This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Extension of Noether’s theorem in 𝒫​𝒯\mathcal{PT}-symmetric systems and its experimental demonstration in an optical setup

Qi-Cheng Wu1,111These authors contributed equally to this work    Jun-Long Zhao1,βˆ—    Yu-Liang Fang1    Yu Zhang1,2    Dong-Xu Chen1,222E-mail: [email protected]    Chui-Ping Yang1,3,333E-mail: [email protected]    Franco Nori4,5,6,444E-mail: [email protected] 1Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China
2School of Physics, Nanjing University, Nanjing 210093, China
3Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
4Theoretical Quantum Physics Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
5RIKEN Center for Quantum Computing, RIKEN, Wako-shi, Saitama 351-0198, Japan
6Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
Abstract

Noether’s theorem is one of the fundamental laws in physics, relating the symmetry of a physical system to its constant of motion and conservation law. On the other hand, there exist a variety of non-Hermitian parity-time (𝒫​𝒯\mathcal{PT})-symmetric systems, which exhibit novel quantum properties and have attracted increasing interest. In this work, we extend Noether’s theorem to a class of significant 𝒫​𝒯\mathcal{PT}-symmetric systems for which the eigenvalues of the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} change from purely real numbers to purely imaginary numbers, and introduce a generalized expectation value of an operator based on biorthogonal quantum mechanics. We find that the generalized expectation value of a time-independent operator is a constant of motion when the operator presents a standard symmetry in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime, or a chiral symmetry in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime. In addition, we experimentally investigate the extended Noether’s theorem in 𝒫​𝒯\mathcal{PT}-symmetric single-qubit and two-qubit systems using an optical setup. Our experiment demonstrates the existence of the constant of motion and reveals how this constant of motion can be used to judge whether the 𝒫​𝒯\mathcal{PT}-symmetry of a system is broken. Furthermore, a novel phenomenon of masking quantum information is first observed in a 𝒫​𝒯\mathcal{PT}-symmetric two-qubit system. This study not only contributes to full understanding of the relation between symmetry and conservation law in 𝒫​𝒯\mathcal{PT}-symmetric physics, but also has potential applications in quantum information theory and quantum communication protocols.

Noether’s theorem; 𝒫​𝒯\mathcal{PT}-symmetric systems; Chiral symmetry; Optical setup
pacs:
03.65.Ca, 03.65.Yz, 11.30.Rd, 42.50.Xa

I Introduction

The subject of finding the symmetries of dynamics is of fundamental interest and has broad applications in physics, e.g., high-energy scattering experiments, control issues in mesoscopic physics and quantum cosmologyΒ Symmetry1 ; chiralsymmetry1 ; chiralsymmetry2 ; chiralsymmetry3 ; chiralsymmetry4 ; topological2 . On the other hand, by means of symmetries, one can generally make non-trivial inferences from complex systems, such as many-body systems, dissipative systems and non-Hermitian systems. As an important theorem which is related to symmetries, Noether’s theoremΒ Noether1 has important applications in quantum physics and quantum information scienceΒ Noether2 ; Ehrenfest1 ; Ehrenfest2 ; Ehrenfest3 ; Noetheranalysis ; Noethercurrents . Noether’s theorem states that every symmetry of dynamics implies a conservation law, and it was originally applied in Lagrangian approach in classical mechanics to uncover conserved quantities from symmetries of the Lagrangian. In many cases, the existence of these conserved quantities is very important for understanding the physical states and the properties of the systemsΒ Noether2 ; Ehrenfest2 ; Noetheranalysis ; Noethercurrents . The theorem applies also in quantum mechanics, and the most prominent example of Noether’s theorem is Ehrenfest’s theorem in closed systemsΒ Ehrenfest1 ; Ehrenfest

dd​tβ€‹βŸ¨F^⟩=1iβ€‹β„β€‹βŸ¨[F^,H^]⟩+⟨d​F^d​t⟩.\displaystyle\frac{d}{dt}\langle{\hat{F}}\rangle=\frac{1}{i\hbar}\langle{[\hat{F},\hat{H}]}\rangle+\langle{\frac{d\hat{F}}{dt}}\rangle. (1)

For an operator F^\hat{F} without explicit time dependence, it then follows that its expectation value ⟨F^⟩\langle{\hat{F}}\rangle is a constant of motion if it commutes with the Hermitian Hamiltonian H^\hat{H}. However, Ehrenfest’s theorem is not applicable for open systemsΒ Ehrenfest3 ; Ehrenfest ; open1 ; r2 ; r5 . Furthermore, even in closed systems, Ehrenfest’s conservation law cannot capture all features of symmetry when mixed states are consideredΒ Ehrenfest2 .

A natural extension of Noether’s theorem in non-Hermitian systems is to replace the Hermitian Hamiltonian H^\hat{H} with a non-Hermitian Hamiltonian H^†\hat{H}^{\dagger}, which turns eq.Β (1) into dβ€‹βŸ¨F^⟩/d​t=1iβ€‹β„β€‹βŸ¨[F^​H^βˆ’H^†​F^]⟩+⟨d​F^/d​t⟩{d\langle{\hat{F}}\rangle}/{dt}=\frac{1}{i\hbar}\langle{[\hat{F}\hat{H}-\hat{H}^{\dagger}{\hat{F}}]}\rangle+\langle{{d\hat{F}}/{dt}}\rangleΒ conservationlaws2 ; interwining1 ; interwining2 ; SRM . Up to now, based on the important intertwining relation F^​H^=H^†​F^\hat{F}\hat{H}=\hat{H}^{\dagger}{\hat{F}}Β interwining1 ; interwining2 ; SRM , several methods have been proposed to obtain conserved quantities, including spectral decomposition methodsΒ SDM1 ; SDM2 , recursive construction of intertwining operatorsΒ RCM , sum-rules methodΒ SRM , Stokes parametrization approachΒ SPA , and so on. Recently, the authors in ref.Β Ehrenfest4 investigated a manifestation of Noether’s theorem in non-Hermitian systems, where an inner product was defined as (Ο†,ψ)≑φuTβ€‹Οˆv(\varphi,\psi)\equiv\varphi_{u}^{T}\psi_{v} without its complex conjugation. In their framework, a generalized symmetry, which they termed pseudochirality, emerges naturally as the counterpart of the symmetry defined by the commutation relation in quantum mechanics. Some existing worksΒ Ehrenfest1 ; Ehrenfest2 ; Ehrenfest3 ; Ehrenfest ; Ehrenfest4 ; Noetheranalysis ; Noethercurrents ; conservationlaws2 ; open1 ; interwining1 ; interwining2 ; SRM ; SDM1 ; SDM2 ; RCM ; SPA ; r2 ; r5 enrich the understanding of obtaining conserved quantity beyond the Hermitian framework, whereas a full understanding of the relation between symmetry and conservation law, and practical methods for extracting expectation values in non-Hermitian systems, remain elusive. Therefore, in order to properly deal with conservation problems using Noether’s theorem and explore its potential applications in non-Hermitian systems, there is an urgent need to extend Noether’s theorem to non-Hermitian systems.

Over the past decades, there is considerable interest in the study of the dynamic properties of parity-time (𝒫​𝒯\mathcal{PT})-symmetric non-Hermitian systemsΒ Non-Hermitian1 ; Non-Hermitian2 ; Non-Hermitian3 ; Non-Hermitian4 ; Non-Hermitian5 ; Non-Hermitianadd ; r1 ; r6 . The unique properties of 𝒫​𝒯\mathcal{PT}-symmetric systems and their applications have been investigated in various physical systemsΒ topological1 ; Non-Hermitian6 ; optomechanics1 ; optomechanics2 ; photonics1 ; photonics2 ; microwave1 ; microwave2 ; r3 ; r4 . Moreover, many remarkable and unexpected quantum phenomena have been observed in 𝒫​𝒯\mathcal{PT}-symmetric systems, such as critical phenomenaΒ CriticalPhenomena1 ; CriticalPhenomena2 , chiral population transferΒ energytransfer1 ; energytransfer2 , information retrievalΒ InformationRetrieva1 ; InformationRetrieva2 , coherence flowΒ InformationRetrieva3 and topological invariantsΒ invariant1 ; invariant2 . A complete characterization of conservation laws in 𝒫​𝒯\mathcal{PT}-symmetric systems has been intensely exploredΒ RCM ; SDM2 . For example, based on the intertwining relationΒ interwining1 ; interwining2 ; SRM , referenceΒ RCM has presented a complete set of conserved observables for a class of 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonians in a single-photon linear optical circuit. Moreover, in the pseudo-Hermitian representation of quantum mechanicsΒ SDM1 , referenceΒ APT has further implemented a model circuit of a generic anti-𝒫​𝒯\mathcal{PT}-symmetric system. A counterintuitive energy-difference conserving dynamics has been observedΒ APT , which is in stark contrast to the standard Hermitian dynamics keeping the system’s total energy constant. However, based on biorthogonal quantum mechanics, the manifestation of Noether’s theorem and a complete observation of conserved quantities in 𝒫​𝒯\mathcal{PT}-symmetric systems and their consequences are still lacking both theoretically and experimentally.

In this work, we extend Noether’s theorem to a class of significant 𝒫​𝒯\mathcal{PT}-symmetric non-Hermitian systems and introduce a generalized expectation value of a time-independent operator based on biorthogonal quantum mechanicsΒ Biorthogonal1 ; Biorthogonal2 ; Biorthogonal3 ; Biorthogonal4 . For the 𝒫​𝒯\mathcal{PT}-symmetric systems considered here, the eigenvalues of the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} change from purely real numbers to purely imaginary numbers. Such 𝒫​𝒯\mathcal{PT}-symmetric systems have been widely used to investigate the dynamics of non-Hermitian systems in the presence of balanced gain and lossΒ RCM ; Ehrenfest4 ; photonics1 ; CriticalPhenomena1 ; InformationRetrieva1 ; InformationRetrieva2 ; InformationRetrieva3 . Our work shows that the extended Noether’s theorem can be used to deal with conservation law problems about pure states and mixed states. Remarkably, we find that for an operator F^\hat{F} without explicit time dependence, its generalized expectation value is a constant of motion if F^\hat{F} presents a standard symmetry in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime, or a chiral symmetry in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime. In addition, we experimentally investigate the extended Noether’s theorem in 𝒫​𝒯\mathcal{PT}-symmetric single-qubit and two-qubit systems using an optical setup. Several novel results are found. First, our experiment demonstrates the existence of the constant of motion. Second, our experiment reveals that the constant of motion can be used to judge whether the 𝒫​𝒯\mathcal{PT} symmetry of a system is broken. Last, our experiment reveals the phenomenon of masking quantum informationΒ masking1 ; masking2 in a 𝒫​𝒯\mathcal{PT}-symmetric two-qubit system.

II Extension of Noether’s theorem in 𝒫​𝒯\mathcal{PT}-symmetric systems

To extend Noether’s theorem to 𝒫​𝒯\mathcal{PT}-symmetric systems, the biorthogonal quantum mechanicsΒ Biorthogonal1 ; Biorthogonal2 ; Biorthogonal3 ; Biorthogonal4 is applied. In biorthogonal quantum mechanics, the inner product is defined as

(Ο†,ψ)β‰‘βŸ¨Ο†^|ψ⟩=βˆ‘k,ldkβˆ—β€‹clβ€‹βŸ¨Ο•k^|Ο•l⟩=βˆ‘kdkβˆ—β€‹ck,\displaystyle(\varphi,\psi)\equiv\langle\widehat{\varphi}|\psi\rangle=\sum_{k,l}d^{*}_{k}c_{l}\langle\widehat{{\phi_{k}}}|\phi_{l}\rangle=\sum_{k}d^{*}_{k}c_{k}, (2)

where |ψ⟩=Ξ£l​cl​|Ο•l⟩|\psi\rangle=\Sigma_{l}c_{l}|{\phi_{l}}\rangle (|Ο†βŸ©=Ξ£k​dk​|Ο•k⟩|\varphi\rangle=\Sigma_{k}d_{k}|{\phi_{k}}\rangle) is an arbitrary pure state with its associated state ⟨ψ^|≑Σl​clβˆ—β€‹βŸ¨Ο•l^|\langle\widehat{\psi}|\equiv\Sigma_{l}c^{*}_{l}\langle\widehat{{\phi_{l}}}| (βŸ¨Ο†^|≑Σk​dkβˆ—β€‹βŸ¨Ο•k^|\langle\widehat{\varphi}|\equiv\Sigma_{k}d^{*}_{k}\langle\widehat{{\phi_{k}}}|), and {βŸ¨Ο•l​(k)^|}\{\langle\widehat{{\phi_{l(k)}}}|\} and {|Ο•l​(k)⟩}\{{|\phi_{l(k)}}\rangle\} are left and right eigenstates of a non-Hermitian HamiltonianΒ (Appendixes A.1 and A.2).

Here, we use ρ^{\hat{\rho}} (ρ^b{\hat{\rho}}_{b}) to denote a density operator in standard (biorthogonal) quantum mechanics. Without loss of generality, let us consider the 𝒫​𝒯\mathcal{PT}-symmetric system to be in a mixed state ρ^b​(t)=βˆ‘n=1Npn​|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|{\hat{\rho}}_{b}(t)=\sum_{n=1}^{N}p_{n}|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|, pnp_{n} is the probability of the system being in a pure state |ψn​(t)⟩|\psi_{n}(t)\rangle, with ⟨ψn^​(t)|ψn​(t)⟩=1\langle\widehat{\psi_{n}}(t)|\psi_{n}(t)\rangle=1. With the inner product introduced in eq.Β (2), a generalized expectation value (F^)(\hat{F}) of an operator F^\hat{F} can be definedΒ (see Appendix A.3)

(F^)\displaystyle(\hat{F}) =\displaystyle= t​r​[ρ^b​(t)​F^]=βˆ‘lβŸ¨Ο•l^|ρ^b​(t)​F^|Ο•l⟩\displaystyle tr[\hat{\rho}_{b}(t){\hat{F}}]=\sum_{l}\langle\widehat{{\phi_{l}}}|\hat{\rho}_{b}(t){\hat{F}}|{\phi_{l}}\rangle (3)
=\displaystyle= βˆ‘npnβ€‹βŸ¨Οˆn​(t)^|F^|ψn​(t)⟩.\displaystyle\sum_{n}p_{n}\langle\widehat{\psi_{n}(t)}|{\hat{F}}|\psi_{n}(t)\rangle. (4)

where ⟨ψn​(t)^|F^|ψn​(t)⟩\langle\widehat{\psi_{n}(t)}|{\hat{F}}|\psi_{n}(t)\rangle is the generalized expectation value (F^)(\hat{F}) of the operator F^\hat{F} for an arbitrary pure state |ψn​(t)⟩|\psi_{n}(t)\rangle. EquationΒ (3) provides a natural generalization of expectation value of an operator F^\hat{F} for an arbitrary quantum state, either a mixed state or a pure state.

As one of the main contributions of this work, we find that the temporal evolution of the expectation value (F^)(\hat{F}) of the operator F^\hat{F} follows two different forms (see Appendix A.3 for the detailed derivation)

dd​t​(F^)=βˆ‘npn​[1i​ℏ​([F^,H^𝒫​𝒯])n+(d​F^d​t)n],\displaystyle\frac{d}{dt}({\hat{F}})=\sum_{n}p_{n}\left[\frac{1}{i\hbar}([\hat{F},\hat{H}_{\mathcal{PT}}])_{n}+\left({\frac{d\hat{F}}{dt}}\right)_{n}\right], (5)
dd​t​(F^)=βˆ‘npn​[1i​ℏ​({F^,H^𝒫​𝒯})n+(d​F^d​t)n],\displaystyle\frac{d}{dt}({\hat{F}})=\sum_{n}p_{n}\left[\frac{1}{i\hbar}(\{\hat{F},\hat{H}_{\mathcal{PT}}\})_{n}+\left({\frac{d\hat{F}}{dt}}\right)_{n}\right], (6)

where (β‹…)n=⟨ψn​(t)^|β‹…|ψn​(t)⟩(\cdot)_{n}=\langle\widehat{\psi_{n}(t)}|\cdot|\psi_{n}(t)\rangle. EquationΒ (5) corresponds to the case when the system works in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime, while eq.Β (6) corresponds to the case when the system works in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime. From eq.Β (5), one can see that the expectation value (F^)(\hat{F}) is a constant of motion if the Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} and the time-independent operator F^\hat{F} satisfy the commutation relation [F^,H^𝒫​𝒯]=0[\hat{F},\hat{H}_{\mathcal{PT}}]=0, i.e., the operator F^\hat{F} presents a standard symmetry in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regimeΒ Symmetry1 . On the other hand, eq.Β (6) implies that the expectation value (F^)(\hat{F}) is also a constant of motion if H^𝒫​𝒯\hat{H}_{\mathcal{PT}} and F^\hat{F} satisfy the anti-commutation relation {F^,H^𝒫​𝒯}=0\{\hat{F},\hat{H}_{\mathcal{PT}}\}=0, i.e., F^\hat{F} presents a chiral symmetry in the 𝒫​𝒯\mathcal{PT}-symmetry broken regimeΒ chiralsymmetry1 .

