This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Extrapolation to nonequilibrium from coarse grained response theory

Urna Basu SISSA - International School for Advanced Studies and INFN, Trieste, Italy LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France    Laurent Helden 2. Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany    Matthias Krüger 4th Institute for Theoretical Physics, Universität Stuttgart, Germany Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
Abstract

Nonlinear response theory, in contrast to linear cases, involves (dynamical) details, and this makes application to many body systems challenging. From the microscopic starting point we obtain an exact response theory for a small number of coarse grained degrees of freedom. With it, an extrapolation scheme uses near-equilibrium measurements to predict far from equilibrium properties (here, second order responses). Because it does not involve system details, this approach can be applied to many body systems. It is illustrated in a four state model and in the near critical Ising model.

Understanding properties of nonequilibrium systems is an ambitious goal of modern statistical physics Seifert (2012), and here, the fluctuation dissipation theorem (FDT) is of fundamental importance: It relates the linear response of a system to its thermal fluctuations in the equilibrium state Kubo and Tomita (1954); Kubo et al. (2012). This insight is of practical benefit in solid state physics Phillips (2012) as well as in classical systems.

The FDT holds close to equilibrium, and extending it to far from equilibrium has been the subject of intense research. The case of small perturbations of far-from-equilibrium states has been analyzed in various works Seifert (2012); Ruelle (1998); Harada and Sasa (2005); Speck and Seifert (2006); Blickle et al. (2007); Chetrite et al. (2008); Marconi et al. (2008); Baiesi et al. (2009); Prost et al. (2009); Krüger and Fuchs (2009); Lippiello et al. (2014). Another direction aims at finding the nonlinear response, i.e., the response to strong perturbations. The derived formulas relate response functions to nonequilibrium correlation functions Yamada and Kawasaki (1967); Evans and Morriss (1988); Fuchs and M. E. Cates (2005), or to (higher order) correlation functions evaluated in equilibrium Kubo and Tomita (1954); Semerjian et al. (2004); Bouchaud and Biroli (2005); Andrieux and Gaspard (2007); Lippiello et al. (2008a); Colangeli et al. (2011); Lucarini and Colangeli (2012); Basu et al. (2015). The latter concept has been applied experimentally only recently Helden et al. (2016), where the second order response was obtained from an equilibrium measurement.

Extensions of FDT to far from equilibrium cases are typically plagued by a property, which is deeply inherent to nonequilibrium physics: Their application requires information about the interactions and dynamics of the system, so that in principle all degrees of freedom (or their nonequilibrium-distributions) have to be tracked during the measurement (see discussions in Refs. Basu et al. (2015); Seifert (2012)). This statement may be exemplified for colloidal particles, investigated in Ref. Helden et al. (2016): To apply second order response theory, the interaction potential of the particles and their dynamical laws have to be known (and monitored). It is this aspect of nonequilibrium response theory (the dynamical details mentioned in the abstract) which often restricts its applicability to systems with small number of degrees of freedom, and has prevented application to many body systems.

A general route for many body systems identifies a relevant subset of important (slow) degrees of freedom, and less relevant (fast) degrees are integrated out. Examples are the so called Mori-Zwanzig projection formalism Zwanzig (2001, 1960, 1961); Mori (1958, 1965) or Fokker-Planck- or Langevin equations Risken (1989); Dhont (1996). When applying such approaches to nonequilibrium cases, the integrated degrees of freedom are typically assumed to be in equilibrium.

In this Letter, we derive a response scheme which overcomes these issues: Starting from the microscopic description, we derive a nonlinear response relation for a small subset of coarse grained degrees of freedom, which is then used in an extrapolation scheme: Measurements near equilibrium, i.e., linear in perturbation, are used to predict responses further away from equilibrium, i.e., to second order in perturbation. The microscopic degrees do neither have to be tracked, nor are they assumed to be equilibrating fast, so that this scheme is applicable to many body systems. We demonstrate applicability in an exactly solvable jump process and in computer simulations of the 2D Ising model.

Coarse grained nonlinear response theory from path integrals – We consider a classical many body system which is in weak contact with an equilibrium thermal bath. Considering for example the Ising model (see below), nonlinear response theory, as e.g. given in Ref. Basu et al. (2015); Lippiello et al. (2008b), can only be applied if the Hamiltonian (e.g., nearest- or next to nearest neighbor interactions) and the dynamics (e.g., specific spin flip rules) are known, and if all degrees are tracked. Our goal is development of a nonlinear response method which can be applied by tracking a small number of degress of freedom, e.g., the order parameter in the Ising model, not necessitating knowledge about the details of the system.

To this end, we introduce a coarse grained description in terms of n𝑛n (experimentally trackable) macrostates, each containing several, uniquely assigned microstates. At any time t𝑡t, the system is thus characterized by a unique macrovariable Xt=0,1,,n1subscript𝑋𝑡01𝑛1X_{t}=0,1,\dots,n-1 (e.g., the sign of the magnetization in the Ising model is described by two macrostates, Xt=0,1subscript𝑋𝑡01X_{t}=0,1) which represents the coarse grained phase space. In the absence of perturbations, the system is in thermal equilibrium, and thus satisfies detailed balance and time reversal symmetry.

We aim to compute the response of the system to a perturbation, whose strength is quantified by the dimensionless parameter ε𝜀\varepsilon. The perturbation can for example be a force, an external field, or a change in the transition rates of a jump process. We restrict here to perturbations which are switched on at time t=0𝑡0t=0, but are otherwise time independent. We build on path integrals, in terms of which response theory has been worked out for the microsystem Colangeli et al. (2011); Basu et al. (2015); Helden et al. (2016): The probability weight p(ω)𝑝𝜔p(\omega) of a microscopic path ω𝜔\omega in the perturbed process differs from its equilibrium weight peq(ω)subscript𝑝eq𝜔p_{\rm eq}(\omega). This is captured by the action 𝒶(ω)𝒶𝜔\mathcal{a}(\omega), i.e., p(ω)=e𝒶(ω)peq(ω)𝑝𝜔superscript𝑒𝒶𝜔subscript𝑝eq𝜔p(\omega)=e^{-\mathcal{a}(\omega)}p_{\text{eq}}(\omega). 𝒶,𝒶\mathcal{a}, which vanishes for ε=0𝜀0\varepsilon=0, is expanded in powers of ε𝜀\varepsilon,

𝒶=ε(𝒹12𝓈)+12ε2𝒹′′+𝒪(ε3),𝒶𝜀superscript𝒹12superscript𝓈12superscript𝜀2superscript𝒹′′𝒪superscript𝜀3\displaystyle\mathcal{a}=\varepsilon\left(\mathcal{d}^{\prime}-\frac{1}{2}\mathcal{s}^{\prime}\right)+\frac{1}{2}\varepsilon^{2}\mathcal{d}^{\prime\prime}+\mathcal{O}(\varepsilon^{3}), (1)

where the primes denote derivatives w.r.t. ε.𝜀\varepsilon. In the spirit of Refs. Baiesi et al. (2009); Colangeli et al. (2011); Basu et al. (2015), 𝒶=𝒹12𝓈𝒶𝒹12𝓈\mathcal{a}=\mathcal{d}-\frac{1}{2}\mathcal{s} is split into a part symmetric under time reversal, 𝒹𝒹\mathcal{d}, and an antisymmetric part 𝓈.𝓈\mathcal{s}. We take the perturbation to be such that 𝓈𝓈\mathcal{s} is linear in ε𝜀\varepsilon, so that 𝓈′′superscript𝓈′′\mathcal{s}^{\prime\prime} and higher derivatives vanish, which is a generic and useful case Kubo (1966); Baiesi et al. (2009); Seifert (2012). This may also be interpreted as a definition of the order of perturbation: ε𝜀\varepsilon is the quantity, in which 𝓈𝓈\mathcal{s} is linear. For a perturbation via potential forces this means that the perturbation Hamiltonian is linear in ε𝜀\varepsilon.

