This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

F-characteristic cycle of a rank one sheaf
on an arithmetic surface

Ryosuke Ooe
Abstract

We prove the rationality of the characteristic form for a degree one character of the Galois group of an abelian extension of henselian discrete valuation fields. We prove the integrality of the characteristic form for a rank one sheaf on a regular excellent scheme. These properties are shown by reducing to the corresponding properties of the refined Swan conductor proved by Kato.

We define the F-characteristic cycle of a rank one sheaf on an arithmetic surface as a cycle on the FW-cotangent bundle using the characteristic form on the basis of the computation of the characteristic cycle in the equal characteristic case by Yatagawa. The rationality and the integrality of the characteristic form are necessary for the definition of the F-characteristic cycle. We prove the intersection of the F-characteristic cycle with the 0-section computes the Swan conductor of cohomology of the generic fiber.

Introduction

Let KK be a henselian discrete valuation field with residue field FF of characteristic p>0p>0 and let LL be a finite abelian extension of KK. Kato [6] defined the refined Swan conductor of a character of the Galois group Gal(L/K)\operatorname{Gal}(L/K) as an injection to the FF-vector space ΩF1(log)\Omega^{1}_{F}(\log). Recently, Saito [17] defined the characteristic form of such a character as a non-logarithmic variant of the refined Swan conductor. The characteristic form takes value in the F¯\overline{F}-vector space H1(LF¯/𝒪K)\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}}) where 𝒪K\mathcal{O}_{K} denotes the valuation ring of KK and H1(LF¯/𝒪K)\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}}) denotes the first homology group of the cotangent complex. In the equal characteristic case, the non-logarithmic theory played an important role in the computation of the characteristic cycle [14, Section 7.3].

In Section 4, we show two properties of the characteristic form for rank one sheaves. The first property is the rationality of the characteristic form.

Theorem 0.1 (rationality, Theorem 1.3).

Let χ:Gal(L/K)𝐐/𝐙\chi\colon\operatorname{Gal}(L/K)\to\mathbf{Q}/\mathbf{Z} be a character. Let mm be the total dimension of χ\chi. Then the image of the characteristic form charχ:𝔪Km/𝔪Km+1H1(LF¯/𝒪K)=H1(LF/𝒪K)FF¯\operatorname{char}\chi\colon\mathfrak{m}^{m}_{K}/\mathfrak{m}^{m+1}_{K}\to\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})=\mathrm{H}_{1}(L_{F/\mathcal{O}_{K}})\otimes_{F}\overline{F} of χ\chi is contained in H1(LF/𝒪K)FF1/p\mathrm{H}_{1}(L_{F/\mathcal{O}_{K}})\otimes_{F}F^{1/p}.

The second property is the integrality of the characteristic form for rank one sheaves. Let DD be a divisor with simple normal crossings on a regular excellent scheme XX. Let {Di}iI\{D_{i}\}_{i\in I} be the set of irreducible components of DD and let KiK_{i} be the local field at the generic point 𝔭i\mathfrak{p}_{i} of DiD_{i}. Let UU be the complement of DD. Let χ\chi be an element of H1(U,𝐐/𝐙)\mathrm{H}^{1}(U,\mathbf{Q}/\mathbf{Z}). Let ZχZ_{\chi} be the union of DiD_{i} such that χ|Ki\chi|_{K_{i}} is wildly ramified and Rχ=iIdt(χ|Ki)DiR_{\chi}=\sum_{i\in I}\operatorname{dt}(\chi|_{K_{i}})D_{i} be the total dimension divisor.

Theorem 0.2 (integrality, Theorem 1.5, cf. (5.1)).

There exists a unique global section char(χ)Γ(Zχ,FΩX1(pRχ)|Zχ)\operatorname{char}(\chi)\in\Gamma(Z_{\chi},F\Omega^{1}_{X}(pR_{\chi})|_{Z_{\chi}}) such that the germ at 𝔭i\mathfrak{p}_{i} is equal to the linear combination with coefficients that are the pp-th powers of the coefficients in the characteristic form char(χ|Ki)\operatorname{char}(\chi|_{K_{i}}).

In the case where the characteristic of KK is pp, these properties have been already proved by using the Artin-Schreier-Witt theory by Matsuda [10] and Yatagawa [20]. In the case where the characteristic of KK is zero, the Artin-Schreier-Witt theory does not work, so we need to take a different method. The strategy of the proof of Theorem 0.1 and Theorem 0.2 is to reduce to the corresponding properties of the refined Swan conductor proved by Kato [6]. To do this, we compare the refined Swan conductor with the characteristic form.

The relation between the refined Swan conductor and the characteristic form is explained as follows. Let χ:Gal(L/K)𝐐/𝐙\chi\colon\operatorname{Gal}(L/K)\to\mathbf{Q}/\mathbf{Z} be a character. The characters are divided into two types. If χ\chi is of type I (for example, the residue field extension is separable), the characteristic form of χ\chi is the image of the refined Swan conductor of χ\chi. On the other hand, if χ\chi is of type II (for example, the ramification index of L/KL/K is 1 and the residue field extension is inseparable), the refined Swan conductor of χ\chi is the image of the characteristic form of χ\chi. A large part of the proof of these relations is due to Saito. The author thanks him for kindly suggesting the author to include the proof in this paper.

For a character of type I, Theorem 0.1 holds since the characteristic form is the image of the refined Swan conductor and the refined Swan conductor takes value in the FF-vector space ΩF1(log)\Omega^{1}_{F}(\log). For a character of type II, we would like to change the character to a character of type I. The typical case where a character is of type I is when the residue field FF is perfect. Hence we would like to take an extension KK^{\prime} of KK such that the residue field of KK^{\prime} is perfect. In fact, it suffices to consider the field KK^{\prime} with the pp-th power roots of a lifting of a pp-basis of FF, though the residue field of KK^{\prime} may not be perfect.

Similarly as in the proof of Theorem 0.1, we prove Theorem 0.2 using the integrality of the refined Swan conductor, but the proof is more complicated.

In Section 5, we consider the theory of the characteristic cycle. The characteristic cycle of an étale sheaf on a smooth scheme over a perfect field of positive characteristic is defined by Saito [14]. The characteristic cycle is defined as a cycle on the cotangent bundle. By the index formula, the intersection with the 0-section computes the Euler characteristic if the scheme is projective. The characteristic cycle was computed on the closed subset of codimension <2<2 by using the characteristic form. Yatagawa [21] gave an explicit computation of the characteristic cycle of a rank one sheaf on a scheme of dimension 2.

The existence of the cotangent bundle on a scheme of mixed characteristic has not been known. Instead, Saito [15] defined the FW-cotangent bundle FTX|XFFT^{*}X|_{X_{F}} of a regular noetherian scheme XX over a discrete valuation ring 𝒪K\mathcal{O}_{K} of mixed characteristic (0,p)(0,p) to be the vector bundle of rank dimX\dim X on the closed fiber XFX_{F} to consider the characteristic cycle of an étale sheaf on a scheme of mixed characteristic. The characteristic cycle in the mixed characteristic case has not been defined in general.

Let DD be a divisor with simple normal crossings on XX and let j:U=XDXj\colon U=X-D\to X be the open immersion. Let Λ\Lambda be a finite field of characteristic different from pp and let \mathcal{F} be a smooth sheaf of Λ\Lambda-modules of rank one. In the case dimX=2\dim X=2, we define the F-characteristic cycle FCCj!FCCj_{!}\mathcal{F} of j!j_{!}\mathcal{F} as a cycle on the FW-cotangent bundle on the basis of the computation in the equal characteristic case by Yatagawa.

On the closed subset of codimension <2<2, we define the F-characteristic cycle using the characteristic form. To determine the coefficients of the fibers at closed points, we use both the refined Swan conductor and the characteristic form. The main reason for using both non-log and log theories is that after successive blowups, the refined Swan conductor becomes a locally split injection but the characteristic form has no such properties. The rationality (Theorem 0.1) and the integrality (Theorem 0.2) of the characteristic form are crucial to determine the coefficients of the fibers.

In analogy with the index formula, we prove the intersection of the F-characteristic cycle with the 0-section computes the Swan conductor of cohomology of the generic fiber.

Theorem 0.3 (Theorem 5.15).

Assume dimX=2\dim X=2 and XX is proper over 𝒪K\mathcal{O}_{K}. Then we have

(FCCj!FCCj!Λ,FTXX|XF)FTX|XF=p(SwK(XK¯,j!)SwK(XK¯,j!Λ)).(FCCj_{!}\mathcal{F}-FCCj_{!}\Lambda,FT^{*}_{X}X|_{X_{F}})_{FT^{*}X|_{X_{F}}}=p\cdot(\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\mathcal{F})-\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\Lambda)).

Abbes [1] found the formula computing the Swan conductor of cohomology of the generic fiber of an arithmetic surface under the assumption that a coefficient sheaf has no fierce ramification. Our formula restricts to a coefficient sheaf of rank one but needs no assumption on ramification.

We prove Theorem 0.3 using Kato-Saito’s conductor formula [8]. We study the relation between the F-characteristic cycle and the pullback of the logarithmic characteristic cycle defined by Kato [7]. This step is similar to the computation by Yatagawa in the equal characteristic case.

We give an outline of the paper. In Section 1, we briefly recall the definition of the characteristic form and state the rationality and the integrality of the characteristic form explained above. In Section 2, we recall the definition and properties of the refined Swan conductor in parallel with the characteristic form. In Section 3, we give relations between the refined Swan conductor and the characteristic form. In Section 4, we prove the rationality and the integrality established in Section 1 using the results in Section 3. In Section 5, we define the F-characteristic cycle of a rank one sheaf on an arithmetic surface. We prove the main theorem, which gives a formula computing the Swan conductor of cohomology of the generic fiber. We give an example of the F-characteristic cycle.

Acknowledgment

The author would like to express his sincere gratitude to his advisor Professor Takeshi Saito for suggesting the problem, giving a lot of helpful advice, and showing his unpublished book on ramification theory, which contains the contents of Section 2 and the proof of Lemma 3.3 and Proposition 3.4. The author thanks an anonymous referee for careful reading and comments.

1 Characteristic form

In this section, we recall the notion of characteristic form and state the integrality of the characteristic form.

1.1 Cotangent complex and FW-differential

We briefly recall the properties on cotangent complexes from [17].

Let KK be a discrete valuation field with valuation ring 𝒪K\mathcal{O}_{K} and with residue field FF of characteristic p>0p>0. Let EE be a field containing FF. For an element u𝒪Ku\in\mathcal{O}_{K}, we write u¯\overline{u} for the image of uu in FF. If there exists a pp-th root of u¯\overline{u} in EE, the element d~u\tilde{d}u in H1(LE/𝒪K)\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}}) is defined in [17, (1.9)]. We write wuwu for this element instead of d~u\tilde{d}u.

Proposition 1.1.

Let π\pi be a uniformizer of KK and (vi)iI(v_{i})_{i\in I} be a pp-basis of FF. Assume that the field EE contains F1/pF^{1/p}. Then, {wπ,wvi}iI\{w\pi,wv_{i}\}_{i\in I} forms a basis of the EE-vector space H1(LE/𝒪K)\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}}).

Proof.

By [17, Proposition 1.1.3.2], we have an exact sequence

0𝔪K/𝔪K2FE𝑤H1(LE/𝒪K)ΩF1FE00\to\mathfrak{m}_{K}/\mathfrak{m}_{K}^{2}\otimes_{F}E\xrightarrow{w}\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}})\to\Omega^{1}_{F}\otimes_{F}E\to 0

of EE-vector spaces. Then π\pi defines a basis of 𝔪K/𝔪K2FE\mathfrak{m}_{K}/\mathfrak{m}_{K}^{2}\otimes_{F}E and {dvi}iI\{dv_{i}\}_{i\in I} forms a basis of ΩF1FE\Omega^{1}_{F}\otimes_{F}E. The assertion follows since the map H1(LE/𝒪K)ΩF1FE\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}})\to\Omega^{1}_{F}\otimes_{F}E sends wviwv_{i} to dvidv_{i} by [17, Proposition 1.1.4.2]. ∎

Let LL be a finite separable extension of KK with residue field EE. The morphism SpecESpec𝒪LSpec𝒪K\operatorname{Spec}E\to\operatorname{Spec}\mathcal{O}_{L}\to\operatorname{Spec}\mathcal{O}_{K} of schemes defines the distinguished triangle L𝒪L/𝒪K𝒪LLELE/𝒪KLE/𝒪LL_{\mathcal{O}_{L}/\mathcal{O}_{K}}\otimes_{\mathcal{O}_{L}}^{\mathrm{L}}E\to L_{E/\mathcal{O}_{K}}\to L_{E/\mathcal{O}_{L}}\to. Since we have quasi-isomorphisms LE/𝒪LNE/𝒪L[1]L_{E/\mathcal{O}_{L}}\cong N_{E/\mathcal{O}_{L}}[1] and L𝒪L/𝒪KΩ𝒪L/𝒪K1[0]L_{\mathcal{O}_{L}/\mathcal{O}_{K}}\cong\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}}[0] by [17, Lemma 1.2.6.4], we have an injection

Tor1𝒪L(Ω𝒪L/𝒪K1,E)H1(LE/𝒪K)\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}},E)\to\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}}) (1.1)

of EE-modules.

The Frobenius-Witt differential was introduced by Saito [16] to define the cotangent bundle of a scheme over 𝐙(p)\mathbf{Z}_{(p)}. The following relation between the cotangent complex and the FW-differential is known.

Proposition 1.2 ([16, Corollary 4.12]).

Let AA be a local ring with residue field kk of characteristic p>0p>0. Let Lk/AL_{k/A} denote the cotangent complex for the composition SpeckFSpeckSpecA\operatorname{Spec}k\xrightarrow{\mathrm{F}}\operatorname{Spec}k\to\operatorname{Spec}A where F\mathrm{F} is the Frobenius. Then, the canonical morphism FΩA1AkH1(Lk/A)F\Omega^{1}_{A}\otimes_{A}k\to\mathrm{H}_{1}(L_{k/A}) is an isomorphism.

1.2 Characteristic form

We briefly recall the construction of the characteristic form in [17]. Let KK be a henselian discrete valuation field with residue field FF of characteristic p>0p>0. Let GKG_{K} be the absolute Galois group of KK and let (GKr)r𝐐>0(G^{r}_{K})_{r\in\mathbf{Q}_{>0}} be Abbes-Saito’s non-logarithmic upper ramification filtration [2, Definition 3.4]. For an element χH1(GK,𝐐/𝐙)\chi\in\mathrm{H}^{1}(G_{K},\mathbf{Q}/\mathbf{Z}), we define the total dimension dtχ\operatorname{dt}\chi to be the smallest rational number rr satisfying χ(GKs)=0\chi(G^{s}_{K})=0 for all s>rs>r. The total dimension is an integer by [19, Theorem 4.3.5], [17, Theorem 4.3.1].

We fix some notations. Let LL be a finite separable extension of KK and let KK^{\prime} be a separable extension of KK of ramification index ee. Let E,FE,F^{\prime} be the residue fields of L,KL,K^{\prime} respectively. Let S,S,TS,S^{\prime},T be the spectrums of the valuation rings 𝒪K,𝒪K,𝒪L\mathcal{O}_{K},\mathcal{O}_{K^{\prime}},\mathcal{O}_{L} respectively. Take a closed immersion TPT\to P to a smooth scheme over SS. For a rational number r>0r>0 such that erer is an integer, we define the scheme PS[r]P^{[r]}_{S^{\prime}} to be the dilatation P[DrTS]P^{[D_{r}\cdot T_{S^{\prime}}]} of PS=P×SSP_{S^{\prime}}=P\times_{S}{S^{\prime}} with respect to the Cartier divisor DrD_{r} defined by 𝔪Ker\mathfrak{m}^{er}_{K^{\prime}} and the closed subscheme TS=T×SST_{S^{\prime}}=T\times_{S}S^{\prime}. (See [17, Definition 3.1.1] for the definition of the dilatation). Let PS(r)P^{(r)}_{S^{\prime}} be the normalization of PS[r]P^{[r]}_{S^{\prime}}. Let PF[r]P^{[r]}_{F^{\prime}} and PF(r)P^{(r)}_{F^{\prime}} be the closed fibers of PS[r]P^{[r]}_{S^{\prime}} and PS(r)P^{(r)}_{S^{\prime}} respectively.

For an immersion TPT\to P to a smooth scheme over SS, we have an exact sequence

0NT/PΩT/S1𝒪P𝒪TΩT/S100\to N_{T/P}\to\Omega^{1}_{T/S}\otimes_{\mathcal{O}_{P}}\mathcal{O}_{T}\to\Omega^{1}_{T/S}\to 0 (1.2)

of 𝒪L\mathcal{O}_{L}-modules. We say that an immersion TPT\to P to a smooth scheme over SS is minimal if the map

Tor1𝒪L(ΩT/S1,E)NT/P𝒪LE\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{T/S},E)\to N_{T/P}\otimes_{\mathcal{O}_{L}}E (1.3)

induced by (1.2) is an isomorphism. There exists a minimal immersion by [17, Lemma 1.2.3.1].

Let L/KL/K be a finite Galois extension and let G=Gal(L/K)G=\operatorname{Gal}(L/K) be the Galois group. Let r>1r>1 be a rational number such that Gr+=s>rGs=1G^{r+}=\cup_{s>r}G^{s}=1. By the reduced fiber theorem [4], there exists a separable extension KK^{\prime} of KK of ramification index ee such that erer is an integer and the geometric closed fiber PS(r)×SF¯P_{S^{\prime}}^{(r)}\times_{S^{\prime}}\overline{F} is reduced. We define the scheme ΘL/K,F(r)\Theta_{L/K,F^{\prime}}^{(r)} to be the vector bundle HomF(𝔪Ker/𝔪Ker+,Tor1𝒪L(Ω𝒪L/𝒪K1,E))\operatorname{Hom}_{F^{\prime}}(\mathfrak{m}^{er}_{K^{\prime}}/\mathfrak{m}^{er+}_{K^{\prime}},\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}},E)) over Spec(EFF)red\operatorname{Spec}(E\otimes_{F}F^{\prime})_{\operatorname{red}}. If we take a minimal immersion TPT\to P to a smooth scheme over SS, the isomorphism (1.3) induces an isomorphism PF,red[r]ΘL/K,F(r)P_{F^{\prime},\operatorname{red}}^{[r]}\to\Theta_{L/K,F^{\prime}}^{(r)} by [17, Proposition 3.1.3.2]. We define the scheme ΦL/K,F(r)\Phi_{L/K,F^{\prime}}^{(r)} to be PF(r)P_{F^{\prime}}^{(r)}. The definition does not depend on the choice of a minimal immersion TPT\to P by [17, Lemma 3.3.7].

We fix a morphism i0:LKsi_{0}\colon L\to K_{s} to a separable closure of KK. Let F¯\overline{F} be the algebraic closure of FF and let T¯F¯\overline{T}_{\overline{F}} be the normalization of TF¯=T×FF¯T_{\overline{F}}=T\times_{F}\overline{F}. Let ΘL/K,F¯(r),ΦL/K,F¯(r)\Theta_{L/K,\overline{F}}^{(r)\circ},\Phi_{L/K,\overline{F}}^{(r)\circ} denote the connected component of ΘL/K,F¯(r),ΦL/K,F¯(r)\Theta_{L/K,\overline{F}}^{(r)},\Phi_{L/K,\overline{F}}^{(r)} containing the image of the closed point of T¯F¯\overline{T}_{\overline{F}} corresponding to i0i_{0}. Then ΦL/K,F¯(r)\Phi_{L/K,\overline{F}}^{(r)\circ} is an additive GrG^{r}-torsor over ΘL/K,F¯(r)\Theta_{L/K,\overline{F}}^{(r)\circ} by [17, Theorem 4.3.3.1] in the sense of [17, Definition 2.1.4.1]. By [17, Proposition 2.1.6], there exists a group scheme structure on ΦL/K,F¯(r)\Phi_{L/K,\overline{F}}^{(r)\circ} such that

0GrΦL/K,F¯(r)ΘL/K,F¯(r)00\to G^{r}\to\Phi_{L/K,\overline{F}}^{(r)\circ}\to\Theta_{L/K,\overline{F}}^{(r)\circ}\to 0

is an extension of smooth group schemes. We define the map [Φ][\Phi] by

[Φ]:Hom(Gr,𝐅p)H1(ΘL/K,F¯(r),𝐅p)[\Phi]\colon\operatorname{Hom}(G^{r},\mathbf{F}_{p})\to\mathrm{H}^{1}(\Theta_{L/K,\overline{F}}^{(r)\circ},\mathbf{F}_{p})

sending a character χ\chi to the image χ[ΦL/K,F¯(r)]\chi_{*}[\Phi_{L/K,\overline{F}}^{(r)\circ}] of [ΦL/K,F¯(r)][\Phi_{L/K,\overline{F}}^{(r)\circ}] by χ:H1(ΘL/K,F¯(r),Gr)H1(ΘL/K,F¯(r),𝐅p)\chi_{*}\colon\mathrm{H}^{1}(\Theta_{L/K,\overline{F}}^{(r)\circ},G^{r})\to\mathrm{H}^{1}(\Theta_{L/K,\overline{F}}^{(r)\circ},\mathbf{F}_{p}). By [17, Proposition 2.1.6], the morphism [Φ][\Phi] is an injection and the image of [Φ][\Phi] is contained in Ext(ΘL/K,F¯(r),𝐅p)\operatorname{Ext}(\Theta_{L/K,\overline{F}}^{(r)\circ},\mathbf{F}_{p}).

Let 𝔪Ksr\mathfrak{m}_{K_{s}}^{r} be the ideal {xKsordKxr}\{x\in K_{s}\mid\operatorname{ord}_{K}x\geq r\} and let 𝔪Ksr+\mathfrak{m}_{K_{s}}^{r+} be the ideal {xKsordKx>r}\{x\in K_{s}\mid\operatorname{ord}_{K}x>r\} for the extension of the valuation of KK to KsK_{s}. If we identify Ext(ΘL/K,F¯(r),𝐅p)\operatorname{Ext}(\Theta_{L/K,\overline{F}}^{(r)\circ},\mathbf{F}_{p}) with (ΘL/K,F¯(r))=HomF¯(𝔪Ksr/𝔪Ksr+,Tor1(ΩT/S1,E))({\Theta_{L/K,\overline{F}}^{(r)\circ}})^{\vee}=\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\operatorname{Tor}^{1}(\Omega^{1}_{T/S},E)) by the isomorphism [17, (2.1)], we have a commutative diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gr\textstyle{G^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}χ\scriptstyle{\chi}ΦL/K,F¯(r)\textstyle{\Phi_{L/K,\overline{F}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘL/K,F¯(r)\textstyle{\Theta_{L/K,\overline{F}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}[Φ](χ)\scriptstyle{[\Phi](\chi)}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐅p\textstyle{\mathbf{F}_{p}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐆a\textstyle{\mathbf{G}_{a}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐆a\textstyle{\mathbf{G}_{a}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0} (1.4)

of extensions of smooth group schemes where the lower extension is the Artin-Schreier extension.

