This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Exterior powers of a parabolic Springer sheaf on a Lie algebra

Roman Bezrukavnikov, Kostiantyn Tolmachov
Abstract

We compute the exterior powers, with respect to the additive convolution on the general linear Lie algebra, of a parabolic Springer sheaf corresponding to a maximal parabolic subgroup of type (1, n – 1). They turn out to be isomorphic to the semisimple perverse sheaves attached by the Springer correspondence to the exterior powers of the permutation representation of the symmetric group.

0   Basic notations.

Fix primes p\ell\neq p. For a stack XX defined over an algebraically closed field 𝐤\mathbf{k} of characteristic pp, let Db(X)D^{b}(X) be the bounded derived category of 𝐐¯\overline{\mathbf{Q}}_{\ell}-sheaves with constructible cohomology. All stacks in question will be quotient stacks for an action of an algebraic group on a nice scheme, and we use [BL06], [LO08] for the theory of Db(X)D^{b}(X). Let P(X)P(X) be the abelian category of perverse sheaves on XX with respect to the middle perversity. Let 𝐐¯¯X\underline{\overline{\mathbf{Q}}_{\ell}}_{X} stand for the constant sheaf on XX.

All our results can be also stated, with standard modifications, for algebraic varieties and stacks over \mathbb{C}, with Db(X)D^{b}(X) being the bounded derived category of \mathbb{Q}-sheaves in analytic topology with algebraically-constructible cohomology. Formulation of the theory of Fourier-Deligne transform in Section 3 should be then adjusted in a standard way.

GG will stand for a reductive group defined over 𝐤\mathbf{k}, and 𝔤\mathfrak{g} for its Lie algebra. If H,𝔥H,\mathfrak{h} are an algebraic group and its Lie algebra, respectively, we will write 𝔥/H\mathfrak{h}/H for the adjoint quotient stack.

1   Introduction.

The category Db(𝔤)D^{b}(\mathfrak{g}) has a symmetric monoidal structure coming from the additive convolution. Namely, let

a:𝔤×𝔤𝔤,π1,2:𝔤×𝔤𝔤a:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g},\pi_{1,2}:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}

be the addition map and two projections, respectively. For ,𝒢Db(𝔤)\mathcal{F},\mathcal{G}\in D^{b}(\mathfrak{g}), write

𝒢=m!(π1π2𝒢).\mathcal{F}\star\mathcal{G}=m_{!}(\pi_{1}^{*}\mathcal{F}\otimes\pi_{2}^{*}\mathcal{G}). (1)

The map aa is GG-equivariant with respect to the diagonal adjoint action of GG on 𝔤×𝔤\mathfrak{g}\times\mathfrak{g} and adjoint action on 𝔤\mathfrak{g}. Thus (1) equips the category Db(𝔤/G)D^{b}(\mathfrak{g}/G) with the symmetric monoidal structure. For an object Db(𝔤/G),\mathcal{F}\in D^{b}(\mathfrak{g}/G), we write +k\wedge^{k}_{+}\mathcal{F} for its kkth exterior power with respect to this structure.

Let now 𝔤=𝔤𝔩n\mathfrak{g}=\mathfrak{gl}_{n} be the general linear Lie algebra over 𝐤\mathbf{k}.

Let 𝔰𝔭𝔯(M)\mathfrak{spr}(M) be the semisimple sheaf attached by the Springer correspondence to a representation MM of the symmetric group SnS_{n} – see the next section for the reminder of definitions. Let VV stand for the permutation representation of SnS_{n}.

Main goal of this note is to give a simple proof of the following result.

Theorem 1.

Exterior powers of 𝔰𝔭𝔯(V)\mathfrak{spr}(V) with respect to the symmetric monoidal structure \star on Db(𝔤𝔩n/G)D^{b}(\mathfrak{gl}_{n}/G) satisfy

+k𝔰𝔭𝔯(V)𝔰𝔭𝔯(kV).\wedge^{k}_{+}\mathfrak{spr}(V)\simeq\mathfrak{spr}(\wedge^{k}V).

In particular, +k𝔰𝔭𝔯(V)=0\wedge^{k}_{+}\mathfrak{spr}(V)=0 for k>nk>n.