The response of an observable, up to second order, can then be expressed in terms of equilibrium correlation functions involving combinations of 𝓈superscript𝓈\mathcal{s}^{\prime} and 𝒹superscript𝒹\mathcal{d}^{\prime} Baiesi et al. (2009); Colangeli et al. (2011); Basu et al. (2015) (we will refer to the corresponding response formula when introducing Eq. (9) below).

On the coarse grained level the probability Pijsubscript𝑃𝑖𝑗P_{ij} of the macro-path which connects X=i𝑋𝑖X=i at t=0𝑡0t=0 and X=j𝑋𝑗X=j at time t𝑡t 111The paths are sufficiently characterized by the parameters time t𝑡t and the initial and final states., follows from integration over microstates, and the corresponding macro-action 𝒜ijsubscript𝒜𝑖𝑗\mathcal{A}_{ij} is (in the following, we omit the time arguments for brevity, keeping in mind that, e.g., 𝒜ij=𝒜ij(t)subscript𝒜𝑖𝑗subscript𝒜𝑖𝑗𝑡\mathcal{A}_{ij}=\mathcal{A}_{ij}(t))

𝒜ijsubscript𝒜𝑖𝑗\displaystyle\mathcal{A}_{ij} logPijPijeq=log[1Pijeqij𝑑ωpeq(ω)e𝒶(ω)].absentsubscript𝑃𝑖𝑗superscriptsubscript𝑃𝑖𝑗eq1subscriptsuperscript𝑃eq𝑖𝑗subscript𝑖𝑗differential-d𝜔subscript𝑝eq𝜔superscript𝑒𝒶𝜔\displaystyle\equiv-\log\frac{P_{ij}}{P_{ij}^{\text{eq}}}=\log\left[\frac{1}{P^{\rm eq}_{ij}}\int_{ij}d\omega~{}p_{\text{eq}}(\omega)e^{-\mathcal{a}(\omega)}\right]. (2)

Here, ijsubscript𝑖𝑗\int_{ij} denotes integration over only those micro paths ω𝜔\omega which connect the macrostates i𝑖i (at t=0𝑡0t=0) and j𝑗j (at time t𝑡t). Using the definition, ij𝑑ωpeq(ω)=Pijeqsubscript𝑖𝑗differential-d𝜔subscript𝑝eq𝜔superscriptsubscript𝑃𝑖𝑗eq\int_{ij}d\omega p_{\text{eq}}(\omega)=P_{ij}^{\text{eq}}, the right hand side of Eq. (2) may be expanded in a series of ε𝜀\varepsilon, to obtain the macroscopic analog of Eq. (1). For ε=0𝜀0\varepsilon=0, the argument of the log is unity, and we use its expansion around that value to obtain, with the notation 𝒜=𝒟12𝒮,𝒜𝒟12𝒮\mathcal{A}=\mathcal{D}-\frac{1}{2}\mathcal{S},

𝒮ijsubscriptsuperscript𝒮𝑖𝑗\displaystyle\mathcal{S}^{\prime}_{ij} 𝒜ji𝒜ij=1Pijeqijdωpeq(ω)𝓈(ω),absentsubscriptsuperscript𝒜𝑗𝑖subscriptsuperscript𝒜𝑖𝑗1subscriptsuperscript𝑃eq𝑖𝑗subscript𝑖𝑗d𝜔subscript𝑝eq𝜔superscript𝓈𝜔\displaystyle\equiv\mathcal{A}^{\prime}_{ji}-\mathcal{A}^{\prime}_{ij}=\frac{1}{P^{\text{eq}}_{ij}}\int_{ij}\textrm{d}\omega~{}p_{\text{eq}}(\omega)\mathcal{s}^{\prime}(\omega),
𝒟ijsubscriptsuperscript𝒟𝑖𝑗\displaystyle\mathcal{D}^{\prime}_{ij} 12(𝒜ij+𝒜ji)=1Pijeqijdωpeq(ω)𝒹(ω),absent12subscriptsuperscript𝒜𝑖𝑗subscriptsuperscript𝒜𝑗𝑖1subscriptsuperscript𝑃eq𝑖𝑗subscript𝑖𝑗d𝜔subscript𝑝eq𝜔superscript𝒹𝜔\displaystyle\equiv\frac{1}{2}\left(\mathcal{A}^{\prime}_{ij}+\mathcal{A}^{\prime}_{ji}\right)=\frac{1}{P^{\text{eq}}_{ij}}\int_{ij}\textrm{d}\omega~{}p_{\text{eq}}(\omega)\mathcal{d}^{\prime}(\omega),
𝒮ij′′subscriptsuperscript𝒮′′𝑖𝑗\displaystyle\mathcal{S}^{\prime\prime}_{ij} (𝒜ji′′𝒜ij′′)=2𝒟ij𝒮ij2Pijeqijdωpeq(ω)𝒹𝓈.absentsubscriptsuperscript𝒜′′𝑗𝑖subscriptsuperscript𝒜′′𝑖𝑗2subscriptsuperscript𝒟𝑖𝑗subscriptsuperscript𝒮𝑖𝑗2subscriptsuperscript𝑃eq𝑖𝑗subscript𝑖𝑗d𝜔subscript𝑝eq𝜔superscript𝒹superscript𝓈\displaystyle\equiv\left(\mathcal{A}^{\prime\prime}_{ji}-\mathcal{A}^{\prime\prime}_{ij}\right)=2\mathcal{D}^{\prime}_{ij}\mathcal{S}^{\prime}_{ij}-\frac{2}{P^{\text{eq}}_{ij}}\int_{ij}\textrm{d}\omega~{}p_{\text{eq}}(\omega)\mathcal{d}^{\prime}\mathcal{s}^{\prime}. (3)

The first derivatives, 𝒮superscript𝒮\mathcal{S}^{\prime} and 𝒟superscript𝒟\mathcal{D}^{\prime}, are thus given in terms of the microscopic counterparts, while notably, the coarse graining in general generates a finite 𝒮′′superscript𝒮′′\mathcal{S}^{\prime\prime} in the last line of Eq. (3), although the microscopic counterpart 𝓈′′superscript𝓈′′\mathcal{s}^{\prime\prime} is zero.