We define the characteristic form to be the composition of injections

char:Hom(Gr,𝐅p)[Φ]HomF¯(𝔪Ksr/𝔪Ksr+,Tor1𝒪L(ΩT/S1,F¯))HomF¯(𝔪Ksr/𝔪Ksr+,H1(LF¯/𝒪K))\operatorname{char}\colon\operatorname{Hom}(G^{r},\mathbf{F}_{p})\xrightarrow{[\Phi]}\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{T/S},\overline{F}))\to\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}}))

where the second morphism is induced by the injectoin (1.1). For a character χ:Gr𝐅p\chi\colon G^{r}\to\mathbf{F}_{p}, we call charχ\operatorname{char}\chi the characteristic form of χ\chi.

We state the rationality of the characteristic form.

Theorem 1.3.

Let χH1(K,𝐐/𝐙)\chi\in\mathrm{H}^{1}(K,\mathbf{Q}/\mathbf{Z}) be a character of total dimension mm. Then the image of the characteristic form charχ:𝔪Km/𝔪Km+1H1(LF¯/𝒪K)=H1(LF/𝒪K)FF¯\operatorname{char}\chi\colon\mathfrak{m}^{m}_{K}/\mathfrak{m}^{m+1}_{K}\to\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})=\mathrm{H}_{1}(L_{F/\mathcal{O}_{K}})\otimes_{F}\overline{F} of χ\chi is contained in H1(LF/𝒪K)FF1/p\mathrm{H}_{1}(L_{F/\mathcal{O}_{K}})\otimes_{F}F^{1/p}.

We give a proof of Theorem 1.3 in Section 4.

Remark 1.4.

We have an example such that the image of the characteristic form is not contained in H1(LF/𝒪K)\mathrm{H}_{1}(L_{{F/\mathcal{O}_{K}}}) when we assume that the characteristic of FF is 2. Consider the Kummer character χ\chi defined by t2=1+π2(e1)ut^{2}=1+\pi^{2(e-1)}u where π\pi is a uniformizer of KK, e=ordK2e=\operatorname{ord}_{K}2 and u𝒪Ku\in\mathcal{O}_{K} such that u¯F\sqrt{\overline{u}}\notin F. Then, the computation in [15, Lemma 3.2.5.3] shows that we have

charχ=wuu¯w(2/πe1)π2H1(LF/𝒪K)F𝔪K2/𝔪K1.\operatorname{char}\chi=\frac{wu-\sqrt{\overline{u}}\cdot w(2/\pi^{e-1})}{\pi^{2}}\in\mathrm{H}_{1}(L_{F/\mathcal{O}_{K}})\otimes_{F}\mathfrak{m}_{K}^{-2}/\mathfrak{m}_{K}^{-1}.

When the characteristic of the residue field is not 2, we can expect from the results in the equal characteristic [10, Proposition 3.2.3], [20, Proposition 1.17] that the image of the characteristic form is contained in H1(LF/𝒪K)\mathrm{H}_{1}(L_{F/\mathcal{O}_{K}}), but the author does not how to prove.

We state the integrality of the characteristic form.

Theorem 1.5.

Let AA be an excellent regular local ring of dimension dd with fraction field KK and with residue field kk of characteristic p>0p>0. We assume c=[k:kp]<c=[k:k^{p}]<\infty and fix a lifting (xl)l=1,,c(x_{l})_{l=1,\dots,c} of a p-basis of kk to AA. Let (πi)i=1,,d(\pi_{i})_{i=1,\dots,d} be a regular system of parameters of AA and let KiK_{i} be the local field at the prime ideal generated by πi\pi_{i}. We fix an integer rr satisfying 1rd1\leq r\leq d. Let DiD_{i} be a divisor on X=SpecAX=\operatorname{Spec}A defined by πi\pi_{i} and let UU be the complement of D=i=1rDiD=\cup_{i=1}^{r}D_{i}. Let χ\chi be an element of H1(U,𝐐/𝐙)\mathrm{H}^{1}(U,\mathbf{Q}/\mathbf{Z}) and let χ|Ki\chi|_{K_{i}} be the pullback of χ\chi by SpecKiU\operatorname{Spec}K_{i}\to U. We put mi=dt(χ|Ki)m_{i}=\operatorname{dt}(\chi|_{K_{i}}). By Proposition 1.1 and Theorem 1.3, we may write

char(χ|Kj)=(1idαi,jwπi+1lcβl,jwxl)/π1m1πrmr\operatorname{char}(\chi|_{K_{j}})=(\sum_{1\leq i\leq d}\alpha_{i,j}w\pi_{i}+\sum_{1\leq l\leq c}\beta_{l,j}wx_{l})/\pi_{1}^{m_{1}}\cdots\pi_{r}^{m_{r}}

with αi,j,βl,jFrac(A/πj)1/p\alpha_{i,j},\beta_{l,j}\in{\operatorname{Frac}(A/\pi_{j})}^{1/p} where 1id1\leq i\leq d, 1jr1\leq j\leq r satisfying mj2m_{j}\geq 2, and 1lc1\leq l\leq c. Then, we have the following properties:

  1. (1)

    αi,jp,βl,jA/πj\alpha_{i,j}^{p},\beta_{l,j}\in A/\pi_{j}.

  2. (2)

    For integers j,jj,j^{\prime} satisfying 1j,jr1\leq j,j^{\prime}\leq r, the images of αi,jp,αi,jp\alpha_{i,j}^{p},\alpha_{i,j^{\prime}}^{p} in A/(πj)+(πj)A/(\pi_{j})+(\pi_{j^{\prime}}) are equal for each ii and the images of βl,j,βl,j\beta_{l,j},\beta_{l,j^{\prime}} in A/(πj)+(πj)A/(\pi_{j})+(\pi_{j^{\prime}}) are equal for each ll.

We give a proof of Theorem 1.5 in Section 4.

2 Refined Swan conductor

In this section, we recall the notion of refined Swan conductor. The refined Swan conductor was defined by Kato [6] as an injection from the dual of the graded quotients to twisted cotangent spaces with logarithmic poles. Using Abbes-Saito’s (logarithmic) ramification theory [2], Saito defined [13] another injection from the dual of the graded quotients to twisted cotangent spaces with logarithmic poles. The coincidence of these two notions of refined Swan conductor is verified by Kato and Saito [9, Theorem 1.5]. In this paper, we use the definition by Saito, but we slightly change the construction to compare with the characteristic form. The construction here is also given by Saito.

We use the terminologies and symbols on log geometry. We refer to [3, Section 3], [12] for the definition. In this article, we consider the log structure on the spectrum of a discrete valuation ring defined by the closed point.

Let KK be a henselian discrete valuation field with residue field FF of characteristic p>0p>0. Let GKG_{K} be the absolute Galois group of KK and let (GK,logr)r𝐐>0(G^{r}_{K,\log})_{r\in\mathbf{Q}_{>0}} be Abbes-Saito’s logarithmic upper ramification filtration [2, Definition 3.12]. For an element χH1(GK,𝐐/𝐙)\chi\in\mathrm{H}^{1}(G_{K},\mathbf{Q}/\mathbf{Z}), we define the Swan conductor swχ\operatorname{sw}\chi to be the smallest rational number rr satisfying χ(GK,logs)=0\chi(G^{s}_{K,\log})=0 for all s>rs>r. The Swan conductor is an integer since Kato’s definition [6] of the Swan conductor coincides with the definition here by [9, Theorem 1.3] and the Swan conductor is defined as an integer in Kato’s definition.

We use the same notations as in Subsection 1.2. Take an exact closed immersion TQT\to Q to a log smooth scheme over SS. For a rational number r>0r>0 such that erer is an integer, we define the scheme QS[r]Q^{[r]}_{S^{\prime}} to be the dilatation Q[DrTS]Q^{[D_{r}\cdot T_{S^{\prime}}]} of QSQ_{S^{\prime}} with respect to the Cartier divisor DrD_{r} defined by 𝔪Ker\mathfrak{m}^{er}_{K^{\prime}} and the closed subscheme TST_{S^{\prime}}. (See [17, Definition 3.1.1] for the definition of the dilatation).

Let QS(r)Q^{(r)}_{S^{\prime}} be the normalization of QS[r]Q^{[r]}_{S^{\prime}}. Let QF[r]Q^{[r]}_{F^{\prime}} and QF(r)Q^{(r)}_{F^{\prime}} be the closed fibers of QS[r]Q^{[r]}_{S^{\prime}} and QS(r)Q^{(r)}_{S^{\prime}} respectively.

For an exact immersion TQT\to Q to a log smooth scheme over SS, we have an exact sequence

0NT/QΩQ/S1(log/log)𝒪Q𝒪LΩT/S1(log/log)00\to N_{T/Q}\to\Omega^{1}_{Q/S}(\log/\log)\otimes_{\mathcal{O}_{Q}}\mathcal{O}_{L}\to\Omega^{1}_{T/S}(\log/\log)\to 0 (2.1)

of 𝒪L\mathcal{O}_{L}-modules by [12, Proposition 2.3.2].

We say that an exact immersion TQT\to Q to a log smooth scheme over SS is minimal if the map

Tor1𝒪L(ΩT/S1(log/log),E)NT/Q𝒪LE\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{T/S}(\log/\log),E)\to N_{T/Q}\otimes_{\mathcal{O}_{L}}E (2.2)

induced by (2.1) is an isomorphism.

Lemma 2.1 (cf. [17, Lemma 1.2.3.1]).

There exists a minimal exact immersion TQT\to Q to a log smooth scheme over SS.

Proof.

Let π\pi be a uniformizer of KK and mm be the ramification index of L/KL/K. Take a system of generators a1,an𝒪La_{1},\dots a_{n}\in\mathcal{O}_{L} over 𝒪K\mathcal{O}_{K} and put ua1m=πua_{1}^{m}=\pi with u𝒪K×u\in\mathcal{O}_{K}^{\times}. We define an exact closed immersion

T=Spec𝒪LQ=Spec𝒪K[X1,,Xn,U±1]/(UX1mπ)T=\operatorname{Spec}\mathcal{O}_{L}\to Q^{\prime}=\operatorname{Spec}\mathcal{O}_{K}[X_{1},\dots,X_{n},U^{\pm 1}]/(UX_{1}^{m}-\pi)

to a log smooth scheme sending X1,Xn,UX_{1},\dots X_{n},U to a1,,an,ua_{1},\dots,a_{n},u. Let II be the kernel of the map

𝒪K[X1,,Xn,U±1]/(UX1mπ)𝒪L.\mathcal{O}_{K}[X_{1},\dots,X_{n},U^{\pm 1}]/(UX_{1}^{m}-\pi)\to\mathcal{O}_{L}.

Take a lifting f1,,fsIf_{1},\dots,f_{s}\in I of a basis of the image of NT/Q𝒪LEΩQ/S1(log/log)𝒪QEN_{T/Q^{\prime}}\otimes_{\mathcal{O}_{L}}E\to\Omega^{1}_{Q^{\prime}/S}(\log/\log)\otimes_{\mathcal{O}_{Q^{\prime}}}E. Then the closed subscheme QQ of QQ^{\prime} defined by the ideal (f1,,fs)(f_{1},\dots,f_{s}) is log smooth over SS on a neighborhood of TT. We show that the immersion TQT\to Q is minimal.

The construction of QQ shows that NT/Q𝒪LEΩQ/S1(log/log)𝒪QEN_{T/Q}\otimes_{\mathcal{O}_{L}}E\to\Omega^{1}_{Q/S}(\log/\log)\otimes_{\mathcal{O}_{Q}}E is a zero map. Hence the exact sequence (2.1) induces the isomorphism Tor1𝒪L(ΩT/S1(log/log),E)NT/Q𝒪LE\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{T/S}(\log/\log),E)\to N_{T/Q}\otimes_{\mathcal{O}_{L}}E. ∎

We define the morphism

Tor1𝒪L(ΩT/S1(log/log),E)ΩF1(log)FE\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{T/S}(\log/\log),E)\to\Omega^{1}_{F}(\log)\otimes_{F}E (2.3)

as follows. For an exact immersion TQT\to Q to a log smooth scheme over SS, we have an injection NT/Q𝒪TEΩQ1(log)𝒪QEN_{T/Q}\otimes_{\mathcal{O}_{T}}E\to\Omega^{1}_{Q}(\log)\otimes_{\mathcal{O}_{Q}}E. The composition of this injection and (2.2) is independent of the choice of exaxt immersion TQT\to Q. The image is contained in ΩF1(log)FE\Omega^{1}_{F}(\log)\otimes_{F}E, so this defines the map (2.3).

Let L/KL/K be a finite Galois extension and let G=Gal(L/K)G=\operatorname{Gal}(L/K) be Galois group. Let r>0r>0 be a rational number such that Glogr+=s>rGlogs=1G^{r+}_{\log}=\cup_{s>r}G^{s}_{\log}=1. By the reduced fiber theorem [4], there exists a separable extension KK^{\prime} of KK of ramification index ee such that erer is an integer and the geometric closed fiber QS(r)×SF¯Q_{S^{\prime}}^{(r)}\times_{S^{\prime}}\overline{F} is reduced. We define the scheme ΘL/K,log,F(r)\Theta_{L/K,\log,F^{\prime}}^{(r)} to be the vector bundle HomF(𝔪Ker/𝔪Ker+,Tor1𝒪L(Ω𝒪L/𝒪K1(log/log),E))\operatorname{Hom}_{F^{\prime}}(\mathfrak{m}^{er}_{K^{\prime}}/\mathfrak{m}^{er+}_{K^{\prime}},\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}}(\log/\log),E)) over Spec(EFF)red\operatorname{Spec}(E\otimes_{F}F^{\prime})_{\operatorname{red}}. If we take a minimal exact immersion TQT\to Q to a log smooth scheme over SS, the isomorphism (2.2) induces an isomorphism QF,red[r]ΘL/K,log,F(r)Q_{F^{\prime},\operatorname{red}}^{[r]}\to\Theta_{L/K,\log,F^{\prime}}^{(r)} by [17, Proposition 3.1.3.2]. We define the scheme ΦL/K,log,F(r)\Phi_{L/K,\log,F^{\prime}}^{(r)} to be QF(r)Q_{F^{\prime}}^{(r)}. As a logarithmic variant of [17, Lemma 3.3.7], the definition of ΦL/K,log,F(r)\Phi_{L/K,\log,F^{\prime}}^{(r)} does not depend on the choice of a minimal exact immersion TQT\to Q, and for every exact immersion T=Spec𝒪LQT=\operatorname{Spec}\mathcal{O}_{L}\to Q to a log smooth scheme QQ over SS, we have a cartesian diagram

QF(r)\textstyle{Q_{F^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QF,red[r]\textstyle{Q_{F^{\prime},\operatorname{red}}^{[r]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΦL/K,log,F(r)\textstyle{\Phi_{L/K,\log,F^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘL/K,log,F(r)\textstyle{\Theta_{L/K,\log,F^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\square} (2.4)

We fix a morphism i0:LKsi_{0}\colon L\to K_{s} to a separable closure of KK. Let ΘL/K,log,F¯(r),ΦL/K,log,F¯(r)\Theta_{L/K,\log,\overline{F}}^{(r)\circ},\Phi_{L/K,\log,\overline{F}}^{(r)\circ} denote the connected components of ΘL/K,log,F¯(r),ΦL/K,log,F¯(r)\Theta_{L/K,\log,\overline{F}}^{(r)},\Phi_{L/K,\log,\overline{F}}^{(r)} containing the image of the closed point of T¯F¯\overline{T}_{\overline{F}} corresponding to i0i_{0} respectively.

Proposition 2.2 (cf. [17, Theorem 4.3.3]).

The GlogrG^{r}_{\log}-torsor ΦL/K,log,F¯(r)\Phi_{L/K,\log,\overline{F}}^{(r)\circ} over ΘL/K,log,F¯(r)\Theta_{L/K,\log,\overline{F}}^{(r)\circ} is additive. Hence, there exists a group scheme structure on ΦL/K,log,F¯(r)\Phi_{L/K,\log,\overline{F}}^{(r)\circ} such that the sequence

0GlogrΦL/K,log,F¯(r)ΘL/K,log,F¯(r)00\to G^{r}_{\log}\to\Phi_{L/K,\log,\overline{F}}^{(r)\circ}\to\Theta_{L/K,\log,\overline{F}}^{(r)\circ}\to 0

is an extension of smooth group schemes.

Proof (Saito).

We reduce the assertion to the case where the ramification index eL/K=1e_{L/K}=1. By [9, Theorem 3.1], there exists an extension K/KK^{\prime}/K such that eL/K=1e_{L^{\prime}/K^{\prime}}=1 and ΩF1(log)ΩF1(log)\Omega^{1}_{F}(\log)\to\Omega^{1}_{F^{\prime}}(\log) is injective where L=LKL^{\prime}=LK^{\prime} denotes the composite field and FF^{\prime} denotes the residue field of KK^{\prime}. From the functoriality of the construction of ΦlogΘlog\Phi_{\log}\to\Theta_{\log}, we have the commutative diagram

ΦL/K,log,F¯(r)\textstyle{\Phi_{L^{\prime}/K^{\prime},\log,\overline{F^{\prime}}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘL/K,log,F¯(r)\textstyle{\Theta_{L^{\prime}/K^{\prime},\log,\overline{F^{\prime}}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΦL/K,log,F¯(r)\textstyle{\Phi_{L/K,\log,\overline{F}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘL/K,log,F¯(r)\textstyle{\Theta_{L/K,\log,\overline{F}}^{(r)\circ}}

Hence it suffices to show that the Glogr{G^{\prime}}^{r}_{\log}-torsor ΦL/K,log,F¯(r)\Phi_{L^{\prime}/K^{\prime},\log,\overline{F}}^{(r)\circ} over ΘL/K,log,F¯(r)\Theta_{L^{\prime}/K^{\prime},\log,\overline{F}}^{(r)\circ} is additive by [17, Corollary 2.1.8.3] where G=Gal(L/K)G^{\prime}=\operatorname{Gal}(L^{\prime}/K^{\prime}).

If eL/Ke_{L/K} is 1, then we have Gr=GlogrG^{r}=G^{r}_{\log} and the morphism ΦL/K,log,F¯(r)ΘL/K,log,F¯(r)\Phi_{L/K,\log,\overline{F}}^{(r)\circ}\to\Theta_{L/K,\log,\overline{F}}^{(r)\circ} is equal to ΦL/K,F¯(r)ΘL/K,F¯(r)\Phi_{L/K,\overline{F}}^{(r)\circ}\to\Theta_{L/K,\overline{F}}^{(r)\circ} since every immersion TPT\to P to a smooth scheme is exact under the assumption eL/K=1e_{L/K}=1. Hence the assertion follows from the fact that ΦL/K,F¯(r)\Phi_{L/K,\overline{F}}^{(r)\circ} is an additive torsor over ΘL/K,F¯(r)\Theta_{L/K,\overline{F}}^{(r)\circ} [17, Theorem 4.3.3.1]. ∎

In the same way as in Subsection 1.2, we get a morphism

[Φlog]:Hom𝐅p(Glogr,𝐅p)HomF¯(𝔪Ksr/𝔪Ksr+,Tor1𝒪L(ΩT/S1(log/log),F¯)).[\Phi_{\log}]\colon\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r}_{\log},\mathbf{F}_{p})\to\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{T/S}(\log/\log),\overline{F})).

We define the refined Swan conductor to be the composition of injections

rsw:Hom(Gr,𝐅p)[Φlog]HomF¯(𝔪Ksr/𝔪Ksr+,Tor1𝒪L(ΩT/S1(log/log),F¯))HomF¯(𝔪Ksr/𝔪Ksr+,ΩF1(log)FF¯)\operatorname{rsw}\colon\operatorname{Hom}(G^{r},\mathbf{F}_{p})\xrightarrow{[\Phi_{\log}]}\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{T/S}(\log/\log),\overline{F}))\\ \to\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\Omega^{1}_{F}(\log)\otimes_{F}\overline{F}) (2.5)

where the second morphism is induced by the map (2.3). We call rswχ\operatorname{rsw}\chi the refined Swan conductor of χ\chi for χ:Gr𝐅p\chi\colon G^{r}\to\mathbf{F}_{p}.

Remark 2.3.

The construction of the refined Swan conductor here coincides with the construction in [13]. Indeed, using the notation in [13], we have the following diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Glogr\textstyle{G^{r}_{\log}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QF¯(r)\textstyle{Q^{(r)}_{\overline{F}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}PF¯(r)=QF¯[r]\textstyle{P_{\overline{F}}^{(r)}=Q^{[r]}_{\overline{F}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Glogr\textstyle{G^{r}_{\log}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΦL/K,log,F¯(r)\textstyle{\Phi_{L/K,\log,\overline{F}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘL/K,log,F¯(r)\textstyle{\Theta_{L/K,\log,\overline{F}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

by (2.4) where the right vertical map is induced by the second morphism of (2.5).

Proposition 2.4.

Let χH1(K,𝐐/𝐙)\chi\in\mathrm{H}^{1}(K,\mathbf{Q}/\mathbf{Z}) be a character of Swan conductor nn. Then, the image of the refined Swan conductor rswχ:𝔪Kn/𝔪Kn+1ΩF1(log)FF¯\operatorname{rsw}\chi\colon\mathfrak{m}^{n}_{K}/\mathfrak{m}^{n+1}_{K}\to\Omega^{1}_{F}(\log)\otimes_{F}\overline{F} is contained in ΩF1(log)\Omega^{1}_{F}(\log).

Proof.

The assertion follows from [9, Theorem 1.5] since the refined Swan conductor by Kato is defined as a map to ΩF1(log)\Omega^{1}_{F}(\log). ∎

We recall the integrality of the refined Swan conductor proved by Kato.

Theorem 2.5 ([6, Theorem 7.1, 7.3]).

Let AA be an excellent regular local ring of dimension dd with fraction field KK and with residue field kk of characteristic p>0p>0. We assume c=[k:kp]<c=[k:k^{p}]<\infty and fix a lifting (xl)l=1,,c(x_{l})_{l=1,\dots,c} of a pp-basis of kk to AA. Let (πi)i=1,,d(\pi_{i})_{i=1,\dots,d} be a regular system of parameters of AA and let KiK_{i} be the local field at the prime ideal generated by πi\pi_{i}. We fix an integer rr satisfying 1rd1\leq r\leq d. Let DiD_{i} be a divisor on X=SpecAX=\operatorname{Spec}A defined by πi\pi_{i} and let UU be the complement of D=i=1rDiD=\cup_{i=1}^{r}D_{i}. Let χ\chi be an element of H1(U,𝐐/𝐙)\mathrm{H}^{1}(U,\mathbf{Q}/\mathbf{Z}) and put ni=sw(χ|Ki)n_{i}=\operatorname{sw}(\chi|_{K_{i}}). Write

rsw(χ|Kj)=(1irαi,jdlogπi+r+1idαi,jdπi+1lcβl,jdxl)/π1n1πrnr.\operatorname{rsw}(\chi|_{K_{j}})=(\sum_{1\leq i\leq r}\alpha_{i,j}d\log\pi_{i}+\sum_{r+1\leq i\leq d}\alpha_{i,j}d\pi_{i}+\sum_{1\leq l\leq c}\beta_{l,j}dx_{l})/\pi_{1}^{n_{1}}\cdots\pi_{r}^{n_{r}}.

with αi,j,βl,jFrac(A/πj)\alpha_{i,j},\beta_{l,j}\in\operatorname{Frac}(A/\pi_{j}) where 1id1\leq i\leq d, 1jr1\leq j\leq r satisfying nj1n_{j}\geq 1, and 1lc1\leq l\leq c. Then, we have the following properties:

  1. (1)

    αi,j,βl,jA/πj\alpha_{i,j},\beta_{l,j}\in A/\pi_{j}.

