This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Extracting transition generalized parton distributions from hard exclusive pion-nucleon scattering

Jian-Wei Qiu [email protected] Theory Center, Jefferson Lab, Newport News, Virginia 23606, USA Department of Physics, William & Mary, Williamsburg, Virginia 23187, USA    Zhite Yu [email protected] (corresponding author) Theory Center, Jefferson Lab, Newport News, Virginia 23606, USA Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
Abstract

We study the extraction of transition generalized parton distributions (GPDs) from production of two back-to-back high transverse momentum photons (γγ\gamma\gamma) and a massive pair of leptons (+\ell^{+}\ell^{-}) in hard exclusive pion-nucleon scattering. We argue that the exclusive scattering amplitude of both processes could be factorized into nonperturbative pion distribution amplitude and nucleon transition GPDs that are convoluted with perturbatively calculable short-distance matching coefficients. We demonstrate that the exclusive diphoton production not only is complementary to the Drell-Yan-type dilepton production for extracting the GPDs, but also provides enhanced sensitivities for extracting the parton momentum fraction xx dependence of the GPDs. We show that both exclusive observables are physically measurable at the J-PARC and AMBER experiment energies. If the target nucleon can be polarized, corresponding spin asymmetries can offer additional sensitivities for extracting transition GPDs.

preprint: JLAB-THY-24-3985 MSUHEP-24-001

I Introduction

With a high energy charged π\pi beam at J-PARC [1] and AMBER at CERN [2], hard exclusive processes on a nucleon target (NN) can provide unique opportunities to extract transition generalized parton distributions (GPDs), NN(x,ξ,t)\mathcal{F}_{NN^{\prime}}(x,\xi,t), which could offer fundamental nonperturbative transition information from a hadron NN to NN^{\prime}. If NN and NN^{\prime} are nucleons, the transition GPDs can be related to nucleon GPDs through isospin symmetry [3, 4]. Nucleon GPDs are nonperturbative hadron correlation functions which incorporate the concepts of parton distribution functions, distribution amplitudes (DAs), and form factors in their various aspects (for reviews, see [5, 6, 7, 8]). The Fourier transform with respect to tt at ξ=0\xi=0 maps out the parton density distribution f(x,𝒃T)f(x,\bm{b}_{T}) at a position 𝒃T\bm{b}_{T} in the transverse plane perpendicular to the direction of the colliding hadron and in slices of different values of longitudinal parton momentum fraction xx. The various xx moments, on the other hand, provide important information on the hadron’s emergent properties such as mass [9, 10, 11, 12], spin [13], and internal pressure and shear force distributions [14, 15, 16].

Experimental extraction of GPDs of a hadron hh of momentum pp can be achieved by measurements of QCD factorizable single diffractive hard exclusive processes (SDHEPs) [17] in its collisions with a beam particle B(p2)B(p_{2}), h(p)+B(p2)h(p)+C(q1)+D(q2)h(p)+B(p_{2})\to h^{\prime}(p^{\prime})+C(q_{1})+D(q_{2}), where h(p)h^{\prime}(p^{\prime}) represents a diffractively produced hadron along with two (or more) exclusively produced particles C(q1)C(q_{1}) and D(q2)D(q_{2}) with a large transverse momentum qTq1Tq2Tq_{T}\sim q_{1T}\sim q_{2T} that defines the hard scale of the collision. Such processes can be thought of as occurring in two stages,

h(p)\displaystyle h(p)\to A(Δ=pp)+h(p),\displaystyle\,A^{*}(\Delta=p-p^{\prime})+h^{\prime}(p^{\prime}), (1a)
A(Δ)+B(p2)C(q1)+D(q2),\displaystyle\hskip 4.30554pt\leavevmode\hbox to32.43pt{\vbox to12.95pt{\pgfpicture\makeatletter\hbox{\hskip 16.21446pt\lower-6.47711pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.21446pt}{-6.47711pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{ \leavevmode\hbox to25.76pt{\vbox to12.95pt{\pgfpicture\makeatletter\hbox{\hskip 1.5pt\lower-3.4875pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{}}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{3.0pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@miterjoin\pgfsys@setlinewidth{1.0pt}{} {} {} {} \pgfsys@moveto{7.9667pt}{0.0pt}\pgfsys@lineto{1.61449pt}{2.36453pt}\pgfsys@lineto{3.4558pt}{0.0pt}\pgfsys@lineto{1.61449pt}{-2.36453pt}\pgfsys@closepath\pgfsys@fillstroke\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{0.0pt}{7.96674pt}\pgfsys@curveto{0.0pt}{-1.4601pt}{13.33545pt}{0.0pt}{16.66805pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{7.96674pt}\pgfsys@curveto{0.0pt}{-1.4601pt}{13.33545pt}{0.0pt}{16.66805pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.46225pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} }} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\hskip 4.30554ptA^{*}(\Delta)+B(p_{2})\to C(q_{1})+D(q_{2}), (1b)

where the diffractive subprocess is connected to the hard scattering through a virtual state AA^{*} of momentum Δ=pp\Delta=p-p^{\prime}, which has a low invariant mass t=Δ2t=\Delta^{2} but high energy, Δ+=2ξP+\Delta^{+}=2\xi P^{+}, where P=(p+p)/2P=(p+p^{\prime})/2, and propagates for a long lifetime before entering the short-time hard interaction. The two-stage picture provides a clear view of factorization, which necessarily requires qT|t|q_{T}\gg\sqrt{|t|}. Then the diffractive subprocess is factorized to a universal GPD function, separated from the hard interaction. The latter, on the other hand, serves as a probe for the GPD to map out partonic information of the transition from h(p)h(p) to h(p)h^{\prime}(p^{\prime}).

Depending on the beam particle B(p2)B(p_{2}) and specific hard scattering subprocesses, the SDHEPs can probe various types of GPDs [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. With an electron beam, we have well studied electroproduction processes, such as deeply virtual Compton scattering (DVCS) [18, 19] and deeply virtual meson production (DVMP) [20, 21]. With a photon beam, we have timelike Compton scattering (TCS) [22]. The pion (and also kaon) beams at J-PARC and AMBER at CERN allow “mesoproduction” processes to probe transition GPDs, which can be expressed in terms of flavor diagonal GPDs and are only sensitive to the valence parts of the latter. Two processes of this type have been identified: the Drell-Yan (DY) dilepton production process [38, 39, 40],

N(p)+π(p2)N(p)+γ[(q1)++(q2)],N(p)+\pi(p_{2})\to N^{\prime}(p^{\prime})+\gamma^{*}[\to\ell^{-}(q_{1})+\ell^{+}(q_{2})], (2)

and the diphoton production process,

N(p)+π(p2)N(p)+γ(q1)+γ(q2),N(p)+\pi(p_{2})\to N^{\prime}(p^{\prime})+\gamma(q_{1})+\gamma(q_{2}), (3)

which was first introduced in Ref. [41]. See also Refs. [42, 43, 44] for discussions of pion beam use to probe transition distribution amplitudes.

For exclusive hard scattering like that in Eqs. (2) and (3), QCD factorization requires at least two active partons from each identified hadron in the scattering amplitude due to the color singlet nature of the identified hadron. The hadron correlation functions associated with the factorization of exclusive processes are generally harder to extract from experimental data than their inclusive counterparts, especially for their dependence on the relative momentum fraction of the two active partons, e.g., the xx dependence of GPDs. This is because at the amplitude level, xx is fully integrated from 1-1 to 11 in the factorization formulas. Kinematically, owing to its exclusive nature, the invariant mass of the produced C(q1)C(q_{1}) and D(q2)D(q_{2}) of the 232\to 3 SDHEPs in Eq. (1) is uniquely determined by the observed pp^{\prime}. It is the distribution of the transverse momentum qTq_{T} of C(q1)C(q_{1}) [or D(q2)D(q_{2})] in Eq. (1b) that could provide additional details of the state A(Δ)A^{*}(\Delta) and the xx dependence of the GPDs if the xx integration is entangled with the observed qTq_{T} distribution. However, such entanglement is absent from most processes, including the DVCS, DVMP, TCS, and DY dilepton production, where the qTq_{T} dependence simply factors out of the xx dependence in the hard scattering, at least to the leading order, leaving only the GPD moment [see Eq. (15)] to be measured. Without considering the relatively weak QCD evolution effects [45], extracting GPDs merely from such moments gives infinite families of solutions quantified by the so-called shadow GPDs [46].

Fortunately, we could have processes [41, 37] whose hard coefficients do not factorize in the above sense, allowing us to have more direct access to the hadron’s partonic structure or the xx dependence of the GPDs. As demonstrated in Ref. [37], such new processes can greatly reduce the ambiguity caused by shadow GPDs due to the entanglement between the measured hard scale and xx dependence of the GPDs.

Refer to caption
Figure 1: Diphoton mesoproduction process [Eq. (3)] in the SDHEP frame. The DY dilepton process [Eq. (2)] is obtained by simply replacing the two final-state photons with leptons.

In this paper, we explore the role of SDHEPs with a charged π\pi beam for extracting transition GPDs while focusing on the diphoton production process in Eq. (3), where the two observed photons do not come from the decay of a single virtual particle, unlike the DY dilepton process in Eq. (2). We will evaluate both the production rate and the target spin asymmetry, then explore how they can help distinguish the shadow GPDs from the real GPDs, complementing the DY dilepton process at the same facilities. Our study could be extended further by replacing the two photons with two back-to-back high transverse momentum mesons, for example.

II Kinematics and observables

II.1 Kinematics and the two-stage paradigm

Following Eq. (1) and Refs. [17, 37], we describe the kinematics of both mesoproduction processes in Eqs. (2) and (3) in a two-stage manner, as shown in Fig. 1. First, the nucleon diffraction subprocess N(p)N(p)+A(Δ)N(p)\to N^{\prime}(p^{\prime})+A^{*}(\Delta) is described in the lab frame, which is chosen as the center-of-mass (c.m.) frame of the colliding nucleon NN and pion π(p2)\pi(p_{2}), with the z^lab\hat{z}_{\rm lab} being along the nucleon momentum 𝒑\bm{p} and x^lab\hat{x}_{\rm lab} along the transverse momentum 𝚫T\bm{\Delta}_{T} of the virtual state AA^{*}. This choice of x^lab\hat{x}_{\rm lab} axis is not fixed in the lab frame but varies from event to event, so does the direction of the transverse spin 𝒔T\bm{s}_{T} of the nucleon NN with respect to x^lab\hat{x}_{\rm lab}, which has a varying azimuthal angle ϕS\phi_{S} and effectively plays the role of the azimuthal angle of the diffractive plane.

