This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Extremal Khovanov homology and the girth of a knot

Radmila Sazdanović Department of Mathematics, North Carolina State University, Raleigh, NC 27695 [email protected]  and  Daniel Scofield Department of Mathematics
Francis Marion University
Florence, SC
[email protected]
Abstract.

We utilize relations between Khovanov and chromatic graph homology to determine extreme Khovanov groups and corresponding coefficients of the Jones polynomial. The extent to which chromatic homology and chromatic polynomial can be used to compute integral Khovanov homology of a link depends on the maximal girth of its all-positive graphs. In this paper we also define the girth of a link, discuss relations to other knot invariants, and the possible values for girth. Analyzing girth leads to a description of possible all-A state graphs of any given link; e.g., if a link has a diagram such that the girth of the corresponding all-A graph is equal to >2\ell>2, than the girth of the link is equal to .\ell.

RS partially supported by the Simons Foundation Collaboration Grant 318086 and NSF Grant DMS 1854705.

1. Introduction

Khovanov homology [13] is a bigraded homology theory which is an invariant of knots and links, categorifying the Jones polynomial. In general, the structure of Khovanov homology and the types of torsion which occur may vary widely [2, 19, 29]. For certain links, there is a partial isomorphism between the extreme gradings of Khovanov homology and chromatic graph homology, a categorification of the chromatic polynomial for graphs [1, 24]. The isomorphism between these two theories describes a part of Khovanov homology that is supported on two diagonals and has only 2\mathbb{Z}_{2} torsion, similar to the Khovanov homology of an alternating link. Moreover, this correspondence allows us to describe ranks of groups in Khovanov homology in terms of combinatorial information from a diagram, or a graph associated to the diagram.

Khovanov homology of alternating knots is determined by the Jones polynomial and the signature of a knot and, similarly chromatic graph homology over the algebra 𝒜2=[x]/(x2)\mathcal{A}_{2}=\mathbb{Z}[x]/(x^{2}) is determined by the chromatic polynomial [15]. This approach enables us to determine some extremal Khovanov homology groups based on combinatorial results about the chromatic polynomial of a graph which determines its chromatic homology. The following theorem illustrates the type of the results we obtain.

Theorem 3.3 Let DD be a diagram of a link LL such that the all-positive graph of DD has girth \ell and satisfies the conditions of Theorem 3.5. For 0<i<0<i<\ell, the ranks of Khovanov homology groups of LL are given by:

rkKhic(D),N+2i(L)=(r0,0k=i2ri(p12+kk))ni+1+(1)i+1δb\textnormal{rk}Kh^{i-c_{-}(D),N+2i}(L)=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-2r\leq i\end{subarray}}\binom{p_{1}-2+k}{k}\right)-n_{i+1}+(-1)^{i+1}\delta^{b}

where p1p_{1} is the cyclomatic number of the graph, ni+1n_{i+1} is the number of (i+1)(i+1)-cycles, and δb\delta^{b} measures bipartiteness.

The applicability of our results depends on a quantity defined in Section 5 that we call the girth of a link. We find upper bounds for the value of this invariant based on Khovanov homology and the Jones polynomial. We prove results on the girth of connected sums and of alternating knots, describing another upper bound in terms of crossing number and signature.

Analyzing girth of a link leads to a somewhat surprising characterization of the types of graphs that can be obtained from a homogeneous resolution of diagrams of a given knot (all-positive or all-A state graph)

Theorem 5.6 Let DD be a diagram of a non-trivial link LL such that the all-positive graph of DD has girth .\ell. Then either the girth of a link equals gr(L)=\textnormal{gr}(L)=\ell or {1,2}.\ell\in\{1,2\}.

As a consequence we get that if a link has a diagram such that the girth of the corresponding graph is equal to some >2\ell>2, than the girth of the link is equal to \ell, see Corollary 5.7. In other words, this is saying that if a link LL has girth greater than two, all of the corresponding all-A graphs have girth equal to gr(L)\textnormal{gr}(L), one or two.

Acknowledgements

We are grateful to Adam Lowrance for many ideas and useful discussions. RS was partially supported by the Simons Foundation Collaboration Grant 318086 and NSF Grant DMS 1854705.

2. Background

2.1. Jones polynomial

Let DD be a diagram of link LL. Each crossing of DD can be resolved with a positive or negative resolution as shown below. The positive and negative resolutions are sometimes referred to as the A and B resolutions, respectively (see e.g. [6]).

Refer to caption
Figure 1. Positive and negative resolutions at a crossing.

The resolution of all crossings in a diagram DD produces a collection of disjoint circles known as Kauffman states. From any Kauffman state ss, we may construct a graph whose vertices correspond to the circles of ss, and whose edges connect circles whose arcs were obtained by smoothing a single crossing. The Kauffman state s+(D)s_{+}(D) is obtained by applying the positive resolution to every crossing in DD, and we denote the graph obtained from this state by G+(D)G_{+}(D) (known as the all-positive or all-A state graph of DD). Similarly, we define a state s(D)s_{-}(D) with all negative resolutions along with its graph G(D)G_{-}(D).

Refer to caption
Figure 2. The Kauffman state s+(D)s_{+}(D) and the graph G+(D)G_{+}(D).

We give a definition of the Jones polynomial using Kauffman states as in [25].

Definition 1.

Let LL be a link and DD a diagram of LL with c+c_{+} positive crossings and cc_{-} negative crossings. The unnormalized Jones polynomial of LL is given by:

J^L(q)=(1)cqc+2ci=0c++c(1)i{s:n(s)=i}qi(q+q1)|s|\hat{J}_{L}(q)=(-1)^{c_{-}}q^{c_{+}-2c_{-}}\sum_{i=0}^{c_{+}+c_{-}}(-1)^{i}\sum_{\{s~{}:~{}n_{-}(s)=i\}}q^{i}(q+q^{-1})^{|s|}

where ss is a Kauffman state of DD with n(s)n_{-}(s) negative smoothings and |s||s| connected components.

The normalized version of the Jones polynomial is

JL(q)=J^L(q)/(q+q1)J_{L}(q)=\hat{J}_{L}(q)/(q+q^{-1})

where q+q1q+q^{-1} represents evaluation on the unknot, J^(q)=q+q1\hat{J}_{\Circle}(q)=q+q^{-1}.

Next we introduce some notation that will be useful when discussing graphs.

Definition 2.

The cyclomatic number p1(G)p_{1}(G) of a connected graph GG with vv vertices and EE edges is equal to p1(G)=Ev+1p_{1}(G)=E-v+1. For planar graphs such as G+(D)G_{+}(D), G(D)G_{-}(D) p1p_{1} is equal to the number of bounded faces of the graph.

Definition 3 ([6], [16]).

Let DD be a knot diagram with corresponding all-positive graph G=G+(D)G=G_{+}(D). The simplification GG^{\prime} of GG is the graph obtained by deleting any loops in GG and replacing each set of multiple edges with a single edge.

Define μ\mu to be the number of edges in GG^{\prime} which correspond to multiple edges in GG.

We consider the normalized version of the Jones polynomial and denote the coefficients as follows:

(1) JL(q)=β0qC+β1qC+2+β2qC+4+β3qC+6++βiqC+2i+J_{L}(q)=\beta_{0}q^{C}+\beta_{1}q^{C+2}+\beta_{2}q^{C+4}+\beta_{3}q^{C+6}+\ldots+\beta_{i}q^{C+2i}+\ldots

where CC, the minimal degree of JL(q)J_{L}(q), depends on the link LL.

For a reduced alternating knot, Dasbach and Lin [6] showed that the first three coefficients of the normalized Jones polynomial may be stated in terms of the all-positive graph G+(D)G_{+}(D). This result is restated in Theorem 2.1.

Theorem 2.1 ([6]).

Let KK be a knot with reduced alternating diagram DD. Let p1p_{1} and t1t_{1} be the cyclomatic number and the number of triangles in G+(D)G_{+}(D)^{\prime}, and let μ\mu be defined as above. Then the first three coefficients of JK(q)J_{K}(q) (up to an overall change in sign) are β0=1,β1=p1,\beta_{0}=1,\beta_{1}=-p_{1}, and β2=(p1+12)+μt1\beta_{2}=\binom{p_{1}+1}{2}+\mu-t_{1}.

The lowest-degree terms of the Jones polynomial are often referred to as the “tail,” while the highest-degree terms are referred to as the “head.” Note that if the all-positive graph obtained from DD is replaced by the all-negative graph in Theorem 2.1, a similar result applies to the three extremal coefficients in the head of the Jones polynomial.

2.2. Chromatic polynomial

We now define the chromatic polynomial of a graph. Let GG be a finite, undirected graph with vertex set V(G)V(G) and edge set E(G)E(G). We will often denote the cardinalities of these sets by v=|V(G)|v=|V(G)| and E=|E(G)|E=|E(G)|. If GG has an edge between vertices x,yV(G)x,y\in V(G), we write the corresponding element in E(G)E(G) as {x,y}\{x,y\}.

Definition 4 ([9]).

A mapping f:V(G){1,,λ}f:V(G)\to\{1,\ldots,\lambda\} is called a λ\lambda-coloring of GG if for any pair of vertices x,yV(G)x,y\in V(G) such that {x,y}E(G)\{x,y\}\in E(G), f(x)f(y)f(x)\neq f(y). The chromatic polynomial of the graph GG, denoted PG(λ)P_{G}(\lambda), is equal to the number of distinct λ\lambda-colorings of GG.

For any graph GG, the degree of PG(λ)P_{G}(\lambda) is equal to vv. We will represent the terms of the polynomial as follows:

(2) PG(λ)=cvλv+cv1λv1+cv2λv2++cviλvi++c1λP_{G}(\lambda)=c_{v}\lambda^{v}+c_{v-1}\lambda^{v-1}+c_{v-2}\lambda^{v-2}+\ldots+c_{v-i}\lambda^{v-i}+\ldots+c_{1}\lambda

The first few coefficients of PG(λ)P_{G}(\lambda) can be described in terms of cycles and subgraphs found in GG.

Definition 5.

The girth of a graph GG, denoted (G)\ell(G), is the number of edges in the shortest cycle in GG.

Definition 6.

Let HH be a subgraph of graph GG. We say HH is an induced subgraph if for every {x,y}E(G)\{x,y\}\in E(G) with x,yV(H)x,y\in V(H), the edge {x,y}\{x,y\} is in E(H)E(H).

We adopt the convention that the girth of a tree is zero, but it is worth noting that there are different conventions considering girth of a tree to be infinite [4, 8].

Theorem 2.2.

[18] If GG is a graph with girth >2\ell>2 and nn_{\ell} cycles of length \ell, then the first \ell coefficients of the chromatic polynomial PG(λ)P_{G}(\lambda) are:

cvi={(1)i(Ei)0i<1(1)1((E1)n)i=1c_{v-i}=\begin{cases}(-1)^{i}\displaystyle\binom{E}{i}&0\leq i<\ell-1\\ (-1)^{\ell-1}\left(\displaystyle\binom{E}{\ell-1}-n_{\ell}\right)&i=\ell-1\\ \end{cases}
Remark 1.