The expected value of a macro-observable O(X)𝑂𝑋O(X) at time t𝑡t under the perturbation is given by the average over the macroscopic paths. Expanding 𝒜𝒜\mathcal{A} in powers of ε𝜀\varepsilon, we obtain, up to second order in ε𝜀\varepsilon,

O(Xt)delimited-⟨⟩𝑂subscript𝑋𝑡\displaystyle\langle O(X_{t})\rangle =\displaystyle= ijPijO(j)=O(X)eq+εij𝒮ijPijeqO(j)subscript𝑖𝑗subscript𝑃𝑖𝑗𝑂𝑗superscriptdelimited-⟨⟩𝑂𝑋eq𝜀subscript𝑖𝑗subscriptsuperscript𝒮𝑖𝑗superscriptsubscript𝑃𝑖𝑗eq𝑂𝑗\displaystyle\sum_{ij}P_{ij}O(j)=\langle O(X)\rangle^{\rm eq}+\varepsilon\sum_{ij}\mathcal{S}^{\prime}_{ij}P_{ij}^{\text{eq}}O(j) (4)
\displaystyle- ε2ij𝒮ij𝒟ijPijeqO(j)+ε22ij𝒮ij′′PijeqO(j).superscript𝜀2subscript𝑖𝑗subscriptsuperscript𝒮𝑖𝑗subscriptsuperscript𝒟𝑖𝑗superscriptsubscript𝑃𝑖𝑗eq𝑂𝑗superscript𝜀22subscript𝑖𝑗subscriptsuperscript𝒮′′𝑖𝑗superscriptsubscript𝑃𝑖𝑗eq𝑂𝑗\displaystyle\varepsilon^{2}\sum_{ij}\mathcal{S}^{\prime}_{ij}\mathcal{D}^{\prime}_{ij}P_{ij}^{\text{eq}}O(j)+\frac{\varepsilon^{2}}{2}\sum_{ij}\mathcal{S}^{\prime\prime}_{ij}P_{ij}^{\text{eq}}O(j). (5)

Here delimited-⟨⟩\langle\cdots\rangle and eqsuperscriptdelimited-⟨⟩eq\langle\cdots\rangle^{\rm eq} denote averages over the perturbed and equilibrium processes, respectively. Other terms in this expansion disappear because of time reversal symmetry of the equilibrium process, manifest here in the symmetry of the matrix Pijeqsuperscriptsubscript𝑃𝑖𝑗eqP_{ij}^{\rm eq}. The last term in Eq. (LABEL:eq:soo) is not present in the microscopic version Basu et al. (2015), and it appears here because of the non-vanishing 𝒮′′superscript𝒮′′\mathcal{S}^{\prime\prime} in Eq. (3). The extrapolation scheme proposed below is applicable if the last term in Eq. (LABEL:eq:soo) vanishes. In particular, it is instructive to consider perturbations which couple to the coarse grained variable X𝑋X. One example is a perturbation potential εV(X)𝜀𝑉𝑋\varepsilon V(X), i.e., a perturbation potential which is sensitive to the macrostates. In that case, 𝓈(ω)=β[V(X0)V(Xt)]superscript𝓈𝜔𝛽delimited-[]𝑉subscript𝑋0𝑉subscript𝑋𝑡\mathcal{s}^{\prime}(\omega)=\beta[V(X_{0})-V(X_{t})] Baiesi et al. (2009), with inverse thermal energy β=(kBT)1𝛽superscriptsubscript𝑘𝐵𝑇1\beta=(k_{B}T)^{-1}. It is thus equal for all the micropaths connecting macro states i𝑖i and j.𝑗j. Consequently, the term in the last line of Eq. (3) simplifies to

ijdωpeq(ω)𝒹𝓈=𝒮ijijdωpeq(ω)𝒹=𝒮ij𝒟ijPijeq.subscript𝑖𝑗d𝜔subscript𝑝eq𝜔superscript𝒹superscript𝓈subscriptsuperscript𝒮𝑖𝑗subscript𝑖𝑗d𝜔subscript𝑝eq𝜔superscript𝒹subscriptsuperscript𝒮𝑖𝑗subscriptsuperscript𝒟𝑖𝑗subscriptsuperscript𝑃eq𝑖𝑗\displaystyle\int_{ij}\textrm{d}\omega~{}p_{\text{eq}}(\omega)\mathcal{d}^{\prime}\mathcal{s}^{\prime}=\mathcal{S}^{\prime}_{ij}\int_{ij}\textrm{d}\omega~{}p_{\text{eq}}(\omega)\mathcal{d}^{\prime}=\mathcal{S}^{\prime}_{ij}\mathcal{D}^{\prime}_{ij}P^{\text{eq}}_{ij}.\;\quad (7)

It immediately follows that 𝒮′′=0superscript𝒮′′0\mathcal{S}^{\prime\prime}=0 in Eq. (3), and therefore, Eq. (LABEL:eq:soo) simplifies to a form

O(Xt)delimited-⟨⟩𝑂subscript𝑋𝑡\displaystyle\langle O(X_{t})\rangle =\displaystyle= O(X)eq+εij𝒮ijPijeqO(j)superscriptdelimited-⟨⟩𝑂𝑋eq𝜀subscript𝑖𝑗subscriptsuperscript𝒮𝑖𝑗superscriptsubscript𝑃𝑖𝑗eq𝑂𝑗\displaystyle\langle O(X)\rangle^{\rm eq}+\varepsilon\sum_{ij}\mathcal{S}^{\prime}_{ij}P_{ij}^{\text{eq}}O(j) (8)
\displaystyle- ε2ij𝒮ij𝒟ijPijeqO(j).superscript𝜀2subscript𝑖𝑗subscriptsuperscript𝒮𝑖𝑗subscriptsuperscript𝒟𝑖𝑗superscriptsubscript𝑃𝑖𝑗eq𝑂𝑗\displaystyle\varepsilon^{2}\sum_{ij}\mathcal{S}^{\prime}_{ij}\mathcal{D}^{\prime}_{ij}P_{ij}^{\text{eq}}O(j). (9)

Equation (9), an intermediate result, is the response formula for the coarse grained phase space X𝑋X. It is reminiscent of the microscopic version Basu et al. (2015), however here we obtained it for the croase grained variables. The left hand side is the nonequilibrium average of O(Xt)𝑂subscript𝑋𝑡O(X_{t}), while the right hand side is an explicit expression in terms of the time dependent matrices 𝒮superscript𝒮\mathcal{\mathcal{S}}^{\prime}, 𝒟superscript𝒟\mathcal{\mathcal{D}}^{\prime} and Peq.superscript𝑃eqP^{\text{eq}}. Important for this work is the interpretation of Eq. (9): It is worth appreciating that the second order response, given by the last term of Eq. (9), involves 𝒮superscript𝒮\mathcal{S}^{\prime} and 𝒟superscript𝒟\mathcal{D}^{\prime}, which are the changes of these matrices to linear order in ε𝜀\varepsilon. This leads to the main result of the paper: Measuring the linear response of the system, i.e., measuring 𝒮superscript𝒮\mathcal{\mathcal{S}}^{\prime} and 𝒟superscript𝒟\mathcal{\mathcal{D}}^{\prime}, is sufficient to predict the second order response from Eq. (9).

