This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Families of sequences with good family complexity and cross-correlation measure

Kenan Doğan    Murat Şahin    Oğuz Yayla K.  Doğan, PhD student, Mathematics Department, Ankara University, 06560, Yenimahalle, Ankara, Türkiye e-mail: [email protected].  Şahin is with Graduate School of Natural and Applied Sciences, Ankara University, 06110, Altındağ, Ankara, Türkiye e-mail: [email protected]. Yayla is with Institute of Applied of Mathmatics, Middle East Technical University, 06800, Çankaya, Ankara, Türkiye e-mail: [email protected].
Abstract

In this paper we study pseudorandomness of a family of sequences in terms of two measures, the family complexity (ff-complexity) and the cross-correlation measure of order \ell. We consider sequences not only on binary alphabet but also on kk-symbols (kk-ary) alphabet. We first generalize some known methods on construction of the family of binary pseudorandom sequences. We prove a bound on the ff-complexity of a large family of binary sequences of Legendre-symbols of certain irreducible polynomials. We show that this family as well as its dual family have both a large family complexity and a small cross-correlation measure up to a rather large order. Next, we present another family of binary sequences having high ff-complexity and low cross-correlation measure. Then we extend the results to the family of sequences on kk-symbols alphabet.

Index Terms:
pseudorandomness, binary sequences, family complexity, cross-correlation measure, Legendre sequence, polynomials over finite fields, kk-symbols sequences.

I Introduction

Pseudorandom sequence is a sequence of numbers generated deterministically and looks random. It is called binary (kk-ary or kk-symbol) sequence if its elements are in {-1,+1} (resp. {a1,a2,,ak}\{a_{1},a_{2},\ldots,a_{k}\} for some numbers aia_{i}). Pseudorandom sequences have a lot of application areas such as telecommunication, cryptography, simulation see for example [8, 12, 34, 39]. According to its application area, the quality of a pseudorandom sequence is evaluated in many directions. There are statistical test packages (for example L’Ecuyer’s TESTU01 [19], Marsaglia’s Diehard [25] or the NIST battery [35]) for evaluating the quality of a pseudorandom sequence. In addition to that, there are proven theoretical results on some randomness measures that a pseudorandom sequence needs to satisfy. For instance, linear complexity, (auto)correlation, discrepancy, well-distribution and others, see [16, 39] and references therein. In some cases one needs many pseudorandom binary sequences, for instance in cryptographic applications. Therefore, their randomness has to be proven by several figures of merit, e.g. family complexity, cross-correlation, collision, distance minimum, avalanche effect and others, see [37] and references therein. The typical values of some randomness measures of a truly random sequence are proven in [3, 5, 32]. Sequences satisfying typical values are so called good sequences.

After Mauduit and Sárközy [27] introduced a construction method of good binary sequences by using Legendre symbol, other construction methods have been given in the literature [6, 7, 21]. In 2004, Goubin, Mauduit and Sárközy [14] first constructed large families of pseudorandom binary sequences. Later, many new constructions [10, 15, 20, 26, 29, 30] and their complexity bounds [31, 33, 36] were developed, see [37] for others.

These pseudorandom measures defined for binary sequences have been extended to sequences of kk-symbols [11, 28, 40] and some constructions of good kk-symbols sequences were given in [2, 9, 13, 22, 24].

Huaning Liu and Xi Liu [23] constructed new family of binary sequences has both small cross-correlation measure and large family complexity.

In this paper we study two such measures the family complexity (in short ff-complexity) and the cross-correlation measure of order \ell of families of binary and kk-ary sequences.

Ahlswede et al. [1] introduced the ff-complexity as follows.

Definition 1.

The ff-complexity C()C({\mathcal{F}}) of a family {\mathcal{F}} of binary sequences EN{1,+1}NE_{N}\in\{-1,+1\}^{N} of length NN is the greatest integer j0j\geq 0 such that for any 1i1<i2<<ijN1\leq i_{1}<i_{2}<\cdots<i_{j}\leq N and any ϵ1,ϵ2,,ϵj{1,+1}\epsilon_{1},\epsilon_{2},\ldots,\epsilon_{j}\in\{-1,+1\} there is a sequence EN=(e1,e2,,eN)E_{N}=(e_{1},e_{2},\ldots,e_{N})\in{\mathcal{F}} with

ei1=ϵ1,ei2=ϵ2,,eij=ϵj.e_{i_{1}}=\epsilon_{1},e_{i_{2}}=\epsilon_{2},\ldots,e_{i_{j}}=\epsilon_{j}.

We have the trivial upper bound

2C()||,\displaystyle 2^{C({\mathcal{F}})}\leq|{\mathcal{F}}|, (1)

where ||=F|{\mathcal{F}}|=F denotes the size of the family {\mathcal{F}}.

Gyarmati et al. [17] introduced the cross-correlation measure of order \ell.

Definition 2.

The cross-correlation measure of order \ell of a family {\mathcal{F}} of binary sequences Ei,N=(ei,1,ei,2,,ei,N){1+1}NE_{i,N}=(e_{i,1},e_{i,2},\ldots,e_{i,N})\in\{-1+1\}^{N}, i=1,2,,Fi=1,2,\ldots,F, is defined as

Φ()=maxM,D,I|n=1Mei1,n+d1ei,n+d|,\Phi_{\ell}({\mathcal{F}})=\max_{M,D,I}\left|\sum_{n=1}^{M}{e_{i_{1},n+d_{1}}\cdots e_{i_{\ell},n+d_{\ell}}}\right|,

where DD denotes an \ell tuple (d1,d2,,d)(d_{1},d_{2},\ldots,d_{\ell}) of integers such that 0d1d2d<M+dN0\leq d_{1}\leq d_{2}\leq\cdots\leq d_{\ell}<M+d_{\ell}\leq N and didjd_{i}\neq d_{j} if Ei,N=Ej,NE_{i,N}=E_{j,N} for iji\neq j, and II denotes an \ell tuple (i1,i2,,i){1,2,,F}(i_{1},i_{2},\ldots,i_{\ell})\in\{1,2,\ldots,F\}^{\ell}.

For a family {\mathcal{F}} of binary sequences of length NN with ||<2N/12|{\mathcal{F}}|<2^{N/12}, the expected value of the cross-correlation measure of order N/(6log2||)\ell\leq N/(6\log_{2}|{\mathcal{F}}|) is Φ()(Nlog(N)+log||)1/2\Phi_{\ell}({\mathcal{F}})\approx\left(N\log\left(\begin{array}[]{c}N\\ \ell\end{array}\right)+\ell\log{|{\mathcal{F}}|}\right)^{1/2}, see [32].

We use the notation Φ\Phi^{\circ}_{\ell} for the cross correlation Φ\Phi_{\ell} evaluated for fixed M=FM=F and di=0d_{i}=0 for all i{1,2,,l}i\in\{1,2,\ldots,l\}.

Winterhof and the author in [43] proved the estimation of the ff-complexity C()C({\mathcal{F}}) of a family {\mathcal{F}} of binary sequences

Ei,N=(ei,1,ei,2,,ei,N){1+1}N,i=1,,F,E_{i,N}=(e_{i,1},e_{i,2},\ldots,e_{i,N})\in\{-1+1\}^{N},\quad i=1,\ldots,F,

in terms of the cross-correlation measure Φ(¯),{1,2,,log2F}\Phi_{\ell}(\overline{{\mathcal{F}}}),\ell\in\{1,2,\ldots,\log_{2}{F}\} of the dual family ¯\overline{{\mathcal{F}}} of binary sequences

Ei,F=(e1,i,e2,i,,eF,i){1+1}F,i=1,,NE_{i,F}=(e_{1,i},e_{2,i},\ldots,e_{F,i})\in\{-1+1\}^{F},\quad i=1,\ldots,N

as follows

C()log2Flog2max1ilog2FΦi(¯)1.\displaystyle C({\mathcal{F}})\geq\left\lceil\log_{2}{F}-\log_{2}{\max_{1\leq i\leq\log_{2}{F}}{\Phi_{i}(\overline{{\mathcal{F}}})}}\right\rceil-1. (2)

In Section II we generalize the construction of the family of binary pseudorandom sequences presented in [43]. We prove a bound on the ff-complexity of the family of binary sequences of Legendre-symbols of irreducible polynomials fi(x)=xd+a2i2xd2+a3i3xd3++ad2id2x2+adidf_{i}(x)=x^{d}+a_{2}i^{2}x^{d-2}+a_{3}i^{3}x^{d-3}+\cdots+a_{d-2}i^{d-2}x^{2}+a_{d}i^{d} defined as

1={(fi(n)p)n=1p1:i=1,,p1}.{\mathcal{F}}_{1}=\left\{\left(\frac{f_{i}(n)}{p}\right)_{n=1}^{p-1}:i=1,\ldots,p-1\right\}.