To understand the above results intuitively, let us consider a 𝒫​𝒯\mathcal{PT}-symmetric single-qubit system where the eigenvalues of the Hamiltonian change from real (in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime), to purely imaginary (in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime). The Hamiltonian for this system is given by (hereafter, we assume ℏ=1\hbar=1)

H^𝒫​𝒯=s​σ^x+i​γ​σ^z=(i​γssβˆ’i​γ),\hat{H}_{\mathcal{PT}}=s\hat{\sigma}_{x}+i\gamma\hat{\sigma}_{z}=\left(\begin{array}[]{ll}i\gamma&s\\ s&-i\gamma\end{array}\right), (7)

where i​γ​σ^zi\gamma\hat{\sigma}_{z} is the non-Hermitian part of the Hamiltonian governing gain and lossΒ Non-Hermitian1 ; non-Hermitianadd . The parameter s>0s>0 is an energy scale, a=Ξ³/s>0a=\gamma/s>0 is a coefficient representing the degree of non-Hermiticity, Οƒ^x\hat{\sigma}_{x} and Οƒ^z\hat{\sigma}_{z} are the standard Pauli operators. The eigenvalues of H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are given by E1=s​1βˆ’a2E_{1}=s\sqrt{1-a^{2}} and E2=βˆ’s​1βˆ’a2E_{2}=-s\sqrt{1-a^{2}}, which are real numbers for 0<a<10<a<1 (the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime), while purely imaginary numbers for a>1a>1 (the 𝒫​𝒯\mathcal{PT}-symmetry broken regime). The right eigenvectors of H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are |Ο•1⟩=f1Γ—(A1​|0⟩+|1⟩)|\phi_{1}\rangle=f_{1}\times(A_{1}|0\rangle+|1\rangle) and |Ο•2⟩=f2Γ—(A2​|0⟩+|1⟩)|\phi_{2}\rangle=f_{2}\times(A_{2}|0\rangle+|1\rangle), while the left eigenvectors of H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are βŸ¨Ο•^1|=f3βˆ—Γ—(βˆ’A2βˆ—β€‹βŸ¨0|+⟨1|)\langle\widehat{\phi}_{1}|=f_{3}^{*}\times(-A_{2}^{*}\langle 0|+\langle 1|) and βŸ¨Ο•^2|=f4βˆ—Γ—(βˆ’A1βˆ—β€‹βŸ¨0|+⟨1|)\langle\widehat{\phi}_{2}|=f_{4}^{*}\times(-A_{1}^{*}\langle 0|+\langle 1|)Β (Appendix A.2). Here, A1=i​a+1βˆ’a2A_{1}=ia+\sqrt{1-a^{2}}, A2=i​aβˆ’1βˆ’a2A_{2}=ia-\sqrt{1-a^{2}}, and f1,f2,f3,f4f_{1},f_{2},f_{3},f_{4} satisfy f1β‹…f3βˆ—Γ—(1βˆ’A2βˆ—β€‹A1)=f2β‹…f4βˆ—Γ—(1βˆ’A1βˆ—β€‹A2)=1f_{1}\cdot{f}_{3}^{*}\times(1-A^{*}_{2}A_{1})=f_{2}\cdot{f}_{4}^{*}\times(1-A^{*}_{1}A_{2})=1 to satisfy the biorthogonality and closure relations.

The HamiltonianΒ (7) can be considered as a deformed Pauli operator, H^𝒫​𝒯=E1​|Ο•1βŸ©β€‹βŸ¨Ο•1^|βˆ’E1|Ο•2βŸ©β€‹βŸ¨Ο•2^|\hat{H}_{\mathcal{PT}}=E_{1}|{\phi_{1}}\rangle\langle\widehat{{\phi_{1}}}|-E_{1}|{\phi_{2}}\rangle\langle\widehat{{\phi_{2}}}|, in view of the biorthogonal partners {|Ο•1⟩,|Ο•2⟩}\{|{\phi_{1}}\rangle,|{\phi_{2}}\rangle\} and {βŸ¨Ο•1^|,βŸ¨Ο•2^|}\{\langle\widehat{{\phi_{1}}}|,\langle\widehat{{\phi_{2}}}|\}Β (Appendixes A.1 and A.2). If a time-independent operator F^\hat{F} can be expressed in the form

F^=c1​|Ο•1βŸ©β€‹βŸ¨Ο•1^|+c2|Ο•2βŸ©β€‹βŸ¨Ο•2^|,\hat{F}=c_{1}|{\phi_{1}}\rangle\langle\widehat{{\phi_{1}}}|+c_{2}|{\phi_{2}}\rangle\langle\widehat{{\phi_{2}}}|, (8)

where c1c_{1} and c2c_{2} are arbitrary nonzero coefficients, one can easily verify [F^,H^𝒫​𝒯]=0[\hat{F},\hat{H}_{\mathcal{PT}}]=0. Thus, according to eq.Β (5), the expectation value (F^)(\hat{F}) is a constant of motion in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime. On the other hand, if a time-independent operator F^\hat{F} can be expressed in the form

F^=c~1​(|Ο•1βŸ©β€‹βŸ¨Ο•2^|βˆ’|Ο•2βŸ©β€‹βŸ¨Ο•1^|)\hat{F}=\tilde{c}_{1}(|{\phi_{1}}\rangle\langle\widehat{{\phi_{2}}}|-|{\phi_{2}}\rangle\langle\widehat{{\phi_{1}}}|) (9)

where c~1\tilde{c}_{1} is an arbitrary nonzero coefficient, one can obtain {F^,H^𝒫​𝒯}=0\{\hat{F},\hat{H}_{\mathcal{PT}}\}=0. In this case, according to eq.Β (6), the expectation value (F^)(\hat{F}) is a constant of motion in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime.

Refer to caption
Figure 1: Experimental setup. (a) Overview of the apparatus for the initial state preparation in a single-photon system. For details, please refer to the text. (b) Overview of the apparatus for the initial state preparation in a two-photon system. For details, please refer to the text. (c) Implementation of the time-evolution toolbox. Q0 (H0) represents a QWP (HWP) with fixed orientation 0∘0^{\circ}, while Q45 represents a QWP with fixed orientation Ο€/4\pi/4. See text for details. PBS: polarization beam splitter, HWP: half-wave plate, QWP: quarter-wave plate, BD: beam displacer, IF: interference filter, BBO: Ξ²\beta-barium-borate crystal.

From an experimental point of view, in order to keep the expectation value (F^)(\hat{F}) as a real number, the chosen operator F^\hat{F} should be Hermitian in biorthogonal quantum mechanicsΒ (see Appendix A.4). Therefore, in the subsequent discussion, the coefficients c1c_{1} and c2c_{2} in eq.Β (8) are chosen as real numbers, and the coefficient c~1\tilde{c}_{1} in eq.Β (9) is chosen as a purely imaginary number.

III Experimental setup

III.1 Single-qubit case

The apparatus for the initial state preparation in a single-photon system is illustrated in FigureΒ 1a, where a single photon acts as the qubit. A photon pair is generated through a type-I phase-matched spontaneous parametric down-conversion process. The idler photon is detected by a single photon detector as a trigger. The qubit is encoded by the polarization of the heralded single photon, with |0⟩=|H⟩|0\rangle=|H\rangle and |1⟩=|V⟩|1\rangle=|V\rangle. The initial state is prepared by a polarization beam splitter (PBS) and a half-wave plate (HWP). Then the photon is injected into a time-evolution toolbox, which outputs the desired time-evolved state. In our experiment, the time-evolved state is accessed by enforcing the time-evolution operator U^𝒫​𝒯​(t)\hat{U}_{\mathcal{PT}}(t)=exp(βˆ’i​H^𝒫​𝒯​t-i\hat{H}_{\mathcal{PT}}t) at any given time on the initial state. Here, the Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} is the one given by eq.Β (7). As depicted in FigureΒ 1c, the time-evolution toolbox implements the time-evolution operator U^𝒫​𝒯​(t){\hat{U}}_{\mathcal{PT}}(t) by decomposing it into basic operationsΒ (see Appendix A.5)

U^𝒫​𝒯​(t)\displaystyle\hat{U}_{\mathcal{PT}}(t) =\displaystyle= R^QWP​(Ο€/4)​R^HWP​(ΞΈ3)​R^QWP​(ΞΈ2)​L^​(ΞΎ1,ΞΎ2)\displaystyle\hat{R}_{\textrm{QWP}}(\pi/4)\hat{R}_{\textrm{HWP}}(\theta_{3})\hat{R}_{\textrm{QWP}}(\theta_{2})\hat{L}(\xi_{1},~{}\xi_{2}) (10)
R^HWP​(0)​R^HWP​(ΞΈ1)​R^QWP​(0),\displaystyle\hat{R}_{\textrm{HWP}}(0)\hat{R}_{\textrm{HWP}}(\theta_{1})\hat{R}_{\textrm{QWP}}(0),

where the loss-dependent operator

L^​(ΞΎ1,ΞΎ2)=(0sin⁑2​ξ1sin⁑2​ξ20)\hat{L}\left(\xi_{1},~{}\xi_{2}\right)=\left(\begin{array}[]{cc}0&\sin 2\xi_{1}\\ \sin 2\xi_{2}&0\\ \end{array}\right) (11)

is realized by a combination of two beam displacers (BDs) and two HWPs with setting angles ΞΎ1\xi_{1} and ΞΎ2\xi_{2} (ΞΎ2\xi_{2} is fixed with Ο€/4\pi/4 in our experiment). Moreover, R^HWP\hat{R}_{{\textrm{HWP}}} and R^QWP\hat{R}_{{\textrm{QWP}}} are the rotation operators of the HWP and quarter-wave plate (QWP), respectively.

The time-evolved states in the 𝒫​𝒯\mathcal{PT}-symmetric single-qubit system is given byΒ InformationRetrieva1 ; rho1 ; rho2

ρ^E​(t)=U^𝒫​𝒯​(t)​ρ^​(0)​U^𝒫​𝒯†​(t)Tr​[U^𝒫​𝒯​(t)​ρ^​(0)​U^𝒫​𝒯†​(t)],\hat{\rho}^{E}(t)=\frac{\hat{U}_{\mathcal{PT}}(t)\hat{\rho}(0)\hat{U}_{\mathcal{PT}}^{\dagger}(t)}{\textrm{Tr}\left[\hat{U}_{\mathcal{PT}}(t)\hat{\rho}(0)\hat{U}_{\mathcal{PT}}^{\dagger}(t)\right]}, (12)

where ρ^​(0)\hat{\rho}(0) is the initial density matrix and ρ^E​(t)\hat{\rho}^{E}(t) is the experimental density matrix at any given time tt in standard quantum mechanics. The density matrix ρE​(t){\rho}^{E}(t) can be constructed via quantum state tomographyΒ Tomography ; Tomography1 . For the single-qubit system, we project the photon onto 4 bases {|H⟩,|V⟩,|R⟩=(|HβŸ©βˆ’i​|V⟩)/2,|D⟩=(|H⟩+|V⟩)/2}\{|H\rangle,|V\rangle,|R\rangle=(|H\rangle-i|V\rangle)/\sqrt{2},|D\rangle=(|H\rangle+|V\rangle)/\sqrt{2}\}. In addition, we note that the density matrix in biorthogonal quantum mechanics can be reversely extracted from the density matrix in standard quantum mechanics ρ^E​(t)\hat{\rho}^{E}(t)Β (Appendix A.6). On the other hand, the density matrix ρ^b​(t){\hat{\rho}}_{b}(t) in biorthogonal quantum mechanics can be obtained according to the following relationshipsΒ (Appendix A.7)

ρ^b​(t)=U^𝒫​𝒯​(t)​ρ^b​(0)​U^𝒫​𝒯′​(t),\displaystyle{\hat{\rho}}_{b}(t)={\hat{U}_{\mathcal{PT}}(t){\hat{\rho}}_{b}(0)\hat{U}_{\mathcal{PT}}^{{}^{\prime}}(t)}, (13)
ρ^b​(t)=U^𝒫​𝒯​(t)​ρ^b​(0)​U^𝒫​𝒯​(t),\displaystyle{\hat{\rho}}_{b}(t)={\hat{U}_{\mathcal{PT}}(t){\hat{\rho}}_{b}(0)\hat{U}_{\mathcal{PT}}(t)}, (14)

where U^𝒫​𝒯​(t)\hat{U}_{\mathcal{PT}}(t)=exp(βˆ’i​H^𝒫​𝒯​t-i\hat{H}_{\mathcal{PT}}t) and U^𝒫​𝒯′​(t)\hat{U}^{{}^{\prime}}_{\mathcal{PT}}(t)=exp(i​H^𝒫​𝒯​ti\hat{H}_{\mathcal{PT}}t) are time-evolution operators, and ρ^b​(0)\hat{\rho}_{b}(0) is the initial density matrix in biorthogonal quantum mechanics. EquationsΒ (13) and (14) correspond to the cases when the system evolves in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime and 𝒫​𝒯\mathcal{PT}-symmetry broken regime, respectively.

III.2 Two-qubit case

The apparatus for the initial state preparation in a two-photon system is illustrated in FigureΒ 1b. The entangled states in the experiment are generated through a type-II phase-matched spontaneous parametric down-conversion. Then two combinations of HWPs and QWPs (i.e., the upper and lower parts in the dashed box) operating on each photon, eliminate the influence caused by the fibres, therefore preparing the initial state. Then each photon is injected into a 𝒫​𝒯\mathcal{PT}-symmetric time evolution toolbox. The dynamical evolution of quantum states in this case is similarly given by equationΒ (12), where the time-evolution nonunitary operator is now given by U^𝒫​𝒯​(t)=U^𝒫​𝒯,1​(t)βŠ—U^𝒫​𝒯,2​(t)\hat{U}_{\mathcal{PT}}(t)=\hat{U}_{\mathcal{PT},1}(t)\otimes\hat{U}_{\mathcal{PT},2}(t). Here, U^𝒫​𝒯,j​(t)=exp⁑(βˆ’i​H^𝒫​𝒯,j​t)\hat{U}_{\mathcal{PT},j}(t)=\exp(-i\hat{H}_{\mathcal{PT},j}t) (j=1,2j=1,2) is the time-evolution nonunitary operator of qubit jj in the two-qubit system. Experimentally, we reconstruct the density matrix ρ^E​(t)\hat{\rho}^{E}(t) at any given time tt via quantum state tomography after each of the two photons passes through the time-evolution toolbox. Essentially, we project the two-qubit state onto 16 basis states through a combination of QWP, HWP and PBS, and then perform a maximum-likelihood estimation of the density matrixΒ Tomography ; Tomography1 .

III.3 Device parameters

For the single-qubit case, the photon pair is generated through a type-I phase-matched spontaneous parametric down-conversion process by pumping a nonlinear Ξ²\beta-barium-borate (BBO) crystal with a 404 nm pump laser, where the BBO crystal is 3 mm thick. The power of the pump laser is 130 mW. The bandwidth of the interference filter (IF) is 10 nm. This yields a maximum count of 60,000 per second. The quantum state is measured by performing standard state tomography, i.e., projecting the state onto 4 bases {|H⟩,|V⟩,|R⟩=(|HβŸ©βˆ’i​|V⟩)/2,|D⟩=(|H⟩+|V⟩)/2}\{|H\rangle,|V\rangle,|R\rangle=(|H\rangle-i|V\rangle)/\sqrt{2},|D\rangle=(|H\rangle+|V\rangle)/\sqrt{2}\}, and the corresponding angles of QWP-HWP are (0∘,0∘)\left(0^{\circ},~{}0^{\circ}\right), (0∘,45∘)\left(0^{\circ},~{}45^{\circ}\right), (45∘,22.5∘)\left(45^{\circ},~{}22.5^{\circ}\right), (0∘,22.5∘)\left(0^{\circ},~{}22.5^{\circ}\right), and (45∘,0∘)\left(45^{\circ},~{}0^{\circ}\right), respectively.

For the two-qubit case, the entangled states in the experiment are generated through a type-II phase-matched spontaneous parametric down-conversion, by pumping two BBO crystals with a 404 nm pump laser, where each BBO crystal is 0.4 mm thick and the optical axes are perpendicular to each other. The measurement of the photon source yields a maximum of 10,000 photon counts over 1.5 s after the 10 nm IF. Here, the quantum state is measured by performing standard state tomography, i.e., projecting the state onto 16 bases {|H​H⟩|HH\rangle, |H​V⟩|HV\rangle, |V​V⟩|VV\rangle, |V​H⟩|VH\rangle, |R​H⟩|RH\rangle, |R​V⟩|RV\rangle, |D​V⟩|DV\rangle, |D​H⟩|DH\rangle, |D​R⟩|DR\rangle, |D​D⟩|DD\rangle, |R​D⟩|RD\rangle, |H​D⟩|HD\rangle, |V​D⟩|VD\rangle, |V​L⟩|VL\rangle, HL⟩HL\rangle, |R​L⟩|RL\rangle}, where |D⟩=(|H⟩+|V⟩)/2|D\rangle=\left(|H\rangle+|V\rangle\right)/\sqrt{2}, |R⟩=(|HβŸ©βˆ’i​|V⟩)/2|R\rangle=\left(|H\rangle-i|V\rangle\right)/\sqrt{2}, and |L⟩=(|H⟩+i​|V⟩)/2|L\rangle=\left(|H\rangle+i|V\rangle\right)/\sqrt{2}.

IV Experimental and theoretical results

Refer to caption
Figure 2: The temporal evolutions of expectation values (F^)(\hat{F}) and ⟨F^⟩\langle{\hat{F}}\rangle in the 𝒫​𝒯\mathcal{PT}-symmetric single-photon system. For (a) and (b) the system works in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime (a=0.6a=0.6), while for (c) and (d) the system works in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime (a=1.2a=1.2). For (a) and (c), the observable operators F^\hat{F} are chosen as deformed Pauli operators Οƒ~z=|Ο•1βŸ©β€‹βŸ¨Ο•1^|βˆ’|Ο•2βŸ©β€‹βŸ¨Ο•1^|\widetilde{\sigma}_{z}=|{\phi_{1}}\rangle\langle\widehat{{\phi_{1}}}|-|{\phi_{2}}\rangle\langle\widehat{{\phi_{1}}}| and Οƒ~y=βˆ’i​|Ο•1βŸ©β€‹βŸ¨Ο•2^|+i|Ο•2βŸ©β€‹βŸ¨Ο•1^|\widetilde{\sigma}_{y}=-i|{\phi_{1}}\rangle\langle\widehat{{\phi_{2}}}|+i|{\phi_{2}}\rangle\langle\widehat{{\phi_{1}}}| in biorthogonal quantum mechanics. The expectation value (F^)(\hat{F}) is based on (F^)=βŸ¨Οˆβ€‹(t)^|F^|Οˆβ€‹(t)⟩(\hat{F})={\langle\widehat{{\psi}(t)}|\hat{F}|\psi(t)\rangle}. For (b) and (d), the observable operators are chosen as standard Pauli operators Οƒ^z\hat{\sigma}_{z} and Οƒ^y\hat{\sigma}_{y}, the expectation value ⟨F^⟩\langle{\hat{F}}\rangle is based on ⟨F^⟩=βŸ¨Οˆβ€‹(t)|F^|Οˆβ€‹(t)⟩\langle{\hat{F}}\rangle={\langle{{\psi}(t)}|\hat{F}|\psi(t)\rangle}. The initial state is (|0⟩+|1⟩)/2(|0\rangle+|1\rangle)/\sqrt{2}, and we have set f1=f2=1/2f_{1}=f_{2}=1/\sqrt{2} and s=1s=1. All curves show the theoretical results while dots are the experimental data.

