This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Technion–Israel Institute of Technology, Haifa, 3200003 Israel;
A.A. Kharkevich Institute for Information Transmission Problems, RAS, 19 Bol’shoi Karetnyi per., Moscow, 127051 Russia, E-mail: [email protected]

Extending Utility Functions on Arbitrary Sets

Pavel Chebotarev
(April 8, 2001)
Abstract

We consider the problem of extending a function fPf\mathop{\!{}_{\!\!P}} defined on a subset PP of an arbitrary set XX to XX strictly monotonically with respect to a preorder \succcurlyeq defined on XX, without imposing continuity constraints. We show that whenever \succcurlyeq has a utility representation, fPf\mathop{\!{}_{\!\!P}} is extendable if and only if it is gap-safe increasing. A class of extensions involving an arbitrary utility representation of \succcurlyeq is proposed and investigated. Connections to related topological results are discussed. The condition of extendability and the form of the extension are simplified when PP is a Pareto set.

xtension of a utility function; Monotonicity; Utility representation of a preorder; Pareto set

Keywords:
E

1 Introduction

Suppose that a decision maker has a utility function fPf\mathop{\!{}_{\!\!P}} defined on some subset PP of a Euclidean space k{\mathbb{R}}^{k} of alternatives. It is usually assumed that fPf\mathop{\!{}_{\!\!P}} strictly increases in kk coordinates corresponding to particular criteria. Therefore, it is of interest to determine conditions under which this function can be extended in such a way as to provide a strictly increasing function on k{\mathbb{R}}^{k}. In settings where all elements of k{\mathbb{R}}^{k} are theoretically feasible, these conditions can be considered as those of the consistency of fPf\mathop{\!{}_{\!\!P}}.

In this paper, we consider a more general problem where an arbitrary preordered set (X,){(X,\succcurlyeq)} is substituted for k{\mathbb{R}}^{k}. We show that whenever preorder \succcurlyeq enables a utility representation (in the form of a real-valued function strictly increasing w.r.t. \succcurlyeq on XX), a strictly increasing extension of fPf\mathop{\!{}_{\!\!P}} to (X,){(X,\succcurlyeq)} exists if and only if fPf\mathop{\!{}_{\!\!P}} is gap-safe increasing with respect to \succcurlyeq. Moreover, such an extension can be based on any utility representation of \succcurlyeq. The main object of this paper is the general class of extensions (11) involving an arbitrary (0,1)(0,1)-utility representation u01u\mathop{\!{}_{01}} of \succcurlyeq and arbitrary real constants α{\alpha} and β>α.{\beta}>{\alpha}.

We also consider the case where the structure of subset PP restricts functions strictly increasing on PP to the minimum extent. This is the case where PP is a Pareto set; for such P,P, the extension takes a simpler form.

Starting with the classical results of Eilenberg [15], Nachbin [34, 35], and Debreu [10, 11, 12], much of the work related to utility functions has been done under the continuity assumption [6, 16]. In some cases this assumption is made “for purposes of mathematical reasoning” [1]. On the other hand, this requirement is not always necessary. Moreover, there are threshold effects [23, 27] such as a shift from quantity to quality or disaster avoidance behavior that require utility jumps. In other situations, the feasible set of possible outcomes is a discrete or finite subset of the entire space, which may eliminate or relax the continuity constraints. Thus, utility functions that may not be continuous everywhere are useful or even necessary to model some real-world problems [18, 28, 19, 14, 38, 2, 4]. For a discussion of various versions of the continuity postulate in utility theory, we refer to [44].

In this paper, we study the problem of extending utility functions defined on arbitrary subsets of an arbitrary set XX equipped with a preorder \succcurlyeq, but not endowed with a topological structure, since we do not impose continuity requirements. However, some kind of continuity of an associated inverse mapping follows from the necessary and sufficient condition of extendability we establish.

2 The problem and standard definitions

Throughout the paper (X,){(X,\succcurlyeq)} is a preordered set, where XX is an arbitrary nonempty set and \succcurlyeq is a preorder (i.e., a transitive and reflexive binary relation) defined on X.X. We first formulate the problem under consideration and then provide the necessary definitions; the definitions of basic properties and classes of binary relations are given in Appendix 0.A.

Consider any subset PXP\subset X and any real-valued function fPf\mathop{\!{}_{\!\!P}} defined on PP. The problem studied in this paper is: to find conditions under which fPf\mathop{\!{}_{\!\!P}} can be extended to (X,){(X,\succcurlyeq)} yielding a strictly increasing function and to construct a fairly general class of such extensions when they exist.

The definitions of the relevant terms are as follows.

Given a preorder \succcurlyeq on X,X, the asymmetric \succ and symmetric \approx parts of \succcurlyeq are the relations111The elements of XX are printed in bold (as is common for vectors in k{\mathbb{R}}^{k}) to distinguish them from real numbers. [𝒙𝒚][𝒙𝒚[\bm{x}\succ\bm{y}]\equiv[\bm{x}\succcurlyeq\bm{y} and not 𝒚𝒙\bm{y}\succcurlyeq\bm{x}] and [𝒙𝒚][𝒙𝒚[\bm{x}\approx\bm{y}]\equiv[\bm{x}\succcurlyeq\bm{y} and 𝒚𝒙\bm{y}\succcurlyeq\bm{x}], respectively, where \equiv means “identity by definition.” Relation \succ is transitive and irreflexive (i.e., it is a strict partial order), whereas \approx is transitive, reflexive, and symmetric (i.e., an equivalence relation).

The converse relations corresponding to \succcurlyeq and \succ are :[𝒙𝒚][𝒚𝒙]\preccurlyeq\,:[\bm{x}\preccurlyeq\bm{y}]\equiv[\bm{y}\succcurlyeq\bm{x}] and :[𝒙𝒚][𝒚𝒙]\prec\,:[\bm{x}\prec\bm{y}]\equiv[\bm{y}\succ\bm{x}].

For any PX,P\subseteq X, P\succcurlyeq\!\mathop{\!{}_{P}} is the restriction of \succcurlyeq to PP.

𝒙X\bm{x}\in X is a maximal (minimal) element of (X,){(X,\succcurlyeq)} iff 𝒙𝒙\bm{x}^{\prime}\succ\bm{x} (resp., 𝒙𝒙\bm{x}\succ\bm{x}^{\prime}) for no 𝒙X.\bm{x}^{\prime}\in X.

Definition 1

A function fP:P,f\mathop{\!{}_{\!\!P}}\!:P\to{\mathbb{R}}, where PX,P\subseteq X, is said to be weakly increasing with respect to the preorder \succcurlyeq defined on XX (or, briefly, weakly increasing) if for all 𝒑,𝒑P,\bm{p},\,\bm{p}^{\prime}\in P,\, 𝒑𝒑\bm{p}^{\prime}\succcurlyeq\bm{p} implies222In a different terminology [5], functions with this property are referred to as order-preserving, or isotone. fP(𝒑)fP(𝒑).{f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})\geq f\mathop{\!{}_{\!\!P}}(\bm{p}).}

If, in addition, fP(𝒑)>fP(𝒑)f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})>f\mathop{\!{}_{\!\!P}}(\bm{p}) for all 𝒑,𝒑P\bm{p},\,\bm{p}^{\prime}\in P such that 𝒑𝒑,\bm{p}^{\prime}\succ\bm{p}, then fPf\mathop{\!{}_{\!\!P}} is called strictly increasing w.r.t. \succcurlyeq, or a utility representation of P\succcurlyeq\!\mathop{\!{}_{P}}.

Utility functions fPf\mathop{\!{}_{\!\!P}} strictly increasing w.r.t. \succcurlyeq can express the attitude, consistent with the preference preorder \succcurlyeq, of a decision maker towards the elements of PP. Utility representations of preorders and partial orders have been studied since [35, 3, 36, 17].

It follows from Definition 1 that for any weakly increasing function fPf\mathop{\!{}_{\!\!P}},

[𝒑,𝒑P and 𝒑𝒑]fP(𝒑)=fP(𝒑)\big{[}\hskip 1.1pt\bm{p},\,\bm{p}^{\prime}\in P\mbox{ and\, }\bm{p}^{\prime}\approx\bm{p}\hskip 1.1pt\big{]}\,\Rightarrow f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})=f\mathop{\!{}_{\!\!P}}(\bm{p}) (1)

Using (1) we obtain the following simple lemma.

Lemma 1

A function fP:P,f\mathop{\!{}_{\!\!P}}\!:P\to{\mathbb{R}}, where PX,P\subseteq X, is strictly increasing with respect to a preorder \succcurlyeq defined on XX if and only if for all 𝐩,𝐩P,\bm{p},\,\bm{p}^{\prime}\in P,\,

[𝒑𝒑fP(𝒑)=fP(𝒑)] and [𝒑𝒑fP(𝒑)>fP(𝒑)],\big{[}\hskip 1.1pt\bm{p}^{\prime}\approx\bm{p}\>\Rightarrow f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})=f\mathop{\!{}_{\!\!P}}(\bm{p})\big{]}\,\mbox{ and }\;\big{[}\hskip 1.1pt\bm{p}^{\prime}\succ\bm{p}\>\Rightarrow f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})>f\mathop{\!{}_{\!\!P}}(\bm{p})\big{]}, (2)

where \approx and \succ are the symmetric and asymmetric parts of ,\succcurlyeq, respectively.

Indeed, (2) follows from Definition 1 using (1). Conversely, if (2) holds, then [𝒑𝒑fP(𝒑)fP(𝒑)],[\hskip 1.1pt\bm{p}^{\prime}\succcurlyeq\bm{p}\>\Rightarrow f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})\geq f\mathop{\!{}_{\!\!P}}(\bm{p})], since 𝒑𝒑\bm{p}^{\prime}\succcurlyeq\bm{p} implies [𝒑𝒑 or 𝒑𝒑][\hskip 1.1pt\bm{p}^{\prime}\approx\bm{p}\mbox{ or }\bm{p}^{\prime}\succ\bm{p}] with the desired conclusion in either case, while the second condition is immediate.

Definition 2

A real-valued function fPf\mathop{\!{}_{\!\!P}} defined on PXP\subseteq X is strictly monotonically333We mean increase. extendable to (X,){(X,\succcurlyeq)} if there exists a function ffX:Xf\equiv f\mathop{\!{}_{\!\!X}}:\;X\to{\mathbb{R}} such that
()(\ast) the restriction of ff to PP coincides with fP,f\mathop{\!{}_{\!\!P}}, and
()(\ast\ast) ff is strictly increasing on XX with respect to \succcurlyeq.
In this case, ff is said to be a strictly increasing extension of fPf\mathop{\!{}_{\!\!P}} to (X,){(X,\succcurlyeq)}.

In economics and decision making, alternatives are often identified with kk-dimensional vectors of criteria values [41] or goods [1]. In such cases, X=k.X={\mathbb{R}}^{k}. Thus, an important special case of the extendability problem is the problem of extending to k{\mathbb{R}}^{k} functions defined on PkP\subset{\mathbb{R}}^{k} and strictly increasing w.r.t. the Pareto preorder on k{\mathbb{R}}^{k}. The Pareto preorder \succcurlyeq [13] is defined as follows: for any 𝒙=(x1,,xk)\bm{x}=(x_{1},\ldots,x_{k}) and 𝒚=(y1,,yk)\bm{y}=(y_{1},\ldots,y_{k}) that belong to k,{\mathbb{R}}^{k}, [𝒙𝒚][xiyi[\bm{x}\succcurlyeq\bm{y}]\equiv[x\mathop{\!{}_{i}}\geq y\mathop{\!{}_{i}} for all i{1,,k}]i\in\{1,\ldots,k\}].

3 Extensions of preorders and corresponding utilities

Extensions of preorders and partial orders and their numerical representations have been studied since Szpilrajn’s theorem [39] according to which every partial order can be extended to a linear order.

Another basic result is that a preorder \succcurlyeq has a utility representation whenever there exists a countable dense444YXY\subseteq X is RR-dense in X,X, where RR is a binary relation on XX [17], iff 𝒙R𝒙\bm{x}^{\prime}R\bm{x} \Rightarrow [𝒙Y\bm{x}^{\prime}\in Y or 𝒙Y\bm{x}\in Y or [𝒙R𝒚\bm{x}^{\prime}R\bm{y} and 𝒚R𝒙\bm{y}R\bm{x} for some 𝒚Y\bm{y}\in Y]] for all 𝒙,𝒙X\bm{x},\bm{x}^{\prime}\in X. (w.r.t. the induced partial order) subset in the factor set X/,X/\!\approx, where \approx is the symmetric part of \succcurlyeq [12, 37, 17]. This is not a necessary condition, however, for the subclass of weak orders (i.e., connected preorders), it is necessary.