We show that this family as well as its dual family have both a large family complexity and a small cross-correlation measure up to a rather large order.

In Section III we study another family of binary sequences

2={(f(n)p)n=1p1:f is irreducible of degree d over 𝔽p}{{\mathcal{F}}_{2}}=\left\{\left(\frac{f(n)}{p}\right)_{n=1}^{p-1}:f\mbox{ is irreducible of degree }d\mbox{ over }{\mathbb{F}}_{p}\right\}

for a positive integer dd. We prove that 2{\mathcal{F}}_{2} has high ff-complexity and low cross-correlation measure by using (2). We note that the roots of an irreducible polynomial are called to be conjugate to each other.

In Section IV we extend the relation (2) to the family of sequences on kk-symbols alphabet. Finally, we show in Section V that extension of the family 2{\mathcal{F}}_{2} to kk-symbols alphabet has also high ff-complexity and low cross-correlation measure.

Throughout the paper, the notations UVU\ll V and U=O(V)U=O(V) are equivalent to the statement that |U|cV|U|\leq cV holds with some positive constant cc. Moreover, the notation f(n)=o(1)f(n)=o(1) is equivalent to limnf(n)=0.\lim_{n\to\infty}{f(n)}=0.

II A family and its dual with bounded cross-correlation and family complexity measures

In this section we present an extension of the family of sequences given in [43], where a family of sequences of Legendre symbols with irreducible quadratic polynomials and its dual family were given. It was shown that both families have high family complexity and small cross-correlation measure up to a large order \ell. Namely, for p>2p>2 a prime and bb a quadratic nonresidue modulo pp they study the following family {\mathcal{F}} and its dual family ¯\overline{{\mathcal{F}}}:

={(n2bi2p)i=1(p1)/2:n=1,,(p1)/2},{{\mathcal{F}}}=\left\{\left(\frac{n^{2}-bi^{2}}{p}\right)_{i=1}^{(p-1)/2}:n=1,\ldots,(p-1)/2\right\},

and they show

Φk()kp1/2logp and Φk(¯)kp1/2logp\Phi_{k}({{\mathcal{F}}})\ll kp^{1/2}\log p\quad\mbox{ and }\quad\Phi_{k}(\overline{{\mathcal{F}}})\ll kp^{1/2}\log p (3)

for each integer k=1,2,k=1,2,\ldots Then (2) immediately implies

C()(12o(1))logplog2andC(¯)(12o(1))logplog2.C({{\mathcal{F}}})\geq\left(\frac{1}{2}-o(1)\right)\frac{\log p}{\log 2}\quad\mbox{and}\quad C(\overline{{\mathcal{F}}})\geq\left(\frac{1}{2}-o(1)\right)\frac{\log p}{\log 2}.

We now present an extension of this result to higher degree polynomials over prime finite fields. Note that for these families we also get analog bounds for their duals.

Let p>2p>2 be a prime number, d5d\geq 5 and Ωp,d\Omega_{p,d} be a set of irreducible polynomials over 𝔽p{\mathbb{F}}_{p} of degree dd defined as

Ωp,d={f(x)=xd+a2xd2+a3xd3++ad2x2+ad𝔽p[x],a2,a30}.\Omega_{p,d}=\{f(x)=x^{d}+a_{2}x^{d-2}+a_{3}x^{d-3}+\cdots+a_{d-2}x^{2}+a_{d}\in{\mathbb{F}}_{p}[x],a_{2},a_{3}\neq 0\}.
Theorem 1.

Let f{\mathcal{F}}_{f} be a family of binary sequences for some fΩp,df\in\Omega_{p,d} defined as

f={(fi(n)p)n=1p1:i=1,,p1},{{\mathcal{F}}_{f}}=\left\{\left(\frac{f_{i}(n)}{p}\right)_{n=1}^{p-1}:i=1,\ldots,p-1\right\},

where fi(X)=idf(X/i)f_{i}(X)=i^{d}f(X/i) for i{1,2,,p1}i\in\{1,2,\ldots,p-1\} and pdp\nmid d. Let f¯\overline{{\mathcal{F}}_{f}} be the dual of f{\mathcal{F}}_{f}. Then we have

Φk(f)dkp1/2logp and Φk(f¯)dkp1/2logp\Phi_{k}({{\mathcal{F}}_{f}})\ll dkp^{1/2}\log p\mbox{ and }\Phi_{k}(\overline{{\mathcal{F}}_{f}})\ll dkp^{1/2}\log p

for each integer k{1,2,,p1}k\in\{1,2,\ldots,p-1\} and

C(f)(12o(1))log(p/d2)log2 and C(f¯)(12o(1))log(p/d2)log2C({{\mathcal{F}}_{f}})\geq\left(\frac{1}{2}-o(1)\right)\frac{\log(p/d^{2})}{\log 2}\mbox{ and }C(\overline{{\mathcal{F}}_{f}})\geq\left(\frac{1}{2}-o(1)\right)\frac{\log(p/d^{2})}{\log 2}

Proof Since otherwise the crosscorrelation values, bounded by p1p-1 the length of the sequences, become greater than pp; we may assume d<p1/2/2d<p^{1/2}/2. We note that f(X,Y)=fY(X)f(X,Y)=f_{Y}(X) is an homogeneous polynomial of degree dd. Thus it is enough to choose an irreducible polynomial

f(X)=Xd+a2Xd2+a3Xd3++ad2X2+ad𝔽p[X]f(X)=X^{d}+a_{2}X^{d-2}+a_{3}X^{d-3}+\cdots+a_{d-2}X^{2}+a_{d}\in{\mathbb{F}}_{p}[X]

such that a2,a30modpa_{2},a_{3}\not\equiv 0\mod p. It is clear that each fif_{i} is irreducible for i{1,2,p1}i\in\{1,2,\ldots p-1\} whenever f(X)f(X) is irreducible.

According to Definition 2 we need to estimate

|n=1M(fi1(n+d1)p)(fik(n+dk)p)|=|n=1M(fi1(n+d1)fik(n+dk)p)|.\displaystyle\left\lvert\sum_{n=1}^{M}{\left(\frac{f_{i_{1}}(n+d_{1})}{p}\right)\cdots\left(\frac{f_{i_{k}}(n+d_{k})}{p}\right)}\right\rvert=\displaystyle\left\lvert\sum_{n=1}^{M}{\left(\frac{f_{i_{1}}(n+d_{1})\cdots f_{i_{k}}(n+d_{k})}{p}\right)}\right\rvert.

We will first show that

h(X):=fi1(X+d1)fik(X+dk)h(X):=f_{i_{1}}(X+d_{1})\cdots f_{i_{k}}(X+d_{k})

is a monic square-free polynomial and then apply Weil’s Theorem, see [18, 38, 42]. Since each fij,j=1,2,,kf_{i_{j}},\ j=1,2,\ldots,k is an irreducible polynomial it is enough to show that they are distinct from each other. Assume that fij(X+dj)=fi(X+d)f_{i_{j}}(X+d_{j})=f_{i_{\ell}}(X+d_{\ell}) for some j,=1,2,,kj,\ell=1,2,\ldots,k. Then by comparing the coefficients of the term Xd1X^{d-1} we have dj=dd_{j}=d_{\ell} since pdp\nmid d. Hence we have the equality fij(X)=fi(X)f_{i_{j}}(X)=f_{i_{\ell}}(X). But then by comparing the coefficients of the terms Xd2X^{d-2} and Xd3X^{d-3} we have

a2ij2=a2i2 and a3ij3=a3i3.a_{2}i_{j}^{2}=a_{2}i_{\ell}^{2}\mbox{ and }a_{3}i_{j}^{3}=a_{3}i_{\ell}^{3}.

Since a2a_{2} and a3a_{3} are non zero we have

ij2=i2 and ij3=i3.i_{j}^{2}=i_{\ell}^{2}\mbox{ and }i_{j}^{3}=i_{\ell}^{3}.

This implies that ij=ii_{j}=i_{\ell}, a contradiction. Therefore hh is a square-free polynomial. Since the degree of h(x)h(x) is dkdk then the following holds

Φk(f)dkp1/2logp.\Phi_{k}({{\mathcal{F}}_{f}})\ll dkp^{1/2}\log p.