IV.1 Expectation values of operators in a 𝒫​𝒯\mathcal{PT}-symmetric single-qubit system

As two results derived from Noether’s theorem, equationsΒ (8) and Β (9) tell us that the expectation value (F)(F) is a constant of motion if

F^=Οƒ~z=|Ο•1βŸ©β€‹βŸ¨Ο•1^|βˆ’|Ο•2βŸ©β€‹βŸ¨Ο•2^|,(c1=βˆ’c2=1)\hat{F}=\widetilde{\sigma}_{z}=|{\phi_{1}}\rangle\langle\widehat{{\phi_{1}}}|-|{\phi_{2}}\rangle\langle\widehat{{\phi_{2}}}|,~{}~{}(c_{1}=-c_{2}=1) (15)

and

F^=Οƒ~y=βˆ’i|Ο•1βŸ©βŸ¨Ο•2^|+i|Ο•2βŸ©βŸ¨Ο•1^|),(c~1=βˆ’i)\hat{F}=\widetilde{\sigma}_{y}=-i|{\phi_{1}}\rangle\langle\widehat{{\phi_{2}}}|+i|{\phi_{2}}\rangle\langle\widehat{{\phi_{1}}}|),~{}~{}(\tilde{c}_{1}=-i) (16)

for the 𝒫​𝒯\mathcal{PT}-symmetry unbroken and broken cases, respectively. We experimentally confirm this prediction in a 𝒫​𝒯\mathcal{PT}-symmetric single-qubit system. As shown in FigureΒ 2a, in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime, (Οƒ~z)(\widetilde{\sigma}_{z}) is a constant of motion, whereas (Οƒ~y)(\widetilde{\sigma}_{y}) changes over time. Interestingly, in contrast to FigureΒ 2a, FigureΒ 2c shows that in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime, (Οƒ~y)(\widetilde{\sigma}_{y}) is a constant of motion, while (Οƒ~z)(\widetilde{\sigma}_{z}) changes over time. The experimental results here agree well with the theoretical simulation results. As a contrast, we also measure the expectation values of Οƒ^z\hat{\sigma}_{z} and Οƒ^y{\hat{\sigma}}_{y} in standard quantum mechanics, shown in FiguresΒ 2b andΒ 2d. One can see from FiguresΒ 2b andΒ 2d that both βŸ¨Οƒ^z⟩\langle{\hat{\sigma}}_{z}\rangle and βŸ¨Οƒ^y⟩\langle{\hat{\sigma}}_{y}\rangle change over time in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken or broken regime, i.e., one cannot obtain a constant of motion. Hence, according to the temporal evolution of expectation values of (Οƒ~z)(\widetilde{\sigma}_{z}) and (Οƒ~y)(\widetilde{\sigma}_{y}), one can judge whether the system works in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken or broken regime.

Refer to caption
Figure 3: The temporal evolutions of expectation values (Οƒ~z)(\widetilde{\sigma}_{z}) and (Οƒ~y)(\widetilde{\sigma}_{y}) in the 𝒫​𝒯\mathcal{PT}-symmetric single-photon system under different initial states and non-Hermiticities. The non-Hermiticities in (a), (b), (c) and (d) are chosen as a=0.6a=0.6, a=0.8a=0.8, a=1.2a=1.2 and a=2a=2, respectively. The initial states are chosen as two pure states 12​(|0⟩+|1⟩)\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), 12​(|0βŸ©βˆ’3​|1⟩)\frac{1}{2}(|0\rangle-\sqrt{3}|1\rangle) and a mixed state 12​(|0βŸ©β€‹βŸ¨0|+|1βŸ©β€‹βŸ¨1|)\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|). We have set f1=f2=1/2f_{1}=f_{2}=1/\sqrt{2} and s=1s=1. All curves show the theoretical results while dots are the experimental data.

On the other hand, since our experimental apparatus is quite general and capable of implementing a broad class of nonunitary operators, we are able to investigate the role of non-Hermiticities and the effects of initial states on the temporal evolution of expectation values. It can be clearly seen from FiguresΒ 3a andΒ 3b that with different initial states, (Οƒ~z)(\widetilde{\sigma}_{z}) is always a constant in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime even though the initial state is a mixed state. However, the expectation value (Οƒ~z)(\widetilde{\sigma}_{z}) is dependent on the initial states. Comparing FigureΒ 3a with FigureΒ 3b, one can see that the expectation value (Οƒ~z)(\widetilde{\sigma}_{z}) gradually increases when the parameter aa (representing the degree of non-Hermiticity) increases. Similarly, FiguresΒ 3c andΒ 3d show that in 𝒫​𝒯\mathcal{PT}-symmetry broken regime, (Οƒ~y)(\widetilde{\sigma}_{y}) is always a constant for different initial states even though the initial state is a mixed state, and the expectation value (Οƒ~y)(\widetilde{\sigma}_{y}) gradually decreases when the parameter aa increases.

Refer to caption
Figure 4: The temporal evolutions of expectation values in the 𝒫​𝒯\mathcal{PT}-symmetric two-qubit system with different initial states in the 𝒫​𝒯\mathcal{PT} symmetric broken regime (a=1.2a=1.2). The observable operators in (a) and (b) are chosen as S~y=Οƒ~y,1+Οƒ~y,2\widetilde{S}_{y}=\widetilde{\sigma}_{y,1}+\widetilde{\sigma}_{y,2}, and S^y=Οƒ^y,1+Οƒ^y,2\hat{S}_{y}=\hat{\sigma}_{y,1}+\hat{\sigma}_{y,2}, respectively; while the observable operators in (c) and (d) are chosen as S~z=Οƒ~z,1+Οƒ~z,2\widetilde{S}_{z}=\widetilde{\sigma}_{z,1}+\widetilde{\sigma}_{z,2}, and S^z=Οƒ^z,1+Οƒ^z,2\hat{S}_{z}=\hat{\sigma}_{z,1}+\hat{\sigma}_{z,2}, respectively. Here, Οƒ^x,j\hat{\sigma}_{x,j} and Οƒ^z,j\hat{\sigma}_{z,j} (Οƒ~x,j\widetilde{\sigma}_{x,j} and Οƒ~z,j\widetilde{\sigma}_{z,j}) are the standard (deformed) Pauli operators for the qubit j​(j=1,2)j~{}(j=1,2) in standard (biorthogonal) quantum mechanics. |0~βŸ©β‰‘|Ο•1⟩|\widetilde{0}\rangle\equiv|\phi_{1}\rangle, |1~βŸ©β‰‘|Ο•2⟩|\widetilde{1}\rangle\equiv|\phi_{2}\rangle, ⟨0~^|=βŸ¨Ο•1^|\langle\widehat{\widetilde{0}}|=\langle\widehat{\phi_{1}}|, ⟨1~^|=βŸ¨Ο•2^|\langle\widehat{\widetilde{1}}|=\langle\widehat{\phi_{2}}|, and we set f1=f2=1/2f_{1}=f_{2}=1/\sqrt{2} and s=1s=1. All curves show the theoretical results while dots are the experimental data.

IV.2 Expectation values of operators in a 𝒫​𝒯\mathcal{PT}-symmetric two-qubit system

We further study the 𝒫​𝒯{\mathcal{PT}} evolution of a two-qubit system using the optical setup shown in FigureΒ 1b. The Hamiltonian of the two-qubit system is described by H^\hat{H}=H^𝒫​𝒯,1\hat{H}_{\mathcal{PT},1}+H^𝒫​𝒯,2\hat{H}_{\mathcal{PT},2}=s(S^xs(\hat{S}_{x}+iaS^z)ia\hat{S}_{z}), with H^𝒫​𝒯,j\hat{H}_{\mathcal{PT},j}=s(Οƒ^x,js(\hat{\sigma}_{x,j}+iaΟƒ^z,j)ia\hat{\sigma}_{z,j}), S^x\hat{S}_{x}=Οƒ^x,1\hat{\sigma}_{x,1}+Οƒ^x,2\hat{\sigma}_{x,2}, and S^z\hat{S}_{z}=Οƒ^z,1\hat{\sigma}_{z,1}+Οƒ^z,2\hat{\sigma}_{z,2}. Here, Οƒ^x,j\hat{\sigma}_{x,j} and Οƒ^z,j\hat{\sigma}_{z,j} are the standard Pauli operators for the photonic qubit j​(j=1,2)j~{}(j=1,2). The parameter ss is still the energy scale. For different initial states, the temporal evolutions of expectation values in the two-qubit system are plotted in FigureΒ 4. The observable operators in FigureΒ 4a and FigureΒ 4c are chosen as S~y\widetilde{S}_{y}=Οƒ~y,1\widetilde{\sigma}_{y,1}+Οƒ~y,2\widetilde{\sigma}_{y,2} and S~z\widetilde{S}_{z}=Οƒ~z,1\widetilde{\sigma}_{z,1}+Οƒ~z,2\widetilde{\sigma}_{z,2}, respectively. Here, Οƒ~y,j\widetilde{\sigma}_{y,j} and Οƒ~z,j\widetilde{\sigma}_{z,j} are deformed Pauli operators for the qubit j​(j=1,2)j~{}(j=1,2) in biorthogonal quantum mechanics. One can verify {S~y,H^}=0\{\widetilde{S}_{y},\hat{H}\}=0 and [S~z,H^]=0[\widetilde{S}_{z},\hat{H}]=0. As expected, FiguresΒ 4a andΒ 4c show that (S~y)(\widetilde{S}_{y}) remains unchanged, whereas (S~z)(\widetilde{S}_{z}) changes quickly in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime (a=1.2a=1.2). Remarkably, it’s worth noting that the expectation value (S~y)(\widetilde{S}_{y}) is zero, which is independent of the initial states. Taking an information-theoretic perspective on this phenomenon, one can thus conclude that the information of the initial states is masked when measuring the expectation value (S~y)(\widetilde{S}_{y}), while the information of the initial states can be disclosed by measuring the expectation value (S~z)(\widetilde{S}_{z}). In addition, FiguresΒ 4b andΒ 4d show that both ⟨S^z⟩\langle{\hat{S}}_{z}\rangle and ⟨S^y⟩\langle{\hat{S}}_{y}\rangle depend on the initial states and change over time, i.e., the phenomenon of masking quantum information does not exist in standard quantum mechanics. Hence, the masking of quantum information is a unique phenomenon in biorthogonal quantum mechanics.

V CONCLUSION

We have extended Noether’s theorem to a class of significant 𝒫​𝒯\mathcal{PT}-symmetric non-Hermitian systems and introduced a generalized expectation value of a time-independent operator based on biorthogonal quantum mechanics. We have demonstrated that in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime, the generalized expectation value of a time-independent operator is a constant of motion, if the time-independent operator and the non-Hermitian Hamiltonian satisfy the commutation relation, i.e., the operator presents a standard symmetry. Moreover, even in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime, the expectation value of a time-independent operator is still a constant of motion provided the operator and the non-Hermitian Hamiltonian satisfy the anti-commutation relation, i.e., the operator presents a chiral symmetry. Furthermore, we have experimentally confirmed our predictions in 𝒫​𝒯\mathcal{PT}-symmetric single-qubit and two-qubit systems by using an optical setup. Our experiment has demonstrated the existence of the predicted constant of motion. Meanwhile, a novel phenomenon of masking quantum information is first observed in a 𝒫​𝒯\mathcal{PT}-symmetric two-qubit system. The extended Noether’s theorem not only contributes to a full understanding of the relation between symmetry and conservation law in 𝒫​𝒯\mathcal{PT}-symmetric physics, but also has potential applications in quantum information theory and quantum communication protocols.

The present work has some elements in common with previous works on obtaining conserved quantity in non-Hermitian systems, especially the idea of using pseudo-Hermiticity (equivalently, the intertwining relation)Β interwining1 ; interwining2 ; SRM ; SDM1 ; SDM2 . Therefore, we here address the difference between our work and previous works. As shown in Refs.Β interwining1 ; interwining2 , every Hamiltonian with a real spectrum is pseudo-Hermitian, and all the 𝒫​𝒯\mathcal{PT}-symmetric non-Hermitian Hamiltonians belong to the so-called pseudo-Hermitian Hamiltonians. In the pseudo-Hermitian representation of quantum mechanics, the expectation value ⟨F^⟩\langle{\hat{F}}\rangle of a time-independent operator F^{\hat{F}} is a conserved quantity provided the intertwining relation, F^​H^=H^†​F^\hat{F}\hat{H}=\hat{H}^{\dagger}{\hat{F}}, is satisfied. In principle, a complete set of conserved observables can be obtained by numerically solving a set of N2N^{2}-dimensional linear intertwining relationΒ SRM ; SDM1 ; SDM2 ; RCM ; SPA . However, a common problem, which one may encounter via pseudo-Hermiticity (intertwining relation), is how to connect the conserved quantities with the symmetries of dynamics. Compared with previous worksΒ interwining1 ; interwining2 ; SRM ; SDM1 ; SDM2 ; RCM ; SPA , the main difference of our work is that by introducing a generalized expectation value of an operator based on biorthogonal quantum mechanics, we connect two important symmetries with conserved operators in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken and broken regimes, respectively. We remark that the proposed standard symmetry F^​H^=H^​F^\hat{F}\hat{H}=\hat{H}{\hat{F}} and the chiral symmetry F^​H^=βˆ’H^​F^\hat{F}\hat{H}=-\hat{H}{\hat{F}} are essentially different from the intertwining relation F^​H^=H^†​F^\hat{F}\hat{H}=\hat{H}^{\dagger}{\hat{F}}, because of H^β‰ H^†\hat{H}\neq\hat{H}^{\dagger} and H^β‰ βˆ’H^†\hat{H}\neq-\hat{H}^{\dagger} in 𝒫​𝒯\mathcal{PT}-symmetric systems.

We note that the extended Noether’s theorem is always valid for such 𝒫​𝒯\mathcal{PT}-symmetric systems provided the eigenvalues of H^𝒫​𝒯\hat{H}_{\mathcal{PT}} change from purely real numbers to purely imaginary numbers; or equivalently, H^𝒫​𝒯\hat{H}_{\mathcal{PT}} exhibits an exceptional point of the order of the system’s dimension. As an example, consider a 3-dimensional 𝒫​𝒯\mathcal{PT}-symmetric systemΒ SDM2 , for which the Hamiltonian reads H𝒫​𝒯=s​Jx+i​γ​JzH_{\mathcal{PT}}=sJ_{x}+i\gamma J_{z}, where JxJ_{x} and JzJ_{z} are the 3-dimensional angular momentum operators. Such a 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian has a third-order exceptional point at Ξ³=s\gamma=s and its spectrum also changes from real to purely imaginaryΒ SDM2 . Then, based on the extended Noether’s theorem, one can quickly find its conserved quantities in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken and broken regimes, respectively.

For any quantum system, whose Hamiltonian can be simplified to the form in eq.Β (7), the extended Noether’s theorem presented in this work can be implemented straightforwardly. Note that for the simplified Hamiltonian, arbitrary dressed states can be chosen as basis states as long as the dressed states satisfy the biorthogonality and closure relations. This might lead to a useful step toward realizing fast symmetry discrimination and conserved quantity acquisition for multi-qubit 𝒫​𝒯\mathcal{PT}-symmetric systems. Moreover, in above discussion, we focus on the case of an operator F^\hat{F} without explicit time dependence. However, the derived equationsΒ (5,6) also work well in a general case i.e., the operator F^​(t)\hat{F}(t) is time-dependent. Then, one may obtain constant of motion for a time-dependent operator in a time-dependent 𝒫​𝒯\mathcal{PT}-symmetric system, which may be interesting and attractive. Furthermore, in some sense, the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian in eq.Β (7) has parallels with non-Hermitian topological phasesΒ topological1 ; topological2 and the extended classification of topological classesΒ chiralsymmetry3 ; chiralsymmetry4 . The discovery of the relation between conserved quantities and non-Hermitian topological invariantsΒ invariant1 ; invariant2 is also interesting and attractive, which is a fascinating field where further extension of this work may be explored.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China (NSFC) (Grants Nos.Β 12264040, 12204311, 11804228, 11865013 and U21A20436), Jiangxi Natural Science Foundation (20212BAB211018, 20192ACBL20051), the project of Jiangxi Province Higher educational Science and Technology Program (Grant Nos.Β GJJ190891, GJJ211735), and Key-Area Research and Development Program of Guang Dong province (2018B03-0326001). F.N. is supported in part by Nippon Telegraph and Telephone Corporation (NTT) Research, the Japan Science and Technology Agency (JST) [via the Quantum Leap Flagship Program (Q-LEAP), and the Moonshot R&\&D Grant Number JPMJMS2061], the Japan Society for the Promotion of Science (JSPS) [via the Grants-in-Aid for Scientific Research (KAKENHI) Grant No. JP20H00134], the Army Research Office (ARO) (Grant No. W911NF-18-1-0358), the Asian Office of Aerospace Research and Development (AOARD) (via Grant No. FA2386-20-1-4069), and the Foundational Questions Institute Fund (FQXi) via Grant No. FQXi-IAF19-06.