Among the extensions of the Pareto preorder on k{\mathbb{R}}^{k} are all lexicographic linear orders [17] on k{\mathbb{R}}^{k}. When k>1k>1, these extensions lack utility representations [12], while a utility representation of the Pareto preorder is any function strictly increasing in all coordinates.

Any utility representation of a preorder \succcurlyeq induces a weak order that extends \succcurlyeq. In turn, this weak order determines its utility representation up to an arbitrary strictly increasing transformation; for certain related results, see [17, 32, 33, 21, 6, 16]. As was seen on the example of the Pareto preorder, not all weak orders extending \succcurlyeq correspond to utility representations of \succcurlyeq. However, this is true when XX is a vector space and the weak order has the Archimedean property, which ensures [17] the existence of a countable dense (w.r.t. this weak order) subset of XX.

4 Preliminaries

Theorem 6.1 below gives a necessary and sufficient condition for the strictly increasing extendability of a function defined on a subset of XX w.r.t. a preorder that has a utility representation. Moreover, this theorem introduces a class of extensions that depend on both the initial function and an arbitrary utility representation of the preorder.

We now introduce the notation used in Theorem 6.1 and present simple facts related to it.

Let ~\widetilde{{\mathbb{R}}} be the extended real line:

~={,+}\widetilde{{\mathbb{R}}}={\mathbb{R}}\hskip 1.1pt\cup\hskip 1.1pt\{-\infty,+\infty\} (3)

with the ordinary >> relation supplemented by +>+\infty>-\infty and +>x>+\infty>x>-\infty for all xx\in{\mathbb{R}}. Since the extended >> relation is a strict linear order, it determines unique smallest (minQ\min Q) and largest (maxQ\max Q) elements in any nonempty finite Q~Q\subset\widetilde{{\mathbb{R}}}.

Functions supQ\sup Q and infQ\inf Q are considered as maps from 22^{{\mathbb{R}}} to ~\widetilde{{\mathbb{R}}} defined for Q=Q=\emptyset as follows: sup=\sup\emptyset=-\infty and inf=+\inf\emptyset=+\infty. This preserves inclusion monotonicity, i.e., the property that supQ\sup Q does not decrease and infQ\inf Q does not increase with the expansion of the set QQ (cf. [40, Section 4]). Throughout we assume ++x=++\infty+x=+\infty and x=-\infty-x=-\infty whenever x>,x>-\infty, while indeterminacies like ++()+\infty+(-\infty) never occur in our formulas.

Remark 1

If YY\subset{\mathbb{R}} and YY is bounded, then defining supQ\sup Q and infQ\inf Q on 2Y2^{Y} with the preservation of inclusion monotonicity allows setting sup=a\sup\emptyset=a and inf=b,\inf\emptyset=b, where aa and bb are any strict lower and upper bounds of Y,Y, respectively. This is applicable to (4) below whenever the range of fPf\mathop{\!{}_{\!\!P}} is bounded.

Definition 3

For any PXP\subseteq X and 𝒙X,\bm{x}\in X, the lower PP-contour and the upper PP-contour of 𝐱\bm{x} are P(𝒙){𝒑P𝒑𝒙}P_{\bm{\uparrow}}\!\!(\bm{x})\equiv\{\bm{p}\in P\mid\bm{p}\preccurlyeq\bm{x}\} and P(𝒙){𝒑P𝒑𝒙},P^{\bm{\downarrow}}(\bm{x})\equiv\{\bm{p}\in P\mid\bm{p}\succcurlyeq\bm{x}\}, respectively.

For any fP:Pf\mathop{\!{}_{\!\!P}}\!:P\to{\mathbb{R}}, where PXP\subseteq X, define two functions from XX to ~\widetilde{{\mathbb{R}}}:

fP(𝒙)=sup{fP(𝒑)𝒑P(𝒙)};fP(𝒙)=inf{fP(𝒑)𝒑P(𝒙)}.\begin{array}[]{rrl}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=&\sup\big{\{}_{\mathstrut}f\mathop{\!{}_{\!\!P}}(\bm{p})&\mid\hskip 1.1pt\bm{p}\in P_{\bm{\uparrow}}\!\!(\bm{x})\big{\}};\\ f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})=&\inf\big{\{}^{\mathstrut}f\mathop{\!{}_{\!\!P}}(\bm{p})&\mid\hskip 1.1pt\bm{p}\in P^{\bm{\downarrow}}(\bm{x})\big{\}}.\end{array} (4)

By definition, the “lower supremum” fP(𝒙)f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) and “upper infimum” fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}) functions can take values -\infty and ++\infty along with real values.

It follows from the transitivity of \succcurlyeq and the inclusion monotonicity of the sup\sup and inf\inf functions that for any (not necessarily increasing) fP,f\mathop{\!{}_{\!\!P}}, functions fP(𝒙)f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) and fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}) are weakly increasing with respect to \succcurlyeq:

For all 𝒙,𝒙X,𝒙𝒙 implies [fP(𝒙)fP(𝒙) and fP(𝒙)fP(𝒙)].\mbox{For all }\bm{x},\bm{x}^{\prime}\in X,\,\bm{x}^{\prime}\succcurlyeq\bm{x}\mbox{ implies }\big{[}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime})\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\mbox{ and }f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})\geq f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\big{]}. (5)

Consequently,

for all 𝒙,𝒙X,𝒙𝒙 implies [fP(𝒙)=fP(𝒙) and fP(𝒙)=fP(𝒙)].\mbox{for all }\bm{x},\bm{x}^{\prime}\in X,\,\bm{x}^{\prime}\approx\bm{x}\mbox{ implies }\big{[}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\mbox{ and }f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\big{]}. (6)

Furthermore, since 𝒑P\bm{p}\in P implies 𝒑P(𝒑)P(𝒑),\bm{p}\in P_{\bm{\uparrow}}\!\!(\bm{p})\cap P^{\bm{\downarrow}}(\bm{p}), it holds that

for all 𝒑P,fP(𝒑)fP(𝒑)fP(𝒑).\mbox{for all }\,\bm{p}\in P,\quad f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{p})\geq f\mathop{\!{}_{\!\!P}}(\bm{p})\geq f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{p}). (7)

We will use the following characterizations of the class of weakly increasing functions fPf\mathop{\!{}_{\!\!P}} in terms of fPf_{\bm{\uparrow}_{\mathstrut}}^{P} and fP.f^{\bm{\downarrow}\mathstrut}_{\!P}.

Proposition 1

For any PXP\subseteq X and fP:P,f\mathop{\!{}_{\!\!P}}\!:P\to{\mathbb{R}}, the following statements are equivalent::

(i)(i)   fPf\mathop{\!{}_{\!\!P}} is weakly increasing;

(ii)fP(𝒙)fP(𝒙)for all 𝒙X;(iii)fP(𝒙)fP(𝒙)for all 𝒙,𝒙X such that 𝒙𝒙;(iv)fP(𝒑)fP(𝒑)for all 𝒑P;(v)fP(𝒑)fP(𝒑)for all 𝒑P;(vi)fP(𝒑)fP(𝒑)for all 𝒑P.\begin{array}[]{lrll}(ii)&f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})&\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})&\mbox{for all }\;\bm{x}\in X;\\ (iii)&f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})&\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})^{\mathstrut}&\mbox{for all }\;\bm{x},\,\bm{x}^{\prime}\in X\mbox{ such that }\bm{x}^{\prime}\succcurlyeq\bm{x};\\ (iv)&\!f\mathop{\!{}_{\!\!P}}(\bm{p})&\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{p})^{\mathstrut}&\mbox{for all }\;\bm{p}\in P;\\ (v)&f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{p})&\geq f\mathop{\!{}_{\!\!P}}(\bm{p})^{\mathstrut}&\mbox{for all }\;\bm{p}\in P;\\ (vi)&f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{p})&\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{p})^{\mathstrut}&\mbox{for all }\;\bm{p}\in P.\end{array}

The proofs are given in Section 11.

Remark 2

In view of Eq. (7), inequality in items (iv)(iv) to (vi)(vi) of Proposition 1 can be replaced by equality.

5 Gap-safe increasing functions

In this section, we consider the class of gap-safe increasing functions fP,f\mathop{\!{}_{\!\!P}}, which is not wider, but can be narrower for some XX and PP than the class of strictly increasing functions PP\to{\mathbb{R}} (see Proposition 2 and Example 1 below). We will show that this is precisely the class of functions that admit a strictly increasing extension to (X,){(X,\succcurlyeq)}.

Let us extend XX in the same manner as {\mathbb{R}} is extended by (3):

X~=X{,+},\widetilde{X}=X\cup\hskip 1.1pt\{\bm{-\infty},\bm{+\infty}\},

where \bm{-\infty} and +\bm{+\infty} are two distinct elements that do not belong to X.X. Preorder XX×X\succcurlyeq\!\mathop{\!{}_{X}}\subseteq X\!\times\!X is extended to X~\widetilde{X} as follows:

X~[X{(+,𝒙)𝒙X~}{(𝒙,)𝒙X~}],\succcurlyeq\!\mathop{\!{}_{\widetilde{X}}}\equiv\;[\succcurlyeq\!\mathop{\!{}_{X}}\cup\>\{(\bm{+\infty},\bm{x})\mid\bm{x}\in\widetilde{X}\}\cup\{(\bm{x},\bm{-\infty})\mid\bm{x}\in\widetilde{X}\}],

where (+,𝒙)(\bm{+\infty},\bm{x}) and (𝒙,)(\bm{x},\bm{-\infty}) are pairs of elements of X~.\widetilde{X}.

Functions fPf_{\bm{\uparrow}_{\mathstrut}}^{P}, fP:f^{\bm{\downarrow}\mathstrut}_{\!P}: X~~\widetilde{X}\to\widetilde{{\mathbb{R}}} are defined in the same way as in (4).

Definition 4

A function fP:P,f\mathop{\!{}_{\!\!P}}\!:P\to{\mathbb{R}}, where PX,P\subseteq X, is gap-safe increasing with respect to a preorder \succcurlyeq defined on XX (or, briefly, gap-safe increasing) if fPf\mathop{\!{}_{\!\!P}} is weakly increasing and for any 𝒙,𝒙X~,\bm{x},\,\bm{x}^{\prime}\in\widetilde{X},\> 𝒙𝒙\bm{x}^{\prime}\succ\bm{x} implies fP(𝒙)>fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}).

The term “gap-safe increasing” refers to the property of a function to orderly separate its values (fP(𝒙)>fP(𝒙){f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})}) when the corresponding sets of arguments are orderly separated (𝒙𝒙{\bm{x}^{\prime}\succ\bm{x}}) in XX; see also Remark 3. In [8], the term “separably increasing function” was proposed, clashing with topological separability, which means the existence of a countable dense subset.

Proposition 2

If fPf\mathop{\!{}_{\!\!P}} defined on PXP\subseteq X is gap-safe increasing, then::
(a)(a) fPf\mathop{\!{}_{\!\!P}} is strictly increasing;
(b)(b) fPf\mathop{\!{}_{\!\!P}} is555An equivalent formulation is: There is no 𝐱X\bm{x}\in X s.t. fP(𝐱)=+f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\!=\!+\infty or fP(𝐱)=.f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\!=\!-\infty. upper-bounded on the lower PP-contour and lower-bounded on the upper PP-contour of 𝐱\bm{x} for every 𝐱X.\bm{x}\in X.

It should be noted that there are functions fPf\mathop{\!{}_{\!\!P}} that are strictly increasing, upper-bounded on all lower PP-contours and lower-bounded on all upper PP-contours, but are not gap-safe increasing.

Example 1

Consider

fP(𝒙)={x1,x10,x11,x1>1,f\mathop{\!{}_{\!\!P}}(\bm{x})=\cases{x\mathop{\!{}_{1}},&$x\mathop{\!{}_{1}}\leq 0,$\cr x\mathop{\!{}_{1}}-1,&$x\mathop{\!{}_{1}}>1,$\cr}

where P=(,0](1,+)1X.P=(-\infty,0\hskip 1.1pt]\,\cup(1,+\infty)\subset{\mathbb{R}}^{1}\equiv X. Function fPf\mathop{\!{}_{\!\!P}} satisfies (a) and (b) of Proposition 2, but it is not gap-safe increasing. Indeed, fP(0)=0=fP(1).f_{\bm{\uparrow}_{\mathstrut}}^{P}(0)=0=f^{\bm{\downarrow}\mathstrut}_{\!P}(1).

