This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Factorisation of the complete bipartite graph into spanning semiregular factors

Mahdieh Hasheminezhad
Department of Computer Science
Yazd University
Yazd, Iran
[email protected]
   Brendan D. McKay
School of Computing
Australian National University
Canberra, ACT 2601, Australia
[email protected]
Abstract

We enumerate factorisations of the complete bipartite graph into spanning semiregular graphs in several cases, including when the degrees of all the factors except one or two are small. The resulting asymptotic behaviour is seen to generalise the number of semiregular graphs in an elegant way. This leads us to conjecture a general formula when the number of factors is vanishing compared to the number of vertices. As a corollary, we find the average number of ways to partition the edges of a random semiregular bipartite graph into spanning semiregular subgraphs in several cases. Our proof of one case uses a switching argument to find the probability that a set of sufficiently sparse semiregular bipartite graphs are edge-disjoint when randomly labelled.

1 Introduction

A classical problem in enumerative graph theory is the asymptotic number of 0-1 matrices with uniform row and column sums; equivalently, semiregular bipartite graphs.

We will consider all bipartite graphs to have bipartition (V1,V2)(V_{1},V_{2}) where |V1|=m\mathopen{|}V_{1}\mathclose{|}=m and |V2|=n\mathopen{|}V_{2}\mathclose{|}=n. An (m,n,λ)(m,n,\lambda)-semiregular bipartite graph has every degree in V1V_{1} equal to λn\lambda n and every degree in V2V_{2} equal to λm\lambda m. Of course, for such a graph to exist we must have 0λ10\leq\lambda\leq 1 and λm,λn\lambda m,\lambda n must be integers. We will tacitly assume that these elementary conditions hold throughout the paper for every mentioned semiregular graph. The parameter λ\lambda will be called the density. Define Rλ(m,n)R_{\lambda}(m,n) to be the number of (m,n,λ)(m,n,\lambda)-semiregular bipartite graphs. The asymptotic determination of Rλ(m,n)R_{\lambda}(m,n) as nn\to\infty with m=m(n)m=m(n) and λ=λ(n)\lambda=\lambda(n) is not yet complete, but the known values fit a simple formula.

Theorem 1.1.

Let nn\to\infty with mnm\leq n. Then

Rλ(m,n)(nλn)m(mλm)n(mnλmn)(11/m)(m1)/2R_{\lambda}(m,n)\sim\frac{\displaystyle\binom{n}{\lambda n}^{\!m}\binom{m}{\lambda m}^{\!n}}{\displaystyle\binom{mn}{\lambda mn}}\,(1-1/m)^{(m-1)/2}

in the following cases.

  • 1.

    λ=o((mn)1/4)\lambda=o\bigl{(}(mn)^{-1/4}\bigr{)}.

  • 2.

    For sufficiently small ε>0\varepsilon>0 , (12λ)2(1+5m6n+5n6m)(4ε)λ(1λ)logn(1-2\lambda)^{2}\bigl{(}1+\lower 0.6458pt\hbox{\large$\textstyle\frac{5m}{6n}$}+\lower 0.6458pt\hbox{\large$\textstyle\frac{5n}{6m}$}\bigr{)}\leq(4-\varepsilon)\lambda(1-\lambda)\log n and n=o(λ(1λ)m1+ε)n=o\bigl{(}\lambda(1-\lambda)m^{1+\varepsilon}\bigr{)}.

  • 3.

    For some ε>0\varepsilon>0, 2m=O((λ(1λ)n)1/2ε)2\leq m=O\bigl{(}(\lambda(1-\lambda)n)^{1/2-\varepsilon}\bigr{)}.

  • 4.

    λc\lambda\leq c for a sufficiently small constant cc, n=O(λ1/2εm3/2ε)n=O(\lambda^{1/2-\varepsilon}m^{3/2-\varepsilon}) for some ε>0\varepsilon>0, and λmlogKn\lambda m\geq\log^{K}n for every KK.

Proof.

Note that (11/m)(m1)/2e1/2(1-1/m)^{(m-1)/2}\to e^{-1/2} if mm\to\infty. Case 1 covers the sparse case and was proved by McKay and Wang [11]. Case 2 applies when mm and nn are not very much different and the graph is very dense, while Case 3 covers all densities when nn is much larger than mm. Case 2 was proved by Greenhill and McKay [4], and Case 3 by Canfield and McKay [1]. Case 4, proved by Liebenau and Wormald [8], covers a wide range of densities and moderately large n/mn/m. ∎

Theorem 1.1 does not cover all (m,n,λ)(m,n,\lambda). For example λ=12,m=n2/3\lambda=\frac{1}{2},m=n^{2/3} is missing, and so is λ=1m,m=n1/2\lambda=\frac{1}{m},m=n^{1/2}. However, based on numerical evidence a strong form of the theorem was conjectured in [1] to hold for all (m,n,λ)(m,n,\lambda).

We can consider Rλ(m,n)R_{\lambda}(m,n) as counting the partitions of the edges of Km,nK_{m,n} into two spanning semiregular subgraphs, one of density λ\lambda and one of density 1λ1-\lambda. This suggests a generalization: how many ways are there to partition the edges of Km,nK_{m,n} into more than two spanning semiregular subgraphs, of specified densities?

For positive numbers λ0,,λk\lambda_{0},\ldots,\lambda_{k} with sum 1, define R(m,n;λ0,,λk)R(m,n;\lambda_{0},\ldots,\lambda_{k}) to be the number of ways to partition the edges of Km,nK_{m,n} into spanning semiregular subgraphs of density λ0,,λk\lambda_{0},\ldots,\lambda_{k}. We conjecture that for k=o(m)k=o(m), the asymptotic answer is a simple generalisation of Theorem 1.1.

Conjecture 1.2.

Let λ0,,λk\lambda_{0},\ldots,\lambda_{k} be positive numbers such that i=0kλi=1\sum_{i=0}^{k}\lambda_{i}=1. Then, if nn\to\infty with 2mn2\leq m\leq n, and 1k=o(m)1\leq k=o(m), R(m,n;λ0,,λk)R(m,n;λ0,,λk)R(m,n;\lambda_{0},\ldots,\lambda_{k})\sim R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k}), where (using multinomial coefficients)

R(m,n;λ0,,λk)=(nλ0n,,λkn)m(mλ0m,,λkm)n(mnλ0mn,,λkmn)(11/m)k(m1)/2.R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k})=\frac{\displaystyle\binom{n}{\lambda_{0}n,\ldots,\lambda_{k}n}^{\!m}\binom{m}{\lambda_{0}m,\ldots,\lambda_{k}m}^{\!n}}{\displaystyle\binom{mn}{\lambda_{0}mn,\ldots,\lambda_{k}mn}}\,(1-1/m)^{k(m-1)/2}.

We will prove the conjecture in six cases.

Theorem 1.3.

Conjecture 1.2 holds in the following cases.

  1. (a)

    k=1k=1 and one of the conditions of Theorem 1.1 holds.

  2. (b)

    k2k\geq 2, mnm\leq n and m1n3(i=1kλi)3=o(1)m^{-1}n^{3}\bigl{(}\sum_{i=1}^{k}\lambda_{i}\bigr{)}^{3}=o(1).

  3. (c)

    k2k\geq 2, mnm\leq n and m1/2n1i<jkλiλj=o(1)m^{1/2}n\sum_{1\leq i<j\leq k}\lambda_{i}\lambda_{j}=o(1).

  4. (d)

    m=nm=n, k=o(n6/7)k=o(n^{6/7}) and λ1==λk=1n\lambda_{1}=\cdots=\lambda_{k}=\frac{1}{n} (the case of Latin rectangles).

  5. (e)

    (m,n,λ1)(m,n,\lambda_{1}) satisfies condition 2 of Theorem 1.1, and λ2++λk=O(n1+ε)\lambda_{2}+\cdots+\lambda_{k}=O(n^{-1+\varepsilon}) for sufficiently small ε>0\varepsilon>0.

  6. (f)

    m=O(1)m=O(1) and 1km11\leq k\leq m-1. In this case we do not need the condition k=o(m)k=o(m).

