{2}\left(\mathsf{Q}_{*}^{2}\right)_{ik}\partial_{jj}{\bf v}_{k}+\frac{1}{2}\left(\mathsf{Q}_{*}^{2}\right)_{kj}\Big{(}\partial_{kj}{\bf v}_{i}-\partial_{ij}{\bf v}_{k}\Big{)}-{\left(\mathsf{Q}_{*}\right)}_{ik}{\left(\mathsf{Q}_{*}\right)}_{lj}\big{(}\partial_{jl}{\bf v}_{k}-\partial_{jk}{\bf v}_{l}\big{)}
    =\displaystyle= (12δk,l(𝖰2)ij+12δi,j(𝖰2)kl12δi,l(𝖰2)jk(𝖰)ij(𝖰)lk+(𝖰)ik(𝖰)lj)kl𝐯j\displaystyle\left(\frac{1}{2}\delta_{k,l}\left(\mathsf{Q}_{*}^{2}\right)_{ij}+\frac{1}{2}\delta_{i,j}\left(\mathsf{Q}_{*}^{2}\right)_{kl}-\frac{1}{2}\delta_{i,l}\left(\mathsf{Q}_{*}^{2}\right)_{jk}-{\left(\mathsf{Q}_{*}\right)}_{ij}{\left(\mathsf{Q}_{*}\right)}_{lk}+{\left(\mathsf{Q}_{*}\right)}_{ik}{\left(\mathsf{Q}_{*}\right)}_{lj}\right)\partial_{kl}{\bf v}_{j}
    =:\displaystyle=: i,j;k,l1kl𝐯j,\displaystyle\mathcal{M}^{1}_{i,j;k,l}\partial_{kl}{\bf v}_{j},

    where

    i,j;k,l1\displaystyle\mathcal{M}^{1}_{i,j;k,l} =\displaystyle= s2[16δk,l(ninj+13δi,j)+16δi,j(nknl+13δk,l)16δi,l(nknj+13δk,j)\displaystyle s_{*}^{2}\left[\frac{1}{6}\delta_{k,l}\left({n_{*}}_{i}{n_{*}}_{j}+\frac{1}{3}\delta_{i,j}\right)+\frac{1}{6}\delta_{i,j}\left({n_{*}}_{k}{n_{*}}_{l}+\frac{1}{3}\delta_{k,l}\right)-\frac{1}{6}\delta_{i,l}\left({n_{*}}_{k}{n_{*}}_{j}+\frac{1}{3}\delta_{k,j}\right)\right. (99)
    (ninj13δi,j)(nknl13δk,l)+(nkni13δk,i)(njnl13δj,l)]\displaystyle\left.-{\left({n_{*}}_{i}{n_{*}}_{j}-\frac{1}{3}\delta_{i,j}\right)}{\left({n_{*}}_{k}{n_{*}}_{l}-\frac{1}{3}\delta_{k,l}\right)}+{\left({n_{*}}_{k}{n_{*}}_{i}-\frac{1}{3}\delta_{k,i}\right)}{\left({n_{*}}_{j}{n_{*}}_{l}-\frac{1}{3}\delta_{j,l}\right)}\right]
    =\displaystyle= s22(δklninj+δijnknlδiknlnj).\displaystyle\frac{s_{*}^{2}}{2}\left(\delta_{kl}{n_{*}}_{i}{n_{*}}_{j}+\delta_{ij}{n_{*}}_{k}{n_{*}}_{l}-\delta_{ik}{n_{*}}_{l}{n_{*}}_{j}\right).

    In the above, we have used the symmetry property (97) of \mathcal{M} and the incompressibility of 𝐯{\bf v}:

    δilnknjkl𝐯j=δiknlnjkl𝐯jandδilδkjkl𝐯j=δikδljkl𝐯j=ij𝐯j=0.\delta_{il}{n_{*}}_{k}{n_{*}}_{j}\partial_{kl}{\bf v}_{j}=\delta_{ik}{n_{*}}_{l}{n_{*}}_{j}\partial_{kl}{\bf v}_{j}\,\,\,\text{and}\,\,\,\delta_{il}\delta_{kj}\partial_{kl}{\bf v}_{j}=\delta_{ik}\delta_{lj}\partial_{kl}{\bf v}_{j}=\partial_{ij}{\bf v}_{j}=0. (100)

    The above property will be used in several places in what follows.

  2. (b).

    div(2[𝐯]):\mathrm{div}(\mathcal{B}_{2}[\nabla{\bf v}]):

    div[𝖰𝐯(𝐯)𝖰]i\displaystyle\mathrm{div}\,\left[\mathsf{Q}_{*}\nabla{\bf v}-(\nabla{\bf v})\mathsf{Q}_{*}\right]_{i} =\displaystyle= j[(𝖰)ikj𝐯kk𝐯i(𝖰)kj]\displaystyle\partial_{j}\left[{\left(\mathsf{Q}_{*}\right)}_{ik}\partial_{j}{\bf v}_{k}-\partial_{k}{\bf v}_{i}{\left(\mathsf{Q}_{*}\right)}_{kj}\right]
    =\displaystyle= (𝖰)ikjj𝐯k(𝖰)kjkj𝐯i\displaystyle{\left(\mathsf{Q}_{*}\right)}_{ik}\partial_{jj}{\bf v}_{k}-{\left(\mathsf{Q}_{*}\right)}_{kj}\partial_{kj}{\bf v}_{i}
    =\displaystyle= (δk,l(𝖰)ijδi,j(𝖰)kl)kl𝐯j\displaystyle\left(\delta_{k,l}{\left(\mathsf{Q}_{*}\right)}_{ij}-\delta_{i,j}{\left(\mathsf{Q}_{*}\right)}_{kl}\right)\partial_{kl}{\bf v}_{j}
    =:\displaystyle=: i,j;k,l2kl𝐯j.\displaystyle\mathcal{M}^{2}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

    Here

    i,j;k,l2=s(δk,lninjδi,jnknl).\mathcal{M}^{2}_{i,j;k,l}=s_{*}\left(\delta_{k,l}{n_{*}}_{i}{n_{*}}_{j}-\delta_{i,j}{n_{*}}_{k}{n_{*}}_{l}\right). (101)
  3. (c).

    div(3[𝐯]):\mathrm{div}(\mathcal{B}_{3}[\nabla{\bf v}]):

    12div[𝖰2𝐯(𝐯)𝖰2]i\displaystyle\frac{1}{2}\mathrm{div}\,\left[\mathsf{Q}_{*}^{2}\nabla{\bf v}-(\nabla{\bf v})\mathsf{Q}_{*}^{2}\right]_{i} =\displaystyle= 12((𝖰2)ikjj𝐯k(𝖰2)kjkj𝐯i)\displaystyle\frac{1}{2}\left({\left(\mathsf{Q}_{*}^{2}\right)}_{ik}\partial_{jj}{\bf v}_{k}-\left({\mathsf{Q}_{*}^{2}}\right)_{kj}\partial_{kj}{\bf v}_{i}\right)
    =\displaystyle= 12(δk,l(𝖰2)ijδi,j(𝖰2)kl)kl𝐯j\displaystyle\frac{1}{2}\left(\delta_{k,l}{\left(\mathsf{Q}_{*}^{2}\right)}_{ij}-\delta_{i,j}\left({\mathsf{Q}_{*}^{2}}\right)_{kl}\right)\partial_{kl}{\bf v}_{j}
    =:\displaystyle=: i,j;k,l3kl𝐯j.\displaystyle\mathcal{M}^{3}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

    Here

    i,j;k,l3=s26(δk,lninjδi,jnknl).\mathcal{M}^{3}_{i,j;k,l}=\frac{s_{*}^{2}}{6}\left(\delta_{k,l}{n_{*}}_{i}{n_{*}}_{j}-\delta_{i,j}{n_{*}}_{k}{n_{*}}_{l}\right). (102)
  4. (d).

    div(4[𝐯]):\mathrm{div}(\mathcal{B}_{4}[\nabla{\bf v}]):

    div[𝖰𝖠+𝖠𝖰]i\displaystyle\mathrm{div}\,\left[\mathsf{Q}_{*}\mathsf{A}+\mathsf{A}\mathsf{Q}_{*}\right]_{i} =\displaystyle= 12(𝖰)ikjj𝐯k+12(ij𝐯k+kj𝐯i)(𝖰)kj\displaystyle\frac{1}{2}\left(\mathsf{Q}_{*}\right)_{ik}\partial_{jj}{\bf v}_{k}+\frac{1}{2}\left(\partial_{ij}{\bf v}_{k}+\partial_{kj}{\bf v}_{i}\right)\left(\mathsf{Q}_{*}\right)_{kj}
    =\displaystyle= 12(δk,l(𝖰)ij+δi,l(𝖰)jk+δi,j(𝖰)kl)kl𝐯j\displaystyle\frac{1}{2}\left(\delta_{k,l}\left(\mathsf{Q}_{*}\right)_{ij}+\delta_{i,l}\left(\mathsf{Q}_{*}\right)_{jk}+\delta_{i,j}\left(\mathsf{Q}_{*}\right)_{kl}\right)\partial_{kl}{\bf v}_{j}
    =:\displaystyle=: i,j;k,l4kl𝐯j.\displaystyle\mathcal{M}^{4}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

    Here

    i,j;k,l4\displaystyle\mathcal{M}^{4}_{i,j;k,l} =\displaystyle= s2(δk,l(ninj13δi,j)+δi,l(njnk13δj,k)+δi,j(nknl13δk,l))\displaystyle\frac{s_{*}}{2}\left(\delta_{k,l}\left({n_{*}}_{i}{n_{*}}_{j}-\frac{1}{3}\delta_{i,j}\right)+\delta_{i,l}\left({n_{*}}_{j}{n_{*}}_{k}-\frac{1}{3}\delta_{j,k}\right)+\delta_{i,j}\left({n_{*}}_{k}{n_{*}}_{l}-\frac{1}{3}\delta_{k,l}\right)\right) (103)
    =\displaystyle= s2(δklninj+δijnknl+δiknlnj23δklδij).\displaystyle\frac{s_{*}}{2}\left(\delta_{kl}{n_{*}}_{i}{n_{*}}_{j}+\delta_{ij}{n_{*}}_{k}{n_{*}}_{l}+\delta_{ik}{n_{*}}_{l}{n_{*}}_{j}-\frac{2}{3}\delta_{kl}\delta_{ij}\right).
  5. (e).

    div(5[𝐯]):\mathrm{div}(\mathcal{B}_{5}[\nabla{\bf v}]):

    div[𝖰2𝖠+𝖠𝖰2]i\displaystyle\mathrm{div}\,\left[\mathsf{Q}_{*}^{2}\mathsf{A}+\mathsf{A}\mathsf{Q}_{*}^{2}\right]_{i} =\displaystyle= 12(𝖰2)ikjj𝐯k+12(ij𝐯k+kj𝐯i)(𝖰2)kj\displaystyle\frac{1}{2}\left(\mathsf{Q}_{*}^{2}\right)_{ik}\partial_{jj}{\bf v}_{k}+\frac{1}{2}\left(\partial_{ij}{\bf v}_{k}+\partial_{kj}{\bf v}_{i}\right)\left(\mathsf{Q}_{*}^{2}\right)_{kj}
    =\displaystyle= 12(δk,l(𝖰2)ij+δi,l(𝖰2)jk+δi,j(𝖰2)kl)kl𝐯j\displaystyle\frac{1}{2}\left(\delta_{k,l}\left(\mathsf{Q}_{*}^{2}\right)_{ij}+\delta_{i,l}\left(\mathsf{Q}_{*}^{2}\right)_{jk}+\delta_{i,j}\left(\mathsf{Q}_{*}^{2}\right)_{kl}\right)\partial_{kl}{\bf v}_{j}
    =:\displaystyle=: i,j;k,l5kl𝐯j.\displaystyle\mathcal{M}^{5}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

    Here

    i,j;k,l5\displaystyle\mathcal{M}^{5}_{i,j;k,l} =\displaystyle= s26(δk,l(ninj+13δi,j)+δi,l(njnk+13δj,k)+δi,j(nknl+13δk,l))\displaystyle\frac{s_{*}^{2}}{6}\left(\delta_{k,l}\left({n_{*}}_{i}{n_{*}}_{j}+\frac{1}{3}\delta_{i,j}\right)+\delta_{i,l}\left({n_{*}}_{j}{n_{*}}_{k}+\frac{1}{3}\delta_{j,k}\right)+\delta_{i,j}\left({n_{*}}_{k}{n_{*}}_{l}+\frac{1}{3}\delta_{k,l}\right)\right) (104)
    =\displaystyle= s26(δklninj+δijnknl+δiknlnj+23δijδkl).\displaystyle\frac{s_{*}^{2}}{6}\left(\delta_{kl}{n_{*}}_{i}{n_{*}}_{j}+\delta_{ij}{n_{*}}_{k}{n_{*}}_{l}+\delta_{ik}{n_{*}}_{l}{n_{*}}_{j}+\frac{2}{3}\delta_{ij}\delta_{kl}\right).
  6. (f).

    div(6[𝐯]):\mathrm{div}(\mathcal{B}_{6}[\nabla{\bf v}]):

    div[(𝖠𝖰)𝖰]i\displaystyle\mathrm{div}\,\left[(\mathsf{A}\cdot\mathsf{Q}_{*})\mathsf{Q}_{*}\right]_{i} =\displaystyle= 12(𝖰)ij(𝖰)kl(lj𝐯k+kj𝐯l)\displaystyle\frac{1}{2}\left(\mathsf{Q}_{*}\right)_{ij}\left(\mathsf{Q}_{*}\right)_{kl}\left(\partial_{lj}{\bf v}_{k}+\partial_{kj}{\bf v}_{l}\right)
    =\displaystyle= 12((𝖰)ik(𝖰)jl+(𝖰)il(𝖰)kj)kl𝐯j\displaystyle\frac{1}{2}\left(\left(\mathsf{Q}_{*}\right)_{ik}\left(\mathsf{Q}_{*}\right)_{jl}+\left(\mathsf{Q}_{*}\right)_{il}\left(\mathsf{Q}_{*}\right)_{kj}\right)\partial_{kl}{\bf v}_{j}
    =:\displaystyle=: i,j;k,l6kl𝐯j.\displaystyle\mathcal{M}^{6}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

    Here

    i,j;k,l6\displaystyle\mathcal{M}^{6}_{i,j;k,l} =\displaystyle= s22((nink13δi,k)(njnl13δj,l)\displaystyle\frac{s_{*}^{2}}{2}\left(\left({n_{*}}_{i}{n_{*}}_{k}-\frac{1}{3}\delta_{i,k}\right)\left({n_{*}}_{j}{n_{*}}_{l}-\frac{1}{3}\delta_{j,l}\right)\right. (105)
    +(ninl13δi,l)(njnk13δj,k))\displaystyle\left.+\left({n_{*}}_{i}{n_{*}}_{l}-\frac{1}{3}\delta_{i,l}\right)\left({n_{*}}_{j}{n_{*}}_{k}-\frac{1}{3}\delta_{j,k}\right)\right)
    =\displaystyle= s2(ninjnknl13δiknlnj).\displaystyle s_{*}^{2}\left({n_{*}}_{i}{n_{*}}_{j}{n_{*}}_{k}{n_{*}}_{l}-\frac{1}{3}\delta_{ik}{n_{*}}_{l}{n_{*}}_{j}\right).
  7. (g).

    div(7[𝐯]):\mathrm{div}(\mathcal{B}_{7}[\nabla{\bf v}]):

    div[|𝖰|2𝖠]i=div[2s23𝖠]i=:i,j;k,l7kl𝐯j.\displaystyle\mathrm{div}\,\left[|\mathsf{Q}_{*}|^{2}\mathsf{A}\right]_{i}=\mathrm{div}\,\left[\frac{2s_{*}^{2}}{3}\mathsf{A}\right]_{i}=:\mathcal{M}^{7}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

    Here

    i,j;k,l7=s23δk,lδi,j.\mathcal{M}^{7}_{i,j;k,l}=\frac{s_{*}^{2}}{3}\delta_{k,l}\delta_{i,j}. (106)
  8. (h).

    div(10[𝐯]):\mathrm{div}(\mathcal{B}_{10}[\nabla{\bf v}]):

    div[(𝖰2𝖠)𝖰+(𝖰𝖠)𝖰2]i\displaystyle\mathrm{div}\,\left[(\mathsf{Q}_{*}^{2}\cdot\mathsf{A})\mathsf{Q}_{*}+(\mathsf{Q}_{*}\cdot\mathsf{A})\mathsf{Q}^{2}_{*}\right]_{i} =\displaystyle= 12((𝖰2)kl(𝖰)ij+(𝖰)kl(𝖰2)ij)(lj𝐯k+kj𝐯l)\displaystyle\frac{1}{2}\left(\left(\mathsf{Q}_{*}^{2}\right)_{kl}\left(\mathsf{Q}_{*}\right)_{ij}+\left(\mathsf{Q}_{*}\right)_{kl}\left(\mathsf{Q}_{*}^{2}\right)_{ij}\right)\left(\partial_{lj}{\bf v}_{k}+\partial_{kj}{\bf v}_{l}\right)
    =\displaystyle= ((𝖰2)jk(𝖰)il+(𝖰)jk(𝖰2)il)kl𝐯j\displaystyle\left(\left(\mathsf{Q}_{*}^{2}\right)_{jk}\left(\mathsf{Q}_{*}\right)_{il}+\left(\mathsf{Q}_{*}\right)_{jk}\left(\mathsf{Q}_{*}^{2}\right)_{il}\right)\partial_{kl}{\bf v}_{j}
    =:\displaystyle=: i,j;k,l10kl𝐯j.\displaystyle\mathcal{M}^{10}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

    Here

    i,j;k,l10\displaystyle\mathcal{M}^{10}_{i,j;k,l} =\displaystyle= s33((njnk+13δj,k)(ninl13δi,l)\displaystyle\frac{s_{*}^{3}}{3}\left(\left({n_{*}}_{j}{n_{*}}_{k}+\frac{1}{3}\delta_{j,k}\right)\left({n_{*}}_{i}{n_{*}}_{l}-\frac{1}{3}\delta_{i,l}\right)\right. (107)
    +(njnk13δj,k)(ninl+13δi,l))\displaystyle\left.+\left({n_{*}}_{j}{n_{*}}_{k}-\frac{1}{3}\delta_{j,k}\right)\left({n_{*}}_{i}{n_{*}}_{l}+\frac{1}{3}\delta_{i,l}\right)\right)
    =\displaystyle= 2s33ninjnknl.\displaystyle\frac{2s_{*}^{3}}{3}{n_{*}}_{i}{n_{*}}_{j}{n_{*}}_{k}{n_{*}}_{l}.
  9. (i).

    div(11[𝐯]):\mathrm{div}(\mathcal{B}_{11}[\nabla{\bf v}]):

    div[|𝖰|2(𝖠𝖰)𝖰]i=2s23(𝖰)il(𝖰)jkkl𝐯j=:i,j;k,l11kl𝐯j.\displaystyle\mathrm{div}\,\left[|\mathsf{Q}_{*}|^{2}(\mathsf{A}\cdot\mathsf{Q}_{*})\mathsf{Q}_{*}\right]_{i}=\frac{2s_{*}^{2}}{3}\left(\mathsf{Q}_{*}\right)_{il}\left(\mathsf{Q}_{*}\right)_{jk}\partial_{kl}{\bf v}_{j}=:\mathcal{M}^{11}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

    Here

    i,j;k,l11\displaystyle\mathcal{M}^{11}_{i,j;k,l} =\displaystyle= 2s43(ninl13δi,l)(njnk13δj,k)\displaystyle\frac{2s_{*}^{4}}{3}\left({n_{*}}_{i}{n_{*}}_{l}-\frac{1}{3}\delta_{i,l}\right)\left({n_{*}}_{j}{n_{*}}_{k}-\frac{1}{3}\delta_{j,k}\right) (108)
    =\displaystyle= 2s43(ninjnknl13δiknlnj).\displaystyle\frac{2s_{*}^{4}}{3}\left({n_{*}}_{i}{n_{*}}_{j}{n_{*}}_{k}{n_{*}}_{l}-\frac{1}{3}\delta_{ik}{n_{*}}_{l}{n_{*}}_{j}\right).

With the above, the fourth order tensor γ\mathcal{M}_{\gamma} can be decomposed as

i,j;k,l=p=1,,7,10,11γpi,j;k,lp.\mathcal{M}_{i,j;k,l}=\sum_{p=1,\ldots,7,10,11}\gamma_{p}\mathcal{M}^{p}_{i,j;k,l}. (109)

From (99) to (108), the i,j;k,lp\mathcal{M}^{p}_{i,j;k,l}’s are effectively given by a linear combination of the following tensors:

δklδij,δklninj,δijnknl,δiknlnj(or equivalently, δilnknj),ninjnknl.\delta_{kl}\delta_{ij},\,\,\,\delta_{kl}{n_{*}}_{i}{n_{*}}_{j},\,\,\,\delta_{ij}{n_{*}}_{k}{n_{*}}_{l},\,\,\,\delta_{ik}{n_{*}}_{l}{n_{*}}_{j}\,\,\,(\text{or equivalently, $\delta_{il}{n_{*}}_{k}{n_{*}}_{j}$}),\,\,\,{n_{*}}_{i}{n_{*}}_{j}{n_{*}}_{k}{n_{*}}_{l}. (110)

5 Analysis of the anisotropic Stokes equation (33)–(34)

Collecting the forms from (93) and (94), we write again here the governing system as:

γ𝐯+p\displaystyle\mathcal{L}_{\gamma}{\bf v}+\nabla p =\displaystyle= 𝐟γ(𝐯),for|x|>a,\displaystyle{\bf f}_{\gamma}({\bf v}),\quad\text{for}\,\,\,|x|>a, (111)
div𝐯\displaystyle\quad\mathrm{div}\,{\bf v} =\displaystyle= 0,for|x|>a,\displaystyle 0,\quad\text{for}\,\,\,|x|>a, (112)
𝐯\displaystyle{\bf v} =\displaystyle= 𝐯b(=0),on 𝐁a\displaystyle{\bf v}_{b}\,\,(=0),\quad\text{on $\partial\mathbf{B}_{a}$} (113)
𝐯\displaystyle{\bf v} =\displaystyle= 𝐯,at |x|=.\displaystyle{\bf v}_{*},\quad\text{at $|x|=\infty$.} (114)

where

γ𝐯\displaystyle\mathcal{L}_{\gamma}{\bf v} :=\displaystyle:= (Δ𝐯+γ:D2𝐯),\displaystyle-\Big{(}\Delta{\bf v}+\mathcal{M}_{\gamma}:D^{2}{\bf v}\Big{)}, (115)
𝐟γ(𝐮)\displaystyle{\bf f}_{\gamma}({\bf u}) :=\displaystyle:= div𝒜γ(x)+div𝒞γ(𝐮,x)+𝒟γ(𝐮,x),\displaystyle\mathrm{div}\,\mathcal{A}_{\gamma}(x)+\mathrm{div}\,\mathcal{C}_{\gamma}({\bf u},x)+\mathcal{D}_{\gamma}({\bf u},x), (116)
=\displaystyle= γ(𝐅(x^)r3+𝐆(x^)r4+𝐇(x^):(𝐮𝐯)r3+𝐈(x^):D𝐮r2+𝐉(x^):D2𝐮r)\displaystyle\gamma\left(\frac{{\bf F}(\hat{x})}{r^{3}}+\frac{{\bf G}(\hat{x})}{r^{4}}+\frac{{\bf H}(\hat{x}):({\bf u}-{\bf v}_{*})}{r^{3}}+\frac{{\bf I}(\hat{x}):D{\bf u}}{r^{2}}+\frac{{\bf J}(\hat{x}):D^{2}{\bf u}}{r}\right)
+O(1r5).\displaystyle+O\left(\frac{1}{r^{5}}\right).

Note that we have emphasized the dependence of 𝒞γ\mathcal{C}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma} on 𝐮{\bf u}. Given 𝖰\mathsf{Q}, this dependence is in fact linear in 𝐮{\bf u} so that

𝐟γ(𝐮1)𝐟γ(𝐮2)=𝐟γ(𝐮1𝐮2){\bf f}_{\gamma}({\bf u}_{1})-{\bf f}_{\gamma}({\bf u}_{2})={\bf f}_{\gamma}({\bf u}_{1}-{\bf u}_{2}) (117)

making the above a linear system which we designate as our anisotropic Stokes system.

We remark again that the above system describes the flow in the moving frame attached to the particle. The far-field velocity 𝐯{\bf v}_{*} is prescribed. For passive particle which is the case in this paper, we take 𝐯b=0{\bf v}_{b}=0 while for active particle, it is in general some prescribed, non-constant function. Note also that if 𝐯b=0{\bf v}_{b}=0 and 𝐯=0{\bf v}_{*}=0, then we have only the trivial solution 𝐯=0{\bf v}=0.

Upon introducing

𝖳γ(𝐰,π)=𝐰+(𝐰)T+γ(𝐯)π𝖨,\mathsf{T}_{\gamma}({\bf w},\pi)=\nabla{\bf w}+(\nabla{\bf w})^{T}+\mathcal{B}_{\gamma}(\nabla{\bf v})-\pi\mathsf{I}, (118)

we can write (111) as

div𝖳γ(𝐯,p)=𝐟γ(𝐯).-\mathrm{div}\,\mathsf{T}_{\gamma}({\bf v},p)={\bf f}_{\gamma}({\bf v}). (119)

In terms of i,j;k,l\mathcal{M}_{i,j;k,l}, we have (γ(𝐯))ij=i,m;k,jk𝐯m\big{(}\mathcal{B}_{\gamma}(\nabla{\bf v})\big{)}_{ij}=\mathcal{M}_{i,m;k,j}\partial_{k}{\bf v}_{m} so that it is consistent with (divγ(𝐯))i=i,j;k,lkl𝐯j\big{(}\mathrm{div}\,\mathcal{B}_{\gamma}(\nabla{\bf v})\big{)}_{i}=\mathcal{M}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

The main purpose of the next few sections is to prove the existence and uniqueness of a solution for (111)–(114) in a suitable function space when |γ|1|\gamma|\ll 1.

5.1 Computation of the Green’s Function for \mathcal{L}.

Given a function or vector field ff defined on 3\mathbb{R}^{3}, its Fourier transform and inverse are given by

f~(ξ)=nf(x)eixξ𝑑x,f(x)=(2π)nnf~(ξ)eixξ𝑑ξ,\widetilde{f}(\xi)=\int_{\mathbb{R}^{n}}f(x)e^{-\mathrm{i}x\cdot\xi}\,dx,\quad f(x)=(2\pi)^{-n}\int_{\mathbb{R}^{n}}\widetilde{f}(\xi)e^{\mathrm{i}x\cdot\xi}\,d\xi,

where ξ=(ξ1,ξ2,ξ3)T\xi=(\xi_{1},\xi_{2},\xi_{3})^{T}. Based on (95) and (96), we introduce the 3×33\times 3 matrix [γ](ξ)[\mathcal{M}_{\gamma}](\xi):

[γ]ij(ξ)=i,j;k,lξkξl.[\mathcal{M}_{\gamma}]_{ij}(\xi)=\mathcal{M}_{i,j;k,l}\xi_{k}\xi_{l}. (120)

Then taking the Fourier transform of (92) gives

|ξ|2𝐯~+[γ](ξ)𝐯~+iξp~=𝐟γ~{|\xi|}^{2}\widetilde{{\bf v}}+[\mathcal{M}_{\gamma}](\xi)\widetilde{{\bf v}}+\mathrm{i}\xi\widetilde{p}=\widetilde{{\bf f}_{\gamma}} (121)

where 𝐟γ{\bf f}_{\gamma} is the right hand side of (92). Using the incompressibility condition div𝐯=0\mathrm{div}\,{\bf v}=0 written in Fourier mode 𝐯~,ξ=0\langle\widetilde{{\bf v}},\xi\rangle=0, we have,

[γ](ξ)𝐯~,ξ+i|ξ|2p~=𝐟γ~,ξ,so thatp~=[γ](ξ)𝐯~,ξ+𝐟γ~,ξi|ξ|2.\displaystyle\langle[\mathcal{M}_{\gamma}](\xi)\widetilde{{\bf v}},\xi\rangle+\mathrm{i}|\xi|^{2}\widetilde{p}=\langle\widetilde{{\bf f}_{\gamma}},\xi\rangle,\quad\text{so that}\quad\widetilde{p}=\frac{-\big{\langle}[\mathcal{M}_{\gamma}](\xi)\widetilde{{\bf v}},\xi\big{\rangle}+\langle\widetilde{{\bf f}_{\gamma}},\xi\rangle}{\mathrm{i}|\xi|^{2}}.

Hence,

|ξ|2𝐯~+[γ](ξ)𝐯~+[γ](ξ)𝐯~,ξξ+𝐟γ~,ξξ|ξ|2=𝐟γ~,\displaystyle{|\xi|}^{2}\widetilde{{\bf v}}+[\mathcal{M}_{\gamma}](\xi)\widetilde{{\bf v}}+\frac{-\big{\langle}[\mathcal{M}_{\gamma}](\xi)\widetilde{{\bf v}},\xi\big{\rangle}\xi+\langle\widetilde{{\bf f}_{\gamma}},\xi\rangle\xi}{|\xi|^{2}}=\widetilde{{\bf f}_{\gamma}},

i.e.

|ξ|2(𝐯~+[γ](ξ^)𝐯~[γ](ξ^)𝐯~,ξ^ξ^)\displaystyle{|\xi|}^{2}\left(\widetilde{{\bf v}}+[\mathcal{M}_{\gamma}](\hat{\xi})\widetilde{{\bf v}}-\big{\langle}[\mathcal{M}_{\gamma}](\hat{\xi})\widetilde{{\bf v}},\hat{\xi}\big{\rangle}\hat{\xi}\right) =\displaystyle= 𝐟γ~𝐟γ~,ξ^ξ^,ξ^=ξ|ξ|,\displaystyle\widetilde{{\bf f}_{\gamma}}-\langle\widetilde{{\bf f}_{\gamma}},\hat{\xi}\rangle\hat{\xi},\,\,\,\hat{\xi}=\frac{\xi}{|\xi|},

or equivalently,

|ξ|2(𝐯~+[γ](ξ^)𝐯~(ξ^ξ^)[γ](ξ^)𝐯~)\displaystyle{|\xi|}^{2}\left(\widetilde{{\bf v}}+[\mathcal{M}_{\gamma}](\hat{\xi})\widetilde{{\bf v}}-(\hat{\xi}\otimes\hat{\xi})[\mathcal{M}_{\gamma}](\hat{\xi})\widetilde{{\bf v}}\right) =\displaystyle= (𝖨ξξ)𝐟γ~.\displaystyle(\mathsf{I}-\xi\otimes\xi)\widetilde{{\bf f}_{\gamma}}.

To conclude, the solution 𝐯{\bf v} and pp is given by

𝐯~\displaystyle\widetilde{{\bf v}} =\displaystyle= 1|ξ|2(𝖨+(𝖨ξ^ξ^)[γ](ξ^))1(𝖨ξ^ξ^)𝐟γ~\displaystyle\frac{1}{|\xi|^{2}}\Big{(}\mathsf{I}+(\mathsf{I}-\hat{\xi}\otimes\hat{\xi})[\mathcal{M}_{\gamma}](\hat{\xi})\Big{)}^{-1}(\mathsf{I}-\hat{\xi}\otimes\hat{\xi})\widetilde{{\bf f}_{\gamma}} (122)

and

p~=1i|ξ|(𝖨(𝖨ξ^ξ^)(𝖨+(𝖨ξ^ξ^)[γ](ξ^))T[γ]T(ξ^))ξ^,𝐟γ~.\displaystyle\widetilde{p}=\frac{1}{\mathrm{i}|\xi|}\left\langle\left(\mathsf{I}-(\mathsf{I}-\hat{\xi}\otimes\hat{\xi})\Big{(}\mathsf{I}+(\mathsf{I}-\hat{\xi}\otimes\hat{\xi})[\mathcal{M}_{\gamma}](\hat{\xi})\Big{)}^{-T}[\mathcal{M}_{\gamma}]^{T}(\hat{\xi})\right)\hat{\xi},\widetilde{{\bf f}_{\gamma}}\right\rangle. (123)

Note that the matrix inverse in the above is well-defined if |γ|1|\gamma|\ll 1.