This result, with a more complicated proof, appeared in the second author’s thesis [Tol18]. This is a linearization of a similar, but more technically involved, statement for a parabolic Springer sheaf on the group GLn\textrm{GL}_{n} and exterior powers with respect to the multiplicative convolution, see loc.cit. and [Tol]. One surprising outcome of these computations is that exterior powers of the parabolic Springer sheaf with respect to the convolution operation remain perverse and semisimple.

We believe that linearized result, together with a simple proof presented, is of independent interest. Note that in [BT22] it is proved that sheaves attached by the Springer correspondence to the exterior powers of the representation of the Weyl group on a Cartan subalgebra appear as perverse cohomology of the GG-averaging of a Whittaker sheaf on a maximal unipotent subgroup, for any reductive group GG. We don’t know of any connection between the methods of loc. cit. and the present note, or if the result of the present note can be extended to a more general 𝔤\mathfrak{g}.

2   Springer theory.

Let for now GG be any reductive group. Let 𝔤rss\mathfrak{g}^{rss} stand for the subset of regular semisimple elements in 𝔤\mathfrak{g}. We recall some basic facts from Springer theory. See [BM83] and references therein.

For a parabolic PGP\subset G, let UPU_{P} be its unipotent radical. Let 𝔭,𝔫P\mathfrak{p},\mathfrak{n}_{P} be the Lie algebras of P,UPP,U_{P}. Let

𝒩~P=G×P𝔫P,𝔤~P=G×P𝔭\tilde{\mathcal{N}}_{P}=G\times^{P}\mathfrak{n}_{P},\tilde{\mathfrak{g}}_{P}=G\times^{P}\mathfrak{p}

be the parabolic Springer and Grothendieck-Springer varieties, and q:𝒩~P𝔤,q:𝔤~P𝔤q:\tilde{\mathcal{N}}_{P}\to{\mathfrak{g}},q^{\prime}:\tilde{\mathfrak{g}}_{P}\to\mathfrak{g} stand for maps given by (g,x)Adgx(g,x)\mapsto\operatorname{Ad}_{g}x. Denote by

𝔰𝔭𝔯P:=q𝐐¯¯𝒩~𝔤[dim𝒩P],𝔤𝔰𝔭𝔯P:=q𝐐¯¯𝔤~P[dim𝔤],\mathfrak{spr}_{P}:=q_{*}\underline{\overline{\mathbf{Q}}_{\ell}}_{\tilde{\mathcal{N}}_{\mathfrak{g}}}[\dim\mathcal{N}_{P}],\mathfrak{gspr}_{P}:=q^{\prime}_{*}\underline{\overline{\mathbf{Q}}_{\ell}}_{\tilde{\mathfrak{g}}_{P}}[\dim\mathfrak{g}],

the parabolic Springer and Grothendieck-Springer sheaves. They are perverse and semisimple. 𝔰𝔭𝔯P\mathfrak{spr}_{P} is supported on the nilpotent variety 𝒩𝔤\mathcal{N}_{\mathfrak{g}} of 𝔤\mathfrak{g}. 𝔤𝔰𝔭𝔯P\mathfrak{gspr}_{P} is a local system over the open subset 𝔤rss\mathfrak{g}^{rss}, and is the intermediate extension of its restriction to 𝔤rss\mathfrak{g}^{rss}.

All maps involved are GG-equivariant with respect to standard actions, and we will denote the perverse parabolic Springer and Grothendieck-Springer sheaves on 𝔤/G\mathfrak{g}/G in the same way.

Let BB be a Borel subgroup, and let WW be the Weyl group of GG. We have

End(𝔰𝔭𝔯B)End(𝔤𝔰𝔭𝔯B)𝐐¯[W].\operatorname{End}(\mathfrak{spr}_{B})\simeq\operatorname{End}(\mathfrak{gspr}_{B})\simeq\overline{\mathbf{Q}}_{\ell}[W].

There are two standard ways to choose an action of WW on 𝔰𝔭𝔯B,𝔤𝔰𝔭𝔯B\mathfrak{spr}_{B},\mathfrak{gspr}_{B}, that differ by a sign representation of WW. We fix our action by fixing the WW-invariant summand:

𝔰𝔭𝔯BW=ι𝐐¯¯pt,𝔤𝔰𝔭𝔯BW=𝐐¯¯𝔤[dim𝔤],\mathfrak{spr}_{B}^{W}=\iota_{*}\underline{\overline{\mathbf{Q}}_{\ell}}_{\operatorname{pt}},\mathfrak{gspr}_{B}^{W}=\underline{\overline{\mathbf{Q}}_{\ell}}_{\mathfrak{g}}[\dim\mathfrak{g}],

where ι:pt𝔤\iota:\operatorname{pt}\to\mathfrak{g} is the embedding of 0.