Second, the hard scattering subprocess A(Δ)+π(p2)γ(q1)+γ(q2)A^{*}(\Delta)+\pi(p_{2})\to\gamma(q_{1})+\gamma(q_{2}) [or (q1)++(q2)\ell^{-}(q_{1})+\ell^{+}(q_{2})] is described in the SDHEP frame, defined as their c.m. frame, with AA^{*} moving along the z^\hat{z} direction and x^\hat{x} axis lying on the diffractive plane pointing in the same direction as the 𝚫T\bm{\Delta}_{T} in the lab frame. The kinematics of this hard scattering is quantified by its c.m. energy squared, s^=(Δ+p2)22ξs/(1+ξ)\hat{s}=(\Delta+p_{2})^{2}\simeq 2\xi s/(1+\xi) [with s=(p+p2)2s=(p+p_{2})^{2} the total collision energy squared], the polar and azimuthal angles (θ,ϕ)(\theta,\phi) of one of the final-state particles. For both processes, the cross section is symmetric with θπθ\theta\to\pi-\theta, so we may equivalently use the transverse momentum qT=(s^/2)sinθq_{T}=(\sqrt{\hat{s}}/2)\sin\theta in the place of θ\theta. The SDHEP frame is in fact the same as the frames chosen in Refs. [22, 38], except for the two-stage perspective adopted here.

II.2 Factorization

As argued in Refs. [17, 41], the two-stage paradigm is materialized when qT|t|q_{T}\gg\sqrt{|t|} such that AA^{*} lives much longer than the timescale of its exclusive hard scattering with the pion. With the quantum interference between these two stages suppressed by powers of |t|/qT\sqrt{|t|}/q_{T}, the dynamics taking place at these two stages could be factorized up to the entangled power corrections. With only charged pion beams in experiments, the diffracted nucleon changes flavor, forbidding the simplest possibility of AA^{*} being a virtual photon. To the leading power of |t|/qT\sqrt{|t|}/q_{T}, A=[qq¯]A^{*}=[q\bar{q}^{\prime}] is a collinear quark-antiquark pair, and the diffractive subprocess is factorized from the whole amplitude into flavor transition GPDs. Owing to the absence of a gluon channel (A=[gg]A^{*}=[gg]), the factorization breaking issue raised in Ref. [47] does not apply here.

For the diphoton process, we have the factorization [41]

NπNγλ1γλ2=11𝑑x01𝑑zDπ[qq¯](z)[F~NN[qq¯](x,ξ,t)Cλ1λ2γ(x,ξ;z;θ)+FNN[qq¯](x,ξ,t)C~λ1λ2γ(x,ξ;z;θ)],\displaystyle\mathcal{M}_{N\pi\to N^{\prime}\gamma_{\lambda_{1}}\gamma_{\lambda_{2}}}=\int_{-1}^{1}dx\int_{0}^{1}dz\,D^{[q^{\prime}\bar{q}]}_{\pi}(z)\left[\widetilde{F}^{[q\bar{q}^{\prime}]}_{NN^{\prime}}(x,\xi,t)\,C^{\gamma}_{\lambda_{1}\lambda_{2}}(x,\xi;z;\theta)+F^{[q\bar{q}^{\prime}]}_{NN^{\prime}}(x,\xi,t)\,\widetilde{C}^{\gamma}_{\lambda_{1}\lambda_{2}}(x,\xi;z;\theta)\right], (4)

where λ1,2\lambda_{1,2} are the photon helicities in the SDHEP frame. Dπ[qq¯]D^{[q^{\prime}\bar{q}]}_{\pi} is the DA for the beam π\pi to turn into a collinear quark-antiquark pair [qq¯][q^{\prime}\bar{q}]. FNN[qq¯]F^{[q\bar{q}^{\prime}]}_{NN^{\prime}} and F~NN[qq¯]\widetilde{F}^{[q\bar{q}^{\prime}]}_{NN^{\prime}} are, respectively, unpolarized and polarized nucleon transition GPDs from NN to NN^{\prime} for exchanging a [qq¯][q\bar{q}^{\prime}] pair with the hard collision, which can be decomposed into the GPDs HH, EE, H~\widetilde{H}, and E~\widetilde{E}, and C~γ\widetilde{C}^{\gamma} and CγC^{\gamma} are the corresponding perturbative hard coefficients describing the exclusive scattering of the two collinear and on-shell quark-antiquark pairs into the two back-to-back photons,

[qq¯](p^1)+[q¯q](p^2)γ(q1)+γ(q2),[q\bar{q}^{\prime}](\hat{p}_{1})+[\bar{q}q^{\prime}](\hat{p}_{2})\to\gamma(q_{1})+\gamma(q_{2}), (5)

with p^1=(Δn)n¯\hat{p}_{1}=(\Delta\cdot n)\bar{n}, p^2=(p2n¯)n\hat{p}_{2}=(p_{2}\cdot\bar{n})n, and lightlike vectors n¯μ=δμ+\bar{n}^{\mu}=\delta^{\mu+} and nμ=δμ{n}^{\mu}=\delta^{\mu-} in the SDHEP frame.

Owing to the pseudoscalar nature of pion and chiral symmetry at leading power, quark transversity GPDs do not contribute, so the scattering in Eq. (4) has no net helicity in the initial state. The resultant hard coefficients CγC^{\gamma} and C~γ\widetilde{C}^{\gamma} contain no nontrivial ϕ\phi dependence. The detailed calculations were presented in Ref. [41] in terms of gauge-invariant tensor decomposition, and are reproduced in Appendix A as helicity amplitudes of the photons.

For the DY dilepton process, to the leading order of QED, the lepton pair arises from the decay of a timelike photon γ\gamma^{*} that is produced via the annihilation of the two quark pairs in Eq. (2). Ward identity and parity symmetry constrains the γ\gamma^{*} to be longitudinal and indicates that only the polarized GPD contributes,

NπNλ1λ2\displaystyle\mathcal{M}_{N\pi\to N^{\prime}\ell_{\lambda_{1}}\ell_{\lambda_{2}}} =11𝑑x01𝑑zDπ[qq¯](z)\displaystyle=\int_{-1}^{1}dx\int_{0}^{1}dz\,D^{[q^{\prime}\bar{q}]}_{\pi}(z)
×F~NN[qq¯](x,ξ,t)Cλ1λ2(x,ξ;z;θ),\displaystyle\hskip 15.00002pt\times\widetilde{F}^{[q\bar{q}^{\prime}]}_{NN^{\prime}}(x,\xi,t)\,C^{\ell}_{\lambda_{1}\lambda_{2}}(x,\xi;z;\theta), (6)

where for comparison with the diphoton production, the hard coefficient Cλ1λ2C^{\ell}_{\lambda_{1}\lambda_{2}} is presented in terms of the polar angular distribution of one of the observed leptons in Appendix B.

In this paper, we consider two reaction channels. For the π\pi^{-} beam, we have (NN)=(pn)(NN^{\prime})=(pn) and (qq)=(ud)(qq^{\prime})=(ud), and for the π+\pi^{+} beam, we have (NN)=(np)(NN^{\prime})=(np) and (qq)=(du)(qq^{\prime})=(du). In both cases, it is the transition GPD

pn[ud¯]=np[du¯]=pupd\displaystyle\mathcal{F}^{[u\bar{d}]}_{pn}=\mathcal{F}^{[d\bar{u}]}_{np}=\mathcal{F}^{u}_{p}-\mathcal{F}^{d}_{p} (7)

(with =F\mathcal{F}=F, F~\widetilde{F}, HH, EE, H~\widetilde{H}, or E~\widetilde{E}) that is probed. In the following, unless explicitly indicated, the GPDs refer to such flavor specification.

II.3 Cross section and single target spin asymmetry

The polarization observables are greatly restricted by the scalar nature of the pion beam. Without the ability to measure polarizations of final-state particles, parity limits the only spin asymmetry to be sinϕS\sin\phi_{S} associated with the transverse nucleon spin 𝒔T\bm{s}_{T} [48, 49, 50], constructed out of 𝒑(𝚫T×𝒔T)\bm{p}\cdot(\bm{\Delta}_{T}\times\bm{s}_{T}) in the lab frame for the diffractive subprocess. Integrating out the trivial ϕ\phi dependence in the hard scattering results in the differential cross section

dσd|t|dξdcosθdϕS\displaystyle\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta\,d\phi_{S}}
=12πdσd|t|dξdcosθ[1+sTAN(t,ξ,cosθ)sinϕS],\displaystyle\hskip 10.00002pt=\frac{1}{2\pi}\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta}\left[1+s_{T}\,A_{N}(t,\xi,\cos\theta)\sin\phi_{S}\right], (8)

where the unpolarized cross section is

dσd|t|dξdcosθ=2π(αeαsCFNc)21ξ2s3ΣU(t,ξ,cosθ),\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta}=2\pi\left(\alpha_{e}\alpha_{s}\frac{C_{F}}{N_{c}}\right)^{2}\frac{1}{\xi^{2}s^{3}}\Sigma_{U}(t,\xi,\cos\theta), (9)

with ΣU\Sigma_{U} given by

ΣUγ=(1ξ2)α=±(|α[H~]|2+|~α[H]|2)\displaystyle\Sigma_{U}^{\gamma}=(1-\xi^{2})\sum_{\alpha=\pm}\left(|\mathcal{M}_{\alpha}^{[\widetilde{H}]}|^{2}+|\widetilde{\mathcal{M}}_{\alpha}^{[H]}|^{2}\right)
(ξ2+t4m2)α=±|~α[E]|2ξ2t4m2α=±|α[E~]|2\displaystyle\hskip 25.00003pt-\left(\xi^{2}+\frac{t}{4m^{2}}\right)\sum_{\alpha=\pm}|\widetilde{\mathcal{M}}_{\alpha}^{[E]}|^{2}-\frac{\xi^{2}t}{4m^{2}}\sum_{\alpha=\pm}|\mathcal{M}_{\alpha}^{[\widetilde{E}]}|^{2}
2ξ2α=±Re(~α[H]~α[E]+α[H~]α[E~])\displaystyle\hskip 25.00003pt-2\xi^{2}\sum_{\alpha=\pm}\real\left(\widetilde{\mathcal{M}}_{\alpha}^{[H]}\widetilde{\mathcal{M}}_{\alpha}^{[E]*}+\mathcal{M}_{\alpha}^{[\widetilde{H}]}\mathcal{M}_{\alpha}^{[\widetilde{E}]*}\right) (10)

for the diphoton production process, with mm being the nucleon mass and the factorized helicity amplitudes ±\mathcal{M}_{\pm} and ~±\widetilde{\mathcal{M}}_{\pm} as defined in Eq. (25), and