This extrapolation scheme does neither rely on the knowledge or tracking of integrated degrees of freedom, nor are they assumed to equilibrate fast (in contrast to Zwanzig-Mori approaches), and is thus applicable to many body systems with the caveat that the linear response needs to be measured. We illustrate the scheme in two examples.

Four state jump process – Let four micro-states, A,,D𝐴𝐷A,\dots,D be connected with given jump rates, see sketch in Fig. 1. The coarse grained macrostates combine A,B𝐴𝐵A,B (X=0𝑋0X=0) and C,D𝐶𝐷C,D (X=1𝑋1X=1), respectively, so that X𝑋X is the phase space of a two state system (n=2𝑛2n=2), with Xeq=12superscriptdelimited-⟨⟩𝑋eq12\langle X\rangle^{\rm eq}=\frac{1}{2} because of symmetry.

At time t=0𝑡0t=0, the system is perturbed by switching the forward rate of the central link from 1 to eεsuperscript𝑒𝜀e^{\varepsilon}, while all other rates are left unchanged (see sketch in Fig. 1). Because we perturb the link connecting the macrostates, Eq. (9) can be used. We aim to find the responses up to the second order,

χ1(t)subscript𝜒1𝑡\displaystyle\chi_{1}(t) \displaystyle\equiv limε01ε[OtOeq],subscript𝜀01𝜀delimited-[]delimited-⟨⟩subscript𝑂𝑡superscriptdelimited-⟨⟩𝑂eq\displaystyle\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}[\langle O_{t}\rangle-\langle O\rangle^{\text{eq}}], (10a)
χ2(t)subscript𝜒2𝑡\displaystyle\chi_{2}(t) \displaystyle\equiv limε01ε2[Otεχ1(t)Oeq].subscript𝜀01superscript𝜀2delimited-[]delimited-⟨⟩subscript𝑂𝑡𝜀subscript𝜒1𝑡superscriptdelimited-⟨⟩𝑂eq\displaystyle\lim_{\varepsilon\to 0}\frac{1}{\varepsilon^{2}}[\langle O_{t}\rangle-\varepsilon\chi_{1}(t)-\langle O\rangle^{\text{eq}}]. (10b)

The response formula, Eq. (9), yields the predicted responses χrf,superscript𝜒rf\chi^{\text{rf}},

χ1rf(t)superscriptsubscript𝜒1rf𝑡\displaystyle\chi_{1}^{\rm rf}(t) =ijO(j)𝒮ijPijeq,absentsubscript𝑖𝑗𝑂𝑗subscriptsuperscript𝒮𝑖𝑗superscriptsubscript𝑃𝑖𝑗eq\displaystyle=\sum_{ij}O(j)~{}\mathcal{S}^{\prime}_{ij}P_{ij}^{\text{eq}}, (11a)
χ2rf(t)superscriptsubscript𝜒2rf𝑡\displaystyle\chi_{2}^{\rm rf}(t) =ijO(j)𝒮ij𝒟ijPijeq.absentsubscript𝑖𝑗𝑂𝑗subscriptsuperscript𝒮𝑖𝑗subscriptsuperscript𝒟𝑖𝑗superscriptsubscript𝑃𝑖𝑗eq\displaystyle=-\sum_{ij}O(j)~{}\mathcal{S}^{\prime}_{ij}\mathcal{D}^{\prime}_{ij}P_{ij}^{\text{eq}}. (11b)

Evaluating Eq. (11) in the extrapolation scheme, 𝒮superscript𝒮{\cal S}^{\prime} and 𝒟superscript𝒟{\cal D}^{\prime} need to be known. Therefore, the path weight Pij(t)subscript𝑃𝑖𝑗𝑡P_{ij}(t) is measured in linear response (for n=2𝑛2n=2, a 2×2222\times 2 matrix). Using Eqs. (2) and (3), one then obtains, by employing also its equilibrium counterpart Pijeq(t)subscriptsuperscript𝑃eq𝑖𝑗𝑡P^{\text{eq}}_{ij}(t),

𝒮ijsubscriptsuperscript𝒮𝑖𝑗\displaystyle\mathcal{S}^{\prime}_{ij} =\displaystyle= limε01εlogPijPji,subscript𝜀01𝜀subscript𝑃𝑖𝑗subscript𝑃𝑗𝑖\displaystyle\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\log\frac{P_{ij}}{P_{ji}}, (12a)
𝒟ijsubscriptsuperscript𝒟𝑖𝑗\displaystyle\mathcal{D}^{\prime}_{ij} =\displaystyle= limε012εlog(Pijeq)2PijPji.subscript𝜀012𝜀superscriptsuperscriptsubscript𝑃𝑖𝑗eq2subscript𝑃𝑖𝑗subscript𝑃𝑗𝑖\displaystyle\lim_{\varepsilon\to 0}\frac{1}{2\varepsilon}\log\frac{(P_{ij}^{\text{eq}})^{2}}{P_{ij}P_{ji}}. (12b)

The considered 4-state process is exactly solvable (see Supplemental Material Sup ), and 𝒮superscript𝒮\mathcal{S}^{\prime}, 𝒟superscript𝒟\mathcal{D}^{\prime} and Peqsuperscript𝑃eqP^{\text{eq}} so obtained are shown in Fig. 1(a). When applying the scheme experimentally, these curves are to be measured.

In this example, we take O(X)=X𝑂𝑋𝑋O(X)=X, i.e., we consider the response of X.delimited-⟨⟩𝑋\langle X\rangle. The corresponding χrfsuperscript𝜒rf\chi^{\text{rf}} are then found via Eq. (11) which, using n=2𝑛2n=2, simplifies to

χ1rf(t)superscriptsubscript𝜒1rf𝑡\displaystyle\chi_{1}^{\rm rf}(t) =𝒮01P01eq,absentsubscriptsuperscript𝒮01superscriptsubscript𝑃01eq\displaystyle=\mathcal{S}^{\prime}_{01}P_{01}^{\text{eq}}, (13a)
χ2rf(t)superscriptsubscript𝜒2rf𝑡\displaystyle\chi_{2}^{\rm rf}(t) =𝒮01𝒟01P01eq.absentsubscriptsuperscript𝒮01subscriptsuperscript𝒟01superscriptsubscript𝑃01eq\displaystyle=-\mathcal{S}^{\prime}_{01}\mathcal{D}^{\prime}_{01}P_{01}^{\text{eq}}. (13b)

Since 𝒮ijsubscriptsuperscript𝒮𝑖𝑗\mathcal{S}^{\prime}_{ij} is anti-symmetric and we have n=2𝑛2n=2, the sums reduce to the term 01010\to 1, and the nontrivial second order is the product of the functions shown in Fig. 1(a).

We show analytically Sup that Eq. (13b) indeed yields the exact second order response, which, having coarse grained a four state to a two state model, is an explicit confirmation of the proposed scheme.