Let 𝖦γ(x){\mathsf{G}_{\gamma}}(x) and 𝗁γ(x){\mathsf{h}_{\gamma}}(x) be the inverse Fourier transforms respectively of

1|ξ|2(𝖨+(𝖨ξ^ξ^)[γ](ξ^))1(𝖨ξ^ξ^)\frac{1}{|\xi|^{2}}\Big{(}\mathsf{I}+(\mathsf{I}-\hat{\xi}\otimes\hat{\xi})[\mathcal{M}_{\gamma}](\hat{\xi})\Big{)}^{-1}(\mathsf{I}-\hat{\xi}\otimes\hat{\xi}) (124)

and

1i|ξ|(𝖨(𝖨ξ^ξ^)(𝖨+(𝖨ξ^ξ^)[γ](ξ^))T[γ]T(ξ^))ξ^.\frac{1}{\mathrm{i}|\xi|}\left(\mathsf{I}-(\mathsf{I}-\hat{\xi}\otimes\hat{\xi})\Big{(}\mathsf{I}+(\mathsf{I}-\hat{\xi}\otimes\hat{\xi})[\mathcal{M}_{\gamma}](\hat{\xi})\Big{)}^{-T}[\mathcal{M}_{\gamma}]^{T}(\hat{\xi})\right)\hat{\xi}. (125)

Then we have that 𝖦γ{\mathsf{G}_{\gamma}} and 𝗁γ{\mathsf{h}_{\gamma}} are homogeneous with degrees 1-1 and 2-2 so that

𝖦γ(x)=𝖦γ(x^)|x|and𝗁γ(x)=𝗁γ(x^)|x|2.{\mathsf{G}_{\gamma}}(x)=\frac{{\mathsf{G}_{\gamma}}(\hat{x})}{|x|}\,\,\,\text{and}\,\,\,{\mathsf{h}_{\gamma}}(x)=\frac{{\mathsf{h}_{\gamma}}(\hat{x})}{|x|^{2}}. (126)

The above leads to the following properties: for k=0,1,2k=0,1,2\ldots,

(Dxk𝖦γ)(x)=(Dxk𝖦γ)(x^)|x|k+1,|Dxk𝖦γ(x)|1|x|k+1,(D_{x}^{k}{\mathsf{G}_{\gamma}})(x)=\frac{(D_{x}^{k}{\mathsf{G}_{\gamma}})(\hat{x})}{|x|^{k+1}},\,\,\,\Big{|}D^{k}_{x}{\mathsf{G}_{\gamma}}(x)\Big{|}\lesssim\frac{1}{|x|^{k+1}}, (127)

and

(Dxk𝗁γ)(x)=(Dxk𝗁γ)(x^)|x|k+2,|Dxk𝗁γ(x)|1|x|k+2.(D_{x}^{k}{\mathsf{h}_{\gamma}})(x)=\frac{(D_{x}^{k}{\mathsf{h}_{\gamma}})(\hat{x})}{|x|^{k+2}},\,\,\,\Big{|}D^{k}_{x}{\mathsf{h}_{\gamma}}(x)\Big{|}\lesssim\frac{1}{|x|^{k+2}}. (128)

Using the 𝖦γ{\mathsf{G}_{\gamma}} and 𝗁γ{\mathsf{h}_{\gamma}} above, we are looking for a solution 𝐯{\bf v} of (111) with suitable decay property at infinity such that the following representation holds for 𝐯{\bf v}:

𝐯(x)\displaystyle{\bf v}(x) =\displaystyle= Ω𝖦γ(xy)𝐟γ(𝐯(y))𝑑y+Ω𝖦γ(xy),𝖳γ(𝐯,p)(y)νy𝑑σy\displaystyle\int_{\Omega}{\mathsf{G}_{\gamma}}(x-y){\bf f}_{\gamma}({\bf v}(y))\,dy+\int_{\partial\Omega}\big{\langle}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y} (129)
Ω𝖳γ(𝖦γ,𝗁γ)(xy)νy,𝐯(y)𝑑σy+𝐯.\displaystyle-\int_{\partial\Omega}\big{\langle}\mathsf{T}_{\gamma}({\mathsf{G}_{\gamma}},{\mathsf{h}_{\gamma}})(x-y)\nu_{y},{\bf v}(y)\big{\rangle}\,d\sigma_{y}+{\bf v}_{*}.

Similar to (49)–(52), we have

|Ω𝖦γ(xy),𝖳γ(𝐯,p)(y)νy𝑑σy|1r,and|Ω𝖳γ(𝖦γ,𝗁γ)(xy)νy,𝐯(y)𝑑σy|1r2,\left|\int_{\partial\Omega}\big{\langle}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y}\right|\lesssim\frac{1}{r},\,\,\,\text{and}\,\,\,\left|\int_{\partial\Omega}\big{\langle}\mathsf{T}_{\gamma}({\mathsf{G}_{\gamma}},{\mathsf{h}_{\gamma}})(x-y)\nu_{y},{\bf v}(y)\big{\rangle}\,d\sigma_{y}\right|\lesssim\frac{1}{r^{2}}, (130)

so that 𝐯𝐯r1{\bf v}-{\bf v}_{*}\approx r^{-1}. More precise far-field asymptotics of 𝐯{\bf v} will be given in Section 6. However, in preparation for the proof of existence of 𝐯{\bf v}, we will first analyze the dominating term of 𝐟γ(𝐯){\bf f}_{\gamma}({\bf v}) given by div𝒜γ(x)\mathrm{div}\,\mathcal{A}_{\gamma}(x).

5.2 Far-field behavior of the inhomogeneous term

We recall form (93) for the dominating term of 𝐟γ(𝐯){\bf f}_{\gamma}({\bf v}):

div𝒜γ(x)=γ𝐅(x^)r3+O(1r4).\mathrm{div}\,\mathcal{A}_{\gamma}(x)=\gamma\frac{{\bf F}(\hat{x})}{r^{3}}+O\left(\frac{1}{r^{4}}\right).

Hence, in order for the property 𝐯𝐯1r{\bf v}-{\bf v}_{*}\approx\frac{1}{r} to hold, from the representation formula (129), it is necessary to have Ω𝖦γ(xy)div𝒜γ(y)𝑑y1r\displaystyle\int_{\Omega}{\mathsf{G}_{\gamma}}(x-y)\mathrm{div}\,\mathcal{A}_{\gamma}(y)\,dy\approx\frac{1}{r}. By (222), this is true only if

𝕊2𝐅(x^)𝑑σ=0.\int_{{\mathbb{S}}^{2}}{\bf F}(\hat{x})\,d\sigma=0. (131)

To verify the above for our system, we write 𝒜γ\mathcal{A}_{\gamma} explicitly as:

𝒜γ\displaystyle\mathcal{A}_{\gamma} =\displaystyle= γ1𝒜1+γ2𝒜2+γ3𝒜3+γ9𝒜9\displaystyle\gamma_{1}\mathcal{A}_{1}+\gamma_{2}\mathcal{A}_{2}+\gamma_{3}\mathcal{A}_{3}+\gamma_{9}\mathcal{A}_{9} (132)
=\displaystyle= γ1(𝖰(𝐯𝖰)(𝐯𝖰)𝖰)+γ2(𝐯𝖰)\displaystyle\gamma_{1}\Big{(}\mathsf{Q}_{*}({\bf v}_{*}\cdot\nabla\mathsf{Q})-({\bf v}_{*}\cdot\nabla\mathsf{Q})\mathsf{Q}_{*}\Big{)}+\gamma_{2}\Big{(}{\bf v}_{*}\cdot\nabla\mathsf{Q}\Big{)}
+γ32(𝖰(𝐯𝖰)+(𝐯𝖰)𝖰)+γ9((𝐯𝖰)𝖰)𝖰.\displaystyle+\frac{\gamma_{3}}{2}\left(\mathsf{Q}_{*}({\bf v}_{*}\cdot\nabla\mathsf{Q})+({\bf v}_{*}\cdot\nabla\mathsf{Q})\mathsf{Q}_{*}\right)+\gamma_{9}\Big{(}({\bf v}_{*}\cdot\nabla\mathsf{Q})\cdot\mathsf{Q}_{*}\Big{)}\mathsf{Q}_{*}.

By considering only the dominating term 1r\displaystyle\frac{1}{r} in the expression (38) of 𝖰\mathsf{Q}, we have

𝖰𝖰\displaystyle\mathsf{Q}-\mathsf{Q}_{*} =\displaystyle= (w𝖰1+w)1r+O(1r2)\displaystyle\left(-\frac{w\mathsf{Q}_{*}}{1+w}\right)\frac{1}{r}+O\left(\frac{1}{r^{2}}\right)
𝐯𝖰\displaystyle{\bf v}_{*}\cdot\nabla\mathsf{Q} =\displaystyle= (w𝖰1+w)𝐯,1r+O(1r3),\displaystyle\left(-\frac{w\mathsf{Q}_{*}}{1+w}\right)\left\langle{\bf v}_{*},\nabla\frac{1}{r}\right\rangle+O\left(\frac{1}{r^{3}}\right),
𝖰(𝐯𝖰),(𝐯𝖰)𝖰\displaystyle\mathsf{Q}_{*}({\bf v}_{*}\cdot\nabla\mathsf{Q}),\,\,\,({\bf v}_{*}\cdot\nabla\mathsf{Q})\mathsf{Q}_{*} =\displaystyle= (w𝖰21+w)𝐯,1r+O(1r3),\displaystyle\left(-\frac{w\mathsf{Q}_{*}^{2}}{1+w}\right)\left\langle{\bf v}_{*},\nabla\frac{1}{r}\right\rangle+O\left(\frac{1}{r^{3}}\right),
((𝐯𝖰)𝖰)𝖰\displaystyle\big{(}({\bf v}_{*}\cdot\nabla\mathsf{Q})\cdot\mathsf{Q}_{*}\big{)}\mathsf{Q}_{*} =\displaystyle= (w|𝖰|2𝖰1+w)𝐯,1r+O(1r3).\displaystyle\left(-\frac{w|\mathsf{Q}_{*}|^{2}\mathsf{Q}_{*}}{1+w}\right)\left\langle{\bf v}_{*},\nabla\frac{1}{r}\right\rangle+O\left(\frac{1}{r^{3}}\right).

Hence we can write for some constant 3×33\times 3 matrix 𝐌=(mij){\bf M}_{*}=(m_{ij}) that,

div𝒜γ=div(𝐯,1r𝐌)+O(1r4)\mathrm{div}\,\mathcal{A}_{\gamma}=\text{div}\left(\left\langle{\bf v}_{*},\nabla\frac{1}{r}\right\rangle{\bf M}_{*}\right)+O\left(\frac{1}{r^{4}}\right) (133)

Note that the term in 𝒜γ\mathcal{A}_{\gamma} multiplied by γ1\gamma_{1} completely vanishes.

We next claim that

𝕊2div(𝐯,1r𝐌)|r=1dσ=0.\int_{\mathbb{S}^{2}}\left.\text{div}\left(\left\langle{\bf v}_{*},\nabla\frac{1}{r}\right\rangle{\bf M}_{*}\right)\right|_{r=1}\,d\sigma=0. (134)

To see this, let g(r)=1r\displaystyle g(r)=\frac{1}{r}, and we compute for i=1,2,3i=1,2,3,

div(𝐯,1r𝐌)i=j(𝐯kkg(r)mij)=𝐯kmijkj2g(r),\text{div}\left(\left\langle{\bf v}_{*},\nabla\frac{1}{r}\right\rangle{\bf M}_{*}\right)_{i}=\partial_{j}\big{(}{{\bf v}_{*}}_{k}\partial_{k}g(r)m_{ij}\big{)}={{\bf v}_{*}}_{k}m_{ij}\partial^{2}_{kj}g(r), (135)

and

kj2g(r)\displaystyle\partial^{2}_{kj}g(r) =\displaystyle= g′′(r)krjr+g(r)kj2r\displaystyle g^{\prime\prime}(r)\partial_{k}r\partial_{j}r+g^{\prime}(r)\partial^{2}_{kj}r (136)
=\displaystyle= g′′(r)xkxjr2+g(r)r(δkjxkxjr2)\displaystyle g^{\prime\prime}(r)\frac{x_{k}x_{j}}{r^{2}}+\frac{g^{\prime}(r)}{r}\left(\delta_{kj}-\frac{x_{k}x_{j}}{r^{2}}\right)
=\displaystyle= g(r)rδkj+(g′′(r)g(r)r)xkxjr2\displaystyle\frac{g^{\prime}(r)}{r}\delta_{kj}+\left(g^{\prime\prime}(r)-\frac{g^{\prime}(r)}{r}\right)\frac{x_{k}x_{j}}{r^{2}}
=\displaystyle= 1r3(δkj3xkxjr2)\displaystyle-\frac{1}{r^{3}}\left(\delta_{kj}-3\frac{x_{k}x_{j}}{r^{2}}\right)

where we have used the facts that g(r)=1r2\displaystyle g^{\prime}(r)=-\frac{1}{r^{2}} and g′′(r)=2r3\displaystyle g^{\prime\prime}(r)=\frac{2}{r^{3}}. As

𝕊23x^x^𝑑σ=4π𝖨,\int_{\mathbb{S}^{2}}3\hat{x}\otimes\hat{x}\,d\sigma=4\pi\mathsf{I},

we have for all k,jk,j that

𝕊2kj2g(r)dσ=0.\int_{\mathbb{S}^{2}}\partial^{2}_{kj}g(r)\,d\sigma=0.

Thus (134) holds and so does (131).

5.3 Existence of solution of (111) in Schauder spaces

We recall the form of equation (111), its inhomogeneous term (116), and the Green’s function 𝖦γ{\mathsf{G}_{\gamma}} (126). Estimate (127) for 𝖦γ{\mathsf{G}_{\gamma}} plays an important role in our analysis.

We will show the existence and uniqueness of a solution by means of the Banach Fixed Point Theorem in a suitable weighted Schauder space 𝒮\mathcal{S}. For this purpose, we define

𝒮={𝐮:Ω3,𝐮𝒮<},\mathcal{S}=\big{\{}{\bf u}:\Omega\rightarrow\mathbb{R}^{3},\,\,\|{\bf u}\|_{\mathcal{S}}<\infty\big{\}}, (137)

where

𝐮𝒮=sup|x|Ω{|x||𝐮(x)𝐯|,|x|2|D𝐮(x)|,|x|3|D2𝐮(x)|,|x|3+α[D2𝐮]α(x)}.\|{\bf u}\|_{\mathcal{S}}=\sup_{|x|\in\Omega}\big{\{}|x||{\bf u}(x)-{\bf v}_{*}|,\,\,\,|x|^{2}|D{\bf u}(x)|,\,\,\,|x|^{3}|D^{2}{\bf u}(x)|,\,\,\,|x|^{3+\alpha}[D^{2}{\bf u}]_{\alpha}(x)\big{\}}. (138)

In the above, 0<α<10<\alpha<1, and

[D2𝐮]α(x)=supyΩ,|xy|1|D2𝐮(x)D2𝐮(y)||xy|α.[D^{2}{\bf u}]_{\alpha}(x)=\sup_{y\in\Omega,|x-y|\leq 1}\frac{|D^{2}{\bf u}(x)-D^{2}{\bf u}(y)|}{|x-y|^{\alpha}}. (139)

Now, given a 𝐮𝒮{\bf u}\in\mathcal{S}, let 𝐯=𝒯(𝐮){\bf v}=\mathcal{T}({\bf u}) be the solution of (111)–(114) with 𝐟γ=𝐟γ(𝐮){\bf f}_{\gamma}={\bf f}_{\gamma}({\bf u}). We will find a fixed point 𝐯{\bf v} of 𝒯\mathcal{T}: 𝐯=𝒯(𝐯){\bf v}=\mathcal{T}({\bf v}). To achieve this, we will show the following two properties of 𝒯\mathcal{T}:

  1. (a).

    𝒯\mathcal{T} maps 𝒮\mathcal{S} into 𝒮\mathcal{S}, in particular, there is a C>0C>0 such that for any 𝐮𝒮{\bf u}\in\mathcal{S},

    𝒯(𝐮)𝒮C[𝐮𝒮+𝐯bC2,α(Ω)+|𝐯|].\|\mathcal{T}({\bf u})\|_{\mathcal{S}}\leq C\Big{[}\|{\bf u}\|_{\mathcal{S}}+\|{\bf v}_{b}\|_{C^{2,\alpha}(\partial\Omega)}+|{\bf v}_{*}|\Big{]}. (140)
  2. (b).

    For |γ|1|\gamma|\ll 1, there exists a 0<c<10<c<1 such that for any 𝐮1,𝐮2𝒮{\bf u}_{1},{\bf u}_{2}\in\mathcal{S}, we have

    𝒯(𝐮1)𝒯(𝐮2)𝒮c𝐮1𝐮2𝒮.||\mathcal{T}({\bf u}_{1})-\mathcal{T}({\bf u}_{2})||_{\mathcal{S}}\leq c||{\bf u}_{1}-{\bf u}_{2}||_{\mathcal{S}}. (141)

The proof can be obtained via the following steps.

(I) Well-posedness of 𝒯\mathcal{T}. General existence and uniqueness theory for 𝐟γLp(Ω){\bf f}_{\gamma}\in L^{p}(\Omega) can be found in [32], also described in the encyclopedic reference [16, Chapter V]. But as 𝐟γ{\bf f}_{\gamma} has specific spatial decay property and we are looking for classical solutions, we find it convenient to follow the classical approach outlined in [33, Chapter 3] using the theory of single and double layer potentials, and Schauder estimates. This theory is also outlined in [34]. The recent survey [35] covers the existence and uniqueness of solutions for the Stokes equation in Schauder spaces. For the convenience of the reader, we now outline the approach that demonstrates existence.

Given 𝐮𝒮{\bf u}\in{\mathcal{S}}, we write 𝐟(x):=𝐟γ(𝐮(x)){\bf f}(x):={\bf f}_{\gamma}({\bf u}(x)) as

𝐟(x)\displaystyle{{\bf f}}(x) =\displaystyle= 𝐡1(x)+𝐡2(x),\displaystyle{\bf h}_{1}(x)+{\bf h}_{2}(x), (142)
𝐡1(x)\displaystyle{\bf h}_{1}(x) :=\displaystyle:= div𝒜γ(x)=γ𝐅(x^)r3+O(1r4)(recall𝕊2𝐅(x^)𝑑σ=0),\displaystyle\mathrm{div}\,\mathcal{A}_{\gamma}(x)=\gamma\frac{{\bf F}(\hat{x})}{r^{3}}+O\left(\frac{1}{r^{4}}\right)\,\,\,\left(\text{recall}\,\,\,\int_{\mathbb{S}^{2}}{\bf F}(\hat{x})\,d\sigma=0\right), (143)
𝐡2(x)\displaystyle{\bf h}_{2}(x) :=\displaystyle:= div𝒞γ(𝐮,x)+𝒟γ(𝐮,x).\displaystyle\mathrm{div}\,\mathcal{C}_{\gamma}({\bf u},x)+\mathcal{D}_{\gamma}({\bf u},x). (144)

From (93) and (94), we have |𝐡1|1r3\left|{\bf h}_{1}\right|\lesssim\frac{1}{r^{3}} and |𝐡2|1r4\left|{\bf h}_{2}\right|\lesssim\frac{1}{r^{4}} for r1r\gg 1. The solution 𝐯{\bf v} is found by the following steps.

  1. (a).

    We extend 𝐟{\bf f} smoothly from Ω\Omega to 𝐟~\tilde{{\bf f}} defined on the whole space 3\mathbb{R}^{3}. Given the decay property of 𝐟~\tilde{{\bf f}} inherited from 𝐟\bf f, we can set

    𝐯~1(x)=3𝖦γ(xy)𝐟~(y)𝑑yandp~1(x)=3𝗁γ(xy)𝐟~(y)𝑑y.\tilde{{\bf v}}_{1}(x)=\int_{\mathbb{R}^{3}}{\mathsf{G}_{\gamma}}(x-y)\tilde{{\bf f}}(y)\,dy\,\,\,\text{and}\,\,\,\tilde{p}_{1}(x)=\int_{\mathbb{R}^{3}}{\mathsf{h}_{\gamma}}(x-y)\cdot\tilde{{\bf f}}(y)\,dy.

    By (142)–(144) and (222), we have that 𝐯~1\tilde{{\bf v}}_{1} and p1p_{1} solves the following equation

    Δ𝐯~1+p~1=𝐟~(x),div𝐯~1=0,with|𝐯~1(x)|1rand|p~1|1r2,-\Delta\tilde{{\bf v}}_{1}+\nabla\tilde{p}_{1}=\tilde{{\bf f}}(x),\,\,\,\mathrm{div}\,\tilde{{\bf v}}_{1}=0,\,\,\,\text{with}\,\,\,|\tilde{{\bf v}}_{1}(x)|\lesssim\frac{1}{r}\,\,\,\text{and}\,\,\,|\tilde{p}_{1}|\lesssim\frac{1}{r^{2}},

    on the whole of 3\mathbb{R}^{3}.

  2. (b).

    We find 𝐯2{\bf v}_{2} and p2p_{2} on Ω\Omega that solve the following equation:

    Δ𝐯2+p2\displaystyle-\Delta{\bf v}_{2}+\nabla p_{2} =\displaystyle= 0,inΩ\displaystyle 0,\,\,\,\text{in}\,\,\,\Omega
    div𝐯2\displaystyle\mathrm{div}\,{\bf v}_{2} =\displaystyle= 0,inΩ\displaystyle 0,\,\,\,\text{in}\,\,\,\Omega
    𝐯2\displaystyle{\bf v}_{2} =\displaystyle= 𝐯b𝐯~1𝐯,onΩ,\displaystyle{\bf v}_{b}-\tilde{{\bf v}}_{1}-{\bf v}_{*},\,\,\,\text{on}\,\,\,\partial\Omega,
    𝐯2\displaystyle{\bf v}_{2} =\displaystyle= 0,at|x|=.\displaystyle 0,\,\,\,\text{at}\,\,\,|x|=\infty.

    Following [34, Theorem 6.1, eqn. (6.3)], we can have that in the class 𝐯2=o(r){\bf v}_{2}=o(r), the solution exists, is unique, and it satisfies |𝐯2(x)|1r|{\bf v}_{2}(x)|\lesssim\frac{1}{r}.

  3. (c).

    Define

    𝐯=𝐯~1+𝐯2+𝐯,p=p~1+p2.{\bf v}=\tilde{{\bf v}}_{1}+{\bf v}_{2}+{\bf v}_{*},\,\,\,p=\tilde{p}_{1}+p_{2}.

    Then 𝐯{\bf v} and pp solve (111) on Ω\Omega.

The spatial decay property of 𝐯{\bf v} shows that it can have the following representation,

𝐯(x)=𝐯+Ω𝖦γ(xy)𝐟(y)𝑑y+Ω𝖦γ(xy),𝖳γ(𝐯,p)(y)νy𝑑σyΩ𝖳γ(𝖦γ,𝗁γ)(xy)νy,𝐯(y)𝑑σy.{\bf v}(x)={\bf v}_{*}+\int_{\Omega}{\mathsf{G}_{\gamma}}(x-y){\bf f}(y)\,dy\\ +\int_{\partial\Omega}\big{\langle}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y}-\int_{\partial\Omega}\big{\langle}\mathsf{T}_{\gamma}({\mathsf{G}_{\gamma}},{\mathsf{h}_{\gamma}})(x-y)\nu_{y},{\bf v}(y)\big{\rangle}\,d\sigma_{y}. (145)

Next we use (145) to estimates 𝐯{\bf v}. For estimates near the boundary, we can invoke [33, Chapter 3, Theorem 5] to deduce that

𝐯C2,α(Ω¯a+1),pC1,α(Ω¯a+1)𝐟C0,α(Ω)+𝐯bC2,α(Ω)+|𝐯|||{\bf v}||_{C^{2,\alpha}(\overline{\Omega}_{a+1})},\,\,||p||_{C^{1,\alpha}(\overline{\Omega}_{a+1})}\lesssim||{\bf f}||_{C^{0,\alpha}(\Omega)}+||{\bf v}_{b}||_{C^{2,\alpha}(\partial\Omega)}+|{\bf v}_{*}| (146)

where Ωb=Ω{|x|b}\Omega_{b}=\Omega\cap\{|x|\leq b\}. In particular, on the boundary, we have

𝐯C0(Ω),D𝐯C0(Ω),pC0(Ω)𝐟C0,α(Ω)+𝐯bC2,α(Ω)+|𝐯|.||{\bf v}||_{C^{0}(\partial\Omega)},\,\,||D{\bf v}||_{C^{0}(\partial\Omega)},\,\,||p||_{C^{0}(\partial\Omega)}\lesssim||{\bf f}||_{C^{0,\alpha}(\Omega)}+||{\bf v}_{b}||_{C^{2,\alpha}(\partial\Omega)}+|{\bf v}_{*}|. (147)

Furthermore, from the form of 𝐟\bf f (116), we have for some constant C1,C2C_{1},C_{2} that

𝐟C0,α(Ω)γ[C1𝐮𝒮+C2].||{\bf f}||_{C^{0,\alpha}(\Omega)}\leq\gamma\big{[}C_{1}\|{\bf u}\|_{\mathcal{S}}+C_{2}\big{]}. (148)

Now we proceed with the following two proofs.

(II) Proof of (140). With boundary estimates given by (146), we will just concentrate here on interior weighted estimates, i.e., for xx such that |x|>a+1|x|>a+1. Again, we will utilize the representation (145).

For the boundary integrals in (145), we have

|Ω𝖦γ(xy),𝖳γ(𝐯,p)(y)νy𝑑σy|\displaystyle\left|\int_{\partial\Omega}\big{\langle}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y}\right| D𝐯C0(Ω)+pC0(Ω)r\displaystyle\lesssim\frac{||D{\bf v}||_{C^{0}(\partial\Omega)}+||p||_{C^{0}(\partial\Omega)}}{r}

and more generally, for k=1,2,k=1,2,\ldots,

|DxkΩ𝖦γ(xy),𝖳γ(𝐯,p)(y)νy𝑑σy|\displaystyle\left|D^{k}_{x}\int_{\partial\Omega}\big{\langle}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y}\right| Ω|Dxk𝖦γ(xy),𝖳γ(𝐯,p)(y)νy|𝑑σy\displaystyle\lesssim\int_{\partial\Omega}\left|\big{\langle}D^{k}_{x}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\right|\,d\sigma_{y}
D𝐯C0(Ω)+pC0(Ω)r1+k.\displaystyle\lesssim\frac{||D{\bf v}||_{C^{0}(\partial\Omega)}+||p||_{C^{0}(\partial\Omega)}}{r^{1+k}}.

Furthermore, for hnh\in\mathbb{R}^{n} with |h|1|h|\leq 1,

|x|3+α|h|α|ΩDx2𝖦γ(x+hy)Dx2𝖦γ(xy),𝖳γ(𝐯,p)(y)νy𝑑σy|\displaystyle\frac{|x|^{3+\alpha}}{|h|^{\alpha}}\left|\int_{\partial\Omega}\big{\langle}D_{x}^{2}{\mathsf{G}_{\gamma}}(x+h-y)-D_{x}^{2}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y}\right|
\displaystyle\lesssim (𝐯C1(Ω)+pC0(Ω))|x|3+α|h|α|Ω||x+hy|3|xy|3||x+hy|3|xy|3𝑑σy|\displaystyle\big{(}\|{\bf v}\|_{C^{1}(\partial\Omega)}+\|p\|_{C^{0}(\partial\Omega)}\big{)}\frac{|x|^{3+\alpha}}{|h|^{\alpha}}\left|\int_{\partial\Omega}\frac{\big{|}|x+h-y|^{3}-|x-y|^{3}\big{|}}{|x+h-y|^{3}|x-y|^{3}}\,d\sigma_{y}\right|
\displaystyle\lesssim (𝐯C1(Ω)+pC0(Ω))(|x|3+α|h|α)|x|2|h||x|6\displaystyle\big{(}\|{\bf v}\|_{C^{1}(\partial\Omega)}+\|p\|_{C^{0}(\partial\Omega)}\big{)}\left(\frac{|x|^{3+\alpha}}{|h|^{\alpha}}\right)\frac{|x|^{2}|h|}{|x|^{6}}
\displaystyle\lesssim (𝐯C1(Ω)+pC0(Ω))(|h|1α|x|1α)\displaystyle\big{(}\|{\bf v}\|_{C^{1}(\partial\Omega)}+\|p\|_{C^{0}(\partial\Omega)}\big{)}\left(\frac{|h|^{1-\alpha}}{|x|^{1-\alpha}}\right)
\displaystyle\lesssim (𝐯C1(Ω)+pC0(Ω)).\displaystyle\big{(}\|{\bf v}\|_{C^{1}(\partial\Omega)}+\|p\|_{C^{0}(\partial\Omega)}\big{)}.

Hence,

Ω𝖦γ(xy),𝖳γ(𝐯,p)(y)νy𝑑σy𝒮\displaystyle\left\|\int_{\partial\Omega}\big{\langle}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y}\right\|_{\cal S} \displaystyle\lesssim 𝐯C1(Ω)+pC0(Ω)\displaystyle\|{\bf v}\|_{C^{1}(\partial\Omega)}+\|p\|_{C^{0}(\partial\Omega)}
\displaystyle\lesssim 𝐟C0,α(Ω)+𝐯bC2,α(Ω)\displaystyle||{\bf f}||_{C^{0,\alpha}(\Omega)}+||{\bf v}_{b}||_{C^{2,\alpha}(\partial\Omega)}
\displaystyle\lesssim |γ|[𝐮𝒮+1]+𝐯bC2,α(Ω)+|𝐯|.\displaystyle|\gamma|\Big{[}\|{\bf u}\|_{\mathcal{S}}+1\Big{]}+||{\bf v}_{b}||_{C^{2,\alpha}(\partial\Omega)}+|{\bf v}_{*}|.

Using the same technique, we can similarly have,

|x||Ω𝖳γ(𝖦γ,𝗁γ)(xy)νy,𝐯(y)𝑑σy|𝒮\displaystyle\left\||x|\left|\int_{\partial\Omega}\big{\langle}\mathsf{T}_{\gamma}({\mathsf{G}_{\gamma}},{\mathsf{h}_{\gamma}})(x-y)\nu_{y},{\bf v}(y)\big{\rangle}d\sigma_{y}\right|\right\|_{\cal S} \displaystyle\lesssim 𝐯C1(Ω)+pC0(Ω)\displaystyle\|{\bf v}\|_{C^{1}(\partial\Omega)}+\|p\|_{C^{0}(\partial\Omega)}
\displaystyle\lesssim 𝐟C0,α(Ω)+𝐯bC2,α(Ω)\displaystyle||{\bf f}||_{C^{0,\alpha}(\Omega)}+||{\bf v}_{b}||_{C^{2,\alpha}(\partial\Omega)}
\displaystyle\lesssim |γ|[𝐮𝒮+1]+𝐯bC2,α(Ω)+|𝐯|.\displaystyle|\gamma|\Big{[}\|{\bf u}\|_{\mathcal{S}}+1\Big{]}+||{\bf v}_{b}||_{C^{2,\alpha}(\partial\Omega)}+|{\bf v}_{*}|.

For the bulk integrals in (145), the proof is very similar to the classical estimates for Newtonian potential – see [36, Chapter 4]. We will produce the proof for our weighted space 𝒮\cal S in Appendix B.

(III) Proof of (141). With (140), estimate (141) follows easily, due to the linearity of the equation. Given 𝐮1,𝐮2𝒮{\bf u}_{1},{\bf u}_{2}\in\mathcal{S}, we have solutions 𝐯1=𝒯(𝐮1){\bf v}_{1}=\mathcal{T}({\bf u}_{1}) and 𝐯2=𝒯(𝐮2){\bf v}_{2}=\mathcal{T}({\bf u}_{2}). Upon subtracting the corresponding equations, we deduce that

γ(𝐯1𝐯2)+(p1p2)=𝐟γ(𝐮1)𝐟γ(𝐮2),\displaystyle{\mathcal{L}}_{\gamma}({\bf v}_{1}-{\bf v}_{2})+\nabla(p_{1}-p_{2})={\bf f}_{\gamma}({\bf u}_{1})-{\bf f}_{\gamma}({\bf u}_{2}), (149)

with 𝐯1𝐯2=𝟎{\bf v}_{1}-{\bf v}_{2}=\bf 0 on Ω\partial\Omega and at |x|=|x|=\infty. Hence

𝐯1𝐯2𝒮𝐟γ(𝐮1)𝐟γ(𝐮2)C0,α(Ω)|γ|𝐮1𝐮2𝒮,||{\bf v}_{1}-{\bf v}_{2}||_{\mathcal{S}}\lesssim||{\bf f}_{\gamma}({\bf u}_{1})-{\bf f}_{\gamma}({\bf u}_{2})||_{C^{0,\alpha}(\Omega)}\lesssim|\gamma|\|{\bf u}_{1}-{\bf u}_{2}\|_{\mathcal{S}},

where we have used (117). Now choosing |γ|1|\gamma|\ll 1 gives the result.

6 Properties of anisotropic Stokes flows

Here we make more precise the far-field behavior of the solution 𝐯{\bf v}. As an application of our analysis, we will analyze the symmetry property of the solution and give a decomposition formula for the Stokes drag. They will be validated and illustrated by numerical simulations.

We start from representation (145) for the solution 𝐯{\bf v}:

𝐯(x)\displaystyle{\bf v}(x) =\displaystyle= Ω𝖦γ(xy)𝐟γ(𝐯(y))𝑑y+Ω𝖦γ(xy),𝖳γ(𝐯,p)(y)νy𝑑σy\displaystyle\int_{\Omega}{\mathsf{G}_{\gamma}}(x-y){\bf f}_{\gamma}({\bf v}(y))\,dy+\int_{\partial\Omega}\big{\langle}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y} (150)
Ω𝖳γ(𝖦γ,𝗁γ)(xy)νy,𝐯(y)𝑑σy+𝐯\displaystyle-\int_{\partial\Omega}\big{\langle}\mathsf{T}_{\gamma}({\mathsf{G}_{\gamma}},{\mathsf{h}_{\gamma}})(x-y)\nu_{y},{\bf v}(y)\big{\rangle}\,d\sigma_{y}+{\bf v}_{*}
=:\displaystyle=: 𝖲1(x)+𝖲2(x)+𝖲3(x)+𝐯\displaystyle\mathsf{S}_{1}(x)+\mathsf{S}_{2}(x)+\mathsf{S}_{3}(x)+{\bf v}_{*}

where

𝖲1(x)\displaystyle\mathsf{S}_{1}(x) :=\displaystyle:= Ω𝖦γ(xy)𝐟γ(𝐯(y))𝑑y\displaystyle\int_{\Omega}{\mathsf{G}_{\gamma}}(x-y){\bf f}_{\gamma}({\bf v}(y))\,dy
=\displaystyle= Ω𝖦γ(xy)div𝒜γ(y)𝑑y+Ω𝖦γ(xy)(div𝒞γ(𝐯)+𝒟γ(𝐯))(y)𝑑y\displaystyle\int_{\Omega}{\mathsf{G}_{\gamma}}(x-y)\mathrm{div}\,\mathcal{A}_{\gamma}(y)\,dy+\int_{\Omega}{\mathsf{G}_{\gamma}}(x-y)\big{(}\mathrm{div}\,\mathcal{C}_{\gamma}({\bf v})+\mathcal{D}_{\gamma}({\bf v})\big{)}(y)\,dy
=\displaystyle= Ω𝖦γ(xy)div𝒜γ(y)𝑑y+𝖦γ(x)(Ω(div𝒞γ(𝐯)+𝒟γ(𝐯))(y)𝑑y)\displaystyle\int_{\Omega}{\mathsf{G}_{\gamma}}(x-y)\mathrm{div}\,\mathcal{A}_{\gamma}(y)\,dy+{\mathsf{G}_{\gamma}}(x)\left(\int_{\Omega}\big{(}\mathrm{div}\,\mathcal{C}_{\gamma}({\bf v})+\mathcal{D}_{\gamma}({\bf v})\big{)}(y)\,dy\right)
+Ω(𝖦γ(xy)𝖦γ(x))(div𝒞γ(𝐯)+𝒟γ(𝐯))(y)𝑑y,\displaystyle+\int_{\Omega}({\mathsf{G}_{\gamma}}(x-y)-{\mathsf{G}_{\gamma}}(x))\big{(}\mathrm{div}\,\mathcal{C}_{\gamma}({\bf v})+\mathcal{D}_{\gamma}({\bf v})\big{)}(y)\,dy,
𝖲2(x)\displaystyle\mathsf{S}_{2}(x) :=\displaystyle:= Ω𝖦γ(xy),𝖳γ(𝐯,p)(y)νy𝑑σy\displaystyle\int_{\partial\Omega}\big{\langle}{\mathsf{G}_{\gamma}}(x-y),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\big{\rangle}\,d\sigma_{y}
=\displaystyle= 𝖦γ(x),Ω𝖳γ(𝐯,p)(y)νy𝑑σy+Ω𝖦γ(xy)𝖦γ(x),𝖳γ(𝐯,p)(y)νy𝑑σy,\displaystyle\left\langle{\mathsf{G}_{\gamma}}(x),\int_{\partial\Omega}\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\,d\sigma_{y}\right\rangle+\int_{\partial\Omega}\Big{\langle}{\mathsf{G}_{\gamma}}(x-y)-{\mathsf{G}_{\gamma}}(x),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\Big{\rangle}\,d\sigma_{y},
𝖲3(x)\displaystyle\mathsf{S}_{3}(x) :=\displaystyle:= Ω𝖳γ(𝖦γ,𝗁γ)(xy)νy,𝐯(y)𝑑σy.\displaystyle-\int_{\partial\Omega}\big{\langle}\mathsf{T}_{\gamma}({\mathsf{G}_{\gamma}},{\mathsf{h}_{\gamma}})(x-y)\nu_{y},{\bf v}(y)\big{\rangle}\,d\sigma_{y}.