ΣU=\displaystyle\Sigma_{U}^{\ell}= (1ξ2)|0[H~]|2ξ2t4m2|0[E~]|2\displaystyle\;(1-\xi^{2})|\mathcal{M}_{0}^{[\widetilde{H}]}|^{2}-\frac{\xi^{2}t}{4m^{2}}|\mathcal{M}_{0}^{[\widetilde{E}]}|^{2}
2ξ2Re(0[H~]0[E~])\displaystyle\,-2\xi^{2}\real\left(\mathcal{M}_{0}^{[\widetilde{H}]}\mathcal{M}_{0}^{[\widetilde{E}]*}\right) (11)

resulting for the DY dilepton production process, with the factorized helicity amplitude 0\mathcal{M}_{0} as given in Eq. (33). ANA_{N} in Eq. (8) is the single nucleon transverse spin asymmetry (SSA) given by

ANγ=\displaystyle A_{N}^{\gamma}= (1+ξ)ΣUγΔTmα=±Im[~α[H]~α[E]ξα[H~]α[E~]]\displaystyle\,\frac{(1+\xi)}{\Sigma_{U}^{\gamma}}\frac{\Delta_{T}}{m}\sum_{\alpha=\pm}\imaginary\left[\widetilde{\mathcal{M}}_{\alpha}^{[H]}\widetilde{\mathcal{M}}_{\alpha}^{[E]*}-\xi\mathcal{M}_{\alpha}^{[\widetilde{H}]}\mathcal{M}_{\alpha}^{[\widetilde{E}]*}\right] (12)

for the diphoton process, and

AN=\displaystyle A_{N}^{\ell}= (1+ξ)ΣUΔTm(ξ)Im0[H~]0[E~]\displaystyle\,\frac{(1+\xi)}{\Sigma_{U}^{\ell}}\frac{\Delta_{T}}{m}\,(-\xi)\,\imaginary\mathcal{M}_{0}^{[\widetilde{H}]}\mathcal{M}_{0}^{[\widetilde{E}]*} (13)

for the DY dilepton process.

The SSA arises from the interference of opposite target helicity states. Contrary to the SSAs in inclusive processes, with either collinear [51, 52, 53, 54, 55] or transverse-momentum-dependent factorizations [50, 56, 57], where the target helicity flip is achieved by the dynamics of partons, the SSA here (of the exclusive process) is due to the transverse momentum shift in the diffractive subprocess, which compensates the target helicity flip with a nonzero orbital angular momentum. Hence the SSAs in Eqs. (12) and (13) are proportional to ΔT\Delta_{T}. By parity invariance, only the 𝒔T\bm{s}_{T} component perpendicular to the diffractive plane can play a role, which explains the sinϕS\sin\phi_{S} modulation in Eq. (8). The SSA can be measured by extracting the coefficient of this azimuthal modulation or directly from the “up-down” asymmetry of 𝒔T\bm{s}_{T} with respect to the diffractive plane,

sTAN(t,ξ,cosθ)\displaystyle s_{T}\,A_{N}(t,\xi,\cos\theta)
=π2dσ(𝒔Ty^lab>0)dσ(𝒔Ty^lab<0)dσ(𝒔Ty^lab>0)+dσ(𝒔Ty^lab<0),\displaystyle\hskip 15.00002pt=\frac{\pi}{2}\cdot\frac{d\sigma(\bm{s}_{T}\cdot\hat{y}_{\rm lab}>0)-d\sigma(\bm{s}_{T}\cdot\hat{y}_{\rm lab}<0)}{d\sigma(\bm{s}_{T}\cdot\hat{y}_{\rm lab}>0)+d\sigma(\bm{s}_{T}\cdot\hat{y}_{\rm lab}<0)}, (14)

where dσ(𝒔Ty^lab0)d\sigma(\bm{s}_{T}\cdot\hat{y}_{\rm lab}\gtrless 0) is the ϕS\phi_{S}-integrated cross section (still differential in tt, ξ\xi, and cosθ\cos\theta) for the events with 𝒔T\bm{s}_{T} aligning with or opposite to the direction of y^lab\hat{y}_{\rm lab}.

The single target transverse spin asymmetry has been studied [58, 59, 60, 61, 62] and measured [63, 64, 65, 66, 67, 68] for DVCS and DVMP. The analysis is performed mainly in the Breit frame, where the SSA exhibits an azimuthal correlation between the final-state photon and the target spin 𝒔T\bm{s}_{T}. For the mesoproduction processes here, in contrast, it is convenient to work in the two-stage picture, where the SSA only concerns the ϕS\phi_{S} distribution in the lab frame.

Notably, all occurrences of the GPD EE or E~\widetilde{E} are suppressed by tt and/or ξ\xi, which strongly limits the experimental capacity to measure them for moderate values. In particular, in the unpolarized cross section, Eqs. (10) and (11), they cannot be easily separated from the background caused by HH and H~\widetilde{H}. However, the SSA depends linearly on EE and E~\widetilde{E} (modulo the 1/ΣU1/\Sigma_{U} factor in front). Although its magnitude is suppressed by ΔT\Delta_{T} and ξ\xi, the SSA can give clear signals for extracting EE and E~\widetilde{E} if it can be measured precisely enough. With that said, the GPD E~\widetilde{E} has a significant enhancement from the pion-pole contribution, as required by the sum rule. Its contribution dominates in both the cross section and SSA. As we will see, this strongly suppresses the sensitivity to GPD HH and EE but effectively provides enhancement to H~\widetilde{H}.

III Sensitivity to the xx dependence of transition GPD𝐬{\bf s}

While the ξ\xi and tt dependence of GPDs directly corresponds to the diffractive kinematics which can be measured in experiments, the xx dependence is only indirectly accessed through convolutions with hard coefficients like those in Eqs. (4) and (6). It is only the hard scale qTq_{T} (or, equivalently, θ\theta) that can help probe the hadron’s partonic structure via the xx dependence of the GPDs.

One can, however, immediately notice from Eq. (32) that the θ\theta dependence of the leading-order hard coefficient for the DY dilepton process completely factorizes from the xx and zz dependence. Its amplitude simply reduces to the moments of the GPDs,

F~0±(ξ,t)𝒫11𝑑xF~±(x,ξ,t)xξ,\widetilde{F}^{\pm}_{0}(\xi,t)\equiv\mathcal{P}\int_{-1}^{1}dx\frac{\widetilde{F}^{\pm}(x,\xi,t)}{x-\xi}, (15)

with 𝒫\mathcal{P} referring to principle-value integration, with a completely predictable sinθ\sin\theta distribution decoupled from the xx dependence of the GPDs. Here F~±(x,ξ,t)=F~(x,ξ,t)±F~(x,ξ,t)\widetilde{F}^{\pm}(x,\xi,t)=\widetilde{F}(x,\xi,t)\pm\widetilde{F}(-x,\xi,t) is the charge-conjugation-even or -odd GPD component [see Eq. (29)] and we used the same moment notations as in Eq. (27).

This simple factorization property also applies to many other processes, such as DVCS, DVMP, and TCS, which yield only moment-type sensitivity at leading order. As first demonstrated in Ref. [46], there are infinite families of analytic functions, called shadow GPDs, that give zero to the moments in Eq. (15) and cannot be distinguished from the “real GPD” by those processes alone.

In contrast, for the diphoton process, the hard coefficients in Eq. (22) contain terms in which the θ\theta dependence is entangled with the xx (and zz) dependence, resulting in a special convolution integral for the GPDs,

I[+;ξ,t,z,θ]\displaystyle I[\mathcal{F}^{+};\xi,t,z,\theta]
=11𝑑x+(x,ξ,t)xxp(ξ,z,θ)+iϵsgn[cos2(θ/2)z],\displaystyle\hskip 20.00003pt=\int_{-1}^{1}dx\frac{\mathcal{F}^{+}(x,\xi,t)}{x-x_{p}(\xi,z,\theta)+i\epsilon\,{\rm sgn}\left[\cos^{2}(\theta/2)-z\right]}, (16)

with a new pole for the xx integration,

xp(ξ,z,θ)=ξ[1z+tan2(θ/2)z1ztan2(θ/2)z].x_{p}(\xi,z,\theta)=\xi\cdot\left[\frac{1-z+\tan^{2}(\theta/2)\,z}{1-z-\tan^{2}(\theta/2)\,z}\right]. (17)

The special integral appears in the two helicity amplitudes \mathcal{M}_{-} and ~\widetilde{\mathcal{M}}_{-} in Eq. (25), with =F~\mathcal{F}=\widetilde{F} and FF, respectively, and the “-” subscripts referring to the two photons having aligned spins. The new pole in Eq. (17) scans through [ξ,)(,ξ][\xi,\infty)\cup(-\infty,-\xi] as zz goes from 0 to 11 and reflects the GPD xx dependence in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) region. In comparison, the DY dilepton and other similar processes provide sensitivity only on the ridges x=±ξx=\pm\xi.