  2. (2)

    For integers j,jj,j^{\prime} satisfying 1j,jr1\leq j,j^{\prime}\leq r, the images of αi,j,αi,j\alpha_{i,j},\alpha_{i,j^{\prime}} in A/(πj)+(πj)A/(\pi_{j})+(\pi_{j^{\prime}}) are equal for each ii and the images of βl,j,βl,j\beta_{l,j},\beta_{l,j^{\prime}} in A/(πj)+(πj)A/(\pi_{j})+(\pi_{j^{\prime}}) are equal for each ll.

3 Comparison

In this section, we compare the refined Swan conductor with the characteristic form.

Let KK be a henselian discrete valuation field with residue field FF of characteristic p>0p>0. Let χ\chi be an element of H1(K,𝐐/𝐙)\mathrm{H}^{1}(K,\mathbf{Q}/\mathbf{Z}) and let LL be a finite abelian Galois extension of KK such that χ\chi factors through G=Gal(L/K)G=\operatorname{Gal}(L/K). Since we have GrGlogrGr+1G^{r}\supset G^{r}_{\log}\supset G^{r+1} for a rational number r>0r>0 by [3, Lemma 5.3] and the Swan conductor and the total dimension are integers, we have dt(χ)=sw(χ)+1\operatorname{dt}(\chi)=\operatorname{sw}(\chi)+1 or dt(χ)=sw(χ)\operatorname{dt}(\chi)=\operatorname{sw}(\chi). We say that χ\chi is of type I if dt(χ)=sw(χ)+1\operatorname{dt}(\chi)=\operatorname{sw}(\chi)+1 and χ\chi is of type II if dt(χ)=sw(χ)\operatorname{dt}(\chi)=\operatorname{sw}(\chi). If the residue field FF of KK is perfect, the character χ\chi is of type I by [3, Proposition 6.3.1].

Proposition 3.1 ([17, Proposition 1.1.8.2, 1.1.10]).

Let KK be a discrete valuation field with residue field FF. There exists an extension KK^{\prime} of KK with perfect residue field FF^{\prime} such that

H1(LF¯/𝒪K)H1(LF¯/𝒪K)\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})\to\mathrm{H}_{1}(L_{\overline{F^{\prime}}/\mathcal{O}_{K^{\prime}}}) (3.1)

is injective and eK/Ke_{K^{\prime}/K} is equal to 1.

Proposition 3.2.

Let KK be a henselian discrete valuation field with residue field FF. Let LL be a finite Galois extension of KK of Galois group GG. Let r>0r>0 be a rational number and assume Glogr+=1G^{r+}_{\log}=1 and Glogr=Gr+1G^{r}_{\log}=G^{r+1}. Then, there exists a commutative diagram

Hom𝐅p(Glogr,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r}_{\log},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rsw\scriptstyle{\operatorname{rsw}}HomF¯(𝔪Ksr/𝔪Ksr+,ΩF1(log)FF¯)\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\Omega^{1}_{F}(\log)\otimes_{F}\overline{F})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom𝐅p(Gr+1,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r+1},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}char\scriptstyle{\operatorname{char}}HomF¯(𝔪Ksr/𝔪Ksr+,H1(LF¯/𝒪K)𝒪K𝔪K1)\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})\otimes_{\mathcal{O}_{K}}\mathfrak{m}_{K}^{-1})}

where the right vertical map is induced by the composition of the maps

ΩF1(log)FF¯res1F¯F¯F𝔪K/𝔪K2𝒪K𝔪K1𝑤H1(LF¯/𝒪K)𝒪K𝔪K1.\Omega^{1}_{F}(\log)\otimes_{F}\overline{F}\xrightarrow{\operatorname{res}\otimes 1}\overline{F}\cong\overline{F}\otimes_{F}\mathfrak{m}_{K}/\mathfrak{m}^{2}_{K}\otimes_{\mathcal{O}_{K}}\mathfrak{m}_{K}^{-1}\ \xrightarrow{w}\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})\otimes_{\mathcal{O}_{K}}\mathfrak{m}_{K}^{-1}.

We reduce the proof of Proposition 3.2 to the following case, which is proved by Saito.

Lemma 3.3.

Proposition 3.2 holds if the residue field EE of LL is a separable extension of FF. (In this case, the equality Glogr=Gr+1G^{r}_{\log}=G^{r+1} holds by [3, Proposition 6.3.1]).

Proof (Saito).

If L/KL/K is tamely ramified, then we have Glogr=Gr+1=1G^{r}_{\log}=G^{r+1}=1 and the assertion is trivial. Hence we may assume that L/KL/K is wildly ramified. Let m=pnm=pn be the ramification index of L/KL/K. Since EE is a separable extension of FF and thus 𝒪L\mathcal{O}_{L} is generated by a single element over 𝒪K\mathcal{O}_{K}, we may take a minimal immersion T=Spec𝒪LPT=\operatorname{Spec}\mathcal{O}_{L}\to P to a smooth scheme of relative dimension of 1 over S=Spec𝒪KS=\operatorname{Spec}\mathcal{O}_{K}. We prove that the dilatation P[1]P^{[1]} contains an open subscheme QQ such that QQ is log smooth over SS and the immersion TQT\to Q is a minimal exact immersion. Let xPx\in P the image of the closed point of TT. Since the assertion is local at xx, after replacing PP by an open neighborhood of xx, we may assume P=SpecAP=\operatorname{Spec}A is affine and 𝒪L=A/f\mathcal{O}_{L}=A/f with fAf\in A. Let π\pi be a uniformizer of KK and let sAs\in A be a lifting of a uniformizer of LL. Further replacing PP, we may assume that a morphism P𝐀S1=Spec𝒪K[s]P\to\mathbf{A}^{1}_{S}=\operatorname{Spec}\mathcal{O}_{K}[s] is étale. Let 𝔪x=(f,s)\mathfrak{m}_{x}=(f,s) be the maximal ideal of AA at xx. Since π\pi is divisible by sms^{m} in 𝒪L=A/f\mathcal{O}_{L}=A/f and π𝔪x𝔪x2\pi\in\mathfrak{m}_{x}-\mathfrak{m}_{x}^{2}, we have fπmod𝔪x2f\equiv\pi\mod\mathfrak{m}_{x}^{2} and 𝔪x=(π,s)\mathfrak{m}_{x}=(\pi,s). We may write f=aπ+bsmf=a\pi+bs^{m} with a,bAa,b\in A. Since ff is not in 𝔪x2\mathfrak{m}_{x}^{2}, we see that aa is not in 𝔪x\mathfrak{m}_{x}. Hence we may assume aa is a unit in AA by replacing PP. Since we have aπ+bsm=0𝒪La\pi+bs^{m}=0\in\mathcal{O}_{L}, bb is not in 𝔪x\mathfrak{m}_{x} and we may also assume bb is a unit. Then we have an equality (f,π)=(π,sm)(f,\pi)=(\pi,s^{m}) of ideals of AA. We have P[1]=SpecA[sm/π]=SpecA[v]/(smvπ)P^{[1]}=\operatorname{Spec}A[s^{m}/\pi]=\operatorname{Spec}A[v]/(s^{m}-v\pi) and P[1]P^{[1]} contains an open subscheme Q=SpecA[u±1]/(usmπ)=P×𝐀S1𝒪K[s,u±1]/(usmπ)Q=\operatorname{Spec}A[u^{\pm 1}]/(us^{m}-\pi)=P\times_{\mathbf{A}^{1}_{S}}\mathcal{O}_{K}[s,u^{\pm 1}]/(us^{m}-\pi), which is log smooth over SS since P𝐀S1P\to\mathbf{A}^{1}_{S} is étale. Since the closed subscheme QF,redQ_{F,\operatorname{red}} of QQ is defined by ss, the inverse image T×QQF,redT\times_{Q}Q_{F,\operatorname{red}} is EE and TQT\to Q is an exact immersion. We note that QPQ\to P induces an isomorphism NT/P𝒪K𝔪K1NT/QN_{T/P}\otimes_{\mathcal{O}_{K}}\mathfrak{m}_{K}^{-1}\to N_{T/Q}.

Let KK^{\prime} be a finite separable extension of KK such that the closed fibers of PS(r)P_{S^{\prime}}^{(r)} and QS(r)Q_{S^{\prime}}^{(r)} are reduced. By the functoriality of dilatations and normalizations, the middle square of the diagram

ΦL/K,F(r+1)\textstyle{\Phi_{L/K,F^{\prime}}^{(r+1)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}PF(r+1)\textstyle{P_{F^{\prime}}^{(r+1)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}PF,red[r+1]\textstyle{P_{F^{\prime},\operatorname{red}}^{[r+1]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}ΘL/K,F(r+1)\textstyle{\Theta_{L/K,F^{\prime}}^{(r+1)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΦL/K,log,F(r)\textstyle{\Phi_{L/K,\log,F^{\prime}}^{(r)}}QF(r)\textstyle{Q_{F^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}\scriptstyle{\cong}QF,red[r]\textstyle{Q_{F^{\prime},\operatorname{red}}^{[r]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}\scriptstyle{\cong}ΘL/K,log,F(r)\textstyle{\Theta_{L/K,\log,F^{\prime}}^{(r)}} (3.2)

is commutative and we have a commutative diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gr+1\textstyle{G^{r+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΦL/K,F¯(r+1)\textstyle{\Phi_{L/K,\overline{F}}^{(r+1)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘL/K,F¯(r+1)\textstyle{\Theta_{L/K,\overline{F}}^{(r+1)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Glogr\textstyle{G^{r}_{\log}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΦL/K,log,F¯(r)\textstyle{\Phi_{L/K,\log,\overline{F}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘL/K,log,F¯(r)\textstyle{\Theta_{L/K,\log,\overline{F}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

of extensions of smooth group schemes. Hence we have a commutative diagram

Hom𝐅p(Glogr,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r}_{\log},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rsw\scriptstyle{\operatorname{rsw}}HomF¯(𝔪Ksr/𝔪Ksr+,Tor1𝒪L(Ω𝒪L/𝒪K1(log/log),F¯))\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}}(\log/\log),\overline{F}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom𝐅p(Gr+1,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r+1},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}char\scriptstyle{\operatorname{char}}HomF¯(𝔪Ksr/𝔪Ksr+,Tor1𝒪L(Ω𝒪L/𝒪K1,F¯)𝒪K𝔪K1)\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}},\overline{F})\otimes_{\mathcal{O}_{K}}\mathfrak{m}_{K}^{-1})}

It suffices to show that the diagram

NT/Q𝒪LE\textstyle{N_{T/Q}\otimes_{\mathcal{O}_{L}}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}ΩF1(log)FE\textstyle{\Omega^{1}_{F}(\log)\otimes_{F}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NT/P𝒪LE𝒪K𝔪K1\textstyle{N_{T/P}\otimes_{\mathcal{O}_{L}}E\otimes_{\mathcal{O}_{K}}\mathfrak{m}_{K}^{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(LE/𝒪K)𝒪K𝔪K1\textstyle{\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}})\otimes_{\mathcal{O}_{K}}\mathfrak{m}_{K}^{-1}} (3.3)

is commutative. Since g=f/π=a+bvg=f/\pi=a+bv defines a basis of NT/QN_{T/Q}, we consider the image of this basis. The left vertical map sends gg to fπ1f\otimes\pi^{-1}. The lower horizontal map sends fπ1f\otimes\pi^{-1} to wfπ1=awππ1wf\otimes\pi^{-1}=a\cdot w\pi\otimes\pi^{-1}. The right horizontal map sends g=f/πg=f/\pi to da+vdb+bvdlogvda+vdb+bvd\log v. This is equal to da+vdb+adlogπda+vdb+ad\log\pi in ΩF1(log)E\Omega^{1}_{F}(\log)\otimes E since we have mdlogsdlogvdlogπ=0md\log s-d\log v-d\log\pi=0 in ΩQ1(log)\Omega^{1}_{Q}(\log) and pp divides mm and g=a+bv=0g=a+bv=0 in 𝒪L=A[g]/g\mathcal{O}_{L}=A[g]/g. The right vertical map sends da+vdb+adlogπda+vdb+ad\log\pi to awππ1a\cdot w\pi\otimes\pi^{-1} since a,ba,b are units in AA and da+vdbΩE1da+vdb\in\Omega^{1}_{E}. ∎

Proof of Proposition 3.2.

Let KK^{\prime} be an extension as in Proposition 3.1 and let L=LKL^{\prime}=LK^{\prime} be the composition field and G=Gal(L/K)G^{\prime}=\operatorname{Gal}(L^{\prime}/K^{\prime}) be the Galois group. Then, we have Gr+1=Gr+1G^{r+1}={G^{\prime}}^{r+1} by [17, Proposition 4.2.4.1]. Since the residue field FF^{\prime} of KK^{\prime} is perfect, we have Glogr=Gr+1{G^{\prime}}^{r}_{\log}={G^{\prime}}^{r+1} by [3, Proposition 6.3.1]. Since we assume Glogr=Gr+1G^{r}_{\log}=G^{r+1}, we have Glogr=GlogrG^{r}_{\log}=G^{\prime r}_{\log}.

By the commutative diagram

ΩF1(log)FF¯\textstyle{\Omega^{1}_{F}(\log)\otimes_{F}\overline{F}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩF1(log)FF¯\textstyle{\Omega^{1}_{F^{\prime}}(\log)\otimes_{F^{\prime}}\overline{F^{\prime}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(LF¯/𝒪K)𝒪K𝔪K1\textstyle{\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})\otimes_{\mathcal{O}_{K}}\mathfrak{m}_{K}^{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(LF¯/𝒪K)𝒪K𝔪K1,\textstyle{\mathrm{H}_{1}(L_{\overline{F^{\prime}}/\mathcal{O}_{K^{\prime}}})\otimes_{\mathcal{O}_{K^{\prime}}}\mathfrak{m}_{K^{\prime}}^{-1},}

it suffices to show that the diagram

Hom𝐅p(Glogr,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r}_{\log},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rsw\scriptstyle{\operatorname{rsw}}HomF¯(𝔪Ksr/𝔪Ksr+,ΩF1(log)FF¯)\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\Omega^{1}_{F}(\log)\otimes_{F}\overline{F})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom𝐅p(Glogr,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{\prime r}_{\log},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rsw\scriptstyle{\operatorname{rsw}}HomF¯(𝔪Ksr/𝔪Ksr+,ΩF1(log)FF¯)\textstyle{\operatorname{Hom}_{\overline{F^{\prime}}}(\mathfrak{m}^{r}_{K^{\prime}_{s}}/\mathfrak{m}^{r+}_{K^{\prime}_{s}},\Omega^{1}_{F^{\prime}}(\log)\otimes_{F^{\prime}}\overline{F^{\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom𝐅p(Gr+1,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{\prime r+1},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}char\scriptstyle{\operatorname{char}}HomF¯(𝔪Ksr/𝔪Ksr+,H1(LF¯/𝒪K)𝒪K𝔪K1)\textstyle{\operatorname{Hom}_{\overline{F^{\prime}}}(\mathfrak{m}^{r}_{K^{\prime}_{s}}/\mathfrak{m}^{r+}_{K^{\prime}_{s}},\mathrm{H}_{1}(L_{\overline{F^{\prime}}/\mathcal{O}_{K^{\prime}}})\otimes_{\mathcal{O}_{K^{\prime}}}\mathfrak{m}_{K^{\prime}}^{-1})}Hom𝐅p(Gr+1,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r+1},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}char\scriptstyle{\operatorname{char}}HomF¯(𝔪Ksr/𝔪Ksr+,H1(LF¯/𝒪K)𝒪K𝔪K1)\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})\otimes_{\mathcal{O}_{K}}\mathfrak{m}_{K}^{-1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(3.1)\scriptstyle{(\ref{3.5})}

is commutative since the map H1(LF¯/𝒪K)H1(LF¯/𝒪K)\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})\to\mathrm{H}_{1}(L_{\overline{F^{\prime}}/\mathcal{O}_{K^{\prime}}}) is injective. The upper square and the lower square are commutative by the functoriality of the refined Swan conductor and the characteristic form respectively. The middle square is commutative by Lemma 3.3 since FF^{\prime} is perfect. ∎

The following proposition is proved by Saito.

Proposition 3.4.

Let KK be a henselian discrete valuation field with residue field FF. Let LL be a finite Galois extension of KK of Galois group GG. Let r>1r>1 be a rational number and assume Gr+=1G^{r+}=1. Then, there exists a commutative diagram

Hom𝐅p(Gr,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}char\scriptstyle{\operatorname{char}}HomF¯(𝔪Ksr/𝔪Ksr+,H1(LF¯/𝒪K))\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom𝐅p(Glogr,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r}_{\log},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rsw\scriptstyle{\operatorname{rsw}}HomF¯(𝔪Ksr/𝔪Ksr+,ΩF1(log)FF¯)\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\Omega^{1}_{F}(\log)\otimes_{F}\overline{F})}

where the right vertical map is induced from the composition of the maps

H1(LF¯/𝒪K)ΩF1FF¯ΩF1(log)FF¯.\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})\to\Omega^{1}_{F}\otimes_{F}\overline{F}\to\Omega^{1}_{F}(\log)\otimes_{F}\overline{F}.
Proof (Saito).

We show that there exists a commutative diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Glogr\textstyle{G^{r}_{\log}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΦL/K,log,F(r)\textstyle{\Phi_{L/K,\log,F^{\prime}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘL/K,log,F(r)\textstyle{\Theta_{L/K,\log,F^{\prime}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gr\textstyle{G^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΦL/K,F(r)\textstyle{\Phi_{L/K,F^{\prime}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΘL/K,F(r)\textstyle{\Theta_{L/K,F^{\prime}}^{(r)\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0} (3.4)

of extensions of smooth group schemes. We may take a minimal immersion TPT\to P to a smooth scheme over S=Spec𝒪KS=\operatorname{Spec}\mathcal{O}_{K} and a minimal exact immersion TQT\to Q to a log smooth scheme over SS. By replacing QQ by an étale neighborhood, we may assume that there exists a morphism QPQ\to P. Let KK^{\prime} be a finite separable extension of KK such that the closed fibers of PS(r)P_{S^{\prime}}^{(r)} and QS(r)Q_{S^{\prime}}^{(r)} are reduced. By the functoriality of dilatations and normalizations, we have a commutative diagram

QS(r)\textstyle{Q_{S^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QS[r]\textstyle{Q_{S^{\prime}}^{[r]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}PS(r)\textstyle{P_{S^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}PS[r]\textstyle{P_{S^{\prime}}^{[r]}}
(3.5)

Since QPQ\to P induces a morphism

0NT/PΩP/S1𝒪P𝒪LΩT/S100NT/QΩQ/S1(log/log)𝒪Q𝒪LΩT/S1(log/log)0.\vbox{ \lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&\\&&&&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.52702pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.52702pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{N_{T/P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 102.26222pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 42.6234pt\raise-32.36888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 102.26222pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{1}_{P/S}\otimes_{\mathcal{O}_{P}}\mathcal{O}_{L}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 212.40996pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 123.38393pt\raise-30.56444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 212.40996pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{1}_{T/S}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 273.82108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 220.42107pt\raise-30.56444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 273.82108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}{\hbox{\kern-5.5pt\raise-42.2022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.5pt\raise-42.2022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.5pt\raise-42.2022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{N_{T/Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 79.7468pt\raise-42.2022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 79.7468pt\raise-42.2022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{1}_{Q/S}(\log/\log)\otimes_{\mathcal{O}_{Q}}\mathcal{O}_{L}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 191.02106pt\raise-42.2022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 191.02106pt\raise-42.2022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Omega^{1}_{T/S}(\log/\log)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 273.82108pt\raise-42.2022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 273.82108pt\raise-42.2022pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces}.

of free resolutions, we obtain a commutative diagram

Tor1𝒪L(Ω𝒪L/𝒪K1,E)\textstyle{\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}},E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}NT/P𝒪LE\textstyle{N_{T/P}\otimes_{\mathcal{O}_{L}}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tor1𝒪L(Ω𝒪L/𝒪K1(log/log),E)\textstyle{\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}}(\log/\log),E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}NT/Q𝒪LE\textstyle{N_{T/Q}\otimes_{\mathcal{O}_{L}}E} (3.6)

where the isomorphisms are (2.2) and (1.3). The diagram

ΦL/K,log,F(r)\textstyle{\Phi_{L/K,\log,F^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QF(r)\textstyle{Q_{F^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}QF,red[r]\textstyle{Q_{F^{\prime},\operatorname{red}}^{[r]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}ΘL/K,log,F(r)\textstyle{\Theta_{L/K,\log,F^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΦL/K,F(r)\textstyle{\Phi_{L/K,F^{\prime}}^{(r)}}PF(r)\textstyle{P_{F^{\prime}}^{(r)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}PF,red[r]\textstyle{P_{F^{\prime},\operatorname{red}}^{[r]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}ΘL/K,F(r)\textstyle{\Theta_{L/K,F^{\prime}}^{(r)}} (3.7)

is commutative by (3.5), (3.6) and the functoriality of normalizations and dilatations. Hence the diagram (3.4) is commutative and defines a commutative diagram

Hom𝐅p(Gr,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}char\scriptstyle{\operatorname{char}}HomF¯(𝔪Ksr/𝔪Ksr+,Tor1𝒪L(Ω𝒪L/𝒪K1,F¯))\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}},\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}},\overline{F}))}Hom𝐅p(Glogr,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{r}_{\log},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rsw\scriptstyle{\operatorname{rsw}}HomF¯(𝔪Ksr/𝔪Ksr+),Tor1𝒪L(Ω𝒪L/𝒪K1(log/log),F¯)\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{r}_{K_{s}}/\mathfrak{m}^{r+}_{K_{s}}),\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}}(\log/\log),\overline{F})}

Hence it suffices to show that the diagram

Tor1𝒪L(Ω𝒪L/𝒪K1,E)\textstyle{\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}},E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(LE/𝒪K)\textstyle{\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tor1𝒪L(Ω𝒪L/𝒪K1(log/log),E)\textstyle{\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}}(\log/\log),E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩF1(log)FE\textstyle{\Omega^{1}_{F}(\log)\otimes_{F}E}

is commutative where EE denotes the residue field of LL. By the injectivity of the map ΩF1(log)FEΩQ1(log)𝒪QE\Omega^{1}_{F}(\log)\otimes_{F}E\to\Omega^{1}_{Q}(\log)\otimes_{\mathcal{O}_{Q}}E and the commutative diagrams

Tor1𝒪L(Ω𝒪L/𝒪K1,E)\textstyle{\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}},E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NT/P𝒪LE\textstyle{N_{T/P}\otimes_{\mathcal{O}_{L}}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tor1𝒪L(Ω𝒪L/𝒪K1(log/log),E)\textstyle{\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}}(\log/\log),E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NT/Q𝒪LE\textstyle{N_{T/Q}\otimes_{\mathcal{O}_{L}}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(LE/𝒪K)\textstyle{\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NE/P\textstyle{N_{E/P}}ΩF1(log)FE\textstyle{\Omega^{1}_{F}(\log)\otimes_{F}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩQ1(log)𝒪QE\textstyle{\Omega^{1}_{Q}(\log)\otimes_{\mathcal{O}_{Q}}E}

it suffices to show that the diagram

Tor1𝒪L(Ω𝒪L/𝒪K1,E)\textstyle{\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}},E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NT/P𝒪TE\textstyle{N_{T/P}\otimes_{\mathcal{O}_{T}}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NE/P\textstyle{N_{E/P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(LE/𝒪K)\textstyle{\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tor1𝒪L(Ω𝒪L/𝒪K1(log/log),E)\textstyle{\operatorname{Tor}_{1}^{\mathcal{O}_{L}}(\Omega^{1}_{\mathcal{O}_{L}/\mathcal{O}_{K}}(\log/\log),E)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NT/Q𝒪LE\textstyle{N_{T/Q}\otimes_{\mathcal{O}_{L}}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NE/Q\textstyle{N_{E/Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩQ1(log)𝒪QE\textstyle{\Omega^{1}_{Q}(\log)\otimes_{\mathcal{O}_{Q}}E}ΩF1(log)FE\textstyle{\Omega^{1}_{F}(\log)\otimes_{F}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

is commutative. The left square is commutative by (3.6). The middle square is commutative by the functoriality of conormal sheaves. The right square is commutative since the diagram

H1(LE/𝒪K)\textstyle{\mathrm{H}_{1}(L_{E/\mathcal{O}_{K}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(LE/F)\textstyle{\mathrm{H}_{1}(L_{E/F})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩF1FE\textstyle{\Omega^{1}_{F}\otimes_{F}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩF1(log)FE\textstyle{\Omega^{1}_{F}(\log)\otimes_{F}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NE/P\textstyle{N_{E/P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NE/PF\textstyle{N_{E/P_{F}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩPF1𝒪PFE\textstyle{\Omega^{1}_{P_{F}}\otimes_{\mathcal{O}_{P_{F}}}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩQ1(log)FE\textstyle{\Omega^{1}_{Q}(\log)\otimes_{F}E}NE/Q\textstyle{N_{E/Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NE/QF,red\textstyle{N_{E/Q_{F,\operatorname{red}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩQF,red1𝒪QF,redE\textstyle{\Omega^{1}_{Q_{F,\operatorname{red}}}\otimes_{\mathcal{O}_{Q_{F,\operatorname{red}}}}E\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

is commutative by the functoriality of cotangent complexes. ∎

4 Proof of the rationality and the integrality

In this section, we prove Theorem 1.3 and Theorem 1.5.