Refer to caption
Refer to caption
Figure 1: Response in a coarse grained four state jump process as a function of dimensionless time t𝑡t after perturbing the center link, for r=0.1𝑟0.1r=0.1. Microstates A𝐴A and B𝐵B are united to yield macro state X=0𝑋0X=0, C𝐶C and D𝐷D are merged to X=1.𝑋1X=1. (a) shows 𝒮superscript𝒮{\cal S}^{\prime}, 𝒟superscript𝒟{\cal D}^{\prime} and Peqsuperscript𝑃eqP^{\rm eq}, the quantities of Eq. (13b). (b) Second order response of Xdelimited-⟨⟩𝑋\langle X\rangle (see Eq. (10b)). Inset gives the probabilities ρA/Bsubscript𝜌𝐴𝐵\rho_{A/B} to find the system in state A𝐴A or B,𝐵B, respectively, as a function of time.

Fig. 1 (b) shows the resulting χ2subscript𝜒2\chi_{2} as a function of time for an extreme choice of parameters: The rates AB𝐴𝐵A\leftrightarrow B and CD𝐶𝐷C\leftrightarrow D are small compared to the rates BC𝐵𝐶B\leftrightarrow C. Because of this, the density ρAsubscript𝜌𝐴\rho_{A} relaxes much slower than ρBsubscript𝜌𝐵\rho_{B} (inset), and the χ2(t)subscript𝜒2𝑡\chi_{2}(t) shows two distinct time scales. This demostrates that Eq. (9) does neither rely on fast relaxation of integrated degrees, nor on Markovianity of the resulting two state system. For t𝑡t\to\infty, χ2subscript𝜒2\chi_{2} vanishes because of symmetries.

2d Ising model – To demonstrate practical applicability, we consider Ising model on a periodic square lattice with nearest-neighbor interactions among N spins si=±1subscript𝑠𝑖plus-or-minus1s_{i}=\pm 1 and following Metropolis dynamics Newman and Barkema (1999), studied using Monte-Carlo simulations 222A randomly selected spin flips with a rate min{1,eΔH/T}1superscript𝑒Δ𝐻𝑇\min\{1,e^{-\Delta H/T}\} where ΔHΔ𝐻\Delta H is the change in the Hamiltonian due to the proposed flip.. See Ref. Lippiello et al. (2008b) for nonlinear response theory in the Ising model. The Hamiltonian

H={ij}sisjhi=1Nsi+εΘ(t)i=1𝒩si,𝐻subscript𝑖𝑗subscript𝑠𝑖subscript𝑠𝑗superscriptsubscript𝑖1𝑁subscript𝑠𝑖𝜀Θ𝑡superscriptsubscript𝑖1𝒩subscript𝑠𝑖\displaystyle H=-\sum_{\{ij\}}s_{i}s_{j}-h\sum_{i=1}^{N}s_{i}+\varepsilon\Theta(t)\sum_{i=1}^{\cal N}s_{i}, (14)

is asymmetric due to the presence of a magnetic field hh (included to allow for a finite χ2subscript𝜒2\chi_{2}). ε𝜀\varepsilon gives the strength of perturbation which acts on 𝒩N𝒩𝑁{\cal N}\leq N spins, and the unitstep function Θ(t)=0Θ𝑡0\Theta(t)=0 if t<0𝑡0t<0 and Θ(t)=1Θ𝑡1\Theta(t)=1 otherwise. With kB=1subscript𝑘𝐵1k_{B}=1, hh and temperature T𝑇T are dimensionless. For h=00h=0, the 2d Ising model shows a paramagnet-ferromagnet-transition at temperature Tc2.269similar-to-or-equalssubscript𝑇𝑐2.269T_{c}\simeq 2.269 Baxter (1982). Our finite system with a lattice of size N=16×16𝑁1616N=16\times 16 and T=2.45𝑇2.45T=2.45 shows ferromagnetic order, however randomly flipping collectively the sign of the magnetization m=1Ni=1Nsi𝑚1𝑁superscriptsubscript𝑖1𝑁subscript𝑠𝑖m=\frac{1}{N}\sum_{i=1}^{N}s_{i}, on a slow time scale.

For the macrovariable X=i=1𝒩si𝑋superscriptsubscript𝑖1𝒩subscript𝑠𝑖X=\sum_{i=1}^{\cal N}s_{i}, corresponding to n=𝒩+1𝑛𝒩1n={\cal N}+1 macrostates, the perturbation in Eq. (14) is of the form V(X)𝑉𝑋V(X) (namely V(X)=X𝑉𝑋𝑋V(X)=X). An extreme limit is a local perturbation (𝒩=1𝒩1{\cal N}=1), where only a single tagged spin is perturbed. Here, the interpolation scheme is applied by only tracking (measuring) the dynamics of that tagged spin (n=2𝑛2n=2), while the configuration of the surrounding spins need not be known 333We omit presentation of the numerical data for this case here..

More challenging, we consider a global perturbation (𝒩=N𝒩𝑁{\cal N}=N), aiming at the sign of the magnetization as chosen observable of interest, specifically O=Θ(m)𝑂Θ𝑚O=\Theta(m). With h=0.0050.005h=0.005, Oeq0.613similar-to-or-equalssuperscriptdelimited-⟨⟩𝑂eq0.613\langle O\rangle^{\rm eq}\simeq 0.613 in the equilibrium state. Does one need N+1=257𝑁1257N+1=257 macrostates in this case? Practically, a much smaller number turns out to be sufficient. We use n=2𝑛2n=2, 444 and 666 (see sketch in Fig. 2), ruling out odd values for symmetry.

Refer to caption
Refer to caption
Figure 2: Top: Sketch of the macrostates of the order parameter m𝑚m for different n𝑛n. Bottom: (a) 𝒮01superscriptsubscript𝒮01\mathcal{S}_{01}^{\prime} and 𝒟01superscriptsubscript𝒟01\mathcal{D}_{01}^{\prime} (exemplarily shown for n=2𝑛2n=2), measured at ε=0.0005𝜀0.0005\varepsilon=0.0005 along with P01eqsuperscriptsubscript𝑃01eqP_{01}^{\text{eq}} as a function of time t𝑡t (in Monte-Carlo steps). (b) Second order response: Open symbols show χ2rfsuperscriptsubscript𝜒2rf\chi_{2}^{\text{rf}}, found using Eq. (11b), for the different values of n𝑛n. The curve denoted ‘per’ uses the conventional way [see Eq. (10b)] of determining response functions for ε=0.003𝜀0.003\varepsilon=0.003. Horizontal dashed line gives the limit χ2st=χ2(t)superscriptsubscript𝜒2stsubscript𝜒2𝑡\chi_{2}^{\text{st}}=\chi_{2}(t\to\infty) Sup . Inset shows χ2χ2stsubscript𝜒2superscriptsubscript𝜒2st\chi_{2}-\chi_{2}^{\text{st}} (logarithmic scale). All curves are obtained from averaging more than 108superscript10810^{8} trajectories.