References

  • (1) A. Altland and M. R. Zirnbauer, β€œNonstandard Symmetry Classes in Mesoscopic Normal-Superconducting Hybrid Structures,” Phys. Rev. B 55, 1142-1161 (1997).
  • (2) S. Malzard, C. Poli, and H. Schomerus, β€œTopologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry,” Phys. Rev. Lett. 115, 200402 (2015).
  • (3) Z. P. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, β€œTopological Phases of Non-Hermitian Systems,” Phys. Rev. X 8, 031079 (2018).
  • (4) K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, β€œSymmetry and Topology in Non-Hermitian Physics,” Phys. Rev. X 9, 041015 (2019).
  • (5) K. Y. Bliokh, J. Dressel, F. Nori, β€œConservation of the spin and orbital angular momenta in electromagnetism,” New J. Phys. 16, 093037 (2014).
  • (6) M. Li, X. Ni, M. Weiner, A. AlΓΉ, and A. B. Khanikaev, β€œTopological phases and nonreciprocal edge states in non-Hermitian Floquet insulators,” Phys. Rev. B 100, 045423 (2019).
  • (7) A. E. Noether, β€œInvariante variations probleme,” Kgl Ges Wiss Nachr GΓΆttingen,” Math. Phys. KI2, 235-257 (1918).
  • (8) N. Ma, Y. Z. You and Z. Y. Meng, β€œRole of Noether’s Theorem at the Deconfined Quantum Critical Point,” Phys. Rev. Lett. 122, 175701 (2019).
  • (9) R. Shankar, β€œPrinciples of Quantum Mechanics,” 2nd ed. (Springer, New York, 1994), https://doi.org/10.1007/978-1- 4757-0576-8.
  • (10) I. Marvian, R. W. Spekkens, β€œExtending Noether’s theorem by quantifying the asymmetry of quantum states,” Nat. Commun. 5, 3821 (2014).
  • (11) P. M. Zhang, M. Elbistan, P. A. Horvathy, P. KosiΕ„ski, β€œA generalized Noether theorem for scaling symmetry,” Eur. Phys. J. Plus 135, 223 (2020).
  • (12) K. Y. Bliokh, A. Y. Bekshaev, F. Nori, β€œDual electromagnetism: helicity, spin, momentum, and angular momentum,” New J. Phys. 15, 033026 (2013).
  • (13) L. Burns, K. Y. Bliokh, F. Nori, J. Dressel, β€œAcoustic versus electromagnetic field theory: scalar, vector, spinor representations and the emergence of acoustic spin,” New J. Phys. 22, 053050 (2020).
  • (14) J. J. GarcΓ­a-Ripoll, V. M. PΓ©rez-GarcΓ­a, and V. Vekslerchik, β€œConstruction of exact solutions by spatial translations in inhomogeneous nonlinear SchrΓΆdinger equations,” Phys. Rev. E 64, 056602 (2001).
  • (15) Q. C. Wu, Y. H. Zhou, B. L. Ye, T. Liu and C. P. Yang, β€œNonadiabatic quantum state engineering by time-dependent decoherence-free subspaces in open quantum systems,” New J. Phys. 23, 113005 (2021).
  • (16) D. L. Li and C. Zheng, β€œNon-Hermitian Generalization of RΓ©nyi Entropy,” Entropy, 24, 1563 (2022).
  • (17) X. E. Gao, D. L. Li, Z. H. Liu, and C. Zheng, β€œRecent progress in quantum simulation of non-Hermitian,” Acta Physica Sinica, 71, 240303 (2022).
  • (18) H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, β€œUnidirectional nonlinear PT-symmetric optical structures,” Phys. Rev. A 82, 043803 (2010).
  • (19) A. Mostafazadeh, β€œPseudo-Hermiticity versus 𝒫​𝒯\mathcal{PT} symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian hamiltonian,” J. Math. Phys. 43, 205-214 (2002).
  • (20) A. Mostafazadeh, β€œExact 𝒫​𝒯\mathcal{PT}-symmetry is equivalent to Hermiticity,” J. Phys. A: Math. Gen. 36, 7081-7091 (2003).
  • (21) M. V. Berry, β€œOptical lattices with 𝒫​𝒯\mathcal{PT} symmetry are not transparent,” J. Phys. A: Math. Theor. 41, 244007 (2008).
  • (22) A. Mostafazadeh, β€œPseudo-Hermitian representation of quantum mechanics,” Int. J. Geom. Methods Mod. Phys. 07, 1191-1306 (2010).
  • (23) F. Ruzicka, K. S. Agarwal, Y. N. Joglekar, β€œConserved quantities, exceptional points, and antilinear symmetries in non-Hermitian systems,” J. Phys.: Conf. Ser. 2038, 012021 (2021).
  • (24) Z. Bian, L. Xiao, K. Wang, X. Zhan, F. A. Onanga, F. Ruzicka, W. Yi, Y. N. Joglekar, and P. Xue, β€œConserved quantities in parity-time symmetric systems,” Phys. Rev. Research 2, 022039 (2020).
  • (25) M. H. Teimourpour, R. El-Ganainy, A. Eisfeld, A. Szameit, and D. N. Christodoulides, β€œLight transport in 𝒫​𝒯\mathcal{PT}-invariant photonic structures with hidden symmetries,” Phys. Rev. A 90, 053817 (2014).
  • (26) J. D. H. Rivero and L. Ge, β€œPseudochirality: A Manifestation of Noether’s Theorem in Non-Hermitian Systems,” Phys. Rev. Lett. 125, 083902 (2020).
  • (27) C. M. Bender and S. Boettcher, β€œReal Spectra in Non-Hermitian Hamiltonians Having 𝒫​𝒯\mathcal{PT} Symmetry,” Phys. Rev. Lett. 80, 5243-5246 (1998).
  • (28) L. Ge, Y. D. Chong, and A. D. Stone, β€œConservation relations and anisotropic transmission resonances in one-dimensional 𝒫​𝒯\mathcal{PT}-symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).
  • (29) B. Peng, S. K. Ozdemir, F. C. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. H. Fan, F. Nori, C. M. Bender and L. Yang, β€œParity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394-398 (2014).
  • (30) H. Jing, S.K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, β€œπ’«β€‹π’―\mathcal{PT}-Symmetric Phonon Laser,” Phys. Rev. Lett. 113, 053604 (2014).
  • (31) V. V. Konotop, J. Yang, and D. A. Zezyulin, β€œNonlinear waves in 𝒫​𝒯\mathcal{PT}-symmetric systems,” Rev. Mod. Phys. 88, 035002 (2016).
  • (32) R. E. Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, and D. N. Christodoulides, β€œNon-Hermitian physics and 𝒫​𝒯\mathcal{PT} symmetry,” Nat. Phys. 14, 11-19 (2018).
  • (33) O. Sigwarth and M. Christian, β€œTime reversal and reciprocity,” AAPPS Bull. 32, 23 (2022).
  • (34) C. Zheng, β€œQuantum simulation of 𝒫​𝒯\mathcal{PT}-arbitrary-phase-symmetric systems,” EPL, 136, 30002 (2021).
  • (35) G. Q. Zhang, Z. Chen, Da Xu, N. Shammah, M. Liao, T.F. Li, L. Tong, S.Y. Zhu, F. Nori, and J.Q. You, β€œExceptional Point and Cross-Relaxation Effect in a Hybrid Quantum System,” PRX Quantum 2, 020307 (2021).
  • (36) X. Ni, D. Smirnova, A. Poddubny, D. Leykam, Y. Chong, and A. B. Khanikaev, β€œπ’«β€‹π’―\mathcal{PT} phase transitions of edge states at 𝒫​𝒯\mathcal{PT} symmetric interfaces in non-Hermitian topological insulators,” Phys. Rev. B 98, 165129 (2018).
  • (37) D. X. Chen, Y. Zhang, J. L. Zhao, Q. C. Wu, Y. L. Fang, C. P. Yang, and F. Nori, β€œQuantum state discrimination in a 𝒫​𝒯\mathcal{PT}-symmetric system,” Phys. Rev. A 106, 022438 (2022).
  • (38) H. Xu, D. G. Lai, Y. B. Qian, B. P. Hou, A. Miranowicz, and F. Nori, β€œOptomechanical dynamics in the 𝒫​𝒯\mathcal{PT}- and broken-𝒫​𝒯\mathcal{PT}-symmetric regimes,” Phys. Rev. A 104, 053518 (2021).
  • (39) J. S. Tang, Y. T. Wang, S. Yu, D. Y. He, J. S. Xu, B. H. Liu, G. Chen, Y. N. Sun, K. Sun, Y. J. Han, C. F. Li, and G. C. Guo, β€œExperimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system,” Nat. Photonics 10, 642-646 (2016).
  • (40) Y. T. Wang, Z. P. Li, S. Yu, Z. J. Ke, W. Liu, Y. Meng, Y. Z. Yang, J. S. Tang, C. F. Li, and G. C. Guo, β€œExperimental Investigation of State Distinguishability in Parity-Time Symmetric Quantum Dynamics,” Phys. Rev. Lett. 124, 230402 (2020).
  • (41) J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, β€œObservation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms,” Nat. Commun. 10, 855 (2019).
  • (42) H. Z. Chen, T. Liu, H. Y. Luan, R. J. Liu, X. Y. Wang, X. F. Zhu, Y. B. Li, Z. M. Gu, S. J. Liang, H. Gao, L. Lu, L. Ge, S. Zhang, J. Zhu, and R. M. Ma, β€œRevealing the missing dimension at an exceptional point,” Nat. Phys. 16, 571-578 (2020).
  • (43) C. Wu, A. Fan, and S. D. Liang, β€œComplex Berry curvature and complex energy band structures in non-Hermitian graphene model,” AAPPS Bull. 32, 39 (2022).
  • (44) C. Zheng, L. Hao, and G. L. Long, β€œObservation of a fast evolution in a parity-time-symmetric system,” Phil. Trans. R. Soc. A. 371, 20120053 (2013).
  • (45) L. Xiao, K. K. Wang, X. Zhan, Z. H. Bian, K. Kawabata, M. Ueda, W. Yi, and P. Xue, β€œObservation of Critical Phenomena in Parity-Time-Symmetric Quantum Dynamics,” Phys. Rev. Lett. 123, 230401 (2019).
  • (46) Y. Ashida, S. Furukawa, and M. Ueda, β€œParity-time-symmetric quantum critical phenomena,” Nat. Commun. 8, 15791 (2017).
  • (47) H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, β€œTopological energy transfer in an optomechanical system with exceptional points,” Nature 537, 80-83 (2016).
  • (48) J. Doppler, A. A. Mailybaev, J. BΓΆhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, β€œDynamically encircling an exceptional point for asymmetric mode switching,” Nature 537, 76-79 (2016).
  • (49) K. Kawabata, Y. Ashida, and M. Ueda, β€œInformation Retrieval and Criticality in Parity-Time-Symmetric Systems,” Phys. Rev. Lett. 119, 190401 (2017).
  • (50) J. W. Wen, C. Zheng, Z. D. Ye, T. Xin, and G. L. Long, β€œStable states with nonzero entropy under broken 𝒫​𝒯\mathcal{PT} symmetry,” Phys. Rev. Research 3, 013256 (2021).
  • (51) Y. L. Fang, J. L. Zhao, Y. Zhang, D. X. Chen, Q. C. Wu, Y. H. Zhou, C. P. Yang, and F. Nori, β€œExperimental demonstration of coherence flow in 𝒫​𝒯\mathcal{PT}- and anti-𝒫​𝒯\mathcal{PT}-symmetric systems,” Commun. Phys. 4, 223 (2021).
  • (52) H. Shen, B. Zhen, and L. Fu, β€œTopological band theory for non-Hermitian Hamiltonians,” Phys. Rev. Lett. 120, 146402 (2018).
  • (53) K. Chen and A. B. Khanikaev, β€œNon-Hermitian CNHC_{\textrm{NH}}=2 Chern insulator protected by generalized rotational symmetry,” Phys. Rev. B 105, L081112 (2022).
  • (54) Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, β€œObservation of an anti-𝒫​𝒯\mathcal{PT}-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators,” Nat. Commun. 9, 2182 (2018).
  • (55) D. C. Brody, β€œBiorthogonal quantum mechanics, J. Phys. A-Math. Theor. 47, 035305 (2013).
  • (56) F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, β€œBiorthogonal bulk-boundary correspondence in non-Hermitian systems,” Phys. Rev. Lett. 121, 026808 (2018).
  • (57) Q. C. Wu, Y. H. Chen, B. H. Huang, Y. Xia, and J. Song, β€œReverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems,” Phys. Rev. A 94, 053421 (2016).
  • (58) C. Y. Ju, A. Miranowicz, G.Y. Chen, F. Nori, β€œNon-Hermitian Hamiltonians and no-go theorems in quantum information,” Phys. Rev. A 100, 062118 (2019).
  • (59) K. Modi, A. K. Pati, A. Sen, U. Sen, β€œMasking quantum information is impossible,” Phys. Rev. Lett. 120, 230501 (2018).
  • (60) Z. H. Liu, X. B. Liang, K. Sun, Q. Li, Y. Meng, M. Yang, B. Li, J. L. Chen, J. S. Xu, C. F. Li and G. C. Guo, β€œPhotonic implementation of quantum information masking,” Phys. Rev. Lett. 126, 170505 (2021).
  • (61) C.Y. Ju, A. Miranowicz, F. Minganti, C. T. Chan, G. Y. Chen, and F. Nori, β€œEinstein’s quantum elevator: Hermitization of non-Hermitian Hamiltonians via a generalized vielbein formalism,” Phys. Rev. Research 4, 023070 (2022).
  • (62) D. C. Brody and E. M. Graefe, β€œMixed-state Evolution in the Presence of Gain and Loss,” Phys. Rev. Lett. 109, 230405 (2012).
  • (63) L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obute, B. C. Sanders, and P. Xue, β€œObservation of topological edge states in parity-time-symmetric quantum walks,” Nat. Phys. 13, 1117-1123 (2017).
  • (64) D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, β€œMeasurement of qubits,” Phys. Rev. A 64, 052312 (2001).
  • (65) M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, β€œQuantum state tomography across the exceptional point in a single dissipative qubit,” Nat. Phys. 15, 1232 (2019).

Appendix A

A.1 Eigenstates of non-Hermitian Hamiltonians in Biorthogonal quantum mechanics

We first briefly recall some important properties of non-Hermitian Hamiltonians in biorthogonal quantum mechanicsΒ Non-Hermitian1 ; Non-Hermitian2 ; Non-Hermitian4 ; Non-Hermitian5 ; Biorthogonal1 ; Biorthogonal2 ; Biorthogonal3 ; Biorthogonal4 . Consider an arbitrary time-independent non-Hermitian Hamiltonian H^\hat{H} with NN eigenstates {|Ο•k⟩}\{|{\phi_{k}}\rangle\}, k=1,2,…,N.k=1,2,...,N. It satisfies the following eigenvalue equation

H^​|Ο•k⟩=Ek​|Ο•k⟩.\displaystyle\hat{H}|{\phi_{k}}\rangle=E_{k}|{\phi_{k}}\rangle. (17)

As the adjoint operator of H^\hat{H}, the Hamiltonian H^†\hat{H}^{\dagger} satisfes the following eigenvalue equation

H^†​|Ο•k^⟩=Ekβˆ—β€‹|Ο•k^⟩,\displaystyle\hat{H}^{\dagger}|\widehat{{\phi_{k}}}\rangle=E_{k}^{*}|\widehat{{\phi_{k}}}\rangle, (18)

where {|Ο•k^⟩}\{|\widehat{{\phi_{k}}}\rangle\} are the eigenstates of H^†\hat{H}^{\dagger} and also the biorthogonal partners of {|Ο•k⟩}\{|{\phi_{k}}\rangle\}. The asterisk here means complex conjugate. The biorthogonal partners are normalized to satisfy the biorthogonality relationΒ Biorthogonal1 ; Biorthogonal2 ; Biorthogonal3 ; Biorthogonal4

βŸ¨Ο•k^|Ο•l⟩=Ξ΄k​l,\displaystyle\langle\widehat{{\phi_{k}}}|\phi_{l}\rangle=\delta_{kl}, (19)

and the closure relation

βˆ‘k|Ο•k^βŸ©β€‹βŸ¨Ο•k|=βˆ‘k|Ο•kβŸ©β€‹βŸ¨Ο•k^|=1.\displaystyle\sum_{k}|\widehat{{\phi_{k}}}\rangle\langle\phi_{k}|=\sum_{k}|{\phi_{k}}\rangle\langle\widehat{{\phi_{k}}}|=1. (20)

In this case, if the orthogonality of eigenstates in standard quantum mechanics is replaced by the biorthogonality that defines the relation between the quantum states in the Hilbert space and its dual space, the resulting quantum theory is called biorthogonal quantum mechanicsΒ Biorthogonal1 ; Biorthogonal2 ; Biorthogonal3 ; Biorthogonal4 . Then, in biorthogonal quantum mechanics, the Hamiltonian H^\hat{H} and its adjoint Hamiltonian H^†\hat{H}^{\dagger} can be expressed as

H^\displaystyle\hat{H} =\displaystyle= βˆ‘k|Ο•kβŸ©β€‹Ekβ€‹βŸ¨Ο•k^|,\displaystyle\sum_{k}|{\phi_{k}}\rangle{E_{k}}\langle\widehat{{\phi_{k}}}|, (21)
H^†\displaystyle\hat{H}^{\dagger} =\displaystyle= βˆ‘k|Ο•k^βŸ©β€‹Ekβˆ—β€‹βŸ¨Ο•k|.\displaystyle\sum_{k}|\widehat{{\phi_{k}}}\rangle{E_{k}^{*}}\langle{\phi_{k}}|. (22)