Part (a) is just a restatement of Theorem 1.1. Part (b) will be proved using [9]. Part (c) will follow from a switching argument applied to the probability of two randomly labelled semiregular graphs being edge-disjoint. Part (d) is a consequence of [3]. Part (e) will follow from a combination of [4] and Part (b). Part (f) will be proved using the Central Limit Theorem.

Conjecture 1.4.

Let λ1,,λk,λ\lambda_{1},\ldots,\lambda_{k},\lambda be positive numbers such that i=1kλi=λ\sum_{i=1}^{k}\lambda_{i}=\lambda. Then, if nn\to\infty with 2mn2\leq m\leq n, and 1k=o(m)1\leq k=o(m), the average number of ways to partition the edges of a uniform random (m,n,λ)(m,n,\lambda)-semiregular bipartite graph into spanning semiregular subgraphs of density λ1,,λk\lambda_{1},\ldots,\lambda_{k} is asymptotically

R(m,n;1λ,λ1,λk)R(m,n;1λ,λ)\displaystyle\frac{R^{\prime}(m,n;1-\lambda,\lambda_{1}\ldots,\lambda_{k})}{R^{\prime}(m,n;1-\lambda,\lambda)}
=(λnλ1n,,λkn)m(λmλ1m,,λkm)n(λmnλ1mn,,λkmn)(11/m)(k1)(m1)/2.\displaystyle{\kern 40.00006pt}=\frac{\displaystyle\binom{\lambda n}{\lambda_{1}n,\ldots,\lambda_{k}n}^{\!m}\binom{\lambda m}{\lambda_{1}m,\ldots,\lambda_{k}m}^{\!n}}{\displaystyle\binom{\lambda mn}{\lambda_{1}mn,\ldots,\lambda_{k}mn}}\,(1-1/m)^{(k-1)(m-1)/2}.

Note that Conjecture 1.4 holds if the formula in Theorem 1.1 holds for (m,n,λ)(m,n,\lambda) and Conjecture 1.2 holds for (m,n,1λ,λ1,,λk)(m,n,1-\lambda,\lambda_{1},\ldots,\lambda_{k}). Thus, many cases of Conjecture 1.4 follow from Theorem 1.1 and Theorem 1.3.

For integer x0x\geq 0, (N)x(N)_{x} denotes the falling factorial N(N1)(Nx+1)N(N-1)\cdots(N-x+1). It will be convenient to have an approximation for R(m,n;λ0,,λk)R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k}) when i=1kλi\sum_{i=1}^{k}\lambda_{i} is small.

Lemma 1.5.

Let λ0,,λk\lambda_{0},\ldots,\lambda_{k} be positive numbers such that i=0kλi=1\sum_{i=0}^{k}\lambda_{i}=1. Define λ=i=1kλi\lambda=\sum_{i=1}^{k}\lambda_{i} and assume mnm\leq n and λ=O(m1/4n1/4)\lambda=O(m^{-1/4}n^{-1/4}). Then

R(m,n;λ0,,λk)\displaystyle R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k}) =i=1k(λimn)!(λim)!n(λin)!mexp(Δ1(m,n,λ)+O(λ4mn))\displaystyle=\prod_{i=1}^{k}\frac{(\lambda_{i}mn)!}{(\lambda_{i}m)!^{n}\,(\lambda_{i}n)!^{m}}\exp\bigl{(}\varDelta_{1}(m,n,\lambda)+O(\lambda^{4}mn)\bigr{)} (1.1)
=i=1k(λimn)!(λim)!n(λin)!mexp(Δ2(m,n,λ)+O(λ3mn)),\displaystyle=\prod_{i=1}^{k}\frac{(\lambda_{i}mn)!}{(\lambda_{i}m)!^{n}\,(\lambda_{i}n)!^{m}}\exp\bigl{(}\varDelta_{2}(m,n,\lambda)+O(\lambda^{3}mn)\bigr{)}, (1.2)

where

Δ1(m,n,λ)\displaystyle\varDelta_{1}(m,n,\lambda) =12k+k4m12λ+14λ(2+λ)(m+n)16λ2(3+λ)mn112λ(mn+nm)\displaystyle=-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}k+\lower 0.6458pt\hbox{\large$\textstyle\frac{k}{4m}$}-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}\lambda+\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{4}$}\lambda(2+\lambda)(m+n)-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{6}$}\lambda^{2}(3+\lambda)mn-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{12}$}\lambda\bigl{(}\lower 0.6458pt\hbox{\large$\textstyle\frac{m}{n}$}+\lower 0.6458pt\hbox{\large$\textstyle\frac{n}{m}$}\bigr{)}
Δ2(m,n,λ)\displaystyle\varDelta_{2}(m,n,\lambda) =12k+12λ(m+n)12λ2mn.\displaystyle=-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}k+\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}\lambda(m+n)-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}\lambda^{2}mn.
Proof.

If NN\to\infty and λ=O(N1/4)\lambda=O(N^{-1/4}), with λN\lambda N integer,

(N)λN\displaystyle(N)_{\lambda N} =NλNexp(i=0λN1log(1iN))\displaystyle=N^{\lambda N}\exp\biggl{(}\,\sum_{i=0}^{\lambda N-1}\log\Bigl{(}1-\lower 0.6458pt\hbox{\large$\textstyle\frac{i}{N}$}\Bigr{)}\biggr{)}
=NλNexp(r=11ri=0λN1(i/N)r)\displaystyle=N^{\lambda N}\exp\Bigl{(}-\sum_{r=1}^{\infty}\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{r}$}\sum_{i=0}^{\lambda N-1}\bigl{(}i/N\bigr{)}^{r}\Bigr{)}
=NλNexp(16λ2(3+λ)N+14λ(2+λ)λ12N+O(λ4N)).\displaystyle=N^{\lambda N}\exp\Bigl{(}-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{6}$}\lambda^{2}(3+\lambda)N+\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{4}$}\lambda(2+\lambda)-\lower 0.6458pt\hbox{\large$\textstyle\frac{\lambda}{12N}$}+O(\lambda^{4}N)\Bigr{)}. (1.3)

Note that

(Nλ0,,λk)=(N)λNi=1k(λiN)!.\binom{N}{\lambda_{0},\ldots,\lambda_{k}}=\frac{(N)_{\lambda N}}{\prod_{i=1}^{k}(\lambda_{i}N)!}.

Since λkm\lambda\geq\lower 0.6458pt\hbox{\large$\textstyle\frac{k}{m}$}, k/m2=O(λ4mn)k/m^{2}=O(\lambda^{4}mn), so we also have

(11/m)k(m1)/2=exp(12k+k4m+O(λ4mn)).(1-1/m)^{k(m-1)/2}=\exp\Bigl{(}-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}k+\lower 0.6458pt\hbox{\large$\textstyle\frac{k}{4m}$}+O(\lambda^{4}mn)\Bigr{)}.

Applying this, together with (1.3) for N=m,n,mnN=m,n,mn, gives (1.1). Removing the terms that are O(λ3mn)O(\lambda^{3}mn) gives (1.2). ∎

2 A first case of a single dense factor

In [9], the second author proved a generalized version of the following lemma.

Lemma 2.1.

Assume mnm\leq n, λh>0\lambda_{h}>0, λd0\lambda_{d}\geq 0 and λh(λd2+λh2)m1n3=o(1)\lambda_{h}(\lambda_{d}^{2}+\lambda_{h}^{2})m^{-1}n^{3}=o(1). Let DD be any (m,n,λd)(m,n,\lambda_{d})-semiregular graph. Then the number of (m,n,λh)(m,n,\lambda_{h})-semiregular graphs edge-disjoint from DD is

(λhmn)!(λhm)!n(λhn)!mexp(12(λhm1)(λhn1)λhλdmn+O(λh(λd+λh)2m1n3)).\frac{(\lambda_{h}mn)!}{(\lambda_{h}m)!^{n}(\lambda_{h}n)!^{m}}\exp\bigl{(}-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}(\lambda_{h}m-1)(\lambda_{h}n-1)-\lambda_{h}\lambda_{d}mn+O(\lambda_{h}(\lambda_{d}+\lambda_{h})^{2}m^{-1}n^{3})\bigr{)}.

Now we can prove Theorem 1.3(b).

Theorem 2.2.