The exact form of xx sensitivity by Eq. (16) is further complicated by the integration with the DA and depends on the specific form of the latter. As a simple demonstration in this paper, we take Dπ+[ud¯](z)=Dπ[du¯](z)=(ifπ/2)ϕ(z)D^{[u\bar{d}]}_{\pi^{+}}(z)=-D^{[d\bar{u}]}_{\pi^{-}}(z)=(if_{\pi}/2)\phi(z), with fπ=0.13GeVf_{\pi}=0.13~{}{\rm GeV} being the pion decay constant and ϕ(z)=6z(1z)\phi(z)=6z(1-z) the asymptotic form. Then for the two amplitudes \mathcal{M}_{-} and ~\widetilde{\mathcal{M}}_{-} in Eqs. (25b) and (25d), we define

I¯a[ϕ,+;ξ,t,θ]\displaystyle\bar{I}^{a}[\phi,\mathcal{F}^{+};\xi,t,\theta] =01𝑑z2ϕ(z)z(1z)I[+;ξ,t,z,θ]\displaystyle\,=\int_{0}^{1}dz\,\frac{2\phi(z)}{z(1-z)}\cdot I[\mathcal{F}^{+};\xi,t,z,\theta]
×[cos2(θ/2)zsin2θ+acos2(θ/2)z]\displaystyle\hskip 15.00002pt\times\left[\frac{\cos^{2}(\theta/2)-z}{\sin^{2}\theta}+\frac{a}{\cos^{2}(\theta/2)-z}\right]
=11𝑑x+(x,ξ,t)Ka(x,ξ,cosθ),\displaystyle\,=\int_{-1}^{1}dx\,\mathcal{F}^{+}(x,\xi,t)\,K^{a}(x,\xi,\cos\theta), (18)

where a=+1a=+1 for =F\mathcal{F}=F and 1-1 for =F~\mathcal{F}=\widetilde{F}, and the kernel KaK^{a} is easily obtained with the asymptotic pion DA,

61Ka(x,ξ,c)=aL(x,ξ,c)\displaystyle 6^{-1}K^{a}(x,\xi,c)=a\,L(x,\xi,c)
+ξ2(1c2)(xξc)2[L(x,ξ,c)+1ξ(1c2)+c(xξc)ξ2(1c2)2]\displaystyle\hskip 18.00005pt+\frac{\xi^{2}(1-c^{2})}{(x-\xi c)^{2}}\left[L(x,\xi,c)+\frac{1}{\xi(1-c^{2})}+\frac{c(x-\xi c)}{\xi^{2}(1-c^{2})^{2}}\right]
iπθ(x2ξ2)2|xξc|[ξ2(1c2)(xξc)2+a],\displaystyle\hskip 18.00005pt-i\pi\,\frac{\theta(x^{2}-\xi^{2})}{2|x-\xi c|}\left[\frac{\xi^{2}(1-c^{2})}{(x-\xi c)^{2}}+a\right], (19)

where ccosθc\equiv\cos\theta and

L(x,ξ,c)=12(xξc)ln|(1c)(x+ξ)(1+c)(xξ)|.L(x,\xi,c)=\frac{1}{-2(x-\xi c)}\ln\absolutevalue{\frac{(1-c)(x+\xi)}{(1+c)(x-\xi)}}. (20)

As shown in Fig. 2, the kernel KaK^{a} exhibits a strong logarithmic behavior at x±ξx\to\pm\xi and becomes flatter as |x||ξ||x|\gg|\xi| or |x||ξ||x|\ll|\xi|.

Refer to caption
Refer to caption
Figure 2: Kernels KaK^{a} for the special xx integrals of GPDs FF and F~\widetilde{F}, respectively, shown for ξ=0.2\xi=0.2 and two values of ccosθc\equiv\cos\theta. Negative cc values can be seen from the symmetry Ka(x,ξ,c)=Ka(x,ξ,c)K^{a}(x,\xi,-c)=K^{a}(-x,\xi,c). The solid and dashed lines refer to the real and imaginary parts, respectively.

Clearly, the diphoton process does have the capability of distinguishing between two GPD functions that differ only by some shadow GPD by yielding different θ\theta (or qTq_{T}) distributions, while the DY dilepton process does not. To demonstrate this, we construct the transition GPD models by adding two shadow GPDs, Si(x,ξ)S_{i}(x,\xi) [S~i(x,ξ)\widetilde{S}_{i}(x,\xi)] with i=1i=1 or 22, on Hpn[ud¯]H^{[u\bar{d}]}_{pn} and Epn[ud¯]E^{[u\bar{d}]}_{pn} (H~pn[ud¯]\widetilde{H}^{[u\bar{d}]}_{pn} and E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn}) in the Goloskokov-Kroll (GK) model [69, 70, 71, 72], as in Ref. [37]. The specific forms of the shadow GPDs used in this paper are collected in Appendix C. The GPDs HH and EE also allow a DD-term that lives only in the Efremov-Radyushkin-Brodsky-Lepage (ERBL) region, for which we may similarly construct a shadow DD-term. The resultant GPDs, denoted as (Hi,Ei,H~i,E~i)(H_{i},E_{i},\widetilde{H}_{i},\widetilde{E}_{i}), with i=0i=0 referring to the GK model, are shown in Figs. 3 and 4, where one can notice the strong pion-pole enhancement in the ERBL region of the GPD E~\widetilde{E}.

Evaluating the integral I¯±\bar{I}^{\pm} for these GPD models gives different cosθ\cos\theta distributions, as shown in Figs. 5 and 6. I¯+\bar{I}^{+} (I¯\bar{I}^{-}) evaluated on Hpn[ud¯]+H^{[u\bar{d}]+}_{pn} or Epn[ud¯]+E^{[u\bar{d}]+}_{pn} (H~pn[ud¯]+\widetilde{H}^{[u\bar{d}]+}_{pn} or E~pn[ud¯]+\widetilde{E}^{[u\bar{d}]+}_{pn}) gives an odd (even) distribution of cosθ\cos\theta, so it is shown only for the positive cosθ\cos\theta. This property also strongly suppresses the value of I¯+\bar{I}^{+} in the central rapidity region, so the value of I¯\bar{I}^{-} is generally larger than I¯+\bar{I}^{+}. We note that the shadow GPDs give substantial contributions to the special integrals, altering both the magnitudes and the shapes of the GK model results. The real and imaginary parts are both important in I¯+\bar{I}^{+}, whereas the real part dominates in I¯\bar{I}^{-}, which agrees with the kernel behavior in Fig. 2.

Refer to caption
Refer to caption
Figure 3: Transition GPD models for Hpn[ud¯]H^{[u\bar{d}]}_{pn} and H~pn[ud¯]\widetilde{H}^{[u\bar{d}]}_{pn} at (t,ξ)=(0.2GeV2(t,\xi)=(-0.2~{}{\rm GeV}^{2}, 0.2)0.2). The GPD H3H_{3} is obtained from H0H_{0} by adding a shadow DD-term.
Refer to caption
Refer to caption
Figure 4: Same as Fig. 3, but for the transition GPDs Epn[ud¯]E^{[u\bar{d}]}_{pn} and E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn}.
Refer to caption
Refer to caption
Figure 5: Special integrals I¯±\bar{I}^{\pm} for the GPDs Hpn[ud¯]+H^{[u\bar{d}]+}_{pn} and H~pn[ud¯]+\widetilde{H}^{[u\bar{d}]+}_{pn} evaluated at (t,ξ)=(0.2GeV2,0.2)(t,\xi)=(-0.2~{}{\rm GeV}^{2},0.2) for different GPD models labeled by the subscripts 033. The solid and dashed lines refer to the real and imaginary parts, respectively. The shadow DD-term in Hpn,3[ud¯]+H^{[u\bar{d}]+}_{pn,3} does not contribute to the imaginary part, so the corresponding curve coincides with the dashed black line and is not shown.
Refer to caption
Refer to caption
Figure 6: Same as Fig. 5, but for the GPD Epn[ud¯]+E^{[u\bar{d}]+}_{pn} and E~pn[ud¯]+\widetilde{E}^{[u\bar{d}]+}_{pn}.

IV Numerical study for J-PARC and AMBER energies

Charged pion beams can be accessed in fixed target experiments at J-PARC [1] and AMBER at CERN [2] facilities as secondary beams, with wide energy coverage. It is not the purpose of this paper to perform a realistic experimental simulation; rather, we explore how the diphoton process can complement the DY dilepton one to help disentangle transition GPDs from shadow GPDs. At a benchmark study, we choose the two pion beam energies, Eπ=20E_{\pi}=20 and 100GeV100~{}{\rm GeV}, for J-PARC and AMBER, respectively, and examine only the nucleon transitions.

Evaluating the unpolarized cross sections in Eq. (9) and the SSAs in Eq. (12) for the GPD models in Figs. 3 and 4 yields different distributions of qTq_{T}, as shown in Figs. 7 and 8 at (t,ξ)(t,\xi) == (0.2GeV2,0.2)(-0.2~{}{\rm GeV}^{2},0.2) for the pπp\pi^{-} and nπ+n\pi^{+} collisions at Eπ=20E_{\pi}=20 and 100GeV100~{}{\rm GeV}, respectively. We require qT1GeVq_{T}\geq 1~{}{\rm GeV} to constrain the power correction from |t|/qT\sqrt{|t|}/q_{T}. The qTq_{T} peaks of cross sections on the right are due to Jacobian effects. In each choice of the GPD models, we vary Hpn[ud¯]H^{[u\bar{d}]}_{pn} or H~pn[ud¯]\widetilde{H}^{[u\bar{d}]}_{pn} one at a time and fix Epn[ud¯]E^{[u\bar{d}]}_{pn} and E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn} to be of the GK model; varying the latter makes minimal differences due to the kinematic suppression factors in Eq. (10). We note that varying the GPDs yields not only different magnitudes for both production rates and SSAs but also different shapes in the qTq_{T} distributions. Thus, in experimental analyses with binned qTq_{T} observables, each bin offers an independent constraint on the GPDs, in contrast to the DY dilepton process, where the qTq_{T} shape is universal (at leading order), as shown in Fig. 9.

The AMBER energy gives much wider qTq_{T} coverage, but much smaller (differential) production rates, and leads to similar sensitivity in terms of the rate distribution ratios. In all cases, we notice that the shadow DD-term added to Hpn[ud¯]H^{[u\bar{d}]}_{pn} does not make as much an impact as it does for the photoproduction process in Ref. [37], as a result of the special pole xpx_{p} in Eq. (17) lying only in the DGLAP region.

The difference between the pπp\pi^{-} and nπ+n\pi^{+} collisions is caused by the isospin-breaking effect of QED interactions, namely, the (e12e22)(e_{1}^{2}-e_{2}^{2}) terms in Eq. (25). Numerically, the diagonal values (ξ,ξ,t)\mathcal{F}(\xi,\xi,t) of transition GPDs \mathcal{F} dominate over the their moments 0(ξ,t)\mathcal{F}_{0}(\xi,t) for a wide range of ξ\xi at a given tt, although sea quark components do not contribute to transition GPDs. The (e12e22)(e_{1}^{2}-e_{2}^{2}) terms are therefore non-negligible and cause significant differences in the imaginary parts of the amplitudes in Eq. (25) between the pπp\pi^{-} and nπ+n\pi^{+} collisions. This induces the differences of cross sections and SSAs between the two channels.