For simplicity, {βŸ¨Ο•k^|}\{\langle\widehat{{\phi_{k}}}|\} and {|Ο•k⟩}\{{|\phi_{k}}\rangle\} are called the left and right eigenstates of the Hamiltonian, respectively. In addition, the overlap distance Θ\Theta between two arbitrary pure states |ψ⟩=βˆ‘lcl​|Ο•l⟩|\psi\rangle=\sum_{l}c_{l}|{\phi_{l}}\rangle and |Ο†βŸ©=βˆ‘kdk​|Ο•k⟩|\varphi\rangle=\sum_{k}d_{k}|{\phi_{k}}\rangle can be defined asΒ Biorthogonal1

cos2⁑Θ2=⟨ψ^|Ο†βŸ©β€‹βŸ¨Ο†^|ψ⟩⟨ψ^|ΟˆβŸ©β€‹βŸ¨Ο†^|Ο†βŸ©,\displaystyle\cos^{2}\frac{\Theta}{2}=\frac{\langle\widehat{{\psi}}|{\varphi}\rangle\langle\widehat{{\varphi}}|{\psi}\rangle}{\langle\widehat{{\psi}}|{\psi}\rangle\langle\widehat{{\varphi}}|{\varphi}\rangle}, (23)

where ⟨ψ^|=βˆ‘lclβˆ—β€‹βŸ¨Ο•l^|\langle\widehat{\psi}|=\sum_{l}c^{*}_{l}\langle\widehat{{\phi_{l}}}| and βŸ¨Ο†^|=βˆ‘kdkβˆ—β€‹βŸ¨Ο•k^|\langle\widehat{\varphi}|=\sum_{k}d^{*}_{k}\langle\widehat{{\phi_{k}}}|. In particular, Θ=0\Theta=0 only if |ψ⟩=Β±|Ο†βŸ©|{\psi}\rangle=\pm|{\varphi}\rangle, whereas Θ=Ο€\Theta=\pi only if βŸ¨Ο†^|ψ⟩=⟨ψ^|Ο†βŸ©=0\langle\widehat{{\varphi}}|{\psi}\rangle=\langle\widehat{{\psi}}|{\varphi}\rangle=0. For a two-dimensional Hilbert space, the state |ψ⟩|\psi\rangle can be expressed in the form |ψ⟩=cos⁑ϑ​|Ο•1⟩+sin⁑ϑ​ei​φ​|Ο•2⟩|\psi\rangle=\cos\vartheta|{\phi_{1}}\rangle+\sin\vartheta{e^{i\varphi}}|{\phi_{2}}\rangle, with ⟨ψ^|ψ⟩=1\langle\widehat{{\psi}}|{\psi}\rangle=1. The two eigenstates |Ο•1⟩|{\phi_{1}}\rangle and |Ο•2⟩|{\phi_{2}}\rangle here can be considered as antipodal points on the Bloch sphere. This is analogous to the counterpart of a Hermitian system, even though |Ο•1⟩|{\phi_{1}}\rangle and |Ο•2⟩|{\phi_{2}}\rangle may not be orthogonal, i.e. βŸ¨Ο•2|Ο•1βŸ©β‰ 0\langle{\phi_{2}}|{\phi_{1}}\rangle\neq 0. The usual Bloch sphere description is not adequate at the exceptional points (EPs). Since at the EPs the intended antipodal points (|Ο•1⟩|{\phi_{1}}\rangle and |Ο•2⟩|{\phi_{2}}\rangle) completely overlap (i.e., |Ο•1⟩|{\phi_{1}}\rangle=|Ο•2⟩|{\phi_{2}}\rangle), the Bloch sphere will then become a dot naturally.

A.2 Eigenstates and eigenvalues of non-Hermitian Hamiltonians in a 𝒫​𝒯\mathcal{PT}-symmetric single-qubit system

We start with a 𝒫​𝒯\mathcal{PT}-symmetric non-Hermitian Hamiltonian in a single-qubit system

H^𝒫​𝒯=s​σ^x+i​γ​σ^z=(i​γssβˆ’i​γ),\displaystyle\hat{H}_{\mathcal{PT}}=s\hat{\sigma}_{x}+i\gamma\hat{\sigma}_{z}=\left(\begin{array}[]{ll}i\gamma&s\\ s&-i\gamma\end{array}\right), (26)

where s​σ^xs\hat{\sigma}_{x} is the Hermitian part of the Hamiltonian, i​γ​σ^zi\gamma\hat{\sigma}_{z} is the non-Hermitian part of the Hamiltonian governing gain or loss. Moreover, the parameter s>0s>0 is an energy scale, a=Ξ³/s>0a=\gamma/s>0 is a coefficient representing the degree of non-Hermiticity, Οƒ^x\hat{\sigma}_{x} and Οƒ^z\hat{\sigma}_{z} are the standard Pauli operators. The eigenvalues and eigenvectors of H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are given by

E1\displaystyle E_{1} =\displaystyle= s​1βˆ’a2,|Ο•1⟩=f1βˆ—(A1​|0⟩+|1⟩),\displaystyle s\sqrt{1-a^{2}},~{}~{}~{}|\phi_{1}\rangle=f_{1}*(A_{1}|0\rangle+|1\rangle), (27)
E2\displaystyle E_{2} =\displaystyle= βˆ’s​1βˆ’a2,|Ο•2⟩=f2βˆ—(A2​|0⟩+|1⟩),\displaystyle-s\sqrt{1-a^{2}},~{}|\phi_{2}\rangle=f_{2}*(A_{2}|0\rangle+|1\rangle), (28)

where A1=i​a+1βˆ’a2A_{1}=ia+\sqrt{1-a^{2}}, A2=i​aβˆ’1βˆ’a2A_{2}=ia-\sqrt{1-a^{2}}. Here, f1f_{1} and f2f_{2} are undetermined coefficients. The eigenvalues are real numbers for 0<a<10<a<1 (the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime), while imaginary numbers for a>1a>1 (the 𝒫​𝒯\mathcal{PT}-symmetry broken regime). As the adjoint operator of H^𝒫​𝒯\hat{H}_{\mathcal{PT}}, the eigenvalues and eigenvectors of H^𝒫​𝒯†\hat{H}_{\mathcal{PT}}^{\dagger} are given by

E1β€²=s​1βˆ’a2,|Ο•^1⟩=f3βˆ—(βˆ’A2​|0⟩+|1⟩),\displaystyle E^{{}^{\prime}}_{1}=s\sqrt{1-a^{2}},~{}~{}~{}|\widehat{\phi}_{1}\rangle=f_{3}*(-A_{2}|0\rangle+|1\rangle), (29)
E2β€²=βˆ’s​1βˆ’a2,|Ο•^2⟩=f4βˆ—(βˆ’A1​|0⟩+|1⟩),\displaystyle E^{{}^{\prime}}_{2}=-s\sqrt{1-a^{2}},~{}|\widehat{\phi}_{2}\rangle=f_{4}*(-A_{1}|0\rangle+|1\rangle), (30)

where f3f_{3} and f4f_{4} are undetermined coefficients. By substituting eqs.Β (27) and (29) into eq.Β (20), one can find that

f1β‹…f3βˆ—Γ—(1βˆ’A2βˆ—β€‹A1)=1,f2β‹…f4βˆ—Γ—(1βˆ’A1βˆ—β€‹A2)=1.\displaystyle f_{1}\cdot{f}_{3}^{*}\times(1-A^{*}_{2}A_{1})=1,~{}~{}f_{2}\cdot{f}_{4}^{*}\times(1-A^{*}_{1}A_{2})=1. (31)

Theoretically, the coefficients f1,f2,f3f_{1},f_{2},f_{3} and f4f_{4} take arbitrary values provided they satisfy the relationΒ (31). However, the values of f1,f2,f3f_{1},f_{2},f_{3}, and f4f_{4} may affect the transformation from the orthogonal space representation to the biorthogonal space representation.

In the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime, the dynamics of the non-Hermitian single-qubit system will gradually turn into the dynamics of a Hermitian single-qubit system when the parameter aa (representing the degree of non-Hermiticity) tends to zero. In this case, one can set

βŸ¨Ο•1|Ο•1⟩=βŸ¨Ο•2|Ο•2⟩=1,\displaystyle\langle{{\phi_{1}}}|{{\phi_{1}}}\rangle=\langle{{\phi_{2}}}|{{\phi_{2}}}\rangle=1, (32)

so that |Ο•1⟩|{\phi_{1}}\rangle and |Ο•2⟩|{\phi_{2}}\rangle is in line with basis states in the Hermitian single-qubit system. That is, |f1|2=1+|A2|2,|f2|2=1+|A1|2|f_{1}|^{2}=1+|A_{2}|^{2},|f_{2}|^{2}=1+|A_{1}|^{2}. Moreover, in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime, by setting sin⁑θ=a\sin\theta=a, one can find

A1=exp⁑(i​θ),A2=βˆ’exp⁑(βˆ’i​θ),\displaystyle A_{1}=\exp(i\theta),~{}~{}A_{2}=-\exp(-i\theta), (33)
1f1β‹…f3βˆ—=exp⁑(2​i​θ)+1,1f2β‹…f4βˆ—=exp⁑(βˆ’2​i​θ)+1.\displaystyle\frac{1}{f_{1}\cdot{f}_{3}^{*}}=\exp(2i\theta)+1,~{}~{}\frac{1}{f_{2}\cdot{f}_{4}^{*}}=\exp(-2i\theta)+1. (34)

While, in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime, by setting sin⁑θ=1/a\sin\theta=1/a, one has

A1=i​cot⁑θ′,A2=i​tan⁑θ′,f1β‹…f3βˆ—=f2β‹…f4βˆ—=1/2.\displaystyle A_{1}=i\cot\theta^{{}^{\prime}},~{}A_{2}=i\tan\theta^{{}^{\prime}},~{}{f_{1}\cdot{f}_{3}^{*}}={f_{2}\cdot{f}_{4}^{*}}=1/2. (35)

A.3 Extended Noether’s theorem for a 𝒫​𝒯\mathcal{PT}-symmetric system

Theoretically, there is more than one way to define the inner product in non-Hermitian systems. In biorthogonal quantum mechanics, the inner product for a non-Hermitian system is defined as Β Biorthogonal1 ; Biorthogonal2 ; Biorthogonal3 ; Biorthogonal4

(Ο†,ψ)β‰‘βŸ¨Ο†^|ψ⟩=βˆ‘k,ldkβˆ—β€‹clβ€‹βŸ¨Ο•k^|Ο•l⟩=βˆ‘kdkβˆ—β€‹ck,\displaystyle(\varphi,\psi)\equiv\langle\widehat{\varphi}|\psi\rangle=\sum_{k,l}d^{*}_{k}c_{l}\langle\widehat{{\phi_{k}}}|\phi_{l}\rangle=\sum_{k}d^{*}_{k}c_{k}, (36)

where |ψ⟩=Ξ£l​cl​|Ο•l⟩|\psi\rangle=\Sigma_{l}c_{l}|{\phi_{l}}\rangle (|Ο†βŸ©=Ξ£k​dk​|Ο•k⟩|\varphi\rangle=\Sigma_{k}d_{k}|{\phi_{k}}\rangle) is an arbitrary pure state with its associated state ⟨ψ^|≑Σl​clβˆ—β€‹βŸ¨Ο•l^|\langle\widehat{\psi}|\equiv\Sigma_{l}c^{*}_{l}\langle\widehat{{\phi_{l}}}| (βŸ¨Ο†^|≑Σk​dkβˆ—β€‹βŸ¨Ο•k^|\langle\widehat{\varphi}|\equiv\Sigma_{k}d^{*}_{k}\langle\widehat{{\phi_{k}}}|).

Quantum systems are usually characterized by mixed states. Thus, it is significant to find the extension of Noether’s theorem for mixed states. For a general 𝒫​𝒯\mathcal{PT}-symmetric system, its mixed state at any given time tt can be expressed as a biorthogonal density operator

ρ^b​(t)=βˆ‘n=1Npn​|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|.\displaystyle{\hat{\rho}}_{b}(t)=\sum_{n=1}^{N}p_{n}|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|. (37)

Here, pnp_{n} is the probability of the system being in the pure state |ψn​(t)⟩|\psi_{n}(t)\rangle, with ⟨ψn^​(t)|ψn​(t)⟩=1\langle\widehat{\psi_{n}}(t)|{\psi_{n}(t)}\rangle=1. Then, for the case of mixed states, the expectation value (F^)(\hat{F}) of an operator F^\hat{F} is defined asΒ Biorthogonal1

(F^)\displaystyle(\hat{F}) ≑\displaystyle\equiv t​r​[ρ^b​(t)​F^]\displaystyle tr[\hat{\rho}_{b}(t){\hat{F}}] (38)
=\displaystyle= βˆ‘mβŸ¨Ο•m^|ρ^b​(t)​F^|Ο•m⟩\displaystyle\sum_{m}\langle\widehat{{\phi_{m}}}|\hat{\rho}_{b}(t){\hat{F}}|{\phi_{m}}\rangle (39)
=\displaystyle= βˆ‘nβˆ‘mβŸ¨Ο•m^|pn|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|F^|Ο•m⟩\displaystyle\sum_{n}\sum_{m}\langle\widehat{{\phi_{m}}}|p_{n}|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|{\hat{F}}|{\phi_{m}}\rangle (40)
=\displaystyle= βˆ‘npnβ€‹βˆ‘mβŸ¨Ο•m^|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|F^|Ο•m⟩\displaystyle\sum_{n}p_{n}\sum_{m}\langle\widehat{{\phi_{m}}}|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|{\hat{F}}|{\phi_{m}}\rangle (41)
=\displaystyle= βˆ‘npnβ€‹βˆ‘m⟨ψn​(t)^|F^|Ο•mβŸ©β€‹βŸ¨Ο•m^|ψn​(t)⟩\displaystyle\sum_{n}p_{n}\sum_{m}\langle\widehat{\psi_{n}(t)}|{\hat{F}}|{\phi_{m}}\rangle\langle\widehat{{\phi_{m}}}|\psi_{n}(t)\rangle (42)
=\displaystyle= βˆ‘npnβ€‹βŸ¨Οˆn​(t)^|F^|ψn​(t)⟩,\displaystyle\sum_{n}p_{n}\langle\widehat{\psi_{n}(t)}|{\hat{F}}|\psi_{n}(t)\rangle, (43)

where ⟨ψn​(t)^|F^|ψn​(t)⟩\langle\widehat{\psi_{n}(t)}|{\hat{F}}|\psi_{n}(t)\rangle is the expectation value (F^)(\hat{F}) of the operator F^\hat{F} for an arbitrary pure state |ψn​(t)⟩|\psi_{n}(t)\rangle. Note that the closure relation βˆ‘m|Ο•mβŸ©β€‹βŸ¨Ο•m^|=1\sum_{m}|{\phi_{m}}\rangle\langle\widehat{{\phi_{m}}}|=1 has been applied to derive eq.Β (38). EquationΒ (38) is a natural generalization of the expectation value of an operator F^\hat{F} for an arbitrary quantum state, either a mixed state or a pure state.

Furthermore, consider an arbitrary initial pure state |ψn​(0)⟩=Ξ£k​ck​|Ο•k⟩|\psi_{n}(0)\rangle=\Sigma_{k}c_{k}|{\phi_{k}}\rangle for a general 𝒫​𝒯\mathcal{PT}-symmetric system. According to the SchrΓΆdinger equation

d​|ψn​(t)⟩d​t=1i​ℏ​H^𝒫​𝒯​|ψn​(t)⟩,\displaystyle\frac{d|\psi_{n}(t)\rangle}{dt}=\frac{1}{i\hbar}\hat{H}_{\mathcal{PT}}|\psi_{n}(t)\rangle, (44)

one can obtain the time-evolved state |ψn​(t)⟩|\psi_{n}(t)\rangle=βˆ‘kck​eβˆ’i​Ek​t/ℏ​|Ο•k⟩\sum_{k}c_{k}e^{-iE_{k}t/\hbar}|{\phi_{k}}\rangle at any given time tt and its associated state ⟨ψn​(t)^|\langle\widehat{\psi_{n}(t)}|=βˆ‘kckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|\sum_{k}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}|.

For a general 𝒫​𝒯\mathcal{PT}-symmetric system, the eigenvalues of the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are real numbers in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime. Whereas, the eigenvalues are complex numbers or purely imaginary numbers in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime. Thus, in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime, all the eigenvalues {Ek}\{E_{k}\} are real numbers (i.e., EkE_{k}=Ekβˆ—E^{*}_{k}), then ⟨ψn​(t)^|\langle\widehat{\psi_{n}(t)}| satisfies the following SchrΓΆdinger equation

dβ€‹βŸ¨Οˆn​(t)|^d​t\displaystyle\frac{d\widehat{\langle\psi_{n}(t)|}}{dt} =\displaystyle= dβ€‹βˆ‘kckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|d​t\displaystyle\frac{d{\sum_{k}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}|}}{dt} (45)
=\displaystyle= βˆ‘ki​Ekβˆ—β„β€‹ckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|\displaystyle\sum_{k}\frac{iE^{*}_{k}}{\hbar}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}| (46)
=\displaystyle= βˆ‘ki​Ekℏ​ckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|\displaystyle\sum_{k}\frac{iE_{k}}{\hbar}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}| (47)
=\displaystyle= βˆ‘kiℏ​ckβˆ—β€‹ei​Ekβˆ—β€‹t/ℏ​[H^𝒫​𝒯†​|Ο•k^⟩]†\displaystyle\sum_{k}\frac{i}{\hbar}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}[\hat{H}^{{\dagger}}_{\mathcal{PT}}|\widehat{\phi_{k}}\rangle]^{\dagger} (48)
=\displaystyle= 1βˆ’iβ€‹β„β€‹βˆ‘kckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|​H^𝒫​𝒯\displaystyle\frac{1}{-i\hbar}\sum_{k}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}|\hat{H}_{\mathcal{PT}} (49)
=\displaystyle= 1βˆ’iβ€‹β„β€‹βŸ¨Οˆn​(t)^|​H^𝒫​𝒯.\displaystyle\frac{1}{-i\hbar}\langle\widehat{\psi_{n}(t)}|\hat{H}_{\mathcal{PT}}. (50)

Note that the relations H^†​|Ο•k^⟩=Ekβˆ—β€‹|Ο•k^⟩\hat{H}^{\dagger}|\widehat{{\phi_{k}}}\rangle=E_{k}^{*}|\widehat{{\phi_{k}}}\rangle and [H^𝒫​𝒯†​|Ο•k^⟩]†=βŸ¨Ο•k^|​H^𝒫​𝒯=Ekβ€‹βŸ¨Ο•k^|[\hat{H}^{{\dagger}}_{\mathcal{PT}}|\widehat{\phi_{k}}\rangle]^{\dagger}=\langle\widehat{\phi_{k}}|\hat{H}_{\mathcal{PT}}=E_{k}\langle\widehat{\phi_{k}}| have been applied.