Assume mnm\leq n, k1k\geq 1, and that λ1,,λk\lambda_{1},\ldots,\lambda_{k} are positive numbers with i=1kλi=o(m1/3/n)\sum_{i=1}^{k}\lambda_{i}=o(m^{1/3}/n). Define λ=i=1kλi\lambda=\sum_{i=1}^{k}\lambda_{i} and λ0=1λ\lambda_{0}=1-\lambda. Then

R(m,n;λ0,,λk)=R(m,n;λ0,,λk)(1+O(λ3m1n3)).R(m,n;\lambda_{0},\ldots,\lambda_{k})=R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k})\bigl{(}1+O(\lambda^{3}m^{-1}n^{3})\bigr{)}.
Proof.

The case k=1k=1 corresponds to λd=0\lambda_{d}=0 in Lemma 2.1, so assume k2k\geq 2. For notational convenience, write the argument of the exponential in Lemma 2.1 as A(λd,λh)+O(δ(λd,λh))A(\lambda_{d},\lambda_{h})+O(\delta(\lambda_{d},\lambda_{h})). We can partition Km,nK_{m,n} into spanning semiregular subgraphs of density λ0,,λk\lambda_{0},\ldots,\lambda_{k} by first choosing an (m,n,λ1)(m,n,\lambda_{1})-semiregular graph D1D_{1}, then choosing an (m,n,λ2)(m,n,\lambda_{2})-semiregular graph D2D_{2} disjoint from D1D_{1}, then an (m,n,λ3)(m,n,\lambda_{3})-semiregular graph D3D_{3} disjoint from D1D2D_{1}\cup D_{2}, and so on until we have chosen disjoint D1,,DkD_{1},\ldots,D_{k}. Since the density of D1Dj=λ1++λjD_{1}\cup\cdots\cup D_{j}=\lambda_{1}+\cdots+\lambda_{j} for each jj, we have

R(m,n;\displaystyle R(m,n; λ0,,λk)=exp(A^+O(δ^))i=1k(λimn)!(λim)!n(λin)!m,where\displaystyle\lambda_{0},\ldots,\lambda_{k})=\exp\bigl{(}\hat{A}+O(\hat{\delta})\bigr{)}\prod_{i=1}^{k}\frac{(\lambda_{i}mn)!}{(\lambda_{i}m)!^{n}\,(\lambda_{i}n)!^{m}},\qquad\text{where}
A^\displaystyle\hat{A} =A(0,λ1)+A(λ1,λ2)+A(λ1+λ2,λ3)++A(i=1k1λi,λk),\displaystyle=A(0,\lambda_{1})+A(\lambda_{1},\lambda_{2})+A(\lambda_{1}+\lambda_{2},\lambda_{3})+\cdots+A\Bigl{(}{\textstyle\sum_{i=1}^{k-1}}\lambda_{i},\lambda_{k}\Bigr{)},
δ^\displaystyle\hat{\delta} =δ(0,λ1)+δ(λ1,λ2)+δ(λ1+λ2,λ3)++δ(i=1k1λi,λk).\displaystyle=\delta(0,\lambda_{1})+\delta(\lambda_{1},\lambda_{2})+\delta(\lambda_{1}+\lambda_{2},\lambda_{3})+\cdots+\delta\Bigl{(}{\textstyle\sum_{i=1}^{k-1}}\lambda_{i},\lambda_{k}\Bigr{)}.

By routine induction, we find that

A^=12k+12λ(m+n)12λ2mn\hat{A}=-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}k+\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}\lambda(m+n)-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}\lambda^{2}mn

and δ^=O(λ3m1n3)\hat{\delta}=O(\lambda^{3}m^{-1}n^{3}).

Since mnm\leq n we have mn=O(m1n3)mn=O(m^{-1}n^{3}), which completes the proof in conjunction with (1.2), ∎

3 A second case of one dense factor

The enumeration of sparse semiregular bipartite graphs was extended to higher degrees by McKay and Wang [11] and generalised by Greenhill, McKay and Wang [5]. However, unlike Lemma 2.1, there was no allowance in [5, 11] for a set of forbidden edges. In order to use the more accurate enumeration for our purposes, we consider the problem of forbidden edges in a more general form that may be of independent interest. Instead of considering a random semiregular graph, we consider an arbitrary semiregular graph that is labelled at random.

When we write of a semiregular bipartite graph on (V1,V2)(V_{1},V_{2}) being randomly (re)labelled, we mean that V1V_{1} and V2V_{2} are independently permuted (m!n!m!\,n! possibilities altogether of equal probability). In this section we consider two semiregular bipartite graphs on (V1,V2)(V_{1},V_{2}): an (m,n,λd)(m,n,\lambda_{d})-semiregular graph DD and an (m,n,λh)(m,n,\lambda_{h})-semiregular graph HH. If HH is randomly labelled, what is the probability that it is edge-disjoint from DD?

Define M=λdλhmnlognM=\lceil\lambda_{d}\lambda_{h}mn\log n\rceil. We will work under the following assumptions.

n,mn,λd,λh>0,λd2λh2mn2=o(1).n\to\infty,\quad m\leq n,\quad\lambda_{d},\lambda_{h}>0,\quad\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}=o(1). (3.1)
Lemma 3.1.

Under assumptions (3.1), we have mm\to\infty, n=o(m3/2)n=o(m^{3/2}), and m1λd,λh=o(m1/2n1)m^{-1}\leq\lambda_{d},\lambda_{h}=o(m^{1/2}n^{-1}). In addition, λdλh=o(m1/2n1)\lambda_{d}\lambda_{h}=o(m^{-1/2}n^{-1}) and lognM=o(m1/2logn)\log n\leq M=o(m^{1/2}\log n).

Proof.

Since D,HD,H are not empty, λd,λh1m\lambda_{d},\lambda_{h}\geq\frac{1}{m}, corresponding to degree 1 in V2V_{2}. The rest is elementary. ∎

Lemma 3.2.

Let DD be an (m,n,λd)(m,n,\lambda_{d})-semiregular bipartite graph and HH be an (m,n,λh)(m,n,\lambda_{h})-semiregular bipartite graph satisfying Assumptions (3.1). Then, with probability 1O(λd2λh2mn2)1-O(\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}), a random labeling of HH does not have any path of length 2 in common with DD and the number of edges in common with DD is less than MM.

Proof.

Graphs DD and HH have O(mn2λd2)O(mn^{2}\lambda_{d}^{2}) and O(mn2λh2)O(mn^{2}\lambda_{h}^{2}) paths of length 2 with the central vertex in V1V_{1}, respectively. The probability that such a path in HH matches a given path in DD when randomly labelled is O(m1n2)O(m^{-1}n^{-2}). So the expected number of such coincidences is O(λd2λh2mn2)O(\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}). Similarly, the expected number of coincidences between paths of length 2 with central vertex in V2V_{2} is O(λd2λh2m2n)O(\lambda_{d}^{2}\lambda_{h}^{2}m^{2}n), which is O(λd2λh2mn2)O(\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}) because mnm\leq n by assumption. Thus, with probability 1O(λd2λh2m2n)1-O(\lambda_{d}^{2}\lambda_{h}^{2}m^{2}n), a random labelling of HH has no paths of length 2 in common with DD.

Now consider a set SS of MM edges of HH. In light of the preceding, we can assume they are independent edges. There are at most (λhmnM)\binom{\lambda_{h}mn}{M} choices of SS, and at most (λdmnM)\binom{\lambda_{d}mn}{M} choices of a set of MM edges of DD that SS might map onto. The probability that SS maps onto a particular set of MM independent edges of DD is

M!(mM)!(nM)!m!n!M!(mM)M(nM)M.\frac{M!\,(m-M)!\,(n-M)!}{m!\,n!}\leq\frac{M!}{(m-M)^{M}(n-M)^{M}}.

Since M=o(m)M=o(m) and M=o(n)M=o(n), mn2(mM)(nM)mn\leq 2(m-M)(n-M) for sufficiently large nn. Using M!(M/e)MM!\geq(M/e)^{M}, we find that the expected number of sets of MM independent edges of HH that map onto edges of DD is at most

(λhλdm2n2eM(mM)(nM))M(2elogn)logn=O(nt)for any t>0.\biggl{(}\frac{\lambda_{h}\lambda_{d}\,m^{2}n^{2}e}{M(m-M)(n-M)}\biggr{)}^{\!M}\leq\biggl{(}\frac{2e}{\log n}\biggr{)}^{\!\log n}=O(n^{-t})\quad\text{for any $t>0$}.