For a representation VV of WW we write

𝔰𝔭𝔯(V)=V𝐐¯[W]𝔰𝔭𝔯B,𝔤𝔰𝔭𝔯(V)=V𝐐¯[W]𝔤𝔰𝔭𝔯B.\mathfrak{spr}(V)=V\otimes_{\overline{\mathbf{Q}}_{\ell}[W]}\mathfrak{spr}_{B},\mathfrak{gspr}(V)=V\otimes_{\overline{\mathbf{Q}}_{\ell}[W]}\mathfrak{gspr}_{B}.

From now on, let 𝔤=𝔤𝔩n\mathfrak{g}=\mathfrak{gl}_{n} be the Lie algebra of the reductive group G=GLnG=\textrm{GL}_{n}. Let VV be an nn-dimensional vector space. We identify GG with GL(V)\textrm{GL}(V).

Fix a flag V1V2Vn1Vn=VV_{1}\subset V_{2}\subset\dots\subset V_{n-1}\subset V_{n}=V with dimVk=k\dim V_{k}=k, and let let PkP_{k} be the parabolic subgroup of GLn\textrm{GL}_{n} preserving VkV_{k}. Let LkL_{k} be its Levi subroup, and 𝔩k\mathfrak{l}_{k} the Lie algebra of LkL_{k}.

Fix a basis of VV compatible with the flag above. This equips VV with the permutation representation of SnWS_{n}\simeq W. We have

𝔰𝔭𝔯P1=𝔰𝔭𝔯(V),𝔤𝔰𝔭𝔯P1=𝔤𝔰𝔭𝔯(V).\mathfrak{spr}_{P_{1}}=\mathfrak{spr}(V),\mathfrak{gspr}_{P_{1}}=\mathfrak{gspr}(V).

3   Fourier-Deligne transform.

The categories Db(𝔤),Db(𝔤/G)D^{b}(\mathfrak{g}),D^{b}(\mathfrak{g}/G) are also equipped with the standard monoidal structure of tensor product 𝐐¯\otimes_{\overline{\mathbf{Q}}_{\ell}}.

Recall the Fourier-Deligne transform functor

FT:Db(𝔤/G)Db(𝔤/G),\operatorname{FT}:D^{b}(\mathfrak{g}/G)\to D^{b}(\mathfrak{g}/G),

from [KL85], [Bry86]. FT\operatorname{FT} is an equivalence, intertwines the convolution monoidal structure with the shifted tensor product (𝐐¯)[dim𝔤](-\otimes_{\overline{\mathbf{Q}}_{\ell}}-)[-\dim\mathfrak{g}], and we have

FT(𝔰𝔭𝔯(V))𝔤𝔰𝔭𝔯(V).\operatorname{FT}(\mathfrak{spr}(V))\simeq\mathfrak{gspr}(V). (2)

For an object Db(𝔤/G),\mathcal{F}\in D^{b}(\mathfrak{g}/G), we write k\wedge^{k}_{\otimes}\mathcal{F} for its kkth exterior power with respect to the shifted tensor product (𝐐¯)[dim𝔤](-\otimes_{\overline{\mathbf{Q}}_{\ell}}-)[-\dim\mathfrak{g}]. Theorem 1 is therefore equivalent to

Theorem 2.

Exterior powers of 𝔤𝔰𝔭𝔯(V)\mathfrak{gspr}(V) with respect to the symmetric monoidal structure 𝐐¯\otimes_{\overline{\mathbf{Q}}_{\ell}} on Db(𝔤𝔩n/G)D^{b}(\mathfrak{gl}_{n}/G) satisfy

k𝔤𝔰𝔭𝔯(V)𝔤𝔰𝔭𝔯(kV).\wedge^{k}_{\otimes}\mathfrak{gspr}(V)\simeq\mathfrak{gspr}(\wedge^{k}V).

In particular, k𝔤𝔰𝔭𝔯(V)=0\wedge^{k}_{\otimes}\mathfrak{gspr}(V)=0 for k>nk>n.

