This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Extended-cycle integrals of modular functions for badly approximable numbers

Yuya Murakami Mathematical Inst. Tohoku Univ., 6-3, Aoba, Aramaki, Aoba-Ku, Sendai 980-8578, JAPAN [email protected]
Abstract.

Cycle integrals of modular functions are expected to play a role in real quadratic analogue of singular moduli. In this paper, we extend the definition of cycle integrals of modular functions from real quadratic numbers to badly approximable numbers. We also give explicit representations of values of extended-cycle integrals for some cases.

The author is supported by JSPS KAKENHI Grant Number JP 20J20308.

1. Introduction

The elliptic modular jj-function j(z)j(z) is an SL2()\operatorname{SL}_{2}(\mathbb{Z})-invariant holomorphic function on the upper half-plane :={z=x+y1x,y,y>0}\mathbb{H}:=\{z=x+y\sqrt{-1}\in\mathbb{C}\mid x,y\in\mathbb{R},y>0\}. It plays an essential role in the complex multiplication theory. Indeed, its special values at imaginary quadratic points generate the Hilbert class fields of imaginary quadratic fields. On the other hand, for real quadratic fields, any definitive construction of the Hilbert class fields or ray class fields is still unknown except for a few cases, that is [Shi72], [Shi78]. With this motivation, Kaneko [Kan09] introduced the “value” of j(z)j(z), written val(w)\operatorname{val}(w) derived from Dedekind’s notation, at any real quadratic number ww which is defined by

(1.1) val(w):=12logεwz0γwz0j(z)(1zw1zw)𝑑z,\operatorname{val}(w):=\frac{1}{2\log\varepsilon_{w}}\int_{z_{0}}^{\gamma_{w}z_{0}}j(z)\bigg{(}\dfrac{1}{z-w^{\prime}}-\dfrac{1}{z-w}\bigg{)}dz,

where z0z_{0}\in\mathbb{H} is any point, ww^{\prime} is the non-trivial Galois conjugate of ww, SL2()w\operatorname{SL}_{2}(\mathbb{Z})_{w} is the stabilizer of ww in SL2()\operatorname{SL}_{2}(\mathbb{Z}), and γw=(cd)\gamma_{w}=\begin{pmatrix}*&*\\ c&d\end{pmatrix} is the unique element of SL2()w\operatorname{SL}_{2}(\mathbb{Z})_{w} such that SL2()w={±γwnn}\operatorname{SL}_{2}(\mathbb{Z})_{w}=\{\pm\gamma_{w}^{n}\mid n\in\mathbb{Z}\} and εw:=cw+d>1\varepsilon_{w}:=cw+d>1. The integral is independent of z0z_{0} since the integrand is holomorphic and invariant under γw\gamma_{w}. We can prove that εw\varepsilon_{w} is the minimal unit greater than 11 with the norm 11 in the order 𝒪w\mathcal{O}_{w} in the real quadratic field (w)\mathbb{Q}(w) whose discriminant coincides with the discriminant of ww.

This value can be written as val(w)=val~(w)/1~(w)\operatorname{val}(w)=\widetilde{\operatorname{val}}(w)/\widetilde{1}(w), where

(1.2) val~(w):=SL2()w\Sw,wj𝑑s,1~(w):=SL2()w\Sw,w𝑑s=2logεw\widetilde{\operatorname{val}}(w):=\int_{\operatorname{SL}_{2}(\mathbb{Z})_{w}\backslash S_{w^{\prime},w}}jds,\quad\widetilde{1}(w):=\int_{\operatorname{SL}_{2}(\mathbb{Z})_{w}\backslash S_{w^{\prime},w}}ds=2\log\varepsilon_{w}

are cycle integrals, ds:=y1dx2+dy2ds:=y^{-1}\sqrt{dx^{2}+dy^{2}}, and Sw,wS_{w^{\prime},w} is the geodesic in \mathbb{H} from ww^{\prime} to ww.