By Lemma 3.1, λd2λh2mn2n1\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}\geq n^{-1}, so the probability that DD and HH have more than MM edges in common is O(λd2λh2mn2)O(\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}). This completes the proof. ∎

Let (t)\mathcal{L}(t) be the set of all labelings of the vertices of HH with no common paths of length 2 with DD and exactly tt edges in common with DD. Define L(t)=|(t)|L(t)=|\mathcal{L}(t)|, so in particular the number of labelings of the vertices of HH with no common edges with DD is L(0)L(0). Let

T=t=0M1L(t).T=\sum_{t=0}^{M-1}L(t).

In the next step we will estimate the value of T/L(0)T/L(0) by the switching method.


A forward switching is a permutation (ae)(bf)(a\,e)(b\,f) of the vertices of HH such that

  • a,eV1a,e\in V_{1} are distinct, and b,fV2b,f\in V_{2} are distinct.

  • abab is a common edge of DD and HH,

  • efef is a non-edge of DD, and

  • after the permutation, the edges common to DD and HH are the same except that abab is no longer a common edge.

A reverse switching is a permutation (ae)(bf)(a\,e)(b\,f) of the vertices of HH such that

  • a,eV1a,e\in V_{1} are distinct, and b,fV2b,f\in V_{2} are distinct.

  • abab is an edge of DD that is not an edge of HH,

  • efef is an edge of HH that is not an edge of DD, and

  • after the permutation, the edges common to DD and HH are the same except that abab becomes a common edge of DD and HH.

Lemma 3.3.

Assume Conditions (3.1). Then, uniformly for 1tM1\leq t\leq M,

L(t)L(t1)=(λdmnt+1)(λhmnt+1)tmn(1+O(tm+1m1/2)).\frac{L(t)}{L(t-1)}=\frac{(\lambda_{d}\,mn-t+1)(\lambda_{h}\,mn-t+1)}{tmn}\biggl{(}1+O\Bigl{(}\frac{t}{m}+\frac{1}{m^{1/2}}\Bigr{)}\biggr{)}.
Proof.

By using a forward switching, we will convert a labeling R(t)R\in\mathcal{L}(t) to a labeling R(t1)R^{\prime}\in\mathcal{L}(t-1). Without loss of generality, we suppose that RR is the identity, since our bounds will be independent of the structure of HH other than its density.

There are tt choices for edge abab. We will bound the choices of e,fe,f for a fixed choice of abab. Graph DD has (1λd)mn(1-\lambda_{d})mn non-edges efef, including at most m+n=O(n)m+n=O(n) for which e=ae=a or f=bf=b. In addition, we must ensure that no common edges are created (implying that there remain no common paths of length 2), and none other than abab are destroyed.

Since DD and HH have no paths of length 2 in common, there are no other common edges of HH and DD incident to aa or bb. Therefore the only way to destroy a common edge other than abab is if ee or ff are incident to a common edge. This eliminates at most t(n+m)=O(tn)t(n+m)=O(tn) pairs e,fe,f.

Creation of a new common edge can only occur if there is a path of length 2 from aa to ee, or from bb to ff, consisting of one edge from HH and one from DD. This eliminates at most 4λdλhmn4\lambda_{d}\lambda_{h}mn choices of efef.

Using Lemma 3.1 we find that the number of forward switchings is

WF\displaystyle W_{F} =t((1λd)mnO(n+tn+λdλhmn))\displaystyle=t\bigl{(}(1-\lambda_{d})mn-O(n+tn+\lambda_{d}\lambda_{h}mn)\bigr{)}
=tmn(1+O(tm+m1/2n)).\displaystyle=t\,mn\biggl{(}1+O\Bigl{(}\frac{t}{m}+\frac{m^{1/2}}{n}\Bigr{)}\biggr{)}.

A reverse switching converts a labeling R(t1)R^{\prime}\in\mathcal{L}(t-1) to a labeling RR in (t)\mathcal{L}(t). Again, without loss of generality, we suppose that RR^{\prime} is the identity. There are λdmnt+1\lambda_{d}\,mn-t+1 choices for an edge abab in DD and λhmnt+1\lambda_{h}mn-t+1 choices for an edge efef in HH, in each case avoiding the t1t-1 common edges. From these we must subtract any choices that create or destroy a common edge except the new common edge abab we intend to create, as well as those with a=ea=e or b=fb=f.

There are at most λdλhmn2\lambda_{d}\lambda_{h}mn^{2} choices of a,b,e,fa,b,e,f such that a=ea=e and at most that number (since mnm\leq n) such that b=fb=f.

To destroy a common edge, at least one of a,b,e,fa,b,e,f must be the endpoint of a common edge. The number of such choices is bounded by 4(t1)λdλhmn24(t-1)\lambda_{d}\lambda_{h}mn^{2}.

To create a new common edge other than abab, there must be a path of length 2 from aa to ee, or from bb to ff, consisting of one edge from HH and one from DD. This eliminates at most λd2λh2m2n3\lambda_{d}^{2}\lambda_{h}^{2}m^{2}n^{3} cases.

Using Lemma 3.1 we find that the number of reverse switchings is

WR\displaystyle W_{R} =(λdmnt+1)(λhmnt+1)+O(tλdλhmn2+λd2λh2m2n3)\displaystyle=(\lambda_{d}mn-t+1)(\lambda_{h}mn-t+1)+O\bigl{(}t\lambda_{d}\lambda_{h}mn^{2}+\lambda_{d}^{2}\lambda_{h}^{2}m^{2}n^{3}\bigr{)}
=(λdmnt+1)(λhmnt+1)(1+O(tm+1m1/2)).\displaystyle=(\lambda_{d}mn-t+1)(\lambda_{h}mn-t+1)\biggl{(}1+O\Bigl{(}\frac{t}{m}+\frac{1}{m^{1/2}}\Bigr{)}\biggr{)}.

The lemma now follows from the ratio WR/WFW_{R}/W_{F}, using mnm\leq n. ∎

We will need the following summation lemma from [5, Cor. 4.5].

Lemma 3.4.

Let Z2Z\geq 2 be an integer and, for 1iZ1\leq i\leq Z, let real numbers A(i)A(i), B(i)B(i) be given such that A(i)0A(i)\geq 0 and 1(i1)B(i)01-(i-1)B(i)\geq 0. Define A1=mini=1ZA(i)A_{1}=\min_{i=1}^{Z}A(i), A2=maxi=1ZA(i),C1=mini=1ZA(i)B(i)A_{2}=\max_{i=1}^{Z}A(i),C_{1}=\min_{i=1}^{Z}A(i)B(i) and C2=maxi=1ZA(i)B(i)C_{2}=\max_{i=1}^{Z}A(i)B(i). Suppose that there exists c^\hat{c} with 0<c^<130<\hat{c}<\frac{1}{3} such that max{A/Z,|C|}c^\max\{A/Z,|C|\}\leq\hat{c} for all A[A1,A2]A\in[A_{1},A_{2}], C[C1,C2]C\in[C_{1},C_{2}]. Define n0,,nZn_{0},\ldots,n_{Z} by n0=1n_{0}=1 and

ni/ni1=1iA(i)(1(i1)B(i))n_{i}/n_{i-1}=\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{i}$}A(i)(1-(i-1)B(i))

for 1iZ1\leq i\leq Z, with the following interpretation: if A(i)=0A(i)=0 or 1(i1)B(i)=01-(i-1)B(i)=0, then nj=0n_{j}=0 for ijZi\leq j\leq Z. Then

Σ1i=0ZniΣ2,\Sigma_{1}\leq\sum_{i=0}^{Z}n_{i}\leq\Sigma_{2},

where

Σ1=exp(A112A1C2)(2ec^)Z\Sigma_{1}=\exp\bigl{(}A_{1}-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}A_{1}C_{2})-(2e\hat{c}\bigr{)}^{Z}

and

Σ2=exp(A212A2C1+12A2C12)+(2ec^)Z. ∎\Sigma_{2}=\exp\bigl{(}A_{2}-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}A_{2}C_{1}+\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}A_{2}C_{1}^{2}\bigr{)}+(2e\hat{c})^{Z}.\hbox to0.0pt{\qquad\qquad\qed\hss}
Lemma 3.5.