Let us first show that k𝔤𝔰𝔭𝔯(V)=0\wedge^{k}_{\otimes}\mathfrak{gspr}(V)=0 for k>nk>n. Recall the map q:𝔤𝔰𝔭𝔯P1𝔤q^{\prime}:\mathfrak{gspr}_{P_{1}}\to\mathfrak{g}. It is easy to see that the fiber 𝔤𝔰𝔭𝔯P1,x\mathfrak{gspr}_{P_{1},x} of qq^{\prime} over any x𝔤x\in\mathfrak{g} is a union of projective spaces having the total dimension of cohomology bounded by nn. Let ix:pt𝔤i_{x}:\operatorname{pt}\to\mathfrak{g} be the inclusion of a point x𝔤x\in\mathfrak{g}. We have

ixk𝔤𝔰𝔭𝔯(V)=kix𝔤𝔰𝔭𝔯(V)=kHc(𝔤𝔰𝔭𝔯P1,x)=0,i_{x}^{*}\wedge^{k}_{\otimes}\mathfrak{gspr}(V)=\wedge^{k}i_{x}^{*}\mathfrak{gspr}(V)=\wedge^{k}\operatorname{H}_{c}^{\bullet}(\mathfrak{gspr}_{P_{1},x})=0,

and the claim follows.

Note now that the statement of Theorem 2 is readily checked to be true over the open subset 𝔤rss\mathfrak{g}^{rss}. It is thus enough to show that k𝔤𝔰𝔭𝔯(V)\wedge^{k}_{\otimes}\mathfrak{gspr}(V) is perverse and is given by the intermediate extension of its restriction to 𝔤rss\mathfrak{g}^{rss}. We will now assume that the Theorem is proved for G=GLm,m<nG=\textrm{GL}_{m},m<n.

4   Étale neighbourhoods in 𝔤\mathfrak{g}.

Let PP be an arbitrary parabolic subgroup of GG, let LL be its Levi subgroup and 𝔩\mathfrak{l} be the Lie algebra of LL. Recall that the element x𝔤x\in\mathfrak{g} with semisimple part xsx_{s} is called LL-regular if the centralizer CG(xs)C_{G}(x_{s}) is conjugate to a subgroup of LL. Write 𝔩r\mathfrak{l}^{r} for the set of LL-regular elements of 𝔤\mathfrak{g} lying inside 𝔩\mathfrak{l}. We will use the following

Lemma 3 (Proposition 2.11 in [Gun18]).

The natural map 𝔩r/L𝔤/G\mathfrak{l}^{r}/L\to\mathfrak{g}/G is étale, with image consisting of the set of LL-regular elements in 𝔤\mathfrak{g}.

For m=1,,n1m=1,\dots,n-1 let jm:𝔩mr/Lm𝔤/Gj_{m}:\mathfrak{l}_{m}^{r}/L_{m}\to\mathfrak{g}/G be the natural map. It follows from Lemma 3 that jrj_{r} together give an étale open cover of 𝔤\𝒩𝔤\mathfrak{g}\backslash\mathcal{N}_{\mathfrak{g}}. Note that 𝔩m𝔤𝔩m×𝔤𝔩nm\mathfrak{l}_{m}\simeq\mathfrak{gl}_{m}\times\mathfrak{gl}_{n-m}, and it is easy to check that jm𝔤𝔰𝔭𝔯(V)𝔤𝔰𝔭𝔯(ResSm×SnmSnV)|𝔩mrj_{m}^{*}\mathfrak{gspr}(V)\simeq\mathfrak{gspr}(\operatorname{Res}^{S_{n}}_{S_{m}\times S_{n-m}}V)|_{\mathfrak{l}_{m}^{r}}. By our inductive assumption, it follows that jmk𝔤𝔰𝔭𝔯(V)j_{m}^{*}\wedge^{k}_{\otimes}\mathfrak{gspr}(V) is given by the intermediate extension of its restriction to 𝔤rss\mathfrak{g}^{rss}.

To finish the proof, it is now enough to show that perverse cohomology of k𝔤𝔰𝔭𝔯(V)\wedge^{k}_{\otimes}\mathfrak{gspr}(V) have no perverse constitutents supported on 𝒩𝔤{\mathcal{N}_{\mathfrak{g}}}.