On the other hand, in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime, all the eigenvalues {Ek}\{E_{k}\} are complex numbers or purely imaginary numbers. Without loss of generality, consider the eigenvalue EkE_{k} with a real part Re​[Ek]\textrm{Re}[E_{k}] and a purely imaginary part Im​[Ek]\textrm{Im}[E_{k}] (i.e., EkE_{k}=Re​[Ek]\textrm{Re}[E_{k}]+i​Im​[Ek]i\textrm{Im}[E_{k}]). Then ⟨ψn​(t)^|\langle\widehat{\psi_{n}(t)}| satisfies the following SchrΓΆdinger equation

dβ€‹βŸ¨Οˆn​(t)|^d​t\displaystyle\frac{d\widehat{\langle\psi_{n}(t)|}}{dt} (51)
=\displaystyle= dβ€‹βˆ‘kckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|d​t\displaystyle\frac{d{\sum_{k}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}|}}{dt} (52)
=\displaystyle= βˆ‘ki​Ekβˆ—β„β€‹ckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|\displaystyle\sum_{k}\frac{iE^{*}_{k}}{\hbar}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}| (53)
=\displaystyle= βˆ‘ki​(βˆ’Ek+2​Re​[Ek])ℏ​ckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|\displaystyle\sum_{k}\frac{i(-E_{k}+2\textrm{Re}[E_{k}])}{\hbar}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}| (54)
=\displaystyle= 1iβ€‹β„β€‹βˆ‘kckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|​(H^π’«β€‹π’―βˆ’2​Re​[Ek])\displaystyle\frac{1}{i\hbar}\sum_{k}c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}|(\hat{H}_{\mathcal{PT}}-2\textrm{Re}[E_{k}]) (55)
=\displaystyle= 1iβ€‹β„β€‹βŸ¨Οˆn​(t)^|​H^π’«β€‹π’―βˆ’1iβ€‹β„β€‹βˆ‘k2​Re​[Ek]​ckβˆ—β€‹ei​Ekβˆ—β€‹t/β„β€‹βŸ¨Ο•k^|.\displaystyle\frac{1}{i\hbar}\langle\widehat{\psi_{n}(t)}|\hat{H}_{\mathcal{PT}}-\frac{1}{i\hbar}\sum_{k}2\textrm{Re}[E_{k}]c^{*}_{k}e^{iE^{*}_{k}t/\hbar}\langle\widehat{\phi_{k}}|. (56)

Here we remark that provided H^𝒫​𝒯\hat{H}_{\mathcal{PT}} exhibits an exceptional point of the order of the matrix dimensionΒ SDM2 ; Tomography1 , then Re​[Ek]\textrm{Re}[E_{k}]=Re​[En]\textrm{Re}[E_{n}], βˆ€k\forall~{}k. EquationΒ (51) can be reduced to

dβ€‹βŸ¨Οˆn​(t)|^d​t\displaystyle\frac{d\widehat{\langle\psi_{n}(t)|}}{dt} =\displaystyle= 1iβ€‹β„β€‹βŸ¨Οˆn​(t)^|​(H^π’«β€‹π’―βˆ’2​Re​[En]).\displaystyle\frac{1}{i\hbar}\langle\widehat{\psi_{n}(t)}|(\hat{H}_{\mathcal{PT}}-2\textrm{Re}[E_{n}]). (57)

According to eq.Β (38), the temporal evolution of the expectation value (F^)(\hat{F}) can be expressed as

dd​t​(F^)\displaystyle\frac{d}{dt}(\hat{F}) (58)
=\displaystyle= βˆ‘npn​dd​tβ€‹βŸ¨Οˆn​(t)^|F^|ψn​(t)⟩\displaystyle\sum_{n}p_{n}\frac{d}{dt}{\langle\widehat{{\psi}_{n}(t)}|\hat{F}|\psi_{n}(t)\rangle} (59)
=\displaystyle= βˆ‘npn[dβ€‹βŸ¨Οˆn​(t)^|d​t|F^|ψn(t)⟩\displaystyle\sum_{n}p_{n}[{\frac{d\langle\widehat{{\psi}_{n}(t)}|}{dt}|\hat{F}|\psi_{n}(t)\rangle} (61)
+⟨ψn​(t)^|F^|d​|ψn​(t)⟩d​t+⟨ψn​(t)^|d​F^d​t|ψn(t)⟩].\displaystyle+{\langle\widehat{{\psi}_{n}(t)}|\hat{F}|\frac{d|\psi_{n}(t)\rangle}{dt}}+{\langle\widehat{{\psi}_{n}(t)}|\frac{d\hat{F}}{dt}|\psi_{n}(t)\rangle}].

When the eigenvalues of the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are real numbers, by substituting eqs.Β (44) andΒ (45) into eq.Β (58), one can find that the temporal evolution of the expectation value (F^)(\hat{F}) reads

dd​t​(F^)\displaystyle\frac{d}{dt}({\hat{F}}) =\displaystyle= βˆ‘npn​[1i​ℏ​(F^​H^π’«β€‹π’―βˆ’H^𝒫​𝒯​F^)n+(d​F^d​t)n]\displaystyle\sum_{n}p_{n}\left[\frac{1}{i\hbar}(\hat{F}\hat{H}_{\mathcal{PT}}-\hat{H}_{\mathcal{PT}}{\hat{F}})_{n}+\left({\frac{d\hat{F}}{dt}}\right)_{n}\right] (62)
=\displaystyle= βˆ‘npn​[1i​ℏ​([F^,H^𝒫​𝒯])n+(d​F^d​t)n]\displaystyle\sum_{n}p_{n}\left[\frac{1}{i\hbar}([\hat{F},\hat{H}_{\mathcal{PT}}])_{n}+\left({\frac{d\hat{F}}{dt}}\right)_{n}\right] (63)

in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime. Here, (β‹…)n=⟨ψn​(t)^|β‹…|ψn​(t)⟩(\cdot)_{n}=\langle\widehat{\psi_{n}(t)}|\cdot|\psi_{n}(t)\rangle.

On the other hand, when the eigenvalues of the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are imaginary numbers (Re​[Ek]\textrm{Re}[E_{k}]=0, βˆ€k\forall~{}k), by substituting eqs.Β (44) andΒ (57) into eq.Β (58), one can find that the temporal evolution of the expectation value (F^)(\hat{F}) reads

dd​t​(F^)\displaystyle\frac{d}{dt}({\hat{F}}) =\displaystyle= βˆ‘npn​[1i​ℏ​(F^​H^𝒫​𝒯+H^𝒫​𝒯​F^)n+(d​F^d​t)n]\displaystyle\sum_{n}p_{n}\left[\frac{1}{i\hbar}(\hat{F}\hat{H}_{\mathcal{PT}}+\hat{H}_{\mathcal{PT}}{\hat{F}})_{n}+\left({\frac{d\hat{F}}{dt}}\right)_{n}\right] (64)
=\displaystyle= βˆ‘npn​[1i​ℏ​({F^,H^𝒫​𝒯})n+(d​F^d​t)n]\displaystyle\sum_{n}p_{n}\left[\frac{1}{i\hbar}(\{\hat{F},\hat{H}_{\mathcal{PT}}\})_{n}+\left({\frac{d\hat{F}}{dt}}\right)_{n}\right] (65)

in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime. One can see that eq.Β (63) is eq.Β (4) in the main text, while eq.Β (65) is eq.Β (5) in the main text.

However, if the eigenvalues of the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are not purely imaginary numbers (i.e., Re​[En]β‰ 0\textrm{Re}[E_{n}]\neq 0), then by substituting eqs.Β (44) andΒ (57) into eq.Β (58), one can find that the temporal evolution of the expectation value (F^)(\hat{F}) reads

dd​t​(F^)\displaystyle\frac{d}{dt}({\hat{F}}) =\displaystyle= βˆ‘npn[1i​ℏ(F^H^𝒫​𝒯+H^𝒫​𝒯F^\displaystyle\sum_{n}p_{n}[\frac{1}{i\hbar}(\hat{F}\hat{H}_{\mathcal{PT}}+\hat{H}_{\mathcal{PT}}{\hat{F}} (67)
βˆ’2Re[En]F^)n+(d​F^d​t)n]\displaystyle-2\textrm{Re}[E_{n}]{\hat{F}})_{n}+\left({\frac{d\hat{F}}{dt}}\right)_{n}]

in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime. In this case, even if H^𝒫​𝒯\hat{H}_{\mathcal{PT}} and F^\hat{F} satisfy the anti-commutation relation {H^𝒫​𝒯,F^}=0\{\hat{H}_{\mathcal{PT}},\hat{F}\}=0, the expectation value (F^)(\hat{F}) is not a constant of motion.

Therefore, in order to obtain a conserved expectation value (F^)(\hat{F}) and connect the chiral symmetry with the conserved operator in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime, for the 𝒫​𝒯\mathcal{PT}-symmetric systems considered in this work, the eigenvalues of H^𝒫​𝒯\hat{H}_{\mathcal{PT}} should change from real numbers to purely imaginary numbers. We note that such 𝒫​𝒯{\mathcal{PT}}-symmetric systems have been widely used to investigate the dynamics of non-Hermitian systems in the presence of balanced gain and lossΒ RCM ; Ehrenfest4 ; photonics1 ; CriticalPhenomena1 ; InformationRetrieva1 ; InformationRetrieva2 ; InformationRetrieva3 ; rho1 ; rho2 . In these cases, the extended Noether’s theorem presented in our work applies well.

A.4 Conditions for obtaining real expectation values in a 𝒫​𝒯\mathcal{PT}-symmetric system

From an experimental point of view, it is preferable to keep expectation values as real numbers. In the following, we will briefly explore some conditions for obtaining real expectation values in a 𝒫​𝒯\mathcal{PT}-symmetric system.

In standard quantum mechanics, consider a NN-dimensional Hilbert space

β„‹S=Span​{|Ο•1β€²βŸ©,|Ο•2β€²βŸ©,…,|Ο•Nβ€²βŸ©},\displaystyle\mathscr{H}_{S}=\textrm{Span}\{|\phi^{{}^{\prime}}_{1}\rangle,|\phi^{{}^{\prime}}_{2}\rangle,...,|\phi^{{}^{\prime}}_{N}\rangle\}, (68)

where the basis state |Ο•kβ€²βŸ©|\phi^{{}^{\prime}}_{k}\rangle, (k=1,2,…,Nk=1,2,...,N), satisfies the orthogonality relation

βŸ¨Ο•kβ€²|Ο•lβ€²βŸ©=Ξ΄k​l,\displaystyle\langle{{\phi^{{}^{\prime}}_{k}}}|\phi^{{}^{\prime}}_{l}\rangle=\delta_{kl}, (69)

and the closure relation

βˆ‘k=1N|Ο•kβ€²βŸ©β€‹βŸ¨Ο•kβ€²|=1.\displaystyle\sum_{k=1}^{N}|{\phi^{{}^{\prime}}_{k}}\rangle\langle{{\phi^{{}^{\prime}}_{k}}}|=1. (70)

Note that the basis state |Ο•kβ€²βŸ©|\phi^{{}^{\prime}}_{k}\rangle here is not the eigenstate of the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian.

A time-independent operator F^\hat{F} can be expressed by a density operator

F^=βˆ‘k,lFk​l​|Ο•kβ€²βŸ©β€‹βŸ¨Ο•lβ€²|,\displaystyle\hat{F}=\sum_{k,l}{F}_{kl}|\phi^{{}^{\prime}}_{k}\rangle\langle{\phi^{{}^{\prime}}_{l}}|, (71)

where Fk​l=βŸ¨Ο•kβ€²|F^|Ο•lβ€²βŸ©{F}_{kl}=\langle{\phi^{{}^{\prime}}_{k}}|\hat{F}|\phi^{{}^{\prime}}_{l}\rangle is the density matrix element of the operator F^\hat{F}. Suppose that the time-evolved state of the 𝒫​𝒯\mathcal{PT}-symmetric system reads |ψn​(t)⟩=βˆ‘kDk​(t)​|Ο•kβ€²βŸ©|\psi_{n}(t)\rangle=\sum_{k}D_{k}(t)|{\phi^{{}^{\prime}}_{k}}\rangle at any given time tt and its associated state is ⟨ψn​(t)|=βˆ‘kDkβˆ—β€‹(t)β€‹βŸ¨Ο•kβ€²|\langle{\psi_{n}(t)}|=\sum_{k}D^{*}_{k}(t)\langle{\phi^{{}^{\prime}}_{k}}|. Here, Dk​(t)D_{k}(t) is a time-dependent and undetermined coefficient. Then, the standard expectation value ⟨F^⟩\langle{\hat{F}}\rangle for the pure state |ψn​(t)⟩|\psi_{n}(t)\rangle reads

⟨F^⟩\displaystyle\langle{\hat{F}}\rangle =\displaystyle= ⟨ψn​(t)|F^|ψn​(t)⟩\displaystyle\langle{\psi_{n}(t)}|\hat{F}|\psi_{n}(t)\rangle (72)
=\displaystyle= βˆ‘iDiβˆ—β€‹(t)β€‹βŸ¨Ο•iβ€²|βˆ‘k,lFk​l|Ο•kβ€²βŸ©β€‹βŸ¨Ο•lβ€²|βˆ‘jDj​(t)|Ο•jβ€²βŸ©\displaystyle\sum_{i}D^{*}_{i}(t)\langle{\phi^{{}^{\prime}}_{i}}|\sum_{k,l}{F}_{kl}|\phi^{{}^{\prime}}_{k}\rangle\langle{\phi^{{}^{\prime}}_{l}}|\sum_{j}D_{j}(t)|{\phi^{{}^{\prime}}_{j}}\rangle (73)
=\displaystyle= βˆ‘k,lDkβˆ—β€‹(t)​Fk​l​Dl​(t)\displaystyle\sum_{k,l}D^{*}_{k}(t){F}_{kl}D_{l}(t) (74)
=\displaystyle= βˆ‘k|Dk​(t)|2​Fk​k+βˆ‘kβ‰ lDkβˆ—β€‹(t)​Dl​(t)​Fk​l.\displaystyle\sum_{k}|D_{k}(t)|^{2}{F}_{kk}+\sum_{k\neq{l}}D^{*}_{k}(t)D_{l}(t){F}_{kl}. (75)

If the time-independent operator F^\hat{F} is Hermitian in the NN-dimensional Hilbert space

F^=βˆ‘k,lFk​l​|Ο•kβ€²βŸ©β€‹βŸ¨Ο•lβ€²|=F^†=βˆ‘k,lFl​kβˆ—β€‹|Ο•kβ€²βŸ©β€‹βŸ¨Ο•lβ€²|,\displaystyle\hat{F}=\sum_{k,l}{F}_{kl}|\phi^{{}^{\prime}}_{k}\rangle\langle{\phi^{{}^{\prime}}_{l}}|=\hat{F}^{{\dagger}}=\sum_{k,l}{F}^{*}_{lk}|\phi^{{}^{\prime}}_{k}\rangle\langle{\phi^{{}^{\prime}}_{l}}|, (76)

one can obtain that Fk​k{F}_{kk} should be a real number and Fk​l=Fl​kβˆ—{F}_{kl}={F}^{*}_{lk} (kβ‰ l)(k\neq{l}). In this case, the standard expectation value ⟨F^⟩\langle{\hat{F}}\rangle [see eq.Β (72)] must be a real number, because |Dk​(t)|2​Fk​k|D_{k}(t)|^{2}{F}_{kk} is real and

βˆ‘kβ‰ lDkβˆ—β€‹(t)​Dl​(t)​Fk​l\displaystyle\sum_{k\neq{l}}D^{*}_{k}(t)D_{l}(t){F}_{kl} (77)
=\displaystyle= βˆ‘kβ‰ l,k<l[Dkβˆ—β€‹(t)​Dl​(t)​Fk​l+Dlβˆ—β€‹(t)​Dk​(t)​Fl​k]\displaystyle\sum_{k\neq{l},k<{l}}\left[D^{*}_{k}(t)D_{l}(t){F}_{kl}+D^{*}_{l}(t)D_{k}(t){F}_{lk}\right] (78)
=\displaystyle= βˆ‘kβ‰ l,k<l[Dkβˆ—β€‹(t)​Dl​(t)​Fk​l+(Dkβˆ—β€‹(t)​Dl​(t)​Fk​l)βˆ—]\displaystyle\sum_{k\neq{l},k<{l}}\left[D^{*}_{k}(t)D_{l}(t){F}_{kl}+(D^{*}_{k}(t)D_{l}(t){F}_{kl})^{*}\right] (79)
=\displaystyle= βˆ‘kβ‰ l,k<l2​Re​[Dkβˆ—β€‹(t)​Dl​(t)​Fk​l],\displaystyle\sum_{k\neq{l},k<{l}}2\textrm{Re}[D^{*}_{k}(t)D_{l}(t){F}_{kl}], (80)

where the relation Fl​k=Fk​lβˆ—{F}_{lk}={F}^{*}_{kl} (kβ‰ l)(k\neq{l}) has been applied. Thus, the condition for obtaining a real standard expectation value ⟨F^⟩\langle{\hat{F}}\rangle in a 𝒫​𝒯\mathcal{PT}-symmetric system is that the chosen operator F^\hat{F} is Hermitian in standard quantum mechanics.