In the last decade, it turned out that the values of val~\widetilde{\operatorname{val}} have interesting properties. They are related to a mock modular form of weight 1/21/2 for Γ0(4)\Gamma_{0}(4) studied by Duke–Imamoglu–Tóth [DIT11], which is a real quadratic analogue of Zagier’s work on traces of singular moduli in [Zag02]. They are also related to a locally harmonic Maass form of weight 22 studied by Matsusaka [Mat20, Theorem 1.1]. Bengoechea–Imamoglu [BI19, Theorem 1.1] showed some kind of continuity for the values of val\operatorname{val} at Markov quadratics which is conjectured by Kaneko [Kan09]. The author [Mur20, Theorem 1.1] generalized it to the values of val\operatorname{val} at real quadratic numbers whose periods of continued fraction expansions have long cyclic parts. It revealed that the continuity of val\operatorname{val} differs from Euclidean topology. However, the definition of the continuity of val\operatorname{val} is still missing. We would expect a topological space HH containing all real quadratic numbers and a continuous function ?:H?\colon H\to\mathbb{C} such that the diagram

(1.3) H{H}{real quadratic numbers}{\{\text{real quadratic numbers}\}}{\mathbb{C}}?\scriptstyle{?}val\scriptstyle{\operatorname{val}}

commutes.

In this paper, we attempt to choose HH as a set of badly approximable numbers and give some partial continuity of val\operatorname{val} on HH. Here, badly approximable numbers are defined as irrational numbers xx whose regular continued fraction expansions

(1.4) x=[k1,k2,k3,]:=k1+1k2+1k3+1,k1,k2,k3,>0x=[k_{1},k_{2},k_{3},\dots]:=k_{1}+\cfrac{1}{k_{2}+{\cfrac{1}{k_{3}+\cfrac{1}{\ddots}}}},\quad k_{1}\in\mathbb{Z},\quad k_{2},k_{3},\dots\in\mathbb{Z}_{>0}

have bounded coefficients, that is, the set {k1,k2,k3,}\{k_{1},k_{2},k_{3},\dots\} is bounded. For example, real quadratic irrational numbers are badly approximable since they have periodic continued fraction expansions.

We define val(x)\operatorname{val}(x) and related values for a badly approximable number x=[k1,k2,k3,]x=[k_{1},k_{2},k_{3},\dots] as

(1.5) val(x)\displaystyle\operatorname{val}(x) :=limzSz0,xzx1dhyp(z0,z)Sz0,zj𝑑s,\displaystyle:=\lim_{\begin{subarray}{c}z\in S_{z_{0},x}\\ z\to x\end{subarray}}\frac{1}{d_{\mathrm{hyp}}(z_{0},z)}\int_{S_{z_{0},z}}jds,
(1.6) val^(x)\displaystyle\widehat{\operatorname{val}}(x) :=limn1nz0γnz0j(z)1zx𝑑z,\displaystyle:=\lim_{n\to\infty}\frac{1}{n}\int_{z_{0}}^{\gamma_{n}z_{0}}j(z)\frac{-1}{z-x}dz,
(1.7) 1^(x)\displaystyle\widehat{1}(x) :=limn1nz0γnz01zx𝑑z,\displaystyle:=\lim_{n\to\infty}\frac{1}{n}\int_{z_{0}}^{\gamma_{n}z_{0}}\frac{-1}{z-x}dz,
(1.8) ε^x\displaystyle\widehat{\varepsilon}_{x} :=limncn1/n,\displaystyle:=\lim_{n\to\infty}c_{n}^{1/n},

where z0z_{0}\in\mathbb{H}, Sz0,zS_{z_{0},z} is the geodesic in \mathbb{H} from z0z_{0} to zz\in\mathbb{H}\cup\mathbb{R},