Similarly we can show that

Φk(f¯)dkp1/2logp\Phi_{k}(\overline{{\mathcal{F}}_{f}})\ll dkp^{1/2}\log p

for k{1,2,,p1}k\in\{1,2,\ldots,p-1\}. Next we use (2) to get the bounds on the family complexity.

C(f)log2Fmax1log2FΦ(f¯)log2p1dkp1/2logp=log2p1d(log2p)p1/2logplog2p1/2d(log2p)logplog2p1/2dlog2log2p12log2pd2log2log2p(12o(1))logp/d2log2\displaystyle{}\begin{array}[]{lcl}C({\mathcal{F}}_{f})&\geq&\displaystyle\log_{2}\frac{F}{\max_{1\leq\ell\leq\log_{2}{F}}{\Phi^{\circ}_{\ell}(\overline{{\mathcal{F}}_{f}})}}\\[11.38092pt] &\geq&\displaystyle\log_{2}\frac{p-1}{d\,k\,p^{1/2}\,\log p}\\[11.38092pt] &=&\displaystyle\log_{2}\frac{p-1}{d\,(\log_{2}p)\,p^{1/2}\,\log p}\\ &\geq&\displaystyle\log_{2}\frac{p^{1/2}}{d\,(\log_{2}p)\,\log p}\\ &\geq&\displaystyle\log_{2}\frac{p^{1/2}}{d}-\log_{2}{log^{2}p}\\ &\geq&\displaystyle\frac{1}{2}\log_{2}\frac{p}{d^{2}}-\log_{2}{log^{2}p}\\ &\geq&\displaystyle(\frac{1}{2}-o(1))\frac{\log{p}/d^{2}}{\log 2}\par\end{array} (11)

\Box

Example 1.

Let d=5d=5 and p=11p=11. The polynomial f=x5+x3+2x2+3f=x^{5}+x^{3}+2x^{2}+3 is in the set Ω11,5\Omega_{11,5}. The irreducible polynomials generated by fi(X)=i5f(X/i)f_{i}(X)=i^{5}f(X/i) for i{1,2,,10}i\in\{1,2,\ldots,10\} are
f1(x)=x5+x3+2x2+3f_{1}(x)=x^{5}+x^{3}+2x^{2}+3, f2(x)=x5+4x3+5x2+8f_{2}(x)=x^{5}+4x^{3}+5x^{2}+8, f3(x)=x5+9x3+10x2+3f_{3}(x)=x^{5}+9x^{3}+10x^{2}+3, f4(x)=x5+5x3+7x2+3f_{4}(x)=x^{5}+5x^{3}+7x^{2}+3, f5(x)=x5+3x3+8x2+3f_{5}(x)=x^{5}+3x^{3}+8x^{2}+3, f6(x)=x5+3x3+3x2+8f_{6}(x)=x^{5}+3x^{3}+3x^{2}+8, f7(x)=x5+5x3+4x2+8f_{7}(x)=x^{5}+5x^{3}+4x^{2}+8, f8(x)=x5+9x3+x2+8f_{8}(x)=x^{5}+9x^{3}+x^{2}+8, f9(x)=x5+4x3+6x2+3f_{9}(x)=x^{5}+4x^{3}+6x^{2}+3, f10(x)=x5+x3+9x2+8f_{10}(x)=x^{5}+x^{3}+9x^{2}+8.
The sequences generated by the polynomials above are [[1,1,1,1,1,1,1,1,1,1][[-1,-1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1][-1,1,-1,1,-1,\\ -1,-1,-1,-1,-1], [1,1,1,1,1,1,1,1,1,1][1,1,-1,1,1,-1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1][1,1,1,-1,1,1,1,-1,1,1], [1,1,1,1,1,1,1,1,1,1][1,1,1,1,-1,1,1,1,1,-1],
[1,1,1,1,1,1,1,1,1,1][1,-1,-1,-1,-1,1,-1,-1,-1,-1], [1,1,1,1,1,1,1,1,1,1][-1,-1,1,-1,-1,-1,1,-1,-1,-1], [1,1,1,1,1,1,1,1,1,1][-1,-1,-1,-1,1,-1,\\ -1,1,-1,-1], [1,1,1,1,1,1,1,1,1,1][1,1,1,1,1,1,-1,1,-1,1], [1,1,1,1,1,1,1,1,1,1]][-1,-1,-1,-1,-1,-1,-1,-1,1,1]]
This sequence family does not have the complexity 3, since the tuples {[1,1,1]\{[1,1,1], [1,1,1][1,1,-1], [1,1,1][1,-1,1], [1,1,1][1,-1,-1], [1,1,1][-1,1,1], [1,1,1][-1,1,-1], [1,1,1][-1,-1,1], [1,1,1]}[-1,-1,-1]\} in the vector space 𝔽23\mathbb{F}_{2}^{3} are not in the all possible 3 tuples of the sequence family.
For example, the first three bits of sequence family are [[1,1,1],[[-1,-1,1], [1,1,1],[-1,1,-1], [1,1,1],[1,1,-1], [1,1,1],[1,1,1], [1,1,1],[1,1,1], [1,1,1],[1,-1,-1], [1,1,1],[-1,-1,1], [1,1,1],[-1,-1,-1], [1,1,1],[1,1,1], [1,1,1]][-1,-1,-1]]. However, this multi list does not contain all the vectors in 𝔽23\mathbb{F}_{2}^{3}.
On the other hand, the complexity-2 is satisfied.
The cross-correlation measure of order 5 of the family gets the maximum value 10 with M=10, I=[2,6,7,8,10] and D=[0,0,0,0,0].
The dual family f¯\overline{{\mathcal{F}}_{f}} gets the cross-correlation measure 9 of order 5 with I=[3,4,6,9,10] and D=[0,0,0,1,1]. The complexity of the dual family is 1.

We note that each two sequences in f{\mathcal{F}}_{f} (resp. f¯\overline{{\mathcal{F}}_{f}}) given in Theorem 1 are distinct as Φ2(f)<p\Phi_{2}({{\mathcal{F}}_{f}})<p (resp. Φ2(f¯)<p\Phi_{2}(\overline{{\mathcal{F}}_{f}})<p). Hence, we have the family size |f|=p|{\mathcal{F}}_{f}|=p for the family. In the next result, we give an upper bound on the number #{f|fΩp,n}\#\{{\mathcal{F}}_{f}|f\in\Omega_{p,n}\} of distinct families. This result is a direct consequence from the paper [4]. Before that we will give some notation. Let Cα:x(yp+y)=α(x2+1)C_{\alpha}:x(y^{p}+y)=\alpha(x^{2}+1) be curves over 𝔽p\mathbb{F}_{p} for α𝔽p×\alpha\in\mathbb{F}_{p}^{\times}. Let #Cα(𝔽pn)\#C_{\alpha}(\mathbb{F}_{p^{n}}) denote the number of points (x,y)𝔽pn(x,y)\in{\mathbb{F}}_{p^{n}} on CαC_{\alpha} and define Sα(𝔽pn):=#Cα(𝔽pn)(pn+1)S_{\alpha}(\mathbb{F}_{p^{n}}):=\#C_{\alpha}(\mathbb{F}_{p^{n}})-(p^{n}+1). Let μ\mu denote the Möbius function and [p divides n][p\text{ divides }n] denote its truth value, i.e., [p divides n]:=1[p\text{ divides }n]:=1 if p divides np\text{ divides }n, and [p divides n]:=0[p\text{ divides }n]:=0 otherwise.

Corollary 1.
#{f|fΩp,n}<1ndn,pdμ(d)(Fp(n/d)[p divides n]pn/pd),\#\{{\mathcal{F}}_{f}|f\in\Omega_{p,n}\}<\frac{1}{n}\sum_{d\mid n,p\nmid d}\mu(d)\left(F_{p}(n/d)-[p\text{ divides }n]p^{n/pd}\right),

where

Fp(n)=pn2+(p1)2p2+1p2α𝔽p×Sα(𝔽pn).F_{p}(n)=p^{n-2}+\frac{(p-1)^{2}}{p^{2}}+\frac{1}{p^{2}}\sum_{\alpha\in\mathbb{F}_{p}^{\times}}S_{\alpha}(\mathbb{F}_{p^{n}}).

Proof The family {\mathcal{F}} is constructed by using irreducible polynomials fΩp,nf\in\Omega_{p,n}. By [4, Theorem 1], we get the number of irreducible polynomials in terms of Fp(n)F_{p}(n). Then, [4, Theorem 5] gives the result. \Box

III A large family of sequences with low cross correlation and high family complexity

Now we construct a larger family with both small cross-correlation measure and high ff-complexity. However, for these families of sequences we cannot say anything about their duals.