We re-arrange the above terms in the following way,

𝐯𝐯\displaystyle{\bf v}-{\bf v}_{*} =\displaystyle= 𝖦γ(x),Ω𝖳γ(𝐯,p)(y)νy𝑑σy\displaystyle\left\langle{\mathsf{G}_{\gamma}}(x),\int_{\partial\Omega}\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\,d\sigma_{y}\right\rangle (155)
+Ω𝖦γ(xy)div𝒜γ(y)𝑑y+𝖦γ(x)(Ω(div𝒞γ(𝐯)+𝒟γ(𝐯))(y)𝑑y)\displaystyle+\int_{\Omega}{\mathsf{G}_{\gamma}}(x-y)\mathrm{div}\,\mathcal{A}_{\gamma}(y)\,dy+{\mathsf{G}_{\gamma}}(x)\left(\int_{\Omega}\big{(}\mathrm{div}\,\mathcal{C}_{\gamma}({\bf v})+\mathcal{D}_{\gamma}({\bf v})\big{)}(y)\,dy\right)
+Ω𝖦γ(xy)𝖦γ(x),𝖳γ(𝐯,p)(y)νy𝑑σy\displaystyle+\int_{\partial\Omega}\Big{\langle}{\mathsf{G}_{\gamma}}(x-y)-{\mathsf{G}_{\gamma}}(x),\mathsf{T}_{\gamma}({\bf v},p)(y)\nu_{y}\Big{\rangle}\,d\sigma_{y}
Ω𝖳γ(𝖦γ,𝗁γ)(xy)νy,𝐯(y)𝑑σy\displaystyle-\int_{\partial\Omega}\big{\langle}\mathsf{T}_{\gamma}({\mathsf{G}_{\gamma}},{\mathsf{h}_{\gamma}})(x-y)\nu_{y},{\bf v}(y)\big{\rangle}\,d\sigma_{y}
+Ω(𝖦γ(xy)𝖦γ(x))(div𝒞γ(𝐯)+𝒟γ(𝐯))(y)𝑑y.\displaystyle+\int_{\Omega}({\mathsf{G}_{\gamma}}(x-y)-{\mathsf{G}_{\gamma}}(x))\big{(}\mathrm{div}\,\mathcal{C}_{\gamma}({\bf v})+\mathcal{D}_{\gamma}({\bf v})\big{)}(y)\,dy.

Note that for |x|1|x|\gg 1, we have

(155) =\displaystyle= O(1)|x|,\displaystyle\frac{O(1)}{|x|},
(155) =\displaystyle= O(γ)|x|,\displaystyle\frac{O(\gamma)}{|x|},
(155) and (155) =\displaystyle= O(1)|x|2,\displaystyle\frac{O(1)}{|x|^{2}},
(155) =\displaystyle= O(γ)log|x||x|2(by (205))\displaystyle\frac{O(\gamma)\log|x|}{|x|^{2}}\quad\text{(by \eqref{logx2})}

so that up to O(γ)O(\gamma), (155) and (155) are the dominant terms in the expression for the anisotropic flow.

We next describe asymptotically (155) and (155) for γ1\gamma\ll 1.

6.1 Precise asymptotics: deviation from isotropic Stokes flow

The purpose of this section is to reveal more clearly the difference between 𝐯{\bf v} and the classical Stokes flow 𝐯0{\bf v}_{0} which is set to satisfy

Δ𝐯0+p0\displaystyle-\Delta{\bf v}_{0}+\nabla p_{0} =\displaystyle= 0,for|x|>a,\displaystyle 0,\quad\text{for}\,\,\,|x|>a, (156)
div(𝐯0)\displaystyle\mathrm{div}\,({\bf v}_{0}) =\displaystyle= 0,for|x|>a,\displaystyle 0,\quad\text{for}\,\,\,|x|>a,
𝐯0\displaystyle{\bf v}_{0} =\displaystyle= 0,on |x|=a,\displaystyle 0,\,\,\,\text{on $|x|=a$,}
𝐯0\displaystyle{\bf v}_{0} =\displaystyle= 𝐯,at |x|=.\displaystyle{\bf v}_{*},\,\,\,\text{at $|x|=\infty$.}

Define φγ:=𝐯𝐯0\varphi_{\gamma}:={\bf v}-{\bf v}_{0}. Then we have

Δφγ+(pp0)\displaystyle-\Delta\varphi_{\gamma}+\nabla(p-p_{0}) =\displaystyle= γ:D2𝐯+𝐟γ(𝐯)\displaystyle-\mathcal{M}_{\gamma}:D^{2}{\bf v}+{\bf f}_{\gamma}({\bf v})
=\displaystyle= γ:D2𝐯0+𝐟γ(𝐯0)+(𝐟γ(𝐯)𝐟γ(𝐯0)γ:(D2𝐯D2𝐯0)).\displaystyle-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}_{\gamma}({\bf v}_{0})+\big{(}{\bf f}_{\gamma}({\bf v})-{\bf f}_{\gamma}({\bf v}_{0})-\mathcal{M}_{\gamma}:(D^{2}{\bf v}-D^{2}{\bf v}_{0})\big{)}.

Note that |γ|,|𝐟γ(𝐯0)||γ||\mathcal{M}_{\gamma}|,\,\,|{\bf f}_{\gamma}({\bf v}_{0})|\lesssim|\gamma| and |𝐟γ(𝐯)𝐟γ(𝐯0)|=|𝐟γ(𝐯𝐯0)||γ|𝐯𝐯0𝒮|{\bf f}_{\gamma}({\bf v})-{\bf f}_{\gamma}({\bf v}_{0})|=|{\bf f}_{\gamma}({\bf v}-{\bf v}_{0})|\lesssim|\gamma|\|{\bf v}-{\bf v}_{0}\|_{\mathcal{S}}. Now let φ¯γ\overline{\varphi}_{\gamma} solve

Δφ¯γ+(p¯γ)\displaystyle-\Delta\overline{\varphi}_{\gamma}+\nabla(\overline{p}_{\gamma}) =\displaystyle= γ:D2𝐯0+𝐟γ(𝐯0),\displaystyle-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}_{\gamma}({\bf v}_{0}), (157)
div(φ¯γ)\displaystyle\text{div}(\overline{\varphi}_{\gamma}) =\displaystyle= 0,for |x|>a,\displaystyle 0,\quad\text{for $|x|>a$,} (158)
φ¯γ\displaystyle\overline{\varphi}_{\gamma} =\displaystyle= 0,on |x|=0 and at |x|=.\displaystyle 0,\quad\text{on $|x|=0$ and at $|x|=\infty$.} (159)

Then the same approach in deriving estimates for 𝐯{\bf v} gives

φ¯γ𝒮O(γ),andφ¯γφγ𝒮O(γ2).\|\overline{\varphi}_{\gamma}\|_{\mathcal{S}}\lesssim O(\gamma),\quad\text{and}\quad\|\overline{\varphi}_{\gamma}-\varphi_{\gamma}\|_{\mathcal{S}}\lesssim O(\gamma^{2}). (160)

Hence we have

𝐯=𝐯0+φ¯γ+O(γ2).{\bf v}={\bf v}_{0}+\overline{\varphi}_{\gamma}+O(\gamma^{2}). (161)

Finally, using the Green’s function 𝖤\mathsf{E} (43) for the classical Stokes flow, we have the following representation of φ¯γ\overline{\varphi}_{\gamma},

φ¯γ(x)\displaystyle\overline{\varphi}_{\gamma}(x) =\displaystyle= Ω𝖤(xy)(γ:D2𝐯0+𝐟γ(𝐯0(y)))dy+Ω𝖤(xy),𝖳(φ¯γ,p¯γ)(y)νydσy.\displaystyle\int_{\Omega}\mathsf{E}(x-y)\big{(}-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}_{\gamma}({\bf v}_{0}(y))\big{)}\,dy+\int_{\partial\Omega}\big{\langle}\mathsf{E}(x-y),\mathsf{T}(\overline{\varphi}_{\gamma},\overline{p}_{\gamma})(y)\nu_{y}\big{\rangle}\,d\sigma_{y}. (162)
=\displaystyle= Ω𝖤(xy)(γ:D2𝐯0+𝐟γ(𝐯0(y)))dy+𝖤(x)Ω𝖳(φ¯γ,p¯γ)(y)νydσy\displaystyle\int_{\Omega}\mathsf{E}(x-y)\big{(}-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}_{\gamma}({\bf v}_{0}(y))\big{)}\,dy+\mathsf{E}(x)\int_{\partial\Omega}\mathsf{T}(\overline{\varphi}_{\gamma},\overline{p}_{\gamma})(y)\nu_{y}\,d\sigma_{y}
+Ω𝖤(xy)𝖤(x),𝖳(φ¯γ,p¯γ)(y)νy𝑑σy\displaystyle+\int_{\partial\Omega}\big{\langle}\mathsf{E}(x-y)-\mathsf{E}(x),\mathsf{T}(\overline{\varphi}_{\gamma},\overline{p}_{\gamma})(y)\nu_{y}\big{\rangle}\,d\sigma_{y}

where 𝖳\mathsf{T} is the Stokes stress tensor (48). Note that the last term in the above decays as 1|x|2\frac{1}{|x|^{2}}. Hence we have,

φ¯γ(x)\displaystyle\overline{\varphi}_{\gamma}(x) =\displaystyle= γ(x)+𝖤(x)𝒥γ+O(1|x|2),\displaystyle\mathcal{I}_{\gamma}(x)+\mathsf{E}(x)\mathcal{J}_{\gamma}+O\left(\frac{1}{|x|^{2}}\right), (163)
whereγ(x)\displaystyle\text{where}\quad\mathcal{I}_{\gamma}(x) :=\displaystyle:= Ω𝖤(xy)(γ:D2𝐯0+𝐟γ(𝐯0(y)))dy,\displaystyle\int_{\Omega}\mathsf{E}(x-y)\big{(}-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}_{\gamma}({\bf v}_{0}(y))\big{)}\,dy, (164)
𝒥γ\displaystyle\mathcal{J}_{\gamma} :=\displaystyle:= Ω𝖳(φ¯γ,p¯γ)(y)νy𝑑σy.\displaystyle\int_{\partial\Omega}\mathsf{T}(\overline{\varphi}_{\gamma},\overline{p}_{\gamma})(y)\nu_{y}d\sigma_{y}. (165)

The rest of this section will describe more explicitly the bulk and boundary integrals γ\mathcal{I}_{\gamma} and 𝒥γ\mathcal{J}_{\gamma}.

6.1.1 Analysis of γ\mathcal{I}_{\gamma}

For this purpose, recalling from (67) that 𝐯0=𝖤S𝐯{\bf v}_{0}=\mathsf{E}_{S}{\bf v}_{*}, we then have

γ(x)\displaystyle\mathcal{I}_{\gamma}(x) =\displaystyle= Ω𝖤(xy)[γ:D2𝐯0+𝐟γ(𝐯0(y))]dy\displaystyle\int_{\Omega}\mathsf{E}(x-y)\big{[}-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}_{\gamma}({\bf v}_{0}(y))\big{]}\,dy
=\displaystyle= Ω𝖤(xy)[6πaγ:D2𝖤(y)𝐯a34γ:D2𝖥(y)𝐯\displaystyle\int_{\Omega}\mathsf{E}(x-y)\Big{[}6\pi a\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(y){\bf v}_{*}-\frac{a^{3}}{4}\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(y){\bf v}_{*}
+div𝒜γ(y)+div𝒞γ(y)+𝒟γ(y)]dy\displaystyle\quad\quad\quad\quad\quad+\mathrm{div}\,\mathcal{A}_{\gamma}(y)+\mathrm{div}\,\mathcal{C}_{\gamma}(y)+\mathcal{D}_{\gamma}(y)\Big{]}\,dy
=\displaystyle= Ω𝖤(xy)[6πaγ:D2𝖤(y)𝐯+div𝒜γ(y)]dy\displaystyle\int_{\Omega}\mathsf{E}(x-y)\Big{[}6\pi a\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(y){\bf v}_{*}+\mathrm{div}\,\mathcal{A}_{\gamma}(y)\Big{]}\,dy
+𝖤(x)Ω[a34γ:D2𝖥(y)𝐯+div𝒞γ(y)+𝒟γ(y)]dy\displaystyle+\mathsf{E}(x)\int_{\Omega}\left[-\frac{a^{3}}{4}\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(y){\bf v}_{*}+\mathrm{div}\,\mathcal{C}_{\gamma}(y)+\mathcal{D}_{\gamma}(y)\right]\,dy
+Ω(𝖤(xy)𝖤(x))[a34γ:D2𝖥(y)𝐯+div𝒞γ(y)+𝒟γ(y)]dy\displaystyle+\int_{\Omega}(\mathsf{E}(x-y)-\mathsf{E}(x))\left[-\frac{a^{3}}{4}\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(y){\bf v}_{*}+\mathrm{div}\,\mathcal{C}_{\gamma}(y)+\mathcal{D}_{\gamma}(y)\right]\,dy
=:\displaystyle=: I1+I2+I3.\displaystyle I_{1}+I_{2}+I_{3}. (167)

Note that I2I_{2} decays as 𝖤(x)1|x|\mathsf{E}(x)\sim\frac{1}{|x|} because the integrand is integrable. By (205), the integral I3I_{3} decays as log|x||x|2\frac{\log|x|}{|x|^{2}}.

For I1I_{1}, we will show that D2𝖤(x)D^{2}\mathsf{E}(x) satisfies the mean zero condition. (Such a condition is already verified for div𝒜γ\mathrm{div}\,\mathcal{A}_{\gamma} in Section 5.2.) By (222), we can then conclude that I1(x)I_{1}(x) decays as 1|x|\frac{1}{|x|}. To this end, by (232), we have

𝕊2kl𝖤ij(x)dσ\displaystyle\int_{\mathbb{S}^{2}}\partial_{kl}\mathsf{E}_{ij}(x)\,d\sigma =\displaystyle= 4π(δijδkl+δikδjl+δjkδil)4π(δijδkl+δikδjl+δjkδil)\displaystyle 4\pi\left(-\delta_{ij}\delta_{kl}+\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}\right)-4\pi\left(-\delta_{ij}\delta_{kl}+\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}\right) (168)
4π(δilδjk+δjlδik+δklδij)+15𝕊2x^ix^jx^kx^l𝑑σ\displaystyle-4\pi\left(\delta_{il}\delta_{jk}+\delta_{jl}\delta_{ik}+\delta_{kl}\delta_{ij}\right)+15\int_{\mathbb{S}^{2}}\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\hat{x}_{l}\,d\sigma
=\displaystyle= 4π(δilδjk+δjlδik+δklδij)+15𝕊2x^ix^jx^kx^l𝑑σ.\displaystyle-4\pi\left(\delta_{il}\delta_{jk}+\delta_{jl}\delta_{ik}+\delta_{kl}\delta_{ij}\right)+15\int_{\mathbb{S}^{2}}\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\hat{x}_{l}\,d\sigma.

Using spherical coordinates and considering symmetry, we check

  1. (a).

    ij,kli\neq j,k\neq l, (k,l)=(i,j)(k,l)=(i,j) or (j,i)(j,i)

    𝕊2kl𝖤ij(x)dσ\displaystyle\int_{\mathbb{S}^{2}}\partial_{kl}\mathsf{E}_{ij}(x)\,d\sigma =\displaystyle= 4π+15𝕊2x^12x^22𝑑σ\displaystyle-4\pi+15\int_{\mathbb{S}^{2}}\hat{x}_{1}^{2}\hat{x}_{2}^{2}\,d\sigma
    =\displaystyle= 4π+150π02π(sinϕcosθ)2(sinϕsinθ)2sinϕdϕdθ\displaystyle-4\pi+15\int_{0}^{\pi}\int_{0}^{2\pi}(\sin\phi\cos\theta)^{2}(\sin\phi\sin\theta)^{2}\sin\phi\,d\phi\,d\theta
    =\displaystyle= 4π+150πsin5ϕdϕ02πcos2θsin2θdθ=0\displaystyle-4\pi+15\int_{0}^{\pi}\sin^{5}\phi\,d\phi\int_{0}^{2\pi}\cos^{2}\theta\sin^{2}\theta\,d\theta=0
  2. (b).

    ij,kli\neq j,k\neq l, (k,l)(i,j),(j,i)(k,l)\neq(i,j),(j,i)

    𝕊2kl𝖤ij(x)dσ=0\displaystyle\int_{\mathbb{S}^{2}}\partial_{kl}\mathsf{E}_{ij}(x)\,d\sigma=0
  3. (c).

    ij,k=l=ii\neq j,k=l=i or k=l=jk=l=j

    𝕊2kl𝖤ij(x)dσ=+15𝕊2x^13x^2𝑑σ=0.\displaystyle\int_{\mathbb{S}^{2}}\partial_{kl}\mathsf{E}_{ij}(x)\,d\sigma=+15\int_{\mathbb{S}^{2}}\hat{x}_{1}^{3}\hat{x}_{2}\,d\sigma=0.
  4. (d).

    ij,k=l,i,ji\neq j,k=l,\neq i,j

    𝕊2kl𝖤ij(x)dσ=0\displaystyle\int_{\mathbb{S}^{2}}\partial_{kl}\mathsf{E}_{ij}(x)\,d\sigma=0
  5. (e).

    i=j,kli=j,k\neq l

    𝕊2kl𝖤ij(x)dσ=0\displaystyle\int_{\mathbb{S}^{2}}\partial_{kl}\mathsf{E}_{ij}(x)\,d\sigma=0
  6. (f).

    i=j,k=l,i,ji=j,k=l,\neq i,j

    𝕊2kl𝖤ij(x)dσ=4π+15𝕊2x^12x^22𝑑σ=0,as in (a).\displaystyle\int_{\mathbb{S}^{2}}\partial_{kl}\mathsf{E}_{ij}(x)\,d\sigma=-4\pi+15\int_{\mathbb{S}^{2}}\hat{x}_{1}^{2}\hat{x}_{2}^{2}\,d\sigma=0,\quad\text{as in (a)}.
  7. (g).

    i=j=k=li=j=k=l

    𝕊2kl𝖤ij(x)dσ=12π+15𝕊2x^34𝑑σ=12π+150π02πcos4ϕsinϕdθdϕ=0.\displaystyle\int_{\mathbb{S}^{2}}\partial_{kl}\mathsf{E}_{ij}(x)\,d\sigma=-12\pi+15\int_{\mathbb{S}^{2}}\hat{x}_{3}^{4}\,d\sigma=-12\pi+15\int_{0}^{\pi}\int_{0}^{2\pi}\cos^{4}\phi\sin\phi\,d\theta\,d\phi=0.

Hence we can invoke (222) to conclude that

γ(x)\displaystyle\mathcal{I}_{\gamma}(x) =\displaystyle= 1|x|𝕊2𝖧(x^,ω)[6πaγ:D2𝖤(ω)𝐯+div𝒜γ(ω)]dσω\displaystyle\frac{1}{|x|}\int_{\mathbb{S}^{2}}\mathsf{H}(\hat{x},\omega)\Big{[}6\pi a\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(\omega){\bf v}_{*}+\mathrm{div}\,\mathcal{A}_{\gamma}(\omega)\Big{]}\,d\sigma_{\omega}
+𝖤(x)Ω[a34γ:D2𝖥(y)𝐯+div𝒞γ(y)+𝒟γ(y)]dy\displaystyle+\mathsf{E}(x)\int_{\Omega}\left[-\frac{a^{3}}{4}\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(y){\bf v}_{*}+\mathrm{div}\,\mathcal{C}_{\gamma}(y)+\mathcal{D}_{\gamma}(y)\right]\,dy
+O(log|x||x|2)\displaystyle+O\left(\frac{\log|x|}{|x|^{2}}\right)

6.1.2 Analysis of 𝒥γ\mathcal{J}_{\gamma}

To obtain an explicit formula for the boundary stress 𝒥γ\mathcal{J}_{\gamma} associated with φ¯γ\overline{\varphi}_{\gamma}, we multiply (157) by a test function given by 𝐯~0𝐯~\tilde{{\bf v}}_{0}-\tilde{{\bf v}}_{*} where 𝐯~0\tilde{{\bf v}}_{0} solves the following equation:

Δ𝐯~0+p~0\displaystyle-\Delta\tilde{{\bf v}}_{0}+\nabla\tilde{p}_{0} =\displaystyle= 0,for|x|>a,\displaystyle 0,\quad\text{for}\,\,\,|x|>a,
div(𝐯~0)\displaystyle\mathrm{div}\,(\tilde{{\bf v}}_{0}) =\displaystyle= 0,for|x|>a,\displaystyle 0,\quad\text{for}\,\,\,|x|>a,
𝐯~0\displaystyle\tilde{{\bf v}}_{0} =\displaystyle= 0,on |x|=a,\displaystyle 0,\,\,\,\text{on $|x|=a$,}
𝐯~0\displaystyle\tilde{{\bf v}}_{0} =\displaystyle= 𝐯~,at |x|=.\displaystyle\tilde{{\bf v}}_{*},\,\,\,\text{at $|x|=\infty$.}

with an arbitrary 𝐯~\tilde{{\bf v}}_{*}. Using integration by parts – see [33, p.53 (10), (11)], we obtain

Ω𝖳(φ¯γ,p¯γ)νy,(𝐯~0𝐯~)𝑑σy+Ω𝖳(𝐯~0,p~0)νy,φ¯γ𝑑σy=Ωγ:D2𝐯0+𝐟γ(𝐯0(y)),𝐯~0𝐯~dy.-\int_{\partial\Omega}\Big{\langle}\mathsf{T}(\overline{\varphi}_{\gamma},\overline{p}_{\gamma})\nu_{y},(\tilde{{\bf v}}_{0}-\tilde{{\bf v}}_{*})\Big{\rangle}\,d\sigma_{y}+\int_{\partial\Omega}\Big{\langle}\mathsf{T}(\tilde{{\bf v}}_{0},\tilde{p}_{0})\nu_{y},\overline{\varphi}_{\gamma}\Big{\rangle}\,d\sigma_{y}\\ =\int_{\Omega}\Big{\langle}-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}_{\gamma}({\bf v}_{0}(y)),\tilde{{\bf v}}_{0}-\tilde{{\bf v}}_{*}\Big{\rangle}\,dy.

The above is justified by the decay estimates for φ¯γ\overline{\varphi}_{\gamma} and 𝐯~0𝐯~\tilde{{\bf v}}_{0}-\tilde{{\bf v}}_{*}:

|{|x|=R}𝖳(φ¯γ,p¯γ)νy,(𝐯~0𝐯~)𝑑σy|1R21RR2=1R\displaystyle\left|\int_{\{|x|=R\}}\Big{\langle}\mathsf{T}(\overline{\varphi}_{\gamma},\overline{p}_{\gamma})\nu_{y},(\tilde{{\bf v}}_{0}-\tilde{{\bf v}}_{*})\Big{\rangle}\,d\sigma_{y}\right|\lesssim\frac{1}{R^{2}}\frac{1}{R}R^{2}=\frac{1}{R}
|{|x|=R}𝖳(𝐯~0,p~0)νy,φ¯γ𝑑σy|1R21RR2=1R\displaystyle\left|\int_{\{|x|=R\}}\Big{\langle}\mathsf{T}(\tilde{{\bf v}}_{0},\tilde{p}_{0})\nu_{y},\overline{\varphi}_{\gamma}\Big{\rangle}\,d\sigma_{y}\right|\lesssim\frac{1}{R^{2}}\frac{1}{R}R^{2}=\frac{1}{R}
{|x|>R}|γ:D2𝐯0+𝐟(𝐯0(y))||𝐯~0𝐯|dyR1r31rr2dr1R\displaystyle\int_{\{|x|>R\}}\Big{|}-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}({\bf v}_{0}(y))\Big{|}\Big{|}\tilde{{\bf v}}_{0}-{\bf v}_{*}\Big{|}\,dy\lesssim\int_{R}^{\infty}\frac{1}{r^{3}}\frac{1}{r}r^{2}\,dr\lesssim\frac{1}{R}

which all vanish as R0R\longrightarrow 0. Hence we have

Ω𝖳(φ¯γ,p¯γ)νy,(𝐯~0𝐯~)𝑑σy\displaystyle\int_{\partial\Omega}\Big{\langle}\mathsf{T}(\overline{\varphi}_{\gamma},\overline{p}_{\gamma})\nu_{y},(\tilde{{\bf v}}_{0}-\tilde{{\bf v}}_{*})\Big{\rangle}\,d\sigma_{y}
=\displaystyle= Ω𝖳(𝐯~0,p~0)νy,φ¯γdσyΩγ:D2𝐯0+𝐟(𝐯0(y)),𝐯~0𝐯~dy.\displaystyle\int_{\partial\Omega}\Big{\langle}\mathsf{T}(\tilde{{\bf v}}_{0},\tilde{p}_{0})\nu_{y},\overline{\varphi}_{\gamma}\Big{\rangle}\,d\sigma_{y}-\int_{\Omega}\Big{\langle}-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}({\bf v}_{0}(y)),\tilde{{\bf v}}_{0}-\tilde{{\bf v}}_{*}\Big{\rangle}\,dy.

As 𝐯~0=φ¯γ=0\tilde{{\bf v}}_{0}=\overline{\varphi}_{\gamma}=0 on Ω\partial\Omega, the following holds for any 𝐯~\tilde{{\bf v}}_{*},

Ω𝖳(φ¯γ,p¯γ)νy,𝐯~𝑑σy\displaystyle\int_{\partial\Omega}\Big{\langle}\mathsf{T}(\overline{\varphi}_{\gamma},\overline{p}_{\gamma})\nu_{y},\tilde{{\bf v}}_{*}\Big{\rangle}\,d\sigma_{y} =\displaystyle= Ωγ:D2𝐯0+𝐟γ(𝐯0(y)),𝐯~0𝐯~dy\displaystyle\int_{\Omega}\Big{\langle}-\mathcal{M}_{\gamma}:D^{2}{\bf v}_{0}+{\bf f}_{\gamma}({\bf v}_{0}(y)),\tilde{{\bf v}}_{0}-\tilde{{\bf v}}_{*}\Big{\rangle}\,dy
=\displaystyle= Ωγ:D2𝖤S(y)𝐯+𝐟γ(𝖤S(y)𝐯),(𝖤S𝖨)𝐯~dy.\displaystyle\int_{\Omega}\Big{\langle}-\mathcal{M}_{\gamma}:D^{2}\mathsf{E}_{S}(y){\bf v}_{*}+{\bf f}_{\gamma}(\mathsf{E}_{S}(y){\bf v}_{*}),(\mathsf{E}_{S}-\mathsf{I})\tilde{{\bf v}}_{*}\Big{\rangle}\,dy.

Hence we have

𝒥γ\displaystyle\mathcal{J}_{\gamma} =\displaystyle= Ω𝖳(φ¯γ,p¯γ)νy𝑑σy\displaystyle\int_{\partial\Omega}\mathsf{T}(\overline{\varphi}_{\gamma},\overline{p}_{\gamma})\nu_{y}\,d\sigma_{y} (171)
=\displaystyle= Ω(𝖤S𝖨)[γ:D2𝖤S(y)𝐯+𝐟γ(𝖤S(y)𝐯)]dy\displaystyle\int_{\Omega}(\mathsf{E}_{S}-\mathsf{I})\Big{[}-\mathcal{M}_{\gamma}:D^{2}\mathsf{E}_{S}(y){\bf v}_{*}+{\bf f}_{\gamma}\big{(}\mathsf{E}_{S}(y){\bf v}_{*}\big{)}\Big{]}\,dy
=\displaystyle= Ω(𝖤S𝖨)[γ:D2𝖤S(y)𝐯\displaystyle\int_{\Omega}(\mathsf{E}_{S}-\mathsf{I})\Big{[}-\mathcal{M}_{\gamma}:D^{2}\mathsf{E}_{S}(y){\bf v}_{*}
+div𝒜γ(y)+div𝒞γ(𝖤S(y)𝐯,y)+𝒟γ(𝖤S(y)𝐯,y)]dy.\displaystyle\hskip 60.0pt+\mathrm{div}\,\mathcal{A}_{\gamma}(y)+\mathrm{div}\,\mathcal{C}_{\gamma}(\mathsf{E}_{S}(y){\bf v}_{*},y)+\mathcal{D}_{\gamma}(\mathsf{E}_{S}(y){\bf v}_{*},y)\Big{]}\,dy.

6.2 Symmetry properties of solution and drag force

Here we investigate the symmetries of 𝐯{\bf v} with respect to our far-field data 𝖰\mathsf{Q}_{*} and 𝐯{\bf v}_{*}. Note that the interacting potential RR in (12) is chosen to be frame indifferent. Hence our solution is naturally invariant with respect to orthogonal transformations. For the reader’s convenience, we outline the derivation.

Let 𝔹=(bij){\mathbb{B}}=(b_{ij}) and 𝔸=(aij)=𝔹T(=𝔹1){\mathbb{A}}=(a_{ij})={\mathbb{B}}^{T}(={\mathbb{B}}^{-1}) be an orthogonal matrix and its transpose (and inverse). Upon introducing

y=𝔹x,𝐯(x,t)=𝔸𝐯~(y,t),p(x,t)=p~(y,t),i=xi,~i=yi(so thati=aij~j),\displaystyle y={\mathbb{B}}x,\,\,\,{\bf v}(x,t)={\mathbb{A}}\widetilde{{\bf v}}(y,t),\,\,\,p(x,t)=\widetilde{p}(y,t),\,\,\,\partial_{i}=\partial_{x_{i}},\,\,\,\widetilde{\partial}_{i}=\partial_{y_{i}}\,\,\,(\text{so that}\,\,\,\partial_{i}=a_{ij}\widetilde{\partial}_{j}),

we have,

𝐯=𝐯~~,𝐯𝐯=𝔸(𝐯~~𝐯~),div𝐯=div~𝐯~,𝐯=𝔸~𝐯~,\displaystyle{\bf v}\cdot\nabla=\widetilde{{\bf v}}\cdot\widetilde{\nabla},\,\,\,{\bf v}\cdot\nabla{\bf v}={\mathbb{A}}\left(\widetilde{{\bf v}}\cdot\widetilde{\nabla}\widetilde{{\bf v}}\right),\,\,\,\mathrm{div}\,{\bf v}=\widetilde{\mathrm{div}\,}\widetilde{{\bf v}},\,\,\,\triangle{\bf v}={\mathbb{A}}\,\widetilde{\triangle}\widetilde{{\bf v}},
p=𝔸~p~,𝐯t=𝔸𝐯~t.\displaystyle\nabla p={\mathbb{A}}\widetilde{\nabla}\widetilde{p},\,\,\,{\bf v}_{t}={\mathbb{A}}\widetilde{{\bf v}}_{t}.

The above shows that the Navier-Stokes equation

𝐯t+𝐯𝐯+p=𝐯,div𝐯=0,{\bf v}_{t}+{\bf v}\cdot\nabla{\bf v}+\nabla p=\triangle{\bf v},\,\,\,\mathrm{div}\,{\bf v}=0,

is equivalent to

𝐯~t+𝐯~𝐯~+~p~=𝐯~,div~𝐯~=0.\widetilde{{\bf v}}_{t}+\widetilde{{\bf v}}\cdot\nabla\widetilde{{\bf v}}+\widetilde{\nabla}\widetilde{p}=\triangle\widetilde{{\bf v}},\,\,\,\widetilde{\mathrm{div}\,}\widetilde{{\bf v}}=0.