Under Assumptions (3.1) we have

TL(0)=exp(λdλhmn+O(λdλhm1/2n)).\frac{T}{L(0)}=\exp\bigl{(}\lambda_{d}\lambda_{h}mn+O(\lambda_{d}\lambda_{h}m^{1/2}n)\bigr{)}.
Proof.

Lemma 3.1 and the definition of MM allow us to write Lemma 3.3 as

L(t)L(t1)=1tA(t)(1(t1)B(t)),\frac{L(t)}{L(t-1)}=\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{t}$}A(t)\bigl{(}1-(t-1)B(t)\bigr{)},

where A(t)=λdλhmn(1+O(m1/2))A(t)=\lambda_{d}\lambda_{h}mn(1+O(m^{-1/2})) and B(t)=O(m1)B(t)=O(m^{-1}). In each case, the O()O(\,) expression is a function of tt but uniform over 1tM1\leq t\leq M.

Clearly A(t)>0A(t)>0, and using Lemma 3.1, we can check that 1(t1)B(t)>01-(t-1)B(t)>0 for 1tM1\leq t\leq M. Define A1A_{1}, A2A_{2}, C1C_{1} and C2C_{2} as in Lemma 3.4. This gives

A1,A2\displaystyle A_{1},A_{2} =λdλhmn+O(λdλhm1/2n),\displaystyle=\lambda_{d}\lambda_{h}mn+O(\lambda_{d}\lambda_{h}m^{1/2}n),
C1,C2\displaystyle C_{1},C_{2} =O(λdλhn)=o(m1/2).\displaystyle=O(\lambda_{d}\lambda_{h}n)=o(m^{-1/2}).

The condition max{A/M,|C|}c^\max\{A/M,|C|\}\leq\hat{c} of Lemma 3.4 is satisfied with c^\hat{c} any sufficiently small constant. Using Lemma 3.1, we also have A1C2,A2C1=O(λd2λh2mn2)A_{1}C_{2},A_{2}C_{1}=O(\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}), A2C12=O(λd2λh2m1/2n2)A_{2}C_{1}^{2}=O(\lambda_{d}^{2}\lambda_{h}^{2}m^{1/2}n^{2}) and (2ec^)M=O(n1)(2e\hat{c})^{M}=O(n^{-1}) if c^\hat{c} is small enough. Since λd2λh2mn2=o(1)\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}=o(1) by assumption, λd2λh2mn2=o(λdλhm1/2n)\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}=o(\lambda_{d}\lambda_{h}m^{1/2}n). The lemma now follows from Lemma 3.4. ∎

Lemma 3.6.

Let DD be an (m,n,λd)(m,n,\lambda_{d})-semiregular bipartite graph and HH be an (m,n,λh)(m,n,\lambda_{h})-semiregular bipartite graph such that Assumptions (3.1) hold. Then the probability that a random labelling of HH is edge-disjoint from DD is

exp(λdλhmn+O(λdλhm1/2n)).\exp\bigl{(}-\lambda_{d}\lambda_{h}mn+O(\lambda_{d}\lambda_{h}m^{1/2}n)\bigr{)}.
Proof.

The probability that there are no common paths of length two and less than MM edges in common is 1O(λd2λh2mn2)1-O(\lambda_{d}^{2}\lambda_{h}^{2}mn^{2}) by Lemma 3.2. Subject to those conditions, the probability of no common edge is

exp(λdλhmn+O(λdλhm1/2n))\exp\bigl{(}-\lambda_{d}\lambda_{h}mn+O(\lambda_{d}\lambda_{h}m^{1/2}n)\bigr{)}

by Lemma 3.5. Multiplying these probabilities together gives the theorem, since
λdλhm1/2n0\lambda_{d}\lambda_{h}m^{1/2}n\to 0 by (3.1). ∎

Theorem 3.7.

For i=1,,ki=1,\ldots,k, let DiD_{i} be an (m,n,λi)(m,n,\lambda_{i})-semiregular bipartite graph. Assume mnm\leq n and m1/2n1i<jkλiλj=o(1)m^{1/2}n\sum_{1\leq i<j\leq k}\lambda_{i}\lambda_{j}=o(1). Then the probability that D1,D2,,DkD_{1},D_{2},\ldots,D_{k} are edge-disjoint after labelling at random is

exp(mn1i<jkλiλj+O(m1/2n1i<jkλiλj)).\exp\biggl{(}-mn\sum_{1\leq i<j\leq k}\lambda_{i}\lambda_{j}+O\Bigl{(}m^{1/2}n\sum_{1\leq i<j\leq k}\lambda_{i}\lambda_{j}\Bigr{)}\biggr{)}.
Proof.

This is an immediate consequence of Lemma 3.6 applied iteratively. ∎

Now we are ready to prove Theorem 1.3(c). First we state the enumeration theorem from [11], extended with the help of Lemma 3.6. Note that, despite this theorem and Lemma 2.1 having considerable overlap, neither of them implies the other.

Theorem 3.8.

Assume mnm\leq n, λh>0\lambda_{h}>0, λd0\lambda_{d}\geq 0 and λhλdm1/2n=o(1)\lambda_{h}\lambda_{d}\,m^{1/2}n=o(1). Let DD be any (m,n,λd)(m,n,\lambda_{d})-semiregular graph. Then the number of (m,n,λh)(m,n,\lambda_{h})-semiregular graphs edge-disjoint from DD is

(λhmn)!(λhm)!n(λhn)!m\displaystyle\frac{(\lambda_{h}mn)!}{(\lambda_{h}m)!^{n}(\lambda_{h}n)!^{m}} exp(12(λhm1)(λhn1)16λh3mn\displaystyle\exp\bigl{(}-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}(\lambda_{h}m-1)(\lambda_{h}n-1)-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{6}$}\lambda_{h}^{3}mn
λhλdmn+O(λhλdm1/2n)).\displaystyle{\qquad\quad}-\lambda_{h}\lambda_{d}\,mn+O(\lambda_{h}\lambda_{d}\,m^{1/2}n)\bigr{)}.
Theorem 3.9.

Let λ0,λ1,,λk>0\lambda_{0},\lambda_{1},\ldots,\lambda_{k}>0 be such that k2k\geq 2 and i=0kλi=1\sum_{i=0}^{k}\lambda_{i}=1. Assume that mnm\leq n and m1/2n1i<jkλiλj=o(1)m^{1/2}n\sum_{1\leq i<j\leq k}\lambda_{i}\lambda_{j}=o(1). Then

R(m,n;λ0,,λk)=R(m,n;λ0,,λk)(1+O(m1/2n1i<jkλiλj)),R(m,n;\lambda_{0},\ldots,\lambda_{k})=R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k})\biggl{(}1+O\Bigl{(}m^{1/2}n\sum_{1\leq i<j\leq k}\lambda_{i}\lambda_{j}\Bigr{)}\biggr{)},

where R(m,n;λ0,,λk)R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k}) is defined in Conjecture 1.2.

Proof.