Theorem 2.

Let p>2p>2 be a prime number, d+d\in{\mathbb{Z}}^{+} and pdp\nmid d. Let Ωd\Omega_{d} be the set defined as

Ωd={f(X)=Xd+a2Xd2++ad𝔽p[X]:f is irreducible over 𝔽p}.\Omega_{d}=\{f(X)=X^{d}+a_{2}X^{d-2}+\cdots+a_{d}\in{\mathbb{F}}_{p}[X]:f\mbox{ is irreducible over }{\mathbb{F}}_{p}\}.

Let a family d{\mathcal{F}}_{d} of binary sequences be defined as

d={(f(n)p)n=1p1:fΩd}.{{\mathcal{F}}_{d}}=\left\{\left(\frac{f(n)}{p}\right)_{n=1}^{p-1}:f\in\Omega_{d}\right\}.

Then,

C(d)(12o(1))logpd2/d2log2.\displaystyle C({{\mathcal{F}}_{d}})\geq\displaystyle(\frac{1}{2}-o(1))\frac{\log{p^{d-2}}/d^{2}}{\log 2}. (12)

The family size equals

|d|=pd1dO(pd/2)|{\mathcal{F}}_{d}|=\frac{p^{d-1}}{d}-O(p^{\lfloor d/2\rfloor})

for 3d<p1/2/23\leq d<p^{1/2}/2.

Proof It is clear by the Weil bound that each irreducible polynomial generates a distinct sequence in {\mathcal{F}}. Yucas [44] proved that number of irreducible polynomials over 𝔽p{\mathbb{F}}_{p} of degree dd with pdp\nmid d and trace zero equals

1dptdμ(t)pd/t.\frac{1}{dp}\sum_{t\mid d}{\mu(t)p^{d/t}}.

By doing calculations

i=1d/2pi=p(pd/21p1)=pp1pd/2pp1\sum_{i=1}^{d/2}{p^{i}}=p(\frac{p^{d/2}-1}{p-1})=\frac{p}{p-1}p^{d/2}-\frac{p}{p-1}

With smallest p=3, we see that

1dptdμ(t)pd/tpddpi=1d/2pipd1d32pd/2.\frac{1}{dp}\sum_{t\mid d}{\mu(t)p^{d/t}}\geq\frac{p^{d}}{dp}-\sum_{i=1}^{\lfloor d/2\rfloor}{p^{i}}\geq\frac{p^{d-1}}{d}-\frac{3}{2}p^{\lfloor d/2\rfloor}.

Hence,

|d|=pd1dO(pd/2)|{\mathcal{F}}_{d}|=\frac{p^{d-1}}{d}-O(p^{\lfloor d/2\rfloor})

and we have proved the size of family.

Next, we prove the bound on family complexity by using (2) with Φk\Phi^{\circ}_{k} instead Φk\Phi_{k}. Because estimating Φk\Phi^{\circ}_{k} is easier in this case. In order to calculate Φk(¯)\Phi^{\circ}_{k}(\overline{{\mathcal{F}}}) we need to estimate

V=|fΩd(f(i1)p)(f(ik)p)|,1i1<i2<<ikp1.\displaystyle{}V=\displaystyle\left\lvert\sum_{f\in\Omega_{d}}{\left(\frac{f(i_{1})}{p}\right)\cdots\left(\frac{f(i_{k})}{p}\right)}\right\rvert,\quad 1\leq i_{1}<i_{2}<\cdots<i_{k}\leq p-1.

Note that f(X)Ωdf(X)\in\Omega_{d} if and only if f(X)=(Xβ)(Xβp)(Xβpd1)f(X)=(X-\beta)(X-\beta^{p})\cdots(X-\beta^{p^{d-1}}) for some β𝔽pd\beta\in{\mathbb{F}}_{p^{d}} with Tr(β)=0{\rm Tr}(\beta)=0 and β𝔽pt\beta\not\in{\mathbb{F}}_{p^{t}} for any td,t<dt\mid d,t<d. Hence we rewrite VV as

V=1d|β𝔽pd𝔽pd=𝔽p(β)Tr(β)=0((i1β)(i1βp)(i1βpd1)p)((ikβ)(ikβp)(ikβpd1)p)|=1d|β𝔽pd𝔽pd=𝔽p(β)Tr(β)=0(N(i1β)p)(N(ikβ)p)|,\displaystyle{}\begin{array}[]{lcl}V&=&\displaystyle\frac{1}{d}\left\lvert\sum_{\begin{subarray}{c}\beta\in{\mathbb{F}}_{p^{d}}\\ {\mathbb{F}}_{p^{d}}={\mathbb{F}}_{p}(\beta)\\ {\rm Tr}(\beta)=0\end{subarray}}{\left(\frac{(i_{1}-\beta)(i_{1}-\beta^{p})\cdots(i_{1}-\beta^{p^{d-1}})}{p}\right)\cdots\left(\frac{(i_{k}-\beta)(i_{k}-\beta^{p})\cdots(i_{k}-\beta^{p^{d-1}})}{p}\right)}\right\rvert\\[14.22636pt] &=&\displaystyle\frac{1}{d}\left\lvert\sum_{\begin{subarray}{c}\beta\in{\mathbb{F}}_{p^{d}}\\ {\mathbb{F}}_{p^{d}}={\mathbb{F}}_{p}(\beta)\\ {\rm Tr}(\beta)=0\end{subarray}}{\left(\frac{N(i_{1}-\beta)}{p}\right)\cdots\left(\frac{N(i_{k}-\beta)}{p}\right)}\right\rvert,\\[14.22636pt] \end{array} (15)

where NN is the norm function from 𝔽pd{\mathbb{F}}_{p^{d}} to 𝔽p{\mathbb{F}}_{p}. We note that χ(α)=(N(α)p)\chi(\alpha)=\left(\frac{N(\alpha)}{p}\right) is the quadratic character of 𝔽pd{\mathbb{F}}_{p^{d}} and the number of elements α𝔽pt,td\alpha\in{\mathbb{F}}_{p^{t}},\ t\mid d and t<dt<d but α𝔽pd\alpha\not\in{\mathbb{F}}_{p^{d}} is at most

td,t<dpt32pd/2.\sum_{t\mid d,t<d}{p^{t}}\leq\frac{3}{2}p^{\lfloor d/2\rfloor}.

Thus we can estimate VV as follows:

V1d|β𝔽pdTr(β)=0χ((i1β)(ikβ))|+O(pd/2/d)1dp|α𝔽pdχ((i1αp+α)(ikαp+α))|+O(pd/2/d)pkpd/2logpdp+O(pd/2/d) (degree of the polynomial in χ is pk)=kpd/2/dlogp+O(pd/2/d).\displaystyle{}\begin{array}[]{lcl}V&\leq&\displaystyle\frac{1}{d}\left\lvert\sum_{\begin{subarray}{c}\beta\in{\mathbb{F}}_{p^{d}}\\ {\rm Tr}(\beta)=0\end{subarray}}{\chi((i_{1}-\beta)\cdots(i_{k}-\beta))}\right\rvert+O(p^{d/2}/d)\\[17.07182pt] &\leq&\displaystyle\frac{1}{dp}\left\lvert\sum_{\alpha\in{\mathbb{F}}_{p^{d}}}{\chi((i_{1}-\alpha^{p}+\alpha)\cdots(i_{k}-\alpha^{p}+\alpha))}\right\rvert+O(p^{d/2}/d)\\[17.07182pt] &\leq&\displaystyle\frac{pk\,p^{d/2}\log p}{dp}+O(p^{d/2}/d)\quad\quad\quad\text{ (degree of the polynomial in $\chi$ is $pk$)}\\ &=&\displaystyle k\,p^{d/2}/d\log p+O(p^{d/2}/d).\end{array} (20)

The last inequality follows by Weil’s Theorem [41]. By (1) 2C()||=F2^{C({\mathcal{F}})}\leq|{\mathcal{F}}|=F and since k=C()k=C({\mathcal{F}}) we get klog2Fk\leq log_{2}{F}. Therefore by using (2) we have