To take into account of our model (5)–(7), we first note that for any order two tensors (or tensor fields) 𝖱\mathsf{R} and 𝖲\mathsf{S}, suppose 𝖱~\widetilde{\mathsf{R}} and 𝖲~\widetilde{\mathsf{S}} are such that 𝖱(x)=𝔸𝖱~(y)𝔹\mathsf{R}(x)={\mathbb{A}}\widetilde{\mathsf{R}}(y){\mathbb{B}} and 𝖲(x)=𝔸𝖲~(y)𝔹\mathsf{S}(x)={\mathbb{A}}\widetilde{\mathsf{S}}(y){\mathbb{B}}, then it holds that

𝖱𝖲=~𝖲~,anddiv𝖱=𝔸div~𝖱~.\mathsf{R}\cdot\mathsf{S}=\widetilde{\mathbb{R}}\cdot\widetilde{\mathsf{S}},\,\,\,\text{and}\,\,\,\mathrm{div}\,\mathsf{R}={\mathbb{A}}\,\widetilde{\mathrm{div}\,}\widetilde{\mathsf{R}}.

As application, consider 𝖠=𝐯+𝐯T\mathsf{A}=\nabla{\bf v}+\nabla{\bf v}^{T}, 𝖶=𝐯𝐯T\mathsf{W}=\nabla{\bf v}-\nabla{\bf v}^{T}, 𝖠~=~𝐯~+~𝐯~T\widetilde{\mathsf{A}}=\widetilde{\nabla}\widetilde{{\bf v}}+\widetilde{\nabla}\widetilde{{\bf v}}^{T} and 𝖶~=~𝐯~~𝐯~T\widetilde{\mathsf{W}}=\widetilde{\nabla}\widetilde{{\bf v}}-\widetilde{\nabla}\widetilde{{\bf v}}^{T}, then we have

𝖠=𝔸𝖠~𝔹,and𝖶=𝔸𝖶~𝔹.\mathsf{A}={\mathbb{A}}\widetilde{\mathsf{A}}{\mathbb{B}},\,\,\,\text{and}\,\,\,\mathsf{W}={\mathbb{A}}\widetilde{\mathsf{W}}{\mathbb{B}}.

For 𝖰\mathsf{Q}, let 𝖰~\widetilde{\mathsf{Q}} be such that 𝖰(x)=𝔸𝖰~(y)𝔹\mathsf{Q}(x)={\mathbb{A}}\widetilde{\mathsf{Q}}(y){\mathbb{B}}. In particular, if 𝖰=s(nn𝖨3)\mathsf{Q}=s_{*}({n_{*}}\otimes{n_{*}}-\frac{\mathsf{I}}{3}), then 𝖰~=s((𝔹n)(𝔹n)𝖨3)\widetilde{\mathsf{Q}}=s_{*}(({\mathbb{B}}{n_{*}})\otimes({\mathbb{B}}{n_{*}})-\frac{\mathsf{I}}{3}). In general, the following hold,

LdG(𝖰,𝖰)=LdG(~𝖰~,𝖰~),LdG(𝖰)=LdG(𝖰~),\mathcal{E}_{\mathrm{LdG}}(\nabla\mathsf{Q},\mathsf{Q})=\mathcal{E}_{\mathrm{LdG}}(\widetilde{\nabla}\widetilde{\mathsf{Q}},\widetilde{\mathsf{Q}}),\,\,\,\mathcal{F}_{\mathrm{LdG}}(\mathsf{Q})=\mathcal{F}_{\mathrm{LdG}}(\widetilde{\mathsf{Q}}),

and

𝖰̊(x)=𝖰t+𝐯𝖰+𝖰𝖶𝖶𝖰=𝔸𝖰~̊(y)𝔹.\mathring{\mathsf{Q}}(x)=\mathsf{Q}_{t}+{\bf v}\cdot\nabla\mathsf{Q}+\mathsf{Q}\mathsf{W}-\mathsf{W}\mathsf{Q}={\mathbb{A}}\mathring{\widetilde{\mathsf{Q}}}(y){\mathbb{B}}.

Hence for 𝖳SVv=𝖳SVv(𝖰̊,𝖰,𝖠)\mathsf{T}_{\text{SV}}^{\text{v}}=\mathsf{T}_{\text{SV}}^{\text{v}}(\mathring{\mathsf{Q}},\mathsf{Q},\mathsf{A}) and 𝖳el=𝖳el(𝖰)\mathsf{T}^{\text{el}}=\mathsf{T}^{\text{el}}(\nabla\mathsf{Q}), upon defining 𝖳~SVv=𝖳SVv(𝖰~̊,𝖰~,𝖠~)\widetilde{\mathsf{T}}_{\text{SV}}^{\text{v}}=\mathsf{T}_{\text{SV}}^{\text{v}}(\mathring{\widetilde{\mathsf{Q}}},\widetilde{\mathsf{Q}},\widetilde{\mathsf{A}}) and 𝖳~el=𝖳el(~𝖰~)\widetilde{\mathsf{T}}^{\text{el}}=\mathsf{T}^{\text{el}}(\widetilde{\nabla}\widetilde{\mathsf{Q}}), from (10) and (11), it holds that

𝖳SVv=𝔸𝖳~SVv𝔹,𝖳el=𝔸𝖳~el𝔹,div𝖳SVv=𝔸div~𝖳~SVv,div𝖳el=𝔸div~𝖳~el.\mathsf{T}_{\text{SV}}^{\text{v}}={\mathbb{A}}\widetilde{\mathsf{T}}_{\text{SV}}^{\text{v}}{\mathbb{B}},\,\,\,\,\,\,\mathsf{T}^{\mathrm{el}}={\mathbb{A}}\widetilde{\mathsf{T}}^{\mathrm{el}}{\mathbb{B}},\,\,\,\,\,\,\mathrm{div}\,\mathsf{T}_{\text{SV}}^{\text{v}}={\mathbb{A}}\,\widetilde{\mathrm{div}\,}\widetilde{\mathsf{T}}_{\text{SV}}^{\text{v}},\,\,\,\,\,\,\mathrm{div}\,\mathsf{T}^{\text{el}}={\mathbb{A}}\,\widetilde{\mathrm{div}\,}\widetilde{\mathsf{T}}^{\text{el}}.

Furthermore, let ~LdG(~𝖰~,𝖰~)=LdG(~𝖰~,𝖰~)\widetilde{\mathcal{E}}_{\mathrm{LdG}}(\widetilde{\nabla}\widetilde{\mathsf{Q}},\widetilde{\mathsf{Q}})=\mathcal{E}_{\mathrm{LdG}}(\widetilde{\nabla}\widetilde{\mathsf{Q}},\widetilde{\mathsf{Q}}), from (8) and (9), then

LdG𝖰=𝔸~LdG𝖰~𝔹anddiv[LdG𝖰]=𝔸div[~LdG~𝖰~]𝔹.\displaystyle\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\mathsf{Q}}={\mathbb{A}}\frac{\partial\widetilde{\mathcal{E}}_{\mathrm{LdG}}}{\partial\widetilde{\mathsf{Q}}}{\mathbb{B}}\,\,\,\,\,\,\text{and}\,\,\,\,\,\,\mathrm{div}\,\left[\frac{\partial\mathcal{E}_{\mathrm{LdG}}}{\partial\nabla\mathsf{Q}}\right]={\mathbb{A}}\,\mathrm{div}\,\left[\frac{\partial\widetilde{\mathcal{E}}_{\mathrm{LdG}}}{\partial\widetilde{\nabla}\widetilde{\mathsf{Q}}}\right]{\mathbb{B}}.

We then conclude that system (5)–(7) is invariant under orthogonal transformations. In particular, we say that a solution 𝐯{\bf v}, 𝖰\mathsf{Q} is invariant under an orthogonal transformation 𝔹{\mathbb{B}} if

𝐯~(x)=𝐯(x),\displaystyle\widetilde{{\bf v}}(x)={\bf v}(x), or equivalently,𝐯(𝔹x)=𝔹𝐯(x),\displaystyle\text{or equivalently,}\,\,\,\,\,\,{\bf v}({\mathbb{B}}x)={\mathbb{B}}{\bf v}(x), (172)
𝖰~(x)=𝖰(x),\displaystyle\widetilde{\mathsf{Q}}(x)=\mathsf{Q}(x), or equivalently,𝖰(𝔹x)=𝔹𝖰(x)𝔸.\displaystyle\text{or equivalently,}\,\,\,\,\,\,\mathsf{Q}({\mathbb{B}}x)={\mathbb{B}}\mathsf{Q}(x){\mathbb{A}}. (173)

Next we investigate the symmetry property of the drag force γ\mathcal{F}_{\gamma} on the particle which according to (6) is defined as

γ:=𝐁𝖳ν𝑑σx,where𝖳=p𝖨+𝖳SVv+𝖳el.\mathcal{F}_{\gamma}:=\int_{\partial{\bf B}}\mathsf{T}\nu\,d\sigma_{x},\,\,\,\,\,\,\text{where}\,\,\,\mathsf{T}=-p\mathsf{I}+\mathsf{T}_{\text{SV}}^{\text{v}}+\mathsf{T}^{\text{el}}. (174)

By the invariance property just demonstrated, we have

γ=𝐁𝔸𝖳~𝔹νxdσ~y=𝔸𝐁~𝖳~ν~ydσ~y=:𝔸~γ,where 𝖳~=p~𝖨+𝖳~SVv+𝖳~el.\displaystyle\mathcal{F}_{\gamma}=\int_{\partial{\bf B}}{\mathbb{A}}\widetilde{\mathsf{T}}{\mathbb{B}}\nu_{x}\,d\tilde{\sigma}_{y}={\mathbb{A}}\int_{\partial\widetilde{{\bf B}}}\widetilde{\mathsf{T}}\widetilde{\nu}_{y}\,d\tilde{\sigma}_{y}=:{\mathbb{A}}\widetilde{\mathcal{F}}_{\gamma},\,\,\,\,\,\,\text{where $\widetilde{\mathsf{T}}=-\widetilde{p}\mathsf{I}+\widetilde{\mathsf{T}}_{\text{SV}}^{\text{v}}+\widetilde{\mathsf{T}}^{\text{el}}$.} (175)

Note that in the above, we have used the fact that the area element does not change under orthogonal transformation. Now if the solution is invariant under 𝔹{\mathbb{B}}, then 𝖳~(y)=𝖳(y)\widetilde{\mathsf{T}}(y)=\mathsf{T}(y). Hence

~γ=𝐁~𝖳~ν~y𝑑σ~y=𝐁𝖳νx𝑑σx=γ.\widetilde{\mathcal{F}}_{\gamma}=\int_{\partial\widetilde{{\bf B}}}\widetilde{\mathsf{T}}\widetilde{\nu}_{y}\,d\tilde{\sigma}_{y}=\int_{\partial{\bf B}}\mathsf{T}\nu_{x}\,d\sigma_{x}=\mathcal{F}_{\gamma}.

This leads to

γ=𝔸γ,or equivalently,γ=𝔹γ.\mathcal{F}_{\gamma}={\mathbb{A}}\mathcal{F}_{\gamma},\,\,\,\,\,\,\text{or equivalently,}\,\,\,\,\,\,\mathcal{F}_{\gamma}={\mathbb{B}}\mathcal{F}_{\gamma}. (176)

Next we make use of the above to analyze the symmetries of the drag force 𝒥γ\mathcal{J}_{\gamma}. For convenience, we use γ(𝐯,𝖰)\mathcal{F}_{\gamma}({{\bf v}_{*}},\mathsf{Q}_{*}) to denote the dependence of γ\mathcal{F}_{\gamma} on 𝐯{{\bf v}_{*}} and 𝖰\mathsf{Q}_{*}. Note that for our linear system (111)–(116), with 𝐯b=0{\bf v}_{b}=0, given 𝖰\mathsf{Q}_{*}, its solution 𝐯{\bf v} and hence γ\mathcal{F}_{\gamma} is linear in the far-field velocity field 𝐯{\bf v}_{*}. To take advantage of this, for concreteness, we let n=e3{n_{*}}=e_{3} in 𝖰\mathsf{Q}_{*} (39). Now we decompose 𝐯{\bf v}_{*} as,

𝐯=𝐯+𝐯,where𝐯e3,𝐯e3,i.e. 𝐯 lies in the xy-plane.{{\bf v}_{*}}={{\bf v}_{*}}^{\parallel}+{{\bf v}_{*}}^{\perp},\quad\text{where}\,\,\,{{\bf v}_{*}}^{\parallel}\parallel e_{3},\,\,\,{{\bf v}_{*}}^{\perp}\perp e_{3},\,\,\,\text{i.e. ${{\bf v}_{*}}^{\perp}$ lies in the $xy$-plane.} (177)

Then the solution 𝐯{\bf v} and the drag force γ\mathcal{F}_{\gamma} can be decomposed as

𝐯=𝐯+𝐯,γ(𝐯,𝖰)=γ(𝐯,𝖰)+γ(𝐯,𝖰){\bf v}={\bf v}^{\parallel}+{\bf v}^{\perp},\quad\mathcal{F}_{\gamma}({{\bf v}_{*}},\mathsf{Q}_{*})=\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\parallel},\mathsf{Q}_{*})+\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\perp},\mathsf{Q}_{*})

where 𝐯,𝐯{\bf v}^{\parallel},{\bf v}^{\perp} solve (111)–(116) with 𝐯,𝐯{{\bf v}_{*}}^{\parallel},{{\bf v}_{*}}^{\perp} as the far-field velocity field. Furthermore, we have

γ(𝐯,𝖰)=γ(𝐯,𝖰1)\mathbb{R}\mathcal{F}_{\gamma}({{\bf v}_{*}},\mathsf{Q}_{*})=\mathcal{F}_{\gamma}(\mathbb{R}{{\bf v}_{*}},\mathbb{R}\mathsf{Q}_{*}\mathbb{R}^{-1}) (178)

for any orthogonal transformation \mathbb{R} of 3\mathbb{R}^{3}. The following arguments reveal the symmetry properties of γ\mathcal{F}_{\gamma} with respect to 𝐯{{\bf v}_{*}}^{\parallel}, 𝐯{{\bf v}_{*}}^{\perp}.

  • Since 𝖰\mathsf{Q}_{*} and 𝐯{{\bf v}_{*}}^{\parallel} are invariant under any orthogonal transformation of 3\mathbb{R}^{3} that leaves e3e_{3} fixed, we can infer that 𝐯{\bf v}^{\parallel} satisfies the same property. Hence the drag force γ(𝐯,𝖰)\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\parallel},\mathsf{Q}_{*}) must be parallel to e3e_{3}. By linearity, we have for some constant γ\gamma_{\parallel} that

    γ(𝐯,𝖰)=γ𝐯,e3e3=γ(e3e3)𝐯.\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\parallel},\mathsf{Q}_{*})=\gamma_{\parallel}\langle{{\bf v}_{*}}^{\parallel},e_{3}\rangle e_{3}=\gamma_{\parallel}\big{(}e_{3}\otimes e_{3}){{\bf v}_{*}}. (179)
  • For 𝐯{{\bf v}_{*}}^{\perp}, we have in general that

    γ(𝐯,𝖰)=γ(𝐯,𝖰1)=γ(𝐯,𝖰)\mathbb{R}^{\prime}\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\perp},\mathsf{Q}_{*})=\mathcal{F}_{\gamma}(\mathbb{R}^{\prime}{{\bf v}_{*}}^{\perp},\mathbb{R}^{\prime}\mathsf{Q}_{*}{\mathbb{R}^{\prime}}^{-1})=\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\perp},\mathsf{Q}_{*}) (180)

    for any reflection \mathbb{R}^{\prime} of 3\mathbb{R}^{3} that leaves the plane spanned by e3e_{3} and 𝐯{{\bf v}_{*}}^{\perp} fixed. Hence we must have γ(𝐯,𝖰)Span{e3,𝐯}\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\perp},\mathsf{Q}_{*})\in\text{Span}\{e_{3},{{\bf v}_{*}}^{\perp}\}. By linearity, we have for some constant γ\gamma_{\perp} and vector 𝐂{\bf C} from the xyxy-plane that

    γ(𝐯,𝖰)=γ𝐯+𝐂,𝐯e3.\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\perp},\mathsf{Q}_{*})=\gamma_{\perp}{{\bf v}_{*}}^{\perp}+\langle{\bf C},{{\bf v}_{*}}^{\perp}\rangle e_{3}.

    Now for any orthogonal transformation ′′\mathbb{R}^{\prime\prime} of 3\mathbb{R}^{3} that leaves e3e_{3} fixed, using

    ′′γ(𝐯,𝖰)=γ(′′𝐯,′′𝖰′′1),\mathbb{R}^{\prime\prime}\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\perp},\mathsf{Q}_{*})=\mathcal{F}_{\gamma}(\mathbb{R}^{\prime\prime}{{\bf v}_{*}}^{\perp},\mathbb{R}^{\prime\prime}\mathsf{Q}_{*}{\mathbb{R}^{\prime\prime}}^{-1}),

    we have

    γ′′𝐯+𝐂,𝐯e3=γ′′𝐯+𝐂,′′𝐯e3.\gamma_{\perp}\mathbb{R}^{\prime\prime}{{\bf v}_{*}}^{\perp}+\langle{\bf C},{{\bf v}_{*}}^{\perp}\rangle e_{3}=\gamma_{\perp}\mathbb{R}^{\prime\prime}{{\bf v}_{*}}^{\perp}+\langle{\bf C},\mathbb{R}^{\prime\prime}{{\bf v}_{*}}^{\perp}\rangle e_{3}.

    Hence 𝐂,𝐯=𝐂,′′𝐯\langle{\bf C},{{\bf v}_{*}}^{\perp}\rangle=\langle{\bf C},\mathbb{R}^{\prime\prime}{{\bf v}_{*}}^{\perp}\rangle for any ′′\mathbb{R}^{\prime\prime}. Thus 𝐂{\bf C} must be zero. We then conclude that

    γ(𝐯,𝖰)=γ𝐯=γ(𝖨e3e3)𝐯.\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\perp},\mathsf{Q}_{*})=\gamma_{\perp}{{\bf v}_{*}}^{\perp}=\gamma_{\perp}\big{(}\mathsf{I}-e_{3}\otimes e_{3}\big{)}{{\bf v}_{*}}. (181)

Combining the above, we finally have the following same formula as [23, (6.9)]:

γ(𝐯,𝖰)=γ(𝐯,𝖰)+γ(𝐯,𝖰)=[γ(e3e3)+γ(𝖨e3e3)]𝐯.\mathcal{F}_{\gamma}({{\bf v}_{*}},\mathsf{Q}_{*})=\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\parallel},\mathsf{Q}_{*})+\mathcal{F}_{\gamma}({{\bf v}_{*}}^{\perp},\mathsf{Q}_{*})=\Big{[}\gamma_{\parallel}\big{(}e_{3}\otimes e_{3}\big{)}+\gamma_{\perp}\big{(}\mathsf{I}-e_{3}\otimes e_{3}\big{)}\Big{]}{{\bf v}_{*}}. (182)

This is also consistent with the fact that if we replace n{n_{*}} by n-{n_{*}}, 𝖰\mathsf{Q}_{*} remains unchanged and so does the the overall system.

Even though our system of equation is a reduced version of the original model, it does not seem easy to write down an asymptotic formula for the coefficients γ\gamma_{\perp} and γ\gamma_{\parallel}. This is because of the presence of 1Er\frac{1}{\text{Er}} in the stress tensor (20) which cannot be easily computed in the limit of vanishing Er. See [23] for a discussion of some analysis and conjectures about the drag force.

6.3 Analytical calculations

We demonstrate here analytical calculations of (6.1.1), (6.1.1) and (171). In principle, we can give analytical expressions for all the terms as they only involve homogeneous functions of negative integral degrees. More precisely, we have

𝖤(x)(43):\displaystyle\mathsf{E}(x)\,\,\text{\eqref{GreenE}}: δijr,xixjr3,\displaystyle\frac{\delta_{ij}}{r},\,\frac{x_{i}x_{j}}{r^{3}},
𝖥(x)(66):\displaystyle\mathsf{F}(x)\,\,\text{\eqref{GreenF}}: δijr3,xixjr5\displaystyle\frac{\delta_{ij}}{r^{3}},\,\frac{x_{i}x_{j}}{r^{5}}
𝖰(38):\displaystyle\mathsf{Q}\,\,\text{\eqref{QABL}}: δijr,δijr3,xixjr5\displaystyle\frac{\delta_{ij}}{r},\,\frac{\delta_{ij}}{r^{3}},\,\frac{x_{i}x_{j}}{r^{5}}

and 𝐯=𝖤S𝐯{\bf v}=\mathsf{E}_{S}{\bf v}_{*} with 𝖤S=𝖨6πa𝖤(x)+a34𝖥(x)\mathsf{E}_{S}=\mathsf{I}-6\pi a\mathsf{E}(x)+\frac{a^{3}}{4}\mathsf{F}(x) (67). Furthermore, the terms 𝒞γ\mathcal{C}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma} involve multiplications between the following matrices

𝖠,𝖶,𝖰,𝖰,𝐯𝖰,𝐯𝖰.\mathsf{A},\,\,\mathsf{W},\,\,\mathsf{Q}_{*},\,\,\mathsf{Q},\,\,\,{\bf v}_{*}\cdot\nabla\mathsf{Q},\,\,{\bf v}\cdot\nabla\mathsf{Q}.

For convenience, we introduce the following conventions:

[A,B,C,]\displaystyle[A,B,C,\ldots] =\displaystyle= arbitrary linear combinations and products between AA, BB, CC, (183)
and their powers;
{A,B,C,}\displaystyle\{A,B,C,\ldots\} =\displaystyle= linear combinations between AA, BB, CC. (184)

From Appendix C.1, we have

γ:D2𝖤(x)\displaystyle\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(x) \displaystyle\in 1r3[1,n,x^]{𝖨,nn,nx^,x^n,x^x^}\displaystyle\frac{1}{r^{3}}\big{[}1,\langle{n_{*}},\hat{x}\rangle\big{]}\Big{\{}\mathsf{I},\,\,\,{n_{*}}\otimes{n_{*}},\,\,\,{n_{*}}\otimes\hat{x},\,\,\,\hat{x}\otimes{n_{*}},\,\,\,\hat{x}\otimes\hat{x}\Big{\}} (185)
γ:D2𝖥(x)\displaystyle\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(x) \displaystyle\in 1r5[1,n,x^]{𝖨,nn,nx^,x^n,x^x^}\displaystyle\frac{1}{r^{5}}\big{[}1,\langle{n_{*}},\hat{x}\rangle\big{]}\Big{\{}\mathsf{I},\,\,\,{n_{*}}\otimes{n_{*}},\,\,\,{n_{*}}\otimes\hat{x},\,\,\,\hat{x}\otimes{n_{*}},\,\,\,\hat{x}\otimes\hat{x}\Big{\}} (186)

so that

γ:D2𝖤(x)𝐯\displaystyle\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(x){\bf v}_{*} \displaystyle\in 1r3[1,n,x^,n,𝐯,x^,𝐯]{𝐯,n,x^}\displaystyle\frac{1}{r^{3}}\Big{[}1,\,\,\,\langle{n_{*}},\hat{x}\rangle,\,\,\,\langle{n_{*}},{\bf v}_{*}\rangle,\,\,\,\langle\hat{x},{\bf v}_{*}\rangle\Big{]}\Big{\{}{\bf v}_{*},\,\,\,{n_{*}},\,\,\,\hat{x}\Big{\}} (187)
γ:D2𝖥(x)𝐯\displaystyle\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(x){\bf v}_{*} \displaystyle\in 1r5[1,n,x^,n,𝐯,x^,𝐯]{𝐯,n,x^}.\displaystyle\frac{1}{r^{5}}\Big{[}1,\,\,\,\langle{n_{*}},\hat{x}\rangle,\,\,\,\langle{n_{*}},{\bf v}_{*}\rangle,\,\,\,\langle\hat{x},{\bf v}_{*}\rangle\Big{]}\Big{\{}{\bf v}_{*},\,\,\,{n_{*}},\,\,\,\hat{x}\Big{\}}. (188)

From Appendix C.2 and C.3, we have

div𝒜γ\displaystyle\mathrm{div}\,\mathcal{A}_{\gamma} \displaystyle\in {1r3,1r4}[1,x^,n,x^,𝐯,n,𝐯]{x^,n,𝐯},\displaystyle\left\{\frac{1}{r^{3}},\frac{1}{r^{4}}\right\}\Big{[}1,\,\,\,\langle\hat{x},{n_{*}}\rangle,\,\,\,\langle\hat{x},{\bf v}_{*}\rangle,\,\,\,\langle{n_{*}},{\bf v}_{*}\rangle\Big{]}\Big{\{}\hat{x},\,\,{n_{*}},\,\,{\bf v}_{*}\Big{\}}, (189)
𝒞γ\displaystyle\mathcal{C}_{\gamma} \displaystyle\in [1r3,,1r6][1,x^,n,x^,𝐯,n,𝐯]×\displaystyle\left[\frac{1}{r^{3}},\ldots,\frac{1}{r^{6}}\right]\Big{[}1,\,\,\langle\hat{x},{n_{*}}\rangle,\,\,\langle\hat{x},{\bf v}_{*}\rangle,\,\,\langle{n_{*}},{\bf v}_{*}\rangle\Big{]}\times
{𝖨,nn,n𝐯,𝐯n,nx^,x^n,𝐯x^,x^𝐯,x^x^},\displaystyle\Big{\{}\mathsf{I},\,\,\,{n_{*}}\otimes{n_{*}},\,\,\,{n_{*}}\otimes{\bf v}_{*},\,\,\,{\bf v}_{*}\otimes{n_{*}},\,\,\,{n_{*}}\otimes\hat{x},\,\,\,\hat{x}\otimes{n_{*}},\,\,\,{\bf v}_{*}\otimes\hat{x},\,\,\,\hat{x}\otimes{\bf v}_{*},\,\,\,\hat{x}\otimes\hat{x}\Big{\}},
𝒟γ\displaystyle\mathcal{D}_{\gamma} \displaystyle\in [1r4,,1r9][1,x^,n,x^,𝐯,n,𝐯]{x^,n,𝐯}.\displaystyle\left[\frac{1}{r^{4}},\ldots,\frac{1}{r^{9}}\right]\Big{[}1,\,\,\,\langle\hat{x},{n_{*}}\rangle,\,\,\,\langle\hat{x},{\bf v}_{*}\rangle,\,\,\,\langle{n_{*}},{\bf v}_{*}\rangle\Big{]}\Big{\{}\hat{x},\,\,{n_{*}},\,\,{\bf v}_{*}\Big{\}}. (191)

Note that all the terms in γ:D2𝖤\mathcal{M}_{\gamma}:D^{2}\mathsf{E}, γ:D2𝖥\mathcal{M}_{\gamma}:D^{2}\mathsf{F} and div𝒜γ\mathrm{div}\,\mathcal{A}_{\gamma} have already been computed explicitly in the Appendix C.1 and C.2. From Appendix C.3, all the coefficients appearing in 𝒞γ\mathcal{C}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma} are amenable for symbolic computations.

Using the above, we can give the following representations of the bulk and boundary terms appearing in (6.1.1), (6.1.1) and (171).

  • Ω𝖤(xy)[6πaγ:D2𝖤(y)𝐯+div𝒜γ(y)]dy\displaystyle\int_{\Omega}\mathsf{E}(x-y)\Big{[}6\pi a\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(y){\bf v}_{*}+\mathrm{div}\,\mathcal{A}_{\gamma}(y)\Big{]}\,dy. By (222), we have

    Ω𝖤(xy)[6πaγ:D2𝖤(y)𝐯+div𝒜γ(y)]dy\displaystyle\int_{\Omega}\mathsf{E}(x-y)\Big{[}6\pi a\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(y){\bf v}_{*}+\mathrm{div}\,\mathcal{A}_{\gamma}(y)\Big{]}\,dy
    =\displaystyle= 1|x|𝕊2𝖧(x^,y^)[6πaγ:D2𝖤(y^)𝐯+div𝒜γ(y^)]dσ(y^)+O(1|x|2)\displaystyle\frac{1}{|x|}\int_{\mathbb{S}^{2}}\mathsf{H}(\hat{x},\hat{y})\Big{[}6\pi a\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(\hat{y}){\bf v}_{*}+\mathrm{div}\,\mathcal{A}_{\gamma}(\hat{y})\Big{]}\,d\sigma(\hat{y})+O\left(\frac{1}{|x|^{2}}\right)
    =\displaystyle= 1|x|𝕊2𝖧(x^,y^)[A1(y^)y^+A2(y^)n+A3(y^)𝐯]𝑑σ(y^)+O(1|x|2),\displaystyle\frac{1}{|x|}\int_{\mathbb{S}^{2}}\mathsf{H}(\hat{x},\hat{y})\Big{[}A_{1}(\hat{y})\hat{y}+A_{2}(\hat{y}){n_{*}}+A_{3}(\hat{y}){\bf v}_{*}\Big{]}\,d\sigma(\hat{y})+O\left(\frac{1}{|x|^{2}}\right),

    where 𝖧\mathsf{H} given by (220), is recorded here,

    𝖧(x^,y^)=limϵ0[ϵ𝖤(x^ry^)r𝑑r+𝖤(x^)ln(ϵ)],\mathsf{H}(\hat{x},\hat{y})=\lim_{\epsilon\to 0}\left[\int_{\epsilon}^{\infty}\frac{\mathsf{E}(\hat{x}-r\hat{y})}{r}\,dr+\mathsf{E}(\hat{x})\ln(\epsilon)\right], (192)

    and the Ai(y^)A_{i}(\hat{y}) are appropriate polynomial functions of y^,n,y^,𝐯,n,𝐯\langle\hat{y},{n_{*}}\rangle,\,\langle\hat{y},{\bf v}_{*}\rangle,\,\langle{n_{*}},{\bf v}_{*}\rangle.

  • Ω[a34γ:D2𝖥(y)𝐯+div𝒞γ(y)+𝒟γ(y)]dy\displaystyle\int_{\Omega}\left[-\frac{a^{3}}{4}\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(y){\bf v}_{*}+\mathrm{div}\,\mathcal{C}_{\gamma}(y)+\mathcal{D}_{\gamma}(y)\right]\,dy. The terms D2𝖥D^{2}\mathsf{F} and 𝒟γ\mathcal{D}_{\gamma} decay at least r4r^{-4} and hence are integrable. Using their forms, we have

    Ω[a34γ:D2𝖥(y)𝐯+𝒟γ(y)]dy=𝕊2[A4(y^)y^+A5(y^)n+A6(y^)𝐯]dσ(y^).\displaystyle\int_{\Omega}\left[-\frac{a^{3}}{4}\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(y){\bf v}_{*}+\mathcal{D}_{\gamma}(y)\right]\,dy=\int_{\mathbb{S}^{2}}\Big{[}A_{4}(\hat{y})\hat{y}+A_{5}(\hat{y}){n_{*}}+A_{6}(\hat{y}){\bf v}_{*}\Big{]}\,d\sigma(\hat{y}).

    For div𝒞γ=O(1r3)\mathrm{div}\,\mathcal{C}_{\gamma}=O\left(\frac{1}{r^{3}}\right), it can be conveniently represented using Divergence Theorem:

    Ωdiv𝒞γ(y)𝑑y=𝕊2𝒞γ(y^),y^𝑑σ(y^)=𝕊2[A7(y^)y^+A8(y^)n+A9(y^)𝐯]𝑑σ(y^).\int_{\Omega}\mathrm{div}\,\mathcal{C}_{\gamma}(y)\,dy=\int_{\mathbb{S}^{2}}\Big{\langle}\mathcal{C}_{\gamma}(\hat{y}),\hat{y}\Big{\rangle}\,d\sigma(\hat{y})=\int_{\mathbb{S}^{2}}\Big{[}A_{7}(\hat{y})\hat{y}+A_{8}(\hat{y}){n_{*}}+A_{9}(\hat{y}){\bf v}_{*}\Big{]}\,d\sigma(\hat{y}). (194)
  • Ω(𝖤S𝖨)[γ:D2𝖤S(y)𝐯+div𝒜γ(y)+div𝒞γ(𝖤S(y)𝐯,y)+𝒟γ(𝖤S(y)𝐯,y)]dy\displaystyle\int_{\Omega}(\mathsf{E}_{S}-\mathsf{I})\Big{[}-\mathcal{M}_{\gamma}:D^{2}\mathsf{E}_{S}(y){\bf v}_{*}+\mathrm{div}\,\mathcal{A}_{\gamma}(y)+\mathrm{div}\,\mathcal{C}_{\gamma}(\mathsf{E}_{S}(y){\bf v}_{*},y)+\mathcal{D}_{\gamma}(\mathsf{E}_{S}(y){\bf v}_{*},y)\Big{]}\,dy. As 𝖤S𝖨\mathsf{E}_{S}-\mathsf{I} decays at least as r1r^{-1}, the following integral is integrable:

    Ω(𝖤S𝖨)[γ:D2𝖤S(y)𝐯+div𝒜γ(𝐯,y)+𝒟γ(𝖤S(y)𝐯,y)]dy\displaystyle\int_{\Omega}(\mathsf{E}_{S}-\mathsf{I})\Big{[}-\mathcal{M}_{\gamma}:D^{2}\mathsf{E}_{S}(y){\bf v}_{*}+\mathrm{div}\,\mathcal{A}_{\gamma}({\bf v}_{*},y)+\mathcal{D}_{\gamma}(\mathsf{E}_{S}(y){\bf v}_{*},y)\Big{]}\,dy (195)
    =\displaystyle= 𝕊2[A10(y^)y^+A11(y^)n+A12(y^)𝐯]𝑑σ(y^),\displaystyle\int_{\mathbb{S}^{2}}\Big{[}A_{10}(\hat{y})\hat{y}+A_{11}(\hat{y}){n_{*}}+A_{12}(\hat{y}){\bf v}_{*}\Big{]}\,d\sigma(\hat{y}), (196)

    where we recall the form of 𝖤S\mathsf{E}_{S} from (67). The remaining term with div𝒞γ\mathrm{div}\,\mathcal{C}_{\gamma} can also be dealt with using Divergence Theorem:

    Ω(𝖤S𝖨)div𝒞γ(𝖤S(y)𝐯,y)𝑑y\displaystyle\int_{\Omega}(\mathsf{E}_{S}-\mathsf{I})\mathrm{div}\,\mathcal{C}_{\gamma}(\mathsf{E}_{S}(y){\bf v}_{*},y)\,dy (197)
    =\displaystyle= 𝕊2(𝖤S(y^)𝖨),𝒞γ(y^)y^𝑑σ(y^)Ω𝖤S(y),𝒞γ(y)𝑑y\displaystyle\int_{\mathbb{S}^{2}}\Big{\langle}(\mathsf{E}_{S}(\hat{y})-\mathsf{I}),\mathcal{C}_{\gamma}(\hat{y})\hat{y}\Big{\rangle}\,d\sigma(\hat{y})-\int_{\Omega}\Big{\langle}\nabla\mathsf{E}_{S}(y),\mathcal{C}_{\gamma}(y)\Big{\rangle}\,dy
    =\displaystyle= 𝕊2[A13(y^)y^+A14(y^)n+A15(y^)𝐯]𝑑σ(y^).\displaystyle\int_{\mathbb{S}^{2}}\Big{[}A_{13}(\hat{y})\hat{y}+A_{14}(\hat{y}){n_{*}}+A_{15}(\hat{y}){\bf v}_{*}\Big{]}\,d\sigma(\hat{y}).