Refer to caption
Refer to caption
Figure 7: Unpolarized qTq_{T} distributions and SSAs at Eπ=20GeVE_{\pi}=20~{}{\rm GeV} and (t,ξ)=(0.2GeV2,0.2)(t,\xi)=(-0.2~{}{\rm GeV}^{2},0.2) evaluated for different GPD models obtained by varying HH and H~\widetilde{H}. Left panel: πp\pi^{-}p reaction. Right panel: π+n\pi^{+}n reaction.
Refer to caption
Refer to caption
Figure 8: Same as Fig. 7, but for Eπ=100GeVE_{\pi}=100~{}{\rm GeV}. The vertical scales of the upper panels are logarithmic.
Refer to caption
Refer to caption
Figure 9: Unpolarized qTq_{T} distributions and SSAs for the DY dilepton process. The vertical scales of the upper panels are logarithmic.

The GPDs Hpn[ud¯]H^{[u\bar{d}]}_{pn} and Epn[ud¯]E^{[u\bar{d}]}_{pn} make much smaller contributions to the cross sections and SSAs than H~pn[ud¯]\widetilde{H}^{[u\bar{d}]}_{pn} and E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn} because (1) when making the flavor transition GPDs, there is a cancellation (enhancement) between uu and dd quark GPDs for the former (latter) in the GK model employed here; (2) aside from the (e12e22)(e_{1}^{2}-e_{2}^{2}) terms in Eq. (25), it is the CC-even GPD combinations that contribute to the amplitudes, which gives a further cancellation (enhancement) for the former (latter) [see Eq. (29)]; and (3) most importantly, the pion-pole term in E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn} severely leverages the contributions from H~pn[ud¯]\widetilde{H}^{[u\bar{d}]}_{pn}, overshadowing the effects from Hpn[ud¯]H^{[u\bar{d}]}_{pn} and Epn[ud¯]E^{[u\bar{d}]}_{pn}. Hence, the qTq_{T} distributions are more sensitive to the GPD H~pn[ud¯]\widetilde{H}^{[u\bar{d}]}_{pn} than Hpn[ud¯]H^{[u\bar{d}]}_{pn} for both the cross sections and SSAs. However, one would still be able to probe the GPD Hpn[ud¯]H^{[u\bar{d}]}_{pn} near |x|ξ|x|\sim\xi, which is why the shadow GPDs Si(x,ξ)S_{i}(x,\xi) for Hpn[ud¯]H^{[u\bar{d}]}_{pn} have been constructed to be much more dramatic in this region than the S~i(x,ξ)\widetilde{S}_{i}(x,\xi) for H~pn[ud¯]\widetilde{H}^{[u\bar{d}]}_{pn}. If we remove or decrease the pion-pole contribution from E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn}, the sensitivity to Hpn[ud¯]H^{[u\bar{d}]}_{pn} would become more manifest.

Despite the kinematic suppression in Eq. (12), we get significant SSAs, especially for the π+n\pi^{+}n channel, which is dominated by the large pion-pole enhancement in the GPD E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn}. Hence, the SSAs can also serve as useful probes of GPDs, particularly of H~pn[ud¯]\widetilde{H}^{[u\bar{d}]}_{pn}, since it is the one that interferes with E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn} in Eq. (12), although it has one extra suppression factor of ξ\xi, as shown in Figs. 7 and 8. For the same reason, varying the GPDs Epn[ud¯]E^{[u\bar{d}]}_{pn} and E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn} by the same shadow GPDs does not yield appreciable effects. Nevertheless, by simply scaling them with some factor, the SSAs are proportionally changed. Measuring the SSA gives sensitive probes to both the magnitudes and the signs of the GPDs Epn[ud¯]E^{[u\bar{d}]}_{pn} and E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn}.

In comparison, for the DY dilepton process, the shadow GPDs are constructed to give null impacts. The above GPD models thus give the same prediction for both the unpolarized cross section in Eq. (11) and the SSA in Eq. (13), shown in Fig. 9 for the J-PARC and AMBER energies, respectively. At leading power, the virtual photon decaying into the lepton pair is purely longitudinally polarized, giving a sin2θ\sin^{2}\theta angular distribution [Eq. (33)], so the cross section is finite at small qTq_{T}. This feature contrasts with the diphoton process, whose production rate is enhanced in the forward region, with a much larger overall rate as well. Interestingly, the DY dilepton process produces a large SSA. It does not depend on qTq_{T}, and the energy dependence cancels in the ratio of Eq. (13). This measurement could set a useful constraint on the overall magnitude of GPD E~pn[ud¯]\widetilde{E}^{[u\bar{d}]}_{pn}, especially on the pion-pole peak in the GK model, but has no capability of probing its xx dependence.

V Conclusion

While GPDs encode valuable information on hadrons’ emergent properties and tomographic structures, it is a challenging task to fully extract such information out of experiments, especially the xx dependence. In this paper, we compared two single diffractive hard exclusive mesoproduction processes, the DY dilepton production and diphoton production, which can be studied at hadron experiment facilities like J-PARC and AMBER at CERN using secondary pion beams. At leading power, the scattering amplitudes of both processes can be factorized into transition GPDs and provide constraints on the nucleon GPDs through isospin symmetry, complementary to the electroproduction and photoproduction processes.

We showed that both the unpolarized production rate and the target spin asymmetry can help probe the transition GPDs and clearly demonstrated that, while the DY dilepton process only constrains the polarized GPDs through simple moments, the diphoton process can provide enhanced xx sensitivity from transverse momentum (qTq_{T}) distributions of the final-state particles that are entangled with the xx dependence of the GPDs. This enhanced xx sensitivity shares the same physics origin as that appearing in photoproduction of photon-meson pair studied in Ref. [37] but complements it by being more sensitive to the DGLAP region near x=±ξx=\pm\xi. Both J-PARC and AMBER at CERN give similar sensitivity; the former produces larger rates, but the latter covers a wider kinematical range.

Given the fact that we need to solve an inverse problem to extract GPDs from experimental data, we would not expect one or two simple processes to be sufficient to fully map out the xx dependence of the GPDs. We therefore advocate that global analyses should be performed by combining data from various processes that are sensitive to the universal GPDs, especially those with enhanced xx sensitivity. Only in this way would it be possible to obtain the full tomographic images of the hadrons.

Acknowledgements

We thank W.-C. Chang, P. Kroll, J.-C. Peng, B. Pire, M. G. Santiago, M. Strikman, and N. Tomida for the helpful discussions and communications. This work is supported in part by U.S. Department of Energy (DOE) Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab. The work of Z.Y. at MSU is partially supported by the U.S. National Science Foundation under Grant No. PHY-2013791 and the fund from the Wu-Ki Tung endowed chair in particle physics.

Appendix A HARD COEFFICIENTS OF THE DIPHOTON PRODUCTION PROCESS IN EQ. (3)

As discussed in detail in Refs. [37, 17, 41], the hard coefficients in Eq. (4) can be conveniently calculated in the ERBL region for the hard scattering subprocess by introducing the change of variables, (z1,z2)=((x+ξ)/(2ξ),z)(z_{1},z_{2})=((x+\xi)/(2\xi),z), and carefully keeping track of all the iϵi\epsilon prescriptions. This is directly analogous to the corresponding 222\to 2 meson annihilation process and is well suited to the two-stage SDHEP picture. It makes manifest the symmetry property between z1z_{1} and z2z_{2}, although they have different ranges, z1[(1+ξ)/(2ξ),(1+ξ)/(2ξ)]z_{1}\in[(-1+\xi)/(2\xi),(1+\xi)/(2\xi)] and z2[0,1]z_{2}\in[0,1]. By parity property, the diphoton helicity amplitudes can be reduced to four independent hard coefficients,

C++γ=Cγ=𝒩s^C+γ,\displaystyle C^{\gamma}_{++}=C^{\gamma}_{--}=\frac{\mathcal{N}}{\hat{s}}\,C^{\gamma}_{+}, C+γ=C+γ=𝒩s^Cγ,\displaystyle\quad C^{\gamma}_{+-}=C^{\gamma}_{-+}=\frac{\mathcal{N}}{\hat{s}}\,C^{\gamma}_{-},
C~++γ=C~γ=𝒩s^C~+γ,\displaystyle\widetilde{C}^{\gamma}_{++}=-\widetilde{C}^{\gamma}_{--}=\frac{\mathcal{N}}{\hat{s}}\,\widetilde{C}^{\gamma}_{+}, C~+γ=C~+γ=𝒩s^C~γ,\displaystyle\quad\widetilde{C}^{\gamma}_{+-}=-\widetilde{C}^{\gamma}_{-+}=\frac{\mathcal{N}}{\hat{s}}\,\widetilde{C}^{\gamma}_{-}, (21)

where 𝒩=2ie2g2CF/Nc\mathcal{N}=2ie^{2}g^{2}C_{F}/N_{c} and the four independent hard coefficients are