C(d)log2Fmax1log2FΦ(d¯)log2pd1dO(pd/2)kpd/2dlogp+O(pd/2/d)=log2pd1dO(pd/2)1d(log2F)pd/2logp+O(pd/2/d) by (1)=log2pd/2(pd/21dc1)1dlog2(pd1dO(pd/2))pd/2logp+O(pd/2/d)log2pd/21dc11dlog2(pd1dO(pd/2))logp+c2log2pd/21dc11d(log2pd)logp+c2=log2pd/21dc1(log2p)logp+c212log2(pd/21dc1)2log2(log2p+c2)12log2(pd2d22c1pd/21d+c12)log2(log2p+c2)(12o(1))logpd2/d2log2\displaystyle{}\begin{array}[]{lcl}C({\mathcal{F}}_{d})&\geq&\displaystyle\log_{2}\frac{F}{\max_{1\leq\ell\leq\log_{2}{F}}{\Phi^{\circ}_{\ell}(\overline{{\mathcal{F}}_{d}})}}\\[11.38092pt] &\geq&\displaystyle\log_{2}\frac{\frac{p^{d-1}}{d}-O(p^{\lfloor d/2\rfloor})}{k\frac{p^{d/2}}{d}\log p+O(p^{d/2}/d)}\\[11.38092pt] &=&\displaystyle\log_{2}\frac{\frac{p^{d-1}}{d}-O(p^{\lfloor d/2\rfloor})}{\frac{1}{d}{(\log_{2}{F})}\,{p^{d/2}}\log p+O(p^{d/2}/d)}\quad\quad\quad\quad\text{ by (1)}\\[11.38092pt] &=&\displaystyle\log_{2}\frac{p^{d/2}(\frac{p^{d/2-1}}{d}-c_{1})}{\frac{1}{d}\log_{2}(\frac{p^{d-1}}{d}-O(p^{\lfloor d/2\rfloor}))\,p^{d/2}\log p+O(p^{d/2}/d)}\\[11.38092pt] &\geq&\displaystyle\log_{2}\frac{\frac{p^{d/2-1}}{d}-c_{1}}{\frac{1}{d}\log_{2}(\frac{p^{d-1}}{d}-O(p^{\lfloor d/2\rfloor}))\,\log p+c_{2}}\\[11.38092pt] &\geq&\displaystyle\log_{2}\frac{\frac{p^{d/2-1}}{d}-c_{1}}{\frac{1}{d}(\log_{2}p^{d})\log p+c_{2}}\\[11.38092pt] &=&\displaystyle\log_{2}\frac{\frac{p^{d/2-1}}{d}-c_{1}}{(\log_{2}p)\log p+c_{2}}\\[11.38092pt] &\geq&\displaystyle\frac{1}{2}log_{2}{(\frac{p^{d/2-1}}{d}-c_{1})^{2}}-\log_{2}({log^{2}p}+c_{2})\\[11.38092pt] &\geq&\displaystyle\frac{1}{2}log_{2}{(\frac{p^{d-2}}{d^{2}}-2\,c_{1}\,\frac{p^{d/2-1}}{d}+{c_{1}}^{2})}-\log_{2}({log^{2}p}+c_{2})\\[11.38092pt] &\geq&\displaystyle(\frac{1}{2}-o(1))\frac{\log{p^{d-2}}/d^{2}}{\log 2}\end{array} (31)

\Box

Example 2.

Let p=11p=11 and d=5d=5. Ω5={f(x)=x5+a2x3+a3x2+a4x+a5𝔽11[x]:f is irreducible over 𝔽11}\Omega_{5}=\{f(x)=x^{5}+a_{2}x^{3}+a_{3}x^{2}+a_{4}x+a_{5}\in\mathbb{F}_{11}[x]:f\mbox{ is irreducible over }\mathbb{F}_{11}\}. This family consists of 2640 irreducible polynomials. The f-complexity of this family is 8. The cross-correlation measure of order 5 of the family gets the maximum value 10 with M=10, I=[2573, 244, 2118, 1629, 740] and D=[0,0,0,0,0].

Gyarmati et. al. proved that the cross-correlation measure of the family given in Theorem 2 is small and satisfies

Φk(d)kdp1/2logp\displaystyle{}\Phi_{k}({{\mathcal{F}}_{d}})\ll kdp^{1/2}\log p

for each integer k{1,2,3,,p1}k\in\{1,2,3,\ldots,p-1\}, see [17, Theorem 8.14].

IV Sequences on kk-symbols alphabet

In [28] the correlation measure of a sequence consisting of symbols {a1,a2,,ak}\{a_{1},a_{2},\ldots,a_{k}\} is defined. We similarly extend the definition of cross-correlation measure for a family of sequences consisting of kk-symbols in the following.

Definition 3.

The cross-correlation measure of order \ell of a family {\mathcal{F}} of sequences Ei,N=(ei,1,ei,2,,ei,N){a1,a2,,ak}NE_{i,N}=(e_{i,1},e_{i,2},\ldots,e_{i,N})\in\{a_{1},a_{2},\ldots,a_{k}\}^{N}, i=1,2,,Fi=1,2,\ldots,F, is defined as

γ()=maxW,M,D,I|g(,W,M,D,I)Mk|\gamma_{\ell}({\mathcal{F}})=\max_{W,M,D,I}\left|g({\mathcal{F}},W,M,D,I)-\frac{M}{k^{\ell}}\right|

for

g(,W,M,D,I)=|{n:1nM,(ei1,n+d1,,ei,n+d)=W}|g({\mathcal{F}},W,M,D,I)=|\{n:1\leq n\leq M,(e_{i_{1},n+d_{1}},\ldots,e_{i_{\ell},n+d_{\ell}})=W\}|

where W{a1,a2,,ak}W\in\{a_{1},a_{2},\ldots,a_{k}\}^{\ell}, DD denotes an \ell tuple (d1,d2,,d)(d_{1},d_{2},\ldots,d_{\ell}) of integers such that 0d1d2d<M+dN0\leq d_{1}\leq d_{2}\leq\cdots\leq d_{\ell}<M+d_{\ell}\leq N and didjd_{i}\neq d_{j} if Ei,N=Ej,NE_{i,N}=E_{j,N} for iji\neq j, and II denotes an \ell tuple (i1,i2,,i){1,2,,F}(i_{1},i_{2},\ldots,i_{\ell})\in\{1,2,\ldots,F\}^{\ell}.

The definition of ff-complexity C({\mathcal{F}}) for a family {\mathcal{F}} of binary sequences can be directly generalized to a family of sequences consisting of kk-symbols.

Definition 4.

The ff-complexity C()C({\mathcal{F}}) of a family {\mathcal{F}} of kk-symbol sequences EN{a1,a2,,ak}NE_{N}\in\{a_{1},a_{2},\ldots,a_{k}\}^{N} of length NN is the greatest integer j0j\geq 0 such that for any 1i1<i2<<ijN1\leq i_{1}<i_{2}<\cdots<i_{j}\leq N and any ϵ1,ϵ2,,ϵj{a1,a2,,ak}\epsilon_{1},\epsilon_{2},\ldots,\epsilon_{j}\in\{a_{1},a_{2},\ldots,a_{k}\} there is a sequence EN=(e1,e2,,eN)E_{N}=(e_{1},e_{2},\ldots,e_{N})\in{\mathcal{F}} with

ei1=ϵ1,ei2=ϵ2,,eij=ϵj.e_{i_{1}}=\epsilon_{1},e_{i_{2}}=\epsilon_{2},\ldots,e_{i_{j}}=\epsilon_{j}.

Now we prove the following extension of (2).

Theorem 3.

Let {\mathcal{F}} be a family of sequences (ei,1,ei,2,,ei,N){a1,a2,,ak}N(e_{i,1},e_{i,2},\ldots,e_{i,N})\in\{a_{1},a_{2},\ldots,a_{k}\}^{N} for i=1,2,,Fi=1,2,\ldots,F and ¯\overline{{\mathcal{F}}} its dual family of binary sequences (e1,n,e2,n,,eF,n){a1,a2,,ak}F(e_{1,n},e_{2,n},\ldots,e_{F,n})\in\{a_{1},a_{2},\ldots,a_{k}\}^{F} for n=1,2,,Nn=1,2,\ldots,N. Then we have

C()logkFlog2max1ilogkFγi(¯)1\displaystyle C({\mathcal{F}})\geq\left\lceil\log_{k}{F}-\log_{2}{\max_{1\leq i\leq\log_{k}{F}}{\gamma_{i}(\overline{{\mathcal{F}}})}}\right\rceil-1 (32)

and

C()logkFlog2max1ilogkFΓi(¯)1,\displaystyle C({\mathcal{F}})\geq\left\lceil\log_{k}{F}-\log_{2}{\max_{1\leq i\leq\log_{k}{F}}{\Gamma_{i}(\overline{{\mathcal{F}}})}}\right\rceil-1, (33)

where logk\log_{k} denotes the base kk logarithm.