(1.9) dhyp(z0,z):=Sz0,z𝑑s,γn:=(k1110)(k2110)(k2n110)SL2(),d_{\mathrm{hyp}}(z_{0},z):=\int_{S_{z_{0},z}}ds,\quad\gamma_{n}:=\begin{pmatrix}k_{1}&1\\ 1&0\end{pmatrix}\begin{pmatrix}k_{2}&1\\ 1&0\end{pmatrix}\dots\begin{pmatrix}k_{2n}&1\\ 1&0\end{pmatrix}\in\operatorname{SL}_{2}(\mathbb{Z}),

and cn>0c_{n}\in\mathbb{Z}_{>0} be the denominator of the rational number [k1,k2,k2n][k_{1},k_{2},\cdots k_{2n}]. In Section 3 later, we will introduce more general representations of these values.

We will prove that these limit values are bounded, but we do not know if the limit values are singleton. Hence, the right-hand sides of the above equations do converge for any badly approximable number. We can also prove that if xx is a real quadratic number, then the limits val(x),val^(x),1^(x)\operatorname{val}(x),\widehat{\operatorname{val}}(x),\widehat{1}(x), and ε^x\widehat{\varepsilon}_{x} converge, val(x)\operatorname{val}(x) coincides with the values defined in 1.1, and we can write

(1.10) val^(x)=val~(x)rx,1^(x)=1~(x)rx,ε^x=εx1/rx,\widehat{\operatorname{val}}(x)=\frac{\widetilde{\operatorname{val}}(x)}{r_{x}},\quad\widehat{1}(x)=\frac{\widetilde{1}(x)}{r_{x}},\quad\widehat{\varepsilon}_{x}=\varepsilon_{x}^{1/r_{x}},

where rxr_{x} are half of the length of the minimum even period of the continued fraction expansion of xx. Thus, ε^x\widehat{\varepsilon}_{x} for a badly approximable number xx is an analog of fundamental units of real quadratic orders.

Our purpose in this paper is to give uncountable infinitely many badly approximable numbers xx such that the limits val(x),val^(x),1^(x),\operatorname{val}(x),\widehat{\operatorname{val}}(x),\widehat{1}(x), and εx\varepsilon_{x} converge. We also explicitly represent values of extended val\operatorname{val} function at badly approximable numbers which have infinitely long cyclic parts in their continued fractions.

To explain the main results, we introduce some notation for even words. For an even number 2r202r\in 2\mathbb{Z}_{\geq 0} and positive integers k1,,k2rk_{1},\dots,k_{2r}, we call a tuple W=(k1,,k2r)W=(k_{1},\dots,k_{2r}) an even word. In the case when r=0r=0, we call it the empty word and denote it by \emptyset. For even words W1=(k1(1),,k2r1(1)),,Wn=(k1(n),,k2rn(n))W_{1}=(k_{1}^{(1)},\dots,k_{2r_{1}}^{(1)}),\dots,W_{n}=(k_{1}^{(n)},\dots,k_{2r_{n}}^{(n)}), define their product

(1.11) W1Wn:=(k1(1),,k2r1(1),,k1(n),,k2rn(n)).W_{1}\cdots W_{n}:=(k_{1}^{(1)},\dots,k_{2r_{1}}^{(1)},\dots,k_{1}^{(n)},\dots,k_{2r_{n}}^{(n)}).

For an infinite sequence of even words W1=(k1(1),,k2r1(1)),,Wn=(k1(n),,k2rn(n)),W_{1}=(k_{1}^{(1)},\dots,k_{2r_{1}}^{(1)}),\dots,W_{n}=(k_{1}^{(n)},\dots,k_{2r_{n}}^{(n)}),\dots, define

(1.12) [W1Wn]:=[k1(1),,k2r1(1),,k1(n),,k2rn(n),].[W_{1}\cdots W_{n}\cdots]:=[k_{1}^{(1)},\dots,k_{2r_{1}}^{(1)},\dots,k_{1}^{(n)},\dots,k_{2r_{n}}^{(n)},\dots].