Proof of Theorem 1.3.

Let LL be a finite abelian extension such that χ\chi factors through G=Gal(L/K)G=\operatorname{Gal}(L/K). Let π\pi be a uniformizer and let (vi)iI(v_{i})_{i\in I} be a family of elements of 𝒪K\mathcal{O}_{K} such that (dvi)iI(dv_{i})_{i\in I} forms a basis of ΩF1\Omega^{1}_{F}. We put m=dt(χ)m=\operatorname{dt}(\chi). First we consider the case where the character χ\chi is of type I. If we put

rsw(χ)=(αdlogπ+iIβidvi)/πm1,\operatorname{rsw}(\chi)=(\alpha d\log\pi+\sum_{i\in I}\beta_{i}dv_{i})/\pi^{m-1},

then we have

char(χ)=(αwπ)/πm\operatorname{char}(\chi)=(\alpha w\pi)/\pi^{m}

by Proposition 3.2 and the assertion follows from Proposition 2.4.

Second we consider the case where the character χ\chi is of type II. If we put

char(χ)=(αwπ+iIβiwvi)/πm,\operatorname{char}(\chi)=(\alpha w\pi+\sum_{i\in I}\beta_{i}wv_{i})/\pi^{m},

then we have

rsw(χ)=(iIβidvi)/πm\operatorname{rsw}(\chi)=(\sum_{i\in I}\beta_{i}dv_{i})/\pi^{m}

by Proposition 3.4. We see that βi\beta_{i} are contained in FF by Proposition 2.4. We show that α\alpha is contained in F1/pF^{1/p}. We define the discrete valuation ring 𝒪K\mathcal{O}_{K^{\prime}} by

𝒪K=𝒪K[wi]iI/(wipvi)iI\mathcal{O}_{K^{\prime}}=\mathcal{O}_{K}[w_{i}]_{i\in I}/(w_{i}^{p}-v_{i})_{i\in I}

and let KK^{\prime} be the fraction field of 𝒪K\mathcal{O}_{K^{\prime}}. Then the residue field FF^{\prime} of KK^{\prime} is F1/pF^{1/p}. Let L=LKL^{\prime}=LK^{\prime} be the composite field and G=Gal(L/K)G^{\prime}=\operatorname{Gal}(L^{\prime}/K^{\prime}) be the Galois group. The map H1(LF¯/𝒪K)H1(LF¯/𝒪K)\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}})\to\mathrm{H}_{1}(L_{\overline{F^{\prime}}/\mathcal{O}_{K^{\prime}}}) sends wπw\pi to wπw\pi and the other basis to 0. The diagram

Hom𝐅p(Gm,𝐅p)charHomF¯(𝔪Ksm/𝔪Ksm+,H1(LF¯/𝒪K))Hom𝐅p(Gm,𝐅p)HomF¯(𝔪Ksm/𝔪Ksm+,H1(LF¯/𝒪K))
.
\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 33.15959pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&\crcr}}}\ignorespaces{\hbox{\kern-32.3896pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{m},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 35.42697pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\operatorname{char}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.5116pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.52054pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 57.5116pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Hom}_{\overline{F}}(\mathfrak{m}^{m}_{K_{s}}/\mathfrak{m}^{m+}_{K_{s}},\mathrm{H}_{1}(L_{\overline{F}/\mathcal{O}_{K}}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 115.62692pt\raise-31.40941pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 198.09425pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-33.15959pt\raise-41.90941pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{\prime m},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 57.15959pt\raise-41.90941pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 57.15959pt\raise-41.90941pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Hom}_{\overline{F^{\prime}}}(\mathfrak{m}^{m}_{K^{\prime}_{s}}/\mathfrak{m}^{m+}_{K^{\prime}_{s}},\mathrm{H}_{1}(L_{\overline{F^{\prime}}/\mathcal{O}_{K^{\prime}}}))}$}}}}}}}\ignorespaces}}}}\ignorespaces.

is commutative by the functoriality [17, (4.17)]. If the coefficient of wπw\pi is not zero, then the image of charχ\operatorname{char}\chi by the right vertical arrow is not zero. Hence GmG^{\prime m} is not trivial and thus we have dt(χ)=m\operatorname{dt}(\chi^{\prime})=m. Let χ\chi^{\prime} be the image of the character χ\chi by the left vertical arrow. Then the characteristic form char(χ)\operatorname{char}(\chi^{\prime}) is of the form

char(χ)=αwπ/πm.\operatorname{char}(\chi^{\prime})=\alpha\cdot w\pi/\pi^{m}.

If the character χ\chi^{\prime} is of type II, then the refined Swan conductor of χ\chi^{\prime} is zero and this is a contradiction. Hence the character χ\chi^{\prime} is of type I. By the first case, we have αF=F1/p\alpha\in{F^{\prime}}=F^{1/p}. ∎

Next, we prove Theorem 1.5. We prepare the following lemma.

Lemma 4.1.

We use the notation as in Theorem 1.5 and assume the dimension of AA is 22. We define the regular local ring AA^{\prime} of dimension 22 by

A=A[u2,yl]1lc/(u2pπ2,ylpxl)1lc.A^{\prime}=A[u_{2},y_{l}]_{1\leq l\leq c}/(u_{2}^{p}-\pi_{2},y_{l}^{p}-x_{l})_{1\leq l\leq c}.

The maximal ideal of AA^{\prime} is generated by π1\pi_{1} and u2u_{2}. Let K1K^{\prime}_{1} be the local field of AA^{\prime} at the prime ideal generated by π1\pi_{1} and let K2K^{\prime}_{2} be the local field of AA^{\prime} at the prime ideal generated by u2u_{2}. Let LiL_{i} be a finite abelian extension of KiK_{i} (i=1,2)(i=1,2) such that χ|Ki\chi|_{K_{i}} factors through Gi=Gal(Li/Ki)G_{i}=\operatorname{Gal}(L_{i}/K_{i}). Let Li=LiKiL^{\prime}_{i}=L_{i}K^{\prime}_{i} be the composite field and put Gi=Gal(Li/Ki)G^{\prime}_{i}=\operatorname{Gal}(L^{\prime}_{i}/K^{\prime}_{i}). Let FiF_{i} and FiF^{\prime}_{i} be the residue fields of KiK_{i} and KiK^{\prime}_{i} respectively. Let UU^{\prime} be the pullback of UU by SpecASpecA\operatorname{Spec}A^{\prime}\to\operatorname{Spec}A and let χH1(U,𝐐/𝐙)\chi^{\prime}\in\mathrm{H}^{1}(U^{\prime},\mathbf{Q}/\mathbf{Z}) be the pullback of χ\chi. We put mi=dt(χ|Ki)m^{\prime}_{i}=\operatorname{dt}(\chi^{\prime}|_{K^{\prime}_{i}}).

1. Assume that χ|K1\chi|_{K_{1}} is wildly ramified. If the coefficient of wπ1w\pi_{1} in char(χ|K1)\operatorname{char}(\chi|_{K_{1}}) is not zero, then we have m1=m1m^{\prime}_{1}=m_{1} and the character χ|K1\chi^{\prime}|_{K^{\prime}_{1}} is of type I. If the coefficient of wπ1w\pi_{1} in char(χ|K1)\operatorname{char}(\chi|_{K_{1}}) is zero, then we have m1<m1m^{\prime}_{1}<m_{1}.

2. Assume that χ|K2\chi|_{K_{2}} is of type II. If the coefficient of wπ1w\pi_{1} in char(χ|K2)\operatorname{char}(\chi|_{K_{2}}) is not zero, then we have m2=pm2m^{\prime}_{2}=pm_{2} and the character χ|K2\chi^{\prime}|_{K^{\prime}_{2}} is of type II. If the coefficient of wπ1w\pi_{1} is zero, we have sw(χ|K2)<pm2\operatorname{sw}(\chi^{\prime}|_{K^{\prime}_{2}})<pm_{2}.

Proof.

1. The map H1(LF1¯/𝒪K1)H1(LF1¯/𝒪K1)\mathrm{H}_{1}(L_{\overline{F_{1}}/\mathcal{O}_{K_{1}}})\to\mathrm{H}_{1}(L_{\overline{F^{\prime}_{1}}/\mathcal{O}_{K^{\prime}_{1}}}) sends wπ1w\pi_{1} to wπ1w\pi_{1} and the other basis to 0. The diagram

Hom𝐅p(G1m1,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{m_{1}}_{1},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}char\scriptstyle{\operatorname{char}}HomF1¯(𝔪K1,sm1/𝔪K1,sm1+,H1(LF1¯/𝒪K1))\textstyle{\operatorname{Hom}_{\overline{F_{1}}}(\mathfrak{m}^{m_{1}}_{K_{1,s}}/\mathfrak{m}^{m_{1}+}_{K_{1,s}},\mathrm{H}_{1}(L_{\overline{F_{1}}/\mathcal{O}_{K_{1}}}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom𝐅p(G1m1,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{\prime m_{1}}_{1},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}HomF1¯(𝔪K1,sm1/𝔪K1,sm1+,H1(LF1¯/𝒪K1))\textstyle{\operatorname{Hom}_{\overline{F^{\prime}_{1}}}(\mathfrak{m}^{m_{1}}_{K^{\prime}_{1,s}}/\mathfrak{m}^{m_{1}+}_{K^{\prime}_{1,s}},\mathrm{H}_{1}(L_{\overline{F^{\prime}_{1}}/\mathcal{O}_{K^{\prime}_{1}}}))}

is commutative by the functoriality [17, (4.17)]. The first assertion follows from the same argument as in the proof of Proposition 1.3. If the coefficient of wπ1w\pi_{1} in char(χ|K1)\operatorname{char}(\chi|_{K_{1}}) is zero, then the image of charχ|K1\operatorname{char}\chi|_{K_{1}} by the right vertical arrow is zero. Hence G1m1G^{\prime m_{1}}_{1} is trivial and we have m1<m1m^{\prime}_{1}<m_{1}.

2. The map ΩF21(log)ΩF21(log)\Omega^{1}_{F_{2}}(\log)\to\Omega^{1}_{F^{\prime}_{2}}(\log) sends dlogπ1d\log\pi_{1} to dlogπ1d\log\pi_{1} and the other basis to 0. Since χ|K2\chi|_{K_{2}} is of type II, we have sw(χ|K2)=m2\operatorname{sw}(\chi|_{K_{2}})=m_{2}. The diagram

Hom𝐅p(G2,logm2,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G_{2,\log}^{m_{2}},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rsw\scriptstyle{\operatorname{rsw}}HomF2¯(𝔪K2,sm2/𝔪K2,sm2+,ΩF21(log)F2F2¯)\textstyle{\operatorname{Hom}_{\overline{F_{2}}}(\mathfrak{m}^{m_{2}}_{K_{2,s}}/\mathfrak{m}^{m_{2}+}_{K_{2,s}},\Omega^{1}_{F_{2}}(\log)\otimes_{F_{2}}\overline{F_{2}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom𝐅p(G2,logpm2,𝐅p)\textstyle{\operatorname{Hom}_{\mathbf{F}_{p}}(G^{\prime pm_{2}}_{2,\log},\mathbf{F}_{p})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}HomF2¯(𝔪K2,spm2/𝔪K2,spm2+,ΩF21(log)F2F2¯)\textstyle{\operatorname{Hom}_{\overline{F^{\prime}_{2}}}(\mathfrak{m}^{pm_{2}}_{K^{\prime}_{2,s}}/\mathfrak{m}^{pm_{2}+}_{K^{\prime}_{2,s}},\Omega^{1}_{F^{\prime}_{2}}(\log)\otimes_{F^{\prime}_{2}}\overline{F^{\prime}_{2}})}

is commutative by the functoriality [9, (4.17)]. Since we assume the coefficient of wπ1w\pi_{1} is not zero, the coefficient of dlogπ1d\log\pi_{1} is not zero and the image of rswχ|K2\operatorname{rsw}\chi|_{K_{2}} by the right vertical arrow is not zero. Hence G2,logpm2G^{\prime pm_{2}}_{2,\log} is not trivial and thus we have sw(χ|K2)=pm2\operatorname{sw}(\chi^{\prime}|_{K^{\prime}_{2}})=pm_{2}. Since the inequality m2pm2m^{\prime}_{2}\leq pm_{2} holds, we obtain m2=pm2m^{\prime}_{2}=pm_{2} and the character χ|K2\chi|_{K_{2}} is of type II. If the coefficient of wπ1w\pi_{1} in char(χ|K2)\operatorname{char}(\chi|_{K_{2}}) is zero, then the image of rswχ|K2\operatorname{rsw}\chi|_{K_{2}} by the right vertical arrow is zero. Hence G2,logpm2G^{\prime pm_{2}}_{2,\log} is trivial and we have sw(χ|K2)<pm2\operatorname{sw}(\chi^{\prime}|_{K^{\prime}_{2}})<pm_{2}. ∎

Proof of Theorem 1.5.

Since A/πjA/\pi_{j} is regular, it suffices to show that αi,jp,βl,j\alpha_{i,j}^{p},\beta_{l,j} are elements of (A/πj)𝔮(A/\pi_{j})_{\mathfrak{q}} for any prime ideal 𝔮\mathfrak{q} of height one of A/πjA/\pi_{j}. By replacing AA by A𝔮A_{\mathfrak{q}}, we may assume dimA=2\dim A=2. We use the notation as in Lemma 4.1.

We divide the proof into six cases.

(a) The case where r=1r=1 and χ|K1\chi|_{K_{1}} is of type I.

In this case, the characteristic form char(χ|K1)\operatorname{char}(\chi|_{K_{1}}) is the image of the refined Swan conductor rsw(χ|K1)\operatorname{rsw}(\chi|_{K_{1}}) by Proposition 3.2. If we put

rsw(χ|K1)=(α1dlogπ1+α2dπ2+1lcβldxl)/π1m11,\operatorname{rsw}(\chi|_{K_{1}})=(\alpha_{1}d\log\pi_{1}+\alpha_{2}d\pi_{2}+\sum_{1\leq l\leq c}\beta_{l}dx_{l})/\pi_{1}^{m_{1}-1},

then we have

char(χ|K1)=α1wπ1/π1m1.\operatorname{char}(\chi|_{K_{1}})=\alpha_{1}w\pi_{1}/\pi_{1}^{m_{1}}.

Since α1\alpha_{1} is in A/π1A/\pi_{1} from Theorem 2.5, the assertion follows.

(b) The case where r=1r=1 and χ|K1\chi|_{K_{1}} is of type II.

In this case, the refined Swan conductor rsw(χ|K1)\operatorname{rsw}(\chi|_{K_{1}}) is the image of the characteristic form char(χ|K1)\operatorname{char}(\chi|_{K_{1}}) by Proposition 3.4. Hence, if we put

char(χ|K1)=(α1wπ1+α2wπ2+1lcβlwxl)/π1m1,\operatorname{char}(\chi|_{K_{1}})=(\alpha_{1}w\pi_{1}+\alpha_{2}w\pi_{2}+\sum_{1\leq l\leq c}\beta_{l}wx_{l})/\pi_{1}^{m_{1}},

then we have

rsw(χ|K1)=(α2dπ2+1lcβldxl)/π1m1.\operatorname{rsw}(\chi|_{K_{1}})=(\alpha_{2}d\pi_{2}+\sum_{1\leq l\leq c}\beta_{l}dx_{l})/\pi_{1}^{m_{1}}.

This implies that α2,βlA/π1\alpha_{2},\beta_{l}\in A/\pi_{1} by Theorem 2.5. It remains to prove α1pA/π1\alpha_{1}^{p}\in A/\pi_{1}. If α1=0\alpha_{1}=0, then the assertion holds, so we may assume α1\alpha_{1} is not 0. Then we have m1=m1m^{\prime}_{1}=m_{1} and

char(χ|K1)=α1wπ1/π1m1\operatorname{char}(\chi^{\prime}|_{K^{\prime}_{1}})=\alpha_{1}\cdot w\pi_{1}/\pi_{1}^{m_{1}}

and χ|K1\chi^{\prime}|_{K^{\prime}_{1}} is of type I by Lemma 4.1.1. Hence we have α1A/π1\alpha_{1}\in A^{\prime}/\pi_{1} by the case (a) applied to the pair (A,U,χ)(A^{\prime},U^{\prime},\chi^{\prime}). Since A/π1A/\pi_{1} is of characteristic pp, we obtain α1pA/π1\alpha_{1}^{p}\in A/\pi_{1}.

(c) The case where r=2r=2 and χ|K1\chi|_{K_{1}} or χ|K2\chi|_{K_{2}} is tamely ramified.

In this case, we can prove the assertion by a similar argument as that in the case (a) and (b).

(d) The case where r=2r=2 and χ|K1\chi|_{K_{1}} and χ|K2\chi|_{K_{2}} are both of type I.

If we put

rsw(χ|K1)=(α1,1dlogπ1+α2,1dπ2+1lcβl,1dxl)/π1m11π2m21,\operatorname{rsw}(\chi|_{K_{1}})=(\alpha_{1,1}d\log\pi_{1}+\alpha_{2,1}d\pi_{2}+\sum_{1\leq l\leq c}\beta_{l,1}dx_{l})/\pi_{1}^{m_{1}-1}\pi_{2}^{m_{2}-1},
rsw(χ|K2)=(α1,2dπ1+α2,2dlogπ2+1lcβl,2dxl)/π1m11π2m21,\operatorname{rsw}(\chi|_{K_{2}})=(\alpha_{1,2}d\pi_{1}+\alpha_{2,2}d\log\pi_{2}+\sum_{1\leq l\leq c}\beta_{l,2}dx_{l})/\pi_{1}^{m_{1}-1}\pi_{2}^{m_{2}-1},

then we have

char(χ|K1)=π2α1,1wπ1/π1m1π2m2,\operatorname{char}(\chi|_{K_{1}})=\pi_{2}\alpha_{1,1}w\pi_{1}/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}},
char(χ|K2)=π1α2,2wπ2/π1m1π2m2\operatorname{char}(\chi|_{K_{2}})=\pi_{1}\alpha_{2,2}w\pi_{2}/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}}

by Proposition 3.2. Since α1,1\alpha_{1,1} is in A/π1A/\pi_{1} and α2,2\alpha_{2,2} is in A/π2A/\pi_{2} by Theorem 2.5, the assertion follows. We note that the coefficient of wπ1w\pi_{1} in char(χ|K1)\operatorname{char}(\chi|_{K_{1}}) is contained in π2(A/π1)\pi_{2}\cdot(A/\pi_{1}).

(e) The case where r=2r=2 and χ|K1\chi|_{K_{1}} is of type II and χ|K2\chi|_{K_{2}} is of type I, or χ|K1\chi|_{K_{1}} is of type I and χ|K2\chi|_{K_{2}} is of type II.

We may only consider the case where χ|K1\chi|_{K_{1}} is of type II and χ|K2\chi|_{K_{2}} is of type I. If we put

char(χ|K1)=(α1,1wπ1+α2,1wπ2+1lcβl,1wxl)/π1m1π2m2,\operatorname{char}(\chi|_{K_{1}})=(\alpha_{1,1}w\pi_{1}+\alpha_{2,1}w\pi_{2}+\sum_{1\leq l\leq c}\beta_{l,1}wx_{l})/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}},
rsw(χ|K2)=(α1,2dlogπ1+α2,2dlogπ2+1lcβl,2dxl)/π1m1π2m21,\operatorname{rsw}(\chi|_{K_{2}})=(\alpha_{1,2}d\log\pi_{1}+\alpha_{2,2}d\log\pi_{2}+\sum_{1\leq l\leq c}\beta_{l,2}dx_{l})/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}-1},

then we have

rsw(χ|K1)=(α2,1dlogπ2+1lcπ21βl,1dxl)/π1m1π2m21,\operatorname{rsw}(\chi|_{K_{1}})=(\alpha_{2,1}d\log\pi_{2}+\sum_{1\leq l\leq c}\pi_{2}^{-1}\beta_{l,1}dx_{l})/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}-1},
char(χ|K2)=α2,2wπ2/π1m1π2m2\operatorname{char}(\chi|_{K_{2}})=\alpha_{2,2}w\pi_{2}/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}}

by Proposition 3.2 and Proposition 3.4. By Theorem 2.5, we have α2,1,βl,1A/π1\alpha_{2,1},\beta_{l,1}\in A/\pi_{1} and α2,2A/π2\alpha_{2,2}\in A/\pi_{2} and α2,1=α2,2\alpha_{2,1}=\alpha_{2,2} and βl,1=0\beta_{l,1}=0 in A/(π1)+(π2)A/(\pi_{1})+(\pi_{2}). Hence it suffices to show that α1,1pA/π1\alpha_{1,1}^{p}\in A/\pi_{1} and α1,1p=0A/(π1)+(π2)\alpha_{1,1}^{p}=0\in A/(\pi_{1})+(\pi_{2}).