Proof Assume that for an integer jj a specification

ek,n1=b1,ek,n2=b2,,ek,nj=bj\displaystyle e_{k,n_{1}}=b_{1},e_{k,n_{2}}=b_{2},\ldots,e_{k,n_{j}}=b_{j} (34)

for B=(b1,b2,,bj){a1,a2,,ak}jB=(b_{1},b_{2},\ldots,b_{j})\in\{a_{1},a_{2},\ldots,a_{k}\}^{j} occurs in the family {\mathcal{F}} for some k{1,2,,F}k\in\{1,2,\ldots,F\}. Let AA denotes the number of sequences in {\mathcal{F}} satisfying (34). By the definition of cross-correlation we have

γj(¯)=maxW,M,D,I|g(¯,W,M,D,I)Mkj||g(¯,B,F,(0,0,,0),(n1,,nj))Fkj||AFkj|\displaystyle{}\begin{array}[]{lcl}\gamma_{j}(\overline{{\mathcal{F}}})&=&\displaystyle\max_{W,M,D,I}\left|g(\overline{{\mathcal{F}}},W,M,D,I)-\frac{M}{k^{j}}\right|\\[11.38092pt] &\geq&\displaystyle\left|g(\overline{{\mathcal{F}}},B,F,(0,0,\ldots,0),(n_{1},\ldots,n_{j}))-\frac{F}{k^{j}}\right|\\[11.38092pt] &\geq&\displaystyle\left|A-\frac{F}{k^{j}}\right|\\ \end{array} (38)

Hence, we obtain that

AFkj+γj(¯).A\geq\frac{F}{k^{j}}+\gamma_{j}(\overline{{\mathcal{F}}}).

If j<logkFlogkγj(¯)j<\log_{k}{F}-\log_{k}{\gamma_{j}(\overline{{\mathcal{F}}})} then there exists at least one sequence in {\mathcal{F}} satisfying (34). Therefore for all integers j0j\geq 0 satisfying

j<log2Flogkmax1logkFγ(¯)j<\log_{2}{F}-\log_{k}{\max_{1\leq\ell\leq\log_{k}{F}}{\gamma_{\ell}(\overline{{\mathcal{F}}})}}

we have A>0A>0 which completes the proof of (32). And, the proof of (33) is done similarly. \Box

V A large family of kk-symbols sequences with low cross correlation and high family complexity

In this section we extend the family of binary sequences that we have presented in Section III to the kk-symbols alphabet. We prove the following generalization of Theorem 2. Its proof is similar to proof of Theorem 2, see also [27, Theorem 3].

Theorem 4.

Let dd and p>2p>2 be distinct prime numbers and kk be a positive integer such that

gcd(k,pd1p1)=1.\gcd(k,\frac{p^{d}-1}{p-1})=1.

Let fβf_{\beta} be an irreducible polynomial of degree dd over the finite field 𝔽p{\mathbb{F}}_{p} such that

fβ(x)=(xβ)(xβp)(xβpd1)f_{\beta}(x)=(x-\beta)(x-\beta^{p})\cdots(x-\beta^{p^{d-1}})

for an element β𝔽pd\beta\in{\mathbb{F}}_{p^{d}}. Let a family {\mathcal{F}} of kk-ary sequences be defined as

={(χ(fβ(n)))n=1p1:β𝔽pd\𝔽p and Tr(β)=0}{{\mathcal{F}}}=\left\{\left(\chi({f_{\beta}(n)})\right)_{n=1}^{p-1}:\beta\in{\mathbb{F}}_{p^{d}}\backslash{\mathbb{F}}_{p}\mbox{ and }{\rm Tr}(\beta)=0\right\}

for some character χ\chi of order kk. Then we have

γ()p1/2logp\displaystyle\gamma_{\ell}({{\mathcal{F}}})\ll\ell p^{1/2}\log p (39)

for each integer l{2,3,,p1}l\in\{2,3,\ldots,p-1\} and

C()(d21)log2plog2((d1)log2p).\displaystyle C({{\mathcal{F}}})\geq\displaystyle(\frac{d}{2}-1)\log_{2}{p}-\log_{2}{((d-1)\log_{2}{p})}. (40)

The family size equals

F=pdpdp.F=\frac{p^{d}-p}{dp}.

Proof Let aa be a kk-th root of unity and S(a,m)S(a,m) denote

S(a,m)=1kt=1ka¯χ(m)t.S(a,m)=\frac{1}{k}\sum_{t=1}^{k}{\overline{a}\chi(m)^{t}}.

Then we have

S(a,m)={1ifχ(m)=a,0ifχ(m)a.S(a,m)=\left\{\begin{array}[]{ll}1&{\rm if\ }\chi(m)=a,\\ 0&{\rm if\ }\chi(m)\neq a.\end{array}\right.

Now we estimate g(,W,M,D,I)g({\mathcal{F}},W,M,D,I) as follows.

g(,W,M,D,I)=|{n:1nM,(ei1,n+d1,,ei,n+d)=W}|=n=1Mj=1S(aj,fij(n+dj))=n=1Mj=11ktj=1k(aj¯χ(fij(n+dj)))tj=1kt1=1kt=1ka1t1¯at¯n=1Mχ(fi1(n+d1))t1χ(fi(n+d))t=Mk+1kt1=1k1t=1k1a1t1at¯n=1Mχ(fi1(n+d1)t1fi(n+d)t)Mk+1kt1=1k1t=1k1|n=1Mχ(fi1(n+d1)t1fi(n+d)t)|\displaystyle{}\begin{array}[]{lcl}g({\mathcal{F}},W,M,D,I)&=&\displaystyle|\{n:1\leq n\leq M,(e_{i_{1},n+d_{1}},\ldots,e_{i_{\ell},n+d_{\ell}})=W\}|\\[2.84544pt] &=&\displaystyle\sum_{n=1}^{M}{\prod_{j=1}^{\ell}{S(a_{j},f_{i_{j}}(n+d_{j}))}}\\[11.38092pt] &=&\displaystyle\sum_{n=1}^{M}{\prod_{j=1}^{\ell}{\frac{1}{k}\sum_{t_{j}=1}^{k}{(\overline{a_{j}}\chi(f_{i_{j}}(n+d_{j})))^{t_{j}}}}}\\[11.38092pt] &=&\displaystyle\frac{1}{k^{\ell}}\sum_{t_{1}=1}^{k}\cdots\sum_{t_{\ell}=1}^{k}\overline{a_{1}^{t_{1}}}\cdots\overline{a_{\ell}^{t_{\ell}}}\sum_{n=1}^{M}{\chi(f_{i_{1}}(n+d_{1}))^{t_{1}}\cdots\chi(f_{i_{\ell}}(n+d_{\ell}))^{t_{\ell}}}\\[11.38092pt] &=&\displaystyle\frac{M}{k^{\ell}}+\frac{1}{k^{\ell}}\sum_{t_{1}=1}^{k-1}\cdots\sum_{t_{\ell}=1}^{k-1}\overline{a_{1}^{t_{1}}\cdots a_{\ell}^{t_{\ell}}}\sum_{n=1}^{M}{\chi(f_{i_{1}}(n+d_{1})^{t_{1}}\cdots f_{i_{\ell}}(n+d_{\ell})^{t_{\ell}})}\\[11.38092pt] &\leq&\displaystyle\frac{M}{k^{\ell}}+\frac{1}{k^{\ell}}\sum_{t_{1}=1}^{k-1}\cdots\sum_{t_{\ell}=1}^{k-1}\left|\sum_{n=1}^{M}{\chi(f_{i_{1}}(n+d_{1})^{t_{1}}\cdots f_{i_{\ell}}(n+d_{\ell})^{t_{\ell}})}\right|\\[11.38092pt] \end{array} (47)

Now consider the polynomial

f(n)=fi1(n+d1)t1fi(n+d)t.f(n)=f_{i_{1}}(n+d_{1})^{t_{1}}\cdots f_{i_{\ell}}(n+d_{\ell})^{t_{\ell}}.