For a non-empty even word WW, define

(1.13) N(W)\displaystyle N(W) :=max{n>0 there exists an even word W1 such that W=W1n}.\displaystyle:=\max\{n\in\mathbb{Z}_{>0}\mid\text{ there exists an even word }W_{1}\text{ such that }W=W_{1}^{n}\}.

Our first main result is as follows.

Theorem 1.1.

Let V0,,VkV_{0},\dots,V_{k} be even words, W1,,WkW_{1},\dots,W_{k} be non-empty even words, and {a1,n}n=1\{a_{1,n}\}_{n=1}^{\infty}, \dots, {ak,n}n=1\{a_{k,n}\}_{n=1}^{\infty} be sequences in 0\mathbb{Z}_{\geq 0} such that ai,na_{i,n}\to\infty and 2nai,n02^{-n}a_{i,n}\to 0 when nn goes to infinity. Let wi:=[Wi¯]w_{i}:=[\overline{W_{i}}], k:={0ikVi}k^{\prime}:=\{0\leq i\leq k\mid V_{i}\neq\emptyset\},

(1.14) An:=kn+1ik1jnai,j,ai:=limn1An1jnai,j,A_{n}:=k^{\prime}n+\sum_{1\leq i\leq k}\sum_{1\leq j\leq n}a_{i,j},\quad a_{i}:=\lim_{n\to\infty}\frac{1}{A_{n}}\sum_{1\leq j\leq n}a_{i,j},

and

(1.15) Un:=V1W1a1,nV2W2a2,nVkWkak,n,x:=[U1U2Un].U_{n}:=V_{1}W_{1}^{a_{1,n}}V_{2}W_{2}^{a_{2,n}}\cdots V_{k}W_{k}^{a_{k,n}},\quad x:=[U_{1}U_{2}\cdots U_{n}\cdots].

Then the limits val(x),val^(x),1^(x),\operatorname{val}(x),\widehat{\operatorname{val}}(x),\widehat{1}(x), and ε^x\widehat{\varepsilon}_{x} converge and it holds 1^(x)=2logε^x>0\widehat{1}(x)=2\log\widehat{\varepsilon}_{x}>0 and val(x)=val^(x)/1^(x)\operatorname{val}(x)=\widehat{\operatorname{val}}(x)/\widehat{1}(x). Moreover, it also holds

(1.16) val(x)=a1N(W1)val^(w1)++akN(Wk)val^(wk)a1N(W1)1^(w1)++akN(Wk)1^(wk).\operatorname{val}(x)=\frac{a_{1}N(W_{1})\widehat{\operatorname{val}}(w_{1})+\dots+a_{k}N(W_{k})\widehat{\operatorname{val}}(w_{k})}{a_{1}N(W_{1})\widehat{1}(w_{1})+\dots+a_{k}N(W_{k})\widehat{1}(w_{k})}.

Here we remark that the author proved that the right-hand side in 1.16 equals to the limit of val([Un¯])\operatorname{val}([\overline{U_{n}}]) in [Mur20, Theorem 1.1].

Next, we consider the value of val\operatorname{val} function at the Thue–Morse word. It is a typical word which is repetition-free. We fix two even words VV and WW. Let {V,W}ω\{V,W\}^{\omega} be the set of even words generated by V,WV,W which are of finite length. Let {V,W}ω\{V,W\}^{\omega} be the set of even words generated by V,WV,W which are of infinite length. We define the monoid homomorphism h:{V,W}{V,W}h\colon\{V,W\}^{*}\to\{V,W\}^{*} by h(V):=VW,h(W):=WVh(V):=VW,h(W):=WV. In this setting, the word

(1.17) Vh:=limnhn(V)=VWWVWVVW{V,W}ωV_{h}:=\lim_{n\to\infty}h^{n}(V)=VWWVWVVW\cdots\in\{V,W\}^{\omega}

is called the Thue–Morse word. It is known that VhV_{h} is cubefree (for example, see [CK97, Section 3]), and thus it is not a word which satisfies the conditions in Theorem 1.1.