The statement of this result in [18, Theorem 2] is not explicitly restricted to graphs with >2\ell>2. In the case i=1i=\ell-1, the proof contains an assumption that the number of cycle-containing subgraphs with v1v-1 connected components and tt edges is zero for t>2t>2; this is not true for graphs with edge multiplicities greater or equal to 3.

Refer to caption

T1T_{1}

Refer to caption

T2T_{2}

Refer to caption

T3T_{3}

Refer to caption

T4T_{4}

Refer to caption

T5T_{5}

Refer to caption

T6T_{6}

Refer to caption

T7T_{7}

Refer to caption

T8T_{8}

Refer to caption

T9T_{9}

Refer to caption

T10T_{10}

Refer to caption

T11T_{11}

Refer to caption

T12T_{12}

Refer to caption

T13T_{13}

Refer to caption

T14T_{14}

Refer to caption

T15T_{15}

Refer to caption

T16T_{16}

Refer to caption

T17T_{17}

Refer to caption

T18T_{18}

Refer to caption

T19T_{19}

Refer to caption

T20T_{20}

Figure 3. Graphs T1T_{1} through T20T_{20} involved in the computation of the 5th and 6th coefficients of the chromatic polynomial [3].
Theorem 2.3.

[10, 3] Let GG be a graph with vv vertices, EE edges, t1t_{1} triangles, t2t_{2} induced 4-cycles, and t3t_{3} complete graphs of order 4. The first four coefficients of the chromatic polynomial PG(λ)P_{G}(\lambda) are given by the following formulas: cv=1c_{v}=1, cv1=Ec_{v-1}=-E, cv2=(E2)t1c_{v-2}=\displaystyle\binom{E}{2}-t_{1}, and

cv3=(E3)+(E2)t1+t22t3c_{v-3}=-\displaystyle\binom{E}{3}+(E-2)t_{1}+t_{2}-2t_{3}

The 5th and 6th coefficients are given by the following formulas, where tit_{i} is the number of induced subgraphs of GG isomorphic to graphs TiT_{i} as shown in Figures 3 and 4.

cv4=(E4)(E22)t1+(t12)(E3)t2(2E9)t3t4+t5+2t6+3t76t8c_{v-4}=\binom{E}{4}-\binom{E-2}{2}t_{1}+\binom{t_{1}}{2}-(E-3)t_{2}-(2E-9)t_{3}-t_{4}+t_{5}+2t_{6}+3t_{7}-6t_{8}
cv5\displaystyle c_{v-5} =\displaystyle= (E5)+(E23)t1(E4)(t12)+(E32)t2(t22t3)t1(E210E+30)t3\displaystyle-\binom{E}{5}+\binom{E-2}{3}t_{1}-(E-4)\binom{t_{1}}{2}+\binom{E-3}{2}t_{2}-(t_{2}-2t_{3})t_{1}-(E^{2}-10E+30)t_{3}
+t4(E3)t52(E5)t63(q6)t7+6(E8)t8+t9t102t112t12t13\displaystyle+t_{4}-(E-3)t_{5}-2(E-5)t_{6}-3(q-6)t_{7}+6(E-8)t_{8}+t_{9}-t_{10}-2t_{11}-2t_{12}-t_{13}
+t14t153t164t174t18+2t194t20t21+4t22+3t23+4t24+5t25+4t26\displaystyle+t_{14}-t_{15}-3t_{16}-4t_{17}-4t_{18}+2t_{19}-4t_{20}-t_{21}+4t_{22}+3t_{23}+4t_{24}+5t_{25}+4t_{26}
+6t27+8t28+16t29+12t3024t31\displaystyle+6t_{27}+8t_{28}+16t_{29}+12t_{30}-24t_{31}
Refer to caption

T21T_{21}

Refer to caption

T22T_{22}

Refer to caption

T23T_{23}

Refer to caption

T24T_{24}

Refer to caption

T25T_{25}

Refer to caption

T26T_{26}

Refer to caption

T27T_{27}

Refer to caption

T28T_{28}

Refer to caption

T29T_{29}

Refer to caption

T30T_{30}

Refer to caption

T31T_{31}

Figure 4. Graphs T21T_{21} through T31T_{31} involved in the computation of the 5th and 6th coefficients of the chromatic polynomial [3].

2.3. Khovanov and chromatic homology and their relations

The Jones polynomial has been categorified as the Euler characteristic of a bigraded homology theory known as Khovanov homology. We denote the Khovanov homology of a link by Kh(L)Kh(L). The chromatic polynomial has a similar categorification known as chromatic graph homology. An overview of these homologies and their construction can be found in [15], [25]. In this paper, we will use only the version of chromatic homology defined over 𝒜2=[x]/(x2)\mathcal{A}_{2}=\mathbb{Z}[x]/(x^{2}) and will refer to it as H𝒜2(G)H_{\mathcal{A}_{2}}(G). Since H𝒜2H_{\mathcal{A}_{2}} contains only 2\mathbb{Z}_{2} torsion [15], we introduce the following notation.

Definition 7.

If HH is a subgroup of either Khovanov or chromatic homology, tor2H\textnormal{tor${}_{2}$}H denotes the order 2 torsion subgroup of HH. We use rk tor2H\textnormal{rk tor${}_{2}$}H to indicate the number of copies of 2\mathbb{Z}_{2}.

There is a partial correspondence between Khovanov homology of a link and the chromatic homology H𝒜2H_{\mathcal{A}_{2}} of an associated graph.

Theorem 2.4.

[23, 24] Let DD be an oriented diagram of link LL with cc_{-} negative crossings and c+c_{+} positive crossings. Suppose G+(D)G_{+}(D) has vv vertices and positive girth \ell. Let p=icp=i-c_{-} and q=v2j+c+2cq=v-2j+c_{+}-2c_{-}. For 0i<0\leq i<\ell and jj\in\mathbb{Z}, there is an isomorphism

H𝒜2i,j(G+(D))Khp,q(L).H_{\mathcal{A}_{2}}^{i,j}(G_{+}(D))\cong Kh^{p,q}(L).

Additionally, for all jj\in\mathbb{Z}, there is an isomorphism of torsion: tor2H𝒜2,j(G+(D))tor2Khc,q(L).\textnormal{tor${}_{2}$}H_{\mathcal{A}_{2}}^{\ell,j}(G_{+}(D))\cong\textnormal{tor${}_{2}$}Kh^{\ell-c_{-},q}(L).

Chromatic homology H𝒜2(G)H_{\mathcal{A}_{2}}(G) is always homologically thin (all non-trivial homology lies on two diagonals). If Kh(L)Kh(L) is homologically thin, then Kh(L)Kh(L) also contains only 2\mathbb{Z}_{2} torsion [27].

Theorem 2.5.

[15] The chromatic homology H𝒜2(G)H_{\mathcal{A}_{2}}(G) with coefficients in \mathbb{Z} is entirely determined by the chromatic polynomial PG(λ)P_{G}(\lambda).

Note that PG(λ)P_{G}(\lambda) and H𝒜2(G)H_{\mathcal{A}_{2}}(G) are both trivial if GG contains a loop, and both ignore the presence of multiple edges in GG. If GG is a loopless graph ((G)>1\ell(G)>1) then both GG and its simplification GG^{\prime} have the same chromatic invariants: PG(λ)=PG(λ)P_{G}(\lambda)=P_{G^{\prime}}(\lambda) and H𝒜2(G)=H𝒜2(G)H_{\mathcal{A}_{2}}(G)=H_{\mathcal{A}_{2}}(G^{\prime}). If (G)>2\ell(G)>2, then we also have G=GG=G^{\prime}.

Theorem 2.4 allows us to compute explicit formulae for extremal gradings of Khovanov homology, subject to combinatorial conditions on the Kauffman state of a link diagram. In [1, 21, 24], the following gradings of Khovanov homology are explicitly computed for diagrams when the isomorphism theorem holds.

Proposition 2.6 ([21, 24]).

Let DD be a diagram of LL with c+c_{+} positive crossings, cc_{-} negative crossings, and |s+||s_{+}| circles in the all-positive Kauffman state of DD. Let N=|s+|+c+2cN=-|s_{+}|+c_{+}-2c_{-} and let p1,t1p_{1},t_{1} denote the cyclomatic number and number of triangles in G+(D)G_{+}(D)^{\prime}, respectively.

If the girth of G+(D)G_{+}(D) is at least 2, then extreme Khovanov homology groups are given by:

Khc,N(L)=Khc,N+2(L)={G+(D) bipartite0 otherwise\displaystyle Kh^{-c_{-},N}(L)=\mathbb{Z}\hskip 28.45274ptKh^{-c_{-},N+2}(L)=\begin{cases}\mathbb{Z}&G_{+}(D)\text{ bipartite}\\ 0&\text{ otherwise}\end{cases}
Kh1c,N+2(L)={p1G+(D) bipartitep112 otherwise\displaystyle Kh^{1-c_{-},N+2}(L)=\begin{cases}\mathbb{Z}^{p_{1}}&G_{+}(D)\text{ bipartite}\\ \mathbb{Z}^{p_{1}-1}\oplus\mathbb{Z}_{2}&\text{ otherwise}\end{cases}

If, in addition, the girth of G+(D)G_{+}(D) is at least 3, then we have an additional grading in Khovanov homology:

Kh2c,N+4(L)\displaystyle Kh^{2-c_{-},N+4}(L) =\displaystyle= {(p12)2p1G+(D) bipartite(p12)t1+12p11 otherwise\displaystyle\begin{cases}\mathbb{Z}^{\binom{p_{1}}{2}}\oplus\mathbb{Z}_{2}^{p_{1}}&G_{+}(D)\text{ bipartite}\\ \mathbb{Z}^{\binom{p_{1}}{2}-t_{1}+1}\oplus\mathbb{Z}_{2}^{p_{1}-1}&\text{ otherwise}\end{cases}

The following result is a restatement of [25, Thm. 5.4], describing the fourth and fifth homological gradings of Kh(L)Kh(L) in terms of the associated graph.

Theorem 2.7.

[25] Let DD be a diagram of LL as in Proposition 2.6. Using conventions from Theorem 2.3 under the assumption that G+(D)G_{+}(D) has girth at least 4 we have the following gradings in Khovanov homology:

rkKh3c,N+6(L)=rktor2Kh4c,N+8(L)={p1+(p1+13)t2G+(D) bipartite,p1+(p1+13)t21 otherwise.\displaystyle\textnormal{rk}Kh^{3-c_{-},N+6}(L)=\textnormal{rk}\textnormal{tor${}_{2}$}Kh^{4-c_{-},N+8}(L)=\begin{cases}p_{1}+\binom{p_{1}+1}{3}-t_{2}&G_{+}(D)\text{ bipartite,}\\ p_{1}+\binom{p_{1}+1}{3}-t_{2}-1&\text{ otherwise.}\end{cases}

3. Extremal Khovanov homology computations

In this section we rely on ideas used in Theorem 2.7 to obtain explicit formulas for Khovanov homology in several additional extremal gradings using the formulas found in Theorem 2.3. This approach can theoretically be extended to further groups on the diagonal using the method of [3] to find formulas for additional chromatic coefficients, although this appears computationally challenging.