If α1,1=0\alpha_{1,1}=0, then the assertion holds, so we may assume α1,1\alpha_{1,1} is not 0. Then the characteristic form char(χ|K1)\operatorname{char}(\chi^{\prime}|_{K^{\prime}_{1}}) is of the form

char(χ|K1)=α1,1wπ1/π1m1u2pm2=u2m2pm2α1,1wπ1/π1m1u2m2\operatorname{char}(\chi^{\prime}|_{K^{\prime}_{1}})=\alpha_{1,1}\cdot w\pi_{1}/\pi_{1}^{m_{1}}u_{2}^{pm_{2}}=u_{2}^{m^{\prime}_{2}-pm_{2}}\alpha_{1,1}\cdot w\pi_{1}/\pi_{1}^{m_{1}}u_{2}^{m^{\prime}_{2}}

and χ|K1\chi^{\prime}|_{K^{\prime}_{1}} is of type I by Lemma 4.1.1. Since we assume χ|K2\chi|_{K_{2}} is of type I, we have sw(χ|K2)=m21\operatorname{sw}(\chi|_{K_{2}})=m_{2}-1. Since the ramification index of the extension K2/K2K^{\prime}_{2}/K_{2} is pp, we have sw(χ|K2)p(m21)\operatorname{sw}(\chi^{\prime}|_{K^{\prime}_{2}})\leq p(m_{2}-1) by [9, Proposition 5.1.1]. Thus we have m2pm2<0m^{\prime}_{2}-pm_{2}<0. Hence we have α1,1u2(A/π1)\alpha_{1,1}\in u_{2}\cdot(A^{\prime}/\pi_{1}) by the case (c) applied to the pair (A,U,χ)(A^{\prime},U^{\prime},\chi^{\prime}) if χ|K2\chi^{\prime}|_{K^{\prime}_{2}} is tamely ramified, by the case (d) if χ|K2\chi^{\prime}|_{K^{\prime}_{2}} is of type I, and by the first half of the argument in the case (e) if χ|K2\chi^{\prime}|_{K^{\prime}_{2}} is of type II. Hence we obtain α1,1pπ2(A/π1)\alpha_{1,1}^{p}\in\pi_{2}\cdot(A/\pi_{1}).

(f) The case where r=2r=2 and χ|K1\chi|_{K_{1}} and χ|K2\chi|_{K_{2}} are both of type II.

If we put

char(χ|K1)=(α1,1wπ1+α2,1wπ2+1lcβl,1wxl)/π1m1π2m2,\operatorname{char}(\chi|_{K_{1}})=(\alpha_{1,1}w\pi_{1}+\alpha_{2,1}w\pi_{2}+\sum_{1\leq l\leq c}\beta_{l,1}wx_{l})/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}},
char(χ|K2)=(α1,2wπ1+α2,2wπ2+1lcβl,2wxl)/π1m1π2m2,\operatorname{char}(\chi|_{K_{2}})=(\alpha_{1,2}w\pi_{1}+\alpha_{2,2}w\pi_{2}+\sum_{1\leq l\leq c}\beta_{l,2}wx_{l})/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}},

then we have

rsw(χ|K1)=(π2α2,1dlogπ2+1lcβl,1dxl)/π1m1π2m2,\operatorname{rsw}(\chi|_{K_{1}})=(\pi_{2}\alpha_{2,1}d\log\pi_{2}+\sum_{1\leq l\leq c}\beta_{l,1}dx_{l})/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}},
rsw(χ|K2)=(π1α1,2dlogπ1+1lcβl,2dxl)/π1m1π2m2\operatorname{rsw}(\chi|_{K_{2}})=(\pi_{1}\alpha_{1,2}d\log\pi_{1}+\sum_{1\leq l\leq c}\beta_{l,2}dx_{l})/\pi_{1}^{m_{1}}\pi_{2}^{m_{2}}

by Proposition 3.4. By Theorem 2.5, we have βl,1=βl,2\beta_{l,1}=\beta_{l,2} in A/(π1)+(π2)A/(\pi_{1})+(\pi_{2}). It suffices to show α1,1pA/π1\alpha_{1,1}^{p}\in A/\pi_{1}, α1,2pA/π2\alpha_{1,2}^{p}\in A/\pi_{2} and α1,1p=α1,2pA/(π1)+(π2)\alpha_{1,1}^{p}=\alpha_{1,2}^{p}\in A/(\pi_{1})+(\pi_{2}) since the assertion corresponding to α2,1,α2,2\alpha_{2,1},\alpha_{2,2} is proved by switching π1\pi_{1} and π2\pi_{2}.

If α1,10\alpha_{1,1}\neq 0 and α1,20\alpha_{1,2}\neq 0, then we have dt(χ|K1)=m1\operatorname{dt}(\chi^{\prime}|_{K^{\prime}_{1}})=m_{1} and dt(χ|K2)=pm2\operatorname{dt}(\chi^{\prime}|_{K^{\prime}_{2}})=pm_{2} by Lemma 4.1. Further, char(χ|K1)\operatorname{char}(\chi^{\prime}|_{K^{\prime}_{1}}) is of type I and char(χ|K2)\operatorname{char}(\chi^{\prime}|_{K^{\prime}_{2}}) is of type II and we have

char(χ|K1)=α1,1wπ1/π1m1u2pm2,\operatorname{char}(\chi^{\prime}|_{K^{\prime}_{1}})=\alpha_{1,1}w\pi_{1}/\pi_{1}^{m_{1}}u_{2}^{pm_{2}},
char(χ|K2)=α1,2wπ1/π1m1u2pm2\operatorname{char}(\chi^{\prime}|_{K^{\prime}_{2}})=\alpha_{1,2}w\pi_{1}/\pi_{1}^{m_{1}}u_{2}^{pm_{2}}

by Lemma 4.1. By the case (e), we have α1,1A/π1\alpha_{1,1}\in A^{\prime}/\pi_{1}, α1,2A/u2\alpha_{1,2}\in A^{\prime}/u_{2} and α1,1=α1,2A/(π1)+(u2)\alpha_{1,1}=\alpha_{1,2}\in A^{\prime}/(\pi_{1})+(u_{2}). Hence we obtain α1,1pA/π1,α1,2pA/π2\alpha_{1,1}^{p}\in A/\pi_{1},\alpha_{1,2}^{p}\in A/\pi_{2} and α1,1p=α1,2pA/(π1)+(π2)\alpha_{1,1}^{p}=\alpha_{1,2}^{p}\in A/(\pi_{1})+(\pi_{2}).

If α1,10\alpha_{1,1}\neq 0 and α1,2=0\alpha_{1,2}=0, then we have

char(χ|K1)=α1,1wπ1/π1m1u2pm2=u2m2pm2α1,1wπ1/π1m1u2m2\operatorname{char}(\chi^{\prime}|_{K^{\prime}_{1}})=\alpha_{1,1}w\pi_{1}/\pi_{1}^{m_{1}}u_{2}^{pm_{2}}=u_{2}^{m^{\prime}_{2}-pm_{2}}\alpha_{1,1}w\pi_{1}/\pi_{1}^{m_{1}}u_{2}^{m^{\prime}_{2}}

and χ|K1\chi^{\prime}|_{K^{\prime}_{1}} is of type I by Lemma 4.1.1. If χ|K2\chi^{\prime}|_{K^{\prime}_{2}} is tamely ramified, then we have u2m2pm2α1,1A/π1u_{2}^{m^{\prime}_{2}-pm_{2}}\alpha_{1,1}\in A^{\prime}/\pi_{1} by the case (c) and m2pm2=1pm2<0m^{\prime}_{2}-pm_{2}=1-pm_{2}<0. If χ|K2\chi^{\prime}|_{K^{\prime}_{2}} is of type I, then we have u2m2pm2α1,1u2(A/π1)u_{2}^{m^{\prime}_{2}-pm_{2}}\alpha_{1,1}\in u_{2}\cdot(A^{\prime}/\pi_{1}) by the last note in the case (d) and m2pm2=1+sw(χ|K2)pm20m^{\prime}_{2}-pm_{2}=1+\operatorname{sw}(\chi^{\prime}|_{K^{\prime}_{2}})-pm_{2}\leq 0 by Lemma 4.1.2. If χ|K2\chi^{\prime}|_{K^{\prime}_{2}} is of type II, then we have u2m2pm2α1,1u2(A/π1)u_{2}^{m^{\prime}_{2}-pm_{2}}\alpha_{1,1}\in u_{2}\cdot(A^{\prime}/\pi_{1}) by the case (e) and m2pm2=sw(χ|K2)pm2<0m^{\prime}_{2}-pm_{2}=\operatorname{sw}(\chi^{\prime}|_{K^{\prime}_{2}})-pm_{2}<0 by Lemma 4.1.2. Hence we have α1,1u2(A/π1)\alpha_{1,1}\in u_{2}\cdot(A^{\prime}/\pi_{1}) in any case and we obtain α1,1pπ2(A/π1)\alpha_{1,1}^{p}\in\pi_{2}\cdot(A/\pi_{1}).

If α1,1=0\alpha_{1,1}=0 and α1,20\alpha_{1,2}\neq 0, then we prove α1,2pπ1(A/π2)\alpha_{1,2}^{p}\in\pi_{1}\cdot(A/\pi_{2}) by the induction on m1=dt(χ|K1)>1m_{1}=\operatorname{dt}(\chi|_{K_{1}})>1. By Lemma 4.1.1, we have m1<m1m^{\prime}_{1}<m_{1} and by Lemma 4.1.2, we have

char(χ|K2)=α1,2wπ1/π1m1u2pm2=π1m1m1α1,2wπ1/π1m1u2pm2\operatorname{char}(\chi^{\prime}|_{K^{\prime}_{2}})=\alpha_{1,2}w\pi_{1}/\pi_{1}^{m_{1}}u_{2}^{pm_{2}}=\pi_{1}^{m^{\prime}_{1}-m_{1}}\alpha_{1,2}w\pi_{1}/\pi_{1}^{m^{\prime}_{1}}u_{2}^{pm_{2}}

and χ|K2\chi^{\prime}|_{K^{\prime}_{2}} is of type II. If χ|K1\chi^{\prime}|_{K^{\prime}_{1}} is tamely ramified or of type I, the assertion is true by the case (c) or (e) respectively. If χ|K1\chi^{\prime}|_{K^{\prime}_{1}} is of type II, we have π1p(m1m1)α1,2pπ1(A/u2)\pi_{1}^{p(m^{\prime}_{1}-m_{1})}\alpha_{1,2}^{p}\in\pi_{1}\cdot(A^{\prime}/u_{2}) by the induction hypothesis. Hence we have α1,2π1(A/u2)\alpha_{1,2}\in\pi_{1}\cdot(A^{\prime}/u_{2}) and we obtain α1,2pπ1(A/π2)\alpha_{1,2}^{p}\in\pi_{1}\cdot(A/\pi_{2}).

5 F-Characteristic cycle

In this section, we define the F-characteristic cycle of a rank one sheaf on a regular surface as a cycle on the FW-cotangent bundle. We prove that the intersection with 0-section computes the Swan conductor of cohomology. We give an example of the F-characteristic cycle.

5.1 Refined Swan conductor and characteristic form of a rank one sheaf

Let KK be a discrete valuation field of characteristic 0 with residue field FF of characteristic p>0p>0. Let XX be a regular flat separated scheme of finite type over the valuation ring 𝒪K\mathcal{O}_{K} of KK and let DD be a divisor with simple normal crossings. Let {Di}iI\{D_{i}\}_{i\in I} be the irreducible components of DD and let KiK_{i} be the local field at the generic point 𝔭i\mathfrak{p}_{i} of DiD_{i}. Let UU be the complement of DD. Let χ\chi be an element of H1(U,𝐐/𝐙)\mathrm{H}^{1}(U,\mathbf{Q}/\mathbf{Z}). We define the Swan conductor divisor RχR_{\chi} of χ\chi by

Rχ=iIsw(χ|Ki)DiR_{\chi}=\sum_{i\in I}\operatorname{sw}(\chi|_{K_{i}})D_{i}

and write the support of RχR_{\chi} for ZχZ_{\chi}. We note that ZχZ_{\chi} is contained in the closed fiber of XX. Indeed, if DiD_{i} intersects the generic fiber of XX, the character χ|Ki\chi|_{K_{i}} is tamely ramified since the characteristic of KK is zero.

By Theorem 2.5, there exists a unique global section

rsw(χ)Γ(Zχ,ΩX1(logD)(Rχ)|Zχ)\operatorname{rsw}(\chi)\in\Gamma(Z_{\chi},\Omega^{1}_{X}(\log D)(R_{\chi})|_{Z_{\chi}})

such that the germ rsw(χ)𝔭i\operatorname{rsw}(\chi)_{\mathfrak{p}_{i}} of rsw(χ)\operatorname{rsw}(\chi) is rsw(χ|Ki)\operatorname{rsw}(\chi|_{K_{i}}) for every iIW,χi\in I_{W,\chi}. We call rsw(χ)\operatorname{rsw}(\chi) the refined Swan conductor of χ\chi.

Definition 5.1 ([7, Definition 4.2]).

Let xx be a closed point of ZχZ_{\chi}. For iIi\in I satisfying xDiZχx\in D_{i}\subset Z_{\chi}, we define ord(χ;x,Di)\operatorname{ord}(\chi;x,D_{i}) to be the maximal integer n0n\geq 0 such that

rsw(χ)|Di,x𝔪xnΩX1(logD)(Rχ)|Di,x\operatorname{rsw}(\chi)|_{D_{i},x}\in\mathfrak{m}_{x}^{n}\Omega^{1}_{X}(\log D)(R_{\chi})|_{D_{i},x}

where mxm_{x} is the maximal ideal of 𝒪X,x\mathcal{O}_{X,x}. We say that (X,U,χ)(X,U,\chi) is clean at xx if the integer ord(χ;x,Di)\operatorname{ord}(\chi;x,D_{i}) is zero for every iIi\in I satisfying xDiZχx\in D_{i}\subset Z_{\chi}. We say that (X.U,χ)(X.U,\chi) is clean if (X,U,χ)(X,U,\chi) is clean at every closed point in ZχZ_{\chi}.

We define the total dimension divisor RχR^{\prime}_{\chi} by

Rχ=iIdt(χ|Ki)Di.R^{\prime}_{\chi}=\sum_{i\in I}\operatorname{dt}(\chi|_{K_{i}})D_{i}.

By proposition 1.2 and Theorem 1.5, there exists a unique global section

char(χ)Γ(Zχ,FΩX1(pRχ)|Zχ)\operatorname{char}(\chi)\in\Gamma(Z_{\chi},F\Omega^{1}_{X}(pR^{\prime}_{\chi})|_{Z_{\chi}}) (5.1)

such that the germ char(χ)𝔭j\operatorname{char}(\chi)_{\mathfrak{p}_{j}} of char(χ)\operatorname{char}(\chi) is

(1idαi,jpwπi+1lcβl,jpwxl)/π1pm1πrpmr(\sum_{1\leq i\leq d}\alpha_{i,j}^{p}w\pi_{i}+\sum_{1\leq l\leq c}\beta_{l,j}^{p}wx_{l})/\pi_{1}^{pm_{1}}\cdots\pi_{r}^{pm_{r}}

for every jIW,χj\in I_{W,\chi} using the notation as in Theorem 1.5. We call char(χ)\operatorname{char}(\chi) the characteristic form of χ\chi.

Definition 5.2.

Let xx be a closed point of ZχZ_{\chi}. For iIi\in I satisfying xDiZχx\in D_{i}\subset Z_{\chi}, we define nn^{\prime} to be the maximal integer n0n^{\prime}\geq 0 such that

char(χ)|Di,x𝔪xnFΩX1(pRχ)|Di,x\operatorname{char}(\chi)|_{D_{i},x}\in\mathfrak{m}_{x}^{n^{\prime}}F\Omega^{1}_{X}(pR^{\prime}_{\chi})|_{D_{i},x}

where mxm_{x} is the maximal ideal of 𝒪X,x\mathcal{O}_{X,x}. We define ord(χ;x,Di)\operatorname{ord}^{\prime}(\chi;x,D_{i}) by ord(χ;x,Di)=n/p\operatorname{ord}^{\prime}(\chi;x,D_{i})=n^{\prime}/p. We say that (X,U,χ)(X,U,\chi) is non-degenerate at xx if ord(χ;x,Di)\operatorname{ord}^{\prime}(\chi;x,D_{i}) is zero for every iIi\in I satisfying xDiZχx\in D_{i}\subset Z_{\chi}. We say that (X,U,χ)(X,U,\chi) is non-degenerate if (X,U,χ)(X,U,\chi) is non-degenerate at every point at xZχx\in Z_{\chi}.

Remark 5.3.

By the definition, pord(χ;x,Di)p\cdot\operatorname{ord}^{\prime}(\chi;x,D_{i}) is an integer but ord(χ;x,Di)\operatorname{ord}^{\prime}(\chi;x,D_{i}) may not be an integer. Assume that the characteristic of the residue field of KK is 2 and put e=ordK2e=\operatorname{ord}_{K}2. We consider the scheme X=Spec𝒪K[T,(1+π2(e1)T3)1]X=\operatorname{Spec}\mathcal{O}_{K}[T,(1+\pi^{2(e-1)}T^{3})^{-1}]. Let UU be the generic fiber SpecK[T,(1+π2(e1)T3)1]\operatorname{Spec}K[T,(1+\pi^{2(e-1)}T^{3})^{-1}] and let χH1(U,𝐅2)\chi\in\mathrm{H}^{1}(U,\mathbf{F}_{2}) be the Kummer character defined by t2=1+π2(e1)T3t^{2}=1+\pi^{2(e-1)}T^{3}. Then we have

char(χ)=T4wTT3w(2/πe1)π4\operatorname{char}(\chi)=\frac{T^{4}\cdot wT-T^{3}\cdot w(2/\pi^{e-1})}{\pi^{4}}

and we have ord(χ,x,XF)=3/2\operatorname{ord}^{\prime}(\chi,x,X_{F})=3/2 where xx denotes the closed point defined by (π,T)(\pi,T).

Similarly to Remark 1.4, we can expect that ord(χ;x,Di)\operatorname{ord}^{\prime}(\chi;x,D_{i}) is an integer if the characteristic of the residue field of KK is not 2.

5.2 F-characteristic cycle

Let KK be a complete discrete valuation field of characteristic 0 with perfect residue field FF of characteristic p>0p>0. Let XX be a regular flat separated scheme of finite type over the valuation ring 𝒪K\mathcal{O}_{K} of KK and let DD be a divisor with simple normal crossings. We assume that XX is purely of dimension 2. Let D1,,DnD_{1},\dots,D_{n} be the irreducible components of DD and let KiK_{i} be the local field at the generic point 𝔭i\mathfrak{p}_{i} of DiD_{i}. We put U=XDU=X-D and let j:UXj\colon U\to X be the open immersion. Let XFX_{F} and DFD_{F} be the closed fibers of XX and DD. We fix a finite field Λ\Lambda of characteristic lpl\neq p. Let \mathcal{F} be a locally constant constructible sheaf of Λ\Lambda-modules of rank 1 on UU and let χ:π1ab(U)Λ×\chi\colon\pi_{1}^{\operatorname{ab}}(U)\to\Lambda^{\times} be the corresponding character. We fix an inclusion Λ×𝐐/𝐙\Lambda^{\times}\to\mathbf{Q}/\mathbf{Z} and regard χ\chi as an element of H1(U,𝐐/𝐙)\mathrm{H}^{1}(U,\mathbf{Q}/\mathbf{Z}).

Let IT,χ,IW,χ,II,χ,III,χI_{T,\chi},I_{W,\chi},I_{\textup{I},\chi},I_{\textup{II},\chi} be the subsets of II consisting of iIi\in I such that χ|Ki\chi|_{K_{i}} is tamely ramified, wildly ramified, of type I and of type II respectively. For a closed point xx in DD, let IxI_{x} be the subset of II consisting of iIi\in I such that xDix\in D_{i} and I,χ,xI_{*,\chi,x} be I,χIxI_{*,\chi}\cap I_{x} where =W,T,I,II*=W,T,\textup{I},\textup{II}. Let ZII,χZ_{\textup{II},\chi} be the union iIII,χDi\cup_{i\in I_{\textup{II},\chi}}D_{i}.

We define the sub vector bundle Li,χL_{i,\chi} of TX(logD)|DiT^{*}X(\log D)|_{D_{i}} for iIW,χi\in I_{W,\chi} by the image of the multiplication by the refined Swan conductor of χ\chi:

×rsw(χ)|Di:𝒪X(Rχ)𝒪X𝒪Di(xDiord(χ;x,Di)[x])ΩX1(logD)|Di.\times\operatorname{rsw}(\chi)|_{D_{i}}\colon\mathcal{O}_{X}(-R_{\chi})\otimes_{\mathcal{O}_{X}}\mathcal{O}_{D_{i}}(\sum_{x\in D_{i}}\operatorname{ord}(\chi;x,D_{i})[x])\to\Omega^{1}_{X}(\log D)|_{D_{i}}.
Definition 5.4 ([6, (3.4.4)]).

Assume that (X,U,χ)(X,U,\chi) is clean. We define the logarithmic characteristic cycle CClogj!CC^{\log}j_{!}\mathcal{F} as a cycle on the logarithmic cotangent bundle TX(logD)|DFT^{*}X(\log D)|_{D_{F}} by

CClogj!=[TXX(logD)|DF]+iIW,χsw(χ|Ki)[Li,χ]CC^{\log}j_{!}\mathcal{F}=[T^{*}_{X}X(\log D)|_{D_{F}}]+\sum_{i\in I_{W,\chi}}\operatorname{sw}(\chi|_{K_{i}})[L_{i,\chi}]

where TXX(logD)|DFT^{*}_{X}X(\log D)|_{D_{F}} denotes the 0-section of TX(logD)|DFT^{*}X(\log D)|_{D_{F}}.

In the case dimX=2\dim X=2, we define the logarithmic characteristic cycle without the assumption on the cleanness of (X,U,χ)(X,U,\chi). By [7, Theorem 4.1], there exist successive blowups f:XXf\colon X^{\prime}\to X at closed points such that (X,f1(U),fχ)(X^{\prime},f^{-1}(U),f^{*}\chi) is clean. Let DD^{\prime} be the inverse image of DD and let

TX(logD)|DFprTX(logD)|DF×DFDFdfDTX(logD)|DFT^{*}X(\log D)|_{D_{F}}\xleftarrow{\mathrm{pr}}T^{*}X(\log D)|_{D_{F}}\times_{D_{F}}{D^{\prime}_{F}}\xrightarrow{df^{D}}T^{*}X^{\prime}(\log D^{\prime})|_{D^{\prime}_{F}}

be the algebraic correspondence. We define CClogj![TXX(logD)|DF]CC^{\log}j_{!}\mathcal{F}-[T^{*}_{X}X(\log D)|_{D_{F}}] to be the pushforward by pr of the pullback of CClogj!f[TXX(logD)|DF]CC^{\log}j^{\prime}_{!}f^{*}\mathcal{F}-[T^{*}_{X^{\prime}}{X^{\prime}}(\log D^{\prime})|_{D^{\prime}_{F}}] by dfDdf^{D}. This is independent of the choice of blowups by [7, Remark 5.7]. We put the logarithmic characteristic cycle as

CClogj!=[TXX(logD)|DF]+iIW,χsw(χ|Ki)[Li,χ]+xDFsx[TxX(logD)]CC^{\log}j_{!}\mathcal{F}=[T^{*}_{X}X(\log D)|_{D_{F}}]+\sum_{i\in I_{W,\chi}}\operatorname{sw}(\chi|_{K_{i}})[L_{i,\chi}]+\sum_{x\in D_{F}}s_{x}[T_{x}^{*}X(\log D)] (5.2)

where TxX(logD)T_{x}^{*}X(\log D) denotes the fiber at xx.