The value of val\operatorname{val} function at the Thue–Morse word is calculated as follows.

Theorem 1.2.

Let x:=[Vh]x:=[V_{h}] and wn:=[hn(V)¯]w_{n}:=[\overline{h^{n}(V)}]. Then val^(x)\widehat{\operatorname{val}}(x) converges if and only if limnval^(w2n)/22n\lim_{n\to\infty}\widehat{\operatorname{val}}(w_{2n})/2^{2n} converges. Moreover, we have

(1.18) val^(x)=limn122nval^(w2n),1^(x)=limn122n1^(w2n),val(x)=limn122nval(w2n).\widehat{\operatorname{val}}(x)=\lim_{n\to\infty}\frac{1}{2^{2n}}\widehat{\operatorname{val}}(w_{2n}),\quad\widehat{1}(x)=\lim_{n\to\infty}\frac{1}{2^{2n}}\widehat{1}(w_{2n}),\quad\operatorname{val}(x)=\lim_{n\to\infty}\frac{1}{2^{2n}}\operatorname{val}(w_{2n}).

The definitions of val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x) are like the Birkoff average in ergodic theory. Khinchin-Lévy’s theorem in ergodic theory asserts that for almost all x[0,1]x\in[0,1] with respect to the measure

(1.19) dμ:=1log2dx1+xd\mu:=\frac{1}{\log 2}\frac{dx}{1+x}

on [0,1][0,1], the limit defining ε^x\widehat{\varepsilon}_{x} converges and we have

(1.20) logε^x=201log(x)𝑑μ=π26log2.\log\widehat{\varepsilon}_{x}=-2\int_{0}^{1}\log(x)d\mu=\frac{\pi^{2}}{6\log 2}.

Although ergodic theory makes it possible to study values like the Birkoff average at almost all points, it does not tell us about a value at each point, for example, a badly approximable number. We can state that this paper studies a range which ergodic theory does not deal with.

This paper will be organized as follows. In Section 2, we give renewal definitions of val(w),val^(w)\operatorname{val}(w),\widehat{\operatorname{val}}(w), and 1^(w)\widehat{1}(w) for real quadratic numbers ww, which are suitable to generalize for badly approximable numbers. In Section 3, we state some fundamental properties of the limits val(x),val^(x),1^(x),\operatorname{val}(x),\widehat{\operatorname{val}}(x),\widehat{1}(x), and ε^x\widehat{\varepsilon}_{x} for each badly approximable number xx. In Section 4, we describe val(x)\operatorname{val}(x) in terms of the limit value along a geodesic and study its properties. In Section 5, we also study basic properties of val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x) which are defined using the continued fraction expansion of xx. In Section 6, we study εx\varepsilon_{x} and a relation between it and 1^(x)\widehat{1}(x). Finally we prove Theorem 1.1 in Section 7 and Theorem 1.2 in Section 8.

Acknowledgement

I would like to show my greatest appreciation to Professor Takuya Yamauchi for giving many pieces of advice. I am deeply grateful to Dr. Toshiki Matsusaka for giving many comments. I would like to express my gratitude to Professor Shun’ichi Yokoyama and Dr. Toshihiro Suzuki for giving me constructive comments on computing val(x)\operatorname{val}(x) numerically. It is a pleasure to extend my thanks to Professor Tatsuya Tate for teaching me ergodic theory. I also thank Dr. Daisuke Kazukawa, Dr. Hiroki Nakajima, and Dr. Shin’ichiro Kobayashi for teaching me geodesics, hyperbolic geometry, and metric spaces. I appreciate the technical assistance of Dr. Naruaki Kato for introducing me to how to write works by using GitHub.