The proof follows the same line as Theorem 2.2. Define λ=i=1kλi\lambda=\sum_{i=1}^{k}\lambda_{i} and Λ=1i<jkλiλj\varLambda=\sum_{1\leq i<j\leq k}\lambda_{i}\lambda_{j}. Write the argument of the exponential in Theorem 3.8 as A(λd,λh)+O(δ(λd,λh))A^{\prime}(\lambda_{d},\lambda_{h})+O(\delta^{\prime}(\lambda_{d},\lambda_{h})). Then, as before,

R(m,n;\displaystyle R(m,n; λ0,,λk)=exp(Aˇ+O(δˇ))i=1k(λimn)!(λim)!n(λin)!m,where\displaystyle\lambda_{0},\ldots,\lambda_{k})=\exp\bigl{(}\check{A}+O(\check{\delta})\bigr{)}\prod_{i=1}^{k}\frac{(\lambda_{i}mn)!}{(\lambda_{i}m)!^{n}\,(\lambda_{i}n)!^{m}},\qquad\text{where}
Aˇ\displaystyle\check{A} =A(0,λ1)+A(λ1,λ2)+A(λ1+λ2,λ3)++A(i=1k1λi,λk),\displaystyle=A^{\prime}(0,\lambda_{1})+A^{\prime}(\lambda_{1},\lambda_{2})+A^{\prime}(\lambda_{1}+\lambda_{2},\lambda_{3})+\cdots+A^{\prime}\Bigl{(}{\textstyle\sum_{i=1}^{k-1}}\lambda_{i},\lambda_{k}\Bigr{)},
δˇ\displaystyle\check{\delta} =δ(0,λ1)+δ(λ1,λ2)+δ(λ1+λ2,λ3)++δ(i=1k1λi,λk).\displaystyle=\delta^{\prime}(0,\lambda_{1})+\delta^{\prime}(\lambda_{1},\lambda_{2})+\delta^{\prime}(\lambda_{1}+\lambda_{2},\lambda_{3})+\cdots+\delta^{\prime}\Bigl{(}{\textstyle\sum_{i=1}^{k-1}}\lambda_{i},\lambda_{k}\Bigr{)}.

By routine induction, we find that

Aˇ=12k+12λ(m+n)16mni=1kλi312λ2mnandδˇ=m1/2nΛ.\check{A}=-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}k+\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}\lambda(m+n)-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{6}$}mn\sum_{i=1}^{k}\lambda_{i}^{3}-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{2}$}\lambda^{2}mn\quad\text{and}\quad\check{\delta}=m^{1/2}n\varLambda.

Since λi1m\lambda_{i}\geq\frac{1}{m} for 1ik1\leq i\leq k, we have Λ=12i=1kλijiλjk12mλλ2m\varLambda=\frac{1}{2}\sum_{i=1}^{k}\lambda_{i}\sum_{j\neq i}\lambda_{j}\geq\frac{k-1}{2m}\lambda\geq\frac{\lambda}{2m}. Therefore, the condition m1/2nΛ=o(1)m^{1/2}n\varLambda=o(1) implies that m1/2nλ=o(1)m^{-1/2}n\lambda=o(1) and δˇ=Ω(m1/2nλ)\check{\delta}=\Omega(m^{-1/2}n\lambda). Since λ4mn=(m1/2nλ)4m3n3\lambda^{4}mn=(m^{-1/2}n\lambda)^{4}m^{3}n^{-3} and mnm\leq n, we also have λ4mn=O(δˇ)=o(1)\lambda^{4}mn=O(\check{\delta})=o(1). This allows us to apply (1.1) to estimate R(m,n;λ0,,λk)R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k}). We also have km1λ=O(δˇ)m1/2n1=O(δˇ)km^{-1}\leq\lambda=O(\check{\delta})m^{1/2}n^{-1}=O(\check{\delta}), λ2mλ2n=O(δˇ2)mn1=O(δˇ)\lambda^{2}m\leq\lambda^{2}n=O(\check{\delta}^{2})mn^{-1}=O(\check{\delta}), and λmn1λnm1=O(δˇ2)m1/2=O(δˇ)\lambda mn^{-1}\leq\lambda nm^{-1}=O(\check{\delta}^{2})m^{-1/2}=O(\check{\delta}), which eliminates many terms of (1.1). What remains gives

R(m,n;λ0,,λk)=R(m,n;λ0,,λk)exp(16λ3mn16mni=1kλi3+O(δˇ)).R(m,n;\lambda_{0},\ldots,\lambda_{k})=R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k})\exp\biggl{(}\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{6}$}\lambda^{3}mn-\lower 0.6458pt\hbox{\large$\textstyle\frac{1}{6}$}mn\sum_{i=1}^{k}\lambda_{i}^{3}+O(\check{\delta})\biggr{)}.

Finally, we have

mn(λ3i=1kλi3)=O(mn)=1ki<jλiλjλ=O(λmnΛ)=O(δˇ2)m1/2n1/2=O(δˇ),mn\biggl{(}\lambda^{3}-\sum_{i=1}^{k}\lambda_{i}^{3}\biggr{)}=O(mn)\sum_{\ell=1}^{k}\sum_{i<j}\lambda_{i}\lambda_{j}\lambda_{\ell}=O(\lambda mn\varLambda)=O(\check{\delta}^{2})m^{1/2}n^{-1/2}=O(\check{\delta}),

which completes the proof. ∎

Refer to caption
Figure 1: Latin rectangles. F(n,k)/R(n,n;1kn,1n,,1n)F(n,k)/R^{\prime}(n,n;1-\frac{k}{n},\frac{1}{n},\ldots,\frac{1}{n}) for n=10n=10 (diamonds) and n=11n=11 (circles). The horizontal scale is x=k/(n1)x=k/(n-1) and the line is 1+x/121+x/12.

4 The case of Latin rectangles

The case m=n,λ1,,λk=1nm=n,\lambda_{1},\ldots,\lambda_{k}=\frac{1}{n} corresponds to choosing an ordered sequence of kk perfect matchings in Kn,nK_{n,n}, which is a k×nk\times n Latin rectangle.

Let F(n,k)F(n,k) be the number k×nk\times n Latin rectangles. Note that F(n,n1)=F(n,n)F(n,n-1)=F(n,n); we will use only F(n,n1)F(n,n-1). In [3], Godsil and McKay found the asymptotic value of F(n,k)F(n,k) for k=o(n6/7)k=o(n^{6/7}) and conjectured that the same formula holds for any k=O(n1δ)k=O(n^{1-\delta}) with δ>0\delta>0, namely that

F(n,k)(n!)k(n!(nk)!nk)n(1kn)n/2ek/2.F(n,k)\sim(n!)^{k}\biggl{(}\frac{n!}{(n-k)!\,n^{k}}\biggr{)}^{\!n}\biggl{(}1-\frac{k}{n}\biggr{)}^{\!-n/2}e^{-k/2}.

The reader can check that this expression is equal to R(n,n;1kn,1n,,1n)R^{\prime}(n,n;1-\frac{k}{n},\frac{1}{n},\ldots,\frac{1}{n}) asymptotically when k=o(n)k=o(n), where here and in the following 1n\frac{1}{n} occurs kk times as an argument of RR^{\prime}.

To illustrate what happens when kk is even larger, Figure 1 shows the ratio F(n,k)/R(n,n;1kn,1n,,1n)F(n,k)/\allowbreak R^{\prime}(n,n;1-\frac{k}{n},\frac{1}{n},\ldots,\frac{1}{n}) for n=10,11n=10,11, as a function of k/(n1)k/(n-1) [12]. Experiment suggests that F(n,x(n1))/R(n,n;1kn,1n,,1n)F(n,x(n-1))/R^{\prime}(n,n;1-\frac{k}{n},\frac{1}{n},\ldots,\frac{1}{n}) converges to a continuous function f(x)f(x) as nn\to\infty with xx fixed. Conjecture 1.2 in this case corresponds to f(0)=1f(0)=1.

5 Two factors of high degree

In this section, we consider the case where λ0\lambda_{0} and λ1\lambda_{1} are approximately constant. We will use a constant ε>0\varepsilon>0 that must be sufficiently small. Suppose the following conditions hold.

(12λ1)2(1+5m6n+5n6m)\displaystyle(1-2\lambda_{1})^{2}\biggl{(}1+\frac{5m}{6n}+\frac{5n}{6m}\biggr{)} (4ε)λ1(1λ1)logn\displaystyle\leq(4-\varepsilon)\lambda_{1}(1-\lambda_{1})\log n (5.1)
mn\displaystyle m\leq n =o(λ1(1λ1)m1+ε).\displaystyle=o\bigl{(}\lambda_{1}(1-\lambda_{1})m^{1+\varepsilon}\bigr{)}.