5   Rank estimate.

Any perverse sheaf on 𝒩𝔤𝔩n\mathcal{N}_{\mathfrak{gl}_{n}} is a direct sum of sheaves of the form 𝔰𝔭𝔯(M),MRep(W)\mathfrak{spr}(M),M\in\operatorname{Rep}(W). Since FT(𝔰𝔭𝔯(M))𝔤𝔰𝔭𝔯(M)\operatorname{FT}(\mathfrak{spr}(M))\simeq\mathfrak{gspr}(M) and 𝔤𝔰𝔭𝔯(M)\mathfrak{gspr}(M) has full support, it is enough to show that no perverse constituents of FT(k𝔤𝔰𝔭𝔯(V))+k𝔰𝔭𝔯(V)\operatorname{FT}(\wedge^{k}_{\otimes}\mathfrak{gspr}(V))\simeq\wedge^{k}_{+}\mathfrak{spr}(V) have full support.

Note that 𝔰𝔭𝔯(V)𝔰𝔭𝔯(triv)𝔰𝔭𝔯(R)\mathfrak{spr}(V)\simeq\mathfrak{spr}(\operatorname{triv})\oplus\mathfrak{spr}(R), where RR stands for the reflection representation of WW. Since 𝔰𝔭𝔯(triv)ι𝐐¯¯pt\mathfrak{spr}(\operatorname{triv})\simeq\iota_{*}\underline{\overline{\mathbf{Q}}_{\ell}}_{\operatorname{pt}} is the monoidal unit of the additive convolution, we have

+k𝔰𝔭𝔯(V)+k𝔰𝔭𝔯(R)+k1𝔰𝔭𝔯(R).\wedge^{k}_{+}\mathfrak{spr}(V)\simeq\wedge^{k}_{+}\mathfrak{spr}(R)\oplus\wedge^{k-1}_{+}\mathfrak{spr}(R).

Since +n+1𝔰𝔭𝔯(V)=0\wedge^{n+1}_{+}\mathfrak{spr}(V)=0, we have +n𝔰𝔭𝔯(R)=0\wedge^{n}_{+}\mathfrak{spr}(R)=0, and so it is enough to show that that +k𝔰𝔭𝔯(R)\wedge^{k}_{+}\mathfrak{spr}(R) has no perverse constituents with full support for k=1,,n1k=1,\dots,n-1.

Note that, since all elements of 𝔲P1\mathfrak{u}_{P_{1}} have rank bounded by 11, the sum of n1n-1 such elements has rank bounded by n1n-1. It follows that +k𝔰𝔭𝔯(R)\wedge^{k}_{+}\mathfrak{spr}(R) is supported on degenerate matrices for k<nk<n, and hence does not have full support. This finishes the proof of Theorems 1 and 2.

References

  • [BL06] Joseph Bernstein and Valery Lunts. Equivariant Sheaves and Functors. Springer, 2006.
  • [BM83] Walter Borho and Robert MacPherson. Partial resolutions of nilpotent varieties. In Analyse et topologie sur les espaces singuliers (II-III) - 6 - 10 juillet 1981, number 101-102 in Astérisque. Société mathématique de France, 1983.
  • [Bry86] Jean-Luc Brylinski. Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques. Astérisque, 140(141):3–134, 1986.
  • [BT22] Roman Bezrukavnikov and Kostiantyn Tolmachov. Monodromic model for Khovanov–Rozansky homology. Journal für die reine und angewandte Mathematik (Crelles Journal), April 2022.
  • [Gun18] Sam Gunningham. Generalized Springer theory for D-modules on a reductive Lie algebra. Selecta Mathematica, 24(5):4223–4277, November 2018.
  • [KL85] Nicholas M. Katz and Gérard Laumon. Transformation de Fourier et majoration de sommes exponentielles. Publications Mathématiques de l’IHÉS, 62:145–202, 1985.
  • [LO08] Yves Laszlo and Martin Olsson. The six operations for sheaves on Artin stacks II: Adic coefficients. Publications Mathématiques de l’IHÉS, 107:169–210, 2008.
  • [Tol] Kostiantyn Tolmachov. Linear structure on the finite Hecke category in type A. arXiv preprint.
  • [Tol18] Kostiantyn Tolmachov. Towards a Functor between Affine and Finite Hecke Categories in Type A. PhD thesis, Massachusetts Institute of Technology, 2018.

R. Bezrukavnikov, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts

E-mail address: [email protected]

K. Tolmachov, School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom

E-mail address: [email protected]