We will show that it is not a kk-th power of a polynomial over 𝔽p{\mathbb{F}}_{p}. As n+dj<pn+d_{j}<p for j=1,2,,j=1,2,\ldots,\ell, we can write ff as follows

f(n)=(n+d1βi1)t1pd1p1(n+dβi)tpd1p1f(n)=(n+d_{1}-\beta_{i_{1}})^{t_{1}\frac{p^{d}-1}{p-1}}\cdots(n+d_{\ell}-\beta_{i_{\ell}})^{t_{\ell}\frac{p^{d}-1}{p-1}}

for some βi1,,βi𝔽pd\𝔽p\beta_{i_{1}},\ldots,\beta_{i_{\ell}}\in{\mathbb{F}}_{p^{d}}\backslash{\mathbb{F}}_{p} and Tr(βij)=0{\rm Tr}(\beta_{i_{j}})=0 for all j{1,2,,}j\in\{1,2,\ldots,\ell\}. Then, the linear terms (n+d1βi1),,(n+dβi)(n+d_{1}-\beta_{i_{1}}),\ldots,(n+d_{\ell}-\beta_{i_{\ell}}) are distinct to each other. So it is enough to show that the power of each component is not divisible by kk. And this holds as we have t1,,t<kt_{1},\ldots,t_{\ell}<k and gcd(k,pd1p1)=1\gcd(k,\frac{p^{d}-1}{p-1})=1.

By applying Weil Theorem to the inner character sum we obtain

|g(,W,M,D,I)Mk|p1/2log(p),\left|g({\mathcal{F}},W,M,D,I)-\frac{M}{k^{\ell}}\right|\ll\ell p^{1/2}\log(p),

and by substituting this into Definition 3 we complete the proof of (39).

Next we prove the bound (40). Before this we note that family size equals the number of irreducible polynomials of degree dd over 𝔽p{\mathbb{F}}_{p} having zero trace since they all produce a distinct sequence in {\mathcal{F}}. Note that there are pdpp\frac{p^{d}-p}{p} distinct elements in 𝔽pd\𝔽p{\mathbb{F}}_{p^{d}}\backslash{\mathbb{F}}_{p} having zero trace, and dd of them combines into an irreducible polynomial over 𝔽p{\mathbb{F}}_{p}. So we have

F=pdpdp.\displaystyle F=\frac{p^{d}-p}{dp}. (48)

Now we estimate

g(¯,W,F,0,I)=|{n:1nF,(e¯i1,n+d1,,e¯i,n+d)=W}|=n=1Fj=1S(aj,f¯ij(n))=n=1Fj=1S(aj,fn(ij))\displaystyle{}\begin{array}[]{lcl}g(\overline{{\mathcal{F}}},W,F,0,I)&=&\displaystyle|\{n:1\leq n\leq F,(\overline{e}_{i_{1},n+d_{1}},\ldots,\overline{e}_{i_{\ell},n+d_{\ell}})=W\}|\\ &=&\displaystyle\sum_{n=1}^{F}{\prod_{j=1}^{\ell}{S(a_{j},\overline{f}_{i_{j}}(n))}}=\sum_{n=1}^{F}{\prod_{j=1}^{\ell}{S(a_{j},f_{n}(i_{j}))}}\\ \end{array} (51)

Similar to the proof of (39) we have

n=1Fj=1S(aj,fn(ij))Fk+1kt1=1k1t=1k1|n=1Fχ((i1βn)t1pd1p1(iβn)tpd1p1)|Fk+1kt1=1k1t=1k1|β𝔽pd\𝔽p,Tr(β)=0nonconjugateFχ((i1β)t1pd1p1(iβ)tpd1p1)|Fk+1kt1=1k1t=1k11dp|β𝔽pd\𝔽pFχ((i1β)t1pd1p1(iβ)tpd1p1)|.\displaystyle{}\begin{array}[]{lcl}\displaystyle\sum_{n=1}^{F}{\prod_{j=1}^{\ell}{S(a_{j},f_{n}(i_{j}))}}&\leq&\displaystyle\frac{F}{k^{\ell}}+\frac{1}{k^{\ell}}\sum_{t_{1}=1}^{k-1}\cdots\sum_{t_{\ell}=1}^{k-1}\left|\sum_{n=1}^{F}{\chi((i_{1}-\beta_{n})^{t_{1}\frac{p^{d}-1}{p-1}}\cdots(i_{\ell}-\beta_{n})^{t_{\ell}\frac{p^{d}-1}{p-1}})}\right|\\[11.38092pt] &\leq&\displaystyle\frac{F}{k^{\ell}}+\frac{1}{k^{\ell}}\sum_{t_{1}=1}^{k-1}\cdots\sum_{t_{\ell}=1}^{k-1}\left|\sum_{\begin{subarray}{c}\beta\in{\mathbb{F}}_{p^{d}}\backslash{\mathbb{F}}_{p},{\rm Tr}(\beta)=0\\ nonconjugate\end{subarray}}^{F}{\chi((i_{1}-\beta)^{t_{1}\frac{p^{d}-1}{p-1}}\cdots(i_{\ell}-\beta)^{t_{\ell}\frac{p^{d}-1}{p-1}})}\right|\\[11.38092pt] &\leq&\displaystyle\frac{F}{k^{\ell}}+\frac{1}{k^{\ell}}\sum_{t_{1}=1}^{k-1}\cdots\sum_{t_{\ell}=1}^{k-1}\frac{1}{dp}\left|\sum_{\beta\in{\mathbb{F}}_{p^{d}}\backslash{\mathbb{F}}_{p}}^{F}{\chi((i_{1}-\beta)^{t_{1}\frac{p^{d}-1}{p-1}}\cdots(i_{\ell}-\beta)^{t_{\ell}\frac{p^{d}-1}{p-1}})}\right|.\\[11.38092pt] \end{array} (55)

Since Tr(β)=0{\rm Tr}(\beta)=0 and gcd(k,pd1p1)=1\gcd(k,\frac{p^{d}-1}{p-1})=1, the polynomial inside the character sum is not a kk-th power. Thus by Weil Theorem we have

|g(¯,W,F,0,I)Fk|1dp[(p1)pd/2+p],\left|g(\overline{{\mathcal{F}}},W,F,0,I)-\frac{F}{k^{\ell}}\right|\ll\frac{1}{dp}[(\ell p-1)p^{d/2}+p],

and so by Definition 3 we have

γ(¯)1dp[(p1)pd/2+p].\displaystyle\gamma^{\circ}(\overline{{\mathcal{F}}})\ll\frac{1}{dp}[(\ell p-1)p^{d/2}+p]. (56)

Therefore by using (48) and (56) we obtain that

C()log2Fmax1log2Fγ(¯)(d21)log2plog2((d1)log2p)C({\mathcal{F}})\geq\displaystyle\log_{2}\frac{F}{\max_{1\leq\ell\leq\log_{2}{F}}{\gamma^{\circ}_{\ell}(\overline{{\mathcal{F}}})}}\geq\displaystyle(\frac{d}{2}-1)\log_{2}{p}-\log_{2}{((d-1)\log_{2}{p})}

as desired. \Box

VI Conclusion

Pseudorandom sequences are used in many practical areas and their quality is decided by statistical test packages as well as by proved results on certain measures. In addition to that, a large family of good pseudorandom sequences in terms of several directions is required in some applications. In this paper we studied two such measures the ff-complexity, and the cross-correlation measure of order \ell for family of sequences on binary and kk-symbols alphabet. We considered two families of binary sequences of Legendre-symbols

1={(fi(n)p)n=1p1:i=1,,p1}{\mathcal{F}}_{1}=\left\{\left(\frac{f_{i}(n)}{p}\right)_{n=1}^{p-1}:i=1,\ldots,p-1\right\}

for irreducible polynomials fi(x)=xd+a2i2xd2+a3i3xd3++ad2id2x2+adidf_{i}(x)=x^{d}+a_{2}i^{2}x^{d-2}+a_{3}i^{3}x^{d-3}+\cdots+a_{d-2}i^{d-2}x^{2}+a_{d}i^{d} and

2={(f(n)p)n=1p1:f is irreducible of degree d over 𝔽p}{{\mathcal{F}}_{2}}=\left\{\left(\frac{f(n)}{p}\right)_{n=1}^{p-1}:f\mbox{ is irreducible of degree }d\mbox{ over }{\mathbb{F}}_{p}\right\}

for a positive integer dd. We show that the families 1{\mathcal{F}}_{1} and 2{\mathcal{F}}_{2} have both a large family complexity and a small cross-correlation measure up to a rather large order. Then we proved the analog results for the family of sequences on kk-symbols alphabet, and constructed a good family of kk-symbols sequences.

Acknowledgment

This study was initiated in 2020 and supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under Project No: 116R026. The study has been updated in 2022 and since then Oğuz Yayla has been supported by Middle East Technical University - Scientific Research Projects Coordination Unit under grant number 10795.