Theorem 3.1.

Let DD be a diagram of LL as in Proposition 2.6. Suppose also that G+(D)G_{+}(D) has girth at least 5 with cyclomatic number p1p_{1} and subgraphs TiT_{i} denoted as in Theorem 2.3. Let the coefficients av4a_{v-4} and av5a_{v-5} be as in Theorem 3.2. Then we have the following relations in the Khovanov homology of LL:

rkKh4c,N+8(L)=rktor2Kh5c,N+10(L)={(p12)+av4G+(D) bipartite(p12)+av4+1 otherwise\textnormal{rk}Kh^{4-c_{-},N+8}(L)=\textnormal{rk}\textnormal{tor${}_{2}$}Kh^{5-c_{-},N+10}(L)=\begin{cases}\binom{p_{1}}{2}+a_{v-4}&G_{+}(D)\text{ bipartite}\\ \binom{p_{1}}{2}+a_{v-4}+1&\text{ otherwise}\end{cases}

If in addition, the girth of G+(D)G_{+}(D) is at least 6, then we also have the following:

rkKh5c,N+10(L)\displaystyle\textnormal{rk}Kh^{5-c_{-},N+10}(L) =\displaystyle= rktor2Kh6c,N+12(L)={p1+(p1+13)av5G+(D) bipartitep1+(p1+13)av51 otherwise\displaystyle\textnormal{rk}\textnormal{tor${}_{2}$}Kh^{6-c_{-},N+12}(L)=\begin{cases}p_{1}+\binom{p_{1}+1}{3}-a_{v-5}&G_{+}(D)\text{ bipartite}\\ p_{1}+\binom{p_{1}+1}{3}-a_{v-5}-1&\text{ otherwise}\end{cases}

Theorem 3.1 is an immediate consequence of Theorem 3.2 and the isomorphism theorem for diagrams whose all-positive graphs have girth at least 5 or 6.

Theorem 3.2.

Let GG be a simple graph with cyclomatic number p1p_{1} and subgraphs TiT_{i} denoted as in Theorem 2.3. Then we have the following groups in the chromatic homology of GG:

rkH𝒜24,v4(G)\displaystyle\textnormal{rk}H_{\mathcal{A}_{2}}^{4,v-4}(G) =\displaystyle= rktor2H𝒜25,v5(G)={(p12)+av4G bipartite(p12)t1+1+av4 otherwise\displaystyle\textnormal{rk}\textnormal{tor${}_{2}$}H_{\mathcal{A}_{2}}^{5,v-5}(G)=\begin{cases}\binom{p_{1}}{2}+a_{v-4}&G\text{ bipartite}\\ \binom{p_{1}}{2}-t_{1}+1+a_{v-4}&\text{ otherwise}\end{cases}
rkH𝒜25,v5(G)\displaystyle\textnormal{rk}H_{\mathcal{A}_{2}}^{5,v-5}(G) =\displaystyle= rktor2H𝒜26,v6(G)={p1+(p1+13)t2av5G bipartitep1+(p1+13)t1(p11)t2+2t31av5 otherwise\displaystyle\textnormal{rk}\textnormal{tor${}_{2}$}H_{\mathcal{A}_{2}}^{6,v-6}(G)=\begin{cases}p_{1}+\binom{p_{1}+1}{3}-t_{2}-a_{v-5}&G\text{ bipartite}\\ p_{1}+\binom{p_{1}+1}{3}-t_{1}(p_{1}-1)-t_{2}+2t_{3}-1-a_{v-5}&\text{ otherwise}\end{cases}

The coefficients av4a_{v-4} and av5a_{v-5} are given by:

av4\displaystyle a_{v-4} =(v4)E(v13)+((E2)t1)(v22)+cv3(v3)+cv4\displaystyle=\binom{v}{4}-E\binom{v-1}{3}+\left(\binom{E}{2}-t_{1}\right)\binom{v-2}{2}+c_{v-3}(v-3)+c_{v-4}
av5\displaystyle a_{v-5} =(v5)E(v14)+((E2)t1)(v23)+cv3(v32)+cv4(v4)+cv5\displaystyle=\binom{v}{5}-E\binom{v-1}{4}+\left(\binom{E}{2}-t_{1}\right)\binom{v-2}{3}+c_{v-3}\binom{v-3}{2}+c_{v-4}(v-4)+c_{v-5}
Proof.

Let the chromatic polynomial of GG have the form given in Equation 2. We change variables to λ=q+1\lambda=q+1 to match the graded Euler characteristic of H𝒜2(G)H_{\mathcal{A}_{2}}(G). The coefficient of qviq^{v-i} in this polynomial will be denoted aia_{i}.

PG(q)\displaystyle P_{G}(q) =(q+1)v+cv1(q+1)v1++c2(q+1)2+c1(q+1)\displaystyle=(q+1)^{v}+c_{v-1}(q+1)^{v-1}+\ldots+c_{2}(q+1)^{2}+c_{1}(q+1)
=qv+av1qv1++a2q2+a1q+a0.\displaystyle=q^{v}+a_{v-1}q^{v-1}+\ldots+a_{2}q^{2}+a_{1}q+a_{0}.

We proceed as in the proof of [25, Thm. 5.3], using the formulas for the cic_{i}s in Theorem 2.3 and the equivalence of PG(q)P_{G}(q) with chromatic homology. Note that t1=t3=0t_{1}=t_{3}=0 if GG is bipartite. ∎

𝐣/𝐢\mathbf{j/i} 0 1 \ldots 1\ell-1 \ell \cdots
vv \blacksquare av\rightarrow a_{v}
v1v-1 \blacksquare \blacksquare av1\rightarrow a_{v-1}
\vdots \ddots \ddots \vdots
v+1v-\ell+1 \blacksquare \blacksquare av+1\rightarrow a_{v-\ell+1}
vv-\ell \blacksquare \square
\vdots \square \ddots
Table 1. Chromatic homology H𝒜2(G+(D))H_{\mathcal{A}_{2}}(G_{+}(D)) with coefficients avia_{v-i} for the chromatic polynomial on the right. \square indicates possible homology. \blacksquare indicates isomorphism with Khovanov homology.

The following theorem completely describes the part of Khovanov homology which is obtained from the isomorphism in Theorem 2.4.

Theorem 3.3.

Let DD be a diagram of a link LL with c+c_{+} positive crossings, cc_{-} negative crossings, and |s+||s_{+}| circles in the all-positive Kauffman state, and let N=|s+|+c+2cN=-|s_{+}|+c_{+}-2c_{-}. Suppose that G+(D)G_{+}(D) satisfies the conditions of Theorem 3.5 (in particular, the girth \ell of G+(D)G_{+}(D) is greater than 22). For 0<i<0<i<\ell, we have the following ranks of the Khovanov homology of LL:

(3) rkKhic,N+2i(L)=(r0,0k=i2ri(p12+kk))ni+1+(1)i+1δb\textnormal{rk}Kh^{i-c_{-},N+2i}(L)=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-2r\leq i\end{subarray}}\binom{p_{1}-2+k}{k}\right)-n_{i+1}+(-1)^{i+1}\delta^{b}

where δb=1\delta^{b}=1 if G+(D)G_{+}(D) is bipartite and 0 otherwise.

Based on Theorem 2.4 and [15], formula (3) also gives the number of 2\mathbb{Z}_{2}-torsion groups on the next grading of this diagonal: rktor2Kh(i+1)c,|s+|+c+2c+2(i+1)(L)\textnormal{rk}\textnormal{tor${}_{2}$}Kh^{(i+1)-c_{-},-|s_{+}|+c_{+}-2c_{-}+2(i+1)}(L). If we consider the all-negative state graph G(D)G_{-}(D), an analogous statement holds for the highest homological gradings in Kh(L)Kh(L).

Corollary 3.4.

Let DD be a reduced diagram of LL that satisfies the conditions of Theorem 3.3. If in addition, G+(D)G_{+}(D) is a non-bipartite graph, then the sequence of ranks

(4) {S0,,S2}={rkH𝒜2i,vi(G+(D))}0i2={rkKhic,N+2i(L)}0i2\{S_{0},\ldots,S_{\ell-2}\}=\{\textnormal{rk}H_{\mathcal{A}_{2}}^{i,v-i}(G_{+}(D))\}_{0\leq i\leq\ell-2}=\{\textnormal{rk}Kh^{i-c_{-},N+2i}(L)\}_{0\leq i\leq\ell-2}

is given by the first 1\ell-1 coefficients of the generating function 1(1+x)(1x)p1\dfrac{1}{(1+x)(1-x)^{p_{1}}}.

For graphs of girth \ell, Theorem 2.2 provides a succinct description of the first \ell coefficients of the chromatic polynomial. We first translate this statement into a description of the ranks of chromatic homology in the first \ell homological gradings. As a corollary, we obtain the entire part of Khovanov homology that is determined by the all-positive or all-negative state graph as in Theorem 3.3.

Theorem 3.5.

Let GG be a simple graph with girth >2\ell>2, cyclomatic number p1p_{1}, and nin_{i} denoting the number of ii-cycles in GG. Then, for 0<i<0<i<\ell, we have the following ranks of the chromatic homology of GG:

(5) rkH𝒜2i,vi(G)=(r0,0k=i2ri(p12+kk))ni+1+(1)i+1δb\textnormal{rk}H_{\mathcal{A}_{2}}^{i,v-i}(G)=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-2r\leq i\end{subarray}}\binom{p_{1}-2+k}{k}\right)-n_{i+1}+(-1)^{i+1}\delta^{b}

where δb=1\delta^{b}=1 if GG is bipartite and 0 otherwise.

Proof.

For i=1,2,3i=1,2,3, this statement follows from [24], [25]. We show by induction that it holds for i>3i>3.

As above, let avia_{v-i} denote the coefficient of PG(q)P_{G}(q) derived from the quantum grading j=vij=v-i (see Table 1). For 0<i<10<i<\ell-1, we use Theorem 2.2 to compute:

avi\displaystyle a_{v-i} =(vvi)+cv1(v1vi)++cvi(vivi)=k=0icvk(vkvi)\displaystyle=\binom{v}{v-i}+c_{v-1}\binom{v-1}{v-i}+\ldots+c_{v-i}\binom{v-i}{v-i}=\displaystyle\sum_{k=0}^{i}c_{v-k}\binom{v-k}{v-i}
=k=0i(1)k(Ek)(vkvi)=(1)i(p12+ii)\displaystyle=\displaystyle\sum_{k=0}^{i}(-1)^{k}\displaystyle\binom{E}{k}\binom{v-k}{v-i}=(-1)^{i}\binom{p_{1}-2+i}{i}

and for i=1i=\ell-1, a similar computation shows that av(1)=(1)1((p12+(1)1)n).a_{v-(\ell-1)}=(-1)^{\ell-1}\left(\binom{p_{1}-2+(\ell-1)}{\ell-1}-n_{\ell}\right). For i<1i<\ell-1, we have ni+1=0n_{i+1}=0, and thus we can say

avi=(1)i((p12+ii)ni+1)a_{v-i}=(-1)^{i}\left(\binom{p_{1}-2+i}{i}-n_{i+1}\right)

for 0<i10<i\leq\ell-1.