Theorem 5.5 (Conductor formula, [8, Corollary 7.5.3, Theorem 8.3.7]).

Assume dimX=2\dim X=2 and XX is proper over 𝒪K\mathcal{O}_{K}. Then we have

(CClogj![TXX(logD)|DF],TXX(logD)|DF)TX(logD)|DF=SwK(XK¯,j!)+SwK(XK¯,j!Λ)(CC^{\log}j_{!}\mathcal{F}-[T^{*}_{X}X(\log D)|_{D_{F}}],T^{*}_{X}X(\log D)|_{D_{F}})_{T^{*}X(\log D)|_{D_{F}}}=-\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\mathcal{F})+\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\Lambda)

where SwK(XK¯,j!)\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\mathcal{F}) denotes the alternating sum m0(1)mSwKHm(XK¯,j!)\sum_{m\geq 0}(-1)^{m}\operatorname{Sw}_{K}\mathrm{H}^{m}(X_{\overline{K}},j_{!}\mathcal{F}).

Proof.

There exists successive blowups f:XXf\colon X^{\prime}\to X at closed points such that (X,f1(U),fχ)(X^{\prime},f^{-1}(U),f^{*}\chi) is clean. Since the both sides do not change after replacing XX by XX^{\prime}, we may assume (X,U,χ)(X,U,\chi) is clean. The intersection

(CClogj![TXX(logD)|DF],TXX(logD)|DF)TX(logD)|DF(CC^{\log}j_{!}\mathcal{F}-[T^{*}_{X}X(\log D)|_{D_{F}}],T^{*}_{X}X(\log D)|_{D_{F}})_{T^{*}X(\log D)|_{D_{F}}}

equals to degcχ-\deg c_{\chi} with the notation in [8, (8.3.0.1)]. Hence the assertion follows by [8, Corollary 7.5.3] and [8, Theorem 8.3.7]. ∎

We define the sub vector bundle Li,χL^{\prime}_{i,\chi} of FTX|DiFT^{*}X|_{D_{i}} for iIW,χi\in I_{W,\chi} by the image of the multiplication by the characteristic form of χ\chi:

×char(χ)|Di:𝒪X(pRχ)𝒪X𝒪Di(xDipord(χ;x,Di)[x])FΩX1|Di,\times\operatorname{char}(\chi)|_{D_{i}}\colon\mathcal{O}_{X}(-pR^{\prime}_{\chi})\otimes_{\mathcal{O}_{X}}\mathcal{O}_{D_{i}}(\sum_{x\in D_{i}}p\operatorname{ord}^{\prime}(\chi;x,D_{i})[x])\to F\Omega^{1}_{X}|_{D_{i}},

For iIT,χi\in I_{T,\chi}, we define Li,χL^{\prime}_{i,\chi} by F(TDiX|Di,F)\mathrm{F}^{*}(T^{*}_{D_{i}}X|_{D_{i,F}}) where F\mathrm{F}^{*} is the pullback by the Frobenius F:Di,FDi,F\mathrm{F}\colon D_{i,F}\to D_{i,F}.

Definition 5.6.

Assume dimX=2\dim X=2. We define the F-characteristic cycle FCCj!FCCj_{!}\mathcal{F} as a cycle on the FW-cotangent bundle FTX|XFFT^{*}X|_{X_{F}} by

FCCj!=(1p[FTXX|XF]+iIdt(χ|Ki)[Li,χ]+xDFptx[FTxX])FCCj_{!}\mathcal{F}=-\Big{(}\frac{1}{p}[FT_{X}^{*}X|_{X_{F}}]+\sum_{i\in I}\operatorname{dt}(\chi|_{K_{i}})[L^{\prime}_{i,\chi}]+\sum_{x\in D_{F}}pt_{x}[\mathrm{F}^{*}T_{x}^{*}X]\Big{)} (5.3)

where FTXX|XFFT_{X}^{*}X|_{X_{F}} denotes the 0-section of FTX|XFFT^{*}X|_{X_{F}} and

tx=#Ix1+sx+iIW,xsw(χ|Ki)(ord(χ;x,Di)ord(χ;x,Di))+iIII,x(ord(χ;x,Di)+1#Ix).t_{x}=\#I_{x}-1+s_{x}+\sum_{i\in I_{W,x}}\operatorname{sw}(\chi|_{K_{i}})(\operatorname{ord}^{\prime}(\chi;x,D_{i})-\operatorname{ord}(\chi;x,D_{i}))\\ +\sum_{i\in I_{\textup{II},x}}(\operatorname{ord}(\chi;x,D_{i})+1-\#I_{x}). (5.4)

Here, the integer sxs_{x} is the coefficient of the fiber at xx in CClogj!CC^{\log}j_{!}\mathcal{F} (5.2).

The integrality of the characteristic form (Theorem 1.5) is necessary to define txt_{x} for all closed points xDFx\in D_{F}.

Lemma 5.7.

Let h:WXh\colon W\to X be an étale morphism and let j:W×XUWj^{\prime}\colon W\times_{X}U\to W be the base change of jj. Then we have

FCCj!h=hFCCj!.FCCj^{\prime}_{!}h^{*}\mathcal{F}=h^{*}FCCj_{!}\mathcal{F}.
Proof.

Let KiK^{\prime}_{i} be the local field at the generic point of hDih^{*}D_{i}. Then we have sw(χ|Ki)=sw((hχ)|Ki)\operatorname{sw}(\chi|_{K_{i}})=\operatorname{sw}((h^{*}\chi)|_{K^{\prime}_{i}}), dt(χ|Ki)=dt((hχ)|Ki)\operatorname{dt}(\chi|_{K_{i}})=\operatorname{dt}((h^{*}\chi)|_{K^{\prime}_{i}}) and hrsw(χ)=rsw(hχ)h^{*}\operatorname{rsw}(\chi)=\operatorname{rsw}(h^{*}\chi), hchar(χ)=char(hχ)h^{*}\operatorname{char}(\chi)=\operatorname{char}(h^{*}\chi). Hence the assertion follows from Definition 5.6. ∎

Remark 5.8.

The F-characteristic cycle FCCj!FCCj_{!}\mathcal{F} is equal to

(1p[FTXX|XF]+iJ[F(TDiX|Di,F)]+iJdt(χ|Ki)[Li,χ]+xDFptx[FTxX])-\Big{(}\frac{1}{p}[FT_{X}^{*}X|_{X_{F}}]+\sum_{i\in J}[\mathrm{F}^{*}(T^{*}_{D_{i}}X|_{D_{i,F}})]+\sum_{i\in J^{\prime}}\operatorname{dt}(\chi|_{K_{i}})[L^{\prime}_{i,\chi}]+\sum_{x\in D_{F}}pt_{x}[\mathrm{F}^{*}T_{x}^{*}X]\Big{)}

where JJ denotes the subset of II consisting of iIi\in I such that DiXKD_{i}\cap X_{K} is not empty and JJ^{\prime} denotes IJI-J. Then (1/p)[FTXX|XF]+iJ[F(TDiX|Di,F)](1/p)[FT_{X}^{*}X|_{X_{F}}]+\sum_{i\in J}[\mathrm{F}^{*}(T^{*}_{D_{i}}X|_{D_{i,F}})] is a 1-cycle and iJdt(χ|Ki)[Li,χ]+xDFptx[FTxX]\sum_{i\in J^{\prime}}\operatorname{dt}(\chi|_{K_{i}})[L^{\prime}_{i,\chi}]+\sum_{x\in D_{F}}pt_{x}[\mathrm{F}^{*}T_{x}^{*}X] is a 2-cycle. Later, we consider the difference FCCj!FCCj!ΛFCCj_{!}\mathcal{F}-FCCj_{!}\Lambda. This cycle is a 2-cycle, so the intersection number with the 0-section is defined.

Remark 5.9.

In this remark, we consider the equal characteristic case. Let XX be a smooth scheme over a perfect field kk of characteristic p>0p>0. Let D=iIDiD=\cup_{i\in I}D_{i} be a divisor with simple normal crossings and let j:U=XDXj\colon U=X-D\to X be the open immersion. Let \mathcal{F} be a locally constant sheaf of Λ\Lambda-modules of rank 1 on UU. Then the characteristic cycle CCj!CCj_{!}\mathcal{F} is defined as a cycle on the cotangent bundle TXT^{*}X. If the dimension of XX is 2, we have

CCj!=[TXX]+iIdt(χ|Ki)[Li,χ′′]+xDFtx[TxX]CCj_{!}\mathcal{F}=[T_{X}^{*}X]+\sum_{i\in I}\operatorname{dt}(\chi|_{K_{i}})[L^{\prime\prime}_{i,\chi}]+\sum_{x\in D_{F}}t_{x}[T_{x}^{*}X]

by [21, Theorem 6.1]. Here, Li,χ′′L^{\prime\prime}_{i,\chi} denotes the vector bundle defined by the characteristic form in the sense of [21] and txt_{x} is defined in [21] by the same form as (5.4).

Let F:XX\mathrm{F}\colon X\to X be the Frobenius. If we put

FCCj!=(1p[FTXX]+iIdt(χ|Ki)[FLi,χ′′]+xDFptx[FTxX])FCCj_{!}\mathcal{F}=-\Big{(}\frac{1}{p}[\mathrm{F}^{*}T_{X}^{*}X]+\sum_{i\in I}\operatorname{dt}(\chi|_{K_{i}})[\mathrm{F}^{*}L^{\prime\prime}_{i,\chi}]+\sum_{x\in D_{F}}pt_{x}[\mathrm{F}^{*}T_{x}^{*}X]\Big{)}

as a cycle on FTXFTXFT^{*}X\cong\mathrm{F}^{*}T^{*}X. Then we have

FFCCj!=pCCj!\mathrm{F}_{*}FCCj_{!}\mathcal{F}=-p\cdot CCj_{!}\mathcal{F}

where F\mathrm{F}_{*} denotes the pushforward by the projection FTXTX\mathrm{F}^{*}T^{*}X\to T^{*}X.

The rationality of the characteristic form (Theorem 1.3) implies the integrality of the coefficients of the fibers in the F-characteristic cycle.

Lemma 5.10.

The coefficients ptxpt_{x} of the fibers [FTxX][\mathrm{F}^{*}T^{*}_{x}X] in the F-characteristic cycle (5.3) are integers. If (X,U,χ)(X,U,\chi) is clean at xDFx\in D_{F}, we have tx0t_{x}\geq 0.

Proof.

In the definition of txt_{x} (5.4), the terms other than sw(χ|Ki)ord(χ;x,Di)\operatorname{sw}(\chi|_{K_{i}})\operatorname{ord}^{\prime}(\chi;x,D_{i}) are integers. By Definition 5.2, we see that pord(χ;x,Di)p\cdot\operatorname{ord}^{\prime}(\chi;x,D_{i}) are integers.

If (X,U,χ)(X,U,\chi) is clean at xx, we have

tx=#Ix1+iIW,xsw(χ|Ki)ord(χ;x,Di)+iIII,x(1#Ix)t_{x}=\#I_{x}-1+\sum_{i\in I_{W,x}}\operatorname{sw}(\chi|_{K_{i}})\cdot\operatorname{ord}^{\prime}(\chi;x,D_{i})+\sum_{i\in I_{\textup{II},x}}(1-\#I_{x})

by (5.4). Since we have ord(χ;x,Di)0\operatorname{ord}^{\prime}(\chi;x,D_{i})\geq 0, we have tx0t_{x}\geq 0 unless ord(χ;x,Di)=0\operatorname{ord}^{\prime}(\chi;x,D_{i})=0 and #Ix=#III,x=2\#I_{x}=\#I_{\textup{II},x}=2. If ord(χ;x,Di)=0\operatorname{ord}^{\prime}(\chi;x,D_{i})=0 and #Ix=#III,x=2\#I_{x}=\#I_{\textup{II},x}=2, we have rsw(χ)x=0\operatorname{rsw}(\chi)_{x}=0 and this contradicts the assumption. ∎

Remark 5.11.

The author conjectures that the terms sw(χ|Ki)ord(χ;x,Di)\operatorname{sw}(\chi|_{K_{i}})\operatorname{ord}^{\prime}(\chi;x,D_{i}) are also integers and thus txt_{x} are integers. We can check that sw(χ|Ki)ord(χ;x,Di)\operatorname{sw}(\chi|_{K_{i}})\operatorname{ord}^{\prime}(\chi;x,D_{i}) is an integer in the following cases:
1. The character χ|Ki\chi|_{K_{i}} is of type I.
2. The character χ|Ki\chi|_{K_{i}} is defined by a Kummer equation of degree pp.
Indeed, in the case 1, ord(χ;x,Di)\operatorname{ord}(\chi;x,D_{i}) is an integer. In the case 2, if the character χ|Ki\chi|_{K_{i}} is of type
II, the Swan conductor sw(χ|Ki)\operatorname{sw}(\chi|_{K_{i}}) is divisible by pp.

The author also conjectures tx0t_{x}\geq 0 even if (X,U,χ)(X,U,\chi) is not clean at xx. In the equal characteristic case, this follows from the fact that j![2]j_{!}\mathcal{F}[2] is perverse by [14, Proposition 5.14.1].

Let F:XFXF\mathrm{F}\colon X_{F}\to X_{F} be the Frobenius. We define

τD:FΩX1FΩX1(logD)|XF\tau_{D}\colon F\Omega^{1}_{X}\to\mathrm{F}^{*}\Omega^{1}_{X}(\log D)|_{X_{F}}

by the composition of the maps

FΩX1FΩX1/𝒪XFw(p)FΩXF1FΩX1(logD)|XFF\Omega^{1}_{X}\to F\Omega^{1}_{X}/\mathcal{O}_{X_{F}}\cdot w(p)\cong\mathrm{F}^{*}\Omega^{1}_{X_{F}}\to\mathrm{F}^{*}\Omega^{1}_{X}(\log D)|_{X_{F}}

where the middle isomorphism is the map [16, (4-1)]. We also define a morphism of vector bundles over DFD_{F} by

τD:FTX|DFFTX(logD)|DF.\tau_{D}\colon FT^{*}X|_{D_{F}}\to\mathrm{F}^{*}T^{*}X(\log D)|_{D_{F}}.

Let

τD!:CH2(FTX|DF)CH2(TX(logD)|DF)\tau_{D}^{!}\colon\operatorname{CH}_{2}(FT^{*}X|_{D_{F}})\to\operatorname{CH}_{2}(T^{*}X(\log D)|_{D_{F}})

be the Gysin homomorphism for τD\tau_{D}.

Lemma 5.12 (cf. [21, Lemma 4.3(i)]).

Assume dimX=2\dim X=2. Let ii be an element of II,χI_{\textup{I},\chi}. Let F:DiDi\mathrm{F}\colon D_{i}\to D_{i} be the Frobenius. Then,

  1. (1)

    dimτD1(FLi,χ)=2\dim\tau_{D}^{-1}(\mathrm{F}^{*}L_{i,\chi})=2.

  2. (2)

    Li,χ=FTDiXL^{\prime}_{i,\chi}=\mathrm{F}^{*}T^{*}_{D_{i}}X.

  3. (3)

    We have

    τD!([FLi,χ])=[Li,χ]+xDip(ord(χ;x,Di)ord(χ;x,Di))[FTxX]+xZII,χDip[FTxX]\tau_{D}^{!}([\mathrm{F}^{*}L_{i,\chi}])=[L^{\prime}_{i,\chi}]+\sum_{x\in D_{i}}p(\operatorname{ord}^{\prime}(\chi;x,D_{i})-\operatorname{ord}(\chi;x,D_{i}))[\mathrm{F}^{*}T^{*}_{x}X]+\sum_{x\in Z_{\textup{II},\chi}\cap D_{i}}p[\mathrm{F}^{*}T^{*}_{x}X]

    in Z2(τD1(FLi,χ))Z_{2}(\tau_{D}^{-1}(\mathrm{F}^{*}L_{i,\chi})).

Proof.

We may assume I={1,2}I=\{1,2\} and i=1i=1. Let xx be a closed point of DD and (π1,π2)(\pi_{1},\pi_{2}) be a local coordinate at xx such that πi\pi_{i} is a local equation of DiD_{i} for iIxi\in I_{x}. Then FΩX,x1F\Omega^{1}_{X,x} is a free OX,xO_{X,x}-module with base (wπ1,wπ2)(w\pi_{1},w\pi_{2}). Its dual base is denoted by (/π1,/π2)(\partial^{\prime}/\partial^{\prime}\pi_{1},\partial^{\prime}/\partial^{\prime}\pi_{2}). Let ,,𝒥\mathcal{I},\mathcal{I}^{\prime},\mathcal{J} be the defining ideal sheaves of L1,χTX(logD)|DiL_{1,\chi}\subset T^{*}X(\log D)|_{D_{i}}, Li,χFTX|DiL^{\prime}_{i,\chi}\subset FT^{*}X|_{D_{i}} and τD1(FLi,χ)FTX|Di\tau_{D}^{-1}(\mathrm{F}^{*}L_{i,\chi})\subset FT^{*}X|_{D_{i}} respectively.

First, we consider the case Ix={1}I_{x}=\{1\}. Then ΩX1(logD)x\Omega^{1}_{X}(\log D)_{x} is a free OX,xO_{X,x}-module with base (dlogπ1,dπ2)(d\log\pi_{1},d\pi_{2}). Its dual base is denoted by (/logπ1,/π2)(\partial/\partial\log\pi_{1},\partial/\partial\pi_{2}). If we put

rsw(χ)x=(α1dlogπ1+α2dπ2)/π1n1\operatorname{rsw}(\chi)_{x}=(\alpha_{1}d\log\pi_{1}+\alpha_{2}d\pi_{2})/\pi_{1}^{n_{1}}

where α1,α2𝒪X,x\alpha_{1},\alpha_{2}\in\mathcal{O}_{X,x} and n1=sw(χ|K1)n_{1}=\operatorname{sw}(\chi|_{K_{1}}) , then

x=(π2ord(χ;x,D1)(α2/logπ1α1/π2)),\mathcal{I}_{x}=(\pi_{2}^{-\operatorname{ord}(\chi;x,D_{1})}(\alpha_{2}\partial/\partial\log\pi_{1}-\alpha_{1}\partial/\partial\pi_{2})),

and

𝒥x=(π2pord(χ;x,D1)(α1p/π2)).\mathcal{J}_{x}=(\pi_{2}^{-p\operatorname{ord}(\chi;x,D_{1})}(-\alpha_{1}^{p}\partial/\partial\pi_{2})).

Since χ|K1\chi|_{K_{1}} is of type I,

char(χ)x=α1pwπ1/π1p(n1+1)\operatorname{char}(\chi)_{x}=\alpha_{1}^{p}w\pi_{1}/\pi_{1}^{p(n_{1}+1)}

by Proposition 3.2 and thus we have ord(χ;x,Di)=ordπ2(α1)\operatorname{ord}^{\prime}(\chi;x,D_{i})=\operatorname{ord}_{\pi_{2}}(\alpha_{1}). Hence we have

𝒥x=(π2pord(χ;x,D1)pord(χ;x,D1)/π2),\mathcal{J}_{x}=(\pi_{2}^{p\operatorname{ord}^{\prime}(\chi;x,D_{1})-p\operatorname{ord}(\chi;x,D_{1})}\partial/\partial\pi_{2}),
x=(π2pord(χ;x,D1)(α1p/π2))=(/π2).\mathcal{I}^{\prime}_{x}=(\pi_{2}^{-p\operatorname{ord}^{\prime}(\chi;x,D_{1})}(-\alpha_{1}^{p}\partial^{\prime}/\partial^{\prime}\pi_{2}))=(\partial^{\prime}/\partial^{\prime}\pi_{2}).

Hence the assertion follows.

Second, we consider the case Ix={1,2}I_{x}=\{1,2\}. Then ΩX1(logD)x\Omega^{1}_{X}(\log D)_{x} is a free OX,xO_{X,x}-module with base (dlogπ1,dlogπ2)(d\log\pi_{1},d\log\pi_{2}). Its dual base is denoted by (/logπ1,/logπ2)(\partial/\partial\log\pi_{1},\partial/\partial\log\pi_{2}). If we put

rsw(χ)x=(α1dlogπ1+α2dπ2)/π1n1π1n2\operatorname{rsw}(\chi)_{x}=(\alpha_{1}d\log\pi_{1}+\alpha_{2}d\pi_{2})/\pi_{1}^{n_{1}}\pi_{1}^{n_{2}}

where α1,α2𝒪X,x\alpha_{1},\alpha_{2}\in\mathcal{O}_{X,x} and ni=sw(χ|Ki)n_{i}=\operatorname{sw}(\chi|_{K_{i}}), then

x=(π2ord(χ;x,D1)(α2/logπ1α1/logπ2)),\mathcal{I}_{x}=(\pi_{2}^{-\operatorname{ord}(\chi;x,D_{1})}(\alpha_{2}\partial/\partial\log\pi_{1}-\alpha_{1}\partial/\partial\log\pi_{2})),

and

𝒥x=(π2pord(χ;x,D1)(α1pπ2p/π2)).\mathcal{J}_{x}=(\pi_{2}^{-p\operatorname{ord}(\chi;x,D_{1})}(-\alpha_{1}^{p}\pi_{2}^{p}\partial/\partial\pi_{2})).

Since i=1i=1 is an element of II,χI_{\textup{I},\chi},

char(χ)x=α1pπ2p(1δ)wπ1/π1p(n1+1)π2p(n2+δ)\operatorname{char}(\chi)_{x}=\alpha_{1}^{p}\pi_{2}^{p(1-\delta)}w\pi_{1}/\pi_{1}^{p(n_{1}+1)}\pi_{2}^{p(n_{2}+\delta)}

by Proposition 3.2 where δ\delta is 1 if χ|K2\chi|_{K_{2}} is tamely ramified or of type I and 0 if χ|K2\chi|_{K_{2}} is type II. Hence we have ord(χ;x,Di)=ordπ2(α1)+1δ\operatorname{ord}^{\prime}(\chi;x,D_{i})=\operatorname{ord}_{\pi_{2}}(\alpha_{1})+1-\delta and

𝒥x=(π2pord(χ;x,D1)pord(χ;x,D1)+pδ/π2),\mathcal{J}_{x}=(\pi_{2}^{p\operatorname{ord}^{\prime}(\chi;x,D_{1})-p\operatorname{ord}(\chi;x,D_{1})+p\delta}\partial/\partial\pi_{2}),
x=(/π2).\mathcal{I}^{\prime}_{x}=(\partial^{\prime}/\partial^{\prime}\pi_{2}).

Hence the assertion follows. ∎

Lemma 5.13 (cf. [21, Lemma 4.4, Lemma 4.5]).