In a similar way, one can prove that the condition for obtaining a real biorthogonal expectation value (F^)(\hat{F}) in a 𝒫​𝒯\mathcal{PT}-symmetric system is that the chosen operator F^\hat{F} is Hermitian in biorthogonal quantum mechanics. Here, we note that in biorthogonal quantum mechanics, the biorthogonality relation and the closure relation [see eqs.Β (19) and Β (20)] are applied. A time-independent operator F^\hat{F} can be expressed by a biorthogonal density operator

F^=βˆ‘k,lFk​l​|Ο•kβŸ©β€‹βŸ¨Ο•l^|,\displaystyle\hat{F}=\sum_{k,l}{F}_{kl}|{\phi_{k}}\rangle\langle{\widehat{\phi_{l}}}|, (81)

where Fk​l=βŸ¨Ο•k|F^|Ο•l^⟩{F}_{kl}=\langle{\phi_{k}}|\hat{F}|\widehat{\phi_{l}}\rangle is the biorthogonal density matrix element of the operator F^\hat{F}. Moreover, according to eq.Β (38), the biorthogonal expectation value (F^)(\hat{F}) reads

(F^)\displaystyle(\hat{F}) =\displaystyle= βˆ‘npnβ€‹βŸ¨Οˆn​(t)^|F^|ψn​(t)⟩\displaystyle\sum_{n}p_{n}\langle\widehat{\psi_{n}(t)}|{\hat{F}}|\psi_{n}(t)\rangle (82)
=\displaystyle= βˆ‘npnβ€‹βˆ‘iCiβˆ—β€‹(t)β€‹βŸ¨Ο•i^|βˆ‘k,lFk​l|Ο•kβŸ©β€‹βŸ¨Ο•l^|βˆ‘jCj​(t)|Ο•j⟩\displaystyle\sum_{n}p_{n}\sum_{i}C^{*}_{i}(t)\langle{\widehat{\phi_{i}}}|\sum_{k,l}{F}_{kl}|{\phi_{k}}\rangle\langle{\widehat{\phi_{l}}}|\sum_{j}C_{j}(t)|{\phi_{j}}\rangle (83)
=\displaystyle= βˆ‘npnβ€‹βˆ‘k,lCkβˆ—β€‹(t)​Fk​l​Cl​(t)\displaystyle\sum_{n}p_{n}\sum_{k,l}C^{*}_{k}(t){F}_{kl}C_{l}(t) (84)
=\displaystyle= βˆ‘npn​[βˆ‘k|Ck​(t)|2​Fk​k+βˆ‘kβ‰ lCkβˆ—β€‹(t)​Cl​(t)​Fk​l].\displaystyle\sum_{n}p_{n}[\sum_{k}|C_{k}(t)|^{2}{F}_{kk}+\sum_{k\neq{l}}C^{*}_{k}(t)C_{l}(t){F}_{kl}]. (85)

where the time-evolved state |ψn​(t)⟩=βˆ‘kCk​(t)​|Ο•k⟩|\psi_{n}(t)\rangle=\sum_{k}C_{k}(t)|{\phi_{k}}\rangle and its associated state ⟨ψn​(t)^|=βˆ‘kCkβˆ—β€‹(t)β€‹βŸ¨Ο•k^|\langle\widehat{\psi_{n}(t)}|=\sum_{k}C^{*}_{k}(t)\langle\widehat{\phi_{k}}| with Ck​(t)=ck​eβˆ’i​Ek​t/ℏC_{k}(t)=c_{k}e^{-iE_{k}t/\hbar} can be obtained from eq.Β (44).

If the time-independent operator F^\hat{F} is Hermitian in the biorthogonal Hilbert space

F^=βˆ‘k,lFk​l​|Ο•kβŸ©β€‹βŸ¨Ο•l^|=F^†=βˆ‘k,lFl​kβˆ—β€‹|Ο•kβŸ©β€‹βŸ¨Ο•l^|,\displaystyle\hat{F}=\sum_{k,l}{F}_{kl}|{\phi_{k}}\rangle\langle{\widehat{\phi_{l}}}|=\hat{F}^{{\dagger}}=\sum_{k,l}{F}^{*}_{lk}|{\phi_{k}}\rangle\langle{\widehat{\phi_{l}}}|, (86)

one can obtain that Fk​k{F}_{kk} is a real number and also Fk​l=Fl​kβˆ—{F}_{kl}={F}^{*}_{lk} (kβ‰ l)(k\neq{l}). Then, the biorthogonal expectation value (F^)(\hat{F}) [see eq.Β (82)] must be a real number, because pnp_{n} and |Ck​(t)|2​Fk​k|C_{k}(t)|^{2}{F}_{kk} are real and

βˆ‘kβ‰ lCkβˆ—β€‹(t)​Cl​(t)​Fk​l\displaystyle\sum_{k\neq{l}}C^{*}_{k}(t)C_{l}(t){F}_{kl} (87)
=\displaystyle= βˆ‘kβ‰ l,k<l[Ckβˆ—β€‹(t)​Cl​(t)​Fk​l+Clβˆ—β€‹(t)​Ck​(t)​Fl​k]\displaystyle\sum_{k\neq{l},k<{l}}\left[C^{*}_{k}(t)C_{l}(t){F}_{kl}+C^{*}_{l}(t)C_{k}(t){F}_{lk}\right] (88)
=\displaystyle= βˆ‘kβ‰ l,k<l[Ckβˆ—β€‹(t)​Cl​(t)​Fk​l+(Ckβˆ—β€‹(t)​Cl​(t)​Fk​l)βˆ—]\displaystyle\sum_{k\neq{l},k<{l}}\left[C^{*}_{k}(t)C_{l}(t){F}_{kl}+(C^{*}_{k}(t)C_{l}(t){F}_{kl})^{*}\right] (89)
=\displaystyle= βˆ‘kβ‰ l,k<l2​Re​[Ckβˆ—β€‹(t)​Cl​(t)​Fk​l],\displaystyle\sum_{k\neq{l},k<{l}}2\textrm{Re}[C^{*}_{k}(t)C_{l}(t){F}_{kl}], (90)

where the relation Fl​k=Fk​lβˆ—{F}_{lk}={F}^{*}_{kl} (kβ‰ l)(k\neq{l}) has been applied. That is, the condition for obtaining a real biorthogonal expectation value (F^)(\hat{F}) in a 𝒫​𝒯\mathcal{PT}-symmetric system is that the chosen operator F^\hat{F} is Hermitian in biorthogonal quantum mechanics.

Therefore, in the main text, in order to ensure that the chosen operators F^\hat{F} in eqs.Β (7,8) are Hermitian in biorthogonal quantum mechanics, the coefficients c1c_{1} and c2c_{2} in eq.Β (7) are real numbers, and the coefficient c~1\tilde{c}_{1} in eq.Β (8) is a purely imaginary number. In addition, when we experimentally investigate the β€œbiorthogonal” expectation value (F^)(\hat{F}), the two deformed Pauli operators Οƒ~z\widetilde{\sigma}_{z} and Οƒ~y\widetilde{\sigma}_{y} (which are Hermitian in biorthogonal quantum mechanics) are applied. When we experimentally investigate the standard expectation value ⟨F^⟩\langle{\hat{F}}\rangle, the two standard Pauli operators Οƒ^z\hat{\sigma}_{z} and Οƒ^y\hat{\sigma}_{y} (which are Hermitian in standard quantum mechanics) are chosen.

A.5 Decomposition of the nonunitary time-evolution operator

The dynamic evolution of a 𝒫​𝒯\mathcal{PT}-symmetric single-qubit system is characterized by the nonunitary time-evolution operator U𝒫​𝒯=exp⁑(βˆ’i​H^𝒫​𝒯)U_{\mathcal{PT}}=\exp(-i\hat{H}_{\mathcal{PT}}), with the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian H^𝒫​𝒯=s​(Οƒ^x+i​a​σ^z)\hat{H}_{\mathcal{PT}}=s(\hat{\sigma}_{x}+ia\hat{\sigma}_{z}). Without loss of generality, we set s=1s=1. In our experiment, we implement the nonunitary time-evolution operator U𝒫​𝒯U_{\mathcal{PT}} by decomposing it into basic operators.

Let us start with :

U^𝒫​𝒯​(t)\displaystyle\hat{U}_{\mathcal{PT}}(t) =\displaystyle= exp⁑(βˆ’i​H^𝒫​𝒯​t)\displaystyle\exp(-i\hat{H}_{\mathcal{PT}}t) (93)
=\displaystyle= exp⁑[βˆ’i​(Οƒx+i​a​σz)​t]\displaystyle\exp\left[-i(\sigma_{x}+ia\sigma_{z})t\right]
=\displaystyle= exp⁑[(aβˆ’iβˆ’iβˆ’a)​t]\displaystyle\exp\left[\left(\begin{array}[]{cc}a&-i\\ -i&-a\end{array}\right)t\right]
=\displaystyle= (A+Bβˆ’i​Cβˆ’i​CAβˆ’B).\displaystyle\left(\begin{array}[]{cc}A+B&-iC\\ -iC&A-B\end{array}\right). (96)

Here AA, BB and CC are given by:

(i) for 0<a<10<a<1,

A=cos⁑(ω​t),B=aω​sin⁑(ω​t),C=1ω​sin⁑(ω​t),A=\cos\left(\omega t\right),~{}~{}B=\frac{a}{\omega}\sin\left(\omega t\right),~{}~{}C=\frac{1}{\omega}\sin\left(\omega t\right), (97)

where Ο‰=1βˆ’a2>0\omega=\sqrt{1-a^{2}}>0.

(ii) for aβ‰₯1a\geq 1,

A=cosh⁑(ω​t),B=aω​sinh⁑(ω​t),C=1ω​sinh⁑(ω​t),A=\cosh\left(\omega t\right),~{}~{}B=\frac{a}{\omega}\sinh\left(\omega t\right),~{}~{}C=\frac{1}{\omega}\sinh\left(\omega t\right), (98)

where Ο‰=a2βˆ’1β‰₯0\omega=\sqrt{a^{2}-1}\geq 0.

We set the parameters

A\displaystyle A =\displaystyle= 12​(Ξ»2+Ξ»1)​sin⁑(βˆ’2​θ1+ΞΈ2βˆ’Ο€/4),\displaystyle\frac{1}{2}\left(\lambda_{2}+\lambda_{1}\right)\sin(-2\theta_{1}+\theta_{2}-\pi/4), (99)
B\displaystyle B =\displaystyle= 12​(Ξ»2βˆ’Ξ»1)​sin⁑(2​θ1+ΞΈ2βˆ’Ο€/4),\displaystyle\frac{1}{2}\left(\lambda_{2}-\lambda_{1}\right)\sin(2\theta_{1}+\theta_{2}-\pi/4), (100)
C\displaystyle C =\displaystyle= βˆ’[Ξ»2sin2ΞΈ1cos(ΞΈ2+Ο€/4)\displaystyle-[\lambda_{2}\sin 2\theta_{1}\cos(\theta_{2}+\pi/4) (102)
+Ξ»1cos2ΞΈ1sin(ΞΈ2+Ο€/4)],\displaystyle+\lambda_{1}\cos 2\theta_{1}\sin\left(\theta_{2}+\pi/4\right)],
ΞΈ2\displaystyle\theta_{2} =\displaystyle= (2​k1+34)β€‹Ο€βˆ’2​θ1,\displaystyle\left(2k_{1}+\frac{3}{4}\right)\pi-2\theta_{1}, (103)
ΞΈ3\displaystyle\theta_{3} =\displaystyle= (k22+18)β€‹Ο€βˆ’ΞΈ1,\displaystyle\left(\frac{k_{2}}{2}+\frac{1}{8}\right)\pi-\theta_{1}, (104)

where k1k_{1} and k2k_{2} are integers. Base on eqs.Β (99-104), the parameters Ξ»1\lambda_{1}, Ξ»2\lambda_{2}, ΞΈ1\theta_{1}, ΞΈ2\theta_{2} and ΞΈ3\theta_{3} can be determined with given AA, BB and CC. The matrix (96) can thus be decomposed as follows:

U^𝒫​𝒯​(t)\displaystyle{\hat{U}}_{\mathcal{PT}}(t) =\displaystyle= (U11U12U21U22)​(0Ξ»1Ξ»20)​(100βˆ’1)\displaystyle\left(\begin{array}[]{cc}U_{11}&U_{12}\\ U_{21}&U_{22}\\ \end{array}\right)\left(\begin{array}[]{cc}0&\lambda_{1}\\ \lambda_{2}&0\\ \end{array}\right)\left(\begin{array}[]{cc}1&0\\ 0&-1\\ \end{array}\right) (116)
(cos⁑2​θ1sin⁑2​θ1sin⁑2​θ1βˆ’cos⁑2​θ1)​(100i),\displaystyle\left(\begin{array}[]{cc}\cos 2\theta_{1}&\sin 2\theta_{1}\\ \sin 2\theta_{1}&-\cos 2\theta_{1}\\ \end{array}\right)\left(\begin{array}[]{cc}1&0\\ 0&i\\ \end{array}\right),

where

U11\displaystyle U_{11} =\displaystyle= i2​eβˆ’i​π/4​(sin⁑θ2+cos⁑θ2)​ei​(ΞΈ2βˆ’2​θ3),\displaystyle\frac{i}{\sqrt{2}}e^{-i\pi/4}\left(\sin\theta_{2}+\cos\theta_{2}\right)e^{i(\theta_{2}-2\theta_{3})}, (117)
U12\displaystyle U_{12} =\displaystyle= i2​eβˆ’i​π/4​(sin⁑θ2βˆ’cos⁑θ2)​ei​(ΞΈ2βˆ’2​θ3),\displaystyle\frac{i}{\sqrt{2}}e^{-i\pi/4}\left(\sin\theta_{2}-\cos\theta_{2}\right)e^{i(\theta_{2}-2\theta_{3})}, (118)
U21\displaystyle U_{21} =\displaystyle= 12​eβˆ’i​π/4​(sin⁑θ2βˆ’cos⁑θ2)​eβˆ’i​(ΞΈ2βˆ’2​θ3),\displaystyle\frac{1}{\sqrt{2}}e^{-i\pi/4}\left(\sin\theta_{2}-\cos\theta_{2}\right)e^{-i(\theta_{2}-2\theta_{3})}, (119)
U22\displaystyle U_{22} =\displaystyle= 12​eβˆ’i​π/4​(sin⁑θ2+cos⁑θ2)​eβˆ’i​(ΞΈ2βˆ’2​θ3).\displaystyle\frac{1}{\sqrt{2}}e^{-i\pi/4}\left(\sin\theta_{2}+\cos\theta_{2}\right)e^{-i(\theta_{2}-2\theta_{3})}. (120)

A half-wave plate (HWP) and a quarter-wave plate (QWP) realize rotation operations, which are described by the following operators:

R^QWP​(Ξ±)=(cos2⁑α+i​sin2⁑α(sin⁑2​α​cos⁑α)/2(sin⁑2​α​cos⁑α)/2sin2⁑α+i​cos2⁑α),\displaystyle\hat{R}_{\textrm{QWP}}(\alpha)=\left(\begin{array}[]{cc}\cos^{2}\alpha+i\sin^{2}\alpha&({\sin 2\alpha\cos\alpha})/{2}\\ ({\sin 2\alpha\cos\alpha})/{2}&\sin^{2}\alpha+i\cos^{2}\alpha\\ \end{array}\right), (123)
R^HWP​(Ξ²)\displaystyle\hat{R}_{\textrm{HWP}}\left(\beta\right) =\displaystyle= (cos⁑2​βsin⁑2​βsin⁑2β€‹Ξ²βˆ’cos⁑2​β),\displaystyle\left(\begin{array}[]{cc}\cos 2\beta&\sin 2\beta\\ \sin 2\beta&-\cos 2\beta\\ \end{array}\right), (126)

where Ξ±\alpha and Ξ²\beta are tunable setting angles. Based on eq.Β (123) and eq.Β (126), we have:

R^QWP​(45∘)​R^HWP​(ΞΈ3)​R^QWP​(ΞΈ2)\displaystyle\hat{R}_{\textrm{QWP}}(45^{\circ})\hat{R}_{\textrm{HWP}}(\theta_{3})\hat{R}_{\textrm{QWP}}(\theta_{2}) (127)
=\displaystyle= (1+i1βˆ’i1βˆ’i1+i)​(cos⁑2​θ3sin⁑2​θ3sin⁑2​θ3βˆ’cos⁑2​θ3)\displaystyle\left(\begin{array}[]{cc}1+i&1-i\\ 1-i&1+i\\ \end{array}\right)\left(\begin{array}[]{cc}\cos 2\theta_{3}&\sin 2\theta_{3}\\ \sin 2\theta_{3}&-\cos 2\theta_{3}\\ \end{array}\right) (135)
Γ—(cos2⁑θ2+i​sin2⁑θ2sin⁑θ2β‹…cos⁑θ2​(1βˆ’i)sin⁑θ2β‹…cos⁑θ2​(1βˆ’i)sin2⁑θ2+i​cos2⁑θ2)\displaystyle\times\left(\begin{array}[]{cc}\cos^{2}\theta_{2}+i\sin^{2}\theta_{2}&\sin\theta_{2}\cdot\cos\theta_{2}\left(1-i\right)\\ \sin\theta_{2}\cdot\cos\theta_{2}\left(1-i\right)&\sin^{2}\theta_{2}+i\cos^{2}\theta_{2}\\ \end{array}\right)
=\displaystyle= (U11U12U21U22),\displaystyle\left(\begin{array}[]{cc}U_{11}&U_{12}\\ U_{21}&U_{22}\\ \end{array}\right), (138)
R^HWP​(0∘)=(100βˆ’1),\displaystyle{\hat{R}_{\textrm{HWP}}\left(0^{\circ}\right)=\left(\begin{array}[]{cc}1&0\\ 0&-1\\ \end{array}\right),} (141)
R^QWP​(0∘)=(100i),\displaystyle{\hat{R}_{\textrm{QWP}}\left(0^{\circ}\right)=\left(\begin{array}[]{cc}1&0\\ 0&i\\ \end{array}\right),} (144)
R^HWP​(ΞΈ3)=(cos⁑2​θ3sin⁑2​θ3sin⁑2​θ3βˆ’cos⁑2​θ3).\displaystyle{\hat{R}_{\textrm{HWP}}\left(\theta_{3}\right)=\left(\begin{array}[]{cc}\cos 2\theta_{3}&\sin 2\theta_{3}\\ \sin 2\theta_{3}&-\cos 2\theta_{3}\\ \end{array}\right).} (147)