Suppose that 3<i<3<i<\ell and that Equation 5 holds for all homological gradings less than ii. We show that Equation 5 also holds for rkH𝒜2i,vi(G)\textnormal{rk}H_{\mathcal{A}_{2}}^{i,v-i}(G). Since chromatic homology is thin, each coefficient is the difference of the ranks of the two homology groups in the grading j=vij=v-i.

(6) avi=(1)i1rkH𝒜2i1,vi(G)+(1)irkH𝒜2i,vi(G)a_{v-i}=(-1)^{i-1}\textnormal{rk}H_{\mathcal{A}_{2}}^{i-1,v-i}(G)+(-1)^{i}\textnormal{rk}H_{\mathcal{A}_{2}}^{i,v-i}(G)

By the knight move isomorphism of [5], rkH𝒜2i1,vi(G)=rkH𝒜2i2,v(i2)(G)\textnormal{rk}H_{\mathcal{A}_{2}}^{i-1,v-i}(G)=\textnormal{rk}H_{\mathcal{A}_{2}}^{i-2,v-(i-2)}(G). We make this substitution into Equation 6, along with the value of avia_{v-i} derived above.

(1)i((p12+ii)ni+1)\displaystyle(-1)^{i}\left(\binom{p_{1}-2+i}{i}-n_{i+1}\right) =(1)i1rkH𝒜2i2,v(i2)(G)+(1)irkH𝒜2i,vi(G)\displaystyle=(-1)^{i-1}\textnormal{rk}H_{\mathcal{A}_{2}}^{i-2,v-(i-2)}(G)+(-1)^{i}\textnormal{rk}H_{\mathcal{A}_{2}}^{i,v-i}(G)
(p12+ii)ni+1\displaystyle\binom{p_{1}-2+i}{i}-n_{i+1} =rkH𝒜2i2,v(i2)(G)+rkH𝒜2i,vi(G)\displaystyle=-\textnormal{rk}H_{\mathcal{A}_{2}}^{i-2,v-(i-2)}(G)+\textnormal{rk}H_{\mathcal{A}_{2}}^{i,v-i}(G)
rkH𝒜2i,vi(G)\displaystyle\textnormal{rk}H_{\mathcal{A}_{2}}^{i,v-i}(G) =rkH𝒜2i2,v(i2)(G)+(p12+ii)ni+1\displaystyle=\textnormal{rk}H_{\mathcal{A}_{2}}^{i-2,v-(i-2)}(G)+\binom{p_{1}-2+i}{i}-n_{i+1}

By the induction assumption

rkH𝒜2i2,v(i2)(G)=(r0,0k=(i2)2ri2(p12+kk))ni1+(1)i1δb\displaystyle\textnormal{rk}H_{\mathcal{A}_{2}}^{i-2,v-(i-2)}(G)=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=(i-2)-2r\leq i-2\end{subarray}}\binom{p_{1}-2+k}{k}\right)-n_{i-1}+(-1)^{i-1}\delta^{b}

We may drop the term ni1=0n_{i-1}=0 since we are assuming i<i<\ell. Finally, we collect all binomial coefficients into the summation and note that i1i-1 has the same parity as i+1i+1.

rkH𝒜2i,vi(G)\displaystyle\textnormal{rk}H_{\mathcal{A}_{2}}^{i,v-i}(G) =(r0,0k=(i2)2ri2(p12+kk))+(1)i1δb+(p12+ii)ni+1\displaystyle=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=(i-2)-2r\leq i-2\end{subarray}}\binom{p_{1}-2+k}{k}\right)+(-1)^{i-1}\delta^{b}+\binom{p_{1}-2+i}{i}-n_{i+1}
=(r0,0k=iri(p12+kk))ni+1+(1)i+1δb\displaystyle=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-r\leq i\end{subarray}}\binom{p_{1}-2+k}{k}\right)-n_{i+1}+(-1)^{i+1}\delta^{b}\qed
Example 1.

Let KK be the knot 11a36211a362 (Dowker-Thistlethwaite notation) with diagram DD depicted in Figure 5. The all-positive state graph G+(D)G_{+}(D) has girth =6\ell=6 and cyclomatic number p1=2p_{1}=2. The Khovanov homology Kh(K)Kh(K) is shown in Table 1 and the chromatic homology H𝒜2(G+(D))H_{\mathcal{A}_{2}}(G_{+}(D)) in Table 3.

Refer to caption
Figure 5. Diagram of 11a36211a362 with all-positive state graph G+(D)G_{+}(D)

The graph G+(D)G_{+}(D) is bipartite with c=11c_{-}=11 and N=32N=-32. The groups shown in bold in Table 1 are those which correspond to chromatic homology groups in H𝒜2(G+(D))H_{\mathcal{A}_{2}}(G_{+}(D)). Theorem 3.3 describes the ranks of these Khovanov homology groups which are located on the lower diagonal. For i=1i=1 through i=2=4i=\ell-2=4:

rkKhic,N+2i(L)\displaystyle\textnormal{rk}Kh^{i-c_{-},N+2i}(L) =(r0,0k=i2ri(22+kk))+(1)i+1δb\displaystyle=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-2r\leq i\end{subarray}}\binom{2-2+k}{k}\right)+(-1)^{i+1}\delta^{b}
=(r0,0k=i2ri1)+(1)i+1=i2+1+(1)i+1\displaystyle=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-2r\leq i\end{subarray}}1\right)+(-1)^{i+1}=\left\lfloor\dfrac{i}{2}+1\right\rfloor+(-1)^{i+1}

while for i=1=5i=\ell-1=5:

rkKh5c,N+10(L)=(r0,0k=i2ri1)n6+(1)5+1=52+11+(1)6=3\displaystyle\textnormal{rk}Kh^{5-c_{-},N+10}(L)=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-2r\leq i\end{subarray}}1\right)-n_{6}+(-1)^{5+1}=\left\lfloor\dfrac{5}{2}+1\right\rfloor-1+(-1)^{6}=3

Observe that if one ignores the δb\delta^{b} term that keeps track of the bipartite property, the first 1\ell-1 ranks given by the formula are 1,1,2,2,31,1,2,2,3 which are the first 5 coefficients of the generating function 1(1+x)(1x)2\dfrac{1}{(1+x)(1-x)^{2}} (see Corollary 3.4).

𝐪/𝐩\mathbf{q/p} 11-11 10-10 9-9 8-8 7-7 6-6 5-5 4-4 3-3 2-2 1-1 0
8-8 11
10-10 121_{2}
12-12 33 11
14-14 11 323_{2}
16-16 33 33, 121_{2}
18-18 33 11, 323_{2}
20-20 \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}} 33, \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle32\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}}_{\textbf{2}}
22-22 \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle3\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}} \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle3,\ThisStyle\SavedStyle2\SavedStyle2\SavedStyle22\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}},\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}}_{\textbf{2}}
24-24 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}} \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2,\ThisStyle\SavedStyle3\SavedStyle3\SavedStyle32\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}},\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}}_{\textbf{2}}
26-26 \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}} \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle3,\ThisStyle\SavedStyle1\SavedStyle1\SavedStyle12\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}},\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}}_{\textbf{2}}
28-28 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1,\ThisStyle\SavedStyle2\SavedStyle2\SavedStyle22\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}},\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}}_{\textbf{2}}
30-30 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}} \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}}
32-32 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}}
Table 2. Khovanov homology Kh(11a362)Kh(11a362). An entry of kk represents a summand k\mathbb{Z}^{k}, and k2k_{2} represents a summand of 2k\mathbb{Z}_{2}^{k}. Entries in bold, from -11 to -5, are isomorphic to gradings in chromatic homology of G+(D)G_{+}(D) via Theorem 2.4.
𝐣/𝐢\mathbf{j/i} 0 11 22 33 44 55 66 77 88
1010 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}}
99 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}} \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}}
88 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1,\ThisStyle\SavedStyle2\SavedStyle2\SavedStyle22\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}},\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}}_{\textbf{2}}
77 \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}} \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle3,\ThisStyle\SavedStyle1\SavedStyle1\SavedStyle12\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}},\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}}_{2}
66 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}} \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2,\ThisStyle\SavedStyle3\SavedStyle3\SavedStyle32\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}},\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}}_{\textbf{2}}
55 \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle3\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}} \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle3,\ThisStyle\SavedStyle2\SavedStyle2\SavedStyle22\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}},\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}}_{\textbf{2}}
44 \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}} 2,\ThisStyle\SavedStyle3\SavedStyle3\SavedStyle322,\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}}_{\textbf{2}}
33 33 1,221,2_{2}
22 22 121_{2}
11 11
Table 3. Chromatic homology H𝒜2(G+(D))H_{\mathcal{A}_{2}}(G_{+}(D)) for the graph in Example 1. An entry of kk represents a summand k\mathbb{Z}^{k}, and k2k_{2} represents a summand of 2k\mathbb{Z}_{2}^{k}. Entries in bold are isomorphic to gradings in Khovanov homology (see Table 1).

4. More on the head and tail of the Jones polynomial

Theorem 3.3 can be used to compute the \ell extremal coefficients in the head or tail of the Jones polynomial, subject to certain conditions on the Khovanov homology of LL. As shown in Table 4, if Khi,j(L)Kh^{i,j}(L) is trivial for i>(1)ci>(\ell-1)-c_{-} and j<N+2j<N+2\ell, then the extremal coefficients of the unnormalized Jones polynomial are determined by precisely by the ranks described in Theorem 3.3. We conjecture that these gradings are always trivial in Khovanov homology, so that Theorem 4.1 is true for all links and not only those which are Khovanov thin.

𝐪/𝐩\mathbf{q/p} c-c_{-} 1c1-c_{-} \ldots (1)c(\ell-1)-c_{-} c\ell-c_{-} \cdots
\vdots \square \iddots
N+2N+2\ell \blacksquare \square
N+2(1)N+2(\ell-1) \blacksquare \blacksquare ? ? α1=av+1\rightarrow\alpha_{\ell-1}=a_{v-\ell+1}
\vdots \iddots \iddots ? ? \vdots
N+2N+2 \blacksquare \blacksquare ? ? α1=av1\rightarrow\alpha_{1}=a_{v-1}
NN \blacksquare ? ? α0=av\rightarrow\alpha_{0}=a_{v}
Table 4. Khovanov homology Kh(L)Kh(L) with coefficients αi\alpha_{i} for the unnormalized Jones polynomial on the right (compare with chromatic coefficients avia_{v-i} in Table 1). \square indicates possible homology. \blacksquare indicates isomorphism with chromatic homology. ? indicates gradings that must be zero for results to hold for all links
Theorem 4.1.

Let DD be a diagram of a link LL such that Kh(L)Kh(L) is homologically thin and G+(D)G_{+}(D) has girth >2\ell>2, with cyclomatic number p1p_{1} and number of \ell-cycles nn_{\ell}. Then the first \ell coefficients in the tail of JLJ_{L} are given by the formula:

(7) βi={(1)ic(D)(p11+ii)0i2(1)1c(D)((p11+(1)1)n)i=1\beta_{i}=\begin{cases}(-1)^{i-c_{-}(D)}\binom{p_{1}-1+i}{i}&0\leq i\leq\ell-2\\ (-1)^{\ell-1-c_{-}(D)}\left(\binom{p_{1}-1+(\ell-1)}{\ell-1}-n_{\ell}\right)&i=\ell-1\\ \end{cases}

If we consider the all-negative state graph G(D)G_{-}(D), an analogous statement holds for the first (G(D))\ell(G_{-}(D)) coefficients in the head of JLJ_{L}.