Before moving on to the next section, we consider one “simplistic model” in which 𝖰\mathsf{Q} is taken to be uniform in space, i.e. it equals its end state 𝖰\mathsf{Q}_{*}. Such an approximation was in fact used in some works, see for example [22, 37]. In this case, all the terms 𝒜γ\mathcal{A}_{\gamma}, 𝒞γ\mathcal{C}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma} vanish as they involve either 𝖰\nabla\mathsf{Q} or 𝖰𝖰\mathsf{Q}-\mathsf{Q}_{*}. Then we have

γ(x)\displaystyle\mathcal{I}_{\gamma}(x) =\displaystyle= 1|x|𝕊2𝖧(x^,ω)[6πaγ:D2𝖤(ω)𝐯]dσω\displaystyle\frac{1}{|x|}\int_{\mathbb{S}^{2}}\mathsf{H}(\hat{x},\omega)\Big{[}6\pi a\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(\omega){\bf v}_{*}\Big{]}\,d\sigma_{\omega} (198)
+𝖤(x)Ω[a34γ:D2𝖥(y)𝐯]dy,\displaystyle+\mathsf{E}(x)\int_{\Omega}\left[-\frac{a^{3}}{4}\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(y){\bf v}_{*}\right]\,dy,
𝒥γ\displaystyle\mathcal{J}_{\gamma} =\displaystyle= Ω(𝖤S𝖨)[γ:D2𝖤S(y)𝐯]dy.\displaystyle\int_{\Omega}(\mathsf{E}_{S}-\mathsf{I})\Big{[}-\mathcal{M}_{\gamma}:D^{2}\mathsf{E}_{S}(y){\bf v}_{*}\Big{]}\,dy. (199)

As demonstrated numerically in Section 7.1, we see that the actual velocity flow 𝐯{\bf v} does depend on the overall structure of 𝖰\mathsf{Q}, not just its end state 𝖰\mathsf{Q}_{*}.

7 Numerical simulations

Here we provide numerical simulations to illustrate our analysis. The simulations are performed using a commercial finite elements software package COMSOL [38]. For validation, we used this package to compute the classical Stokes flow. The results are benchmarked against analytical solutions in a finite domain, more precisely in the annulus arRa\leq r\leq R. For details, we refer to Appendix D.

In the following, we record our numerical results for the anisotropic Stokes system (32)-(34). Some remarks are in order.

  1. (a).

    For simplicity, we assume that only γ1\gamma_{1} and γ2\gamma_{2} are nonzero. They are fixed to be γ1=1\gamma_{1}=1 and γ2=0.9\gamma_{2}=0.9, except in Section 7.3 where we allow them to vary.

  2. (b).

    Our analytical results show that 𝐯=𝐯+O(1r){\bf v}={\bf v}_{*}+O\left(\frac{1}{r}\right). To better illustrate this, we will plot rescaled versions of components of 𝐯{\bf v}. More precisely, let V=|𝐯|V=|{\bf v}_{*}|. If 𝐯{\bf v}_{*} is along eie_{i}, then we will plot the following quantity for a<r<R:a<r<R:

    r(𝐯iV1)andr(𝐯jV)for jir\left(\frac{{\bf v}_{i}}{V}-1\right)\,\,\,\text{and}\,\,\,r\left(\frac{{\bf v}_{j}}{V}\right)\,\,\,\text{for $j\neq i$} (200)

    along various two-dimensional planes.

  3. (c).

    All our numerical results shows that the rescaled quantity (200) remains bounded in magnitude. Inevitably, due to boundary effect, the numerical solution is consistent with the true solution only for a<rRa<r\ll R. This is made more precise in Appendix D.

7.1 𝐯=e1{\bf v}_{*}=e_{1}, n=e3{n_{*}}=e_{3}

In this section, we choose 𝐯{\bf v}_{*} and n{n_{*}} to be non-parallel to each other. Besides plotting various (rescaled) components of 𝐯i{\bf v}_{i}’s, we aim to illustrate the clear differences between the solution 𝐯{\bf v} of our anisotropic Stokes system when 𝖰\mathsf{Q} is set to be 𝖰\mathsf{Q}_{*} and given by (38).

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 1. 3D, rescaled plot of 𝐯1{\bf v}_{1} in the yzyz-plane.

(a) 𝖰\mathsf{Q} is set to be 𝖰\mathsf{Q}_{*}; (b) 𝖰\mathsf{Q} is given by (38).

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 2. 2D, rescaled plot of 𝐯1{\bf v}_{1} in the yzyz-plane.

(a) 𝖰\mathsf{Q} is set to be 𝖰\mathsf{Q}_{*}; (b) 𝖰\mathsf{Q} is given by (38).

The following figures are 2D zoomed plots for different 𝐯i{\bf v}_{i}’s.

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 3. Zoomed, 2D, rescaled plot of 𝐯1{\bf v}_{1} in the yzyz-plane.

(a) 𝖰\mathsf{Q} is set to be 𝖰\mathsf{Q}_{*}; (b) 𝖰\mathsf{Q} is given by (38).

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 4. Zoomed, 2D, rescaled plot of 𝐯2{\bf v}_{2} in the xyxy-plane.

(a) 𝖰\mathsf{Q} is set to be 𝖰\mathsf{Q}_{*}; (b) 𝖰\mathsf{Q} is given by (38).

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 5. Zoomed, 2D, rescaled plot of 𝐯3{\bf v}_{3} in the xzxz-plane.

(a) 𝖰\mathsf{Q} is set to be 𝖰\mathsf{Q}_{*}; (b) 𝖰\mathsf{Q} is given by (38).

Note that in Figures 1, 2, and 3, there is reflection symmetry for 𝐯1{\bf v}_{1} in the yzyz-plane with respect to both the yy- and zz-axes. This is due to the fact that the yzyz-plane is perpendicular to the xzxz-plane, the plane spanned by 𝐯{\bf v}_{*} and n{n_{*}}.

7.2 𝐯=e3{\bf v}_{*}=e_{3}, n=e3{n_{*}}=e_{3}

In this section, the 𝐯{\bf v}_{*} and nn are parallel to each other, both pointing in the direction of zz-axis. In this case, 𝐯3{\bf v}_{3} should be rotational symmetric with respect to the zz-axis. This is clearly demonstrated in the plot for 𝐯3{\bf v}_{3} in the xyxy-plane – see Figure 6.

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 6. 2D, rescaled plot of 𝐯3{\bf v}_{3} in the xyxy-plane:

(a) whole computational domain; (b) zoomed version.

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 7. 2D, rescaled plot of 𝐯3{\bf v}_{3} in the xzxz-plane:

(a) whole computational domain; (b) zoomed version.

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 8. 2D, rescaled plot of 𝐯1{\bf v}_{1} in the xzxz-plane:

(a) whole computational domain; (b) zoomed version.

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 9. 2D, rescaled plot of 𝐯2{\bf v}_{2} in the yzyz-plane:

(a) whole computational domain; (b) zoomed version.

Note that by symmetry the behavior of 𝐯1{\bf v}_{1} in the xzxz-plane and 𝐯2{\bf v}_{2} in the yzyz-plane should be “identical”, as illustrated by Figures 8 and 9.

7.3 𝐯=e3{\bf v}_{*}=e_{3}, n=e3{n_{*}}=e_{3}

In this section, we demonstrate the decomposition (161). This is validated by plotting

r(𝐯i𝐯0iVγ1)=r(φ¯γiVγ1)=rO(φ¯γ|γ|),for i=1,2,3.r\left(\frac{{\bf v}_{i}-{{\bf v}_{0}}_{i}}{V\gamma_{1}}\right)=r\left(\frac{{\overline{\varphi}_{\gamma}}_{i}}{V\gamma_{1}}\right)=rO\left(\frac{\overline{\varphi}_{\gamma}}{|\gamma|}\right),\,\,\,\text{for $i=1,2,3$.} (201)

with three samples of γ1\gamma_{1} and γ2\gamma_{2}:

(a) γ1=0.2\gamma_{1}=0.2, γ2=0.18\gamma_{2}=0.18; (b) γ1=0.1\gamma_{1}=0.1, γ2=0.09\gamma_{2}=0.09; (c) γ1=0.05\gamma_{1}=0.05, γ2=0.045\gamma_{2}=0.045.

As |γ|0|\gamma|\longrightarrow 0, we expect r(φ¯γ|γ|)\displaystyle r\left(\frac{\overline{\varphi}_{\gamma}}{|\gamma|}\right) converging to some fixed function. This is clearly demonstrated in the following plots, in terms of both the pattern and order of magnitude.

(a)[Uncaptioned image] (b)[Uncaptioned image] (c)[Uncaptioned image]

Figure 10. 2D, rescaled plot of 𝐯1𝐯01{\bf v}_{1}-{{\bf v}_{0}}_{1} in the yzyz-plane:

(a) γ1=0.2\gamma_{1}=0.2, γ2=0.18\gamma_{2}=0.18; (b) γ1=0.1\gamma_{1}=0.1, γ2=0.09\gamma_{2}=0.09; (c) γ1=0.05\gamma_{1}=0.05, γ2=0.045\gamma_{2}=0.045.

(a)[Uncaptioned image] (b)[Uncaptioned image] (c)[Uncaptioned image]

Figure 11. 2D, rescaled plot of 𝐯2𝐯02{\bf v}_{2}-{{\bf v}_{0}}_{2} in the xyxy-plane:

(a) γ1=0.2\gamma_{1}=0.2, γ2=0.18\gamma_{2}=0.18; (b) γ1=0.1\gamma_{1}=0.1, γ2=0.09\gamma_{2}=0.09; (c) γ1=0.05\gamma_{1}=0.05, γ2=0.045\gamma_{2}=0.045.

(a)[Uncaptioned image] (b)[Uncaptioned image] (c)[Uncaptioned image]

Figure 12. 2D, rescaled plot of 𝐯3𝐯03{\bf v}_{3}-{{\bf v}_{0}}_{3} in the xzxz-plane:

(a) γ1=0.2\gamma_{1}=0.2, γ2=0.18\gamma_{2}=0.18; (b) γ1=0.1\gamma_{1}=0.1, γ2=0.09\gamma_{2}=0.09; (c) γ1=0.05\gamma_{1}=0.05, γ2=0.045\gamma_{2}=0.045.

8 Acknowledgements

The work of DG was partially supported by the NSF grant DMS-2106551. The authors would like to acknowledge useful discussions with Leonid Berlyand and Mykhailo Potomkin.

9 Declaration of Interests

The authors report no conflict of interest.

Appendix A Far-field behavior of Stokes system

Consider equation (111) and the representation of its solution in (145). The asymptotics of the boundary integrals are given in step (II) of the proof in Section 5.3. Here, we will analyze the asymptotics of the bulk integral

I(x)=3\1(0)𝖦(xy)𝐟(y)𝑑y.I(x)=\int_{\mathbb{R}^{3}\backslash\mathcal{B}_{1}(0)}{\mathsf{G}}(x-y){\bf f}(y)\,dy.

The property of homogeneous of degree 1-1 (126) for 𝖦=𝖦γ{\mathsf{G}}={\mathsf{G}}_{\gamma} plays an important role in our analysis. The precise asymptotics naturally also depends on the far-field behavior of 𝐟{\bf f}. We present these results in the following cases.

A.1 Case I

We assume that 𝐟L(3\1(0))<\|{\bf f}\|_{L^{\infty}(\mathbb{R}^{3}\backslash\mathcal{B}_{1}(0))}<\infty and

3\𝐁1(0)|𝐟(y)|𝑑y<.\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}|{\bf f}(y)|\,dy<\infty. (202)

We compute

3\𝐁1(0)𝖦(xy)𝐟(y)𝑑y\displaystyle\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}{\mathsf{G}}(x-y){\bf f}(y)\,dy (203)
=\displaystyle= 𝖦(x)(3\𝐁1(0)𝐟(y)𝑑y)+3\𝐁1(0)(𝖦(xy)𝖦(x))𝐟(y)𝑑y\displaystyle{\mathsf{G}}(x)\left(\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}{\bf f}(y)\,dy\right)+\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}({\mathsf{G}}(x-y)-{\mathsf{G}}(x)){\bf f}(y)\,dy
=\displaystyle= 𝖦(x)(3\𝐁1(0)𝐟(y)𝑑y)+1|x|3\𝐁1(0)(𝖦(x^y|x|)𝖦(x^))𝐟(y)𝑑y\displaystyle{\mathsf{G}}(x)\left(\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}{\bf f}(y)\,dy\right)+\frac{1}{|x|}\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}\left({\mathsf{G}}(\hat{x}-\frac{y}{|x|})-{\mathsf{G}}(\hat{x})\right){\bf f}(y)\,dy
=\displaystyle= 𝖦(x)(3\𝐁1(0)𝐟(y)𝑑y)+o(1|x|).\displaystyle{\mathsf{G}}(x)\left(\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}{\bf f}(y)\,dy\right)+o\left(\frac{1}{|x|}\right).

In order to characterize the o(1|x|)o\left(\frac{1}{|x|}\right) term, we assume that

𝐟(y)1|y|4.{\bf f}(y)\lesssim\frac{1}{|y|^{4}}. (204)

Let L1L\gg 1. Then we have

|1|x|3\𝐁1(0)(𝖦(x^y|x|)𝖦(x^))𝐟(y)𝑑y|\displaystyle\left|\frac{1}{|x|}\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}\left({\mathsf{G}}(\hat{x}-\frac{y}{|x|})-{\mathsf{G}}(\hat{x})\right){\bf f}(y)\,dy\right| (205)
=\displaystyle= |1|x|1|y|<|x|L+|x|L|y|<L|x|+L|x||y|(𝖦(x^y|x|^)|x^y|x||𝖦(x^))𝐟(y)𝑑y|\displaystyle\left|\frac{1}{|x|}\int_{1\leq|y|<\frac{|x|}{L}}+\int_{\frac{|x|}{L}\leq|y|<L|x|}+\int_{L|x|\leq|y|}\left(\frac{{\mathsf{G}}(\widehat{\hat{x}-\frac{y}{|x|}})}{\left|\hat{x}-\frac{y}{|x|}\right|}-{\mathsf{G}}(\hat{x})\right){\bf f}(y)\,dy\right|
\displaystyle\lesssim 1|x|1|y|<|x|L|y||x|1|y|4𝑑y+1|x||x|L|y|<L|x|1|y|4𝑑y+1|x|L|x||y||x||y|1|y|4𝑑y\displaystyle\frac{1}{|x|}\int_{1\leq|y|<\frac{|x|}{L}}\frac{|y|}{|x|}\frac{1}{|y|^{4}}\,dy+\frac{1}{|x|}\int_{\frac{|x|}{L}\leq|y|<L|x|}\frac{1}{|y|^{4}}\,dy+\frac{1}{|x|}\int_{L|x|\leq|y|}\frac{|x|}{|y|}\frac{1}{|y|^{4}}\,dy
\displaystyle\lesssim 1|x|21|x|Lr2r3𝑑r+1|x||x|LL|x|r2r4𝑑r+L|x|r2r5𝑑r\displaystyle\frac{1}{|x|^{2}}\int_{1}^{\frac{|x|}{L}}\frac{r^{2}}{r^{3}}\,dr+\frac{1}{|x|}\int_{\frac{|x|}{L}}^{L|x|}\frac{r^{2}}{r^{4}}\,dr+\int_{L|x|}^{\infty}\frac{r^{2}}{r^{5}}\,dr
\displaystyle\lesssim log|x||x|2+1|x|2\displaystyle\frac{\log|x|}{|x|^{2}}+\frac{1}{|x|^{2}}
\displaystyle\lesssim log|x||x|2.\displaystyle\frac{\log|x|}{|x|^{2}}.

Note that in the above, we have used the fact that 1|x^y|x||\frac{1}{\left|\hat{x}-\frac{y}{|x|}\right|} is an integrable singularity at yxy\sim x in 3\mathbb{R}^{3}.

A.2 Case II

Next, we assume that ff has the following large spatial asymptotic behavior:

|𝐟|O(A+Blnrrk)for some k3 and all r1.|{\bf f}|\leq O\left(\frac{A+B\ln r}{r^{k}}\right)\,\,\,\text{for some $k\geq 3$ and all $r\gg 1$.} (206)

Then we compute,

|3\𝐁1(0)𝖦(xy)𝐟(y)𝑑y|\displaystyle\left|\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}{\mathsf{G}}(x-y){\bf f}(y)\,dy\right| (209)
\displaystyle\lesssim 3\𝐁1(0)A+Bln|y||y|k1|xy|𝑑y\displaystyle\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}\frac{A+B\ln|y|}{|y|^{k}}\frac{1}{|x-y|}\,dy
\displaystyle\lesssim 1|x|3\1|x|(0)A+Bln|z|+Bln|x||x|k|z|k1|x^z||x|3𝑑z(where x^=x|x| and z=y|x|)\displaystyle\frac{1}{|x|}\int_{\mathbb{R}^{3}\backslash\mathcal{B}_{\frac{1}{|x|}}(0)}\frac{A+B\ln|z|+B\ln|x|}{|x|^{k}|z|^{k}}\frac{1}{|\widehat{x}-z|}\,|x|^{3}dz\quad\text{(where $\widehat{x}=\frac{x}{|x|}$ and $z=\frac{y}{|x|}$)}
\displaystyle\lesssim 1|x|k2[1A+Bln|r|+Bln|x|rk+1r2𝑑r+1|x|1A+Bln|r|+Bln|x|rkr2𝑑r]\displaystyle\frac{1}{|x|^{k-2}}\left[\int_{1}^{\infty}\frac{A+B\ln|r|+B\ln|x|}{r^{k+1}}\,r^{2}dr+\int_{\frac{1}{|x|}}^{1}\frac{A+B\ln|r|+B\ln|x|}{r^{k}}\,r^{2}dr\right]
(note that the singularity at x^\widehat{x} is integrable)
\displaystyle\lesssim {Aln|x|+Bln|x|+B(ln|x|)2|x|,if k=3,A+Bln|x||x|,if k>3.\displaystyle\left\{\begin{array}[]{ll}\frac{A\ln|x|+B\ln|x|+B(\ln|x|)^{2}}{|x|},&\text{if $k=3$,}\\ \frac{A+B\ln|x|}{|x|},&\text{if $k>3$.}\end{array}\right.

Similarly,

|3\𝐁1(0)𝗊(xy)𝐟(y)dy|\displaystyle\left|\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}-\mathsf{q}(x-y)\cdot{\bf f}(y)\,dy\right| \displaystyle\lesssim 3\𝐁1(0)A+Bln|y||y|k1|xy|2𝑑y\displaystyle\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}\frac{A+B\ln|y|}{|y|^{k}}\frac{1}{|x-y|^{2}}\,dy (212)
\displaystyle\lesssim {Aln|x|+Bln|x|+B(ln|x|)2|x|2,if k=3,A+Bln|x||x|2,if k>3.\displaystyle\left\{\begin{array}[]{ll}\frac{A\ln|x|+B\ln|x|+B(\ln|x|)^{2}}{|x|^{2}},&\text{if $k=3$,}\\ \frac{A+B\ln|x|}{|x|^{2}},&\text{if $k>3$.}\end{array}\right.

Note that for k=3k=3, even if B=0B=0, a ln|x|\ln|x|-term can appear in the bulk integrals.

A.3 Case III

In order to do a more careful analysis of the case k=3k=3 of which we are concerned most, we further assume that 𝐟{\bf f} is homogeneous of degree 3-3, i.e.

𝐟(λx)=λ3𝐟(x)so that𝐟(x)=𝐟(x^)|x|3.{\bf f}(\lambda x)=\lambda^{-3}{\bf f}(x)\,\,\,\text{so that}\,\,\,{\bf f}(x)=\frac{{\bf f}(\hat{x})}{|x|^{3}}. (213)

Note that the integrand 𝖦(x)𝐟()1|y|4{\mathsf{G}}(x-\cdot){\bf f}(\cdot)\sim\frac{1}{|y|^{4}} is integrable L1(3\𝐁1(0))L^{1}(\mathbb{R}^{3}\backslash{\bf B}_{1}(0)). Hence we can use Fubini’s Theorem to compute dydy iteratively as r2dωdrr^{2}\,d\omega\,dr, where r=|y|r=|y| and ω=y^\omega=\hat{y}. To this end, we have

3\𝐁1(0)𝖦(xy)𝐟(y)𝑑y\displaystyle\int_{\mathbb{R}^{3}\backslash{\bf B}_{1}(0)}{\mathsf{G}}(x-y){\bf f}(y)\,dy =\displaystyle= 𝕊2[1𝖦(xrω)𝐟(ω)r3r2𝑑r]𝑑ω\displaystyle\int_{\mathbb{S}^{2}}\left[\int_{1}^{\infty}{\mathsf{G}}(x-r\omega)\frac{{\bf f}(\omega)}{r^{3}}r^{2}\,dr\right]\,d\omega
=\displaystyle= 1|x|𝕊2[1𝖦(x^r|x|ω)1r𝑑r]𝐟(ω)𝑑ω\displaystyle\frac{1}{|x|}\int_{\mathbb{S}^{2}}\left[\int_{1}^{\infty}{\mathsf{G}}(\hat{x}-\frac{r}{|x|}\omega)\frac{1}{r}\,dr\right]{\bf f}(\omega)\,d\omega
=\displaystyle= 1|x|𝕊2[1|x|𝖦(x^rω)1r𝑑r]𝐟(ω)𝑑ω\displaystyle\frac{1}{|x|}\int_{\mathbb{S}^{2}}\left[\int_{\frac{1}{|x|}}^{\infty}{\mathsf{G}}(\hat{x}-r\omega)\frac{1}{r}\,dr\right]{\bf f}(\omega)\,d\omega

For |x|>2|x|>2, we write

1|x|𝖦(x^rω)1r𝑑r\displaystyle\int_{\frac{1}{|x|}}^{\infty}{\mathsf{G}}(\hat{x}-r\omega)\frac{1}{r}\,dr =\displaystyle= 12𝖦(x^rω)1r𝑑r+1|x|12𝖦(x^rω)1r𝑑r.\displaystyle\int_{\frac{1}{2}}^{\infty}{\mathsf{G}}(\hat{x}-r\omega)\frac{1}{r}\,dr+\int_{\frac{1}{|x|}}^{\frac{1}{2}}{\mathsf{G}}(\hat{x}-r\omega)\frac{1}{r}\,dr.

Now for ωx^\omega\neq\hat{x}, define

𝖧1(x^,ω):=12𝖦(x^rω)1r𝑑r=O(1).\mathsf{H}_{1}(\hat{x},\omega):=\int_{\frac{1}{2}}^{\infty}{\mathsf{G}}(\hat{x}-r\omega)\frac{1}{r}\,dr=O(1). (214)

Then we have

𝕊2[12𝖦(x^rω)1r𝑑r]𝐟(ω)𝑑ω=𝕊2𝖧1(x^,ω)𝐟(ω)𝑑ω.\int_{\mathbb{S}^{2}}\left[\int_{\frac{1}{2}}^{\infty}{\mathsf{G}}(\hat{x}-r\omega)\frac{1}{r}\,dr\right]{\bf f}(\omega)\,d\omega=\int_{\mathbb{S}^{2}}\mathsf{H}_{1}(\hat{x},\omega){\bf f}(\omega)\,d\omega. (215)

On the other hand, we have 1|x|12𝖦(x^rω)1r𝑑r=O(ln|x|)\displaystyle\int_{\frac{1}{|x|}}^{\frac{1}{2}}{\mathsf{G}}(\hat{x}-r\omega)\frac{1}{r}\,dr=O(\ln|x|). To analyze this term, we compute

𝕊2[1|x|12𝖦(x^rω)1r𝑑r]𝐟(ω)𝑑ω\displaystyle\int_{\mathbb{S}^{2}}\left[\int_{\frac{1}{|x|}}^{\frac{1}{2}}{\mathsf{G}}(\hat{x}-r\omega)\frac{1}{r}\,dr\right]{\bf f}(\omega)\,d\omega
=\displaystyle= 𝕊2[1|x|12𝖦(x^)r𝑑r]𝐟(ω)𝑑ω+𝕊2[1|x|12𝖦(x^rω)𝖦(x^)r𝑑r]𝐟(ω)𝑑ω\displaystyle\int_{\mathbb{S}^{2}}\left[\int_{\frac{1}{|x|}}^{\frac{1}{2}}\frac{{\mathsf{G}}(\hat{x})}{r}\,dr\right]{\bf f}(\omega)\,d\omega+\int_{\mathbb{S}^{2}}\left[\int_{\frac{1}{|x|}}^{\frac{1}{2}}\frac{{\mathsf{G}}(\hat{x}-r\omega)-{\mathsf{G}}(\hat{x})}{r}\,dr\right]{\bf f}(\omega)\,d\omega
=\displaystyle= 𝖦(x^)ln(|x|2)𝕊2𝐟(ω)𝑑ω+𝕊2𝖧2(x^,ω)𝐟(ω)𝑑ω𝕊2[01|x|𝖦(x^rω)𝖦(x^)r𝑑r]𝐟(ω)𝑑ω\displaystyle{\mathsf{G}}(\hat{x})\ln(\frac{|x|}{2})\int_{\mathbb{S}^{2}}{\bf f}(\omega)\,d\omega+\int_{\mathbb{S}^{2}}\mathsf{H}_{2}(\hat{x},\omega){\bf f}(\omega)\,d\omega-\int_{\mathbb{S}^{2}}\left[\int_{0}^{\frac{1}{|x|}}\frac{{\mathsf{G}}(\hat{x}-r\omega)-{\mathsf{G}}(\hat{x})}{r}\,dr\right]{\bf f}(\omega)\,d\omega

where

𝖧2(x^,ω):=012𝖦(x^rω)𝖦(x^)r𝑑r=O(1)\mathsf{H}_{2}(\hat{x},\omega):=\int_{0}^{\frac{1}{2}}\frac{{\mathsf{G}}(\hat{x}-r\omega)-{\mathsf{G}}(\hat{x})}{r}\,dr=O(1) (217)

because 𝖦(x^rω)𝖦(x^)r=O(1)\displaystyle\frac{{\mathsf{G}}(\hat{x}-r\omega)-{\mathsf{G}}(\hat{x})}{r}=O(1) as r0+r\to 0^{+}. Lastly, we have

𝕊2[01|x|𝖦(x^rω)𝖦(x^)r𝑑r]𝐟(ω)𝑑ω=O(1|x|).\int_{\mathbb{S}^{2}}\left[\int_{0}^{\frac{1}{|x|}}\frac{{\mathsf{G}}(\hat{x}-r\omega)-{\mathsf{G}}(\hat{x})}{r}\,dr\right]{\bf f}(\omega)\,d\omega=O(\frac{1}{|x|}). (218)

Combining (214), (LABEL:HH2.int), (217), we define

𝖧(x^,ω)\displaystyle\mathsf{H}(\hat{x},\omega) :=\displaystyle:= 𝖧1(x^,ω)+𝖧2(x^,ω)𝖦(x^)ln(2)\displaystyle\mathsf{H}_{1}(\hat{x},\omega)+\mathsf{H}_{2}(\hat{x},\omega)-{\mathsf{G}}(\hat{x})\ln(2) (219)
=\displaystyle= 012𝖦(x^rω)𝖦(x^)r𝑑r+12𝖦(x^rω)r𝑑r𝖦(x^)ln(2).\displaystyle\int_{0}^{\frac{1}{2}}\frac{{\mathsf{G}}(\hat{x}-r\omega)-{\mathsf{G}}(\hat{x})}{r}\,dr+\int_{\frac{1}{2}}^{\infty}\frac{{\mathsf{G}}(\hat{x}-r\omega)}{r}\,dr-{\mathsf{G}}(\hat{x})\ln(2).

Note that the above does not depend on the choice of 12\frac{1}{2}. Hence it can also be equivalently written as

𝖧(x^,ω)=limϵ0[ϵ𝖦(x^rω)r𝑑r+𝖦(x^)ln(ϵ)].\mathsf{H}(\hat{x},\omega)=\lim_{\epsilon\to 0}\left[\int_{\epsilon}^{\infty}\frac{{\mathsf{G}}(\hat{x}-r\omega)}{r}\,dr+{\mathsf{G}}(\hat{x})\ln(\epsilon)\right]. (220)

Then we have for |x|1|x|\gg 1 that,

Ω𝖦(xy)𝐟(y)𝑑y=𝖦(x)ln|x|𝕊2𝐟(ω)𝑑ω+1|x|𝕊2𝖧(x^,ω)𝐟(ω)𝑑ω+O(1|x|2).\displaystyle\int_{\Omega}{\mathsf{G}}(x-y){\bf f}(y)\,dy={\mathsf{G}}(x)\ln|x|\int_{\mathbb{S}^{2}}{\bf f}(\omega)\,d\omega+\frac{1}{|x|}\int_{\mathbb{S}^{2}}\mathsf{H}(\hat{x},\omega){\bf f}(\omega)\,d\omega+O\left(\frac{1}{|x|^{2}}\right). (221)

Hence if 𝕊2𝐟(ω)𝑑ω=0\displaystyle\int_{\mathbb{S}^{2}}{\bf f}(\omega)\,d\omega=0, then

Ω𝖦(xy)𝐟(y)𝑑y=1|x|𝕊2𝖧(x^,ω)𝐟(ω)𝑑ω+O(1|x|2).\int_{\Omega}{\mathsf{G}}(x-y){\bf f}(y)\,dy=\frac{1}{|x|}\int_{\mathbb{S}^{2}}\mathsf{H}(\hat{x},\omega){\bf f}(\omega)\,d\omega+O\left(\frac{1}{|x|^{2}}\right). (222)

Appendix B C2,αC^{2,\alpha} estimates for bulk integral

Here we prove the decay estimates for the bulk integral in (145)

Ω𝖦(xy)𝐟(y)𝑑y\int_{\Omega}{\mathsf{G}}(x-y){\bf f}(y)\,dy

with 𝖦=𝖦γ{\mathsf{G}}={\mathsf{G}}_{\gamma} and 𝐟=𝐟γ{\bf f}={\bf f}_{\gamma} given by (116). These are needed in step (II) of the existence proof of solution in Section 5.3.

As mentioned before, the key of the proof is based on the estimates of Newtonian potentials [36, Chapter 4] as 𝖦{\mathsf{G}} is homogeneous with degree 1-1. For estimates near the boundary, we can refer to (146). Hence we will just concentrate here on interior weighted estimates at |x|>a+1|x|>a+1. Only the proof involving the term 𝐅(x^)r3\displaystyle\frac{{\bf F}(\hat{x})}{r^{3}} in 𝐟{\bf f} will be given as it is the dominant term in terms of spatial decay property. All the other terms can be handled similarly. The proof is divided into C1C^{1}, C2C^{2} and C2,αC^{2,\alpha} estimates.

B.1 C1C^{1} estimates

These are relatively simple as Dx𝖦(x)D_{x}{\mathsf{G}}(x) is integrable near x=0x=0. Since 𝕊2𝐅(x^)𝑑σ=0\displaystyle\int_{\mathbb{S}^{2}}{\bf F}(\hat{x})\,d\sigma=0, then as shown in Appendix A, we have

|Ω𝖦(xy)𝐅(y^)|y|3𝑑y|1r.\displaystyle\left|\int_{\Omega}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy\right|\lesssim\frac{1}{r}.

Similarly, we have by the mean zero condition again that

|DxΩ𝖦(xy)𝐅(y^)|y|3𝑑y|1r2.\displaystyle\left|D_{x}\int_{\Omega}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy\right|\lesssim\frac{1}{r^{2}}.

Hence

supxΩ{|x||Ω𝖦(xy)𝐅(y^)|y|3𝑑y|,|x|2|DxΩ𝖦(xy)𝐅(y^)|y|3𝑑y|}1.\sup_{x\in\Omega}\left\{|x|\left|\int_{\Omega}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy\right|,\quad|x|^{2}\left|D_{x}\int_{\Omega}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy\right|\right\}\lesssim 1.

We remark that the mean zero condition is preserved during each iteration as the function 𝐅(y^){\bf F}(\hat{y}) does not depend on the solution 𝐮{{\bf u}}.

B.2 C2C^{2} estimates

We now proceed to the estimates for Dx2D^{2}_{x} of the bulk integrals. One difficulty is that now the singularity of Dx2𝖦(x)1|x|3D_{x}^{2}{\mathsf{G}}(x)\sim\frac{1}{|x|^{3}} is not integrable. We follow the approach of [36, Chapter 4, Lemma 4.2].