Remark 3

The gap-safe increase of a function can be interpreted as follows. If fPf\mathop{\!{}_{\!\!P}} is weakly increasing, then 𝒙𝒙\bm{x}^{\prime}\succ\bm{x} implies fP(𝒙)fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) for any 𝒙,𝒙X,\bm{x},\hskip 1.1pt\bm{x}^{\prime}\in X, as (i)(i) \Rightarrow (iii)(iii) in Proposition 1. For the class of strictly increasing functions fP,f\mathop{\!{}_{\!\!P}}, the conclusion cannot be strengthened to fP(𝒙)>fP(𝒙),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}), as Example 1 shows. This stronger conclusion holds for gap-safe increasing functions, i.e., fP(𝒙)=fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) is incompatible for them with 𝒙𝒙.\bm{x}^{\prime}\succ\bm{x}. In other words, the absence of a gap in the values of fPf\mathop{\!{}_{\!\!P}} between PP-contours “𝒙\bm{x}^{\prime} or higher” (with infimum given by fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})) and “𝒙\bm{x} or lower” (with supremum of fP(𝒙)f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})) implies 𝒙𝒙.\bm{x}^{\prime}\not\succ\bm{x}. Hence the gap-safe increase of a function can be viewed as a kind of continuity of the inverse fP1f_{P}^{-1} mapping: there is no gap in its values (𝒙𝒙\bm{x}^{\prime}\not\succ\bm{x}) whenever there is no gap in the argument (fP(𝒙)=fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})).

6 A class of extensions of gap-safe increasing functions

Let fPf\mathop{\!{}_{\!\!P}} defined on any PXP\subseteq X be gap-safe increasing. Theorem 6.1 below states that this is a necessary and sufficient condition for the existence of strictly increasing extensions of fPf\mathop{\!{}_{\!\!P}} to (X,){(X,\succcurlyeq)} provided that \succcurlyeq enables utility representation. Furthermore, for any such a representation, the theorem provides an extension of a gap-safe increasing function fPf\mathop{\!{}_{\!\!P}} that combines these two functions.

For any α,β{\alpha},{\beta}\in{\mathbb{R}} such that α<β,{\alpha}<{\beta}, let uαβ:Xu\mathop{\!{}_{{\alpha}{\beta}}}\!:X\to{\mathbb{R}} be a utility representation of \succcurlyeq (i.e., a function strictly increasing w.r.t. \succcurlyeq) satisfying

α<uαβ(𝒙)<βfor all 𝒙X.{\alpha}<u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})<{\beta}\quad\mbox{for all }\;\bm{x}\in X. (8)

For any (unbounded) utility representation of ,\succcurlyeq, u(𝒙)u(\bm{x}), such a function uαβ(𝒙)u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}) can be obtained, for example, using transformation

uαβ(𝒙)=βαπ(arctanu(𝒙)+π2)+α.u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})=\frac{{\beta}-{\alpha}}{\pi}\left(\arctan u(\bm{x})+\frac{\pi}{2}\right)+{\alpha}.

In particular, consider the functions u01:Xu\mathop{\!{}_{01}}\!:X\to{\mathbb{R}} that satisfy

0<u01(𝒙)<1.0<u\mathop{\!{}_{01}}(\bm{x})<1. (9)

They are normalized versions of the above utilities uαβu\mathop{\!{}_{{\alpha}{\beta}}}:

u01(𝒙)=(βα)1(uαβ(𝒙)α),𝒙X.u\mathop{\!{}_{01}}(\bm{x})=({\beta}-{\alpha})^{-1}(u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\alpha}),\quad\bm{x}\in X. (10)

For any real α{\alpha} and β>α{\beta}>{\alpha} and any utility representations u01u\mathop{\!{}_{01}} of ,\succcurlyeq, we define

f(𝒙)\displaystyle f(\bm{x}) =\displaystyle= max{fP(𝒙),min{fP(𝒙),β}β+α}(1u01(𝒙))\displaystyle\max\Big{\{}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),\,\min\big{\{}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}),\,{\beta}\big{\}}-{\beta}+{\alpha}\Big{\}}\big{(}1-u\mathop{\!{}_{01}}(\bm{x})\big{)} (11)
+\displaystyle+ min{fP(𝒙),max{fP(𝒙),α}α+β}u01(𝒙),𝒙X.\displaystyle\hskip 1.4pt\min\Big{\{}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}),\,\max\big{\{}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),{\alpha}\big{\}}-{\alpha}+{\beta}\Big{\}}\,u\mathop{\!{}_{01}}(\bm{x}),\quad\bm{x}\in X.

For an arbitrary gap-safe increasing fP,f\mathop{\!{}_{\!\!P}}, function f:Xf\!:X\to{\mathbb{R}} given by (11) is well defined as the two terms in the right-hand side are finite. This follows from item (b)(b) of Proposition 2. For preordered sets (X,){(X,\succcurlyeq)} that have minimal or maximal elements (see Example 2 in Section 9, where (X,){(X,\succcurlyeq)} has a maximal element), this is ensured by introducing the augmented sets X~\widetilde{X} in the definition of a gap-safe increasing function. Indeed, since fP(+)=+,f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{+\infty})=+\infty, fP()=,{f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{-\infty})=-\infty,} and +𝒙\bm{+\infty}\succ\bm{x}\succ\bm{-\infty} for all 𝒙X,\bm{x}\in X, Definition 4 provides fP(+)>fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{+\infty})>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) and fP(𝒙)>fP(),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{-\infty}), hence +>fP(𝒙)+\infty>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) and fP(𝒙)>,{f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})>-\infty,} i.e., fPf\mathop{\!{}_{\!\!P}} is upper-bounded on all lower PP-contours and lower-bounded on all upper PP-contours, ensuring the correctness of definition (11). If (X,){(X,\succcurlyeq)} has neither minimal nor maximal elements (like the Pareto preorder on k{\mathbb{R}}^{k}), then the replacement of X~\widetilde{X} with XX in Definition 4 does not alter the class of gap-safe increasing functions.

We now formulate the main result.

Theorem 6.1

Suppose that a preorder \succcurlyeq defined on XX has a utility representation and fPf\mathop{\!{}_{\!\!P}} is a real-valued function defined on some PX{P\subseteq X}. Then fPf\mathop{\!{}_{\!\!P}} is strictly monotonically extendable to (X,){(X,\succcurlyeq)} if and only if fPf\mathop{\!{}_{\!\!P}} is gap-safe increasing.

Under these conditions, function ff defined by (11),(\ref{f}), where u01u\mathop{\!{}_{01}} is any utility representation of \succcurlyeq that satisfies (9)(\ref{0<g1<1}) and α<β,{\alpha}<{\beta}, is a strictly increasing extension of fPf\mathop{\!{}_{\!\!P}} to (X,){(X,\succcurlyeq)}.

7 Extension of utility: Additional representations

The class of extensions introduced by Theorem 6.1 allows alternative representations that clarify its properties. They are given by Propositions 35.

Proposition 3

If uαβ:Xu\mathop{\!{}_{{\alpha}{\beta}}}\!:X\to{\mathbb{R}} is a utility representation of \succcurlyeq satisfying (8)(\ref{ge}) and fP:f\mathop{\!{}_{\!\!P}}\!: P,P\to{\mathbb{R}}, where PX,P\subseteq X, is gap-safe increasing, then

f(𝒙)=(βα)1\displaystyle\!\!\!\!f(\bm{x})=({\beta}-{\alpha})^{-1}\!\! (\displaystyle\Big{(} max{fP(𝒙)α,min{fP(𝒙)β, 0}}(βuαβ(𝒙))\displaystyle\!\max\Big{\{}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})-{\alpha},\,\hskip 1.4pt\min\big{\{}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-{\beta},\,0\big{\}}\!\Big{\}}\big{(}{\beta}-u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})\big{)} (12)
+\displaystyle+ min{fP(𝒙)β,max{fP(𝒙)α, 0}}(uαβ(𝒙)α))\displaystyle\min\Big{\{}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-{\beta},\,\max\big{\{}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})-{\alpha},\,0\big{\}}\!\Big{\}}\big{(}u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\alpha}\big{)}\!\Big{)}
+\displaystyle+ uαβ(𝒙)\displaystyle u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})

is a strictly increasing extension of fPf\mathop{\!{}_{\!\!P}} to (X,),{(X,\succcurlyeq)}, and f(𝐱)f(\bm{x}) coincides with function (11),(\ref{f}), where u01u\mathop{\!{}_{01}} is related to uαβu\mathop{\!{}_{{\alpha}{\beta}}} by (10)(\ref{u1}).

The order of proofs in Section 11 is as follows. Verification of the second statement of Proposition 3 is straightforward and is omitted. This statement is used to prove Proposition 5, which implies Proposition 4, and they both are used in the proof of Theorem 6.1, which in turn implies the first statement of Proposition 3.

To simplify (12), we partition XPX\setminus P into four regions determined by \succcurlyeq and PP:

A={𝒙XP|P(𝒙)and P(𝒙)},L={𝒙XP|P(𝒙)=and P(𝒙)},U={𝒙XP|P(𝒙)and P(𝒙)=},N={𝒙XP|P(𝒙)=and P(𝒙)=}.\begin{array}[]{rrr}A\,=\,\big{\{}\bm{x}\in X\setminus P\;\,\big{|}_{\mathstrut}&P_{\bm{\uparrow}}\!\!(\bm{x})\neq\emptyset\;\;\mbox{and\,}&P^{\bm{\downarrow}}(\bm{x})\neq\emptyset\big{\}},\\ L\,=\,\big{\{}\bm{x}\in X\setminus P\;\,\big{|}_{\mathstrut}&P_{\bm{\uparrow}}\!\!(\bm{x})=\emptyset\;\;\mbox{and\,}&P^{\bm{\downarrow}}(\bm{x})\neq\emptyset\big{\}},\\ U\,=\,\big{\{}\bm{x}\in X\setminus P\;\,\big{|}_{\mathstrut}&P_{\bm{\uparrow}}\!\!(\bm{x})\neq\emptyset\;\;\mbox{and\,}&P^{\bm{\downarrow}}(\bm{x})=\emptyset\big{\}},\\ N\,=\,\big{\{}\bm{x}\in X\setminus P\;\,\big{|}_{\mathstrut}&P_{\bm{\uparrow}}\!\!(\bm{x})=\emptyset\;\;\mbox{and\,}&P^{\bm{\downarrow}}(\bm{x})=\emptyset\big{\}}.\end{array} (13)

Clearly these regions are pairwise disjoint and X=PALUNX=P\cup A\cup L\cup U\cup N.

Proposition 4

If uαβ:Xu\mathop{\!{}_{{\alpha}{\beta}}}\!:X\to{\mathbb{R}} is a utility representation of \succcurlyeq satisfying (8)(\ref{ge}) and fP:f\mathop{\!{}_{\!\!P}}\!: P,P\to{\mathbb{R}}, where PX,P\subseteq X, is gap-safe increasing, then function ff defined by (12)(\ref{f'}) can be represented as follows::

f(𝒙)={fP(𝒙),𝒙P,min{fP(𝒙)β, 0}+uαβ(𝒙),𝒙L,max{fP(𝒙)α, 0}+uαβ(𝒙),𝒙U,uαβ(𝒙),𝒙N,expression (12),𝒙A.f(\bm{x})=\cases{f\mathop{\!{}_{\!\!P}}(\bm{x}),&$\bm{x}\in P,$\cr\hskip 1.4pt\min\big{\{}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-{\beta},\,0\big{\}}+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}),&$\bm{x}\in L,$\cr\max\big{\{}f_{\bm{\uparrow}_{\mathstrut}}^{P^{\mathstrut}}(\bm{x})-{\alpha},\,0\big{\}}+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}),&$\bm{x}\in U,$\cr u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}),&$\bm{x}\in N,$\cr\mbox{expression $(\ref{f'}),$}&$\bm{x}\in A$.\cr} (14)

Proposition 4 highlights the role of uαβu\mathop{\!{}_{{\alpha}{\beta}}} in (12). Function ff reduces to fPf\mathop{\!{}_{\!\!P}} on PP and to uαβu\mathop{\!{}_{{\alpha}{\beta}}} on NN whose elements are \succcurlyeq-incomparable with those of PP. Moreover, f(𝒙)=uαβ(𝒙)f(\bm{x})=u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}) on the part of LL where fP(𝒙)βf^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\geq{\beta} and on the part of UU where fP(𝒙)α.f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\leq{\alpha}. On the complement parts of LL and UU, f(𝒙)=fP(𝒙)+(uαβ(𝒙)β)f(\bm{x})=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})+(u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\beta}) and f(𝒙)=fP(𝒙)+(uαβ(𝒙)α),f(\bm{x})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})+(u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\alpha}), respectively. On A,A, (12) is not simplified. This fact and the ambiguity on LL and UU prompt us to make another partition of X.X.