2. A renewal definition of val\operatorname{val} for real quadratic numbers

In this section, we give renewal definitions of val\operatorname{val} for real quadratic numbers ww, which are suitable to generalize for badly approximable numbers. To begin with, we list some basic notations and facts.

2.1. Basic notation and properties for geodesics

Let :={z=x+y1x,y,y>0}\mathbb{H}:=\{z=x+y\sqrt{-1}\in\mathbb{C}\mid x,y\in\mathbb{R},y>0\} be the upper half plane and ds:=y1dx2+dy2ds:=y^{-1}\sqrt{dx^{2}+dy^{2}} be its line element. Here we remark that dsds is invariant under SL2()\operatorname{SL}_{2}(\mathbb{R}). We denote by :=limt+t1\infty:=\lim_{t\to+\infty}t\sqrt{-1} the point at infinity. Let 1():={}\mathbb{P}^{1}(\mathbb{R}):=\mathbb{R}\cup\{\infty\}. For two points x,x1()x^{\prime},x\in\mathbb{H}\cup\mathbb{P}^{1}(\mathbb{R}), we denote by Sx,xS_{x^{\prime},x} the geodesic in \mathbb{H} from xx^{\prime} to xx. For two points z,zz,z^{\prime}\in\mathbb{H}, define hyperbolic distance between them by

(2.1) dhyp(z,z):=Sz,z𝑑s.d_{\mathrm{hyp}}(z,z^{\prime}):=\int_{S_{z,z^{\prime}}}ds.

The following lemma is fundamental.

Lemma 2.1.

For two points z,zz,z^{\prime}\in\mathbb{H}, the following statements hold.

  1. (i)

    For any σSL2()\sigma\in\operatorname{SL}_{2}(\mathbb{R}), it holds dhyp(σ(z),σ(z))=dhyp(z,z)d_{\mathrm{hyp}}(\sigma(z),\sigma(z^{\prime}))=d_{\mathrm{hyp}}(z,z^{\prime}).

  2. (ii)

    ([Bea83, Theorem 7.2.1 (ii)])

    (2.2) coshdhyp(z,z)=1+|zz|22Im(z)Im(z).\cosh d_{\mathrm{hyp}}(z,z^{\prime})=1+\frac{\left\lvert z-z^{\prime}\right\rvert^{2}}{2\operatorname{Im}(z)\operatorname{Im}(z^{\prime})}.

For x,x1()x^{\prime},x\in\mathbb{P}^{1}(\mathbb{R}), define a 11-form

(2.3) ηx,x(z):=(1zx1zx)dz.\eta_{x^{\prime},x}(z):=\bigg{(}\dfrac{1}{z-x^{\prime}}-\dfrac{1}{z-x}\bigg{)}dz.

Here, let 1/(z):=01/(z-\infty):=0 if x=x=\infty or x=x^{\prime}=\infty.

By a direct calculation, we have the following lemma.

Lemma 2.2 ([Mur20, Lemma 2.5]).

For any x,x1()x,x^{\prime}\in\mathbb{P}^{1}(\mathbb{R}) and γSL2()\gamma\in\operatorname{SL}_{2}(\mathbb{R}), we have

(2.4) γηx,x=ηγ1x,γ1x.\gamma^{*}\eta_{x^{\prime},x}=\eta_{\gamma^{-1}x^{\prime},\gamma^{-1}x}.

We need the following lemma to express val(w)\operatorname{val}(w) as a quotient of two cycle integrals.

Lemma 2.3.

For two points x,x1()x,x^{\prime}\in\mathbb{P}^{1}(\mathbb{R}) with xxx\neq x^{\prime}, we have ds=ηx,xds=\eta_{x^{\prime},x} on Sx,xS_{x^{\prime},x}.

Proof.