2ξC+γ=(e1e2)22sin2θ𝒫z1z2+(1z1)(1z2)z1z2(1z1)(1z2)\displaystyle 2\xi C^{\gamma}_{+}=\left(e_{1}-e_{2}\right)^{2}\frac{2}{\sin^{2}\theta}\cdot\mathcal{P}\frac{z_{1}z_{2}+(1-z_{1})\,(1-z_{2})}{z_{1}z_{2}(1-z_{1})(1-z_{2})}
+2iπsin2θ[(e12e22)(δ(z1)z2δ(1z1)1z2)2e1e2(δ(z1)z2+δ(1z1)1z2)],\displaystyle\hskip 35.00005pt+\frac{2i\pi}{\sin^{2}\theta}\cdot\left[(e_{1}^{2}-e_{2}^{2})\left(\frac{\delta(z_{1})}{z_{2}}-\frac{\delta(1-z_{1})}{1-z_{2}}\right)-2e_{1}e_{2}\left(\frac{\delta(z_{1})}{z_{2}}+\frac{\delta(1-z_{1})}{1-z_{2}}\right)\right], (22a)
2ξCγ=(e1e2)22sin2θ𝒫z1+z22z1z2z1z2(1z1)(1z2)+(e12e22)𝒫z1z2z1z2(1z1)(1z2)\displaystyle 2\xi C^{\gamma}_{-}=\left(e_{1}-e_{2}\right)^{2}\frac{2}{\sin^{2}\theta}\cdot\mathcal{P}\frac{z_{1}+z_{2}-2z_{1}z_{2}}{z_{1}z_{2}(1-z_{1})(1-z_{2})}+(e_{1}^{2}-e_{2}^{2})\cdot\mathcal{P}\frac{z_{1}-z_{2}}{z_{1}z_{2}(1-z_{1})(1-z_{2})}
+𝒫2e1e2z1z2(1z1)(1z2)(z1(1z1)+z2(1z2))(z1z2+(1z1)(1z2))(2z1z2+(1cosθ)(1z1z2))(2z1z2+(1+cosθ)(1z1z2))\displaystyle\hskip 35.00005pt+\mathcal{P}\frac{2e_{1}e_{2}}{z_{1}z_{2}(1-z_{1})(1-z_{2})}\cdot\frac{\left(z_{1}(1-z_{1})+z_{2}(1-z_{2})\right)\left(z_{1}z_{2}+(1-z_{1})(1-z_{2})\right)}{\left(2z_{1}z_{2}+(1-\cos\theta)(1-z_{1}-z_{2})\right)\left(2z_{1}z_{2}+(1+\cos\theta)(1-z_{1}-z_{2})\right)}
iπ{(e1e2)2(δ(1z1)z2+δ(z1)1z2)(e12e22)2sin2θ(δ(z1)1z2δ(1z1)z2)\displaystyle\hskip 35.00005pt-i\pi\cdot\left\{\left(e_{1}-e_{2}\right)^{2}\left(\frac{\delta(1-z_{1})}{z_{2}}+\frac{\delta(z_{1})}{1-z_{2}}\right)-(e_{1}^{2}-e_{2}^{2})\frac{2}{\sin^{2}\theta}\left(\frac{\delta(z_{1})}{1-z_{2}}-\frac{\delta(1-z_{1})}{z_{2}}\right)\right.
+2e1e2[1+sin2θsin2θ(δ(1z1)z2+δ(z1)1z2)\displaystyle\hskip 60.00009pt+2e_{1}e_{2}\left[\frac{1+\sin^{2}\theta}{\sin^{2}\theta}\left(\frac{\delta(1-z_{1})}{z_{2}}+\frac{\delta(z_{1})}{1-z_{2}}\right)\right.
+1sin2θ(sgn[cos2(θ/2)z2]δ(z1ρ(z2))(cosθz2(1z2)1cos2(θ/2)z2)\displaystyle\hskip 100.00015pt\left.+\frac{1}{\sin^{2}\theta}\left({\rm sgn}\left[\cos^{2}(\theta/2)-z_{2}\right]\,\delta(z_{1}-\rho(z_{2}))\,\bigg{(}\frac{\cos\theta}{z_{2}(1-z_{2})}-\frac{1}{\cos^{2}(\theta/2)-z_{2}}\bigg{)}\right.\right.
+sgn[z2sin2(θ/2)]δ(z1ρ~(z2))(cosθz2(1z2)1z2sin2(θ/2)))]},\displaystyle\hskip 140.00021pt\left.\left.\left.+\,{\rm sgn}\left[z_{2}-\sin^{2}(\theta/2)\right]\,\delta(z_{1}-\widetilde{\rho}(z_{2}))\,\bigg{(}\frac{\cos\theta}{z_{2}(1-z_{2})}-\frac{1}{z_{2}-\sin^{2}(\theta/2)}\bigg{)}\right)\right]\right\}, (22b)
2ξC~+γ=(e1e2)22sin2θ𝒫1z1z2z1z2(1z1)(1z2)\displaystyle 2\xi\widetilde{C}^{\gamma}_{+}=\left(e_{1}-e_{2}\right)^{2}\frac{-2}{\sin^{2}\theta}\cdot\mathcal{P}\frac{1-z_{1}-z_{2}}{z_{1}\,z_{2}\,(1-z_{1})(1-z_{2})}
2πisin2θ[(e12e22)(δ(1z1)1z2+δ(z1)z2)2e1e2(δ(z1)z2δ(1z1)1z2)],\displaystyle\hskip 35.00005pt-\frac{2\pi i}{\sin^{2}\theta}\cdot\left[(e_{1}^{2}-e_{2}^{2})\left(\frac{\delta(1-z_{1})}{1-z_{2}}+\frac{\delta(z_{1})}{z_{2}}\right)-2e_{1}e_{2}\left(\frac{\delta(z_{1})}{z_{2}}-\frac{\delta(1-z_{1})}{1-z_{2}}\right)\right], (22c)
2ξC~γ=(e1e2)22cosθsin2θ𝒫z1z2z1z2(1z1)(1z2)\displaystyle 2\xi\widetilde{C}^{\gamma}_{-}=\left(e_{1}-e_{2}\right)^{2}\frac{2\cos\theta}{\sin^{2}\theta}\cdot\mathcal{P}\frac{z_{1}-z_{2}}{z_{1}z_{2}(1-z_{1})(1-z_{2})}
+𝒫2e1e2cosθz1z2(1z1)(1z2)(z1z2)(1z1z2)2(2z1z2+(1cosθ)(1z1z2))(2z1z2+(1+cosθ)(1z1z2))\displaystyle\hskip 35.00005pt+\mathcal{P}\frac{2e_{1}e_{2}\,\cos\theta}{z_{1}z_{2}(1-z_{1})(1-z_{2})}\cdot\frac{(z_{1}-z_{2})(1-z_{1}-z_{2})^{2}}{\left(2z_{1}z_{2}+(1-\cos\theta)(1-z_{1}-z_{2})\right)\left(2z_{1}z_{2}+(1+\cos\theta)(1-z_{1}-z_{2})\right)}
2πisin2θ{(e12e22)cosθ(δ(1z1)z2+δ(z1)1z2)e1e2[cosθ(δ(z1)1z2δ(1z1)z2)\displaystyle\hskip 35.00005pt-\frac{2\pi i}{\sin^{2}\theta}\cdot\left\{(e_{1}^{2}-e_{2}^{2})\cos\theta\left(\frac{\delta(1-z_{1})}{z_{2}}+\frac{\delta(z_{1})}{1-z_{2}}\right)-e_{1}e_{2}\left[\cos\theta\left(\frac{\delta(z_{1})}{1-z_{2}}-\frac{\delta(1-z_{1})}{z_{2}}\right)\right.\right.
+z1z2z2(1z2)(sgn[cos2(θ/2)z2]δ(z1ρ(z2))sgn[sin2(θ/2)z2]δ(z1ρ~(z2)))]},\displaystyle\hskip 85.00012pt\left.\left.+\frac{z_{1}-z_{2}}{z_{2}(1-z_{2})}\left({\rm sgn}\left[\cos^{2}(\theta/2)-z_{2}\right]\delta(z_{1}-\rho(z_{2}))-{\rm sgn}\left[\sin^{2}(\theta/2)-z_{2}\right]\delta(z_{1}-\widetilde{\rho}(z_{2}))\right)\right]\right\}, (22d)

where 𝒫\mathcal{P} indicates that the hard coefficients should be understood in the principle-value sense when convoluted with the GPD and DA, and

ρ(z2)=cos2(θ/2)(1z2)cos2(θ/2)z2,ρ~(z2)=sin2(θ/2)(1z2)sin2(θ/2)z2\displaystyle\rho(z_{2})=\frac{\cos^{2}(\theta/2)\,(1-z_{2})}{\cos^{2}(\theta/2)-z_{2}},\quad\widetilde{\rho}(z_{2})=\frac{\sin^{2}(\theta/2)\,(1-z_{2})}{\sin^{2}(\theta/2)-z_{2}} (23)

are the special poles of z1z_{1}, with small imaginary parts by the iϵi\epsilon prescription, respectively,

iϵsgn[z2cos2(θ/2)],iϵsgn[z2sin2(θ/2)].i\epsilon\,{\rm sgn}\left[z_{2}-\cos^{2}(\theta/2)\right],\quad i\epsilon\,{\rm sgn}\left[z_{2}-\sin^{2}(\theta/2)\right]. (24)

We have expressed the hard coefficients in the general flavor case, where the two parton lines qq and qq^{\prime} carry the electric charges e1e_{1} and e2e_{2}, respectively, with eu=2/3e_{u}=2/3 and ed=1/3e_{d}=-1/3.

The convolution of the hard coefficients in Eq. (22) with the GPDs can be simplified by using the DA symmetry property D(z2)=D(1z2)D(z_{2})=D(1-z_{2}),