Consider four regions that depend on ,\succcurlyeq, P,P, fP,f\mathop{\!{}_{\!\!P}}, α,{\alpha}, and β{\beta}:

S1={𝒙X|fP(𝒙)fP(𝒙)βα},S2={𝒙X|fP(𝒙)fP(𝒙)βα and fP(𝒙)β},S3={𝒙X|fP(𝒙)fP(𝒙)βα and fP(𝒙)α},S4={𝒙X|fP(𝒙)α and fP(𝒙)β}.\begin{array}[]{lll}S_{1}&=&\big{\{}\bm{x}\in X\>\big{|}\;f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\leq{\beta}-{\alpha}\big{\}},\cr S_{2}&=&\big{\{}\bm{x}\in X\>\big{|}\;f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\geq{\beta}-{\alpha}\mbox{\, and }\,f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\leq{\beta}\big{\}},\cr S_{3}&=&\big{\{}\bm{x}\in X\>\big{|}\;f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\geq{\beta}-{\alpha}\mbox{\, and }\,f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\geq{\alpha}\big{\}},\cr S_{4}&=&\big{\{}\bm{x}\in X\>\big{|}\;f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\leq{\alpha}\mbox{\, and }\,f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\geq{\beta}\big{\}}.\end{array} (15)

It is easily seen that X=S1S2S3S4,X=S_{1}\cup S_{2}\cup S_{3}\cup S_{4}, whereas the SiS_{i}-regions are not disjoint. This decomposition allows us to express f(𝒙)f(\bm{x}) without min\min and max\max.

Proposition 5

For a gap-safe increasing fP,f\mathop{\!{}_{\!\!P}}, ff defined by (11)(\ref{f})\! can be represented as follows, where u01u\mathop{\!{}_{01}} and uαβu\mathop{\!{}_{{\alpha}{\beta}}} are representations of \succcurlyeq related by (10):(\ref{u1})\!:

f(𝒙)={fP(𝒙)(1u01(𝒙))+fP(𝒙)u01(𝒙),𝒙S1,fP(𝒙)+uαβ(𝒙)β,𝒙S2,fP(𝒙)+uαβ(𝒙)α,𝒙S3,uαβ(𝒙),𝒙S4.f(\bm{x})=\cases{f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\big{(}1-u\mathop{\!{}_{01}}(\bm{x})\big{)}+f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\,u\mathop{\!{}_{01}}(\bm{x}),&$\bm{x}\in S_{1},$\cr f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\beta},&$\bm{x}\in S_{2},$\cr f_{\bm{\uparrow}_{\mathstrut}}^{P^{\mathstrut}}(\bm{x})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\alpha},&$\bm{x}\in S_{3},$\cr u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}),&$\bm{x}\in S_{4}.$\cr} (16)

Thus, on S1,S_{1}, f(𝒙)f(\bm{x}) is a convex combination of fP(𝒙)f^{\bm{\downarrow}}_{\!P}(\bm{x}) and fP(𝒙)f_{\bm{\uparrow}}^{P}\!\!(\bm{x}) with coefficients u01(𝒙)u\mathop{\!{}_{01}}(\bm{x}) and (1u01(𝒙)),(1-u\mathop{\!{}_{01}}(\bm{x})), respectively. The regions S1,S2,S3,S_{1},S_{2},S_{3}, and S4S_{4} intersect on some parts of the border sets fP(𝒙)fP(𝒙)=βα{f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})}={\beta}-{\alpha}, fP(𝒙)=αf_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})={\alpha}, and fP(𝒙)=βf^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})={\beta}. Accordingly, the expressions of ff given by Proposition 5 are concordant on these intersections.

Corollary 1

In the notation and assumptions of Proposition 5,\ref{P3}, NS4.N\subseteq S_{4}.
For any 𝐱X,\bm{x}\in X, fP(𝐱)=fP(𝐱)f_{\bm{\uparrow}}^{P}\!\!(\bm{x})=f^{\bm{\downarrow}}_{\!P}(\bm{x}) implies f(𝐱)=fP(𝐱).f(\bm{x})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}). In particular, if 𝐱𝐩\bm{x}\approx\bm{p} for some 𝐩P,\bm{p}\in P, then f(𝐱)=fP(𝐩)f(\bm{x})=f\mathop{\!{}_{\!\!P}}(\bm{p}) and 𝐱S1.\bm{x}\in S_{1}.

8 Extension of functions defined on Pareto sets

Consider the case where PP is a Pareto set. Such a set comprises elements that are mutually undominated.

Definition 5

A subset PXP\subseteq X is called a Pareto set in (X,){(X,\succcurlyeq)} if there are no 𝐩,𝐩P\bm{p},\hskip 1.1pt\bm{p}^{\prime}\in P such that 𝐩𝐩,\bm{p}^{\prime}\succ\bm{p}, where \succ is the asymmetric part of \succcurlyeq.

For functions defined on Pareto sets PP, the necessary and sufficient condition of extendability to (X,){(X,\succcurlyeq)} given by Theorem 6.1 reduces to the boundedness on all PP-contours (which appeared in Proposition 2) supplemented by condition (1): [𝒑,𝒑P and 𝒑𝒑]fP(𝒑)=fP(𝒑)\big{[}\hskip 1.1pt\bm{p},\,\bm{p}^{\prime}\in P\mbox{ and\, }\bm{p}^{\prime}\approx\bm{p}\hskip 1.1pt\big{]}\,\Rightarrow f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})=f\mathop{\!{}_{\!\!P}}(\bm{p}).

Lemma 2

A function fPf\mathop{\!{}_{\!\!P}} defined on a Pareto set PXP\subseteq X is gap-safe increasing with respect to a preorder \succcurlyeq defined on XX if and only if fPf\mathop{\!{}_{\!\!P}} is upper-bounded on all lower PP-contours, lower-bounded on all upper PP-contours, and satisfies [𝐩,𝐩P and 𝐩𝐩]fP(𝐩)=fP(𝐩),\big{[}\hskip 1.1pt\bm{p},\,\bm{p}^{\prime}\in P\mbox{ and\, }\bm{p}^{\prime}\approx\bm{p}\hskip 1.1pt\big{]}\,\Rightarrow f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})=f\mathop{\!{}_{\!\!P}}(\bm{p}), where \approx is the symmetric part of \succcurlyeq.

By the transitivity of \succcurlyeq, for any Pareto set P,P, the sets PAP\cup A and S1S_{1} have a simple structure described in the following lemma.

Lemma 3

Under the conditions of Lemma 2,\ref{l:sin-contour}, S1=PA={𝐱X𝐩P:𝐩𝐱},S_{1}=P\cup A=\{\bm{x}\in X\mid\exists\hskip 1.1pt\bm{p}\in P\!:\bm{p}\approx\bm{x}\}, where S1S_{1} and AA are defined by (15)(\ref{e:Sdom}) and (13),(\ref{ALUN}), respectively.

Lemmas 2 and 3, Propositions 4 and 5, and Corollary 1 provide the following special case of Theorem 6.1 for Pareto sets.

Corollary 2

Suppose that a preorder \succcurlyeq on XX has a utility representation uαβu\mathop{\!{}_{{\alpha}{\beta}}} satisfying (8)(\ref{ge}) and PXP\subseteq X is a Pareto set. Then a function fP:Pf\mathop{\!{}_{\!\!P}}\!:P\to{\mathbb{R}} is strictly monotonically extendable to (X,){(X,\succcurlyeq)} if and only if it is upper-bounded on all lower PP-contours, lower-bounded on all upper PP-contours, and satisfies [𝐩,𝐩P and 𝐩𝐩]fP(𝐩)=fP(𝐩),\big{[}\hskip 1.1pt\bm{p},\,\bm{p}^{\prime}\in P\mbox{ and\, }\bm{p}^{\prime}\approx\bm{p}\hskip 1.1pt\big{]}\,\Rightarrow f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})=f\mathop{\!{}_{\!\!P}}(\bm{p}), where \approx is the symmetric part of \succcurlyeq.

Under these conditions, the function f:Xf\!:X\to{\mathbb{R}} such that::

f(𝒙)=fP(𝒑),\quad f(\bm{x})=f\mathop{\!{}_{\!\!P}}(\bm{p}), whenever 𝒑𝒙\bm{p}\approx\bm{x} and 𝒑P;\bm{p}\in P;
f(𝒙)\quad f(\bm{x}) is defined by (14)(\ref{f''}) or (16),(\ref{f'''}), when 𝒙PA=S1\bm{x}\not\in P\cup A=S_{1}

is a strictly increasing extension of fPf\mathop{\!{}_{\!\!P}} to (X,){(X,\succcurlyeq)} coinciding with (12).(\ref{f'}).

It follows from Corollary 2 that for a Pareto set PP, functions fPf\mathop{\!{}_{\!\!P}} and uαβu\mathop{\!{}_{{\alpha}{\beta}}} influence ff almost symmetrically: ff reduces to fPf\mathop{\!{}_{\!\!P}} on PA=S1,P\cup A=S_{1}, to uαβu\mathop{\!{}_{{\alpha}{\beta}}} on S4S_{4}, and is determined by the sum fP(𝒙)+uαβ(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}) or fP(𝒙)+uαβ(𝒙)f_{\bm{\uparrow}_{\mathstrut}}^{P^{\mathstrut}}(\bm{x})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}) on S2S3.S_{2}\cup S_{3}.

Results related to Theorem 6.1 and Corollary 2 were used in [7, 9] to construct implicit forms of scoring procedures for preference aggregation and evaluation of the centrality of nodes. More specifically, theorems of this type allow us to move from axioms that determine a positive impact of the comparative results of objects on their functional scores to the conclusion that the scores satisfy a system of equations determined by a strictly increasing function.

9 Connections to related work

Problems of extending real-valued functions while preserving monotonnicity (sometimes called lifting problems) have been considered primarily in topology. Therefore, continuity was usually a property to be preserved. This strand of literature started with the following theorem of general topology.

Urysohn’s extension theorem [43]A topological space (X,τ)(X,\tau) is normal 666A topological space (X,τ)(X,\tau) is called normal if for any two disjoint closed subsets of XX there are two disjoint open subsets each covering one of the closed subsets.if and only if every continuous real-valued function fPf\mathop{\!{}_{\!\!P}} whose domain is a closed subset PX{P\subset X} can be extended to a function continuous on X.X.

For metric spaces, a counterpart of this theorem was proved by Tietze [42].

Nachbin [35] obtained extension theorems for functions defined on preordered spaces. In his terminology, a topological space (X,τ,)(X,\tau,\succcurlyeq) equipped with a preorder \succcurlyeq is normally preordered if for any two disjoint closed sets F0,F1X,F_{0},\,F_{1}\subset X, F0F_{0} being decreasing (i.e., with every 𝒙F0\bm{x}\in F_{0} containing all 𝒚X\bm{y}\in X such that 𝒚𝒙\bm{y}\preccurlyeq\bm{x}) and F1F_{1} increasing (with every 𝒙F1\bm{x}\in F_{1} containing all 𝒚X\bm{y}\in X such that 𝒚𝒙\bm{y}\succcurlyeq\bm{x}), there exist disjoint open sets V0V_{0} and V1,V_{1}, decreasing and increasing respectively, such that F0V0F_{0}\subseteq V_{0} and F1V1.F_{1}\subseteq V_{1}. The space is normally ordered if, in addition, its preorder \succcurlyeq is antisymmetric (i.e., is a partial order).

Nachbin’s lifting theorem [35] for compact sets in ordered spaces. In any normally ordered space (X,τ,)(X,\tau,\succcurlyeq) whose partial order \succcurlyeq is a closed subset of X×X,{X\!\times\!X,} every continuous weakly increasing real-valued function defined on any compact set PX{P\subset X} can be extended to XX in such a way as to remain continuous and weakly increasing.

An analogous theorem for more general normally preordered spaces is [31, Theorem 3.4]. Sufficient conditions for (X,τ,)(X,\tau,\succcurlyeq) to be normally preordered are: (a) compactness of XX and belonging of \succcurlyeq to the class of closed partial orders [35, Theorem 4 in Chapter 1] (this result was strengthened in [31]); (b) connectedness and closedness of \succcurlyeq [30].

Additional utility extension theorems in which PP is a compact set, fPf\mathop{\!{}_{\!\!P}} is continuous, and ff is required to be continuous and weakly increasing as well as fPf\mathop{\!{}_{\!\!P}} are discussed in [16].

The extendability of continuous functions defined on non-compact sets PP requires a stronger condition. It can be formulated as follows.

For a function fP:P,f\mathop{\!{}_{\!\!P}}\!:P\to{\mathbb{R}}, where PX,P\subseteq X, let the lower fPf\mathop{\!{}_{\!\!P}}-contour and the upper fPf\mathop{\!{}_{\!\!P}}-contour of r{r\in{\mathbb{R}}} denote the sets fP1((,r]){𝒑PfP(𝒑)r}f^{-1}_{\!P}((-\infty,r])\equiv\{\bm{p}\in P\mid f\mathop{\!{}_{\!\!P}}(\bm{p})\leq r\} and fP1([r,+)){𝒑PfP(𝒑)r},f^{-1}_{\!P}([\hskip 1.1ptr,+\infty))\equiv\{\bm{p}\in P\mid f\mathop{\!{}_{\!\!P}}(\bm{p})\geq r\}, respectively. Let us say that fPf\mathop{\!{}_{\!\!P}} is inversely closure-increasing if for any r,rr,\,r^{\prime}\in{\mathbb{R}} such that r<r,{r<r^{\prime},} there exist two disjoint closed subsets of XX: a decreasing set containing fP1((,r])f^{-1}_{\!P}((-\infty,r]) and an increasing set containing fP1([r,+)).f^{-1}_{\!P}([\hskip 1.1ptr^{\prime},+\infty)).