After inserting eqs.Β (127-147) into eq.Β (116), we obtain:

U^𝒫​𝒯\displaystyle\hat{U}_{\mathcal{PT}} =\displaystyle= R^QWP​(Ο€/4)​R^HWP​(ΞΈ3)​R^QWP​(ΞΈ2)​M^​(ΞΎ1,ΞΎ2)\displaystyle\hat{R}_{\textrm{QWP}}(\pi/4)\hat{R}_{\textrm{HWP}}(\theta_{3})\hat{R}_{\textrm{QWP}}(\theta_{2})\hat{M}(\xi_{1},~{}\xi_{2}) (149)
R^HWP​(0)​R^HWP​(ΞΈ1)​R^QWP​(0),\displaystyle\hat{R}_{\textrm{HWP}}(0)\hat{R}_{\textrm{HWP}}(\theta_{1})\hat{R}_{\textrm{QWP}}(0),

with

M^\displaystyle{\hat{M}} =\displaystyle= (0Ξ»1Ξ»20).\displaystyle\left(\begin{array}[]{cc}0&\lambda_{1}\\ \lambda_{2}&0\end{array}\right). (152)

The matrix M^{\hat{M}} can be expressed as:

M^=c​(0sin⁑2​ξ1sin⁑2​ξ20),{\hat{M}}=c\left(\begin{array}[]{cc}0&\sin 2\xi_{1}\\ \sin 2\xi_{2}&0\\ \end{array}\right), (153)

where c=Ξ»1/sin⁑2​ξ1=Ξ»2/sin⁑2​ξ2c={\lambda_{1}}/{\sin{2\xi_{1}}}={\lambda_{2}}/{\sin{2\xi_{2}}} is a trivial constant. For simplicity, we define:

L^​(ΞΎ1,ΞΎ2)=(0sin⁑2​ξ1sin⁑2​ξ20).\hat{L}\left(\xi_{1},\xi_{2}\right)=\left(\begin{array}[]{cc}0&\sin 2\xi_{1}\\ \sin 2\xi_{2}&0\end{array}\right). (154)

Thus, we have M^=c​L^{\hat{M}}=c\hat{L}. Note that the functions of both operators L^\hat{L} and c​L^c\hat{L} are identical. This is because the states L^​|ψ⟩\hat{L}|\psi\rangle and c​L^​|ψ⟩c\hat{L}|\psi\rangle, obtained by enforcing the two operators L^\hat{L} and c​L^c\hat{L} on an arbitrary state |ψ⟩|\psi\rangle, are the same according to the principles of quantum mechanics. Therefore, we can replace M^{\hat{M}} in eq.Β (149) by the operator L^\hat{L}. In this sense, we have from eq.Β (149):

U^𝒫​𝒯\displaystyle\hat{U}_{\mathcal{PT}} =\displaystyle= R^QWP​(Ο€/4)​R^HWP​(ΞΈ3)​R^QWP​(ΞΈ2)​L^​(ΞΎ1,ΞΎ2)\displaystyle\hat{R}_{\textrm{QWP}}(\pi/4)\hat{R}_{\textrm{HWP}}(\theta_{3})\hat{R}_{\textrm{QWP}}(\theta_{2})\hat{L}(\xi_{1},~{}\xi_{2}) (156)
R^HWP​(0)​R^HWP​(ΞΈ1)​R^QWP​(0),\displaystyle\hat{R}_{\textrm{HWP}}(0)\hat{R}_{\textrm{HWP}}(\theta_{1})\hat{R}_{\textrm{QWP}}(0),

which is exactly the same as the decomposition of the nonunitary time-evolution operator U^𝒫​𝒯\hat{U}_{\mathcal{PT}}, described by eq.Β (9) in the main text.

A.6 Reverse extraction of quantum information in biorthogonal quantum mechanics

Although the mathematical expressions of a given quantum state are different in standard quantum mechanics and biorthogonal quantum mechanics, the physical meaning of the given quantum state must be the same. Based on this idea, for a given quantum state, one can obtain a one-to-one corresponding relation between the density matrix in standard quantum mechanics and the density matrix in biorthogonal quantum mechanics.

For instance, in the orthogonal representation for standard quantum mechanics, a quantum state at any given time tt can be given by a density operator

ρ^​(t)\displaystyle\hat{\rho}(t) =\displaystyle= βˆ‘n,mρn​m​(t)​|nβŸ©β€‹βŸ¨m|\displaystyle\sum_{n,m}{\rho}_{nm}(t)|{n}\rangle\langle{m}| (157)
=\displaystyle= βˆ‘nΞ»n​|Ο†n​(t)βŸ©β€‹βŸ¨Ο†n​(t)|.\displaystyle\sum_{n}\lambda_{n}|\varphi_{n}(t)\rangle\langle\varphi_{n}(t)|. (158)

Note that {ρn​m​(t)}\{{\rho}_{nm}(t)\} are the density matrix elements of the density operator ρ^​(t)\hat{\rho}(t) at any given time tt in standard quantum mechanics, which can be experimentally obtained via quantum state tomography. Then, based on the obtained density matrix elements {ρn​m​(t)}\{{\rho}_{nm}(t)\}, one can calculate the eigenvalues {Ξ»n}\{\lambda_{n}\} and eigenstates {|Ο†n​(t)⟩}\{|\varphi_{n}(t)\rangle\} of the density operator ρ^​(t)\hat{\rho}(t).

On the other hand, according to biorthogonal quantum mechanics, the density operator ρ^b​(t)\hat{\rho}_{b}(t) of a quantum state at any given time tt in biorthogonal representation can be expressed as

ρ^b​(t)\displaystyle\hat{\rho}_{b}(t) =\displaystyle= βˆ‘nΞ»n​|Ο†n​(t)βŸ©β€‹βŸ¨Ο†n​(t)^|\displaystyle\sum_{n}\lambda_{n}|\varphi_{n}(t)\rangle\langle\widehat{\varphi_{n}(t)}| (159)
=\displaystyle= βˆ‘n,mρ~n​m​(t)​|Ο•nβŸ©β€‹βŸ¨Ο•m^|,\displaystyle\sum_{n,m}\widetilde{\rho}_{nm}(t)|{\phi_{n}}\rangle\langle{\widehat{{\phi_{m}}}}|, (160)

where ρ~n​m​(t)\widetilde{\rho}_{nm}(t)=βŸ¨Ο•m^|ρ^b​(t)|Ο•n⟩\langle{\widehat{{\phi_{m}}}}|\hat{\rho}_{b}(t)|{\phi_{n}}\rangle carries the key quantum information of a quantum state in biorthogonal quantum mechanics. Note that the eigenvalues {Ξ»n}\{\lambda_{n}\} and the eigenstates {|Ο†n​(t)⟩}\{|\varphi_{n}(t)\rangle\} can be obtained from eq.Β (157), while {βŸ¨Ο•m^|}\{\langle\widehat{{\phi_{m}}}|\} and {|Ο•n⟩}\{{|\phi_{n}}\rangle\} are the left and right eigenstates of the non-Hermitian Hamiltonian of the system, and they can be obtained from eqs.Β (17) and Β (18). In this way, we can reversely extract the exact information ρ~n​m​(t)\widetilde{\rho}_{nm}(t) (in biorthogonal quantum mechanics) of a given quantum state from its density operator in standard quantum mechanics.

A.7 Dynamical evolution of a class of 𝒫​𝒯\mathcal{PT}-symmetric systems in biorthogonal quantum mechanics

Note that the dynamical evolution of a class of 𝒫​𝒯\mathcal{PT}-symmetric systems in biorthogonal quantum mechanics is quite different from that in standard quantum mechanics. In biorthogonal quantum mechanics, a mixed state ρ^b​(t){\hat{\rho}}_{b}(t) at any given time tt can be expressed as a biorthogonal density operator

ρ^b​(t)=βˆ‘npn​ρ^b,n​(t)=βˆ‘npn​|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|,\displaystyle{\hat{\rho}}_{b}(t)=\sum_{n}p_{n}{\hat{\rho}}_{b,n}(t)=\sum_{n}p_{n}|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|, (161)

where pnp_{n} is the probability of the system being in the pure state |ψn​(t)⟩|\psi_{n}(t)\rangle, and ρ^b,n​(t)=|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|{\hat{\rho}}_{b,n}(t)=|\psi_{n}(t)\rangle{\langle\widehat{\psi_{n}(t)}|}.

Let us first consider the system to be in the pure state |ψn​(t)⟩|\psi_{n}(t)\rangle. When the eigenvalues of the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are real numbers, the system works in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime. In this case, according to eqs.Β (44) and (45), one can obtain the temporal evolution of the density operator ρ^b,n​(t)\hat{\rho}_{b,n}(t),

d​ρ^b,n​(t)d​t\displaystyle\frac{d{\hat{\rho}}_{b,n}(t)}{dt} (162)
=\displaystyle= d​|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|d​t\displaystyle\frac{d{|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|}}{dt} (163)
=\displaystyle= (H𝒫​𝒯i​ℏ​|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|+|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|β€‹βˆ’H𝒫​𝒯i​ℏ)\displaystyle\left(\frac{H_{\mathcal{PT}}}{i\hbar}|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|+|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|\frac{-H_{\mathcal{PT}}}{i\hbar}\right) (164)
=\displaystyle= 1i​ℏ​[H𝒫​𝒯​ρ^b,n​(t)βˆ’Ο^b,n​(t)​H𝒫​𝒯].\displaystyle\frac{1}{i\hbar}[H_{\mathcal{PT}}\hat{\rho}_{b,n}(t)-\hat{\rho}_{b,n}(t)H_{\mathcal{PT}}]. (165)

On the other hand, when the eigenvalues of the 𝒫​𝒯\mathcal{PT}-symmetric Hamiltonian H^𝒫​𝒯\hat{H}_{\mathcal{PT}} are imaginary numbers, the system works in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime. In this situation, according to eqs.Β (44) and (51), one can find that the temporal evolution of the density operator ρ^b,n​(t)\hat{\rho}_{b,n}(t) follows

d​ρ^b,n​(t)d​t\displaystyle\frac{d{\hat{\rho}}_{b,n}(t)}{dt} (166)
=\displaystyle= d​|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|d​t\displaystyle\frac{d{|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|}}{dt} (167)
=\displaystyle= (H𝒫​𝒯i​ℏ​|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|+|ψn​(t)βŸ©β€‹βŸ¨Οˆn​(t)^|​H𝒫​𝒯i​ℏ)\displaystyle\left(\frac{H_{\mathcal{PT}}}{i\hbar}|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|+|\psi_{n}(t)\rangle\langle\widehat{\psi_{n}(t)}|\frac{H_{\mathcal{PT}}}{i\hbar}\right) (168)
=\displaystyle= 1i​ℏ​[H𝒫​𝒯​ρ^b,n​(t)+ρ^b,n​(t)​H𝒫​𝒯].\displaystyle\frac{1}{i\hbar}[H_{\mathcal{PT}}\hat{\rho}_{b,n}(t)+\hat{\rho}_{b,n}(t)H_{\mathcal{PT}}]. (169)

Moreover, one can verify that ρ^b,n​(t)=U𝒫​𝒯​(t)​ρ^b,n​(0)​U𝒫​𝒯′​(t){\hat{\rho}_{b,n}}(t)={{U}_{\mathcal{PT}}(t)\hat{\rho}_{b,n}(0){U}_{\mathcal{PT}}^{{}^{\prime}}(t)} satisfies the following relation

d​ρ^b,n​(t)d​t\displaystyle\frac{d{\hat{\rho}}_{b,n}(t)}{dt} (170)
=\displaystyle= d​U𝒫​𝒯​(t)d​t​ρ^b,n​(0)​U𝒫​𝒯′​(t)+U𝒫​𝒯​(t)​ρ^b,n​(0)​d​U𝒫​𝒯′​(t)d​t\displaystyle\frac{d{U}_{\mathcal{PT}}(t)}{dt}\hat{\rho}_{b,n}(0){U}_{\mathcal{PT}}^{{}^{\prime}}(t)+{U}_{\mathcal{PT}}(t)\hat{\rho}_{b,n}(0)\frac{d{U}_{\mathcal{PT}}^{{}^{\prime}}(t)}{dt} (171)
=\displaystyle= 1i​ℏ​[H𝒫​𝒯​ρ^b,n​(t)βˆ’Ο^b,n​(t)​H𝒫​𝒯],\displaystyle\frac{1}{i\hbar}[H_{\mathcal{PT}}\hat{\rho}_{b,n}(t)-\hat{\rho}_{b,n}(t)H_{\mathcal{PT}}], (172)

where U^𝒫​𝒯​(t)\hat{U}_{\mathcal{PT}}(t)=exp(βˆ’i​H^𝒫​𝒯​t/ℏ-i\hat{H}_{\mathcal{PT}}t/\hbar) and U^𝒫​𝒯′​(t)\hat{U}^{{}^{\prime}}_{\mathcal{PT}}(t)=exp(i​H^𝒫​𝒯​t/ℏi\hat{H}_{\mathcal{PT}}t/\hbar) are time-evolution operators. Then, comparing eq.Β (165) with eq.Β (172), one can see that ρ^b,n​(t)=U𝒫​𝒯​(t)​ρ^b,n​(0)​U𝒫​𝒯′​(t){\hat{\rho}_{b,n}}(t)={{U}_{\mathcal{PT}}(t)\hat{\rho}_{b,n}(0){U}_{\mathcal{PT}}^{{}^{\prime}}(t)} is the general solution of eq.Β (165) in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime. Similarly, it is easy to prove that ρ^b,n​(t)=U𝒫​𝒯​(t)​ρ^b,n​(0)​U𝒫​𝒯​(t){\hat{\rho}_{b,n}}(t)={{U}_{\mathcal{PT}}(t)\hat{\rho}_{b,n}(0){U}_{\mathcal{PT}}(t)} satisfies the following relation

d​ρ^b,n​(t)d​t\displaystyle\frac{d{\hat{\rho}}_{b,n}(t)}{dt} (173)
=\displaystyle= d​U𝒫​𝒯​(t)d​t​ρ^b,n​(0)​U𝒫​𝒯​(t)+U𝒫​𝒯​(t)​ρ^b,n​(0)​d​U𝒫​𝒯​(t)d​t\displaystyle\frac{d{U}_{\mathcal{PT}}(t)}{dt}\hat{\rho}_{b,n}(0){U}_{\mathcal{PT}}(t)+{U}_{\mathcal{PT}}(t)\hat{\rho}_{b,n}(0)\frac{d{U}_{\mathcal{PT}}(t)}{dt} (174)
=\displaystyle= 1i​ℏ​[H𝒫​𝒯​ρ^b,n​(t)+ρ^b,n​(t)​H𝒫​𝒯].\displaystyle\frac{1}{i\hbar}[H_{\mathcal{PT}}\hat{\rho}_{b,n}(t)+\hat{\rho}_{b,n}(t)H_{\mathcal{PT}}]. (175)

One then has that ρ^b,n​(t)=U𝒫​𝒯​(t)​ρ^b,n​(0)​U𝒫​𝒯​(t){\hat{\rho}_{b,n}}(t)={{U}_{\mathcal{PT}}(t)\hat{\rho}_{b,n}(0){U}_{\mathcal{PT}}(t)} is the general solution of eq.Β (169) in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime by comparing eq.Β (169) with eq.Β (175).

Let us now consider the system to be in the mixed state ρ^b​(t)\hat{\rho}_{b}(t). After substituting ρ^b,n​(t)=U𝒫​𝒯​(t)​ρ^b,n​(0)​U𝒫​𝒯′​(t){\hat{\rho}_{b,n}}(t)={{U}_{\mathcal{PT}}(t)\hat{\rho}_{b,n}(0){U}_{\mathcal{PT}}^{{}^{\prime}}(t)} and ρ^b,n​(t)=U𝒫​𝒯​(t)​ρ^b,n​(0)​U𝒫​𝒯​(t){\hat{\rho}_{b,n}}(t)={{U}_{\mathcal{PT}}(t)\hat{\rho}_{b,n}(0){U}_{\mathcal{PT}}(t)} into eq.Β (161), it is then straightforward that the temporal evolution of the density operator ρ^b​(t)\hat{\rho}_{b}(t) follows

ρ^b​(t)=U^𝒫​𝒯​(t)​ρ^b​(0)​U^𝒫​𝒯′​(t),\displaystyle{\hat{\rho}}_{b}(t)={\hat{U}_{\mathcal{PT}}(t){\hat{\rho}}_{b}(0)\hat{U}_{\mathcal{PT}}^{{}^{\prime}}(t)}, (176)
ρ^b​(t)=U^𝒫​𝒯​(t)​ρ^b​(0)​U^𝒫​𝒯​(t),\displaystyle{\hat{\rho}}_{b}(t)={\hat{U}_{\mathcal{PT}}(t){\hat{\rho}}_{b}(0)\hat{U}_{\mathcal{PT}}(t)}, (177)

where eq.Β (176) corresponds to the case when the system works in the 𝒫​𝒯\mathcal{PT}-symmetry unbroken regime, while eq.Β (177) corresponds to the case when the system works in the 𝒫​𝒯\mathcal{PT}-symmetry broken regime. One can see that eq.Β (176) is eq.Β (12) in the main text, while eq.Β (177) is eq.Β (13) in the main text.