Proof.

The normalized Jones polynomial JLJ_{L} is the graded Euler characteristic of the reduced Khovanov homology \ThisStyle\stackengine.1\LMpt\SavedStyleKh\stretchto\scaleto\SavedStyle.5150.6OcFTS(L)\ThisStyle{\stackengine{-.1\LMpt}{$\SavedStyle Kh$}{\stretchto{\scaleto{\SavedStyle\mkern 0.2mu\AC}{.5150}}{.6}}{O}{c}{F}{T}{S}}(L), so we prove this result by describing \ThisStyle\stackengine.1\LMpt\SavedStyleKh\stretchto\scaleto\SavedStyle.5150.6OcFTS(L)\ThisStyle{\stackengine{-.1\LMpt}{$\SavedStyle Kh$}{\stretchto{\scaleto{\SavedStyle\mkern 0.2mu\AC}{.5150}}{.6}}{O}{c}{F}{T}{S}}(L). Let Ri=rkKhic,N+2i(L)R_{i}=\textnormal{rk}Kh^{i-c_{-},N+2i}(L) given by the formula in Theorem 3.3:

(8) Ri=rkKhic,N+2i(L)=(r0,0k=i2ri(p12+kk))ni+1+(1)i+1δbR_{i}=\textnormal{rk}Kh^{i-c_{-},N+2i}(L)=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-2r\leq i\end{subarray}}\binom{p_{1}-2+k}{k}\right)-n_{i+1}+(-1)^{i+1}\delta^{b}

for 0<i<0<i<\ell. We also assign R0=1R_{0}=1, the rank of Khc,N(L)Kh^{-c_{-},N}(L) for any LL satisfying the above condition on girth. For notational convenience we let Ri=0R_{i}=0 for i<0i<0.

Since the extreme gradings of Kh(L)Kh(L) from i=ci=c_{-} through i=(1)ci=(\ell-1)-c_{-} are isomorphic to chromatic homology, this part of Kh(L)Kh(L) is thin with only 2\mathbb{Z}_{2} torsion. The knight move isomorphism gives us the ranks of the additional groups on the second diagonal:

(9) Ri=rkKhic,N+2i(L)=rkKh(i+1)c,N+2(i+2)(L)R_{i}=\textnormal{rk}Kh^{i-c_{-},N+2i}(L)=\textnormal{rk}Kh^{(i+1)-c_{-},N+2(i+2)}(L)

which is valid for 1i21\leq i\leq\ell-2 if G+(D)G_{+}(D) is bipartite and 0i20\leq i\leq\ell-2 otherwise. Passing to Khovanov homology over 2\mathbb{Z}_{2} coefficients, we can replace “knight move” pairs of \mathbb{Z}s with “tetrominos” of 2\mathbb{Z}_{2}s, see [27, 15]:

(10) rktor2Kh2ic,N+2i(L)=rktor2Kh2ic,N+2(i+1)(L)={R1i=1 and G+(D) bipartiteRi1+Ri otherwise, 0i<\textnormal{rk}\textnormal{tor${}_{2}$}Kh_{\mathbb{Z}_{2}}^{i-c_{-},N+2i}(L)=\textnormal{rk}\textnormal{tor${}_{2}$}Kh_{\mathbb{Z}_{2}}^{i-c_{-},N+2(i+1)}(L)=\begin{cases}R_{1}&i=1\text{ and $G_{+}(D)$ bipartite}\\ R_{i-1}+R_{i}&\text{ otherwise, }0\leq i<\ell\end{cases}

Using [26, Cor.3.2C] and the fact that rk\ThisStyle\stackengine.1\LMpt\SavedStyleKhi,j\stretchto\scaleto\SavedStyle.5150.6OcFTS(L)=rk\ThisStyle\stackengine.1\LMpt\SavedStyleKh2i,j\stretchto\scaleto\SavedStyle.5150.6OcFTS(L)\textnormal{rk}\ThisStyle{\stackengine{-.1\LMpt}{$\SavedStyle Kh^{i,j}$}{\stretchto{\scaleto{\SavedStyle\mkern 0.2mu\AC}{.5150}}{.6}}{O}{c}{F}{T}{S}}(L)=\textnormal{rk}\ThisStyle{\stackengine{-.1\LMpt}{$\SavedStyle Kh^{i,j}_{\mathbb{Z}_{2}}$}{\stretchto{\scaleto{\SavedStyle\mkern 0.2mu\AC}{.5150}}{.6}}{O}{c}{F}{T}{S}}(L) for thin links, we obtain the reduced integer Khovanov homology:

(11) rk\ThisStyle\stackengine.1\LMpt\SavedStyleKh\stretchto\scaleto\SavedStyle.5150.6OcFTSic,N+2i+1(L)={R1i=1 and G+(D) bipartiteRi1+Ri otherwise, 0i<\textnormal{rk}\ThisStyle{\stackengine{-.1\LMpt}{$\SavedStyle Kh$}{\stretchto{\scaleto{\SavedStyle\mkern 0.2mu\AC}{.5150}}{.6}}{O}{c}{F}{T}{S}}^{i-c_{-},N+2i+1}(L)=\begin{cases}R_{1}&i=1\text{ and $G_{+}(D)$ bipartite}\\ R_{i-1}+R_{i}&\text{ otherwise, }0\leq i<\ell\end{cases}

Taking the graded Euler characteristic of \ThisStyle\stackengine.1\LMpt\SavedStyleKh\stretchto\scaleto\SavedStyle.5150.6OcFTS(L)\ThisStyle{\stackengine{-.1\LMpt}{$\SavedStyle Kh$}{\stretchto{\scaleto{\SavedStyle\mkern 0.2mu\AC}{.5150}}{.6}}{O}{c}{F}{T}{S}}(L) yields the following coefficients in the tail of JL(q)J_{L}(q):

(12) βi={(1)1cR1i=1 and G+(D) bipartite(1)ic(Ri1+Ri) otherwise, 0i<\beta_{i}=\begin{cases}(-1)^{1-c_{-}}R_{1}&i=1\text{ and $G_{+}(D)$ bipartite}\\ (-1)^{i-c_{-}}(R_{i-1}+R_{i})&\text{ otherwise, }0\leq i<\ell\end{cases}

The formula in Equation 7 clearly holds for i=0i=0, and for the bipartite case when i=1i=1 by direct calculation.

R1=(r0,0k=12r1(p12+kk)+(1)2)=(p111)+1=(p11+11)\displaystyle R_{1}=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=1-2r\leq 1\end{subarray}}\binom{p_{1}-2+k}{k}+(-1)^{2}\right)=\binom{p_{1}-1}{1}+1=\binom{p_{1}-1+1}{1}

For all other cases with 1i<11\leq i<\ell-1, we compute Ri1+RiR_{i-1}+R_{i}:

(r0,0k=(i1)2ri1(p12+kk)+(1)iδb)+(r0,0k=i2ri(p12+kk)+(1)i+1δb)\displaystyle\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=(i-1)-2r\leq i-1\end{subarray}}\binom{p_{1}-2+k}{k}+(-1)^{i}\delta_{b}\right)+\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-2r\leq i\end{subarray}}\binom{p_{1}-2+k}{k}+(-1)^{i+1}\delta_{b}\right)
=k=0i(p12+kk)=(p11+ii)=Ri1+Ri\displaystyle=\displaystyle\sum_{k=0}^{i}\binom{p_{1}-2+k}{k}=\binom{p_{1}-1+i}{i}=R_{i-1}+R_{i}

where δb=1\delta^{b}=1 if G+(D)G_{+}(D) is bipartite and 0 otherwise. For i=1i=\ell-1, ni+1=nn_{i+1}=n_{\ell} is non-zero so that R2+R1=(p11+(1)1)nR_{\ell-2}+R_{\ell-1}=\binom{p_{1}-1+(\ell-1)}{\ell-1}-n_{\ell}. ∎

Example 2.

Let KK be the knot 11a36211a362 as in Example 1. The unnormalized Jones polynomial J^K(q)\hat{J}_{K}(q) is the graded Euler characteristic of Kh(K)Kh(K):

J^K(q)\displaystyle\hat{J}_{K}(q) =q32+q30q28+q26q24q202q18q14+2q12+q8\displaystyle=-q^{-32}+q^{-30}-q^{-28}+q^{-26}-q^{-24}-q^{-20}-2q^{-18}-q^{-14}+2q^{-12}+q^{-8}

Table 5 illustrates how the first six terms in the tail (including one zero term) arise from the part of Kh(K)Kh(K) that agrees with the chromatic homology of G+(D)G_{+}(D). The normalized Jones polynomial is given by:

JK(q)=J^K(q)/(q+q1)=β0q31+β1q29+β2q27+β3q25+β4q23+β5q21+\displaystyle J_{K}(q)=\hat{J}_{K}(q)/(q+q^{-1})=\beta_{0}q^{-31}+\beta_{1}q^{-29}+\beta_{2}q^{-27}+\beta_{3}q^{-25}+\beta_{4}q^{-23}+\beta_{5}q^{-21}+\ldots
=q31+2q293q27+4q255q23+5q216q19+4q174q15+3q13q11+q9\displaystyle=-q^{-31}+2q^{-29}-3q^{-27}+4q^{-25}-5q^{-23}+5q^{-21}-6q^{-19}+4q^{-17}-4q^{-15}+3q^{-13}-q^{-11}+q^{-9}

Any A-adequate diagram of KK must have the same number of negative crossings (c=11)(c_{-}=11) as diagram DD [14]. The coefficients βi\beta_{i} agree with the formulas given in Theorem 4.1 for 0i1=50\leq i\leq\ell-1=5.

𝐪/𝐩\mathbf{q/p} 11-11 10-10 9-9 8-8 7-7 6-6 5-5 4-4
16-16 \iddots
18-18 33 \iddots
20-20 \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}} 33, \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle32\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}}_{2}
22-22 \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle3\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}} \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle3,\ThisStyle\SavedStyle2\SavedStyle2\SavedStyle22\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}},\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}}_{2} 0\rightarrow 0
24-24 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}} \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2,\ThisStyle\SavedStyle3\SavedStyle3\SavedStyle32\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}},\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}}_{2} q24\rightarrow-q^{-24}
26-26 \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}} \ThisStyle\SavedStyle3\SavedStyle3\SavedStyle3,\ThisStyle\SavedStyle1\SavedStyle1\SavedStyle12\ThisStyle{\ooalign{$\SavedStyle 3$\cr\kern-0.18pt$\SavedStyle 3$\cr\kern 0.18pt$\SavedStyle 3$}},\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}}_{2} q26\rightarrow q^{-26}
28-28 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1,\ThisStyle\SavedStyle2\SavedStyle2\SavedStyle22\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}},\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}}_{2} q28\rightarrow-q^{-28}
30-30 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}} \ThisStyle\SavedStyle2\SavedStyle2\SavedStyle2\ThisStyle{\ooalign{$\SavedStyle 2$\cr\kern-0.18pt$\SavedStyle 2$\cr\kern 0.18pt$\SavedStyle 2$}} q30\rightarrow q^{-30}
32-32 \ThisStyle\SavedStyle1\SavedStyle1\SavedStyle1\ThisStyle{\ooalign{$\SavedStyle 1$\cr\kern-0.18pt$\SavedStyle 1$\cr\kern 0.18pt$\SavedStyle 1$}} q32\rightarrow-q^{-32}
Table 5. Lowest gradings of the Khovanov homology Kh(11a362)Kh(11a362). Entries in bold are isomorphic to gradings in chromatic homology of G+(D)G_{+}(D) via Theorem 2.4. The rightmost column contains the terms of the graded Euler characteristic which agree with the chromatic polynomial of G+(D)G_{+}(D).