Nachbin’s lifting theorem [35] for closed sets in preordered spaces. In any normally preordered space (X,τ,),(X,\tau,\succcurlyeq), a continuous weakly increasing bounded function fPf\mathop{\!{}_{\!\!P}} defined on a closed subset PXP\subset X can be extended to XX in such a way as to remain continuous, weakly increasing, and bounded if and only if fPf\mathop{\!{}_{\!\!P}} is inversely closure-increasing.

For several other results regarding the extension of weakly increasing functions defined on non-compact sets P,P, we refer to [22, 20, 31].

Theorems on the extension of strictly increasing functions were obtained in [22, 24, 25, 26]. Herden’s Theorem 3.2 [22] contains a compound condition consisting of several arithmetic and set-theoretic parts, which is not easy to grasp. To formulate a more transparent result [25, Theorem 2.1], let us introduce the following notation. Using Definition 3, for any ZXZ\subseteq X define the decreasing cover of Z,Z, d(Z)=𝒛ZX(𝒛)d(Z)=\bigcup_{\bm{z}\in Z_{\mathstrut}}X_{\bm{\uparrow}}\!\!(\bm{z}) and the increasing cover of Z,Z, i(Z)=𝒛ZX(𝒛)i(Z)=\bigcup_{\bm{z}\in Z}X^{\bm{\downarrow}}(\bm{z}). In these terms, ZZ is decreasing (increasing) whenever Z=d(Z)Z=d(Z) (resp., Z=i(Z){Z=i(Z)}). A preorder is said to be continuous [29] if for every open VX,V\subset X, both d(V)d(V) and i(V)i(V) are open. A preorder \succcurlyeq is separable777On connections between versions of preorders’ separability and denseness, see [21]. if there exists a countable ZX{Z\subseteq X} such that [𝒙,𝒙X and 𝒙𝒙][𝒙,𝒙Z or (𝒙𝒛𝒙 for some 𝒛Z)].[\bm{x},\,\bm{x}^{\prime}\in X\mbox{ and }\bm{x}\prec\bm{x}^{\prime}]\Rightarrow[{\bm{x},\,\bm{x}^{\prime}\in Z}\mbox{ or }(\bm{x}\prec\bm{z}\prec\bm{x}^{\prime}\mbox{ for some }\bm{z}\in Z)]. For 𝒙X{\bm{x}\in X} denote by 𝒱d𝒙\mathcal{V}_{d}^{\bm{x}} and 𝒱i𝒙\mathcal{V}_{i}^{\bm{x}} the collections of open decreasing and open increasing sets containing 𝒙\bm{x}, respectively.

Hüsseinov’s extension theorem [25] for strictly increasing functions. In any normally preordered space (X,τ,)(X,\tau,\succcurlyeq) with a separable and continuous preorder ,\succcurlyeq, a continuous strictly increasing function fPf\mathop{\!{}_{\!\!P}} defined on a nonempty closed subset PXP\subset X can be extended to XX in such a way as to remain continuous and strictly increasing if and only if fPf\mathop{\!{}_{\!\!P}} is such that for any 𝐱,𝐱X,\bm{x},\,\bm{x}^{\prime}\in X,\> 𝐱𝐱\bm{x}^{\prime}\succ\bm{x} implies fP(𝐱)>fP(𝐱)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) and for any 𝐱X,\bm{x}\in X,\hskip 1.1pt M(𝐱)m(𝐱),M(\bm{x})\geq m(\bm{x}), where

m(𝐱)=infVd𝒱d𝐱sup{f(𝐩)𝐩PVd} and M(𝐱)=supVi𝒱i𝐱inf{f(𝐩)𝐩PVi}\displaystyle m(\bm{x})=\!\inf_{V_{d}\in\mathcal{V}_{d}^{\bm{x}}}\!\!\sup\{f(\bm{p})\!\mid\bm{p}\in P\cap V_{d}\}\mbox{ and\/ }M(\bm{x})=\!\sup_{V_{i}\in\mathcal{V}_{i}^{\bm{x}}}\!\!\inf\{f(\bm{p})\!\mid\bm{p}\in P\cap V_{i}\}

with the convention that m(𝒙)=inf{f(𝒑)𝒑P}m(\bm{x})=\inf\{f(\bm{p})\!\mid\bm{p}\in P\} if PVd=P\cap V_{d}=\emptyset for some Vd𝒱d𝒙V_{d}\in\mathcal{V}_{d}^{\bm{x}} and M(𝒙)=sup{f(𝒑)𝒑P}M(\bm{x})=\sup\{f(\bm{p})\!\mid\bm{p}\in P\} if PVi=P\cap V_{i}=\emptyset for some Vi𝒱i𝒙.V_{i}\in\mathcal{V}_{i}^{\bm{x}}.

This theorem is a topological counterpart of the first part of our Theorem 6.1. Consider the discrete topology in which every subset of XX is open. Then the space (X,τ,)(X,\tau,\succcurlyeq) is normally preordered and the preorder \succcurlyeq is continuous, as well as any function fPf\mathop{\!{}_{\!\!P}}. The separability of \succcurlyeq in Hüsseinov’s theorem ensures its representability by utility, which is explicitly assumed in Theorem 6.1.

Condition M(𝒙)m(𝒙)M(\bm{x})\geq m(\bm{x}) reduces to fP(𝒙)fP(𝒙),f^{\bm{\downharpoonright}\mathstrut}_{\!P}(\bm{x})\geq f_{\bm{\upharpoonright}_{\mathstrut}}^{P}(\bm{x}), where fP(𝒙)f^{\bm{\downharpoonright}\mathstrut}_{\!P}(\bm{x}) and fP(𝒙)f_{\bm{\upharpoonright}_{\mathstrut}}^{P}(\bm{x}) modify fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}) and fP(𝒙)f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) by taking values sup{fP(𝒑)𝒑P}\sup\{f\mathop{\!{}_{\!\!P}}(\bm{p})\!\mid\bm{p}\in P\} or inf{fP(𝒑)𝒑P}\inf\{f\mathop{\!{}_{\!\!P}}(\bm{p})\!\mid\bm{p}\in P\} instead of ++\infty or -\infty when P(𝒙)=P^{\bm{\downarrow}}(\bm{x})=\emptyset or P(𝒙)=,P_{\bm{\uparrow}}\!\!(\bm{x})=\emptyset, respectively. It is easily seen that conditions fP(𝒙)fP(𝒙)f^{\bm{\downharpoonright}\mathstrut}_{\!P}(\bm{x})\geq f_{\bm{\upharpoonright}_{\mathstrut}}^{P}(\bm{x}) and fP(𝒙)fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) are equivalent (cf. Remark 1), therefore, by (i)(ii)(i)\!\Leftrightarrow\!(ii) of Proposition 1, M(𝒙)m(𝒙)M(\bm{x})\geq m(\bm{x}) for all 𝒙X\bm{x}\in X reduces in the discrete topology to the weak increase of fPf\mathop{\!{}_{\!\!P}}.

The last condition, 𝒙𝒙fP(𝒙)>fP(𝒙),\bm{x}^{\prime}\succ\bm{x}\Rightarrow f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}), proposed in [8], is required for all 𝒙,𝒙X\bm{x},\bm{x}^{\prime}\in X in the above theorem and for all 𝒙,𝒙X~\bm{x},\bm{x}^{\prime}\in\widetilde{X} in Theorem 6.1 (forming, by Definition 4, the main part of gap-safe increase). This difference is significant. Let us illustrate it with the following example.

Example 2

X=={𝟎,𝟏,𝟐,};X={\mathbb{Z}}\setminus{\mathbb{N}}=\{\bm{0},\bm{-1},\bm{-2},...\}; =𝒙X{𝟎}{(𝟎,𝒙),(𝒙,𝒙)}{(𝟎,𝟎)};\succcurlyeq\>=\!\bigcup_{\bm{x}\in X\setminus\{\bm{0}\}}\{(\bm{0},\bm{x}),(\bm{x},\bm{x})\}\cup\{(\bm{0},\bm{0})\}; P=X{𝟎};P=X\setminus\{\bm{0}\}; fP(𝒑)=𝒑f\mathop{\!{}_{\!\!P}}(\bm{p})=-\bm{p} for all 𝒑P\bm{p}\in P.

Then fPf\mathop{\!{}_{\!\!P}} has no strictly increasing extension to (X,){(X,\succcurlyeq)} and is not gap-safe increasing, since +𝟎\bm{+\infty}\succ\bm{0}, but +=fP(+)fP(𝟎)=+.+\infty=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{+\infty})\not>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{0})=+\infty. However, 𝒙𝒙fP(𝒙)>fP(𝒙)\bm{x}^{\prime}\succ\bm{x}\Rightarrow f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) for all 𝒙,𝒙X,\bm{x},\bm{x}^{\prime}\in X, therefore, the above theorem claims that fPf\mathop{\!{}_{\!\!P}} is strictly monotonically extendable to (X,){(X,\succcurlyeq)}.

The reason is that [25, Theorem 2.1] was actually proved for a bounded function fPf\mathop{\!{}_{\!\!P}}, however, the boundedness condition was removed by a remark erroneously claiming that this condition was not essential. The method of extension proposed in the present paper differs from the classical approach, which is systematically applied to continuous functions.

In [24], Hüsseinov shows that condition M(𝒙)m(𝒙)M(\bm{x})\geq m(\bm{x}) for all 𝒙X\bm{x}\in X is equivalent to the necessary and sufficient extendability condition for a weakly increasing bounded function fPf\mathop{\!{}_{\!\!P}} defined on a closed subset of a preordered space, i.e., to the Nachbin property of being inversely closure-increasing.

The problem of extending utility functions without continuity constraints was considered in [8] with the focus on the functions representing Pareto partial orders on Euclidean spaces. Partial orders are antisymmetric preorders, therefore, preorders are more flexible allowing symmetry (𝒙𝒚,𝒚𝒙\bm{x}\succcurlyeq\bm{y},\,\bm{y}\succcurlyeq\bm{x}) on a pair of distinct elements, while partial orders only allow “negative” (𝒙⋡𝒚,𝒚⋡𝒙\bm{x}\not\succcurlyeq\bm{y},\,\bm{y}\not\succcurlyeq\bm{x}) symmetry. Symmetry is an adequate model of equivalence between objects (which suggests the same value of the utility function), while “negative” symmetry can model the absence of information, which is generally compatible with unequal utility values.

10 Conclusion

The paper presents a strict-extendability condition and a wide class of extensions of utility functions fPf\mathop{\!{}_{\!\!P}} defined on an arbitrary subset PP of an arbitrary set XX equipped with a preorder. It can be observed that the key condition of gap-safe increase of fPf\mathop{\!{}_{\!\!P}} has a similar structure as that of inverse closure-increase, which is equivalent to the extendability of a continuous weakly increasing function fPf\mathop{\!{}_{\!\!P}} defined on a closed subset PXP\subset X (see [6] for a related discussion). Moreover, as mentioned in Section 9, the latter “inverse” condition has an equivalent “direct” counterpart. Relationships of this kind deserve further study.

Among other problems, we mention: (1) finding relationships between various extensions proposed earlier for continuous functions and the class of extensions (11) described in Theorem 6.1; (2) characterizing the complete class of extensions of fPf\mathop{\!{}_{\!\!P}} to (X,){(X,\succcurlyeq)} (and, for example, to (k,Pareto preorder({\mathbb{R}}^{k},\mbox{Pareto preorder})); (3) exploring the extension problem with {\mathbb{R}} as the range of ff replaced by certain other posets.

11 Proofs

Proof of Proposition 1. (i)(ii)(i)\!\Rightarrow\!(ii). Let (i)(i) hold. For any 𝒙X,\bm{x}\!\in\!X, if P(𝒙)={P_{\bm{\uparrow}}\!\!(\bm{x})=\emptyset} or P(𝒙)=,P^{\bm{\downarrow}}(\bm{x})=\emptyset, then fP(𝒙)=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=-\infty or fP(𝒙)=+,f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})=+\infty, respectively, with fP(𝒙)fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) in both cases. Otherwise, 𝒑P(𝒙)\bm{p}^{\prime}\in P_{\bm{\uparrow}}\!\!(\bm{x}) and 𝒑′′P(𝒙)\bm{p}^{\prime\prime}\in P^{\bm{\downarrow}}(\bm{x}) imply 𝒑′′𝒙𝒑,\bm{p}^{\prime\prime}\succcurlyeq\bm{x}\succcurlyeq\bm{p}^{\prime}, and 𝒑′′𝒑\bm{p}^{\prime\prime}\succcurlyeq\bm{p}^{\prime} by the transitivity of \succcurlyeq. Hence fP(𝒑′′)fP(𝒑)f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime\prime})\geq f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime}) by (i).(i). Therefore, inf{fP(𝒑′′)𝒑′′P(𝒙)}sup{fP(𝒑)𝒑P(𝒙)},\inf\{f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime\prime})\mid\bm{p}^{\prime\prime}\in P^{\bm{\downarrow}}(\bm{x})\}\geq\sup\{f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})\mid\bm{p}^{\prime}\in P_{\bm{\uparrow}}\!\!(\bm{x})\}, i.e., fP(𝒙)fP(𝒙).f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}).