+[F~]=\displaystyle\mathcal{M}_{+}^{[\widetilde{F}]}= 2D0sin2θ{(e1e2)2F~0+(ξ,t)+iπ[(e12e22)F~(ξ,ξ,t)+2e1e2F~+(ξ,ξ,t)]},\displaystyle-\frac{2D_{0}}{\sin^{2}\theta}\left\{\left(e_{1}-e_{2}\right)^{2}\,\widetilde{F}^{+}_{0}(\xi,t)+i\pi\left[(e_{1}^{2}-e_{2}^{2})\,\widetilde{F}^{-}(\xi,\xi,t)+2e_{1}e_{2}\,\widetilde{F}^{+}(\xi,\xi,t)\right]\right\}, (25a)
[F~]=\displaystyle\mathcal{M}_{-}^{[\widetilde{F}]}= (e1e2)2D0[2sin2θF~0+(ξ,t)+iπF~+(ξ,ξ,t)](e12e22)D0[F~0(ξ,t)+2iπsin2θF~(ξ,ξ,t)]\displaystyle-(e_{1}-e_{2})^{2}\,D_{0}\left[\frac{2}{\sin^{2}\theta}\,\widetilde{F}^{+}_{0}(\xi,t)+i\pi\widetilde{F}^{+}(\xi,\xi,t)\right]-(e_{1}^{2}-e_{2}^{2})\,D_{0}\left[\widetilde{F}^{-}_{0}(\xi,t)+\frac{2i\pi}{\sin^{2}\theta}\widetilde{F}^{-}(\xi,\xi,t)\right]
+e1e2{01dz2D(z)z(1z)[cos2(θ/2)zsin2θ1cos2(θ/2)z]I[F~+;ξ,t,z,θ]\displaystyle+e_{1}e_{2}\left\{\int_{0}^{1}dz\frac{2D(z)}{z(1-z)}\left[\frac{\cos^{2}(\theta/2)-z}{\sin^{2}\theta}-\frac{1}{\cos^{2}(\theta/2)-z}\right]\cdot I[\widetilde{F}^{+};\xi,t,z,\theta]\right.
2D0sin2θ[F~0+(ξ,t)+iπ(1+sin2θ)F~+(ξ,ξ,t)]},\displaystyle\hskip 120.00018pt\left.-\frac{2D_{0}}{\sin^{2}\theta}\cdot\left[\widetilde{F}^{+}_{0}(\xi,t)+i\pi\,(1+\sin^{2}\theta)\,\widetilde{F}^{+}(\xi,\xi,t)\right]\right\}, (25b)
~+[F]=\displaystyle\widetilde{\mathcal{M}}_{+}^{[F]}= 2D0sin2θ{(e1e2)2F0+(ξ,t)+iπ[(e12e22)F(ξ,ξ,t)+2e1e2F+(ξ,ξ,t)]},\displaystyle-\frac{2D_{0}}{\sin^{2}\theta}\left\{(e_{1}-e_{2})^{2}\,F^{+}_{0}(\xi,t)+i\pi\left[(e_{1}^{2}-e_{2}^{2})\,F^{-}(\xi,\xi,t)+2e_{1}e_{2}\,F^{+}(\xi,\xi,t)\right]\right\}, (25c)
~[F]=\displaystyle\widetilde{\mathcal{M}}_{-}^{[F]}= 2cosθsin2θD0[(e1e2)2F0+(ξ,t)+iπ(e12e22)F(ξ,ξ,t)]\displaystyle-\frac{2\cos\theta}{\sin^{2}\theta}\cdot D_{0}\left[(e_{1}-e_{2})^{2}\,F^{+}_{0}(\xi,t)+i\pi\,(e_{1}^{2}-e_{2}^{2})\,F^{-}(\xi,\xi,t)\right]
+e1e2{01dz2D(z)z(1z)[cos2(θ/2)zsin2θ+1cos2(θ/2)z]I[F+;ξ,t,z,θ]\displaystyle+e_{1}e_{2}\left\{\int_{0}^{1}dz\frac{2D(z)}{z(1-z)}\left[\frac{\cos^{2}(\theta/2)-z}{\sin^{2}\theta}+\frac{1}{\cos^{2}(\theta/2)-z}\right]\cdot I[F^{+};\xi,t,z,\theta]\right.
2cosθD0sin2θ[F0+(ξ,t)+iπF+(ξ,ξ,t)]},\displaystyle\hskip 120.00018pt\left.-\frac{2\cos\theta\,D_{0}}{\sin^{2}\theta}\cdot\left[F^{+}_{0}(\xi,t)+i\pi\,F^{+}(\xi,\xi,t)\right]\right\}, (25d)

where we use FF to denote either GPD HH or GPD EE and introduce the shorthand notations

α[F~]11𝑑x01𝑑zF~(x,ξ,t)D(z)Cα(x,ξ;z;θ),~α[F]11𝑑x01𝑑zF(x,ξ,t)D(z)C~α(x,ξ;z;θ),\displaystyle\mathcal{M}_{\alpha}^{[\widetilde{F}]}\equiv\int_{-1}^{1}dx\int_{0}^{1}dz\,\widetilde{F}(x,\xi,t)\,D(z)\,C_{\alpha}(x,\xi;z;\theta),\quad\widetilde{\mathcal{M}}_{\alpha}^{[F]}\equiv\int_{-1}^{1}dx\int_{0}^{1}dz\,F(x,\xi,t)\,D(z)\,\widetilde{C}_{\alpha}(x,\xi;z;\theta), (26)

with α\alpha denoting any helicity index. We have defined the “zeroth moments” of the DA and GPDs as

D001dzD(z)z,0(ξ,t)𝒫11dx(x,ξ,t)xξ,D_{0}\equiv\int_{0}^{1}\frac{dz\,D(z)}{z},\quad\mathcal{F}_{0}(\xi,t)\equiv\mathcal{P}\int_{-1}^{1}\frac{dx\,\mathcal{F}(x,\xi,t)}{x-\xi}, (27)

and the special GPD integral as

I[;ξ,t,z,θ]11𝑑x(x,ξ,t)xxp(ξ,z,θ)+iϵsgn[cos2(θ/2)z],I[\mathcal{F};\xi,t,z,\theta]\equiv\int_{-1}^{1}dx\frac{\mathcal{F}(x,\xi,t)}{x-x_{p}(\xi,z,\theta)+i\epsilon\,{\rm sgn}\left[\cos^{2}(\theta/2)-z\right]}, (28)

where \mathcal{F} can take any GPD function (F±F^{\pm}, F~±\widetilde{F}^{\pm}, H±H^{\pm}, etc.) whose superscripts “±\pm” refer to the charge-conjugation parity following Ref. [6],

F±(x,ξ,t)=F(x,ξ,t)F(x,ξ,t), and similarly for H and E,\displaystyle F^{\pm}(x,\xi,t)=F(x,\xi,t)\mp F(-x,\xi,t),\quad\mbox{ and similarly for $H$ and $E$,}
F~±(x,ξ,t)=F~(x,ξ,t)±F~(x,ξ,t), and similarly for H~ and E~.\displaystyle\widetilde{F}^{\pm}(x,\xi,t)=\widetilde{F}(x,\xi,t)\pm\widetilde{F}(-x,\xi,t),\quad\mbox{ and similarly for $\widetilde{H}$ and $\widetilde{E}$.} (29)

The special pole xpx_{p} is converted from Eq. (23) as

xp(ξ,z,θ)=ξ[2ρ(z)1]=ξ[1z+tan2(θ/2)z1ztan2(θ/2)z]x_{p}(\xi,z,\theta)=\xi\cdot\left[2\rho(z)-1\right]=\xi\cdot\left[\frac{1-z+\tan^{2}(\theta/2)z}{1-z-\tan^{2}(\theta/2)z}\right] (30)

which crosses [ξ,)(,ξ][\xi,\infty)\cup(-\infty,-\xi] as zz goes from 0 to 11 and lies outside of the ERBL region.

Appendix B HARD COEFFICIENTS OF THE DY DILEPTON PRODUCTION PROCESS IN EQ. (2)

As in Appendix A, the hard coefficient in Eq. (6) for the DY dilepton process can be calculated in the SDHEP frame and expressed in terms of the helicity amplitudes of the leptons. Parity and chiral symmetries constrain there to be only one independent amplitude,

C±=±𝒩s^C0,C±±=0,C^{\ell}_{\pm\mp}=\pm\frac{\mathcal{N}}{\hat{s}}C^{\ell}_{0},\quad C^{\ell}_{\pm\pm}=0, (31)

with 𝒩\mathcal{N} the same as in Eq. (21) and

2ξC0=isinθ(e11z1+iϵ1z2e2z1+iϵ11z2).2\xi C_{0}^{\ell}=i\sin\theta\left(\frac{e_{1}}{1-z_{1}+i\epsilon}\frac{1}{z_{2}}-\frac{e_{2}}{z_{1}+i\epsilon}\frac{1}{1-z_{2}}\right). (32)

Using the same notation as Eqs. (26) and (27), one determines the convolution of C0C_{0}^{\ell} with the GPD and DA as

0[F~]=iD0sinθ[e1+e22F~0(ξ,t)+e1e22F~0+(ξ,t)+iπ(e1+e22F~(ξ,ξ,t)+e1e22F~+(ξ,ξ,t))].\displaystyle\mathcal{M}_{0}^{[\widetilde{F}]}=-i\,D_{0}\sin\theta\left[\frac{e_{1}+e_{2}}{2}\widetilde{F}^{-}_{0}(\xi,t)+\frac{e_{1}-e_{2}}{2}\widetilde{F}^{+}_{0}(\xi,t)+i\pi\left(\frac{e_{1}+e_{2}}{2}\widetilde{F}^{-}(\xi,\xi,t)+\frac{e_{1}-e_{2}}{2}\widetilde{F}^{+}(\xi,\xi,t)\right)\right]. (33)

Appendix C SHADOW GPD MODELS

The shadow GPDs used in this paper are the same as those in Ref. [37], except that we use

S1(x,ξ)\displaystyle S_{1}(x,\xi) =K1ξ2x(x2ξ2)(1x2)10(1+ax2295(2a+27)x4+89935(a+18)x6),\displaystyle=K_{1}\,\xi^{2}x(x^{2}-\xi^{2})(1-x^{2})^{10}\left(1+ax^{2}-\frac{29}{5}(2a+27)x^{4}+\frac{899}{35}(a+18)x^{6}\right),
S2(x,ξ)\displaystyle S_{2}(x,\xi) =K2ξ2x(x2ξ2)(1x2)20(1+ax2495(2a+47)x4+1195(3a+94)x6),\displaystyle=K_{2}\,\xi^{2}x(x^{2}-\xi^{2})(1-x^{2})^{20}\left(1+ax^{2}-\frac{49}{5}(2a+47)x^{4}+\frac{119}{5}(3a+94)x^{6}\right), (34)

with K1,2K_{1,2} the normalization factors, a=23a=-23 for S1S_{1} and 38-38 for S2S_{2}, and we multiply the shadow DD-term in Ref. [37] by 22. Using the high powers for the factor (1x2)(1-x^{2}) signifies the shadow GPD magnitude near |x|=ξ|x|=\xi, as suggested by Fig. 2.