Let R=2|x|R=2|x|. Consider

Dx2Ω𝖦(xy)𝐅(y^)|y|3𝑑y\displaystyle D_{x}^{2}\int_{\Omega}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy
=\displaystyle= DxΩDx𝖦(xy)𝐅(y^)|y|3𝑑y\displaystyle D_{x}\int_{\Omega}D_{x}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy
=\displaystyle= limh0Ω(Dx𝖦(x+hy)Dx𝖦(xy)|h|)𝐅(y^)|y|3𝑑y\displaystyle\lim_{h\to 0}\int_{\Omega}\left(\frac{D_{x}{\mathsf{G}}(x+h-y)-D_{x}{\mathsf{G}}(x-y)}{|h|}\right)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy
=\displaystyle= limh03\𝐁R(Dx𝖦(x+hy)Dx𝖦(xy)|h|)𝐅(y^)|y|3𝑑y\displaystyle\lim_{h\to 0}\int_{\mathbb{R}^{3}\backslash{\bf B}_{R}}\left(\frac{D_{x}{\mathsf{G}}(x+h-y)-D_{x}{\mathsf{G}}(x-y)}{|h|}\right)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy
+limh0𝐁R\𝐁a(Dx𝖦(x+hy)Dx𝖦(xy)|h|)𝐅(y^)|y|3𝑑y\displaystyle+\lim_{h\to 0}\int_{{\bf B}_{R}\backslash{\bf B}_{a}}\left(\frac{D_{x}{\mathsf{G}}(x+h-y)-D_{x}{\mathsf{G}}(x-y)}{|h|}\right)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy
:=\displaystyle:= A+B\displaystyle A+B

For AA, we have

|I|\displaystyle|I| =\displaystyle= |limh03\𝐁R(Dx𝖦(x+hy)Dx𝖦(xy)|h|)𝐅(y^)|y|3𝑑y|\displaystyle\left|\lim_{h\to 0}\int_{\mathbb{R}^{3}\backslash{\bf B}_{R}}\left(\frac{D_{x}{\mathsf{G}}(x+h-y)-D_{x}{\mathsf{G}}(x-y)}{|h|}\right)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy\right|
=\displaystyle= |3\𝐁RDx2𝖦(xy)𝐅(y^)|y|3𝑑y|\displaystyle\left|\int_{\mathbb{R}^{3}\backslash{\bf B}_{R}}D^{2}_{x}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\cdot\,dy\right|
\displaystyle\lesssim 3\𝐁R1|y|31|xy|3𝑑y1|x|33\𝐁21|z|31|x^z|3𝑑zO(1|x|3).\displaystyle\int_{\mathbb{R}^{3}\backslash{\bf B}_{R}}\frac{1}{|y|^{3}}\frac{1}{|x-y|^{3}}\,dy\leq\frac{1}{|x|^{3}}\int_{\mathbb{R}^{3}\backslash{\bf B}_{2}}\frac{1}{|z|^{3}}\frac{1}{|\hat{x}-z|^{3}}\,dz\lesssim O\left(\frac{1}{|x|^{3}}\right).

For BB, we have

B\displaystyle B =\displaystyle= limh0𝐁R\𝐁a(Dx𝖦(x+hy)Dx𝖦(xy)|h|)𝑑y𝐅(x^)|x|3\displaystyle\lim_{h\to 0}\int_{{\bf B}_{R}\backslash{\bf B}_{a}}\left(\frac{D_{x}{\mathsf{G}}(x+h-y)-D_{x}{\mathsf{G}}(x-y)}{|h|}\right)\,dy\frac{{\bf F}(\hat{x})}{|x|^{3}}
+limh0𝐁R\𝐁a(Dx𝖦(x+hy)Dx𝖦(xy)|h|)(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle+\lim_{h\to 0}\int_{{\bf B}_{R}\backslash{\bf B}_{a}}\left(\frac{D_{x}{\mathsf{G}}(x+h-y)-D_{x}{\mathsf{G}}(x-y)}{|h|}\right)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\hat{x})}{|x|^{3}}\right)\,dy
:=\displaystyle:= B1+B2.\displaystyle B_{1}+B_{2}.

For B1B_{1}, by Divergence Theorem, we have

B1\displaystyle B_{1} =\displaystyle= (𝐁R\𝐁a)Dx𝖦(xy)h^𝑑σ(y)𝐅(x^)|x|3\displaystyle\int_{\partial({\bf B}_{R}\backslash{\bf B}_{a})}D_{x}{\mathsf{G}}(x-y)\cdot\hat{h}\,d\sigma(y)\frac{{\bf F}(\hat{x})}{|x|^{3}}

and hence

|B1|\displaystyle|B_{1}| \displaystyle\lesssim 1|x|3𝐁a1R2𝑑σ(y)+1|x|3𝐁R1R2𝑑σ(y)O(1|x|3).\displaystyle\frac{1}{|x|^{3}}\int_{\partial{\bf B}_{a}}\frac{1}{R^{2}}\,d\sigma(y)+\frac{1}{|x|^{3}}\int_{\partial{\bf B}_{R}}\frac{1}{R^{2}}\,d\sigma(y)\lesssim O\left(\frac{1}{|x|^{3}}\right).

For B2B_{2}, we have

B2\displaystyle B_{2} =\displaystyle= 𝐁R\𝐁aDx2𝖦(xy)(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle\int_{{\bf B}_{R}\backslash{\bf B}_{a}}D^{2}_{x}{\mathsf{G}}(x-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\hat{x})}{|x|^{3}}\right)\,dy
=\displaystyle= 1|x|3𝐁R|x|\𝐁a|x|Dx2𝖦(x^z)(𝐅(z^)|z|3𝐅(x^))𝑑z\displaystyle\frac{1}{|x|^{3}}\int_{{\bf B}_{\frac{R}{|x|}}\backslash{\bf B}_{{\frac{a}{|x|}}}}D^{2}_{x}{\mathsf{G}}(\hat{x}-z)\left(\frac{{\bf F}(\hat{z})}{|z|^{3}}-{\bf F}(\hat{x})\right)\,dz
=\displaystyle= 1|x|3𝐁2\𝐁a|x|Dx2𝖦(x^z)(𝐅(z^)|z|3𝐅(x^)|z|3)𝑑z.\displaystyle\frac{1}{|x|^{3}}\int_{{\bf B}_{2}\backslash{\bf B}_{{\frac{a}{|x|}}}}D^{2}_{x}{\mathsf{G}}(\hat{x}-z)\left(\frac{{\bf F}(\hat{z})-|z|^{3}{\bf F}(\hat{x})}{|z|^{3}}\right)\,dz.

Note that the singularity at z=x^z=\hat{x} is now integrable due to the presence of 𝐅(z^)|z|3𝐅(x^){\bf F}(\hat{z})-|z|^{3}{\bf F}(\hat{x}) in the numerator. On the other hand, the singularity behavior of 1|z|3\frac{1}{|z|^{3}} near |z|a|x|1|z|\sim\frac{a}{|x|}\ll 1 is tempered by the mean zero condition again:

lim|z|0𝕊2[𝐅(z^)|z|3𝐅(x^)]𝑑σ(z)=0.\lim_{|z|\to 0}\int_{\mathbb{S}^{2}}\Big{[}{\bf F}(\hat{z})-|z|^{3}{\bf F}(\hat{x})\Big{]}\,d\sigma(z)=0.

Then similar to the computation leading to (222), we have

|B2|O(1|x|3).|B_{2}|\lesssim O\left(\frac{1}{|x|^{3}}\right).

Combing the estimates for AA and BB gives,

supxΩ{|x|3|Dx2Ω𝖦(xy)𝐅(y^)|y|3𝑑y|}1.\sup_{x\in\Omega}\left\{|x|^{3}\left|D^{2}_{x}\int_{\Omega}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy\right|\right\}\lesssim 1.

B.3 C2,αC^{2,\alpha} estimates

For the CαC^{\alpha} estimates for the second derivatives of the bulk integrals, we follow [36, Chapter 4, Lemma 4.4].

Using the computation for 𝐅{\bf F} from the previous section and letting again R=2|x|R=2|x|, we have

Dx2Ω𝖦(xy)𝐅(y^)|y|3𝑑y\displaystyle D_{x}^{2}\int_{\Omega}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy
=\displaystyle= 3\𝐁RDx2𝖦(xy)𝐅(y^)|y|3𝑑y+(𝐁R\𝐁a)Dx𝖦(xy)h^𝑑σ(y)𝐅(x^)|x|3\displaystyle\int_{\mathbb{R}^{3}\backslash{\bf B}_{R}}D^{2}_{x}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy+\int_{\partial({\bf B}_{R}\backslash{\bf B}_{a})}D_{x}{\mathsf{G}}(x-y)\cdot\hat{h}\,d\sigma(y)\frac{{\bf F}(\hat{x})}{|x|^{3}}
+𝐁R\𝐁aDx2𝖦(xy)(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle+\int_{{\bf B}_{R}\backslash{\bf B}_{a}}D^{2}_{x}{\mathsf{G}}(x-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\hat{x})}{|x|^{3}}\right)\,dy
=:\displaystyle=: C1(x)+C2(x)+C3(x).\displaystyle C_{1}(x)+C_{2}(x)+C_{3}(x).

For C1C_{1}, in fact, it is differentiable in xx:

|lim|h|0C1(x+h)C1(x)|h||\displaystyle\left|\lim_{|h|\to 0}\frac{C_{1}(x+h)-C_{1}(x)}{|h|}\right| =\displaystyle= |3\𝐁RDx3𝖦(xy)𝐅(y^)|y|3𝑑y|\displaystyle\left|\int_{\mathbb{R}^{3}\backslash{\bf B}_{R}}D^{3}_{x}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy\right|
\displaystyle\lesssim 3\𝐁R1|y|3|xy|4d3y1|x|43\𝐁21|z|3|x^z|4d3z.\displaystyle\int_{\mathbb{R}^{3}\backslash{\bf B}_{R}}\frac{1}{|y|^{3}|x-y|^{4}}\,d^{3}y\lesssim\frac{1}{|x|^{4}}\int_{\mathbb{R}^{3}\backslash{\bf B}_{2}}\frac{1}{|z|^{3}|\hat{x}-z|^{4}}\,d^{3}z.

Hence

|x|4[C1]α(x)O(1).|x|^{4}[C_{1}]_{\alpha}(x)\lesssim O(1). (223)

For C2C_{2}, consider the following estimates,

|lim|h|01|h|𝐁a(Dx𝖦(x+hy)Dx𝖦(xy))𝑑σ(y)|\displaystyle\left|\lim_{|h|\to 0}\frac{1}{|h|}\int_{\partial{\bf B}_{a}}\big{(}D_{x}{\mathsf{G}}(x+h-y)-D_{x}{\mathsf{G}}(x-y)\big{)}\,d\sigma(y)\right|
=\displaystyle= |𝐁aDx2𝖦(xy)h^𝑑σ(y)|1|x|3\displaystyle\left|\int_{\partial{\bf B}_{a}}D^{2}_{x}{\mathsf{G}}(x-y)\cdot\hat{h}\,d\sigma(y)\right|\lesssim\frac{1}{|x|^{3}}
|lim|h|01|h|𝐁R(Dx𝖦(x+hy)Dx𝖦(xy))𝑑σ(y)|\displaystyle\left|\lim_{|h|\to 0}\frac{1}{|h|}\int_{\partial{\bf B}_{R}}\big{(}D_{x}{\mathsf{G}}(x+h-y)-D_{x}{\mathsf{G}}(x-y)\big{)}\,d\sigma(y)\right|
=\displaystyle= |𝐁RDx2𝖦(xy)h^𝑑σ(y)|1|x|\displaystyle\left|\int_{\partial{\bf B}_{R}}D^{2}_{x}{\mathsf{G}}(x-y)\cdot\hat{h}\,d\sigma(y)\right|\lesssim\frac{1}{|x|}
|lim|h|01|h|(1|x+h|31|x|3)|1|x|4\left|\lim_{|h|\to 0}\frac{1}{|h|}\left(\frac{1}{|x+h|^{3}}-\frac{1}{|x|^{3}}\right)\right|\lesssim\frac{1}{|x|^{4}}
|𝐅(x+h^)𝐅(x^)||x+h^x^|α=|x+h|x+h|x^|α=|x^+h|x||x^+h|x||x^|α(|h||x|)α\left|{\bf F}(\widehat{x+h})-{\bf F}(\widehat{x})\right|\lesssim\left|\widehat{x+h}-\widehat{x}\right|^{\alpha}=\left|\frac{x+h}{|x+h|}-\widehat{x}\right|^{\alpha}=\left|\frac{\widehat{x}+\frac{h}{|x|}}{\left|\widehat{x}+\frac{h}{|x|}\right|}-\widehat{x}\right|^{\alpha}\lesssim\left(\frac{|h|}{|x|}\right)^{\alpha}
|(𝐁R\𝐁a)Dx𝖦(xy)h^𝑑σ(y)|1.\left|\int_{\partial({\bf B}_{R}\backslash{\bf B}_{a})}D_{x}{\mathsf{G}}(x-y)\cdot\hat{h}\,d\sigma(y)\right|\lesssim 1.

Then we have

|C2(x+h)C2(x)|1|x|3|h||x|+|h||x|4+|h|α|x|α1|x|3|h|α|x|3+α.\displaystyle|C_{2}(x+h)-C_{2}(x)|\lesssim\frac{1}{|x|^{3}}\frac{|h|}{|x|}+\frac{|h|}{|x|^{4}}+\frac{|h|^{\alpha}}{|x|^{\alpha}}\frac{1}{|x|^{3}}\lesssim\frac{|h|^{\alpha}}{|x|^{3+\alpha}}. (224)

For C3C_{3}, consider

C3(x+h)C3(x)\displaystyle C_{3}(x+h)-C_{3}(x)
=\displaystyle= 𝐁R\𝐁aDx2𝖦(x+hy)(𝐅(y^)|y|3𝐅(x+h^)|x+h|3)𝑑y\displaystyle\int_{{\bf B}_{R}\backslash{\bf B}_{a}}D^{2}_{x}{\mathsf{G}}(x+h-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x+h})}{|x+h|^{3}}\right)\,dy
𝐁R\𝐁aDx2𝖦(xy)(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle-\int_{{\bf B}_{R}\backslash{\bf B}_{a}}D^{2}_{x}{\mathsf{G}}(x-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy
=\displaystyle= 𝐁δ(ξ)Dx2𝖦(x+hy)(𝐅(y^)|y|3𝐅(x+h^)|x+h|3)𝑑y\displaystyle\int_{{\bf B}_{\delta}(\xi)}D^{2}_{x}{\mathsf{G}}(x+h-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x+h})}{|x+h|^{3}}\right)\,dy
𝐁δ(ξ)Dx2𝖦(xy)(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle-\int_{{\bf B}_{\delta}(\xi)}D^{2}_{x}{\mathsf{G}}(x-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy
+(𝐁R\𝐁a)\𝐁δ(ξ)Dx2𝖦(x+hy)𝑑y(𝐅(x^)|x|3𝐅(x+h^)|x+h|3)\displaystyle+\int_{\left({\bf B}_{R}\backslash{\bf B}_{a}\right)\backslash{\bf B}_{\delta}(\xi)}D^{2}_{x}{\mathsf{G}}(x+h-y)\,dy\left(\frac{{\bf F}(\widehat{x})}{|x|^{3}}-\frac{{\bf F}(\widehat{x+h})}{|x+h|^{3}}\right)
+(𝐁R\𝐁a)\𝐁δ(ξ)(Dx2𝖦(x+hy)Dx2𝖦(xy))(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle+\int_{\left({\bf B}_{R}\backslash{\bf B}_{a}\right)\backslash{\bf B}_{\delta}(\xi)}\left(D^{2}_{x}{\mathsf{G}}(x+h-y)-D^{2}_{x}{\mathsf{G}}(x-y)\right)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy

where ξ=x+12h\xi=x+\frac{1}{2}h and δ=|h|\delta=|h|. We estimate,

|𝐁δ(ξ)Dx2𝖦(x+hy)(𝐅(y^)|y|3𝐅(x+h^)|x+h|3)𝑑y|\displaystyle\left|\int_{{\bf B}_{\delta}(\xi)}D^{2}_{x}{\mathsf{G}}(x+h-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x+h})}{|x+h|^{3}}\right)\,dy\right|
\displaystyle\lesssim 𝐁δ(ξ)(|yx||x|4+1|x|3|yx|α|x|α)1|yx|3d3y\displaystyle\int_{{\bf B}_{\delta}(\xi)}\left(\frac{|y-x|}{|x|^{4}}+\frac{1}{|x|^{3}}\frac{|y-x|^{\alpha}}{|x|^{\alpha}}\right)\frac{1}{|y-x|^{3}}\,d^{3}y
\displaystyle\lesssim 1|x|3+α𝐁δ(ξ)|yx|α|yx|3d3y|h|α|x|3+α,\displaystyle\frac{1}{|x|^{3+\alpha}}\int_{{\bf B}_{\delta}(\xi)}\frac{|y-x|^{\alpha}}{|y-x|^{3}}\,d^{3}y\lesssim\frac{|h|^{\alpha}}{|x|^{3+\alpha}},

and similarly,

|𝐁δ(ξ)Dx2𝖦(xy)(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y||h|α|x|3+α,\left|\int_{{\bf B}_{\delta}(\xi)}D^{2}_{x}{\mathsf{G}}(x-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy\right|\lesssim\frac{|h|^{\alpha}}{|x|^{3+\alpha}},

Furthermore, we have by Divergence Theorem

|(𝐁R\𝐁a)\𝐁δ(ξ)Dx2𝖦(x+hy)𝑑y|\displaystyle\left|\int_{\left({\bf B}_{R}\backslash{\bf B}_{a}\right)\backslash{\bf B}_{\delta}(\xi)}D^{2}_{x}{\mathsf{G}}(x+h-y)\,dy\right| =\displaystyle= |((𝐁R\𝐁a)\𝐁δ(ξ))Dx𝖦(x+hy)ν𝑑y|\displaystyle\left|\int_{\partial\left(\left({\bf B}_{R}\backslash{\bf B}_{a}\right)\backslash{\bf B}_{\delta}(\xi)\right)}D_{x}{\mathsf{G}}(x+h-y)\cdot\nu\,dy\right|
\displaystyle\lesssim 𝐁R+𝐁a+𝐁δ(ξ)|Dx𝖦(x+hy)|𝑑σ(y)\displaystyle\int_{\partial{\bf B}_{R}}+\int_{\partial{\bf B}_{a}}+\int_{\partial{\bf B}_{\delta}(\xi)}|D_{x}{\mathsf{G}}(x+h-y)|\,d\sigma(y)
\displaystyle\lesssim 1\displaystyle 1

so that

|(𝐁R\𝐁a)\𝐁δ(ξ)Dx2𝖦(x+hy)𝑑y(𝐅(x^)|x|3𝐅(x+h^)|x+h|3)||h|α|x|3+α.\displaystyle\left|\int_{\left({\bf B}_{R}\backslash{\bf B}_{a}\right)\backslash{\bf B}_{\delta}(\xi)}D^{2}_{x}{\mathsf{G}}(x+h-y)\,dy\left(\frac{{\bf F}(\widehat{x})}{|x|^{3}}-\frac{{\bf F}(\widehat{x+h})}{|x+h|^{3}}\right)\right|\lesssim\frac{|h|^{\alpha}}{|x|^{3+\alpha}}.

For the last term,

(𝐁R\𝐁a)\𝐁δ(ξ)(Dx2𝖦(x+hy)Dx2𝖦(xy))(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle\int_{\left({\bf B}_{R}\backslash{\bf B}_{a}\right)\backslash{\bf B}_{\delta}(\xi)}\left(D^{2}_{x}{\mathsf{G}}(x+h-y)-D^{2}_{x}{\mathsf{G}}(x-y)\right)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy
=\displaystyle= 𝐁2(ξ)\𝐁δ(ξ)(Dx2𝖦(x+hy)Dx2𝖦(xy))(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle\int_{{\bf B}_{2}(\xi)\backslash{\bf B}_{\delta}(\xi)}\left(D^{2}_{x}{\mathsf{G}}(x+h-y)-D^{2}_{x}{\mathsf{G}}(x-y)\right)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy
+(𝐁R\𝐁a)\𝐁2(ξ)(Dx2𝖦(x+hy)Dx2𝖦(xy))(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle+\int_{\left({\bf B}_{R}\backslash{\bf B}_{a}\right)\backslash{\bf B}_{2}(\xi)}\left(D^{2}_{x}{\mathsf{G}}(x+h-y)-D^{2}_{x}{\mathsf{G}}(x-y)\right)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy
=:\displaystyle=: D1+D2.\displaystyle D_{1}+D_{2}.

For D1D_{1}, we estimate

|D1|\displaystyle|D_{1}| =\displaystyle= |h||𝐁2(ξ)\𝐁δ(ξ)(Dx2𝖦(x+hy)Dx2𝖦(xy)|h|(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y|\displaystyle|h|\left|\int_{{\bf B}_{2}(\xi)\backslash{\bf B}_{\delta}(\xi)}\frac{(D^{2}_{x}{\mathsf{G}}(x+h-y)-D^{2}_{x}{\mathsf{G}}(x-y)}{|h|}\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy\right|
\displaystyle\lesssim |h||𝐁2(ξ)\𝐁δ(ξ)Dx3𝖦(x~+hy)(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y|\displaystyle|h|\left|\int_{{\bf B}_{2}(\xi)\backslash{\bf B}_{\delta}(\xi)}D^{3}_{x}{\mathsf{G}}(\tilde{x}+h-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy\right|
(where x~\tilde{x} is some point between xx and x+hx+h)
\displaystyle\lesssim |h||x|3+α𝐁2(ξ)\𝐁δ(ξ)|xy|α|x~y|4𝑑y|h|α|x|3+α.\displaystyle\frac{|h|}{|x|^{3+\alpha}}\int_{{\bf B}_{2}(\xi)\backslash{\bf B}_{\delta}(\xi)}\frac{|x-y|^{\alpha}}{|\tilde{x}-y|^{4}}\,dy\lesssim\frac{|h|^{\alpha}}{|x|^{3+\alpha}}.

For J2J_{2}, we have

D2\displaystyle D_{2} =\displaystyle= |h|(𝐁R\𝐁a)\𝐁2(ξ)Dx2𝖦(x+hy)Dx2𝖦(xy)|h|(𝐅(y^)|y|3𝐅(x^)|x|3)dy\displaystyle|h|\int_{\left({\bf B}_{R}\backslash{\bf B}_{a}\right)\backslash{\bf B}_{2}(\xi)}\cdot\frac{D^{2}_{x}{\mathsf{G}}(x+h-y)-D^{2}_{x}{\mathsf{G}}(x-y)}{|h|}\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy
\displaystyle\approx |h|(𝐁R\𝐁a)\𝐁2(ξ)Dx3𝖦(x~y)(𝐅(y^)|y|3𝐅(x^)|x|3)𝑑y\displaystyle|h|\int_{\left({\bf B}_{R}\backslash{\bf B}_{a}\right)\backslash{\bf B}_{2}(\xi)}D^{3}_{x}{\mathsf{G}}(\tilde{x}-y)\left(\frac{{\bf F}(\hat{y})}{|y|^{3}}-\frac{{\bf F}(\widehat{x})}{|x|^{3}}\right)\,dy
=\displaystyle= |h||x|4(𝐁R|x|\𝐁a|x|)\𝐁2(ξ)|x|Dx3𝖦(x^z)(𝐅(z^)|z|3𝐅(x^))𝑑z\displaystyle\frac{|h|}{|x|^{4}}\int_{\left({\bf B}_{\frac{R}{|x|}}\backslash{\bf B}_{\frac{a}{|x|}}\right)\big{\backslash}\frac{{\bf B}_{2}(\xi)}{|x|}}D^{3}_{x}{\mathsf{G}}(\hat{x}-z)\left(\frac{{\bf F}(\hat{z})}{|z|^{3}}-{\bf F}(\widehat{x})\right)\,dz
=\displaystyle= |h||x|4𝐁12(ξ|x|)\𝐁2|x|(ξ|x|)Dx3𝖦(x^z)(𝐅(z^)|z|3𝐅(x^))𝑑z\displaystyle\frac{|h|}{|x|^{4}}\int_{{\bf B}_{\frac{1}{2}}(\frac{\xi}{|x|})\backslash{\bf B}_{\frac{2}{|x|}}(\frac{\xi}{|x|})}D^{3}_{x}{\mathsf{G}}(\hat{x}-z)\left(\frac{{\bf F}(\hat{z})}{|z|^{3}}-{\bf F}(\widehat{x})\right)\,dz
+|h||x|4(𝐁R|x|\𝐁a|x|)\𝐁12(ξ|x|)Dx3𝖦(x^z)(𝐅(z^)|z|3𝐅(x^))𝑑z\displaystyle+\frac{|h|}{|x|^{4}}\int_{\left({\bf B}_{\frac{R}{|x|}}\backslash{\bf B}_{\frac{a}{|x|}}\right)\backslash{\bf B}_{\frac{1}{2}}(\frac{\xi}{|x|})}D^{3}_{x}{\mathsf{G}}(\hat{x}-z)\left(\frac{{\bf F}(\hat{z})}{|z|^{3}}-{\bf F}(\widehat{x})\right)\,dz
:=\displaystyle:= D21+D22\displaystyle D_{21}+D_{22}

For D21D_{21},

|D21|\displaystyle|D_{21}| \displaystyle\lesssim |h||x|4𝐁12(ξ|x|)\𝐁2|x|(ξ|x|)|zx^|α|zx^|4𝑑z|h||x|4|x|1α=|h||x|3+α\displaystyle\frac{|h|}{|x|^{4}}\int_{{\bf B}_{\frac{1}{2}}(\frac{\xi}{|x|})\backslash{\bf B}_{\frac{2}{|x|}}(\frac{\xi}{|x|})}\frac{|z-\hat{x}|^{\alpha}}{|z-\hat{x}|^{4}}\,dz\lesssim\frac{|h|}{|x|^{4}}|x|^{1-\alpha}=\frac{|h|}{|x|^{3+\alpha}}

For D22D_{22}, we again make use of the mean zero condition for 𝐅{\bf F} to have that

|D22||h||x|4.|D_{22}|\lesssim\frac{|h|}{|x|^{4}}.

Combining the above, we conclude that

|x|3+α[Dx2Ω𝖦(xy)𝐅(y^)|y|3𝑑y]α1.|x|^{3+\alpha}\left[D_{x}^{2}\int_{\Omega}{\mathsf{G}}(x-y)\frac{{\bf F}(\hat{y})}{|y|^{3}}\,dy\right]_{\alpha}\lesssim 1. (225)

Appendix C Calculation of γ:D2𝖤,γ:D2𝖥,div𝒜γ,𝒞γ\mathcal{M}_{\gamma}:D^{2}\mathsf{E},\,\,\,\mathcal{M}_{\gamma}:D^{2}\mathsf{F},\,\,\,\mathrm{div}\,\mathcal{A}_{\gamma},\,\,\,\mathcal{C}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma}

Before proceeding, we recall the conventions (183) and (184).

C.1 Formula for γ:D2𝐅\mathcal{M}_{\gamma}:D^{2}{\bf F}

Here we list the formulas for γ:D2𝐅\mathcal{M}_{\gamma}:D^{2}{\bf F} where 𝐅{\bf F} is some divergence free vector field with homogeneous degree k-k, for k=1,3,5k=1,3,5.

As a preparation, following (136) for g=g(r)=1r,1r3,1r5g=g(r)=\frac{1}{r},\,\frac{1}{r^{3}},\,\frac{1}{r^{5}}, we compute,

kg(r)\displaystyle\partial_{k}g(r) =\displaystyle= g(r)xkr,\displaystyle g^{\prime}(r)\frac{x_{k}}{r}, (226)
klg(r)\displaystyle\partial_{kl}g(r) =\displaystyle= g(r)rδkl+(g′′(r)g(r)r)xkxlr2,\displaystyle\frac{g^{\prime}(r)}{r}\delta_{kl}+\left(g^{\prime\prime}(r)-\frac{g^{\prime}(r)}{r}\right)\frac{x_{k}x_{l}}{r^{2}}, (227)
kl(g(r)δij)\displaystyle\partial_{kl}\big{(}g(r)\delta_{ij}\big{)} =\displaystyle= (g(r)rδkl+(g′′(r)g(r)r)xkxlr2)δij,\displaystyle\left(\frac{g^{\prime}(r)}{r}\delta_{kl}+\left(g^{\prime\prime}(r)-\frac{g^{\prime}(r)}{r}\right)\frac{x_{k}x_{l}}{r^{2}}\right)\delta_{ij}, (228)
k(g(r)xixj)\displaystyle\partial_{k}\big{(}g(r)x_{i}x_{j}\big{)} =\displaystyle= g(r)(δikxj+δjkxi)+g(r)rxixjxk,\displaystyle g(r)\big{(}\delta_{ik}x_{j}+\delta_{jk}x_{i}\big{)}+\frac{g^{\prime}(r)}{r}x_{i}x_{j}x_{k}, (229)
kl(g(r)xixj)\displaystyle\partial_{kl}\big{(}g(r)x_{i}x_{j}\big{)} =\displaystyle= g(r)(δikδjl+δjkδil)\displaystyle g(r)\big{(}\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}\big{)} (230)
+rg(r)(δilxjxk+δjlxixk+δklxixj+δikxjxl+δjkxixlr2)\displaystyle+rg^{\prime}(r)\Big{(}\frac{\delta_{il}x_{j}x_{k}+\delta_{jl}x_{i}x_{k}+\delta_{kl}x_{i}x_{j}+\delta_{ik}x_{j}x_{l}+\delta_{jk}x_{i}x_{l}}{r^{2}}\Big{)}
+(r2g′′(r)rg(r))xixjxkxlr4.\displaystyle+(r^{2}g^{\prime\prime}(r)-rg^{\prime}(r))\frac{x_{i}x_{j}x_{k}x_{l}}{r^{4}}.

Hence,

kl(δijr)\displaystyle\partial_{kl}\left(\frac{\delta_{ij}}{r}\right) =\displaystyle= 1r3(δkl+3x^kx^l)δij,\displaystyle\frac{1}{r^{3}}\big{(}-\delta_{kl}+3\hat{x}_{k}\hat{x}_{l}\big{)}\delta_{ij},
kl(δijr3)\displaystyle\partial_{kl}\left(\frac{\delta_{ij}}{r^{3}}\right) =\displaystyle= 1r5(3δkl+15x^kx^l)δij,\displaystyle\frac{1}{r^{5}}\big{(}-3\delta_{kl}+15\hat{x}_{k}\hat{x}_{l}\big{)}\delta_{ij},
kl(xixjr3)\displaystyle\partial_{kl}\left(\frac{x_{i}x_{j}}{r^{3}}\right) =\displaystyle= 1r3[(δikδjl+δjkδil)\displaystyle\frac{1}{r^{3}}\Big{[}\big{(}\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}\big{)}
3(δilx^jx^k+δjlx^ix^k+δklx^ix^j+δikx^jx^l+δjkx^ix^l)\displaystyle\hskip 20.0pt-3\big{(}\delta_{il}\hat{x}_{j}\hat{x}_{k}+\delta_{jl}\hat{x}_{i}\hat{x}_{k}+\delta_{kl}\hat{x}_{i}\hat{x}_{j}+\delta_{ik}\hat{x}_{j}\hat{x}_{l}+\delta_{jk}\hat{x}_{i}\hat{x}_{l}\big{)}
+15x^ix^jx^kx^l],\displaystyle\hskip 20.0pt+15\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\hat{x}_{l}\Big{]},
kl(xixjr5)\displaystyle\partial_{kl}\left(\frac{x_{i}x_{j}}{r^{5}}\right) =\displaystyle= 1r5[(δikδjl+δjkδil)\displaystyle\frac{1}{r^{5}}\Big{[}\big{(}\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}\big{)}
5(δilx^jx^k+δjlx^ix^k+δklx^ix^j+δikx^jx^l+δjkx^ix^l)\displaystyle\hskip 20.0pt-5\big{(}\delta_{il}\hat{x}_{j}\hat{x}_{k}+\delta_{jl}\hat{x}_{i}\hat{x}_{k}+\delta_{kl}\hat{x}_{i}\hat{x}_{j}+\delta_{ik}\hat{x}_{j}\hat{x}_{l}+\delta_{jk}\hat{x}_{i}\hat{x}_{l}\big{)}
+35x^ix^jx^kx^l].\displaystyle\hskip 20.0pt+35\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\hat{x}_{l}\Big{]}.

The above are applied to 𝖤,𝖥\mathsf{E},\mathsf{F} and 𝖰\mathsf{Q}.