Let DD be an (m,n,λ^)(m,n,\hat{\lambda})-semiregular graph where 0<λ^n1+ε0<\hat{\lambda}\leq n^{-1+\varepsilon}. Greenhill and McKay [4] proved that the number of (m,n,λ1)(m,n,\lambda_{1})-semiregular graphs is given by Theorem 1.1, and the probability that a uniformly random (m,n,λ1)(m,n,\lambda_{1})-semiregular graph is edge-disjoint from DD is asymptotically

P(m,n,λ1,λ^)=(1λ1)λ^mnexp(λ1λ^(λ^mnmn)2(1λ1)).P(m,n,\lambda_{1},\hat{\lambda})=(1-\lambda_{1})^{\hat{\lambda}mn}\exp\biggl{(}-\frac{\lambda_{1}\hat{\lambda}(\hat{\lambda}mn-m-n)}{2(1-\lambda_{1})}\biggr{)}. (5.2)
Theorem 5.1.

Suppose conditions (5.1) hold and suppose λ^=λ2++λk=O(n1+ε)\hat{\lambda}=\lambda_{2}+\cdots+\lambda_{k}=O(n^{-1+\varepsilon}) with sufficiently small constant ε>0\varepsilon>0. Then, as nn\to\infty,

R(m,n;λ0,,λk)R(m,n;λ0,,λk).R(m,n;\lambda_{0},\ldots,\lambda_{k})\sim R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k}).
Proof.

Our approach is to first construct an arbitrary graph DD of density λ^\hat{\lambda} partitioned into factors of density λ2,,λk\lambda_{2},\ldots,\lambda_{k}. Then Theorem 1.1 together with (5.2) tells us the number of graphs GG of density λ1\lambda_{1} disjoint from DD. The complement of GDG\cup D is then the factor of density λ0\lambda_{0}.

The second part of Condition (5.1) implies that n1+εm1/3/nn^{-1+\varepsilon}\leq m^{1/3}/n for sufficiently small ε>0\varepsilon>0. Therefore we can apply Theorem 2.2 to deduce that the possibilities for DD are

R(m,n;λ0+λ1,λ2,,λk)R(m,n;λ0+λ1,λ2,,λk).R(m,n;\lambda_{0}+\lambda_{1},\lambda_{2},\ldots,\lambda_{k})\sim R^{\prime}(m,n;\lambda_{0}+\lambda_{1},\lambda_{2},\ldots,\lambda_{k}).

In addition, R(m,n;1λ1,λ1)R(m,n;1λ1,λ1)R(m,n;1-\lambda_{1},\lambda_{1})\sim R^{\prime}(m,n;1-\lambda_{1},\lambda_{1}) by Theorem 1.1 part 2. Therefore,

R(m,n;λ0,,λk)P(m,n,λ1,λ^)R(m,n;1λ1,λ1)R(m,n;λ0+λ1,λ2,,λk).R(m,n;\lambda_{0},\ldots,\lambda_{k})\sim P(m,n,\lambda_{1},\hat{\lambda})R^{\prime}(m,n;1-\lambda_{1},\lambda_{1})R^{\prime}(m,n;\lambda_{0}+\lambda_{1},\lambda_{2},\ldots,\lambda_{k}).

Then we have

R(m,n;λ0,,λk)R(m,n;λ0,,λk)P(m,n,λ1,λ^)(m!((1λ1λ^)m)!((1λ1)m)!((1λ^)m)!)n(n!((1λ1λ^)n)!((1λ1)n)!((1λ^)n)!)m((mn)!((1λ1λ^)mn)((1λ1)mn)!((1λ^)mn)!).\frac{R(m,n;\lambda_{0},\ldots,\lambda_{k})}{R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k})}\sim P(m,n,\lambda_{1},\hat{\lambda})\frac{\Bigl{(}\frac{m!\,((1-\lambda_{1}-\hat{\lambda})m)!}{((1-\lambda_{1})m)!\,((1-\hat{\lambda})m)!}\Bigr{)}^{\!n}\Bigl{(}\frac{n!\,((1-\lambda_{1}-\hat{\lambda})n)!}{((1-\lambda_{1})n)!\,((1-\hat{\lambda})n)!}\Bigr{)}^{\!m}}{\Bigl{(}\frac{(mn)!\,((1-\lambda_{1}-\hat{\lambda})mn)}{((1-\lambda_{1})mn)!\,((1-\hat{\lambda})mn)!}\Bigr{)}}.

Define g(N)g(N) by N!=2πNN+1/2eN+g(N)N!=\sqrt{2\pi}\,N^{N+1/2}e^{-N+g(N)} and

g¯(N)=g(N)+g((1λ^λ1)N)g((1λ^)N)g((1λ1)N.\bar{g}(N)=g(N)+g((1{-}\hat{\lambda}{-}\lambda_{1})N)-g((1{-}\hat{\lambda})N)-g((1{-}\lambda_{1})N.

Then, using (5.2),

R(m,n;λ0,,λk)R(m,n;λ0,,λk)\displaystyle\frac{R(m,n;\lambda_{0},\ldots,\lambda_{k})}{R^{\prime}(m,n;\lambda_{0},\ldots,\lambda_{k})}
(1λ^)(1λ^)mn(m+n1)/2(1λ^1λ1)(1λ^λ1)mn+(m+n1)/2\displaystyle{\qquad}\sim\bigl{(}1-\hat{\lambda}\bigr{)}^{-(1-\hat{\lambda})mn-(m+n-1)/2}\biggl{(}1-\frac{\hat{\lambda}}{1-\lambda_{1}}\biggr{)}^{\!(1-\hat{\lambda}-\lambda_{1})mn+(m+n-1)/2}
×exp(λ1λ^(λ^mnmn)2(1λ1)+ng¯(m)+mg¯(n)g¯(mn)).\displaystyle{\qquad\qquad\qquad}\times\exp\biggl{(}-\frac{\lambda_{1}\hat{\lambda}(\hat{\lambda}mn-m-n)}{2(1-\lambda_{1})}+n\bar{g}(m)+m\bar{g}(n)-\bar{g}(mn)\biggr{)}.

Now we can apply the estimates 1x=exx2/2+O(x3)1-x=e^{-x-x^{2}/2+O(x^{3})} and g(N)=112N+O(N3)g(N)=\frac{1}{12N}+O(N^{-3}) to show that the above quantity is eo(1)e^{o(1)}. This completes the proof. ∎

6 The highly oblong case

Suppose 2m=O(1)2\leq m=O(1) and 1km11\leq k\leq m-1. In that case we can prove Conjecture 1.2 by application of the Central Limit Theorem, without requiring the condition k=o(m)k=o(m).

We will consider the partition of Km,nK_{m,n} into k+1k+1 semiregular graphs as an edge-colouring with colours 0,1,,k0,1,\ldots,k, where colour cc gives a semiregular subgraph of density λc\lambda_{c} for 0ck0\leq c\leq k. Label V1V_{1} as u1,,umu_{1},\ldots,u_{m} and consider one vertex vV2v\in V_{2}. For 0ck0\leq c\leq k, vv must be adjacent to λcm\lambda_{c}m vertices of V1V_{1} by edges of colour cc; let us make the choice uniformly at random from the

(mλ0m,,λkm)\binom{m}{\lambda_{0}m,\ldots,\lambda_{k}m}

possibilities. Define the random variable Xi,cX_{i,c} to be the indicator of the event “vv is joined to vertex uiu_{i} by colour cc”. Let 𝑿\boldsymbol{X} be the (m1)k(m-1)k-dimensional random vector (Xi,c)1im1,1ck(X_{i,c})_{1\leq i\leq m-1,1\leq c\leq k}. Note that we are omitting i=mi=m and c=0c=0 since those indicators can be determined from the others (this avoids degeneracy in the following). Let 𝑿(n)\boldsymbol{X}^{(n)} denote the sum of nn independent copies of 𝑿\boldsymbol{X}, corresponding to a copy of 𝑿\boldsymbol{X} for each vertex in V2V_{2}. For each vertex in V2V_{2} to have the correct number λcm\lambda_{c}m of incident edges of each colour cc, 𝑿(n)\boldsymbol{X}^{(n)} must equal its mean. That is,

R(m,n;λ0,,λk)=(mλ0m,,λkm)nProb(𝑿(n)=𝔼𝑿(n)).R(m,n;\lambda_{0},\ldots,\lambda_{k})=\binom{m}{\lambda_{0}m,\ldots,\lambda_{k}m}^{\!n}\,\mathrm{Prob}(\boldsymbol{X}^{(n)}=\mathbb{E}\boldsymbol{X}^{(n)}).