(ii)(iii)(ii)\!\Rightarrow\!(iii). Let (ii)(ii) hold. Then for any 𝒙,𝒙X\bm{x},\bm{x}^{\prime}\in X such that 𝒙𝒙\bm{x}^{\prime}\succcurlyeq\bm{x} using (5) we get fP(𝒙)fP(𝒙)fP(𝒙).f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})\geq f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}).

(iii)(ii)(iii)\!\Rightarrow\!(ii). As \succcurlyeq is reflexive, (ii)(ii) is a special case of (iii)(iii).

(iv)(i)(v)(iv)\Leftrightarrow(i)\Leftrightarrow(v). [For all 𝒑P,\,\bm{p}\in P, fP(𝒑)fP(𝒑)f\mathop{\!{}_{\!\!P}}(\bm{p})\geq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{p})] \Leftrightarrow [for all 𝒑,𝒑P,\,\bm{p},\,\bm{p}^{\prime}\in P, (𝒑𝒑)(fP(𝒑)fP(𝒑))(\bm{p}\succcurlyeq\bm{p}^{\prime})\Rightarrow(f\mathop{\!{}_{\!\!P}}(\bm{p})\geq f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime}))] \Leftrightarrow [for all 𝒑P,\,\bm{p}^{\prime}\in P, fP(𝒑)fP(𝒑)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{p}^{\prime})\geq f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})].

(vi)(iv)(vi)\Rightarrow(iv). [(vi)(vi) and the last inequality of (7)] \Rightarrow (iv).(iv).

(ii)(vi)(ii)\Rightarrow(vi) as (vi)(vi) is a special case of (ii)(ii). ∎

Proof of Proposition 2. Let fPf\mathop{\!{}_{\!\!P}} be gap-safe increasing.

(a)(a) Assume that fPf\mathop{\!{}_{\!\!P}} is not strictly increasing. Since fPf\mathop{\!{}_{\!\!P}} is weakly increasing, there are 𝒑,𝒑P\bm{p},\,\bm{p}^{\prime}\in P such that 𝒑𝒑\bm{p}^{\prime}\succ\bm{p} and fP(𝒑)=fP(𝒑)f\mathop{\!{}_{\!\!P}}(\bm{p})=f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime}). Then, by (7), fP(𝒑)fP(𝒑)=fP(𝒑)fP(𝒑)f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{p})\geq f\mathop{\!{}_{\!\!P}}(\bm{p})=f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})\geq f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{p}^{\prime}) holds, i.e., fPf\mathop{\!{}_{\!\!P}} is not gap-safe increasing. Therefore, the assumption is wrong.

(b)(b) Let P(𝒙)P_{\bm{\uparrow}}\!\!(\bm{x}) be the lower PP-contour of some 𝒙X\bm{x}\in X. By definition, +X~\bm{+\infty}\in\widetilde{X} and +𝒙.\bm{+\infty}\succ\bm{x}. Since fPf\mathop{\!{}_{\!\!P}} is gap-safe increasing, +=fP(+)>fP(𝒙)+\infty=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{+\infty})>f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}). Since fP(𝒙)=sup{fP(𝒑)𝒑P(𝒙)}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=\sup\big{\{}f\mathop{\!{}_{\!\!P}}(\bm{p})\mid\bm{p}\in P_{\bm{\uparrow}}\!\!(\bm{x})\big{\}}, fPf\mathop{\!{}_{\!\!P}} is upper-bounded on P(𝒙)P_{\bm{\uparrow}}\!\!(\bm{x}). Similarly, fPf\mathop{\!{}_{\!\!P}} is lower-bounded on all upper PP-contours. ∎

Next we prove Proposition 5; then it will be used to prove Proposition 4 and Theorem 6.1.

Proof of Proposition 5. Let 𝒙S1.\bm{x}\in S_{1}. Since fP(𝒙)fP(𝒙)βα,f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\leq{\beta}-{\alpha}, we have

min{fP(𝒙),β}fP(𝒙)\displaystyle\min\big{\{}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}),\,{\beta}\big{\}}-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) \displaystyle\,\leq\, βα,\displaystyle{\beta}-{\alpha},
fP(𝒙)max{fP(𝒙),α}\displaystyle f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-\max\big{\{}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),{\alpha}\big{\}} \displaystyle\,\leq\, βα,\displaystyle{\beta}-{\alpha},

hence

fP(𝒙)\displaystyle f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) \displaystyle\,\geq\, min{fP(𝒙),β}β+α,\displaystyle\min\big{\{}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}),\,{\beta}\big{\}}-{\beta}+{\alpha},
fP(𝒙)\displaystyle f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}) \displaystyle\,\leq\, max{fP(𝒙),α}α+β.\displaystyle\max\big{\{}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),{\alpha}\big{\}}-{\alpha}+{\beta}.

Therefore, (12) reduces to f(𝒙)=fP(𝒙)(1u01(𝒙))+fP(𝒙)u01(𝒙)f(\bm{x})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\big{(}1-u\mathop{\!{}_{01}}(\bm{x})\big{)}+f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})u\mathop{\!{}_{01}}(\bm{x}).

Let 𝒙S2.\bm{x}\in S_{2}. Inequalities fP(𝒙)fP(𝒙)βαf^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\geq{\beta}-{\alpha} and fP(𝒙)βf^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\leq{\beta} imply fP(𝒙)αf_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\leq{\alpha}, hence (11) reduces to f(𝒙)=fP(𝒙)+uαβ(𝒙)βf(\bm{x})=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\beta}.

Let 𝒙S3.\bm{x}\in S_{3}. Inequalities fP(𝒙)fP(𝒙)βαf^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\geq{\beta}-{\alpha} and fP(𝒙)αf_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\geq{\alpha} imply fP(𝒙)βf^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\geq{\beta}, hence (11) reduces to f(𝒙)=fP(𝒙)+uαβ(𝒙)αf(\bm{x})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\alpha}.

Finally, let 𝒙S4,\bm{x}\in S_{4}, i.e., fP(𝒙)αf_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\leq{\alpha} and fP(𝒙)β.f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\geq{\beta}. Substituting max{fP(𝒙)α, 0}=0\max\big{\{}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})-{\alpha},\,0\big{\}}=0 and min{fP(𝒙)β, 0}=0\min\big{\{}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-{\beta},\,0\big{\}}=0 into (12) yields f(𝒙)=uαβ(𝒙).f(\bm{x})=u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}).

Proof of Proposition 4. Let 𝒙P.\bm{x}\in P. Then by (7) and (8), fP(𝒙)fP(𝒙)βαf^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\leq{\beta}-{\alpha}, hence 𝒙S1\bm{x}\in S_{1}. Using Proposition 5, we have f(𝒙)=fP(𝒙)(1u01(𝒙))+fP(𝒙)u01(𝒙)=fP(𝒙)f(\bm{x})=f\mathop{\!{}_{\!\!P}}(\bm{x})\big{(}1-u\mathop{\!{}_{01}}(\bm{x})\big{)}+f\mathop{\!{}_{\!\!P}}(\bm{x})\,u\mathop{\!{}_{01}}(\bm{x})=f\mathop{\!{}_{\!\!P}}(\bm{x}).

Let 𝒙U\bm{x}\in U. Then fP(𝒙)=+f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})=+\infty, hence (12) reduces to f(𝒙)=max{fP(𝒙)α, 0}+uαβ(𝒙)f(\bm{x})=\max\big{\{}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})-{\alpha},\,0\big{\}}+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}). Similarly, if 𝒙L\bm{x}\in L, then fP(𝒙)=,f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=-\infty, and (12) reduces to f(𝒙)=min{fP(𝒙)β, 0}+uαβ(𝒙)f(\bm{x})=\min\big{\{}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-{\beta},\,0\big{\}}+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}).

Finally, if 𝒙N,\bm{x}\in N, then fP(𝒙)=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=-\infty and fP(𝒙)=+f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})=+\infty, whence fP(𝒙)<αf_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})<{\alpha} and fP(𝒙)>βf^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})>{\beta}, and Proposition 5 provides f(𝒙)=uαβ(𝒙)f(\bm{x})=u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}). ∎

Proof of Theorem 6.1. Suppose that fPf\mathop{\!{}_{\!\!P}} is strictly monotonically extendable to (X,){(X,\succcurlyeq)}. Then fPf\mathop{\!{}_{\!\!P}} is strictly increasing w.r.t. \succcurlyeq. Assume that fPf\mathop{\!{}_{\!\!P}} is not gap-safe increasing. This implies that there are 𝒙,𝒙X~\bm{x},\,\bm{x}^{\prime}\in\widetilde{X} such that 𝒙𝒙\bm{x}^{\prime}\succ\bm{x} and fP(𝒙)fP(𝒙).f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})\leq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}). If 𝒙,𝒙X,\bm{x},\,\bm{x}^{\prime}\in X, then using this inequality, the definition of fPf_{\bm{\uparrow}_{\mathstrut}}^{P} and fP,f^{\bm{\downarrow}\mathstrut}_{\!P}, and the strict monotonicity of f,f, we obtain f(𝒙)fP(𝒙)fP(𝒙)f(𝒙),f(\bm{x}^{\prime})\leq f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})\leq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\leq f(\bm{x}), whence f(𝒙)f(𝒙)f(\bm{x}^{\prime})\leq f(\bm{x}), and as 𝒙𝒙,\bm{x}^{\prime}\succ\bm{x}, ff is not strictly increasing. Therefore, {𝒙,𝒙}X.\{\bm{x},\,\bm{x}^{\prime}\}\not\subseteq X. If 𝒙X~X,\bm{x}\in\widetilde{X}\setminus X, then 𝒙𝒙\bm{x}^{\prime}\succ\bm{x} implies 𝒙=\bm{x}=\bm{-\infty} and 𝒙X{+}.\bm{x}^{\prime}\in X\cup\{\bm{+\infty}\}. By the assumption, fP(𝒙)fP(𝒙)=sup=,f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})\leq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=\sup\emptyset=-\infty, hence fP(𝒙)=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=-\infty, thus, 𝒙+\bm{x}^{\prime}\neq\bm{+\infty} and 𝒙X.\bm{x}^{\prime}\in X. Since, fP(𝒙)=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=-\infty, f(𝒙)f(\bm{x}^{\prime}) cannot be assigned a value compatible with the strict monotonicity of ff, whence fPf\mathop{\!{}_{\!\!P}} is not strictly monotonically extendable to (X,){(X,\succcurlyeq)}, a contradiction. The case of 𝒙X~X\bm{x}^{\prime}\in\widetilde{X}\setminus X is considered similarly. It is proved that fPf\mathop{\!{}_{\!\!P}} is gap-safe increasing whenever fPf\mathop{\!{}_{\!\!P}} is strictly monotonically extendable to (X,){(X,\succcurlyeq)}.

Now let fPf\mathop{\!{}_{\!\!P}} be gap-safe increasing. By Proposition 4, the restriction of ff to PP coincides with fPf\mathop{\!{}_{\!\!P}}.

It remains to prove that ff is strictly increasing on XX. This can be shown directly by analyzing expression (11). Here, we give a proof that does not require the analysis of special cases with min\hskip 1.1pt\min\hskip 1.1pt and max\hskip 1.1pt\max.

By Proposition 5, function (11) coincides with (16), where uαβu\mathop{\!{}_{{\alpha}{\beta}}} and u01u\mathop{\!{}_{01}} are related by (10).

We will use Lemma 1. First, consider any 𝒙,𝒙X\bm{x},\,\bm{x}^{\prime}\in X such that 𝒙𝒙\bm{x}^{\prime}\approx\bm{x} and show that f(𝒙)=f(𝒙).f(\bm{x}^{\prime})=f(\bm{x}). By (6), fP(𝒙)=fP(𝒙)f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) and fP(𝒙)=fP(𝒙).f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}). Furthermore, uαβu\mathop{\!{}_{{\alpha}{\beta}}} and u01u\mathop{\!{}_{01}} are strictly increasing with respect to \succcurlyeq by definition, hence uαβ(𝒙)=uαβ(𝒙)u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}^{\prime})=u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}) and u01(𝒙)=u01(𝒙).u\mathop{\!{}_{01}}(\bm{x}^{\prime})=u\mathop{\!{}_{01}}(\bm{x}). Therefore, by (16), f(𝒙)=f(𝒙)f(\bm{x}^{\prime})=f(\bm{x}) holds.