In our simulations, we measure 𝒮superscript𝒮{\cal S}^{\prime} and 𝒟superscript𝒟{\cal D}^{\prime} with a small value of ε=0.0005𝜀0.0005\varepsilon=0.0005 using Eq. (12444To increase precision, all curves are measured at ±εplus-or-minus𝜀\pm\varepsilon. The results for ε𝜀\varepsilon and ε𝜀-\varepsilon are added (linear in ε𝜀\varepsilon) and subtracted (second order in ε𝜀\varepsilon), making use of symmetry Sup ; Helden et al. (2016).. This yields the curves in Fig. 2(a) (for ease of presentation, we only show the case n=2𝑛2n=2). The predicted second order response, χ2rf(t)subscriptsuperscript𝜒rf2𝑡\chi^{\text{rf}}_{2}(t), is then given by Eq. (11b), i.e., summing over the matrix elements of 𝒮superscript𝒮{\cal S}^{\prime}, 𝒟superscript𝒟{\cal D}^{\prime} and Peqsuperscript𝑃eqP^{\rm eq}. For n=2𝑛2n=2, this sum in given in Eq. (13b), and contains only one term: It is the product of the functions in Fig. 2(a). For larger n𝑛n, more terms are summed. This yields the curves in Fig. 2(b). We also measured the second order response using the conventional way (see Eq. (10b)), for which we have used a larger value of ε=0.003;𝜀0.003\varepsilon=0.003; see the (blue) curve denoted ‘per’ in Fig. 2(b). The very good agreement in Fig. 2(b) confirms the main claim of the paper: We used simulations at ε=0𝜀0\varepsilon=0 and ε=0.0005𝜀0.0005\varepsilon=0.0005, and obtained the nontrivial extrapolation to a larger perturbation ε=0.003𝜀0.003\varepsilon=0.003. As a practical aspect, the conventional way of determining χ2subscript𝜒2\chi_{2} (using Eq. (10b)) needs about ten times the amount of computational effort to obtain curves with similar statistics. The curves for different n𝑛n can only be distinguished in a logarithmic presentation (Fig. 2(b) inset), where the long time limit, found in a static measurement Sup , is indeed aproached better and better for increasing n𝑛n. We note that for other systems, the convergence with n𝑛n may be slower.

The scheme amounts to measuring transitions rates between the different values of X𝑋X which are, in suitable systems, obtained much more easily compared to the measuments needed for microscopic response theory. Once experimental trajectories are obtained, the transition rates can be evaluated for different n𝑛n, so that, larger n𝑛ns do not necessarily require more experimental measuring time.

Recapitulating, V=V(X)𝑉𝑉𝑋V=V(X) is a sufficient condition for accuracy of the proposed scheme. It means that unperturbed degrees of freedom can be coarse grained straightforwardly. In our examples, these are the unperturbed links or spins, but, in general, these can also include spatial or momentum degrees of freedom. Practically, we noted that the condition V=V(X)𝑉𝑉𝑋V=V(X) is not necessary, so that much coarser descriptions as implied by this condition can suffice. By testing convergence with n𝑛n, the accuracy of the method can be controlled. Because naturally, the obtained resolution for the observable is limited by the number of macrostates, this approach is especially useful if the behavior of a low dimensional observable is sought, such as the order parameter of a (phase) transition.

The presented coarse graining and extrapolation scheme constitute a conceptually new approach to nonlinear response theory. Because micro-degrees do not have to be monitored, it has a large range of applicability in complex systems. While circumventing the experimental need of applying strong perturbations, the scheme can also be more efficient regarding computation time compared to the traditional way of obtaining response functions, which is of additional advantage for slow systems. We note that at any order of perturbation, the response formula contains the change of 𝒟𝒟\mathcal{D} in at most one order lower, so that we expect the extrapolation to be extendable beyond second order.

Future work will investigate time-dependent perturbations, and perturbations via nonconservative force fields.

Acknowledgements.
We thank C. Maes for useful discussions. M.K. was supported by Deutsche Forschungsgemeinschaft (DFG) Grant No. KR 3844/2-1.

References

  • Seifert (2012) U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
  • Kubo and Tomita (1954) R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).
  • Kubo et al. (2012) R. Kubo, M. Toda,  and N. Hashitsume, Statistical physics II: nonequilibrium statistical mechanics, Vol. 31 (Springer Science & Business Media, 2012).
  • Phillips (2012) P. Phillips, Advanced Solid State Physics (Cambridge University Press, 2012).
  • Ruelle (1998) D. Ruelle, Phys. Lett. A 245, 220 (1998).
  • Harada and Sasa (2005) T. Harada and S.-I. Sasa, Phys. Rev. Lett. 95, 130602 (2005).
  • Speck and Seifert (2006) T. Speck and U. Seifert, Europhys. Lett. 74, 391 (2006).
  • Blickle et al. (2007) V. Blickle, T. Speck, C. Lutz, U. Seifert,  and C. Bechinger, Phys. Rev. Lett. 98, 210601 (2007).
  • Chetrite et al. (2008) R. Chetrite, G. Falkovich,  and K. Gawedzki, J. Stat. Mech.: Theory and Experiment 2008, P08005 (2008).
  • Marconi et al. (2008) U. M. B. Marconi, A. Puglisi, L. Rondoni,  and A. Vulpiani, Physics Reports 461, 111 (2008).
  • Baiesi et al. (2009) M. Baiesi, C. Maes,  and B. Wynants, Phys. Rev. Lett. 103, 010602 (2009).
  • Prost et al. (2009) J. Prost, J.-F. Joanny,  and J. M. R. Parrondo, Phys. Rev. Lett. 103, 090601 (2009).
  • Krüger and Fuchs (2009) M. Krüger and M. Fuchs, Phys. Rev. Lett. 102, 135701 (2009).
  • Lippiello et al. (2014) E. Lippiello, M. Baiesi,  and A. Sarracino, Phys. Rev. Lett. 112, 140602 (2014).
  • Yamada and Kawasaki (1967) T. Yamada and K. Kawasaki, Prog. Theor. Phys. 38, 1031 (1967).
  • Evans and Morriss (1988) D. J. Evans and G. P. Morriss, Mol. Phys. 64, 521 (1988).
  • Fuchs and M. E. Cates (2005) M. Fuchs and M. E. Cates, J. Phys.: Cond. Mat. 17, 1681 (2005).
  • Semerjian et al. (2004) G. Semerjian, L. F. Cugliandolo,  and A. Montanari, J. Stat. Physics 115, 493 (2004).
  • Bouchaud and Biroli (2005) J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204 (2005).
  • Andrieux and Gaspard (2007) D. Andrieux and P. Gaspard, J. Stat. Mech. Theor. Exp. 2007, P02006 (2007).
  • Lippiello et al. (2008a) E. Lippiello, F. Corberi, A. Sarracino,  and M. Zannetti, Phys. Rev. B 77, 212201 (2008a).
  • Colangeli et al. (2011) M. Colangeli, C. Maes,  and B. Wynants, J. Phys. A: Math. Theor. 44, 095001 (2011).
  • Lucarini and Colangeli (2012) V. Lucarini and M. Colangeli, J. Stat. Mech.: Theory and Experiment , P05013 (2012).
  • Basu et al. (2015) U. Basu, M. Krüger, A. Lazarescu,  and C. Maes, Phys. Chem. Chem. Phys. 17, 6653 (2015).
  • Helden et al. (2016) L. Helden, U. Basu, M. Krüger,  and C. Bechinger, EPL (Europhysics Letters) 116, 60003 (2016).
  • Zwanzig (2001) R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001).
  • Zwanzig (1960) R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
  • Zwanzig (1961) R. Zwanzig, Phys. Rev. 124, 983 (1961).
  • Mori (1958) H. Mori, Phys. Rev. 112, 1829 (1958).
  • Mori (1965) H. Mori, Prog. Theor. Phys. 33, 423 (1965).
  • Risken (1989) H. Risken, The Fokker-Planck Equation (Springer, 1989).
  • Dhont (1996) J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier science, 1996).
  • Lippiello et al. (2008b) E. Lippiello, F. Corberi, A. Sarracino,  and M. Zannetti, Phys. Rev. E 78, 041120 (2008b).
  • Kubo (1966) R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
  • Note (1) The paths are sufficiently characterized by the parameters time t𝑡t and the initial and final states.
  • (36) See Supplemental Material.
  • Newman and Barkema (1999) M. Newman and G. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, 1999).
  • Note (2) A randomly selected spin flips with a rate min{1,eΔH/T}𝑚𝑖𝑛1superscript𝑒Δ𝐻𝑇\mathop{min}\displaylimits\{1,e^{-\Delta H/T}\} where ΔHΔ𝐻\Delta H is the change in the Hamiltonian due to the proposed flip.
  • Baxter (1982) R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).
  • Note (3) We omit presentation of the numerical data for this case here.
  • Note (4) To increase precision, all curves are measured at ±εplus-or-minus𝜀\pm\varepsilon. The results for ε𝜀\varepsilon and ε𝜀-\varepsilon are added (linear in ε𝜀\varepsilon) and subtracted (second order in ε𝜀\varepsilon), making use of symmetry Sup ; Helden et al. (2016).