  • 𝖤(x)=18π[𝖨r+xxr3]\displaystyle\mathsf{E}(x)=\frac{1}{8\pi}\left[\frac{\mathsf{I}}{r}+\frac{x\otimes x}{r^{3}}\right].

    k𝖤ij(x)\displaystyle\partial_{k}\mathsf{E}_{ij}(x) =\displaystyle= 18πr2[δijx^k+δikx^j+δjkx^i3x^ix^jx^k]\displaystyle\frac{1}{8\pi r^{2}}\Big{[}-\delta_{ij}\hat{x}_{k}+\delta_{ik}\hat{x}_{j}+\delta_{jk}\hat{x}_{i}-3\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\Big{]} (231)
    kl𝖤ij(x)\displaystyle\partial_{kl}\mathsf{E}_{ij}(x) =\displaystyle= 18πr3[(δijδkl+δikδjl+δjkδil)\displaystyle\frac{1}{8\pi r^{3}}\Big{[}\left(-\delta_{ij}\delta_{kl}+\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}\right) (232)
    3(δijx^kx^l+δikx^jx^l+δjkx^ix^l+δilx^jx^k+δjlx^ix^k+δklx^ix^j)\displaystyle\hskip 40.0pt-3\left(-\delta_{ij}\hat{x}_{k}\hat{x}_{l}+\delta_{ik}\hat{x}_{j}\hat{x}_{l}+\delta_{jk}\hat{x}_{i}\hat{x}_{l}+\delta_{il}\hat{x}_{j}\hat{x}_{k}+\delta_{jl}\hat{x}_{i}\hat{x}_{k}+\delta_{kl}\hat{x}_{i}\hat{x}_{j}\right)
    +15x^ix^jx^kx^l].\displaystyle\hskip 40.0pt+15\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\hat{x}_{l}\Big{]}.
  • 𝖥(x)=3xxr2𝖨r5\displaystyle\mathsf{F}(x)=\frac{3x\otimes x-r^{2}\mathsf{I}}{r^{5}}.

    k𝖥ij(x)\displaystyle\partial_{k}\mathsf{F}_{ij}(x) =\displaystyle= 1r4[3(δijx^k+δikx^j+δjkx^i)15x^ix^jx^k]\displaystyle\frac{1}{r^{4}}\Big{[}3\big{(}\delta_{ij}\hat{x}_{k}+\delta_{ik}\hat{x}_{j}+\delta_{jk}\hat{x}_{i}\big{)}-15\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\Big{]} (233)
    kl𝖥ij(x)\displaystyle\partial_{kl}\mathsf{F}_{ij}(x) =\displaystyle= 1r5[3(δikδjl+δjkδil+δklδij)\displaystyle\frac{1}{r^{5}}\Big{[}3\big{(}\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}+\delta_{kl}\delta_{ij}\big{)} (234)
    15(δijx^kx^l+δilx^jx^k+δjlx^ix^k+δklx^ix^j+δikx^jx^l+δjkx^ix^l)\displaystyle\hskip 20.0pt-15\big{(}\delta_{ij}\hat{x}_{k}\hat{x}_{l}+\delta_{il}\hat{x}_{j}\hat{x}_{k}+\delta_{jl}\hat{x}_{i}\hat{x}_{k}+\delta_{kl}\hat{x}_{i}\hat{x}_{j}+\delta_{ik}\hat{x}_{j}\hat{x}_{l}+\delta_{jk}\hat{x}_{i}\hat{x}_{l}\big{)}
    +105x^ix^jx^kx^l]\displaystyle\hskip 20.0pt+105\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\hat{x}_{l}\Big{]}
  • 𝖰(x)=(1w1+w1r)𝖰+w3+w1r3𝖰b=(1w1+w1r)𝖰+ws3(3+w)𝖥(x)\displaystyle\mathsf{Q}(x)=\left(1-\frac{w}{1+w}\frac{1}{r}\right)\mathsf{Q}_{*}+\frac{w}{3+w}\frac{1}{r^{3}}\mathsf{Q}_{b}=\left(1-\frac{w}{1+w}\frac{1}{r}\right)\mathsf{Q}_{*}+\frac{ws_{*}}{3(3+w)}\mathsf{F}(x),
    where 𝖰ij=ninj13δij\displaystyle{\mathsf{Q}_{*}}_{ij}={n_{*}}_{i}{n_{*}}_{j}-\frac{1}{3}\delta_{ij}.

    k𝖰ij(x)\displaystyle\partial_{k}\mathsf{Q}_{ij}(x) =\displaystyle= w(1+w)r2x^k𝖰ij\displaystyle\frac{w}{(1+w)r^{2}}\hat{x}_{k}{\mathsf{Q}_{*}}_{ij} (235)
    +ws(3+w)r4[δijx^k+δikx^j+δjkx^i5x^ix^jx^k],\displaystyle+\frac{ws_{*}}{(3+w)r^{4}}\Big{[}\delta_{ij}\hat{x}_{k}+\delta_{ik}\hat{x}_{j}+\delta_{jk}\hat{x}_{i}-5\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\Big{]},
    kl𝖰ij(x)\displaystyle\partial_{kl}\mathsf{Q}_{ij}(x) =\displaystyle= w(1+w)r3[δkl+3x^kx^l]𝖰ij\displaystyle-\frac{w}{(1+w)r^{3}}\Big{[}-\delta_{kl}+3\hat{x}_{k}\hat{x}_{l}\Big{]}{\mathsf{Q}_{*}}_{ij} (236)
    +ws(3+w)r5[(δikδjl+δjkδil+δklδij)\displaystyle+\frac{ws_{*}}{(3+w)r^{5}}\Big{[}\big{(}\delta_{ik}\delta_{jl}+\delta_{jk}\delta_{il}+\delta_{kl}\delta_{ij}\big{)}
    5(δijx^kx^l+δilx^jx^k+δjlx^ix^k+δklx^ix^j+δikx^jx^l+δjkx^ix^l)\displaystyle\hskip 20.0pt-5\big{(}\delta_{ij}\hat{x}_{k}\hat{x}_{l}+\delta_{il}\hat{x}_{j}\hat{x}_{k}+\delta_{jl}\hat{x}_{i}\hat{x}_{k}+\delta_{kl}\hat{x}_{i}\hat{x}_{j}+\delta_{ik}\hat{x}_{j}\hat{x}_{l}+\delta_{jk}\hat{x}_{i}\hat{x}_{l}\big{)}
    +35x^ix^jx^kx^l].\displaystyle\hskip 20.0pt+35\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\hat{x}_{l}\Big{]}.

We now recall the operation (95), (96) and (109) for γ\mathcal{B}_{\gamma}:

(div(γ[𝐯]))i=(γ:D2𝐯)i=p=1,7,10,11γpi,j;k,lpkl𝐯j.\displaystyle\Big{(}\mathrm{div}\,\big{(}\mathcal{B}_{\gamma}[\nabla{\bf v}]\big{)}\Big{)}_{i}=\Big{(}\mathcal{M}_{\gamma}:D^{2}{\bf v}\Big{)}_{i}=\sum_{p=1,\ldots 7,10,11}\gamma_{p}\mathcal{M}^{p}_{i,j;k,l}\partial_{kl}{\bf v}_{j}.

Given any matrix valued function 𝐅(x)={𝐅ij(x)}1i,j3\mathbf{F}(x)=\{\mathbf{F}_{ij}(x)\}_{1\leq i,j\leq 3}, upon introducing the contraction,

(p:D2𝐅)ij=i,m;,k,lpkl𝐅mj,\big{(}\mathcal{M}^{p}:D^{2}{\mathbf{F}})_{ij}=\mathcal{M}^{p}_{i,m;,k,l}\partial_{kl}{\mathbf{F}}_{mj}, (237)

then we have

(p:D2(𝐅𝐯))i=(i,m;k,lpkl𝐅mj)𝐯j.\displaystyle\big{(}\mathcal{M}^{p}:D^{2}({\bf F}{\bf v}_{*})\big{)}_{i}=\big{(}\mathcal{M}^{p}_{i,m;k,l}\partial_{kl}{\bf F}_{mj}\big{)}{{\bf v}_{*}}_{j}. (238)

Note that we will only consider those 𝐅{\mathbf{F}} such that 𝐅𝐯{\mathbf{F}}{\bf v}_{*} is divergence free for all 𝐯{\bf v}_{*}, i.e.

i𝐅ik=0for all k.\partial_{i}{\mathbf{F}}_{ik}=0\,\,\,\text{for all $k$.} (239)

This condition is indeed satisfied by 𝐅=𝖤{\bf F}=\mathsf{E} (43), 𝖤S\mathsf{E}_{S} (67), and hence 𝖥\mathsf{F} (66).

With the above, we proceed to find:

  • Formula for (p:D2𝖤)ij(x)=i,m;k,lpkl𝖤mj(x)(\mathcal{M}^{p}:D^{2}\mathsf{E})_{ij}(x)=\mathcal{M}^{p}_{i,m;k,l}\partial_{kl}\mathsf{E}_{mj}(x). From (110), we need to compute the following:

    {δklδim,δklninm,δimnknl,δiknlnm,ninmnknl}×kl𝖤mj(x)\displaystyle\Big{\{}\delta_{kl}\delta_{im},\,\,\,\delta_{kl}{n_{*}}_{i}{n_{*}}_{m},\,\,\,\delta_{im}{n_{*}}_{k}{n_{*}}_{l},\,\,\,\delta_{ik}{n_{*}}_{l}{n_{*}}_{m},\,\,\,{n_{*}}_{i}{n_{*}}_{m}{n_{*}}_{k}{n_{*}}_{l}\Big{\}}\times\partial_{kl}\mathsf{E}_{mj}(x)
    =\displaystyle= {δklδim,δklninm,δimnknl,δiknlnm,ninmnknl}×\displaystyle\Big{\{}\delta_{kl}\delta_{im},\,\,\,\delta_{kl}{n_{*}}_{i}{n_{*}}_{m},\,\,\,\delta_{im}{n_{*}}_{k}{n_{*}}_{l},\,\,\,\delta_{ik}{n_{*}}_{l}{n_{*}}_{m},\,\,\,{n_{*}}_{i}{n_{*}}_{m}{n_{*}}_{k}{n_{*}}_{l}\Big{\}}\times
    18πr3[(δmjδkl+δmkδjl+δjkδml)\displaystyle\frac{1}{8\pi r^{3}}\Big{[}\left(-\delta_{mj}\delta_{kl}+\delta_{mk}\delta_{jl}+\delta_{jk}\delta_{ml}\right)
    3(δmjx^kx^l+δmkx^jx^l+δjkx^mx^l+δmlx^jx^k+δjlx^mx^k+δklx^mx^j)\displaystyle\hskip 35.0pt-3\big{(}-\delta_{mj}\hat{x}_{k}\hat{x}_{l}+\delta_{mk}\hat{x}_{j}\hat{x}_{l}+\delta_{jk}\hat{x}_{m}\hat{x}_{l}+\delta_{ml}\hat{x}_{j}\hat{x}_{k}+\delta_{jl}\hat{x}_{m}\hat{x}_{k}+\delta_{kl}\hat{x}_{m}\hat{x}_{j}\big{)}
    +15x^mx^jx^kx^l].\displaystyle\hskip 35.0pt+15\hat{x}_{m}\hat{x}_{j}\hat{x}_{k}\hat{x}_{l}\Big{]}.

    We tabulate the result in the following:

    δklδimkl𝖤mj(x)\displaystyle\delta_{kl}\delta_{im}\partial_{kl}\mathsf{E}_{mj}(x) =\displaystyle= 18πr3[2δij6x^ix^j]\displaystyle\frac{1}{8\pi r^{3}}\Big{[}2\delta_{ij}-6\hat{x}_{i}\hat{x}_{j}\Big{]}
    δklninmkl𝖤mj(x)\displaystyle\delta_{kl}{n_{*}}_{i}{n_{*}}_{m}\partial_{kl}\mathsf{E}_{mj}(x) =\displaystyle= 18πr3[2ninj6nix^jn,x^]\displaystyle\frac{1}{8\pi r^{3}}\Big{[}2{n_{*}}_{i}{n_{*}}_{j}-6{n_{*}}_{i}\hat{x}_{j}\langle n,\hat{x}\rangle\Big{]}
    δimnknlkl𝖤mj(x)\displaystyle\delta_{im}{n_{*}}_{k}{n_{*}}_{l}\partial_{kl}\mathsf{E}_{mj}(x) =\displaystyle= 18πr3[δij+2ninj+3δijn,x^26(nix^j+njx^i)n,x^\displaystyle\frac{1}{8\pi r^{3}}\Big{[}-\delta_{ij}+2{n_{*}}_{i}{n_{*}}_{j}+3\delta_{ij}\langle{n_{*}},\hat{x}\rangle^{2}-6({n_{*}}_{i}\hat{x}_{j}+{n_{*}}_{j}\hat{x}_{i})\langle{n_{*}},\hat{x}\rangle
    3x^ix^j+15x^ix^jn,x^2]\displaystyle\hskip 35.0pt-3\hat{x}_{i}\hat{x}_{j}+15\hat{x}_{i}\hat{x}_{j}\langle{n_{*}},\hat{x}\rangle^{2}\Big{]}
    δiknlnmkl𝖤mj(x)\displaystyle\delta_{ik}{n_{*}}_{l}{n_{*}}_{m}\partial_{kl}\mathsf{E}_{mj}(x) =\displaystyle= 18πr3[δij3δijn,x^26nixjn,x^3x^ix^j+15x^ix^ja,x^2]\displaystyle\frac{1}{8\pi r^{3}}\Big{[}\delta_{ij}-3\delta_{ij}\langle{n_{*}},\hat{x}\rangle^{2}-6{n_{*}}_{i}x_{j}\langle{n_{*}},\hat{x}\rangle-3\hat{x}_{i}\hat{x}_{j}+15\hat{x}_{i}\hat{x}_{j}\langle a,\hat{x}\rangle^{2}\Big{]}
    ninmnknlkl𝖤mj(x)\displaystyle{n_{*}}_{i}{n_{*}}_{m}{n_{*}}_{k}{n_{*}}_{l}\partial_{kl}\mathsf{E}_{mj}(x) =\displaystyle= 18πr3[ninj3ninjn,x^29nix^jn,x^+15nix^jn,x^3].\displaystyle\frac{1}{8\pi r^{3}}\Big{[}{n_{*}}_{i}{n_{*}}_{j}-3{n_{*}}_{i}{n_{*}}_{j}\langle{n_{*}},\hat{x}\rangle^{2}-9{n_{*}}_{i}\hat{x}_{j}\langle{n_{*}},\hat{x}\rangle+15{n_{*}}_{i}\hat{x}_{j}\langle{n_{*}},\hat{x}\rangle^{3}\Big{]}.

    With the above, we have explicitly,

    1:D2𝖤(x)\displaystyle\mathcal{M}^{1}:D^{2}\mathsf{E}(x) =\displaystyle= s28πr3[(13n,x^2)𝖨+2nn3n,x^(nx^+x^n)]\displaystyle\frac{s_{*}^{2}}{8\pi r^{3}}\Big{[}-\big{(}1-3{\langle{n_{*}},\hat{x}\rangle^{2}}\big{)}\mathsf{I}+2{n_{*}}\otimes{n_{*}}-3\langle{n_{*}},\hat{x}\rangle\big{(}{n_{*}}\otimes\hat{x}+\hat{x}\otimes{n_{*}}\big{)}\Big{]}
    2:D2𝖤(x)\displaystyle\mathcal{M}^{2}:D^{2}\mathsf{E}(x) =\displaystyle= s8πr3[(13n,x^2)𝖨+3(15n,x^2)x^x^+6n,x^x^n]\displaystyle\frac{s_{*}}{8\pi r^{3}}\Big{[}\big{(}1-3\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+3\big{(}1-5\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\hat{x}\otimes\hat{x}+6\langle{n_{*}},\hat{x}\rangle\hat{x}\otimes{n_{*}}\Big{]}
    3:D2𝖤(x)\displaystyle\mathcal{M}^{3}:D^{2}\mathsf{E}(x) =\displaystyle= 18πr3s26[(13n,x^2)𝖨+3(15n,x^2)x^x^+6n,x^x^n]\displaystyle\frac{1}{8\pi r^{3}}\frac{s_{*}^{2}}{6}\Big{[}\big{(}1-3\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+3\big{(}1-5\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\hat{x}\otimes\hat{x}+6\langle{n_{*}},\hat{x}\rangle\hat{x}\otimes{n_{*}}\Big{]}
    4:D2𝖤(x)\displaystyle\mathcal{M}^{4}:D^{2}\mathsf{E}(x) =\displaystyle= s8πr3[23𝖨+2nn(115n,x^2)x^x^\displaystyle\frac{s_{*}}{8\pi r^{3}}\Big{[}-\frac{2}{3}\mathsf{I}+2{n_{*}}\otimes{n_{*}}-\big{(}1-15\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\hat{x}\otimes\hat{x}
    9n,x^nx^3n,x^x^n]\displaystyle\hskip 35.0pt-9\langle{n_{*}},\hat{x}\rangle{n_{*}}\otimes\hat{x}-3\langle{n_{*}},\hat{x}\rangle\hat{x}\otimes{n_{*}}\Big{]}
    5:D2𝖤(x)\displaystyle\mathcal{M}^{5}:D^{2}\mathsf{E}(x) =\displaystyle= 18πr3s26[43𝖨+4nn10(13n,x^2)x^x^\displaystyle\frac{1}{8\pi r^{3}}\frac{s_{*}^{2}}{6}\Big{[}\frac{4}{3}\mathsf{I}+4{n_{*}}\otimes{n_{*}}-10\big{(}1-3\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\hat{x}\otimes\hat{x}
    18n,x^nx^6n,x^x^n]\displaystyle\hskip 45.0pt-18\langle{n_{*}},\hat{x}\rangle{n_{*}}\otimes\hat{x}-6\langle{n_{*}},\hat{x}\rangle\hat{x}\otimes{n_{*}}\Big{]}
    6:D2𝖤(x)\displaystyle\mathcal{M}^{6}:D^{2}\mathsf{E}(x) =\displaystyle= s28πr3[(13n,x^2)𝖨+(13n,x^2)nn\displaystyle\frac{s_{*}^{2}}{8\pi r^{3}}\Big{[}-\big{(}\frac{1}{3}-\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+\big{(}1-3\langle{n_{*}},\hat{x}\rangle^{2}\big{)}{n_{*}}\otimes{n_{*}}
    +(110n,x^2)x^x^7n,x^nx^+15n,x^3nx^]\displaystyle\hskip 35.0pt+\big{(}1-10\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\hat{x}\otimes\hat{x}-7\langle{n_{*}},\hat{x}\rangle{n_{*}}\otimes\hat{x}+15\langle{n_{*}},\hat{x}\rangle^{3}n\otimes\hat{x}\Big{]}
    7:D2𝖤(x)\displaystyle\mathcal{M}^{7}:D^{2}\mathsf{E}(x) =\displaystyle= s28πr3[23𝖨2x^x^]\displaystyle\frac{s_{*}^{2}}{8\pi r^{3}}\Big{[}\frac{2}{3}\mathsf{I}-2\hat{x}\otimes\hat{x}\Big{]}
    10:D2𝖤(x)\displaystyle\mathcal{M}^{10}:D^{2}\mathsf{E}(x) =\displaystyle= 18πr32s33[(13n,x^2)nn9n,x^nx^+15n,x^3nx^]\displaystyle\frac{1}{8\pi r^{3}}\frac{2s_{*}^{3}}{3}\Big{[}\big{(}1-3\langle{n_{*}},\hat{x}\rangle^{2}\big{)}{n_{*}}\otimes{n_{*}}-9\langle{n_{*}},\hat{x}\rangle{n_{*}}\otimes\hat{x}+15\langle{n_{*}},\hat{x}\rangle^{3}{n_{*}}\otimes\hat{x}\Big{]}
    11:D2𝖤(x)\displaystyle\mathcal{M}^{11}:D^{2}\mathsf{E}(x) =\displaystyle= 18πr32s43[(13n,x^2)𝖨+(13n,x^2)nn\displaystyle\frac{1}{8\pi r^{3}}\frac{2s_{*}^{4}}{3}\Big{[}-\big{(}\frac{1}{3}-\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+\big{(}1-3\langle{n_{*}},\hat{x}\rangle^{2}\big{)}{n_{*}}\otimes{n_{*}}
    +(110n,x^2)x^x^7n,x^nx^+15n,x^3nx^].\displaystyle\hskip 52.0pt+\big{(}1-10\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\hat{x}\otimes\hat{x}-7\langle{n_{*}},\hat{x}\rangle{n_{*}}\otimes\hat{x}+15\langle{n_{*}},\hat{x}\rangle^{3}{n_{*}}\otimes\hat{x}\Big{]}.

    We note that 3=s62\mathcal{M}^{3}=\frac{s_{*}}{6}\mathcal{M}^{2}, 11=2s236\mathcal{M}^{11}=\frac{2s_{*}^{2}}{3}\mathcal{M}^{6}.

  • Formula for γ:D2𝖥(x)\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(x). Similarly, we need to compute the following:

    {δklδim,δklninm,δimnknl,δiknlnm,ninmnknl}×kl𝖥mj(x)\displaystyle\Big{\{}\delta_{kl}\delta_{im},\,\,\,\delta_{kl}{n_{*}}_{i}{n_{*}}_{m},\,\,\,\delta_{im}{n_{*}}_{k}{n_{*}}_{l},\,\,\,\delta_{ik}{n_{*}}_{l}{n_{*}}_{m},\,\,\,{n_{*}}_{i}{n_{*}}_{m}{n_{*}}_{k}{n_{*}}_{l}\Big{\}}\times\partial_{kl}\mathsf{F}_{mj}(x)
    =\displaystyle= {δklδim,δklninm,δimnknl,δiknlnm,ninmnknl}×\displaystyle\Big{\{}\delta_{kl}\delta_{im},\,\,\,\delta_{kl}{n_{*}}_{i}{n_{*}}_{m},\,\,\,\delta_{im}{n_{*}}_{k}{n_{*}}_{l},\,\,\,\delta_{ik}{n_{*}}_{l}{n_{*}}_{m},\,\,\,{n_{*}}_{i}{n_{*}}_{m}{n_{*}}_{k}{n_{*}}_{l}\Big{\}}\times
    1r5[3(δmkδjl+δjkδml+δklδmj)\displaystyle\frac{1}{r^{5}}\Big{[}3\big{(}\delta_{mk}\delta_{jl}+\delta_{jk}\delta_{ml}+\delta_{kl}\delta_{mj}\big{)}
    15(δmjx^kx^l+δmlx^jx^k+δjlx^mx^k+δklx^mx^j+δmkx^jx^l+δjkx^mx^l)\displaystyle\hskip 20.0pt-15\big{(}\delta_{mj}\hat{x}_{k}\hat{x}_{l}+\delta_{ml}\hat{x}_{j}\hat{x}_{k}+\delta_{jl}\hat{x}_{m}\hat{x}_{k}+\delta_{kl}\hat{x}_{m}\hat{x}_{j}+\delta_{mk}\hat{x}_{j}\hat{x}_{l}+\delta_{jk}\hat{x}_{m}\hat{x}_{l}\big{)}
    +105x^mx^jx^kx^l]\displaystyle\hskip 20.0pt+105\hat{x}_{m}\hat{x}_{j}\hat{x}_{k}\hat{x}_{l}\Big{]}

    We again tabulate the result in the following:

    δklδimkl𝖥mj(x)\displaystyle\delta_{kl}\delta_{im}\partial_{kl}\mathsf{F}_{mj}(x) =\displaystyle= 0\displaystyle 0
    δklninmkl𝖥mj(x)\displaystyle\delta_{kl}{n_{*}}_{i}{n_{*}}_{m}\partial_{kl}\mathsf{F}_{mj}(x) =\displaystyle= 0\displaystyle 0
    δimnknlkl𝖥mj(x)\displaystyle\delta_{im}{n_{*}}_{k}{n_{*}}_{l}\partial_{kl}\mathsf{F}_{mj}(x) =\displaystyle= 1r5[3δij15δijn,x^2+6ninj15x^ix^j\displaystyle\frac{1}{r^{5}}\Big{[}3\delta_{ij}-15\delta_{ij}\langle{n_{*}},\hat{x}\rangle^{2}+6{n_{*}}_{i}{n_{*}}_{j}-15\hat{x}_{i}\hat{x}_{j}
    30(nix^j+njx^i)a,x^+105x^ix^jn,x^2]\displaystyle\hskip 20.0pt-30({n_{*}}_{i}\hat{x}_{j}+{n_{*}}_{j}\hat{x}_{i})\langle a,\hat{x}\rangle+105\hat{x}_{i}\hat{x}_{j}\langle{n_{*}},\hat{x}\rangle^{2}\Big{]}
    δiknlnmkl𝖥mj(x)\displaystyle\delta_{ik}{n_{*}}_{l}{n_{*}}_{m}\partial_{kl}\mathsf{F}_{mj}(x) =\displaystyle= 1r5[3δij15δijn,x^2+6ninj15x^ix^j\displaystyle\frac{1}{r^{5}}\Big{[}3\delta_{ij}-15\delta_{ij}\langle{n_{*}},\hat{x}\rangle^{2}+6{n_{*}}_{i}{n_{*}}_{j}-15\hat{x}_{i}\hat{x}_{j}
    30(nixj+njx^i)a,x^+105x^ix^jn,x^2]\displaystyle\hskip 20.0pt-30({n_{*}}_{i}x_{j}+{n_{*}}_{j}\hat{x}_{i})\langle a,\hat{x}\rangle+105\hat{x}_{i}\hat{x}_{j}\langle{n_{*}},\hat{x}\rangle^{2}\Big{]}
    ninmnknlkl𝖥mj(x)\displaystyle{n_{*}}_{i}{n_{*}}_{m}{n_{*}}_{k}{n_{*}}_{l}\partial_{kl}\mathsf{F}_{mj}(x) =\displaystyle= 1r5[9ninj45ninja,x^245nix^jn,x^+105nix^jn,x^3].\displaystyle\frac{1}{r^{5}}\Big{[}9{n_{*}}_{i}{n_{*}}_{j}-45{n_{*}}_{i}{n_{*}}_{j}\langle a,\hat{x}\rangle^{2}-45{n_{*}}_{i}\hat{x}_{j}\langle{n_{*}},\hat{x}\rangle+105{n_{*}}_{i}\hat{x}_{j}\langle{n_{*}},\hat{x}\rangle^{3}\Big{]}.

    Similar to γ:D2𝖤\mathcal{M}_{\gamma}:D^{2}\mathsf{E}, we have the following:

    1:D2𝖥(x)\displaystyle\mathcal{M}^{1}:D^{2}\mathsf{F}(x) =\displaystyle= 0\displaystyle 0
    2:D2𝖥(x)\displaystyle\mathcal{M}^{2}:D^{2}\mathsf{F}(x) =\displaystyle= sr5[3(15n,x^2)𝖨+6nn15(17n,x^2)x^x^\displaystyle-\frac{s_{*}}{r^{5}}\Big{[}3\big{(}1-5\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+6{n_{*}}\otimes{n_{*}}-15(1-7\langle{n_{*}},\hat{x}\rangle^{2})\hat{x}\otimes\hat{x}
    30n,x^(nx^+x^n)]\displaystyle\hskip 30.0pt-30\langle{n_{*}},\hat{x}\rangle\big{(}{n_{*}}\otimes\hat{x}+\hat{x}\otimes{n_{*}}\big{)}\Big{]}
    3:D2𝖥(x)\displaystyle\mathcal{M}^{3}:D^{2}\mathsf{F}(x) =\displaystyle= s26r5[3(15n,x^2)𝖨+6nn15(17n,x^2)x^x^\displaystyle-\frac{s_{*}^{2}}{6r^{5}}\Big{[}3\big{(}1-5\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+6{n_{*}}\otimes{n_{*}}-15(1-7\langle{n_{*}},\hat{x}\rangle^{2})\hat{x}\otimes\hat{x}
    30n,x^(nx^+x^n)]\displaystyle\hskip 35.0pt-30\langle{n_{*}},\hat{x}\rangle\big{(}{n_{*}}\otimes\hat{x}+\hat{x}\otimes{n_{*}}\big{)}\Big{]}
    4:D2𝖥(x)\displaystyle\mathcal{M}^{4}:D^{2}\mathsf{F}(x) =\displaystyle= sr5[3(15n,x^2)𝖨+6nn15(17n,x^2)x^x^\displaystyle\frac{s_{*}}{r^{5}}\Big{[}3\big{(}1-5\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+6{n_{*}}\otimes{n_{*}}-15(1-7\langle n,\hat{x}\rangle^{2})\hat{x}\otimes\hat{x}
    30n,x^(nx^+x^n)]\displaystyle\hskip 35.0pt-30\langle{n_{*}},\hat{x}\rangle\big{(}{n_{*}}\otimes\hat{x}+\hat{x}\otimes{n_{*}}\big{)}\Big{]}
    5:D2𝖥(x)\displaystyle\mathcal{M}^{5}:D^{2}\mathsf{F}(x) =\displaystyle= s23r5[3(15n,x^2)𝖨+6nn15(17n,x^2)x^x^\displaystyle\frac{s_{*}^{2}}{3r^{5}}\Big{[}3\big{(}1-5\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+6{n_{*}}\otimes{n_{*}}-15(1-7\langle{n_{*}},\hat{x}\rangle^{2})\hat{x}\otimes\hat{x}
    30n,x^(nx^+x^n)]\displaystyle\hskip 35.0pt-30\langle{n_{*}},\hat{x}\rangle\big{(}{n_{*}}\otimes\hat{x}+\hat{x}\otimes{n_{*}}\big{)}\Big{]}
    6:D2𝖥(x)\displaystyle\mathcal{M}^{6}:D^{2}\mathsf{F}(x) =\displaystyle= s2r5[(15n,x^2)𝖨+(745n,x^2)nn+5(17n,x^2)x^x^\displaystyle\frac{s_{*}^{2}}{r^{5}}\Big{[}-\big{(}1-5\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+\big{(}7-45\langle{n_{*}},\hat{x}\rangle^{2}\big{)}{n_{*}}\otimes{n_{*}}+5\big{(}1-7\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\hat{x}\otimes\hat{x}
    +35(n,x^+3n,x^3)nx^+10n,x^x^n]\displaystyle\hskip 40.0pt+35\big{(}-\langle{n_{*}},\hat{x}\rangle+3\langle{n_{*}},\hat{x}\rangle^{3}\big{)}{n_{*}}\otimes\hat{x}+10\langle{n_{*}},\hat{x}\rangle\hat{x}\otimes{n_{*}}\Big{]}
    7:D2𝖥(x)\displaystyle\mathcal{M}^{7}:D^{2}\mathsf{F}(x) =\displaystyle= 0\displaystyle 0
    10:D2𝖥(x)\displaystyle\mathcal{M}^{10}:D^{2}\mathsf{F}(x) =\displaystyle= 2s33r5[9(15n,x^2)nn+(45n,x^+105n,x^3)nx^]\displaystyle\frac{2s_{*}^{3}}{3r^{5}}\Big{[}9\big{(}1-5\langle{n_{*}},\hat{x}\rangle^{2}\big{)}{n_{*}}\otimes{n_{*}}+\big{(}-45\langle{n_{*}},\hat{x}\rangle+105\langle{n_{*}},\hat{x}\rangle^{3}\big{)}{n_{*}}\otimes\hat{x}\Big{]}
    11:D2𝖥\displaystyle\mathcal{M}^{11}:D^{2}\mathsf{F} =\displaystyle= 2s43r5[(15n,x^2)𝖨+(745n,x^2)nn+5(17n,x^2)x^x^\displaystyle\frac{2s_{*}^{4}}{3r^{5}}\Big{[}-\big{(}1-5\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\mathsf{I}+\big{(}7-45\langle{n_{*}},\hat{x}\rangle^{2}\big{)}{n_{*}}\otimes{n_{*}}+5\big{(}1-7\langle{n_{*}},\hat{x}\rangle^{2}\big{)}\hat{x}\otimes\hat{x}
    +35(n,x^+3n,x^3)nx^+10n,x^x^n].\displaystyle\hskip 40.0pt+35\big{(}-\langle{n_{*}},\hat{x}\rangle+3\langle{n_{*}},\hat{x}\rangle^{3}\big{)}{n_{*}}\otimes\hat{x}+10\langle{n_{*}},\hat{x}\rangle\hat{x}\otimes{n_{*}}\Big{]}.

From the above, we can conclude that :D2𝖤\mathcal{M}:D^{2}\mathsf{E} and :D2𝖥\mathcal{M}:D^{2}\mathsf{F} are linear combinations of the following matrices

𝖨,nn,x^x^,nx^,x^n\mathsf{I},\,\,\,{n_{*}}\otimes{n_{*}},\,\,\,\hat{x}\otimes\hat{x},\,\,\,{n_{*}}\otimes\hat{x},\,\,\,\hat{x}\otimes{n_{*}}

with coefficients given by n,x^k\langle n,\hat{x}\rangle^{k} for k=0,1,2,3k=0,1,2,3. Concisely, we can write,

γ:D2𝖤(x)\displaystyle\mathcal{M}_{\gamma}:D^{2}\mathsf{E}(x)
=\displaystyle= 1r3[f1(n,x^)𝖨+f2(n,x^)nn+f3(n,x^)x^x^+f4(n,x^)nx^,+f5(n,x^)x^n]\displaystyle\frac{1}{r^{3}}\Big{[}f_{1}(\langle{n_{*}},\hat{x}\rangle)\mathsf{I}+f_{2}(\langle{n_{*}},\hat{x}\rangle){n_{*}}\otimes{n_{*}}+f_{3}(\langle{n_{*}},\hat{x}\rangle)\hat{x}\otimes\hat{x}+f_{4}(\langle{n_{*}},\hat{x}\rangle){n_{*}}\otimes\hat{x},+f_{5}(\langle{n_{*}},\hat{x}\rangle)\hat{x}\otimes{n_{*}}\Big{]}

and

γ:D2𝖥(x)\displaystyle\mathcal{M}_{\gamma}:D^{2}\mathsf{F}(x)
=\displaystyle= 1r5[g1(n,x^)𝖨+g2(n,x^)nn+g3(n,x^)x^x^+g4(n,x^)nx^,+g5(n,x^)x^n]\displaystyle\frac{1}{r^{5}}\Big{[}g_{1}(\langle{n_{*}},\hat{x}\rangle)\mathsf{I}+g_{2}(\langle{n_{*}},\hat{x}\rangle){n_{*}}\otimes{n_{*}}+g_{3}(\langle{n_{*}},\hat{x}\rangle)\hat{x}\otimes\hat{x}+g_{4}(\langle{n_{*}},\hat{x}\rangle){n_{*}}\otimes\hat{x},+g_{5}(\langle{n_{*}},\hat{x}\rangle)\hat{x}\otimes{n_{*}}\Big{]}

where the fif_{i} and gig_{i}’s are polynomials of degree at most three.

C.2 Formula for div𝒜γ\mathrm{div}\,\mathcal{A}_{\gamma}

By (133), (135) and (136), we have for some matrix 𝐌=(mij){\bf M}_{*}=(m_{ij}) that

(div(𝒜γ))i=div(𝐯,1r𝐌)i=mij(δkj3x^kx^j)𝐯k=mij𝐯j+3mijx^j𝐯,x^\Big{(}\mathrm{div}\,(\mathcal{A}_{\gamma})\Big{)}_{i}=\mathrm{div}\,\left(\langle{\bf v}_{*},\nabla\frac{1}{r}\rangle{\bf M}_{*}\right)_{i}=-m_{ij}(\delta_{kj}-3\hat{x}_{k}\hat{x}_{j}){{\bf v}_{*}}_{k}=-m_{ij}{{\bf v}_{*}}_{j}+3m_{ij}\hat{x}_{j}\langle{\bf v}_{*},\hat{x}\rangle

so that

div(𝒜γ)=𝐌(𝖨3x^x^)𝐯.\mathrm{div}\,(\mathcal{A}_{\gamma})=-{\bf M}_{*}(\mathsf{I}-3\hat{x}\otimes\hat{x}){\bf v}_{*}.