5. Girth of a link

Each planar diagram DD of a link LL has an associated state graph G+(D)G_{+}(D) whose chromatic homology is related to Khovanov homology by the correspondence described in Theorem 2.4. Notice that the girth of G+(D)G_{+}(D) depends on the diagram of a knot. For example, adding a right-hand twist to any strand of DD using a Reidemeister I move creates a loop in G+(D)G_{+}(D), reducing the girth of this graph to 11.

The applicability of Theorem 3.3 depends on the girth of G+(D)G_{+}(D); therefore, given any link LL, we are interested in finding a diagram DD that maximizes the contribution of chromatic homology to Khovanov homology.

The largest such contribution made to Kh(L)Kh(L) comes from the diagram for which G+(D)G_{+}(D) has the largest possible girth. This fact motivated the following definition that allows us to explicitly state the extent of the correspondence between Khovanov homology and the Jones polynomial with chromatic homology and the chromatic polynomial, respectively.

Definition 8 ([25]).

The girth of a link LL is gr(L)=max{(G+(D))|D is a diagram of L}\textnormal{gr}(L)=\max\{\ell(G_{+}(D))~{}|~{}\text{$D$ is a diagram of L}\} where G+(D)G_{+}(D) is the graph obtained from the all-positive Kauffman state of diagram DD, and (G+(D))\ell(G_{+}(D)) is the girth of graph G+(D)G_{+}(D).

Proposition 5.1 ([25]).

The girth gr(L)\textnormal{gr}(L) of any link LL is finite.

Proof.

The non-trivial groups in H𝒜2(G+(D))H_{\mathcal{A}_{2}}(G_{+}(D)) span at least (G+(D))1\ell(G_{+}(D))-1 homological gradings [25], which are isomorphic to (G+(D))1\ell(G_{+}(D))-1 corresponding gradings in Kh(L)Kh(L). Since the span of Kh(L)Kh(L) is bounded above, so are the possible girths of G+(D)G_{+}(D). ∎

Girth can alternatively be defined by taking the maximum value of (G(D))\ell(G_{-}(D)) over all diagrams of LL, or both values can be considered. A proof similar to that of Proposition 5.1 shows this invariant is also finite for any LL.

In the rest of this section we analyze properties and bounds on girth coming from the Jones polynomial and Khovanov homology, as well as types of graphs that can appear as state graphs for diagrams of a given link.

5.1. Bounds on the girth

As with many knot invariants defined as a maximum or a minimum over all diagrams of a given knot, one bound is much easier to prove than the other. In the case of girth, any knot diagram gives a lower bound. Theorems 3.3 and 4.1 provide some insight into what the upper bound on the girth of a link might be and the properties of a graph GG which realizes the girth.

Corollary 5.2.

Let LL be a link and let MKM_{K} be the greatest number such that

(13) rkKhP+i,Q+2i(L)=(r0,0k=i2ri(b2+kk))+(1)i+1δ\textnormal{rk}Kh^{P+i,Q+2i}(L)=\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=i-2r\leq i\end{subarray}}\binom{b-2+k}{k}\right)+(-1)^{i+1}\delta

for all 0<iMK20<i\leq M_{K}-2, where PP and QQ are the lowest homological and quantum gradings in Kh(L)Kh(L), b>0b>0, and either δ=0\delta=0 or δ=1\delta=1 for all ii. Then

(14) gr(L)MK.\textnormal{gr}(L)\leq M_{K}.
Corollary 5.3.

Suppose that link LL is Khovanov thin with Jones polynomial JL(q)J_{L}(q) as in Definition 1. Let MJM_{J} be the greatest number such that |βi|=(b1+ii)|\beta_{i}|=\binom{b-1+i}{i} for some b, with signs alternating, for all 0iMJ20\leq i\leq M_{J}-2. Then

(15) gr(L)MJ.\textnormal{gr}(L)\leq M_{J}.

It is worth noting that with the above notation, gr(L)MJMK\textnormal{gr}(L)\leq M_{J}\leq M_{K}. Moreover, MJ=MKM_{J}=M_{K} for homologically thin links and we conjecture this will be true in general.

In Example 4, we demonstrate that the upper bounds for gr(K)\textnormal{gr}(K) provided by Khovanov homology and the Jones coefficients are not necessarily achieved by any diagram of KK.

5.2. On all-positive state graphs

The following corollary of Theorem 3.3 states that if Khovanov and chromatic homology agree on 3 or more gradings, this agreement imposes a restriction on the type of graphs that realize the isomorphism.

Corollary 5.4.

Suppose that the link LL has a diagram DD such that G+(D)G_{+}(D) has girth >2\ell>2. Then:

  1. (1)

    [21] G+(D)G_{+}(D) is bipartite if and only if rkKhc,N+2(L)=1\textnormal{rk}Kh^{-c_{-},N+2}(L)=1.

  2. (2)

    [21] the cyclomatic number of G+(D)G_{+}(D) is p_1 = rkKh^1-c_-, N+2(L)-rkKh^-c_-, N+2(L)+1

  3. (3)

    the number of \ell-cycles in G+(D)G_{+}(D) is equal to

    n=(r0,0k=(1)2r(1)(p12+kk))+(1)rkKhc,N+2(L)rkKh(1)c,N+2(1)(L)\displaystyle n_{\ell}=\left(\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=(\ell-1)-2r\leq(\ell-1)\end{subarray}}\binom{p_{1}-2+k}{k}\right)+(-1)^{\ell}\textnormal{rk}Kh^{-c_{-},N+2}(L)-\textnormal{rk}Kh^{(\ell-1)-c_{-},N+2(\ell-1)}(L)

A similar result exists for thin links via the Jones polynomial and Theorem 4.1.

Corollary 5.5.

Suppose that link LL is homologically thin with Jones polynomial: J_L(q) = β_0q^C + β_1q^C+2 + β_2q^C+4 + β_3q^C+6 + … and that DD is a diagram of LL such that G+(D)G_{+}(D) has girth >2\ell>2. Then the cyclomatic number of G+(D)G_{+}(D) is equal to |β1||\beta_{1}| and the number of \ell-cycles in G+(D)G_{+}(D) is equal to (|β1|1+(1)1)|β|.\binom{|\beta_{1}|-1+(\ell-1)}{\ell-1}-|\beta_{\ell}|.

Example 3.

Let K=11a362K=11a362 as in Examples 1 and 2. From the Khovanov homology in Table 1, we see that rkKh10,30(K)=2=(11)+1,rkKh9,28(K)=1=(22)+(220)1,rkKh8,26(K)=3=(33)+(211)+1\textnormal{rk}Kh^{-10,-30}(K)=2=\binom{1}{1}+1,\textnormal{rk}Kh^{-9,-28}(K)=1=\binom{2}{2}+\binom{2-2}{0}-1,\textnormal{rk}Kh^{-8,-26}(K)=3=\binom{3}{3}+\binom{2-1}{1}+1, and rkKh7,24(K)=2=(44)+(22)+(220)1\textnormal{rk}Kh^{-7,-24}(K)=2=\binom{4}{4}+\binom{2}{2}+\binom{2-2}{0}-1.

These ranks agree with Equation 13 for the values b=2b=2, δ=1\delta=1, and 0<i40<i\leq 4. However, there is no agreement for i=5i=5, since

rkKh6,22(K)=3\textnormal{rk}Kh^{-6,-22}(K)=3

but

(r0,0k=52r5(22+kk))+(1)5+1=(55)+(33)+(211)+1=4.\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=5-2r\leq 5\end{subarray}}\binom{2-2+k}{k}\right)+(-1)^{5+1}=\binom{5}{5}+\binom{3}{3}+\binom{2-1}{1}+1=4.

Using Corollary 5.2 we conclude that MK=4+2=6M_{K}=4+2=6 is an upper bound for gr(K)\textnormal{gr}(K).

Since KK is Khovanov thin, we can obtain the same upper bound for gr(K)\textnormal{gr}(K) using the Jones coefficients and Corollary 5.3. From Example 2 we have

β0=1,β1=2,β2=3,β3=4,β4=5\beta_{0}=-1,\beta_{1}=2,\beta_{2}=-3,\beta_{3}=4,\beta_{4}=-5

These coefficients alternate in sign and their absolute values satisfy the formula (b+i1i)\binom{b+i-1}{i} for b=2b=2, 0i40\leq i\leq 4. From Corollary 5.3 we derive the upper bound of MJ=4+2=6M_{J}=4+2=6.

Suppose DD is a diagram of KK such that G+(D)G_{+}(D) realizes the maximum girth of 6. Using Corollary 5.4, we determine G+(D)G_{+}(D) must be bipartite since rkKh11,30(K)=1.\textnormal{rk}Kh^{-11,-30}(K)=1. The cyclomatic number of G+(D)G_{+}(D) must be

p1=rkKh10,30(L)rkKh11,30(L)+1=2p_{1}=\textnormal{rk}Kh^{-10,30}(L)-\textnormal{rk}Kh^{-11,30}(L)+1=2

while the number of 6-cycles in G+(D)G_{+}(D) must be

n6\displaystyle n_{6} =(r0,0k=52r5(22+kk))+(1)6rkKh11,30(K)rkKh6,22(K)\displaystyle=\left(\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=5-2r\leq 5\end{subarray}}\binom{2-2+k}{k}\right)+(-1)^{6}\textnormal{rk}Kh^{-11,-30}(K)-\textnormal{rk}Kh^{-6,-22}(K)
=3+13=1.\displaystyle=3+1-3=1.

Together, these statements imply that G+(D)G_{+}(D) must be a bipartite graph containing exactly 2 cycles: one cycle of length 6 and another cycle of length nn where n>6n>6 is even.

The following example demonstrates that inequalities (14) and (15) may be strict; i.e., there may be no diagram for a link that realizes either of these upper bounds for girth.

Example 4.