Now suppose that 𝒙,𝒙X\bm{x},\,\bm{x}^{\prime}\in X and 𝒙𝒙\bm{x}^{\prime}\succ\bm{x}. Then, by (5) and the strict monotonicity of uαβu\mathop{\!{}_{{\alpha}{\beta}}} and u01u\mathop{\!{}_{01}}, we have

uαβ(𝒙)>uαβ(𝒙),u01(𝒙)>u01(𝒙),fP(𝒙)fP(𝒙),fP(𝒙)fP(𝒙).\begin{array}[]{rcl}u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}^{\prime})&\,>&u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}),\\ u\mathop{\!{}_{01}}(\bm{x}^{\prime})&\,>&u\mathop{\!{}_{01}}(\bm{x}),\\ f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime})&\,\geq&f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),\\ f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})&\,\geq&f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}).\end{array} (17)

Let 𝒙\bm{x} and 𝒙\bm{x}^{\prime} belong to the same region: S2,S3,S_{2},S_{3}, or S4S_{4}. Ineqs (17) yield

fP(𝒙)+uαβ(𝒙)β\displaystyle f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}^{\prime})-{\beta} >\displaystyle\,>\, fP(𝒙)+uαβ(𝒙)β,\displaystyle f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\beta},
fP(𝒙)+uαβ(𝒙)α\displaystyle f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x}^{\prime})-{\alpha} >\displaystyle\,>\, fP(𝒙)+uαβ(𝒙)α,\displaystyle f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})+u\mathop{\!{}_{{\alpha}{\beta}}}(\bm{x})-{\alpha}, (18)

hence, by (16), ff is strictly increasing on each of these regions.

If 𝒙,𝒙S1\bm{x},\bm{x}^{\prime}\in S_{1}, then by (16), (17), (9), and item (ii)(ii) of Proposition 1,

f(𝒙)f(𝒙)\displaystyle f(\bm{x}^{\prime})-f(\bm{x}) \displaystyle\geq fP(𝒙)(1u01(𝒙))+fP(𝒙)u01(𝒙)\displaystyle f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\big{(}1-u\mathop{\!{}_{01}}(\bm{x}^{\prime})\big{)}+f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\hskip 1.1ptu\mathop{\!{}_{01}}(\bm{x}^{\prime})
\displaystyle- fP(𝒙)(1u01(𝒙))fP(𝒙)u01(𝒙)\displaystyle f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\big{(}1-u\mathop{\!{}_{01}}(\bm{x})\big{)}-f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\hskip 1.1ptu\mathop{\!{}_{01}}(\bm{x})
=\displaystyle= (fP(𝒙)fP(𝒙))(u01(𝒙)u01(𝒙))0.\displaystyle\big{(}f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\big{)}\big{(}u\mathop{\!{}_{01}}(\bm{x}^{\prime})-u\mathop{\!{}_{01}}(\bm{x})\big{)}\geq 0.

This implies that f(𝒙)=f(𝒙)f(\bm{x}^{\prime})=f(\bm{x}) is possible only if fP(𝒙)=fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}) and fP(𝒙)=fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}), hence only if fP(𝒙)=fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}). The last equality is impossible, since fPf\mathop{\!{}_{\!\!P}} is gap-safe increasing by assumption. Therefore, f(𝒙)>f(𝒙)f(\bm{x}^{\prime})>f(\bm{x}), and ff is strictly increasing on S1S_{1}.

Let now 𝒙\bm{x} and 𝒙\bm{x}^{\prime} belong to different regions SiS_{i} and SjS_{j}. Consider the points that represent 𝒙\bm{x} and 𝒙\bm{x}^{\prime} in the 3-dimensional space with axes corresponding to fP()f_{\bm{\uparrow}_{\mathstrut}}^{P}(\cdot), fP()f^{\bm{\downarrow}\mathstrut}_{\!P}(\cdot), and u01()u\mathop{\!{}_{01}}(\cdot). Let us connect these points, (fP(𝒙),fP(𝒙),u01(𝒙))\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}),u\mathop{\!{}_{01}}(\bm{x})\big{)} and (fP(𝒙),fP(𝒙),u01(𝒙))\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime}),u\mathop{\!{}_{01}}(\bm{x}^{\prime})\big{)}, by a line segment. The projections of this segment and the borders of the regions S1,S2,S3,S_{1},S_{2},S_{3}, and S4S_{4} onto the plane u01=0u\mathop{\!{}_{01}}=0 are illustrated in Fig. 1.

fP()f_{\bm{\uparrow}_{\mathstrut}}^{P}(\cdot)fP()f^{\bm{\downarrow}\mathstrut}_{\!P}(\cdot)(α,β)({\alpha},{\beta})(fP(𝒙),fP(𝒙))\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\big{)}(a1,b1)(a\mathop{\!{}_{1}},b\mathop{\!{}_{1}})(a2,b2)(a\mathop{\!{}_{2}},b\mathop{\!{}_{2}})(a3,b3)(a\mathop{\!{}_{3}},b\mathop{\!{}_{3}})(fP(𝒙),fP(𝒙))\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})\big{)}α{\alpha}β{\beta}S1S_{1}S2S_{2}S3S_{3}S4S_{4}
Figure 1: An example of line segment [(fP(𝒙),fP(𝒙),u01(𝒙)),(fP(𝒙),fP(𝒙),\big{[}\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}),u\mathop{\!{}_{01}}(\bm{x})\big{)},\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime}), u01(𝒙))]u\mathop{\!{}_{01}}(\bm{x}^{\prime})\big{)}\big{]} in the 3{\mathbb{R}}^{3} space with axes fP()f_{\bm{\uparrow}_{\mathstrut}}^{P}(\cdot), fP()f^{\bm{\downarrow}\mathstrut}_{\!P}(\cdot), and u01()u\mathop{\!{}_{01}}(\cdot) projected onto the plane u01=0u\mathop{\!{}_{01}}=0.

Suppose that (a1,b1,u1),,(am,bm,um)(a\mathop{\!{}_{1}},b\mathop{\!{}_{1}},u\mathop{\!{}_{1}}),\ldots,(a\mathop{\!{}_{m}},b\mathop{\!{}_{m}},u\mathop{\!{}_{m}}), m{1,2,3}m\in\{1,2,3\}, are the consecutive points where the line segment [(fP(𝒙),fP(𝒙),u01(𝒙)),(fP(𝒙),fP(𝒙),u01(𝒙))]\big{[}\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}),u\mathop{\!{}_{01}}(\bm{x})\big{)},\hskip 1.1pt\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime}),u\mathop{\!{}_{01}}(\bm{x}^{\prime})\big{)}\big{]} crosses the planes fP(𝒙)=α,f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})={\alpha}, fP(𝒙)=β,f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})={\beta}, and fP(𝒙)fP(𝒙)=βα{f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})}={\beta}-{\alpha} separating the SS-regions on the way from 𝒙\bm{x} to 𝒙.\bm{x}^{\prime}. Then, by the linearity of the segment, it holds that

fP(𝒙)a1amfP(𝒙),f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})\leq a\mathop{\!{}_{1}}\leq\cdots\leq a\mathop{\!{}_{m}}\leq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime}), (19)
fP(𝒙)b1bmfP(𝒙),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})\leq b\mathop{\!{}_{1}}\leq\cdots\leq b\mathop{\!{}_{m}}\leq f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime}), (20)
u01(𝒙)<u1<<um<u01(𝒙)u\mathop{\!{}_{01}}(\bm{x})<u\mathop{\!{}_{1}}<\cdots<u\mathop{\!{}_{m}}<u\mathop{\!{}_{01}}(\bm{x}^{\prime})

with strict inequalities in (19) or in (20), or in both (since otherwise 𝒙\bm{x} and 𝒙\bm{x}^{\prime} belong to the same SS-region).

Consider ff represented by (16) as a function f˘(a,b,u)\breve{f}(a,b,u) of a=fP(𝒙),b=fP(𝒙)a=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),b=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}), and u=u01(𝒙)u=u\mathop{\!{}_{01}}(\bm{x}). Then, using the fact that f˘(a,b,u)\breve{f}(a,b,u) is nondecreasing in all variables on each region, strictly increasing in uu on S2,S3,S_{2},S_{3}, and S4S_{4}, and strictly increasing in aa and bb on S1S_{1} and the fact that each point (ai,bi,ui)(a_{i},b_{i},u_{i}) (1im1\leq i\leq m) belongs to both regions on the border of which it lies, we obtain

f(𝒙)\displaystyle f(\bm{x}) =\displaystyle= f˘(fP(𝒙),fP(𝒙),u01(𝒙))<f˘(a1,b1,u1)<<f˘(am,bm,um)\displaystyle\breve{f}\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}),u\mathop{\!{}_{01}}(\bm{x})\big{)}<\breve{f}(a\mathop{\!{}_{1}},b\mathop{\!{}_{1}},u\mathop{\!{}_{1}})<\cdots<\breve{f}(a\mathop{\!{}_{m}},b\mathop{\!{}_{m}},u\mathop{\!{}_{m}}) (21)
<\displaystyle< f˘(fP(𝒙),fP(𝒙),u01(𝒙))=f(𝒙).\displaystyle\breve{f}\big{(}f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}^{\prime}),f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime}),u\mathop{\!{}_{01}}(\bm{x}^{\prime})\big{)}=f(\bm{x}^{\prime}).

Thus, 𝒙𝒙f(𝒙)>f(𝒙)\bm{x}^{\prime}\succ\bm{x}\Rightarrow f(\bm{x}^{\prime})>f(\bm{x}) and ff is strictly increasing. Theorem 6.1 is proved. ∎

Proof of Corollary 1. 𝒙NP(𝒙)=P(𝒙)=,\bm{x}\in N\Rightarrow P_{\bm{\uparrow}}\!\!(\bm{x})=P^{\bm{\downarrow}}(\bm{x})=\emptyset, hence fP(𝒙)=f_{\bm{\uparrow}}^{P}\!\!(\bm{x})=-\infty and fP(𝒙)=+,f^{\bm{\downarrow}}_{\!P}(\bm{x})=+\infty, which satisfies the conditions of S4.S_{4}.

fP(𝒙)=fP(𝒙){f_{\bm{\uparrow}}^{P}\!\!(\bm{x})=f^{\bm{\downarrow}}_{\!P}(\bm{x})} implies 𝒙S1,\bm{x}\in S_{1}, whence f(𝒙)=fP(𝒙)f(\bm{x})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) follows from (16).

If 𝒙𝒑\bm{x}\approx\bm{p} and 𝒑P,\bm{p}\in P, then since fPf\mathop{\!{}_{\!\!P}} is gap-safe increasing and thus weakly increasing, Eq. (6), Remark 2, and [(i)(iv)(v)(i)\Leftrightarrow(iv)\Leftrightarrow(v)] of Proposition 1 imply fP(𝒙)=fP(𝒑)=fP(𝒑)=fP(𝒑)=fP(𝒙),f_{\bm{\uparrow}}^{P}\!\!(\bm{x})=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{p})=f\mathop{\!{}_{\!\!P}}(\bm{p})=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{p})=f^{\bm{\downarrow}}_{\!P}(\bm{x}), hence 𝒙S1\bm{x}\in S_{1} and f(𝒙)=fP(𝒙)=fP(𝒑).f(\bm{x})=f_{\bm{\uparrow}}^{P}\!\!(\bm{x})=f\mathop{\!{}_{\!\!P}}(\bm{p}).

Proof of Lemma 2. If fPf\mathop{\!{}_{\!\!P}} is gap-safe increasing, then the conditions presented in Lemma 2 are satisfied due to Proposition 2 and Lemma 1.

Conversely, suppose that these conditions hold. By the definition of a Pareto set, for any 𝒑,𝒑P,\bm{p},\,\bm{p}^{\prime}\in P,\, 𝒑𝒑\bm{p}^{\prime}\succcurlyeq\bm{p} reduces to 𝒑𝒑,\bm{p}^{\prime}\approx\bm{p}, and the condition [𝒑𝒑fP(𝒑)=fP(𝒑)]\big{[}\hskip 1.1pt\bm{p}^{\prime}\approx\bm{p}\>\Rightarrow f\mathop{\!{}_{\!\!P}}(\bm{p}^{\prime})=f\mathop{\!{}_{\!\!P}}(\bm{p})\big{]} implies that fPf\mathop{\!{}_{\!\!P}} is weakly increasing.