Hence

div(𝐯,1r𝐌)={(𝐯,n+3n,x^𝐯,x^)n,if𝐌=nn,𝐯+3𝐯,x^x^,if𝐌=𝖨.\mathrm{div}\,\left(\langle{\bf v}_{*},\nabla\frac{1}{r}\rangle{\bf M}_{*}\right)=\left\{\begin{array}[]{ll}\big{(}-\langle{\bf v}_{*},{n_{*}}\rangle+3\langle{n_{*}},\hat{x}\rangle\langle{\bf v}_{*},\hat{x}\rangle\big{)}{n_{*}},&\text{if}\,\,\,{\bf M}_{*}={n_{*}}\otimes{n_{*}},\\ -{\bf v}_{*}+3\langle{\bf v}_{*},\hat{x}\rangle\hat{x},&\text{if}\,\,\,{\bf M}_{*}=\mathsf{I}.\end{array}\right.

Using the form of 𝖰\mathsf{Q}_{*} from (39), we have

𝐌=w1+w[(γ2s+γ33s2+2γ93s3)nn13(γ2sγ3s23+2γ9s33)𝖨].{\bf M}_{*}=-\frac{w}{1+w}\left[\left(\gamma_{2}s_{*}+\frac{\gamma_{3}}{3}s_{*}^{2}+\frac{2\gamma_{9}}{3}s_{*}^{3}\right){n_{*}}\otimes{n_{*}}-\frac{1}{3}\left(\gamma_{2}s_{*}-\frac{\gamma_{3}s_{*}^{2}}{3}+\frac{2\gamma_{9}s_{*}^{3}}{3}\right)\mathsf{I}\right].

Hence

div(𝒜γ)\displaystyle\mathrm{div}\,(\mathcal{A}_{\gamma}) =\displaystyle= w1+w[(γ2s+γ33s2+2γ93s3)(𝐯,n+3n,x^𝐯,x^)n\displaystyle-\frac{w}{1+w}\left[\left(\gamma_{2}s_{*}+\frac{\gamma_{3}}{3}s_{*}^{2}+\frac{2\gamma_{9}}{3}s_{*}^{3}\right)\big{(}-\langle{\bf v}_{*},{n_{*}}\rangle+3\langle{n_{*}},\hat{x}\rangle\langle{\bf v}_{*},\hat{x}\rangle\big{)}{n_{*}}\right. (242)
13(γ2sγ3s23+2γ9s33)(𝐯+3𝐯,x^x^)]\displaystyle\hskip 50.0pt\left.-\frac{1}{3}\left(\gamma_{2}s_{*}-\frac{\gamma_{3}s_{*}^{2}}{3}+\frac{2\gamma_{9}s_{*}^{3}}{3}\right)\big{(}-{\bf v}_{*}+3\langle{\bf v}_{*},\hat{x}\rangle\hat{x}\big{)}\right]
=\displaystyle= w1+w[(γ2s+γ33s2+2γ93s3)(nn+3n,x^nx^)\displaystyle-\frac{w}{1+w}\left[\left(\gamma_{2}s_{*}+\frac{\gamma_{3}}{3}s_{*}^{2}+\frac{2\gamma_{9}}{3}s_{*}^{3}\right)\big{(}-{n_{*}}\otimes{n_{*}}+3\langle{n_{*}},\hat{x}\rangle{n_{*}}\otimes\hat{x}\big{)}\right.
(γ2sγ3s23+2γ9s33)(x^x^13𝖨)]𝐯.\displaystyle\hskip 50.0pt\left.-\left(\gamma_{2}s_{*}-\frac{\gamma_{3}s_{*}^{2}}{3}+\frac{2\gamma_{9}s_{*}^{3}}{3}\right)\big{(}\hat{x}\otimes\hat{x}-\frac{1}{3}\mathsf{I}\big{)}\right]{\bf v}_{*}.

C.3 Formula for 𝒞γ\mathcal{C}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma}

From the form of 𝒞γ\mathcal{C}_{\gamma} and 𝒟γ\mathcal{D}_{\gamma}, it can be seen that they involve multiplications between the following matrices

𝖠,𝖶,𝖰,𝖰,𝐯𝖰,𝐯𝖰.\mathsf{A},\,\,\mathsf{W},\,\,\mathsf{Q}_{*},\,\,\mathsf{Q},\,\,\,{\bf v}_{*}\cdot\nabla\mathsf{Q},\,\,{\bf v}\cdot\nabla\mathsf{Q}.
  • For 𝖠,𝖶\mathsf{A},\mathsf{W}, note that 𝐯=𝖤S𝐯{\bf v}=\mathsf{E}_{S}{\bf v}_{*} so that j𝐯i=j(𝖤Sil𝐯l)\partial_{j}{\bf v}_{i}=\partial_{j}\big{(}{\mathsf{E}_{S}}_{il}{{\bf v}_{*}}_{l}\big{)} and i𝐯j=i(𝖤Sjl𝐯l)\partial_{i}{\bf v}_{j}=\partial_{i}\big{(}{\mathsf{E}_{S}}_{jl}{{\bf v}_{*}}_{l}\big{)}. From (67), we have

    𝖤Sil\displaystyle{\mathsf{E}_{S}}_{il} \displaystyle\in [1,1r,1r3]{δil,x^ix^l}\displaystyle\left[1,\frac{1}{r},\frac{1}{r^{3}}\right]\big{\{}\delta_{il},\hat{x}_{i}\hat{x}_{l}\big{\}} (243)
    j𝖤Sil,i𝖤Sjl\displaystyle\partial_{j}{\mathsf{E}_{S}}_{il},\,\,\partial_{i}{\mathsf{E}_{S}}_{jl} \displaystyle\in [1r2,1r4]{δilx^j,δijx^l,δjlx^i,x^ix^jx^l}\displaystyle\left[\frac{1}{r^{2}},\frac{1}{r^{4}}\right]\Big{\{}\delta_{il}\hat{x}_{j},\,\,\delta_{ij}\hat{x}_{l},\,\,\delta_{jl}\hat{x}_{i},\,\,\hat{x}_{i}\hat{x}_{j}\hat{x}_{l}\Big{\}} (244)

    Thus,

    𝖠,𝖶\displaystyle\mathsf{A},\,\,\mathsf{W} \displaystyle\in {j𝖤Sil𝐯l,i𝖤Sjl𝐯l}\displaystyle\big{\{}\partial_{j}{\mathsf{E}_{S}}_{il}{{\bf v}_{*}}_{l},\,\,\partial_{i}{\mathsf{E}_{S}}_{jl}{{\bf v}_{*}}_{l}\big{\}} (245)
    =\displaystyle= [1r2,1r4]{δilx^j𝐯l,δijx^l𝐯l,δjlx^i𝐯l,x^ix^jx^l𝐯l}\displaystyle\left[\frac{1}{r^{2}},\frac{1}{r^{4}}\right]\big{\{}\delta_{il}\hat{x}_{j}{{\bf v}_{*}}_{l},\,\,\delta_{ij}\hat{x}_{l}{{\bf v}_{*}}_{l},\,\,\delta_{jl}\hat{x}_{i}{{\bf v}_{*}}_{l},\,\,\hat{x}_{i}\hat{x}_{j}\hat{x}_{l}{{\bf v}_{*}}_{l}\big{\}}
    =\displaystyle= [1r2,1r4][1,x^,𝐯]{𝖨,𝐯x^,x^𝐯,x^x^}.\displaystyle\left[\frac{1}{r^{2}},\frac{1}{r^{4}}\right]\big{[}1,\,\,\langle\hat{x},{\bf v}_{*}\rangle\big{]}\big{\{}\mathsf{I},\,\,{\bf v}_{*}\otimes\hat{x},\,\,\hat{x}\otimes{\bf v}_{*},\,\,\hat{x}\otimes\hat{x}\big{\}}.
  • For 𝖰\mathsf{Q}, from (38)–(40), we have 𝖰,𝖰[1,1r,1r3]{𝖨,nn,x^x^}\mathsf{Q}_{*},\mathsf{Q}\in\big{[}1,\frac{1}{r},\frac{1}{r^{3}}\big{]}\big{\{}\mathsf{I},\,\,\,{n_{*}}\otimes{n_{*}},\,\,\,\hat{x}\otimes\hat{x}\big{\}}. Hence,

    𝖰,𝖰2,𝖰,𝖰2[1,1r,,1r6][1,x^,n]{𝖨,nn,nx^,x^n,x^x^}.\mathsf{Q}_{*},\mathsf{Q}_{*}^{2},\mathsf{Q},\mathsf{Q}^{2}\in\left[1,\frac{1}{r},\ldots,\frac{1}{r^{6}}\right]\big{[}1,\langle\hat{x},{n_{*}}\rangle\big{]}\Big{\{}\mathsf{I},\,\,\,{n_{*}}\otimes{n_{*}},\,\,\,{n_{*}}\otimes\hat{x},\,\,\,\hat{x}\otimes{n_{*}},\,\,\,\hat{x}\otimes\hat{x}\Big{\}}. (246)

    Furthermore, as l𝖰ij=[1r2,1r4]{ninjxl,δijxl,xixjxl,δilxj,δjlxi}\partial_{l}\mathsf{Q}_{ij}=\big{[}\frac{1}{r^{2}},\frac{1}{r^{4}}\big{]}\{{n_{*}}_{i}{n_{*}}_{j}x_{l},\,\,\,\delta_{ij}x_{l},\,\,\,x_{i}x_{j}x_{l},\,\,\,\delta_{il}x_{j},\,\,\,\delta_{jl}x_{i}\}, (𝐯𝖰)ij=l𝖰ij𝐯l({\bf v}_{*}\cdot\nabla\mathsf{Q})_{ij}=\partial_{l}\mathsf{Q}_{ij}{{\bf v}_{*}}_{l}, and (𝐯𝖰)ij=l𝖰ij𝐯l({\bf v}\cdot\nabla\mathsf{Q})_{ij}=\partial_{l}\mathsf{Q}_{ij}{\bf v}_{l}, we have

    𝐯𝖰,𝐯𝖰\displaystyle{\bf v}_{*}\cdot\nabla\mathsf{Q},\,\,\,{\bf v}\cdot\nabla\mathsf{Q} (247)
    \displaystyle\in [1r2,1r4]{ninjxl,δijxl,xixjxl,δilxj,δjlxi}{𝐯l,𝐯l}\displaystyle\left[\frac{1}{r^{2}},\frac{1}{r^{4}}\right]\big{\{}{n_{*}}_{i}{n_{*}}_{j}x_{l},\,\,\,\delta_{ij}x_{l},\,\,\,x_{i}x_{j}x_{l},\,\,\,\delta_{il}x_{j},\,\,\,\delta_{jl}x_{i}\big{\}}\big{\{}{{\bf v}_{*}}_{l},{\bf v}_{l}\big{\}}
    \displaystyle\in [1r2,1r4][1,x^,𝐯]{𝖨,nn,𝐯x^,x^𝐯,x^x^}\displaystyle\left[\frac{1}{r^{2}},\frac{1}{r^{4}}\right]\big{[}1,\langle\hat{x},{\bf v}_{*}\rangle\big{]}\Big{\{}\mathsf{I},\,\,\,{n_{*}}\otimes{n_{*}},\,\,\,{\bf v}_{*}\otimes\hat{x},\,\,\,\hat{x}\otimes{\bf v}_{*},\,\,\,\hat{x}\otimes\hat{x}\Big{\}}
  • From the above, we have

    𝖠𝖰,𝖠𝖰2,𝖠𝖰,𝖠𝖰2,|𝖰|2,|𝖰|2,𝖰(𝐯𝖰),𝖰(𝐯𝖰)\displaystyle\mathsf{A}\cdot\mathsf{Q}_{*},\,\,\,\mathsf{A}\cdot\mathsf{Q}_{*}^{2},\,\,\,\mathsf{A}\cdot\mathsf{Q},\,\,\,\mathsf{A}\cdot\mathsf{Q}^{2},\,\,\,|\mathsf{Q}_{*}|^{2},\,\,\,\,|\mathsf{Q}|^{2},\,\,\,\mathsf{Q}_{*}\cdot({\bf v}_{*}\cdot\nabla\mathsf{Q}),\,\,\,\mathsf{Q}\cdot({\bf v}\cdot\nabla\mathsf{Q}) (248)
    \displaystyle\in [1,1r2,1r6][1,x,𝐯,x,n,𝐯,n].\displaystyle\left[1,\frac{1}{r^{2}},\ldots\frac{1}{r^{6}}\right]\big{[}1,\,\,\,\langle x,{\bf v}_{*}\rangle,\,\,\,\langle x,{n_{*}}\rangle,\,\,\,\langle{\bf v}_{*},{n_{*}}\rangle\big{]}.

Hence taking appropriate products of all the above, we have

𝒞γ\displaystyle\mathcal{C}_{\gamma} \displaystyle\in [1r3,,1r6][1,x^,n,x^,𝐯,n,𝐯]×\displaystyle\left[\frac{1}{r^{3}},\ldots,\frac{1}{r^{6}}\right]\Big{[}1,\,\,\langle\hat{x},{n_{*}}\rangle,\,\,\langle\hat{x},{\bf v}_{*}\rangle,\,\,\langle{n_{*}},{\bf v}_{*}\rangle\Big{]}\times (249)
{𝖨,nn,n𝐯,𝐯n,nx^,x^n,𝐯x^,x^𝐯,x^x^}.\displaystyle\Big{\{}\mathsf{I},\,\,{n_{*}}\otimes{n_{*}},\,\,{n_{*}}\otimes{\bf v}_{*},\,\,{\bf v}_{*}\otimes{n_{*}},\,\,{n_{*}}\otimes\hat{x},\,\,\hat{x}\otimes{n_{*}},\,\,\,{\bf v}_{*}\otimes\hat{x},\,\,\hat{x}\otimes{\bf v}_{*},\,\,\hat{x}\otimes\hat{x}\Big{\}}.

For 𝒟γ\mathcal{D}_{\gamma}, note that 𝖰ij[1,1r,1r3]{δij,ninj,x^ix^j}\mathsf{Q}_{ij}\in\left[1,\frac{1}{r},\frac{1}{r^{3}}\right]\big{\{}\delta_{ij},{n_{*}}_{i}{n_{*}}_{j},\hat{x}_{i}\hat{x}_{j}\big{\}}, we have

k𝖰ij[1r2,1r4]{δijxk,ninjxk,δikx^j,δjkx^i,x^ix^jx^k}.\partial_{k}\mathsf{Q}_{ij}\in\left[\frac{1}{r^{2}},\frac{1}{r^{4}}\right]\big{\{}\delta_{ij}x_{k},\,\,{n_{*}}_{i}{n_{*}}_{j}x_{k},\,\,\delta_{ik}\hat{x}_{j},\,\,\delta_{jk}\hat{x}_{i},\,\,\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}\big{\}}.

Hence

𝒟γ[1r4,,1r9][1,x^,n,x^,𝐯,n,𝐯]{x^,n,𝐯}.\mathcal{D}_{\gamma}\in\left[\frac{1}{r^{4}},\ldots,\frac{1}{r^{9}}\right]\Big{[}1,\,\,\,\langle\hat{x},{n_{*}}\rangle,\,\,\,\langle\hat{x},{\bf v}_{*}\rangle,\,\,\,\langle{n_{*}},{\bf v}_{*}\rangle\Big{]}\Big{\{}\hat{x},\,\,{n_{*}},\,\,{\bf v}_{*}\Big{\}}. (250)

Appendix D Solution of isotropic Stokes flow in bounded domain

Even though our analysis is in the exterior domain 3\𝐁a(0),\mathbb{R}^{3}\backslash{\bf B}_{a}(0), the simulation domain is assumed to be an annulus with the inner and outer radii aa and R,R, respectively, with aR.a\ll R. As a validation of our numerical code, we verify that our simulations for the standard isotropic Stokes flow match with the analytical solution in this finite domain. We also establish that the solution in the bounded domain retains the decay properties in an infinite domain as long as we stay away from the outer boundary.

We first compute the analytical solution to the Stokes flow in an annular domain Ωa,R:=𝐁R(0)\𝐁a(0)\Omega_{a,R}:={\bf B}_{R}(0)\backslash{\bf B}_{a}(0). In this case, we still have (59) and the first part of (60). Now the boundary conditions for ur,uθu_{r},u_{\theta} become:

at r=ar=a: ur=uθ=0;\displaystyle u_{r}=u_{\theta}=0;
at r=Rr=R: ur=Vcosθ,uθ=Vsinθ\displaystyle u_{r}=V\cos\theta,\,\,u_{\theta}=-V\sin\theta

which are translated to:

f(a)=0,f(a)=0,f(R)=VR22,f(R)=VR.f(a)=0,\,\,f^{\prime}(a)=0,\,\,f(R)=\frac{VR^{2}}{2},\,\,f^{\prime}(R)=VR. (251)

The Stokes equation (Δ𝐮+p=0-\Delta{\bf u}+\nabla p=0) leads to following form of ff:

f(r)=Ar+Br+Cr2+Dr4f(r)=\frac{A}{r}+Br+Cr^{2}+Dr^{4}

where the coefficients are determined by the boundary conditions (251). We then have the following system of linear equations:

A+a2B+a3C+a5D\displaystyle A+a^{2}B+a^{3}C+a^{5}D =\displaystyle= 0,\displaystyle 0,
A+a2B+2a3C+4a5D\displaystyle-A+a^{2}B+2a^{3}C+4a^{5}D =\displaystyle= 0,\displaystyle 0,
2A+2R2B+2R3C+2R5D\displaystyle 2A+2R^{2}B+2R^{3}C+2R^{5}D =\displaystyle= VR3,\displaystyle VR^{3},
A+R2B+2R3C+4R5D\displaystyle-A+R^{2}B+2R^{3}C+4R^{5}D =\displaystyle= VR3.\displaystyle VR^{3}.

Upon introducing λ=aR\displaystyle\lambda=\frac{a}{R}, the solution to above system is given by

A\displaystyle A =\displaystyle= λ3(1+λ+λ2)(1λ)3(4+7λ+4λ2)R3V=:ηA(λ)R3V,\displaystyle\frac{\lambda^{3}\left(1+\lambda+\lambda^{2}\right)}{(1-\lambda)^{3}\left(4+7\lambda+4\lambda^{2}\right)}R^{3}V=:\eta_{A}(\lambda)R^{3}V, (252)
B\displaystyle B =\displaystyle= 3λ(1+λ+λ2+λ3+λ4)(1λ)3(4+7λ+4λ2)RV=:ηB(λ)RV,\displaystyle-\frac{3\lambda\left(1+\lambda+\lambda^{2}+\lambda^{3}+\lambda^{4}\right)}{(1-\lambda)^{3}\left(4+7\lambda+4\lambda^{2}\right)}RV=:\eta_{B}(\lambda)RV, (253)
C\displaystyle C =\displaystyle= (4+λ(1+λ)(4+9λ2))2(1λ)3(4+7λ+4λ2)V=:ηC(λ)V\displaystyle\frac{\left(4+\lambda(1+\lambda)\left(4+9\lambda^{2}\right)\right)}{2(1-\lambda)^{3}\left(4+7\lambda+4\lambda^{2}\right)}V=:\eta_{C}(\lambda)V (254)
D\displaystyle D =\displaystyle= 3λ(1+λ)2(1λ)3(4+7λ+4λ2)VR2=:ηD(λ)VR2.\displaystyle-\frac{3\lambda\left(1+\lambda\right)}{2(1-\lambda)^{3}\left(4+7\lambda+4\lambda^{2}\right)}\frac{V}{R^{2}}=:\eta_{D}(\lambda)\frac{V}{R^{2}}. (255)

Then we have

ur\displaystyle u_{r} =\displaystyle= 1r2sinθΨθ=2f(r)r2cosθ\displaystyle\frac{1}{r^{2}\sin\theta}\frac{\partial\Psi}{\partial\theta}=\frac{2f(r)}{r^{2}}\cos\theta (256)
=\displaystyle= 2V(ηA(λ)(Rr)3+ηB(λ)(Rr)+ηC(λ)+ηD(λ)(rR)2)cosθ\displaystyle 2V\left(\eta_{A}(\lambda)\left(\frac{R}{r}\right)^{3}+\eta_{B}(\lambda)\left(\frac{R}{r}\right)+\eta_{C}(\lambda)+\eta_{D}(\lambda)\left(\frac{r}{R}\right)^{2}\right)\cos\theta
uθ\displaystyle u_{\theta} =\displaystyle= 1rsinθΨr=f(r)rsinθ\displaystyle\frac{-1}{r\sin\theta}\frac{\partial\Psi}{\partial r}=-\frac{f^{\prime}(r)}{r}\sin\theta (257)
=\displaystyle= V(ηA(λ)(Rr)3ηB(λ)(Rr)2ηC(λ)4ηD(λ)(rR)2)sinθ.\displaystyle V\left(\eta_{A}(\lambda)\left(\frac{R}{r}\right)^{3}-\eta_{B}(\lambda)\left(\frac{R}{r}\right)-2\eta_{C}(\lambda)-4\eta_{D}(\lambda)\left(\frac{r}{R}\right)^{2}\right)\sin\theta.

We note the self-similarity or decay structures of the solution. These can be used to benchmark the numerical solution. In particular, if aRa\ll R so that λ1\lambda\ll 1, we have

ηA(λ)=λ34+O(λ4),ηB(λ)=3λ4+O(λ2),ηC(λ)=12+9λ8+O(λ2),ηD(λ)=3λ8+O(λ2).\eta_{A}(\lambda)=\frac{\lambda^{3}}{4}+O\left(\lambda^{4}\right),\,\,\,\eta_{B}(\lambda)=-\frac{3\lambda}{4}+O\left(\lambda^{2}\right),\,\,\,\eta_{C}(\lambda)=\frac{1}{2}+\frac{9\lambda}{8}+O\left(\lambda^{2}\right),\,\,\,\eta_{D}(\lambda)=-\frac{3\lambda}{8}+O\left(\lambda^{2}\right).

One can identify three distinct parameter regimes (a) rar\sim a, (b) arRa\ll r\ll R, and (c) rRr\sim R. We will mostly interested in regime (b) as it corresponds to the flow far away from the particle, yet it is unaffected by the boundary of the computational domain. From (256) and (257), we have the following asymptotics:

  1. (a).

    If ra,r\sim a, then r/Rλ,r/R\sim\lambda, then

    urV(132(ar)+12(ar)3)cosθu_{r}\sim V\left(1-\frac{3}{2}\left(\frac{a}{r}\right)+\frac{1}{2}\left(\frac{a}{r}\right)^{3}\right)\cos\theta (258)

    and

    uθV(1+34(ar)+14(ar)3)sinθ.u_{\theta}\sim V\left(-1+\frac{3}{4}\left(\frac{a}{r}\right)+\frac{1}{4}\left(\frac{a}{r}\right)^{3}\right)\sin\theta. (259)
  2. (b).

    If arR,a\ll r\ll R, then λr/R1,\lambda\ll r/R\ll 1, then

    urV(132(ar))cosθu_{r}\sim V\left(1-\frac{3}{2}\left(\frac{a}{r}\right)\right)\cos\theta (260)

    and

    uθV(1+34(ar))sinθ.u_{\theta}\sim V\left(-1+\frac{3}{4}\left(\frac{a}{r}\right)\right)\sin\theta. (261)
  3. (c).

    If rR,r\sim R, then

    urV(1+34(ar)(2+3(rR)(rR)3))cosθu_{r}\sim V\left(1+\frac{3}{4}\left(\frac{a}{r}\right)\left(-2+3\left(\frac{r}{R}\right)-\left(\frac{r}{R}\right)^{3}\right)\right)\cos{\theta} (262)

    and

    uθV(1+34(ar)(13(rR)+2(rR)3))sinθ.u_{\theta}\sim V\left(-1+\frac{3}{4}\left(\frac{a}{r}\right)\left(1-3\left(\frac{r}{R}\right)+2\left(\frac{r}{R}\right)^{3}\right)\right)\sin{\theta}. (263)

Note that regimes (a) and (b) are consistent with the exact solution (61) and (62) in the exterior domain.

In the following, we compute classical Stokes’ flow with 𝐯=Ve1{\bf v}_{*}=Ve_{1}. We will plot 𝐯1{\bf v}_{1} on the yzyz-plane demonstrating its radially symmetric behavior. To this end, note that 𝐯1=urcosθuθsinθ\displaystyle{\bf v}_{1}=u_{r}\cos\theta-u_{\theta}\sin\theta. On the yzyz-plane, sinθ=1\sin\theta=1 and hence by (257) we have,

𝐯1=uθ|sinθ=1=V(ηA(λ)(Rr)3ηB(λ)(Rr)2ηC(λ)4ηD(λ)(rR)2).{\bf v}_{1}=-u_{\theta}\Big{|}_{\sin\theta=1}=-V\left(\eta_{A}(\lambda)\left(\frac{R}{r}\right)^{3}-\eta_{B}(\lambda)\left(\frac{R}{r}\right)-2\eta_{C}(\lambda)-4\eta_{D}(\lambda)\left(\frac{r}{R}\right)^{2}\right). (264)

Our numerical results recover the above three asymptotics (a), (b), and (c). To illustrate this, we plot the rescaled radial profile of 𝐯1{\bf v}_{1} for arRa\leq r\leq R,

g(r):=r(𝐯1V1)=r(ηA(λ)(Rr)3ηB(λ)(Rr)2ηC(λ)4ηD(λ)(rR)2+1).g(r):=r\left(\frac{{\bf v}_{1}}{V}-1\right)=-r\left(\eta_{A}(\lambda)\left(\frac{R}{r}\right)^{3}-\eta_{B}(\lambda)\left(\frac{R}{r}\right)-2\eta_{C}(\lambda)-4\eta_{D}(\lambda)\left(\frac{r}{R}\right)^{2}+1\right). (265)

The results are depicted in Figures 13 and 14.

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 13. r(𝐯1V1)\displaystyle r\left(\frac{{\bf v}_{1}}{V}-1\right) for classical Stokes flow:

(a) in yzyz-plane; (b) in xyxy-plane.

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 14. (Rescaled) radial profile 𝐯1{\bf v}_{1} for classical Stokes flow (in the yzyz-plane):

(a) g(r)=r(𝐯1V1)\displaystyle g(r)=r\left(\frac{{\bf v}_{1}}{V}-1\right); (b) zoomed version of (a).

As further demonstrations, we compare the radial behavior between (along the yy-axis) the 𝐯1{\bf v}_{1} in the finite and infinite domain calculations. Although the overall profiles differ, due to the finite size effect, they do coincide very well near the core, i.e. in regimes (a) and (b) above.

(a)[Uncaptioned image]     (b)[Uncaptioned image]

Figure 15. Comparision between the rescaled radial profiles of 𝐯1{\bf v}_{1} (along the yy-axis) for classical Stokes flows:

(a) blue: finite domain; red: infinite domain; (b) zoomed version of (a).

References

  • [1] F. M. Leslie, “Theory of flow phenomena in liquid crystals,” Advances in liquid crystals, vol. 4, pp. 1–81, 1979.
  • [2] F. M. Leslie, “Continuum theory for nematic liquid crystals,” Continuum Mechanics and Thermodynamics, vol. 4, no. 3, pp. 167–175, 1992.
  • [3] Q. Du, B. Guo, and J. Shen, “Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals,” SIAM J. Numer. Anal., vol. 39, no. 3, pp. 735–762, 2001.
  • [4] F.-H. Lin and C. Liu, “Nonparabolic dissipative systems modeling the flow of liquid crystals,” Comm. Pure Appl. Math., vol. 48, no. 5, pp. 501–537, 1995.
  • [5] F.-H. Lin and C. Liu, “Existence of solutions for the Ericksen-Leslie system,” Arch. Ration. Mech. Anal., vol. 154, no. 2, pp. 135–156, 2000.
  • [6] C. Liu and N. J. Walkington, “Approximation of liquid crystal flows,” SIAM J. Numer. Anal., vol. 37, no. 3, pp. 725–741, 2000.
  • [7] N. J. Walkington, “Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 45, no. 03, pp. 523–540, 2011.
  • [8] A. M. Sonnet and E. G. Virga, “Dynamics of dissipative ordered fluids,” Physical Review E, vol. 64, no. 3, p. 031705, 2001.
  • [9] A. M. Sonnet, P. L. Maffettone, and E. G. Virga, “Continuum theory for nematic liquid crystals with tensorial order,” Journal of Non-Newtonian Fluid Mechanics, vol. 119, no. 1, pp. 51–59, 2004.
  • [10] A. M. Sonnet and E. G. Virga, Dissipative ordered fluids: theories for liquid crystals. Springer Science & Business Media, 2012.
  • [11] A. N. Beris and B. J. Edwards, Thermodynamics of flowing systems with internal microstructure, vol. 36 of Oxford Engineering Science Series. The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications.
  • [12] H. Abels, G. Dolzmann, and Y. Liu, “Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions,” Adv. Differential Equations, vol. 21, no. 1-2, pp. 109–152, 2016.
  • [13] H. Wu, X. Xu, and A. Zarnescu, “Dynamics and flow effects in the beris-edwards system modeling nematic liquid crystals,” Archive for Rational Mechanics and Analysis, vol. 231, pp. 1217–1267, 2019.
  • [14] H. Du, X. Hu, and C. Wang, “Suitable weak solutions for the co-rotational beris–edwards system in dimension three,” Archive for Rational Mechanics and Analysis, vol. 238, no. 2, pp. 749–803, 2020.
  • [15] G. P. Galdi, “On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications,” in Handbook of mathematical fluid dynamics, vol. 1, pp. 653–791, Elsevier, 2002.
  • [16] G. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems. Springer Science & Business Media, 2011.
  • [17] O. D. Lavrentovich, “Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops,” Liquid Crystals, vol. 24, no. 1, pp. 117–126, 1998.
  • [18] C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavrentovich, “Command of active matter by topological defects and patterns,” Science, vol. 354, no. 6314, pp. 882–885, 2016.
  • [19] S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson, “Living liquid crystals,” Biophysical Journal, vol. 106, no. 2, p. 420a, 2014.
  • [20] S. Zhou, O. Tovkach, D. Golovaty, A. Sokolov, I. S. Aranson, and O. D. Lavrentovich, “Dynamic states of swimming bacteria in a nematic liquid crystal cell with homeotropic alignment,” New Journal of Physics, vol. 19, p. 055006, may 2017.
  • [21] R. W. Ruhwandl and E. M. Terentjev, “Friction drag on a particle moving in a nematic liquid crystal,” Physical Review E, vol. 54, no. 5, p. 5204, 1996.
  • [22] H. Stark and D. Ventzki, “Stokes drag of spherical particles in a nematic environment at low ericksen numbers,” Physical Review E, vol. 64, no. 3, p. 031711, 2001.
  • [23] H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Physics Reports, vol. 351, no. 6, pp. 387–474, 2001.
  • [24] S. Alama, L. Bronsard, and X. Lamy, “Minimizers of the landau–de gennes energy around a spherical colloid particle,” Archive for Rational Mechanics and Analysis, vol. 222, pp. 427–450, 2016.
  • [25] T. Qian and P. Sheng, “Generalized hydrodynamic equations for nematic liquid crystals,” Phys. Rev. E, vol. 58, pp. 7475–7485, Dec 1998.
  • [26] M. J. Lighthill, “On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers,” Communications on pure and applied mathematics, vol. 5, no. 2, pp. 109–118, 1952.
  • [27] S. Alama, L. Bronsard, X. Lamy, and R. Venkatraman, “Far-field expansions for harmonic maps and the electrostatics analogy in nematic suspensions,” Journal of Nonlinear Science, vol. 33, no. 3, p. 39, 2023.
  • [28] G. P. Galdi, “On the steady self-propelled motion of a body in a viscous incompressible fluid,” Archive for rational mechanics and analysis, vol. 148, no. 1, pp. 53–88, 1999.
  • [29] I.-D. Chang and R. Finn, “On the solutions of a class of equations occurring in continuum mechanics, with application to the stokes paradox,” Archive for Rational Mechanics and Analysis, vol. 7, no. 1, pp. 388–401, 1961.
  • [30] D. J. Acheson, Elementary fluid dynamics. Oxford University Press, 1990.
  • [31] A. T. Chwang and T. Y.-T. Wu, “Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows,” Journal of Fluid mechanics, vol. 67, no. 4, pp. 787–815, 1975.
  • [32] G. P. Galdi and C. G. Simader, “Existence, uniqueness and Lq{L}^{q}-estimates for the Stokes problem in an exterior domain,” Archive for Rational Mechanics and Analysis, vol. 112, pp. 291–318, 1990.
  • [33] O. A. Ladyzhenskaya, “The mathematical theory of viscous incompressible flow,” Gordon & Breach, 1969.
  • [34] P. Maremonti, R. Russo, and G. Starita, “On the Stokes equations: the boundary value problem,” in Advances in fluid dynamics, vol. 4 of Quad. Mat., pp. 69–140, Dept. Math., Seconda Univ. Napoli, Caserta, 1999.
  • [35] P. Maremonti, R. Russo, and G. Starita, “Classical solutions to the stationary Navier-Stokes system in exterior domains,” in The Navier-Stokes equations: theory and numerical methods (Varenna, 2000), vol. 223 of Lecture Notes in Pure and Appl. Math., pp. 53–64, Dekker, New York, 2002.
  • [36] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
  • [37] Ž. Kos and M. Ravnik, “Elementary flow field profiles of micro-swimmers in weakly anisotropic nematic fluids: Stokeslet, stresslet, rotlet and source flows,” Fluids, vol. 3, no. 1, p. 15, 2018.
  • [38] “COMSOL Multiphysics® v. 5.3.” http://www.comsol.com/. COMSOL AB, Stockholm, Sweden.