Assume dimX=2\dim X=2. Let ii be an element of III,χI_{\textup{II},\chi}. Let qi:τD1(FLi,χ)Diq^{\prime}_{i}\colon\tau_{D}^{-1}(\mathrm{F}^{*}L_{i,\chi})\to D_{i} be the canonical projection. Let F:DiDi\mathrm{F}\colon D_{i}\to D_{i} be the Frobenius. Then,

  1. (1)

    τD1(FLi,χ)=FTX|Di\tau_{D}^{-1}(\mathrm{F}^{*}L_{i,\chi})=FT^{*}X|_{D_{i}}.

  2. (2)

    We have

    τD!([FLi,χ])=qi(c1(FTX(logD)|Di)[Di]c1(𝒪X(pRχ)|Di)[Di]xDipord(χ;x,Di)[x])\tau_{D}^{!}([\mathrm{F}^{*}L_{i,\chi}])={q^{\prime}_{i}}^{*}(c_{1}(\mathrm{F}^{*}T^{*}X(\log D)|_{D_{i}})\cap[D_{i}]-c_{1}(\mathcal{O}_{X}(-pR_{\chi})|_{D_{i}})\cap[D_{i}]-\sum_{x\in D_{i}}p\operatorname{ord}(\chi;x,D_{i})[x])

    in CH2(FTX|Di)\operatorname{CH}_{2}(FT^{*}X|_{D_{i}}).

  3. (3)

    We have

    [Li,χ]=qi(c1(FTX|Di)[Di]c1(𝒪X(pRχ)|Di)[Di]xDipord(χ;x,Di)[x])[L^{\prime}_{i,\chi}]={q^{\prime}_{i}}^{*}(c_{1}(FT^{*}X|_{D_{i}})\cap[D_{i}]-c_{1}(\mathcal{O}_{X}(-pR^{\prime}_{\chi})|_{D_{i}})\cap[D_{i}]-\sum_{x\in D_{i}}p\operatorname{ord}^{\prime}(\chi;x,D_{i})[x])

    in CH2(FTX|Di)\operatorname{CH}_{2}(FT^{*}X|_{D_{i}}).

  4. (4)

    We have

    [FTDiX]=qi(c1(𝒪X(pRχ)|Di)[Di]+xDip(ord(χ;x,Di)#Ix+1)[x])[\mathrm{F}^{*}T^{*}_{D_{i}}X]={q^{\prime}_{i}}^{*}(c_{1}(\mathcal{O}_{X}(-pR_{\chi})|_{D_{i}})\cap[D_{i}]+\sum_{x\in D_{i}}p(\operatorname{ord}(\chi;x,D_{i})-\#I_{x}+1)[x])

    in CH2(FTX|Di)\operatorname{CH}_{2}(FT^{*}X|_{D_{i}}).

Proof.

(1) We use the same notation as in the proof of Lemma 5.12. Since χ|K1\chi|_{K_{1}} is of type II, the refined Swan conductor is the image of the characteristic form by Proposition 3.4 and thus α1=0\alpha_{1}=0. Hence =0\mathcal{I}^{\prime}=0 and we have τD1(FLi,χ)=FTX|Di\tau_{D}^{-1}(\mathrm{F}^{*}L_{i,\chi})=FT^{*}X|_{D_{i}}.

(2) By applying the excess intersection formula to the cartesian diagram

Di\textstyle{D_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FLi,χ\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\mathrm{F}^{*}L_{i,\chi}}Di\textstyle{D_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FTX(logD)|Di,\textstyle{\mathrm{F}^{*}T^{*}X(\log D)|_{D_{i}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces,}\scriptstyle{\square}

we have

[FLi,χ]=qi(c1(FTX(logD)|Di)[Di]c1(FLi,χ)[Di])[\mathrm{F}^{*}L_{i,\chi}]=q_{i}^{*}(c_{1}(\mathrm{F}^{*}T^{*}X(\log D)|_{D_{i}})\cap[D_{i}]-c_{1}(\mathrm{F}^{*}L_{i,\chi})\cap[D_{i}])

in CH2(FTX(logD)|Di)\operatorname{CH}_{2}(\mathrm{F}^{*}T^{*}X(\log D)|_{D_{i}}) where the map qi:FTX(logD)|DiDiq_{i}\colon\mathrm{F}^{*}T^{*}X(\log D)|_{D_{i}}\to D_{i} is the canonical projection. Since the sub vector bundle Li,χL_{i,\chi} of TX(logD)|DiT^{*}X(\log D)|_{D_{i}} is defined by the image of the injection

×rsw(χ)|Di:𝒪X(Rχ)𝒪X𝒪Di(xDiord(χ;x,Di)[x])ΩX1(logD)|Di,\times\operatorname{rsw}(\chi)|_{D_{i}}\colon\mathcal{O}_{X}(-R_{\chi})\otimes_{\mathcal{O}_{X}}\mathcal{O}_{D_{i}}(\sum_{x\in D_{i}}\operatorname{ord}(\chi;x,D_{i})[x])\to\Omega^{1}_{X}(\log D)|_{D_{i}},

the assertion holds.

(3) By applying the excess intersection formula to the cartesian diagram

Di\textstyle{D_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Li,χ\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces L^{\prime}_{i,\chi}}Di\textstyle{D_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FTX|Di,\textstyle{FT^{*}X|_{D_{i}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces,}\scriptstyle{\square}

we have

[Li,χ]=qi(c1(FTX|Di)[Di]c1(Li,χ)[Di])[L^{\prime}_{i,\chi}]={q^{\prime}_{i}}^{*}(c_{1}(FT^{*}X|_{D_{i}})\cap[D_{i}]-c_{1}(L^{\prime}_{i,\chi})\cap[D_{i}])

in CH2(FTX|Di)\operatorname{CH}_{2}(FT^{*}X|_{D_{i}}). Since the sub vector bundle Li,χL^{\prime}_{i,\chi} of FTX|DiFT^{*}X|_{D_{i}} is defined by the image of the injection

×char(χ)|Di:𝒪X(pRχ)𝒪X𝒪Di(xDipord(χ;x,Di)[x])FΩX1|Di,\times\operatorname{char}(\chi)|_{D_{i}}\colon\mathcal{O}_{X}(-pR^{\prime}_{\chi})\otimes_{\mathcal{O}_{X}}\mathcal{O}_{D_{i}}(\sum_{x\in D_{i}}p\operatorname{ord}^{\prime}(\chi;x,D_{i})[x])\to F\Omega^{1}_{X}|_{D_{i}},

the assertion holds.

(4) By applying the excess intersection formula to the cartesian diagram

Di\textstyle{D_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FTDiX\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\mathrm{F}^{*}T^{*}_{D_{i}}X}Di\textstyle{D_{i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FTX|Di,\textstyle{FT^{*}X|_{D_{i}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces,}\scriptstyle{\square}

we have

[FTDiX]=qi(c1(FTDi)[Di])[\mathrm{F}^{*}T^{*}_{D_{i}}X]={q^{\prime}_{i}}^{*}(c_{1}(\mathrm{F}^{*}T^{*}D_{i})\cap[D_{i}])

in CH2(FTX|Di)\operatorname{CH}_{2}(FT^{*}X|_{D_{i}}) since the sequence

0FTDiXFTX|DiFTDi00\to\mathrm{F}^{*}T^{*}_{D_{i}}X\to FT^{*}X|_{D_{i}}\to FT^{*}D_{i}\to 0

is exact by [15, (2-12)] and FTDiFTDiFT^{*}D_{i}\cong\mathrm{F}^{*}T^{*}D_{i} by [15, (2-4)]. Since DiD_{i} is a scheme over FF, the computation in [21, Lemma 4.5(iii)] implies that we have an equality

c1(TDi)[Di]=c1(𝒪Di((RχDi))[Di]+xDi(ord(χ;x,Di)#Ix+1)[x]c_{1}(T^{*}D_{i})\cap[D_{i}]=c_{1}(\mathcal{O}_{D_{i}}(-(R_{\chi}\cap D_{i}))\cap[D_{i}]+\sum_{x\in D_{i}}(\operatorname{ord}(\chi;x,D_{i})-\#I_{x}+1)[x]

in CH0(Di)\operatorname{CH}_{0}(D_{i}). Since FΩDi1=(ΩDi1)p\mathrm{F}^{*}\Omega^{1}_{D_{i}}=(\Omega^{1}_{D_{i}})^{\otimes p}, we have

c1(FTDi)[Di]=c1(𝒪X(pRχ)|Di)[Di]+xDip(ord(χ;x,Di)#Ix+1)[x]c_{1}(\mathrm{F}^{*}T^{*}D_{i})\cap[D_{i}]=c_{1}(\mathcal{O}_{X}(-pR_{\chi})|_{D_{i}})\cap[D_{i}]+\sum_{x\in D_{i}}p(\operatorname{ord}(\chi;x,D_{i})-\#I_{x}+1)[x]

in CH0(Di)\operatorname{CH}_{0}(D_{i}). ∎

Lemma 5.14.

Assume DiD_{i} is contained in the closed fiber DFD_{F}. Let F:DiDi\mathrm{F}\colon D_{i}\to D_{i} be the Frobenius. Then we have

c1(FTX(logD)|Di)[Di]=c1(FTX|Di)[Di]+jIc1(𝒪X(pDj)|Di)[Di].c_{1}(\mathrm{F}^{*}T^{*}X(\log D)|_{D_{i}})\cap[D_{i}]=c_{1}(FT^{*}X|_{D_{i}})\cap[D_{i}]+\sum_{j\in I}c_{1}(\mathcal{O}_{X}(pD_{j})|_{D_{i}})\cap[D_{i}].

in CH0(DF)\operatorname{CH}_{0}(D_{F}).

Proof.

Let DiD^{\prime}_{i} be the closed subscheme consisting of the closed points xx of DiD_{i} such that #Ix=2\#I_{x}=2. By the two exact sequences

0FNDi/XFΩX1|DiFΩDi10,0\to\mathrm{F}^{*}N_{D_{i}/X}\to F\Omega^{1}_{X}|_{D_{i}}\to\mathrm{F}^{*}\Omega^{1}_{D_{i}}\to 0,
0FΩDi1(logDi)FΩX1(logD)|Di𝒪Di00\to\mathrm{F}^{*}\Omega^{1}_{D_{i}}(\log D^{\prime}_{i})\to\mathrm{F}^{*}\Omega^{1}_{X}(\log D)|_{D_{i}}\to\mathcal{O}_{D_{i}}\to 0

of locally free DiD_{i}-modules, we have

c1(FTX(logD)|Di)[Di]c1(FTX|DF)[Di]=c1(FΩDi1(logDi))[Di]c1(FΩDi1)[Di]c1(FNDi/X)[Di].c_{1}(\mathrm{F}^{*}T^{*}X(\log D)|_{D_{i}})\cap[D_{i}]-c_{1}(FT^{*}X|_{D_{F}})\cap[D_{i}]\\ =c_{1}(\mathrm{F}^{*}\Omega^{1}_{D_{i}}(\log D^{\prime}_{i}))\cap[D_{i}]-c_{1}(\mathrm{F}^{*}\Omega^{1}_{D_{i}})\cap[D_{i}]-c_{1}(\mathrm{F}^{*}N_{D_{i}/X})\cap[D_{i}].

Applying [21, (4.10)] to the scheme DiD_{i}, we obtain

c1(ΩDi1(logDi))[Di]c1(ΩDi1)[Di]=jiIc1(𝒪Di(DjDi))[Di].c_{1}(\Omega^{1}_{D_{i}}(\log D^{\prime}_{i}))\cap[D_{i}]-c_{1}(\Omega^{1}_{D_{i}})\cap[D_{i}]=\sum_{j\neq i\in I}c_{1}(\mathcal{O}_{D_{i}}(D_{j}\cap D_{i}))\cap[D_{i}].

Since we have FNDi/X=F𝒪X(Di)|Di\mathrm{F}^{*}N_{D_{i}/X}=\mathrm{F}^{*}\mathcal{O}_{X}(-D_{i})|_{D_{i}}, the assertion follows. ∎

Theorem 5.15.

Assume dimX=2\dim X=2 and XX is proper over 𝒪K\mathcal{O}_{K}. Then we have

(FCCj!FCCj!Λ,FTXX|XF)FTX|XF=p(SwK(XK¯,j!)SwK(XK¯,j!Λ)).(FCCj_{!}\mathcal{F}-FCCj_{!}\Lambda,FT^{*}_{X}X|_{X_{F}})_{FT^{*}X|_{X_{F}}}=p\cdot(\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\mathcal{F})-\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\Lambda)).
Proof.

We do some computations used later. By Lemma 5.12, we have

τD!(iII,χsw(χ|Ki)[FLi,χ])=iII,χsw(χ|Ki)([Li,χ]+xDip(ord(χ;x,Di)ord(χ;x,Di))[FTxX]+xZII,χDip[FTxX]).\tau_{D}^{!}(\sum_{i\in I_{\textup{I},\chi}}\operatorname{sw}(\chi|_{K_{i}})[\mathrm{F}^{*}L_{i,\chi}])=\sum_{i\in I_{\textup{I},\chi}}\operatorname{sw}(\chi|_{K_{i}})\Big{(}[L^{\prime}_{i,\chi}]\\ +\sum_{x\in D_{i}}p(\operatorname{ord}^{\prime}(\chi;x,D_{i})-\operatorname{ord}(\chi;x,D_{i}))[\mathrm{F}^{*}T^{*}_{x}X]+\sum_{x\in Z_{\textup{II},\chi}\cap D_{i}}p[\mathrm{F}^{*}T^{*}_{x}X]\Big{)}. (5.5)

We note that if iII,χi\in I_{\textup{I},\chi}, we have

qi(c1(𝒪X(ZII,χ)|Di)[Di])=xZII,χDi[FTxX].{q^{\prime}_{i}}^{*}(c_{1}(\mathcal{O}_{X}(Z_{\textup{II},\chi})|_{D_{i}})\cap[D_{i}])=\sum_{x\in Z_{\textup{II},\chi}\cap D_{i}}[\mathrm{F}^{*}T^{*}_{x}X].

By Lemma 5.13 (2) and (3) and Lemma 5.14, we have

τD!(iIII,χsw(χ|Ki)[FLi,χ])=iIII,χsw(χ|Ki)([Li,χ]+xDip(ord(χ;x,Di)ord(χ;x,Di))[FTxX]+qi(c1(𝒪X(pZII,χ)|Di)[Di]).\tau_{D}^{!}(\sum_{i\in I_{\textup{II},\chi}}\operatorname{sw}(\chi|_{K_{i}})[\mathrm{F}^{*}L_{i,\chi}])=\sum_{i\in I_{\textup{II},\chi}}\operatorname{sw}(\chi|_{K_{i}})\Big{(}[L^{\prime}_{i,\chi}]\\ +\sum_{x\in D_{i}}p(\operatorname{ord}^{\prime}(\chi;x,D_{i})-\operatorname{ord}(\chi;x,D_{i}))[\mathrm{F}^{*}T^{*}_{x}X]+{q^{\prime}_{i}}^{*}(c_{1}(\mathcal{O}_{X}(pZ_{\textup{II},\chi})|_{D_{i}})\cap[D_{i}]\Big{)}. (5.6)

Since we have

iIsw(χ|Ki)qi(c1(𝒪X(pZII,χ)|Di)[Di])=iIII,χqi(c1(𝒪X(pRχ)|Di)[Di]),\sum_{i\in I}\operatorname{sw}(\chi|_{K_{i}}){q^{\prime}_{i}}^{*}(c_{1}(\mathcal{O}_{X}(pZ_{\textup{II},\chi})|_{D_{i}})\cap[D_{i}])=\sum_{i\in I_{\textup{II},\chi}}{q^{\prime}_{i}}^{*}(c_{1}(\mathcal{O}_{X}(pR_{\chi})|_{D_{i}})\cap[D_{i}]),

we have

iIsw(χ|Ki)qi(c1(𝒪X(pZII,χ)|Di)[Di])=[FTDiX]+xDip(ord(χ;x,Di)#Ix+1)[FTxX])\sum_{i\in I}\operatorname{sw}(\chi|_{K_{i}}){q^{\prime}_{i}}^{*}(c_{1}(\mathcal{O}_{X}(pZ_{\textup{II},\chi})|_{D_{i}})\cap[D_{i}])=-[\mathrm{F}^{*}T^{*}_{D_{i}}X]+\sum_{x\in D_{i}}p(\operatorname{ord}(\chi;x,D_{i})-\#I_{x}+1)[\mathrm{F}^{*}T_{x}^{*}X])

by Lemma 5.13 (4). The sum of equalities (5.5) and (5.6) shows the equality

τD!(iIsw(χ|Ki)[FLi,χ])=[FTDiX]+iIχsw(χ|Ki)([Li,χ]+xDip(ord(χ;x,Di)ord(χ;x,Di))[FTxX])+xDip(ord(χ;x,Di)#Ix+1)[FTxX].\tau_{D}^{!}(\sum_{i\in I}\operatorname{sw}(\chi|_{K_{i}})[\mathrm{F}^{*}L_{i,\chi}])=-[\mathrm{F}^{*}T^{*}_{D_{i}}X]+\sum_{i\in I_{\chi}}\operatorname{sw}(\chi|_{K_{i}})\Big{(}[L^{\prime}_{i,\chi}]\\ +\sum_{x\in D_{i}}p(\operatorname{ord}^{\prime}(\chi;x,D_{i})-\operatorname{ord}(\chi;x,D_{i}))[\mathrm{F}^{*}T^{*}_{x}X]\Big{)}+\sum_{x\in D_{i}}p(\operatorname{ord}(\chi;x,D_{i})-\#I_{x}+1)[\mathrm{F}^{*}T_{x}^{*}X]. (5.7)

We have

(FLi,χ,TXX(logD)|DF)FTX(logD)|DF=c1(F(TX(logD)|DF/Li,χ))[DF]=p(c1(TX(logD)|DF/Li,χ)[DF])=p(Li,χ,TXX(logD)|DF)TX(logD)|DF.\begin{split}(\mathrm{F}^{*}L_{i,\chi},T^{*}_{X}X(\log D)|_{D_{F}})_{\mathrm{F}^{*}T^{*}X(\log D)|_{D_{F}}}&=c_{1}\Big{(}\mathrm{F}^{*}\big{(}T^{*}X(\log D)|_{D_{F}}/L_{i,\chi}\big{)}\Big{)}\cap[D_{F}]\\ &=p\cdot(c_{1}(T^{*}X(\log D)|_{D_{F}}/L_{i,\chi})\cap[D_{F}])\\ &=p\cdot(L_{i,\chi},T^{*}_{X}X(\log D)|_{D_{F}})_{T^{*}X(\log D)|_{D_{F}}}.\end{split} (5.8)

First, we assume that sx=0s_{x}=0 for every xDFx\in D_{F}. Then it suffices to show that we have

FCCj!FCCj!Λ=τD!(F(CClogj![TXX(logD)|DF]))FCCj_{!}\mathcal{F}-FCCj_{!}\Lambda=-\tau_{D}^{!}(\mathrm{F}^{*}(CC^{\log}j_{!}\mathcal{F}-[T^{*}_{X}X(\log D)|_{D_{F}}])) (5.9)

in CH2(TX(logD)|DF)\operatorname{CH}_{2}(T^{*}X(\log D)|_{D_{F}}) by Theorem 5.5 and (5.8). This equality holds by (5.7) and the definition of txt_{x} (5.4).

Next, we consider the general case. By the definition of the logarithmic characteristic cycle, we have

CClogj![TXX(logD)|DF]xDFsx[TxX(logD)]=iIsw(χ|Ki)[Li,χ].CC^{\log}j_{!}\mathcal{F}-[T^{*}_{X}X(\log D)|_{D_{F}}]-\sum_{x\in D_{F}}s_{x}[T_{x}^{*}X(\log D)]=\sum_{i\in I}\operatorname{sw}(\chi|_{K_{i}})[L_{i,\chi}].

Then the equality (5.7) shows that we have

τD!(F(CClogj![TXX(logD)|DF]xDFsx[TxX(logD)]))=τD!(iIsw(χ|Ki)F[Li,χ])=FCCj!FCCj!Λ+xDFpsx[FTxX]\begin{split}&\tau_{D}^{!}(-\mathrm{F}^{*}(CC^{\log}j_{!}\mathcal{F}-[T^{*}_{X}X(\log D)|_{D_{F}}]-\sum_{x\in D_{F}}s_{x}[T^{*}_{x}X(\log D)]))\\ =&\tau_{D}^{!}(-\sum_{i\in I}\operatorname{sw}(\chi|_{K_{i}})\mathrm{F}^{*}[L_{i,\chi}])\\ =&FCCj_{!}\mathcal{F}-FCCj_{!}\Lambda+\sum_{x\in D_{F}}ps_{x}[\mathrm{F}^{*}T^{*}_{x}X]\end{split} (5.10)

by the definition of txt_{x}. By Theorem 5.5, we have

((CClogj![TXX(logD)|DF]xDFsx[TxX(logD)]),TXX(logD)|DF)TX(logD)|DF=SwK(XK¯,j!)SwK(XK¯,j!Λ)+xDFsx(-(CC^{\log}j_{!}\mathcal{F}-[T^{*}_{X}X(\log D)|_{D_{F}}]-\sum_{x\in D_{F}}s_{x}[T_{x}^{*}X(\log D)]),T^{*}_{X}X(\log D)|_{D_{F}})_{T^{*}X(\log D)|_{D_{F}}}\\ =\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\mathcal{F})-\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\Lambda)+\sum_{x\in D_{F}}s_{x} (5.11)

since the intersection number (TxX(logD),TXX(logD)|DF)(T_{x}^{*}X(\log D),T^{*}_{X}X(\log D)|_{D_{F}}) is 1. By (5.8), we have

(F(CClogj![TXX(logD)|DF]xDFsx[TxX(logD)]),TXX(logD)|DF)FTX(logD)|DF=p(SwK(XK¯,j!)SwK(XK¯,j!Λ)+xDFsx).(-\mathrm{F}^{*}(CC^{\log}j_{!}\mathcal{F}-[T^{*}_{X}X(\log D)|_{D_{F}}]-\sum_{x\in D_{F}}s_{x}[T_{x}^{*}X(\log D)]),T^{*}_{X}X(\log D)|_{D_{F}})_{\mathrm{F}^{*}T^{*}X(\log D)|_{D_{F}}}\\ =p\cdot(\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\mathcal{F})-\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\Lambda)+\sum_{x\in D_{F}}s_{x}). (5.12)

By (5.10) and (5.12), we have

(FCCj!FCCj!Λ+xDFpsx[FTxX],FTXX|DF)FTX|DF=p(SwK(XK¯,j!)SwK(XK¯,j!Λ)+xDFsx).(FCCj_{!}\mathcal{F}-FCCj_{!}\Lambda+\sum_{x\in D_{F}}ps_{x}[\mathrm{F}^{*}T_{x}^{*}X],FT^{*}_{X}X|_{D_{F}})_{FT^{*}X|_{D_{F}}}\\ =p\cdot(\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\mathcal{F})-\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\Lambda)+\sum_{x\in D_{F}}s_{x}).