We have 𝔼Xi,c=λc\mathbb{E}X_{i,c}=\lambda_{c} for every i,ci,c and the following expectations of products.

𝔼(Xi,cXi,c)={λc,if i=i,c=c;0,if i=i,cc;λc(λcm1)m1,if ii,c=c;mm1λcλc,if ii,cc.\mathbb{E}(X_{i,c}\,X_{i^{\prime},c^{\prime}})=\begin{cases}\lambda_{c},&\text{if $i=i^{\prime},c=c^{\prime}$};\\ 0,&\text{if $i=i^{\prime},c\neq c^{\prime}$};\\ \frac{\lambda_{c}(\lambda_{c}m-1)}{m-1},&\text{if $i\neq i^{\prime},c=c^{\prime}$};\\ \frac{m}{m-1}\lambda_{c}\lambda_{c^{\prime}},&\text{if $i\neq i^{\prime},c\neq c^{\prime}$}.\end{cases}

Using Cov(Xi,c,Xi,c)=𝔼(Xi,cXi,c)𝔼Xi,c𝔼Xi,c\mathrm{Cov}(X_{i,c},X_{i^{\prime},c^{\prime}})=\mathbb{E}(X_{i,c}\,X_{i^{\prime},c^{\prime}})-\mathbb{E}X_{i,c}\,\mathbb{E}X_{i^{\prime},c^{\prime}} this gives

Cov(Xi,c,Xi,c)={λc(1λc),if i=i,c=c;λcλc,if i=i,cc;λc(1λc)m1,if ii,c=c;λcλcm1,if ii,cc.\mathrm{Cov}(X_{i,c},X_{i^{\prime},c^{\prime}})=\begin{cases}\lambda_{c}(1-\lambda_{c}),&\text{if $i=i^{\prime},c=c^{\prime}$};\\ -\lambda_{c}\lambda_{c^{\prime}},&\text{if $i=i^{\prime},c\neq c^{\prime}$};\\ -\frac{\lambda_{c}(1-\lambda_{c})}{m-1},&\text{if $i\neq i^{\prime},c=c^{\prime}$};\\ \frac{\lambda_{c}\lambda_{c^{\prime}}}{m-1},&\text{if $i\neq i^{\prime},c\neq c^{\prime}$}.\end{cases}

Let Σ\varSigma be the covariance matrix of 𝑿\boldsymbol{X}, labelled in the order (1,1),(1,2),,(m1,k)(1,1),(1,2),\ldots,(m-1,k).

By [2, Thm. 1], 𝑿(n)\boldsymbol{X}^{(n)} satisfies a local Central Limit Theorem as nn\to\infty. In particular, since the covariance matrix of 𝑿(n)\boldsymbol{X}^{(n)} is nΣn\varSigma,

Prob(𝑿(n)=𝔼𝑿(n))1(2π)k(m1)/2nk(m1)/2|Σ|1/2.\mathrm{Prob}(\boldsymbol{X}^{(n)}=\mathbb{E}\boldsymbol{X}^{(n)})\sim\frac{1}{(2\pi)^{k(m-1)/2}n^{k(m-1)/2}\mathopen{|}\varSigma\mathclose{|}^{1/2}}.

To find the determinant |Σ|\mathopen{|}\varSigma\mathclose{|}, it helps to notice that Σ\varSigma is a tensor product BCB\otimes C. Here BB is a k×kk\times k matrix with Bii=λi(1λi)B_{ii}=\lambda_{i}(1-\lambda_{i}) for all ii and Bij=λiλjB_{ij}=-\lambda_{i}\lambda_{j} for iji\neq j; while CC is an (m1)×(m1)(m-1)\times(m-1) matrix with 1 on the diagonal and 1m1-\frac{1}{m-1} off the diagonal. Both BB and CC are rank-1 modifications of diagonal matrices, and the matrix determinant lemma gives |B|=i=0kλi\mathopen{|}B\mathclose{|}=\prod_{i=0}^{k}\lambda_{i} and |C|=mm2/(m1)m1\mathopen{|}C\mathclose{|}=m^{m-2}/(m-1)^{m-1}. Therefore,

|Σ|=|B|m1|C|k=mk(11/m)k(m1)(i=0kλi)m1.\mathopen{|}\varSigma\mathclose{|}=\mathopen{|}B\mathclose{|}^{m-1}\mathopen{|}C\mathclose{|}^{k}=m^{-k}(1-1/m)^{-k(m-1)}\biggl{(}\,\prod_{i=0}^{k}\lambda_{i}\biggr{)}^{\!m-1}.

To complete the proof of Theorem 1.3(e), apply N!=2πNN+1/2eN+O(1/N)N!=\sqrt{2\pi}\,N^{N+1/2}e^{-N+O(1/N)} to find

(nλ0n,,λkn)m(mnλ0mn,,λkmn)(2πn)k(m1)/2mk/2(i=0kλi)(m1)/2.\frac{\displaystyle\binom{n}{\lambda_{0}n,\ldots,\lambda_{k}n}^{\!m}}{\displaystyle\binom{mn}{\lambda_{0}mn,\ldots,\lambda_{k}mn}}\sim(2\pi n)^{-k(m-1)/2}m^{k/2}\biggl{(}\,\prod_{i=0}^{k}\lambda_{i}\biggr{)}^{\!-(m-1)/2}.

7 Concluding remarks

We have proposed an asymptotic formula for the number of ways to partition a complete bipartite graph into spanning semiregular regular subgraphs and proved it in several cases. The analytic method described in [7] will be sufficient to test the conjecture when there are several factors of high density. This will be the topic of a future paper. A similar investigation for regular graphs that are not necessarily bipartite appears in [6].

The authors declare that they have no conflict of interest.

References

  • [1] Canfield, E. R. and McKay, B. D., Asymptotic enumeration of dense 0-1 matrices with equal row sums and equal column sums, Electron. J. Combinatorics, 12 (2005) R29.  https://doi.org/10.37236/1926
  • [2] Gamkrelidze, N. G., On a local limit theorem for integer random vectors, Theory Probab. Appl., 59 (2015) 494–499.  https://doi.org/10.1137/S0040585X97T987247
  • [3] Godsil, C. D. and McKay, B. D., Asymptotic enumeration of Latin rectangles, J. Combinatorial Theory, Ser. B, 48 (1990) 19–44.  https://doi.org/10.1016/0095-8956(90)90128-m
  • [4] Greenhill, C. and McKay, B. D., Random dense bipartite graphs and directed graphs with specified degrees, Random Structures Algorithms 35 (2009) 222–249.  https://doi.org/10.1002/rsa.20273
  • [5] Greenhill, C., McKay, B. D. and Wang, X., Asymptotic enumeration of sparse 0-1 matrices with irregular row and column sums, J. Comb. Theory Ser. A 113 (2006) 291–324.  https://doi.org/10.1016/j.jcta.2005.03.005
  • [6] M. Hasheminezhad and B. D. McKay, Factorisation of the complete graph into spanning regular factors, Advances Appl. Math., to appear.
  • [7] Isaev, M. and McKay, B. D., Complex martingales and asymptotic enumeration, Random Structures Algorithms 52 (2018) 617–661.  https://doi.org/10.1002/rsa.20754
  • [8] Liebenau, A. and Wormald, N., Asymptotic enumeration of digraphs and bipartite graphs by degree sequence, Random Structures Algorithms, online July 2022.  https://doi.org/10.1002/rsa.21105.
  • [9] McKay, B. D., Asymptotics for 0-1 matrices with prescribed line sums, in Enumeration and Design (D. M. Jackson and S. A. Vanstone, eds.), Academic Press (1984) 225–238.
  • [10] McKay, B. D., Subgraphs of dense random graphs with specified degrees, Combin. Prob. Comput., 20 (2011) 413–433.  https://doi.org/10.1017/S0963548311000034
  • [11] McKay, B. D. and Wang, X., Asymptotic enumeration of 0-1 matrices with equal row sums and equal column sums, Linear Alg. Appl., 373 (2003) 273–288.  https://doi.org/10.1016/S0024-3795(03)00506-8
  • [12] McKay, B. D. and Wanless, I., On the number of Latin squares, Ann. Combinatorics 9 (2005) 335–344.  https://doi.org/10.1007/s00026-005-0261-7