References

  • [1] R. Ahlswede, L. H. Khachatrian, C. Mauduit, and A. Sárközy, “A complexity measure for families of binary sequences,” Period. Math. Hungar., vol. 46, no. 2, pp. 107–118, 2003.
  • [2] R. Ahlswede, C. Mauduit, and A. Sárközy, “Large families of pseudorandom sequences of k-symbols and their complexity, I – II,” in General theory of information transfer and combinatorics.   Springer, 2006, pp. 293–307 and 308–325.
  • [3] N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl, “Measures of pseudorandomness for finite sequences: typical values,” Proceedings of the London Mathematical Society, vol. 95, no. 3, pp. 778–812, 2007.
  • [4] Y. Çakıroğlu, O. Yayla, and E. S. Yılmaz, “The number of irreducible polynomials over finite fields with vanishing trace and reciprocal trace,” Designs, Codes and Cryptography, pp. 1–11, 2022.
  • [5] J. Cassaigne, C. Mauduit, and A. Sarkozy, “On finite pseudorandom binary sequences VII: The measures of pseudorandomness,” Acta Aritmetica-Warszawa, vol. 103, no. 2, pp. 97–118, 2002.
  • [6] Z. Chen, “Elliptic curve analogue of Legendre sequences,” Monatshefte für Mathematik, vol. 154, no. 1, pp. 1–10, 2008.
  • [7] Z. Chen, A. Ostafe, and A. Winterhof, “Structure of pseudorandom numbers derived from Fermat quotients,” in International Workshop on the Arithmetic of Finite Fields.   Springer, 2010, pp. 73–85.
  • [8] J. Dick and F. Pillichshammer, Digital nets and sequences: discrepancy theory and quasi–Monte Carlo integration.   Cambridge University Press, 2010.
  • [9] X. Du and Z. Lin, “On pseudorandom sequences of k-symbols constructed using finite fields,” Applicable Algebra in Engineering, Communication and Computing, vol. 25, no. 4, pp. 265–285, 2014.
  • [10] J. Folláth, “Construction of pseudorandom binary sequences using additive characters over GF(2k2^{k}),” Periodica Mathematica Hungarica, vol. 57, no. 1, pp. 73–81, 2008.
  • [11] B. Gergely, “On finite pseudorandom sequences of k-symbols,” Periodica Mathematica Hungarica, vol. 47, no. 1-2, pp. 29–44, 2003.
  • [12] S. W. Golomb and G. Gong, Signal design for good correlation.   Cambridge University Press, Cambridge, 2005.
  • [13] D. Gomez and A. Winterhof, “Multiplicative character sums of Fermat quotients and pseudorandom sequences,” Periodica Mathematica Hungarica, vol. 64, no. 2, pp. 161–168, 2012.
  • [14] L. Goubin, C. Mauduit, and A. Sárközy, “Construction of large families of pseudorandom binary sequences,” J. Number Theory, vol. 106, no. 1, pp. 56–69, 2004.
  • [15] K. Gyarmati, “On a family of pseudorandom binary sequences,” Period. Math. Hungar., vol. 49, no. 2, pp. 45–63, 2004.
  • [16] ——, “Measures of pseudorandomness,” in in Pascale Charpin, Alexander Pott, and Arne Winterhof (eds.), Finite Fields and Their Applications: Character sums and polynomials, ser. Radon Ser. Comput. Appl. Math.   Walter de Gruyter, Berlin, 2013, vol. 11, pp. 43–64.
  • [17] K. Gyarmati, C. Mauduit, and A. Sárközy, “The cross-correlation measure for families of binary sequences,” in Applied algebra and number theory.   Cambridge Univ. Press, Cambridge, 2014, pp. 126–143.
  • [18] H. Iwaniec and E. Kowalski, Analytic number theory, ser. American Mathematical Society Colloquium Publications.   American Mathematical Society, Providence, RI, 2004, vol. 53.
  • [19] P. L’Ecuyer and R. Simard, “Testu01: AC library for empirical testing of random number generators,” ACM Transactions on Mathematical Software (TOMS), vol. 33, no. 4, pp. 1–40, 2007.
  • [20] H. Liu, “A family of pseudorandom binary sequences constructed by the multiplicative inverse,” Acta Arithmetica, vol. 2, no. 130, pp. 167–180, 2007.
  • [21] ——, “New pseudorandom sequences constructed by quadratic residues and Lehmer numbers,” Proceedings of the American Mathematical Society, pp. 1309–1318, 2007.
  • [22] H. Liu and B. Gao, “A large family of pseudorandom sequences of kk symbols with length pqpq,” Acta Arithmetica, vol. 181, pp. 1–26, 2017.
  • [23] H. Liu and X. Liu, “Binary sequence family with both small cross-correlation and large family complexity,” Finite Fields and Their Applications, vol. 97, 2024.
  • [24] K.-H. Mak, “More constructions of pseudorandom sequences of k symbols,” Finite fields and their applications, vol. 25, pp. 222–233, 2014.
  • [25] G. Marsaglia, “Diehard: a battery of tests of randomness,” http://stat. fsu. edu/geo, 1996.
  • [26] C. Mauduit, J. Rivat, and A. Sárközy, “Construction of pseudorandom binary sequences using additive characters,” Monatshefte für Mathematik, vol. 141, no. 3, pp. 197–208, 2004.
  • [27] C. Mauduit and A. Sárközy, “On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol,” Acta Arith., vol. 82, no. 4, pp. 365–377, 1997.
  • [28] ——, “On finite pseudorandom sequences of k symbols,” Indagationes Mathematicae, vol. 13, no. 1, pp. 89–101, 2002.
  • [29] ——, “Construction of pseudorandom binary sequences by using the multiplicative inverse,” Acta Mathematica Hungarica, vol. 108, no. 3, pp. 239–252, 2005.
  • [30] L. Mérai, “Construction of pseudorandom binary sequences over elliptic curves using multiplicative characters,” Publ. Math. Debrecen, vol. 80, no. 1-2, pp. 199–213, 2012.
  • [31] ——, “The cross-correlation measure of families of finite binary sequences: limiting distributions and minimal values,” Discrete Applied Mathematics, vol. 214, pp. 153–168, 2016.
  • [32] ——, “On the typical values of the cross-correlation measure,” Monatshefte für Mathematik, vol. 180, no. 1, pp. 83–99, 2016.
  • [33] L. Mérai and O. Yayla, “Improving results on the pseudorandomness of sequences generated via the additive order of a finite field,” Discrete Mathematics, vol. 338, no. 11, pp. 2020–2025, 2015.
  • [34] H. Niederreiter and A. Winterhof, Applied Number Theory.   Springer, Cham, 2015.
  • [35] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” DTIC Document, Tech. Rep., 2001.
  • [36] A. Sárközy and A. Winterhof, “Measures of pseudorandomness for binary sequences constructed using finite fields,” Discrete mathematics, vol. 309, no. 6, pp. 1327–1333, 2009.
  • [37] A. Sárközy, “On pseudorandomness of families of binary sequences,” Discrete Applied Mathematics, vol. 216, pp. 670–676, 2017.
  • [38] A. Tietäväinen, “Vinogradov’s method and some applications,” in Number theory and its applications (Ankara, 1996), ser. Lecture Notes in Pure and Appl. Math.   Dekker, New York, 1999, vol. 204, pp. 261–282.
  • [39] A. Topuzoğlu and A. Winterhof, “Pseudorandom sequences,” in Topics in geometry, coding theory and cryptography, ser. Algebr. Appl.   Springer, Dordrecht, 2007, vol. 6, pp. 135–166.
  • [40] V. Tóth, “Extension of the notion of collision and avalanche effect to sequences of k symbols,” Periodica Mathematica Hungarica, vol. 65, no. 2, pp. 229–238, 2012.
  • [41] A. Weil, “On some exponential sums,” Proc. Nat. Acad. Sci. U. S. A., vol. 34, pp. 204–207, 1948.
  • [42] A. Winterhof, “Some estimates for character sums and applications,” Des. Codes Cryptogr., vol. 22, no. 2, pp. 123–131, 2001.
  • [43] A. Winterhof and O. Yayla, “Family complexity and cross-correlation measure for families of binary sequences,” The Ramanujan Journal, vol. 39, no. 3, pp. 639–645, 2016.
  • [44] J. L. Yucas, “Irreducible polynomials over finite fields with prescribed trace/prescribed constant term,” Finite Fields Appl., vol. 12, no. 2, pp. 211–221, 2006.