Since the intersection number (FTxX,FTXX|DF)(\mathrm{F}^{*}T_{x}^{*}X,FT^{*}_{X}X|_{D_{F}}) is 1, the assertion follows. ∎

5.3 Example

In this subsection, we give an example of the F-characteristic cycle.

Let p>2p>2 be a prime number and let ζp\zeta_{p} be a primitive pp-th root. Let KK be a complete discrete valuation field tamely ramified over 𝐐p(ζp)\mathbf{Q}_{p}(\zeta_{p}) with valuation ring 𝒪K\mathcal{O}_{K} and with residue field FF. Let e=ordKpe=\operatorname{ord}_{K}p be the absolute ramification index and put e=pe/(p1)e^{\prime}=pe/(p-1). We fix a uniformizer π\pi and write p=uπep=u\pi^{e} with some u𝒪K×u\in\mathcal{O}_{K}^{\times}. Let a,b,ca,b,c be integers satisfying 0<a,b<p0<a,b<p, (p,c)=1(p,c)=1 and a+b+c=0a+b+c=0. We put X=𝐏𝒪K1X=\mathbf{P}^{1}_{\mathcal{O}_{K}}. Let UU be the open subscheme SpecK[x±1,(1x)1]\operatorname{Spec}K[x^{\pm 1},(1-x)^{-1}] of XX and let j:UXj\colon U\to X be the open immersion. Let 𝒦\mathcal{K} be the Kummer sheaf defined by tp=(1)cxa(1x)bt^{p}=(-1)^{c}x^{a}(1-x)^{b} on UU. For convenience, we change the coordinate by y=x+a/cy=x+a/c. Let D,E1,E2,E3D,E_{1},E_{2},E_{3} be divisors defined by (π=0),(ya/c=0),(y+b/c=0),(y=)(\pi=0),(y-a/c=0),(y+b/c=0),(y=\infty) respectively. Then DE1E2E3D\cup E_{1}\cup E_{2}\cup E_{3} is a divisor with simple normal crossings and UU is the complement of this divisor. Let z0z_{0} be the closed point {π=y=0}\{\pi=y=0\} and let ziz_{i} be the closed point EiDE_{i}\cap D for i=1,2,3i=1,2,3. Let MM be the local field at the generic point of DD.

We compute the F-characteristic cycle FCCj!𝒦FCCj_{!}\mathcal{K} of j!𝒦j_{!}\mathcal{K}. Applying Theorem 5.15, we compute the Swan conductor of H1(𝐏K¯1,j!𝒦)\mathrm{H}^{1}(\mathbf{P}^{1}_{\overline{K}},j_{!}\mathcal{K}). This cohomology group realizes the Jacobi sum Hecke character as in [5]. Coleman-McCallum [5], Miki [11] and Tsushima [18] computed the conductor or explicitly the ramified component of the Jacobi sum Hecke character in more general cases by different methods.

Remark 5.16.

We note that the Swan conductor can be calculated easier by computing the logarithmic characteristic cycle and applying Kato-Saito’s conductor formula (Theorem 5.5) because we need to compute the logarithmic characteristic cycle for the computation of the F-characteristic cycle. The subject of this article is the non-logarithmic theory, so we compute the Swan conductor using the F-characteristic cycle.

We have sw(χ|M)=dt(χ|M)=e\operatorname{sw}(\chi|_{M})=\operatorname{dt}(\chi|_{M})=e^{\prime} and the character χ|M\chi|_{M} is of type II. We have

rswχ=cydy(1ζp)p(ya/c)a(y+b/c)b\operatorname{rsw}\chi=\frac{-cy\cdot dy}{(1-\zeta_{p})^{p}\cdot(y-a/c)^{a}(y+b/c)^{b}} (5.13)

and

charχ=cpypwy(1ζp)p2(ya/c)ap(y+b/c)bp\operatorname{char}\chi=\frac{-c^{p}y^{p}\cdot wy}{(1-\zeta_{p})^{p^{2}}\cdot(y-a/c)^{ap}(y+b/c)^{bp}} (5.14)

on the complement of E3E_{3}. The character χ\chi is not clean and not non-degenerate only at z0z_{0} and we have ord(χ;z0,D)=ord(χ;z0,D)=1\operatorname{ord}(\chi;z_{0},D)=\operatorname{ord}^{\prime}(\chi;z_{0},D)=1.

We prove an elementary lemma used later.

Lemma 5.17.

Let dd be a rational number satisfying vp(d)0v_{p}(d)\geq 0. We put r=vp(dp11)r=v_{p}(d^{p-1}-1). Then there exists an integer ll such that prp^{r} divides 1dlp1-dl^{p}. There does not exist any integer ll such that pr+1p^{r+1} divides 1dlp1-dl^{p}.

Proof.

Since prp^{r} divides dp11=(d1)(dp2+d+1)d^{p-1}-1=(d-1)(d^{p-2}+\cdots d+1), we see that prp^{r} divides d1d-1 or d(dp3++1)+1d(d^{p-3}+\cdots+1)+1. Therefore, we may take l=1l=1 or l=(dp3++1)l=-(d^{p-3}+\cdots+1) because we have dlpdplp1modprdl^{p}\equiv d^{p}l^{p}\equiv 1\mod p^{r}.

If there exists an integer ll such that pr+1p^{r+1} divides 1dlp1-dl^{p}, then we have vp(dp11)r+1v_{p}(d^{p-1}-1)\geq r+1 and this is a contradiction. ∎

Now we compute the F-characteristic cycle of j!𝒦j_{!}\mathcal{K}. We have to divide into two cases.

Case 1 : we assume vp((aabbcc)p11)=1v_{p}((a^{a}b^{b}c^{c})^{p-1}-1)=1.

Lemma 5.18.

We put Yn=Spec𝒪K[yn]Y_{n}=\operatorname{Spec}\mathcal{O}_{K}[y_{n}] for a natural number 1ne/21\leq n\leq e/2. Let MnM_{n} be the local field at the generic point of the closed fiber. Let χn\chi_{n} be the Kummer character defined around (yn=0)(y_{n}=0) by tp=(1)a(ynπna/c)a(ynπn+b/c)bt^{p}=(-1)^{a}(y_{n}\pi^{n}-a/c)^{a}(y_{n}\pi^{n}+b/c)^{b}. Then we have the following properties.

11. We have sw(χn|Mn)=e2n\operatorname{sw}(\chi_{n}|_{M_{n}})=e^{\prime}-2n.

22. If n<e/2n<e/2, the character χn\chi_{n} is not clean at yn=0y_{n}=0.

33. If n=e/2n=e/2, the character χn\chi_{n} is clean.

Proof.

By Lemma 5.17, we may take an integer ll such that pp divides 1aabbcclp1-a^{a}b^{b}c^{c}l^{p}. Then we have

(lt)p\displaystyle(lt)^{p} =(1)alp(ynπna/c)a(ynπn+b/c)b\displaystyle=(-1)^{a}l^{p}(y_{n}\pi^{n}-a/c)^{a}(y_{n}\pi^{n}+b/c)^{b}
=lp(aabbcc+aa1bb12ca+b3yn2π2n+)\displaystyle=l^{p}\Big{(}a^{a}b^{b}c^{c}+\frac{a^{a-1}b^{b-1}}{2c^{a+b-3}}y_{n}^{2}\pi^{2n}+\cdots\Big{)}
=1+pm+aa1bb1lp2ca+b3yn2π2n+\displaystyle=1+pm+\frac{a^{a-1}b^{b-1}l^{p}}{2c^{a+b-3}}y_{n}^{2}\pi^{2n}+\cdots
=1+muπe+aa1bb1lp2ca+b3yn2π2n+\displaystyle=1+mu\pi^{e}+\frac{a^{a-1}b^{b-1}l^{p}}{2c^{a+b-3}}y_{n}^{2}\pi^{2n}+\cdots

for some rational number mm such that vp(m)=0v_{p}(m)=0 and the omitted part is divided by π3n\pi^{3n}. Hence, the assertion 1 follows. Around the closed point {π=yn=0}\{\pi=y_{n}=0\}, the refined Swan conductor is

rsw(χ)=aa1bb1c3ab(nyn2dlogπ+yndyn)(1ζp)pπ2n(ynπna/c)a(ynπn+b/c)b\operatorname{rsw}(\chi)=\frac{-a^{a-1}b^{b-1}c^{3-a-b}(ny_{n}^{2}\cdot d\log\pi+y_{n}\cdot dy_{n})}{(1-\zeta_{p})^{p}\cdot\pi^{-2n}\cdot(y_{n}\pi^{n}-a/c)^{a}(y_{n}\pi^{n}+b/c)^{b}}

if n<e/2n<e/2 and

rsw(χ)=((21aa1bb1c3ablpyn2+mu)edlogπ+aa1bb1c3ablpyndyn)(1ζp)pπ2n(ynπna/c)a(ynπn+b/c)blp\operatorname{rsw}(\chi)=\frac{-((2^{-1}a^{a-1}b^{b-1}c^{3-a-b}l^{p}y_{n}^{2}+mu)e\cdot d\log\pi+a^{a-1}b^{b-1}c^{3-a-b}l^{p}y_{n}\cdot dy_{n})}{(1-\zeta_{p})^{p}\cdot\pi^{-2n}\cdot(y_{n}\pi^{n}-a/c)^{a}(y_{n}\pi^{n}+b/c)^{b}l^{p}}

if n=e/2n=e/2 by [8, Corollary 8.2.3]. Since we assume ee is prime to pp, the assertion follows. ∎

We compute the coefficient sz0s_{z_{0}} of the fiber in the logarithmic characteristic cycle. We may consider locally around z0z_{0}. We define the successive blowups as follows.

Let X1XX_{1}\to X be the blowup at the closed point {π=y=0}\{\pi=y=0\}. The scheme X1X_{1} is a union of two open subschemes U1=Spec𝒪K[y,x1]/(yx1π)U_{1}=\operatorname{Spec}\mathcal{O}_{K}[y,x_{1}]/(yx_{1}-\pi) and Y1=Spec𝒪K[y1]Y_{1}=\operatorname{Spec}\mathcal{O}_{K}[y_{1}] where y1π=yy_{1}\pi=y. Then we can check that the character χ\chi is clean on U1U_{1}. By Lemma 5.18, χ\chi is not clean at y1=0y_{1}=0. Let X2X1X_{2}\to X_{1} be the blowup at the closed point {π=y1=0}\{\pi=y_{1}=0\}. Repeating this process, we get the successive blowups Xe/2X1X0=XX_{e/2}\to\cdots\to X_{1}\to X_{0}=X at non-clean closed points. The character χ\chi is clean on Xe/2X_{e/2} by Lemma 5.18. Hence the coefficient sz0s_{z_{0}} is equal to e1ie/22=eee^{\prime}-\sum_{1\leq i\leq e/2}2=e^{\prime}-e by [7, Remark 5.8]. Hence we have

FCCj!𝒦FCCj!Λ=e[L]+[FTXFX]p(ee+1)[FTz0X]+p[FTz1X]+p[FTz2X]+p[FTz3X]FCCj_{!}\mathcal{K}-FCCj_{!}\Lambda=-e^{\prime}[L^{\prime}]+[\mathrm{F}^{*}T^{*}_{X_{F}}X]-p(e^{\prime}-e+1)[\mathrm{F}^{*}T^{*}_{z_{0}}X]+p[\mathrm{F}^{*}T_{z_{1}}^{*}X]+p[\mathrm{F}^{*}T_{z_{2}}^{*}X]+p[\mathrm{F}^{*}T_{z_{3}}^{*}X]

where LL^{\prime} is defined by the characteristic form (5.14).

We compute the intersection number with the 0-section. We have

([FTXFX],FTXX|XF)FTX|XF=c1(FΩ𝐏F11)[𝐏F1]=2p\displaystyle([\mathrm{F}^{*}T^{*}_{X_{F}}X],FT^{*}_{X}X|_{X_{F}})_{FT^{*}X|_{X_{F}}}=c_{1}(\mathrm{F}^{*}\Omega^{1}_{\mathbf{P}^{1}_{F}})\cap[\mathbf{P}^{1}_{F}]=-2p

Since LL^{\prime} is defined by the image of the injection

×charχ:𝒪X(p(eD+E1+E2+E3))𝒪X𝒪D(p[z0]),\times\operatorname{char}\chi\colon\mathcal{O}_{X}(-p(e^{\prime}D+E_{1}+E_{2}+E_{3}))\otimes_{\mathcal{O}_{X}}\mathcal{O}_{D}(p[z_{0}]),

we have

([L],FTXX|XF)FTX|XF\displaystyle([L^{\prime}],FT^{*}_{X}X|_{X_{F}})_{FT^{*}X|_{X_{F}}} =c1(FΩX1|XF)[XF]+pe(D,D)X+3pp\displaystyle=c_{1}(F\Omega^{1}_{X}|_{X_{F}})\cap[X_{F}]+pe^{\prime}(D,D)_{X}+3p-p
=c1(FΩXF1)[XF]+c1(FNXFX)[XF]+2p\displaystyle=c_{1}(\mathrm{F}^{*}\Omega^{1}_{X_{F}})\cap[X_{F}]+c_{1}(\mathrm{F}^{*}N_{X_{F}}X)\cap[X_{F}]+2p
=2p+0+2p=0\displaystyle=-2p+0+2p=0

Hence we have

(FCCj!𝒦FCCj!Λ,FTXX|XF)FTX|XF=p(ee)(FCCj_{!}\mathcal{K}-FCCj_{!}\Lambda,FT^{*}_{X}X|_{X_{F}})_{FT^{*}X|_{X_{F}}}=-p(e^{\prime}-e)

Since we have Hi(X,j!𝒦)=0\mathrm{H}^{i}(X,j_{!}\mathcal{K})=0 for i1i\neq 1 and SwK(XK¯,j!Λ)=0\operatorname{Sw}_{K}(X_{\overline{K}},j_{!}\Lambda)=0, the Swan conductor of H1(𝐏K¯1,j!𝒦)\mathrm{H}^{1}(\mathbf{P}^{1}_{\overline{K}},j_{!}\mathcal{K}) is ee=e/(p1)e^{\prime}-e=e/(p-1) by Theorem 5.15.

Case 2 : we assume vp((aabbcc)p11)2v_{p}((a^{a}b^{b}c^{c})^{p-1}-1)\geq 2.

Lemma 5.19.

We put Yn=Spec𝒪K[yn]Y_{n}=\operatorname{Spec}\mathcal{O}_{K}[y_{n}] for a natural number 1n(e1)/21\leq n\leq(e^{\prime}-1)/2. Let χn\chi_{n} be the Kummer character defined around (yn=0)(y_{n}=0) by tp=(1)a(ynπna/c)a(ynπn+b/c)bt^{p}=(-1)^{a}(y_{n}\pi^{n}-a/c)^{a}(y_{n}\pi^{n}+b/c)^{b}. Then we have the following claims.

11. We have sw(χn|Mn)=e2n\operatorname{sw}(\chi_{n}|_{M_{n}})=e^{\prime}-2n.

22. The character χn\chi_{n} is not clean at yn=0y_{n}=0.

Proof.

We can prove the assertions in the same way as Lemma 5.18. ∎

We compute the coefficient sz0s_{z_{0}} of the fiber in the logarithmic characteristic cycle. We may consider locally around z0z_{0}. Take the successive blowups X(e1)/2X0=XX_{(e^{\prime}-1)/2}\to\cdots\to X_{0}=X at non-clean closed points in the same way as in Case 1. Contrary to Case 1, the character χ\chi is still not clean on X(e1)/2X_{(e^{\prime}-1)/2}.

The scheme X(e1)/2X_{(e^{\prime}-1)/2} contains the open subscheme Y(e1)/2=Spec𝒪K[y(e1)/2]Y_{(e^{\prime}-1)/2}=\operatorname{Spec}\mathcal{O}_{K}[y_{(e^{\prime}-1)/2}]. We put y=y(e1)/2y^{\prime}=y_{(e^{\prime}-1)/2}. Let WX(e1)/2W\to X_{(e^{\prime}-1)/2} be the blowup at the closed point π=y=0\pi=y^{\prime}=0. The scheme WW is the union of two open subschemes U=Spec𝒪K[y,w]/(ywπ)U=\operatorname{Spec}\mathcal{O}_{K}[y^{\prime},w]/(y^{\prime}w-\pi) and V=Spec𝒪K[y′′]V=\operatorname{Spec}\mathcal{O}_{K}[y^{\prime\prime}] where y′′π=yy^{\prime\prime}\pi=y^{\prime}. The character χ\chi is unramified on VV. On UU, the character χ\chi is defined by

tp=(1)a(y(e+1)/2w(e1)/2a/c)a(y(e+1)/2w(e1)/2+b/c)b.t^{p}=(-1)^{a}(y^{\prime(e^{\prime}+1)/2}w^{(e^{\prime}-1)/2}-a/c)^{a}(y^{\prime(e^{\prime}+1)/2}w^{(e^{\prime}-1)/2}+b/c)^{b}.

We can check χ\chi is not clean at the closed point {y=w=0}\{y^{\prime}=w=0\}. Further, let WWW^{\prime}\to W be the blowup at the closed point {y=w=0}\{y^{\prime}=w=0\} and UU^{\prime} be the open subscheme Spec𝒪K[y,w,w]/(yww,ywπ)\operatorname{Spec}\mathcal{O}_{K}[y^{\prime},w,w^{\prime}]/(y^{\prime}w^{\prime}-w,y^{\prime}w-\pi). Then the the character χ\chi is defined by

tp=(1)a(yew(e1)/2a/c)a(yew(e1)/2+b/c)bt^{p}=(-1)^{a}(y^{\prime e^{\prime}}w^{\prime(e^{\prime}-1)/2}-a/c)^{a}(y^{\prime e^{\prime}}w^{\prime(e^{\prime}-1)/2}+b/c)^{b}

and the refined Swan conductor of χ\chi is

rsw(χ)\displaystyle\operatorname{rsw}(\chi) =21aa1bb1c3ab(e1)dlogw(1ζp)py2ew(e1)(yew(e1)/2a/c)a(yew(e1)/2+b/c)b\displaystyle=\frac{-2^{-1}a^{a-1}b^{b-1}c^{3-a-b}(e^{\prime}-1)\cdot d\log w^{\prime}}{(1-\zeta_{p})^{p}y^{\prime-2e^{\prime}}w^{\prime-(e^{\prime}-1)}\cdot(y^{\prime e^{\prime}}w^{\prime(e^{\prime}-1)/2}-a/c)^{a}(y^{\prime e^{\prime}}w^{\prime(e^{\prime}-1)/2}+b/c)^{b}}

by [8, Corollary 8.2.3]. Hence the character χ\chi is clean on WW^{\prime}.

We see that the coefficient sz0s_{z_{0}} is equal to e(1i(e1)/22+1)=0e^{\prime}-(\sum_{1\leq i\leq(e^{\prime}-1)/2}2+1)=0 by [7, Remark 5.8]. Hence we have

FCCj!𝒦FCCj!Λ=e[L]+[FTXFX]p[FTz0X]+p[FTz1X]+p[FTz2X]+p[FTz3X].FCCj_{!}\mathcal{K}-FCCj_{!}\Lambda=-e^{\prime}[L^{\prime}]+[\mathrm{F}^{*}T^{*}_{X_{F}}X]-p[\mathrm{F}^{*}T^{*}_{z_{0}}X]+p[\mathrm{F}^{*}T_{z_{1}}^{*}X]+p[\mathrm{F}^{*}T_{z_{2}}^{*}X]+p[\mathrm{F}^{*}T_{z_{3}}^{*}X].

Computing similarly as Case 1, we have

(FCCj!𝒦FCCj!Λ,FTXX|XF)FTX|XF=0(FCCj_{!}\mathcal{K}-FCCj_{!}\Lambda,FT^{*}_{X}X|_{X_{F}})_{FT^{*}X|_{X_{F}}}=0

and the Swan conductor of H1(𝐏K¯1,j!𝒦)\mathrm{H}^{1}(\mathbf{P}^{1}_{\overline{K}},j_{!}\mathcal{K}) is 0 by Theorem 5.15.

References

  • [1] A. Abbes. The Grothendieck-Ogg-Shafarevich formula for arithmetic surfaces. J. Algebraic Geom., 9(3):529–576, 2000.
  • [2] A. Abbes and T. Saito. Ramification of local fields with imperfect residue fields. Amer. J. Math., 124(5):879–920, 2002.
  • [3] A. Abbes and T. Saito. Ramification of local fields with imperfect residue fields. II. Doc. Math., pages 5–72, 2003.
  • [4] S. Bosch, W. Lütkebohmert, and M. Raynaud. Formal and rigid geometry. IV. The reduced fibre theorem. Invent. Math., 119(2):361–398, 1995.
  • [5] R. Coleman and W. McCallum. Stable reduction of Fermat curves and Jacobi sum Hecke characters. J. Reine Angew. Math., 385:41–101, 1988.
  • [6] K. Kato. Swan conductors for characters of degree one in the imperfect residue field case. In Algebraic KK-theory and algebraic number theory (Honolulu, HI, 1987), volume 83 of Contemp. Math., pages 101–131. Amer. Math. Soc., Providence, RI, 1989.
  • [7] K. Kato. Class field theory, 𝒟\mathscr{D}-modules, and ramification on higher-dimensional schemes. I. Amer. J. Math., 116(4):757–784, 1994.
  • [8] K. Kato and T. Saito. Ramification theory for varieties over a local field. Publ. Math. Inst. Hautes Études Sci., 117:1–178, 2013.
  • [9] K. Kato and T. Saito. Coincidence of two swan conductors of abelian characters. Épijournal Géom. Algébrique, 3:Art. 15, 16, 2019.
  • [10] S. Matsuda. On the Swan conductor in positive characteristic. Amer. J. Math., 119(4):705–739, 1997.
  • [11] H. Miki. On the conductor of the Jacobi sum Hecke character. Compositio Math., 92(1):23–41, 1994.
  • [12] A. Ogus. Lectures on logarithmic algebraic geometry, volume 178 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2018.
  • [13] T. Saito. Ramification of local fields with imperfect residue fields III. Math. Ann., 352(3):567–580, 2012.
  • [14] T. Saito. The characteristic cycle and the singular support of a constructible sheaf. Invent. Math., 207(2):597–695, 2017.
  • [15] T. Saito. Cotangent bundle and micro-supports in mixed characteristic case. Algebra Number Theory, 16:335–368, 2022.
  • [16] T. Saito. Frobenius-witt differentials and regularity. Algebra Number Theory, 16:369–391, 2022.
  • [17] T. Saito. Graded quotients of ramification groups of local fields with imperfect residue fields. Amer. J. Math., 145(5):1389–1464, 2023.
  • [18] T. Tsushima. Elementary computation of ramified components of the Jacobi sum Hecke characters. J. Number Theory, 130(9):1932–1938, 2010.
  • [19] L. Xiao. On ramification filtrations and pp-adic differential equations, II: mixed characteristic case. Compos. Math., 148(2):415–463, 2012.
  • [20] Y. Yatagawa. Equality of two non-logarithmic ramification filtrations of abelianized Galois group in positive characteristic. Doc. Math., 22:917–952, 2017.
  • [21] Y. Yatagawa. Characteristic cycle of a rank one sheaf and ramification theory. J. Algebraic Geom., 29(3):471–545, 2020.

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo 153-8914, Japan

Email address: [email protected]