Supplemental Material for “Extrapolation to nonequilibrium from coarse grained response theory”

4-state jump process: The 4-state jump process [refer to Fig. 1 in the main text], provides an example for which the nonlinear response can be exactly calculated, and exact validity of the extrapolation scheme can be demonstrated. The coarse grained path probabilities Pij(t)subscript𝑃𝑖𝑗𝑡P_{ij}(t) are expressed as sum over the microscopic paths connecting the macrostates i𝑖i and j.𝑗j. For example, the path with initial state i=0𝑖0i=0 and final state j=1𝑗1j=1 at t𝑡t has a probability,

P01(t)subscript𝑃01𝑡\displaystyle P_{01}(t) =\displaystyle= ρAeq[pAC(t)+pAD(t)]+ρBeq[pBC(t)+pBD(t)]superscriptsubscript𝜌𝐴eqdelimited-[]subscript𝑝𝐴𝐶𝑡subscript𝑝𝐴𝐷𝑡superscriptsubscript𝜌𝐵eqdelimited-[]subscript𝑝𝐵𝐶𝑡subscript𝑝𝐵𝐷𝑡\displaystyle\rho_{A}^{\text{eq}}[p_{AC}(t)+p_{AD}(t)]+\rho_{B}^{\text{eq}}[p_{BC}(t)+p_{BD}(t)] (15)

where pαβ(t)subscript𝑝𝛼𝛽𝑡p_{\alpha\beta}(t) denotes the probability that starting from micro-state α𝛼\alpha at t=0𝑡0t=0 the system reaches state β𝛽\beta in time t𝑡t. We obtained it exactly by solving the time dependent Master equation for any choice of jump rates; ραeqsuperscriptsubscript𝜌𝛼eq\rho_{\alpha}^{\text{eq}} is the equilibrium probability for the system to be in the micro-state α.𝛼\alpha.

We consider, as in Fig. 1 in the main text, a perturbation which changes the ‘forward’ jump rate connecting the two macrostates: kBC=eε.subscript𝑘𝐵𝐶superscript𝑒𝜀k_{BC}=e^{\varepsilon}. The matrices 𝒮superscript𝒮{\cal S}^{\prime} and 𝒟superscript𝒟{\cal D}^{\prime} are found form Eq. (8) in the main text, using Pij(t)subscript𝑃𝑖𝑗𝑡P_{ij}(t) from Eq. (LABEL:eq:4st_P). Taking ratios of the equilibrium and perturbed macro-path probabilities, we obtain explicitly,

𝒮01superscriptsubscript𝒮01\displaystyle\mathcal{S}_{01}^{\prime} =\displaystyle= 11\displaystyle 1 (17)
𝒟01superscriptsubscript𝒟01\displaystyle\mathcal{D}_{01}^{\prime} =\displaystyle= e2λt[λt(1+λ)(λr)r]+λt(λ1)(λ+r)+r2λ2[e2λt(λr)2λe(1+rλ)t+λ+r]superscript𝑒2𝜆𝑡delimited-[]𝜆𝑡1𝜆𝜆𝑟𝑟𝜆𝑡𝜆1𝜆𝑟𝑟2superscript𝜆2delimited-[]superscript𝑒2𝜆𝑡𝜆𝑟2𝜆superscript𝑒1𝑟𝜆𝑡𝜆𝑟\displaystyle\frac{e^{-2\lambda t}[\lambda t(1+\lambda)(\lambda-r)-r]+\lambda t(\lambda-1)(\lambda+r)+r}{2\lambda^{2}[e^{-2\lambda t}(\lambda-r)-2\lambda e^{(1+r-\lambda)t}+\lambda+r]} (18)

where λ=1+r2.𝜆1superscript𝑟2\lambda=\sqrt{1+r^{2}}. The second order derivative, 𝒮′′=0superscript𝒮′′0\mathcal{S}^{\prime\prime}=0, vanishes exactly. The second order response of X,delimited-⟨⟩𝑋\langle X\rangle, is then [following Eq. (9) in the main text] predicted,

χ2eq=𝒮01𝒟01P01eqsuperscriptsubscript𝜒2eqsuperscriptsubscript𝒮01superscriptsubscript𝒟01superscriptsubscript𝑃01eq\displaystyle\chi_{2}^{\text{eq}}=-\mathcal{S}_{01}^{\prime}\mathcal{D}_{01}^{\prime}P_{01}^{\text{eq}} (20)

On the other hand, the second order response can also be found analytically without use of the response formula, by Taylor’s expansion of the exact nonequilibrium result X(t)=ρC(t)+ρD(t)delimited-⟨⟩𝑋𝑡subscript𝜌𝐶𝑡subscript𝜌𝐷𝑡\langle X(t)\rangle=\rho_{C}(t)+\rho_{D}(t) where ρα(t)subscript𝜌𝛼𝑡\rho_{\alpha}(t) is the density in the micro-state α𝛼\alpha at time t𝑡t in the perturbed process. This yields

χ2(t)superscriptsubscript𝜒2𝑡\displaystyle\chi_{2}^{\text{}}(t) =\displaystyle= e(1+rλ)t16λ3[r(1e2λt)\displaystyle\frac{e^{-(1+r-\lambda)t}}{16\lambda^{3}}\bigg{[}r(1-e^{-2\lambda t}) (21)
+\displaystyle+ λt{(λ1)(λ+r)+(λ+1)(λr)e2λt}]\displaystyle\lambda t\left\{(\lambda-1)(\lambda+r)+(\lambda+1)(\lambda-r)e^{-2\lambda t}\right\}\bigg{]}\;\quad (22)

which matches exactly with Eq. (20) using (LABEL:eq:4stSD1), so that χ2eq=χ2superscriptsubscript𝜒2eqsubscript𝜒2\chi_{2}^{\text{eq}}=\chi_{2} is demonstrated.