Assume that fPf\mathop{\!{}_{\!\!P}} is not gap-safe increasing. Then there exist 𝒙,𝒙X~\bm{x},\bm{x}^{\prime}\in\widetilde{X} such that 𝒙𝒙\bm{x}^{\prime}\succ\bm{x} and fP(𝒙)fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})\leq f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}). This is possible only if (a) P(𝒙)=P^{\bm{\downarrow}}(\bm{x}^{\prime})=\emptyset or (b) P(𝒙)=P_{\bm{\uparrow}}\!\!(\bm{x})=\emptyset, or (c) there are 𝒑,𝒑P\bm{p},\,\bm{p}^{\prime}\in P such that 𝒑𝒙𝒙𝒑.\bm{p}^{\prime}\succcurlyeq\bm{x}^{\prime}\succ\bm{x}\succcurlyeq\bm{p}. However, in (a), fP(𝒙)=+=fP(𝒙)f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=+\infty=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x}) and 𝒙X\bm{x}\in X (since 𝒙=\bm{x}=\bm{-\infty} is incompatible with fP(𝒙)=+f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=+\infty and 𝒙=+\bm{x}=\bm{+\infty} is incompatible with 𝒙𝒙\bm{x}^{\prime}\succ\bm{x}), hence fPf\mathop{\!{}_{\!\!P}} is not upper-bounded on a lower PP-contour. Similarly, in (b), fP(𝒙)==fP(𝒙)f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=-\infty=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime}) and 𝒙X\bm{x}^{\prime}\in X (since 𝒙=+\bm{x}^{\prime}=\bm{+\infty} is incompatible with fP(𝒙)=f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x}^{\prime})=-\infty and 𝒙=\bm{x}^{\prime}=\bm{-\infty} is incompatible with 𝒙𝒙\bm{x}^{\prime}\succ\bm{x}), hence fPf\mathop{\!{}_{\!\!P}} is not lower-bounded on an upper PP-contour. In (c), by the “mixed” strict transitivity of preorders (𝒙𝒚𝒛𝒙𝒛\bm{x}\succcurlyeq\bm{y}\succ\bm{z}\Rightarrow\bm{x}\succ\bm{z} and 𝒙𝒚𝒛𝒙𝒛\bm{x}\succ\bm{y}\succcurlyeq\bm{z}\Rightarrow\bm{x}\succ\bm{z}), we have 𝒑𝒑,\bm{p}^{\prime}\succ\bm{p}, hence PP is not a Pareto set. In all cases we get a contradiction, therefore, fPf\mathop{\!{}_{\!\!P}} is gap-safe increasing. ∎

Proof of Lemma 3. Let 𝒙S1.\bm{x}\in S_{1}. Then P(𝒙)and P(𝒙)P^{\bm{\downarrow}}(\bm{x})\neq\emptyset\;\;\mbox{and\,}P_{\bm{\uparrow}}\!\!(\bm{x})\neq\emptyset. Indeed, otherwise either fP(𝒙)=+f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})=+\infty or fP(𝒙)=f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=-\infty and since fPf\mathop{\!{}_{\!\!P}} is upper-bounded on all lower PP-contours and lower-bounded on all upper PP-contours, fP(𝒙)fP(𝒙)=+f^{\bm{\downarrow}\mathstrut}_{\!P}(\bm{x})-f_{\bm{\uparrow}_{\mathstrut}}^{P}(\bm{x})=+\infty, which contradicts the assumption. Therefore, xPA.x\in P\cup A.

Let xPA.x\in P\cup A. Then there exist 𝒑,𝒑P\bm{p},\bm{p}^{\prime}\in P such that

𝒑𝒙𝒑\bm{p}^{\prime}\succcurlyeq\bm{x}\succcurlyeq\bm{p} (22)

and by the transitivity of ,\succcurlyeq, 𝒑𝒑.\bm{p}^{\prime}\succcurlyeq\bm{p}. Since PP is a Pareto set, 𝒑𝒑.\bm{p}^{\prime}\not\succ\bm{p}. By the transitivity of ,\succ, the latter is incompatible with 𝒑𝒙𝒑{\bm{p}^{\prime}\succ\bm{x}\succ\bm{p}} in (22), consequently, 𝒙𝒑\bm{x}\approx\bm{p} for some 𝒑P.\bm{p}\in P.

Let 𝒙𝒑\bm{x}\approx\bm{p} for some 𝒑P.\bm{p}\in P. Then by the last statement of Corollary 1, 𝒙S1.\bm{x}\in S_{1}. This completes the proof. ∎


Appendix

Appendix 0.A Binary relations

A binary relation RR on a set XX is a set of ordered pairs (x,y)(x,y) of elements of XX (RX×XR\subseteq X\!\times\!X); (x,y)R(x,y)\in R is abbreviated as xRyxRy.

A binary relation is

  • reflexive if xRxxRx holds for every xXx\in X;

  • irreflexive if xRxxRx holds for no xXx\in X;

  • transitive if xRyxRy and yRzyRz imply xRzxRz for all x,y,zXx,y,z\in X;

  • symmetric if xRyxRy implies yRxyRx for all x,yXx,y\in X;

  • antisymmetric if xRyxRy and yRxyRx imply x=yx=y for all x,yXx,y\in X;

  • connected if xRyxRy or yRxyRx holds for all x,yXx,y\in X such that xy.x\neq y.

A binary relation is a/an

  • preorder if it is transitive and reflexive;

  • partial order if it is transitive, reflexive and antisymmetric;

  • strict partial order if it is transitive and irreflexive;

  • weak order if it is a connected preorder;

  • linear (or total) order if it is an antisymmetric weak order (or, equivalently, is a connected partial order);

  • strict linear order if it is a connected strict partial order;

  • equivalence relation if it is transitive, reflexive and symmetric.

A relation RR extends a relation R0R_{0} if R0R.R_{0}\subseteq R.

References

  • [1] Allen, R.G.D.: The nature of indifference curves. Review of Economic Studies 1(2), 110–121 (1934)
  • [2] Andreoni, J., Sprenger, C., et al.: Certain and uncertain utility: The Allais paradox and five decision theory phenomena. Unpublished Manuscript. Available at Levine’s Working Paper Archive (2010), http://www.dklevine.com/archive/refs4814577000000000447.pdf
  • [3] Aumann, R.J.: Utility theory without the completeness axiom. Econometrica 30(3), 445–462 (1962), A correction, Econometrica, 32 (1–2) (1964) 210–212.
  • [4] Bian, B., Chen, X., Xu, Z.Q.: Utility maximization under trading constraints with discontinuous utility. SIAM Journal on Financial Mathematics 10(1), 243–260 (2019)
  • [5] Birkhoff, G.: Lattice Theory, AMS Colloquium Publications, vol. 25. American Mathematical Society, Providence, RI (1940)
  • [6] Bridges, D.S., Mehta, G.B.: Representations of Preferences Orderings, Lecture Notes in Economics and Mathematical Systems, vol. 422. Springer (1995)
  • [7] Chebotarev, P.Y., Shamis, E.: Characterizations of scoring methods for preference aggregation. Annals of Operations Research 80, 299–332 (1998)
  • [8] Chebotarev, P.: On the extension of utility functions. In: Tangian, A.S., Gruber, J. (eds.) Constructing and Applying Objective Functions, Lecture Notes in Economics and Mathematical System, vol. 510, pp. 63–74. Springer, Berlin (2002)
  • [9] Chebotarev, P.: Selection of centrality measures using self-consistency and bridge axioms. J. Complex Networks (2023), in press, doi: 10.1093/comnet/cnad035; arXiv: 2301.00084
  • [10] Debreu, G.: Representation of a preference ordering by a numerical function. In: Thrall, R.M., Coombs, C.H., Davis, R.L. (eds.) Decision Processes, pp. 159–165. Wiley, New York (1954)
  • [11] Debreu, G.: Topological methods in cardinal utility theory. Discussion Papers 299, Cowles Foundation (1959)
  • [12] Debreu, G.: Continuity properties of Paretian utility. International Economic Review 5(3), 285–293 (1964)
  • [13] Debreu, G.: Stephen Smale and the economic theory of general equilibrium. In: Hirsch, M.W., Marsden, J.E., Shub, M. (eds.) From Topology to Computation: Proceedings of the Smalefest. pp. 131–146. Springer (1993)
  • [14] Diecidue, E., Van De Ven, J.: Aspiration level, probability of success and failure, and expected utility. International Economic Review 49(2), 683–700 (2008)
  • [15] Eilenberg, S.: Ordered topological spaces. American Journal of Mathematics 63(1), 39–45 (1941)
  • [16] Evren, Ö., Hüsseinov, F.: Extension of monotonic functions and representation of preferences. Mathematics of Operations Research 46(4), 1430–1451 (2021)
  • [17] Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)
  • [18] Gale, D., Sutherland, W.R.: Analysis of a one good model of economic development. In: Dantzig, G.B., Veinott, A.F. (eds.) Mathematics of the Decision Sciences, Part 2, pp. 120–136. American Mathematical Society, Providence, RI (1968)
  • [19] Hande, P., Zhang, S., Chiang, M.: Distributed rate allocation for inelastic flows. IEEE/ACM Transactions on Networking 15(6), 1240–1253 (2007)
  • [20] Herden, G.: On a lifting theorem of Nachbin. Mathematical Social Sciences 19(1), 37–44 (1990)
  • [21] Herden, G.: On the existence of utility functions. Mathematical Social Sciences 17(3), 297–313 (1989)
  • [22] Herden, G.: Some lifting theorems for continuous utility functions. Mathematical Social Sciences 18(2), 119–134 (1989)
  • [23] Hirshleifer, J., Jack, H., Riley, J.G.: The Analytics of Uncertainty and Information. Cambridge University Press (1992)
  • [24] Hüsseinov, F.: Monotonic extension. Department of Economics Discussion Paper 10–04, Bilkent University (2010), http://econ.bilkent.edu.tr/wp-content/uploads/2012/03/10-04_DP_Husseinov.pdf
  • [25] Hüsseinov, F.: Extension of strictly monotonic functions in order-separable spaces. Working paper 3260586, ADA University, Baku, Azerbaijan (2018), https://ssrn.com/abstract=3260586
  • [26] Hüsseinov, F.: Extension of strictly monotonic functions and utility functions on order-separable spaces. Linear and Nonlinear Analysis 7(1), 9–18 (2021)
  • [27] Kritzman, M.: What practitioners need to know… about time diversification (corrected). Financial Analysts Journal 50(1), 14–18 (1994)
  • [28] Masson, R.T.: Utility functions with jump discontinuities: Some evidence and implications from peasant agriculture. Economic Inquiry 12(4), 559–566 (1974)
  • [29] McCartan, D.: Bicontinuous preordered topological spaces. Pacific Journal of Mathematics 38(2), 523–529 (1971)
  • [30] Mehta, G.: Topological ordered spaces and utility functions. International Economic Review 18(3), 779–782 (1977)
  • [31] Minguzzi, E.: Normally preordered spaces and utilities. Order 30(1), 137–150 (2013)
  • [32] Morkeliūnas, A.: On strictly increasing numerical transformations and the Pareto condition. Lietuvos Matematikos Rinkinys / Litovskiy Matematicheskiy Sbornik 26, 729–737 (1986), in Russian
  • [33] Morkeliūnas, A.: On the existence of a continuous superutility function. Lietuvos Matematikos Rinkinys / Litovskiy Matematicheskiy Sbornik 26, 292–297 (1986), in Russian
  • [34] Nachbin, L.: A theorem of the Hahn-Banach type for linear transformations. Transactions of the American Mathematical Society 68(1), 28–46 (1950)
  • [35] Nachbin, L.: Topology and Order. Van Nostrand, Princeton (1965), translation of Topologia e Ordem, University of Chicago Press, Chicago, 1950 (in Portuguese)
  • [36] Peleg, B.: Utility functions for partially ordered topological spaces. Econometrica 38(1), 93–96 (1970)
  • [37] Richter, M.K.: Revealed preference theory. Econometrica 34, 635–645 (1966)
  • [38] Siciliani, L.: Paying for performance and motivation crowding out. Economics Letters 103(2), 68–71 (2009)
  • [39] Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundamenta mathematicae 16(1), 386–389 (1930)
  • [40] Tanino, T.: On supremum of a set in a multi-dimensional space. Journal of Mathematical Analysis and Applications 130(2), 386–397 (1988)
  • [41] Thakkar, J.J.: Multi-Criteria Decision Making. Springer (2021)
  • [42] Tietze, H.: Über funktionen, die auf einer abgeschlossenen menge stetig sind. Journal für die reine und angewandte Mathematik 145, 9–14 (1915)
  • [43] Urysohn, P.: Über die mächtigkeit der zusammenhängenden mengen. Mathematische Annalen 94(1), 262–295 (1925)
  • [44] Uyanik, M., Khan, M.A.: The continuity postulate in economic theory: A deconstruction and an integration. Journal of Mathematical Economics p. 102704 (2022)