References

  • Aoki et al. [2021] K. Aoki et al. (2021), eprint arXiv:2110.04462.
  • Adams et al. [2018] B. Adams et al. (2018), eprint arXiv:1808.00848.
  • Mankiewicz et al. [1999] L. Mankiewicz, G. Piller, and T. Weigl, Phys. Rev. D 59, 017501 (1999), eprint hep-ph/9712508.
  • Frankfurt et al. [1999] L. L. Frankfurt, P. V. Pobylitsa, M. V. Polyakov, and M. Strikman, Phys. Rev. D 60, 014010 (1999), eprint hep-ph/9901429.
  • Goeke et al. [2001] K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001), eprint hep-ph/0106012.
  • Diehl [2003] M. Diehl, Phys. Rep. 388, 41 (2003), eprint hep-ph/0307382.
  • Belitsky and Radyushkin [2005] A. V. Belitsky and A. V. Radyushkin, Phys. Rep. 418, 1 (2005), eprint hep-ph/0504030.
  • Boffi and Pasquini [2007] S. Boffi and B. Pasquini, Riv. Nuovo Cimento 30, 387 (2007), eprint 0711.2625.
  • Ji [1995a] X.-D. Ji, Phys. Rev. Lett. 74, 1071 (1995a), eprint hep-ph/9410274.
  • Ji [1995b] X.-D. Ji, Phys. Rev. D 52, 271 (1995b), eprint hep-ph/9502213.
  • Lorcé [2018] C. Lorcé, Eur. Phys. J. C 78, 120 (2018), eprint 1706.05853.
  • Metz et al. [2020] A. Metz, B. Pasquini, and S. Rodini, Phys. Rev. D 102, 114042 (2020), eprint 2006.11171.
  • Ji [1997a] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997a), eprint hep-ph/9603249.
  • Polyakov [2003] M. V. Polyakov, Phys. Lett. B 555, 57 (2003), eprint hep-ph/0210165.
  • Polyakov and Schweitzer [2018] M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33, 1830025 (2018), eprint 1805.06596.
  • Burkert et al. [2018] V. D. Burkert, L. Elouadrhiri, and F. X. Girod, Nature (London) 557, 396 (2018).
  • Qiu and Yu [2023a] J.-W. Qiu and Z. Yu, Phys. Rev. D 107, 014007 (2023a), eprint 2210.07995.
  • Ji [1997b] X.-D. Ji, Phys. Rev. D 55, 7114 (1997b), eprint hep-ph/9609381.
  • Radyushkin [1997] A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997), eprint hep-ph/9704207.
  • Brodsky et al. [1994] S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller, and M. Strikman, Phys. Rev. D 50, 3134 (1994), eprint hep-ph/9402283.
  • Frankfurt et al. [1996] L. Frankfurt, W. Koepf, and M. Strikman, Phys. Rev. D 54, 3194 (1996), eprint hep-ph/9509311.
  • Berger et al. [2002] E. R. Berger, M. Diehl, and B. Pire, Eur. Phys. J. C 23, 675 (2002), eprint hep-ph/0110062.
  • Guidal and Vanderhaeghen [2003] M. Guidal and M. Vanderhaeghen, Phys. Rev. Lett. 90, 012001 (2003), eprint hep-ph/0208275.
  • Belitsky and Mueller [2003a] A. V. Belitsky and D. Mueller, Phys. Rev. Lett. 90, 022001 (2003a), eprint hep-ph/0210313.
  • Belitsky and Mueller [2003b] A. V. Belitsky and D. Mueller, Phys. Rev. D 68, 116005 (2003b), eprint hep-ph/0307369.
  • Kumano et al. [2009] S. Kumano, M. Strikman, and K. Sudoh, Phys. Rev. D 80, 074003 (2009), eprint 0905.1453.
  • Kumano and Strikman [2010] S. Kumano and M. Strikman, Phys. Lett. B 683, 259 (2010), eprint 0909.1299.
  • El Beiyad et al. [2010] M. El Beiyad, B. Pire, M. Segond, L. Szymanowski, and S. Wallon, Phys. Lett. B 688, 154 (2010), eprint 1001.4491.
  • Pedrak et al. [2017] A. Pedrak, B. Pire, L. Szymanowski, and J. Wagner, Phys. Rev. D 96, 074008 (2017), [Erratum: Phys.Rev.D 100, 039901 (2019)], eprint 1708.01043.
  • Pedrak et al. [2020] A. Pedrak, B. Pire, L. Szymanowski, and J. Wagner, Phys. Rev. D 101, 114027 (2020), eprint 2003.03263.
  • Siddikov and Schmidt [2023a] M. Siddikov and I. Schmidt, Phys. Rev. D 107, 034037 (2023a), eprint 2212.14019.
  • Siddikov and Schmidt [2023b] M. Siddikov and I. Schmidt, Phys. Rev. D 108, 096031 (2023b), eprint 2309.09748.
  • Boussarie et al. [2017] R. Boussarie, B. Pire, L. Szymanowski, and S. Wallon, J. High Energy Phys. 02, 054 (2017), [Erratum: J. High Energy Phys. 10, 029 (2018)], eprint 1609.03830.
  • Duplančić et al. [2018] G. Duplančić, K. Passek-Kumerički, B. Pire, L. Szymanowski, and S. Wallon, J. High Energy Phys. 11, 179 (2018), eprint 1809.08104.
  • Duplančić et al. [2023a] G. Duplančić, S. Nabeebaccus, K. Passek-Kumerički, B. Pire, L. Szymanowski, and S. Wallon, J. High Energy Phys. 03, 241 (2023a), eprint 2212.00655.
  • Duplančić et al. [2023b] G. Duplančić, S. Nabeebaccus, K. Passek-Kumerički, B. Pire, L. Szymanowski, and S. Wallon, Phys. Rev. D 107, 094023 (2023b), eprint 2302.12026.
  • Qiu and Yu [2023b] J.-W. Qiu and Z. Yu, Phys. Rev. Lett. 131, 161902 (2023b), eprint 2305.15397.
  • Berger et al. [2001] E. R. Berger, M. Diehl, and B. Pire, Phys. Lett. B 523, 265 (2001), eprint hep-ph/0110080.
  • Goloskokov and Kroll [2015] S. V. Goloskokov and P. Kroll, Phys. Lett. B 748, 323 (2015), eprint 1506.04619.
  • Sawada et al. [2016] T. Sawada, W.-C. Chang, S. Kumano, J.-C. Peng, S. Sawada, and K. Tanaka, Phys. Rev. D 93, 114034 (2016), eprint 1605.00364.
  • Qiu and Yu [2022] J.-W. Qiu and Z. Yu, J. High Energy Phys. 08, 103 (2022), eprint 2205.07846.
  • Pire et al. [2017] B. Pire, K. Semenov-Tian-Shansky, and L. Szymanowski, Phys. Rev. D 95, 034021 (2017), eprint 1611.07234.
  • Pire et al. [2021] B. Pire, K. Semenov-Tian-Shansky, and L. Szymanowski, Phys. Rep. 940, 1 (2021), eprint 2103.01079.
  • Pire et al. [2023] B. Pire, K. M. Semenov-Tian-Shansky, A. A. Shaikhutdinova, and L. Szymanowski, AAPPS Bull. 33, 26 (2023), eprint 2212.07688.
  • Moffat et al. [2023] E. Moffat, A. Freese, I. Cloët, T. Donohoe, L. Gamberg, W. Melnitchouk, A. Metz, A. Prokudin, and N. Sato, Phys. Rev. D 108, 036027 (2023), eprint 2303.12006.
  • Bertone et al. [2021] V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, and P. Sznajder, Phys. Rev. D 103, 114019 (2021), eprint 2104.03836.
  • Nabeebaccus et al. [2023] S. Nabeebaccus, J. Schoenleber, L. Szymanowski, and S. Wallon (2023), eprint arXiv:2311.09146.
  • Klem et al. [1976] R. D. Klem, J. E. Bowers, H. W. Courant, H. Kagan, M. L. Marshak, E. A. Peterson, K. Ruddick, W. H. Dragoset, and J. B. Roberts, Phys. Rev. Lett. 36, 929 (1976).
  • Bunce et al. [1976] G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976).
  • Sivers [1990] D. W. Sivers, Phys. Rev. D 41, 83 (1990).
  • Qiu and Sterman [1991] J.-W. Qiu and G. F. Sterman, Phys. Rev. Lett. 67, 2264 (1991).
  • Qiu and Sterman [1999] J.-W. Qiu and G. F. Sterman, Phys. Rev. D 59, 014004 (1999), eprint hep-ph/9806356.
  • Kanazawa and Koike [2000] Y. Kanazawa and Y. Koike, Phys. Lett. B 478, 121 (2000), eprint hep-ph/0001021.
  • Kanazawa and Koike [2001] Y. Kanazawa and Y. Koike, Phys. Rev. D 64, 034019 (2001), eprint hep-ph/0012225.
  • Metz and Pitonyak [2013] A. Metz and D. Pitonyak, Phys. Lett. B 723, 365 (2013), [Erratum: Phys.Lett.B 762, 549–549 (2016)], eprint 1212.5037.
  • Sivers [1991] D. W. Sivers, Phys. Rev. D 43, 261 (1991).
  • Collins [1993] J. C. Collins, Nucl. Phys. B 396, 161 (1993), eprint hep-ph/9208213.
  • Ellinghaus et al. [2006] F. Ellinghaus, W. D. Nowak, A. V. Vinnikov, and Z. Ye, Eur. Phys. J. C 46, 729 (2006), eprint hep-ph/0506264.
  • Goloskokov and Kroll [2009] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 59, 809 (2009), eprint 0809.4126.
  • Goloskokov and Kroll [2014] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 74, 2725 (2014), eprint 1310.1472.
  • Diehl [2007] M. Diehl, J. High Energy Phys. 09, 064 (2007), eprint 0704.1565.
  • Diehl and Sapeta [2005] M. Diehl and S. Sapeta, Eur. Phys. J. C 41, 515 (2005), eprint hep-ph/0503023.
  • Airapetian et al. [2009] A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 679, 100 (2009), eprint 0906.5160.
  • Airapetian et al. [2011] A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 704, 15 (2011), eprint 1106.2990.
  • Airapetian et al. [2008] A. Airapetian et al. (HERMES Collaboration), J. High Energy Phys. 06, 066 (2008), eprint 0802.2499.
  • Adolph et al. [2012] C. Adolph et al. (COMPASS Collaboration), Nucl. Phys. B 865, 1 (2012), eprint 1207.4301.
  • Adolph et al. [2014] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B 731, 19 (2014), eprint 1310.1454.
  • Adolph et al. [2017] C. Adolph et al. (COMPASS Collaboration), Nucl. Phys. B 915, 454 (2017), eprint 1606.03725.
  • Goloskokov and Kroll [2005] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 42, 281 (2005), eprint hep-ph/0501242.
  • Goloskokov and Kroll [2008] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 53, 367 (2008), eprint 0708.3569.
  • Goloskokov and Kroll [2010] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 65, 137 (2010), eprint 0906.0460.
  • Kroll et al. [2013] P. Kroll, H. Moutarde, and F. Sabatie, Eur. Phys. J. C 73, 2278 (2013), eprint 1210.6975.