The knot K=12n821K=12n821 is both non-alternating and homologically thin, with Jones polynomial q52q4+3q34q2+5q15+5q+4q23q3+2q4+q5q^{-5}-2q^{-4}+3q^{-3}-4q^{-2}+5q^{-1}-5+5q+4q^{2}-3q^{3}+2q^{4}+q^{5}. By Corollary 5.3 applied to the first 5 coefficients, we find an upper bound MJ=6M_{J}=6 for the girth of KK. Similarly, we can apply Corollary 5.2 to ranks on the main diagonal of Kh(L)Kh(L) to obtain the same upper bound for girth, MK=6M_{K}=6. However, we can show that no diagram of KK exists which achieves this upper bound

Suppose that KK has a diagram DD such that G+(D)G_{+}(D) has girth greater than 2. Then this diagram is both plus-adequate and non-alternating, so GG must have a cut-vertex [28]. By Corollary 5.4, p1(G+(D))=2p_{1}(G_{+}(D))=2. Since G+(D)G_{+}(D) has no loops or multiple edges, it must be a vertex join of two cycles, PnPmP_{n}*P_{m}. Any knot diagram with all-positive graph PnPmP_{n}*P_{m} is a diagram of an alternating knot: either a connected sum of torus links, or a rational knot. But KK has no alternating diagram, so the girth of 12n82112n821 must be less than or equal to 2.

In addition, the same argument can be applied to show that the girth of any all-negative state graph for this knot is less than or equal to 2.

The 2nd coefficient of the Jones polynomial, which captures the cyclomatic number of G+(D)G_{+}(D), uniquely determines the first gr(L)1\textnormal{gr}(L)-1 coefficients. In a similar fashion, the first two homological gradings of Kh(L)Kh(L) determine the first gr(L)\textnormal{gr}(L) gradings. This leads to a somewhat surprising result.

Theorem 5.6.

Let LL be a non-trivial link. If DD is a diagram of LL such that (G+(D))<gr(L)\ell(G_{+}(D))<\textnormal{gr}(L), then (G+(D))=1\ell(G_{+}(D))=1 or (G+(D))=2\ell(G_{+}(D))=2.

Proof.

The result holds for 1gr(L)31\leq\textnormal{gr}(L)\leq 3, since no non-trivial diagram can have (G+(D))=0\ell(G_{+}(D))=0. For gr(L)=M>3\textnormal{gr}(L)=M>3, there exists some diagram DmaxD_{max} such that Gmax=G+(Dmax)G_{max}=G_{+}(D_{max}) has girth MM. Suppose that there exists another diagram DD of LL such that G=G+(D)G=G_{+}(D) has girth hh, with 2<h<M2<h<M. Applying Theorem 3.3 to diagram DmaxD_{max} for i=h1i=h-1, we find that the rank of the Khovanov homology group Kh(h1)c(Dmax),N(Dmax)+2(h1)(L)Kh^{(h-1)-c_{-}(D_{max}),N(D_{max})+2(h-1)}(L) is equal to

(16) (r0,0k=(h1)2r(h1)(p1(Gmax)2+kk))nh(Gmax)+(1)hδb(Gmax)\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=(h-1)-2r\leq(h-1)\end{subarray}}\binom{p_{1}(G_{max})-2+k}{k}\right)-n_{h}(G_{max})+(-1)^{h}\delta^{b}(G_{max})

where N(Dmax)=|s+(Dmax)|+c+(Dmax)2c(Dmax)N(D_{max})=-|s_{+}(D_{max})|+c_{+}(D_{max})-2c_{-}(D_{max}) and δb(Gmax)\delta^{b}(G_{max}) is 1 if GmaxG_{max} is bipartite, 0 otherwise.

Now we also apply Theorem 3.3 to diagram DD for i=h1i=h-1. Since DmaxD_{max} and DD are both plus-adequate, c(Dmax)=c(D)c_{-}(D_{max})=c_{-}(D). In addition, |s+(Dmax)|+c+(Dmax)=|s+(D)|+c+(D)-|s_{+}(D_{max})|+c_{+}(D_{max})=-|s_{+}(D)|+c_{+}(D) and thus N(Dmax)=N(D)N(D_{max})=N(D) (see [14]). Thus Equation 17 describes the rank of the same group in Khovanov homology as in Equation 16:

(17) (r0,0k=(h1)2r(h1)(p1(G)2+kk))nh(G)+(1)hδb(G)\left(\displaystyle\sum_{\begin{subarray}{c}r\geq 0,\\ 0\leq k=(h-1)-2r\leq(h-1)\end{subarray}}\binom{p_{1}(G)-2+k}{k}\right)-n_{h}(G)+(-1)^{h}\delta^{b}(G)

with N(D)N(D) and δb(G)\delta^{b}(G) defined as above.

Since (Gmax)=M>2\ell(G_{max})=M>2 and (G)=h>2\ell(G)=h>2, we can use Corollary 5.4 to calculate p1(Gmax)=p1(G)p_{1}(G_{max})=p_{1}(G) and δb(Gmax)=δb(G)\delta^{b}(G_{max})=\delta^{b}(G). Setting Equation 16 equal to Equation 17, we see that nh(Gmax)n_{h}(G_{max}) must be equal to nh(G)n_{h}(G). However, nh(Gmax)=0n_{h}(G_{max})=0 by assumption (because h<Mh<M) while nh(G)>0n_{h}(G)>0 (because GG must contain at least one cycle of length hh). Thus we have a contradiction and no such diagram DD may exist. ∎

Corollary 5.7.

If LL has a diagram DD such that (G+(D))=p3\ell(G_{+}(D))=p\geq 3, then gr(L)=p\textnormal{gr}(L)=p.

Example 5 (Alternating pretzel links).

Let LL be an alternating pretzel link with twist parameters (a1,a2,,an)(-a_{1},-a_{2},\ldots,-a_{n}) where ai>1a_{i}>1 for all ii. The girth of the graph obtained from the standard diagram is min{ai+aj|1ijn}\min\{a_{i}+a_{j}~{}|~{}1\leq i\neq j\leq n\}. Since this number is at least 4, it is equal to gr(L)\textnormal{gr}(L) by Corollary 5.7.

Example 6 (3-braids).

Suppose LL is the closure of a negative 3-braid γ=σi1a1σi2a2σikak\gamma=\sigma_{i_{1}}^{a_{1}}\sigma_{i_{2}}^{a_{2}}\ldots\sigma_{i_{k}}^{a_{k}}, aj1a_{j}\leq-1. If ij{1,2}i_{j}\in\{1,2\} and ijij+1i_{j}\neq i_{j+1} for all jj, then (G+(γ))3\ell(G_{+}(\gamma))\geq 3 [24, Proposition 5.1] and so gr(L)=(G+(γ))\textnormal{gr}(L)=\ell(G_{+}(\gamma)) by Corollary 5.7.

5.3. Girth and related knot invariants

It turns out that girth behaves well under connected sum. Recall that the connected sum of two oriented knots K1,K2K_{1},K_{2} is well-defined for any choice of planar diagrams for these two knots.

Theorem 5.8.

The girth of a connect sum K1#K2K_{1}\#K_{2} of two knots K1,K2K_{1},K_{2} is equal to the minimum of the girths of these knots: gr(K1#K2)=min{gr(K1),gr(K2)}.\textnormal{gr}(K_{1}\#K_{2})=\min\{\textnormal{gr}(K_{1}),\textnormal{gr}(K_{2})\}.

Proof.

First we show that min{gr(K1),gr(K2)}gr(K1#K2)\min\{\textnormal{gr}(K_{1}),\textnormal{gr}(K_{2})\}\leq\textnormal{gr}(K_{1}\#K_{2}). Let D1D_{1} be a diagram of K1K_{1}, D2D_{2} be a diagram of K2K_{2} such that (G+(D1))=gr(K1)\ell(G_{+}(D_{1}))=\textnormal{gr}(K_{1}) and (G+(D2))=gr(K2)\ell(G_{+}(D_{2}))=\textnormal{gr}(K_{2}). When we perform the connected sum operation on D1D_{1} and D2D_{2}, the all-positive state graph of the new diagram consists of G+(D1)G_{+}(D_{1}) and G+(D2)G_{+}(D_{2}) joined at a single vertex, with girth min{gr(K1),gr(K2)}\min\{\textnormal{gr}(K_{1}),\textnormal{gr}(K_{2})\}. This gives a lower bound for the girth of K1#K2K_{1}\#K_{2}.

Now we use Corollary 5.3 to prove that gr(K1#K2)min{gr(K1),gr(K2)}\textnormal{gr}(K_{1}\#K_{2})\leq\min\{\textnormal{gr}(K_{1}),\textnormal{gr}(K_{2})\} and thus show equality. Recall that JK1#K2=JK1JK2J_{K_{1}\#K_{2}}=J_{K_{1}}J_{K_{2}} [14]. Let g1=gr(K1)g_{1}=\textnormal{gr}(K_{1}), g2=gr(K2)g_{2}=\textnormal{gr}(K_{2}) and assume without loss of generality that g1g2g_{1}\leq g_{2}. Then the tail of JK1J_{K_{1}} has the form:

(18) JK1(q)\displaystyle J_{K_{1}}(q) =(1)s1(P0qC1P1qC1+2++(1)g11Pg11qC1+2(g11)+)\displaystyle=(-1)^{s_{1}}\left(P_{0}q^{C_{1}}-P_{1}q^{C_{1}+2}+\ldots+(-1)^{g_{1}-1}P_{g_{1}-1}q^{C_{1}+2(g_{1}-1)}+\ldots\right)
(19) =(1)s1(i=0g11(1)iPiqC1+2i+)\displaystyle=(-1)^{s_{1}}\left(\sum_{i=0}^{g_{1}-1}(-1)^{i}P_{i}q^{C_{1}+2i}+\ldots\right)

where Pi=(b11+ii)P_{i}=\binom{b_{1}-1+i}{i} for 0ig120\leq i\leq g_{1}-2, Pg11=(b11+(g11)g11)ng1P_{g_{1}-1}=\binom{b_{1}-1+(g_{1}-1)}{g_{1}-1}-n_{g_{1}} (Theorem 4.1) and s1s_{1}, C1,b1>0,ng1>0C_{1},b_{1}>0,n_{g_{1}}>0 all depend on K1K_{1}.

Similarly, the tail of the Jones polynomial JK2J_{K_{2}} has the form:

(20) JK2(q)=(1)s2(i=0g21(1)iQiqC2+2i+)J_{K_{2}}(q)=(-1)^{s_{2}}\left(\sum_{i=0}^{g_{2}-1}(-1)^{i}Q_{i}q^{C_{2}+2i}+\ldots\right)

where Qi=(b21+ii)Q_{i}=\binom{b_{2}-1+i}{i} for 0ig220\leq i\leq g_{2}-2, Qg21=(b21+(g21)g21)ng2Q_{g_{2}-1}=\binom{b_{2}-1+(g_{2}-1)}{g_{2}-1}-n_{g_{2}}, and s2s_{2}, C2,b2>0,ng2>0C_{2},b_{2}>0,n_{g_{2}}>0 all depend on K2K_{2}.