Static response formula for second order response: In the case of a potential perturbation, the stationary long time values of the second order response χ2subscript𝜒2\chi_{2} can independently be obtained by a static response formula, which results from a Taylor’s expansion of the Boltzman weight of the perturbed system.

For the Ising model discussed in the main text [see Eq. (11) therein], and for the case 𝒩=N𝒩𝑁{\cal N}=N (i.e., the global perturbation discussed in the main text), second order response for observable O𝑂O is given by,

limtχ2χ2st=β2[12m2;Omm;O],subscript𝑡subscript𝜒2superscriptsubscript𝜒2stsuperscript𝛽2delimited-[]12superscript𝑚2𝑂delimited-⟨⟩𝑚𝑚𝑂\displaystyle\lim_{t\to\infty}\chi_{2}\equiv\chi_{2}^{\text{st}}=\beta^{2}\left[\frac{1}{2}\langle m^{2};O\rangle-\langle m\rangle\langle m;O\rangle\right], (23)

where m𝑚m is the magnetization; delimited-⟨⟩\langle\cdot\rangle denotes expectation in the unperturbed state and A;B=ABAB𝐴𝐵delimited-⟨⟩𝐴𝐵delimited-⟨⟩𝐴delimited-⟨⟩𝐵\langle A;B\rangle=\langle AB\rangle-\langle A\rangle\langle B\rangle denotes the connected correlation. The above expression is used to compute χ2stsuperscriptsubscript𝜒2st\chi_{2}^{\text{st}} which is displayed in Fig. 2 of the main text. We observe that this method yields a rather precise result which is used as a long time benchmark for the time dependent solutions.

Improving accuray of response data: Fig. 2 in the main text compares different methods (different numbers of macrostates) for finding second order responses. In order to obtain accurate data for this comparison, and to minimize sources of errors beyond the coarse graining, we measured all perturbed states under perturbations of ε𝜀\varepsilon as well as ε𝜀-\varepsilon. We denote the corresponding transition rates Pijεsuperscriptsubscript𝑃𝑖𝑗𝜀P_{ij}^{\varepsilon} and Pijεsuperscriptsubscript𝑃𝑖𝑗𝜀P_{ij}^{-\varepsilon}. Eq. 9 in the main text transforms then to

𝒮ij=subscriptsuperscript𝒮𝑖𝑗absent\displaystyle\mathcal{S}^{\prime}_{ij}= 12ε[logPijεPjiεPijεPjiε];𝒟ij=14ε[logPijεPjiεPijεPjiε]12𝜀delimited-[]superscriptsubscript𝑃𝑖𝑗𝜀superscriptsubscript𝑃𝑗𝑖𝜀superscriptsubscript𝑃𝑖𝑗𝜀superscriptsubscript𝑃𝑗𝑖𝜀subscriptsuperscript𝒟𝑖𝑗14𝜀delimited-[]superscriptsubscript𝑃𝑖𝑗𝜀superscriptsubscript𝑃𝑗𝑖𝜀superscriptsubscript𝑃𝑖𝑗𝜀superscriptsubscript𝑃𝑗𝑖𝜀\displaystyle\frac{1}{2\varepsilon}\left[\log\frac{P_{ij}^{\varepsilon}P_{ji}^{-\varepsilon}}{P_{ij}^{-\varepsilon}P_{ji}^{\varepsilon}}\right];\mathcal{D}^{\prime}_{ij}=\frac{1}{4\varepsilon}\left[\log\frac{P_{ij}^{-\varepsilon}P_{ji}^{-\varepsilon}}{P_{ij}^{\varepsilon}P_{ji}^{\varepsilon}}\right] (24)

These expressions have an error of order 𝒪(ε2)𝒪superscript𝜀2\mathcal{O}(\varepsilon^{2}), while Eq. 9 in the main text has an error 𝒪(ε)𝒪𝜀\mathcal{O}(\varepsilon). Eq. (24) has been used to evaluate 𝒮,𝒟superscript𝒮superscript𝒟\mathcal{S^{\prime},D^{\prime}} to find the curves in Fig. 2 in the main text.

Similarly, the directly measured second order response for Odelimited-⟨⟩𝑂\langle O\rangle has been obtained from

χ2per=12ε2[Oε+Oε2Oeq]superscriptsubscript𝜒2per12superscript𝜀2delimited-[]subscriptdelimited-⟨⟩𝑂𝜀subscriptdelimited-⟨⟩𝑂𝜀2subscriptdelimited-⟨⟩𝑂eq\displaystyle\chi_{2}^{\text{per}}=\frac{1}{2\varepsilon^{2}}[\langle O\rangle_{\varepsilon}+\langle O\rangle_{-\varepsilon}-2\langle O\rangle_{\text{eq}}] (25)

where Oεsubscriptdelimited-⟨⟩𝑂𝜀\langle O\rangle_{\varepsilon} and Oεsubscriptdelimited-⟨⟩𝑂𝜀\langle O\rangle_{-\varepsilon} denote the expectation value of O𝑂O at perturbation strengths ε𝜀\varepsilon and ε,𝜀-\varepsilon, respectively. Also for Eq. (25), the error (𝒪(ε2)𝒪superscript𝜀2\mathcal{O}(\varepsilon^{2})) is reduced compared to Eq. (7b) in the main text, which generaly yields an error of order 𝒪(ε)𝒪𝜀\mathcal{O}(\varepsilon).

Using Eqs. (24) and (25) thus improves accuray of the obtained curves in Fig. 2. We note that this method contains no principle change in strategy, and does not render the comparison of the proposed scheme to the conventional method, as it improves the data in both methods equally (changing errors from order 𝒪(ε)𝒪𝜀\mathcal{O}(\varepsilon) to 𝒪(ε2)𝒪superscript𝜀2\mathcal{O}(\varepsilon^{2})). The formulas presented in the main text yield good data as well, however, the difference between different numbers of macrostates n𝑛n would be less easily apparent. Discussing and testing the behavior of the extrapolation scheme as a function of n𝑛n is an important aspect of this manuscript, so that we seek data as accurate as possible.