Theorem 4.1 describes the first g1g_{1} coefficients of JK1J_{K_{1}} and the first g2g_{2} coefficients of JK2J_{K_{2}}. The tail coefficients of JK1#K2=JK1JK2J_{K_{1}\#K_{2}}=J_{K_{1}}J_{K_{2}} result from combinations of the coefficients in Equations 18 and 20. We write the product as:

(21) JK1#K2(q)=(1)s1+s2(R0qC1+C2R1qC1+C2+2++(1)g11Rg11qC1+C2+2(g11)+)J_{K_{1}\#K_{2}}(q)=(-1)^{s_{1}+s_{2}}\left(R_{0}q^{C_{1}+C_{2}}-R_{1}q^{C_{1}+C_{2}+2}+\ldots+(-1)^{g_{1}-1}R_{g_{1}-1}q^{C_{1}+C_{2}+2(g_{1}-1)}+\ldots\right)

where Ri=n=0iPnQinR_{i}=\sum_{n=0}^{i}P_{n}Q_{i-n} for 0ig110\leq i\leq g_{1}-1. Recalling our assumption that g1g2g_{1}\leq g_{2}, observe that we cannot say anything about the coefficients that follow Rg11R_{g_{1}-1} because we only have P0P_{0} through Pg11P_{g_{1}-1} for the first polynomial.

For 0ig120\leq i\leq g_{1}-2, we compute the following, using a modified form of the Chu-Vandermonde identity (see [11, Table 3]):

(22) Ri=n=0iPnQin=n=0i(b11+nn)(b21+(in)in)=((b1+b2)1+ii)R_{i}=\sum_{n=0}^{i}P_{n}Q_{i-n}=\sum_{n=0}^{i}\binom{b_{1}-1+n}{n}\binom{b_{2}-1+(i-n)}{i-n}=\binom{(b_{1}+b_{2})-1+i}{i}

while on the other hand for i=g11i=g_{1}-1:

(23) Rg11\displaystyle R_{g_{1}-1} =n=0g11PnQ(g11)n=n=0g12PnQ(g11)n+Pg11Q0\displaystyle=\sum_{n=0}^{g_{1}-1}P_{n}Q_{(g_{1}-1)-n}=\sum_{n=0}^{g_{1}-2}P_{n}Q_{(g_{1}-1)-n}+P_{g_{1}-1}Q_{0}

Since Pg11=(b11+(g11)g11)ng1P_{g_{1}-1}=\binom{b_{1}-1+(g_{1}-1)}{g_{1}-1}-n_{g_{1}} with ng1>0n_{g_{1}}>0, Rg11R_{g_{1}-1} does not agree with the formula in Equation 22 that describes the coefficients from i=0i=0 to i=g12i=g_{1}-2. Thus the sequence of coefficients RiR_{i} for JK1#K2J_{K_{1}\#K_{2}} along with the alternating signs in Equation 21 satisfy the conditions of Corollary 5.3 for 0ig120\leq i\leq g_{1}-2. Hence the upper bound for gr(K1#K2)\textnormal{gr}(K_{1}\#K_{2}) given by the tail of JK1#K2J_{K_{1}\#K_{2}} is MJ=(g12)+2=g1=min{gr(K1),gr(K2)}M_{J}=(g_{1}-2)+2=g_{1}=\min\{\textnormal{gr}(K_{1}),\textnormal{gr}(K_{2})\}. ∎

For a reduced knot diagram DD, the knot signature and numbers of crossings give upper bounds on the girths of G+(D)G_{+}(D) and G(D)G_{-}(D), the graphs related to the all-positive and all-negative Kauffman states s+(D)s_{+}(D) and s(D)s_{-}(D). Recall that σ(L)\sigma(L) is a link invariant given by the signature of the Seifert matrix obtained from any diagram of LL. We denote the number of crossings in a diagram by c(D)c(D) and the numbers of positive and negative crossings by c+(D),c(D)c_{+}(D),c_{-}(D) respectively, using the crossing conventions from [14].

Theorem 5.9.

Let KK be a non-trivial knot with an oriented, reduced diagram DD. Then ℓ(G_+(D)) ≤2c(D)c-(D)-σ(K)+1.

Proof.

The graph G+(D)G_{+}(D) is planar and connected, so the girth (G+(D))\ell(G_{+}(D)) is related to the numbers of edges and vertices by the following inequality: E(G+(D))(G+(D))2(v2)E\leq\displaystyle\frac{\ell(G_{+}(D))}{\ell(G_{+}(D))-2}(v-2) (see e.g. [8]). Since DD is reduced, we may assume that (G+(D))2\ell(G_{+}(D))\geq 2 and rearrange the inequality as (G+(D))2EEv+2\ell(G_{+}(D))\leq\displaystyle\frac{2E}{E-v+2}. The number of edges EE is the number of crossings c(D)c(D), and the number of vertices is the number of connected components s+s_{+} in the all-positive smoothing of DD. Using the inequality σ(K)s+(D)c+(D)1\sigma(K)\leq s_{+}(D)-c_{+}(D)-1 [7] we obtain the result:

(24) (G+(D))2EEv+2=2c(D)c(D)s+(D)+22c(D)c(D)σ(K)+1\ell(G_{+}(D))\leq\displaystyle\frac{2E}{E-v+2}=\displaystyle\frac{2c(D)}{c(D)-s_{+}(D)+2}\leq\displaystyle\frac{2c(D)}{c_{-}(D)-\sigma(K)+1}\qed

A similar proof using σ(K)s(D)+c(D)+1\sigma(K)\leq-s_{-}(D)+c_{-}(D)+1 gives an upper bound for the girth of G(D)G_{-}(D).

Corollary 5.10.

Given an oriented, reduced, positive knot diagram DD then: (G+(D))23c(D)\ell(G_{+}(D))\leq\dfrac{2}{3}c(D). Note that this inequality is sharp.

Proof.

Since DD is positive, c(D)=0c_{-}(D)=0 and σ(K)2\sigma(K)\leq-2 [22]. The standard diagram of the (3,3,3)(-3,-3,-3) pretzel knot, which has 9 positive crossings, σ=2\sigma=-2, and G+(D)G_{+}(D) with girth 6 provides an example where the equality (G+(D))=23c(D)\ell(G_{+}(D))=\dfrac{2}{3}c(D) is achieved. ∎

Example 7.

As an application, we observe that a positive alternating knot can never have a diagram DD such that G+(D)G_{+}(D) is a cycle graph. Such a diagram would have (G+(D))=c(D)\ell(G_{+}(D))=c(D), a contradiction by Corollary 5.10.

If we restrict our attention to alternating links, we can get more specific results about girths of alternating diagrams. In particular, the following theorem states that any two reduced diagrams of a prime alternating link have the same girth.

Theorem 5.11.

Let LL be a prime alternating link. If DD, DD^{\prime} are two reduced alternating diagrams of LL, then G+(D)G_{+}(D), G+(D)G_{+}(D^{\prime}) have the same girth.

Proof.

The Tait flyping conjecture states that any two reduced alternating diagrams of LL are related by flypes [17]. Flypes may be expressed as a series of mutations, which induce Whitney flips on the corresponding graph [12]. Thus G+(D)G_{+}(D) and G+(D)G_{+}(D^{\prime}) are 2-isomorphic graphs. Girth is an invariant of the cycle matroid [20], so G+(D)G_{+}(D) and G+(D)G_{+}(D^{\prime}) have the same girth. ∎

References

  • [1] M. Asaeda and J. Przytycki. Khovanov homology: torsion and thickness. In Advances in Topological Quantum Field Theory, volume 179 of NATO Science Series II, pages 135–166. Springer, 2004.
  • [2] D. Bar-Natan. On Khovanov’s categorification of the Jones polynomial. Algebraic and Geometric Topology, 2:337–370, 2002.
  • [3] H. Bielak. A new method for counting chromatic coefficients. Annales UMCS Informatica AI, 3(1):179–189, 2005.
  • [4] B. Bollobás. Modern Graph Theory. Graduate Texts in Mathematics. Springer, 1998.
  • [5] M. Chmutov, S. Chmutov, and Y. Rong. Knight move in chromatic cohomology. European Journal of Combinatorics, 29(1):311–321, 2008.
  • [6] O. Dasbach and X.-S. Lin. On the head and tail of the colored Jones polynomial. Compositio Mathematica, 142(2):1332–1342, 2006.
  • [7] O. Dasbach and A. Lowrance. Turaev genus, knot signature, and the knot homology concordance invariants. Proceedings of the American Mathematical Society, 139:2631–2645, 2011.
  • [8] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2000.
  • [9] F. Dong, K. M. Koh, and K. L. Teo. Chromatic Polynomials and Chromaticity of Graphs. World Scientific, Singapore, 2005.
  • [10] E. Farrell. On chromatic coefficients. Discrete Mathematics, 29:257–264, 1980.
  • [11] H. Gould. Combinatorial Identities. 1972.
  • [12] J. Greene. Conway mutation and alternating links. In Proceedings of Gökova Geometry-Topology Conference 2011, pages 31–41, 2011.
  • [13] M. Khovanov. A categorification of the Jones polynomial. Duke Mathematical Journal, 101(3):359–426, 2000.
  • [14] W. Lickorish. An introduction to knot theory. Graduate Texts in Mathematics. Springer, 1997.
  • [15] A. Lowrance and R. Sazdanović. Khovanov homology, chromatic homology, and torsion. Topology and its Applications, 222:77–99, 2017.
  • [16] A. Lowrance and D. Spyropoulos. The Jones polynomial of an almost alternating link. New York Journal of Mathematics, 23:1611–1639, 2017.
  • [17] W. Menasco and M. Thistlethwaite. The Tait flyping conjecture. Bulletin of the American Mathematical Society, 25(2):403–412, 1991.
  • [18] G. Meredith. Coefficients of chromatic polynomials. Journal of Combinatorial Theory, Series B, 13:14–17, 1972.
  • [19] S. Mukherjee, J. Przytycki, M. Silvero, X. Wang, and S. Y. Yang. Search for torsion in Khovanov homology. Experimental Mathematics, 2017.
  • [20] J. Oxley. Matroid Theory. Oxford University Press, New York, 1992.
  • [21] M. Pabiniak, J. Przytycki, and R. Sazdanović. On the first group of the chromatic cohomology of graphs. Geometriae Dedicata, 140(1):19–48, 2009.
  • [22] J. Przytycki. Positive knots have negative signature. Bulletin of the Polish Academy of Sciences - Mathematics, 559-562, 1989.
  • [23] J. Przytycki. When the theories meet: Khovanov homology as Hochschild homology of links. Quantum Topology, 1(2):93–109, 2010.
  • [24] J. Przytycki and R. Sazdanović. Torsion in Khovanov homology of semi-adequate links. Fundamenta Mathematicae, 225:277–303, 2014.
  • [25] R. Sazdanović and D. Scofield. Patterns in Khovanov link and chromatic graph homology. Journal of Knot Theory and its Ramifications, 27(3), 2018.
  • [26] A. Shumakovitch. Torsion of Khovanov homology. Fundamenta Mathematicae, 225(0):343–364, 2014.
  • [27] A. Shumakovitch. Torsion in Khovanov homology of homologically thin knots. Forthcoming, 2016.
  • [28] A. Stoimenow. Coefficients and non-triviality of the Jones polynomial. Journal für die Reine und Angewandte Mathematik, 657:1–55, 2011.
  • [29] M. Stosić. Homological thickness and stability of torus knots. Algebraic and Geometric Topology, 7(1):261–284, 2007.