Let

(2.5) σ:={(xx/(xx)11/(xx))if x,(1x01)if x=\sigma:=\begin{cases}\begin{pmatrix}x&x^{\prime}/(x-x^{\prime})\\ 1&1/(x-x^{\prime})\end{pmatrix}\quad&\text{if }x\neq\infty,\\ \begin{pmatrix}1&-x\\ 0&1\end{pmatrix}\quad&\text{if }x=\infty\end{cases}

be a matrix in SL2()\operatorname{SL}_{2}(\mathbb{R}). Since σηx,x=η0,\sigma^{*}\eta_{x^{\prime},x}=\eta_{0,\infty} and σds=ds\sigma^{*}ds=ds, it is enough to show when x=x=\infty and x=0x^{\prime}=0. On the geodesic S0,={t1t>0}S_{0,\infty}=\{t\sqrt{-1}\mid t\in\mathbb{R}_{>0}\}, we have ds=dt/t=η0,ds=dt/t=\eta_{0,\infty}. ∎

2.2. Basic notation and properties for real quadratic numbers

For a real quadratic number ww, let ww^{\prime} be the non-trivial Galois conjugate of ww, SL2()w\operatorname{SL}_{2}(\mathbb{Z})_{w} be the stabilizer of ww in SL2()\operatorname{SL}_{2}(\mathbb{Z}), and γw=(cd)\gamma_{w}=\begin{pmatrix}*&*\\ c&d\end{pmatrix} be the unique element of SL2()w\operatorname{SL}_{2}(\mathbb{Z})_{w} such that SL2()w={±γwnn}\operatorname{SL}_{2}(\mathbb{Z})_{w}=\{\pm\gamma_{w}^{n}\mid n\in\mathbb{Z}\} and εw:=cw+d>1\varepsilon_{w}:=cw+d>1. It holds γww=w\gamma_{w}w^{\prime}=w^{\prime}. Thus, the geodesic Sw,wS_{w^{\prime},w} is invariant under γw\gamma_{w}. It also holds γwηw,w=ηw,w\gamma_{w}^{*}\eta_{w^{\prime},w}=\eta_{w^{\prime},w} by Lemma 2.2.

2.3. Basic notation and properties for continued fractions and words

For the convenience of the reader, we recall notations for even words prepared in Section 1.

Each real number can be represented by the unique continued fraction

(2.6) [k1,k2,k3,]:=k1+1k2+1k3+1[k_{1},k_{2},k_{3},\dots]:=k_{1}+\cfrac{1}{k_{2}+{\cfrac{1}{k_{3}+\cfrac{1}{\ddots}}}}

where k1k_{1} is an integer and k2,k3,k_{2},k_{3},\dots are positive integers. For positive integers k1,,ksk_{1},\dots,k_{s}, we set a periodic continued fraction

(2.7) [k1,,kr,kr+1,,ks¯]:=[k1,,kr,kr+1,,ks,kr+1,,ks,kr+1,,ks,].[k_{1},\dots,k_{r},\overline{k_{r+1},\dots,k_{s}}]:=[k_{1},\dots,k_{r},k_{r+1},\dots,k_{s},k_{r+1},\dots,k_{s},k_{r+1},\dots,k_{s},\dots].

For a real number, being quadratic (resp. rational) is equivalent to having a periodic (resp. finite) continued fraction expansion ([Aig97, Theorem 1.17]).

For an even number 2r202r\in 2\mathbb{Z}_{\geq 0} and positive integers k1,,k2rk_{1},\dots,k_{2r}, we call a tuple W=(k1,,k2r)W=(k_{1},\dots,k_{2r}) an even word. In the case when r=0r=0, we call it the empty word and denote it by \emptyset. For even words W1=(k1(1),,k2r1(1)),,Wn=(k1(n),,k2rn(n))W_{1}=(k_{1}^{(1)},\dots,k_{2r_{1}}^{(1)}),\dots,W_{n}=(k_{1}^{(n)},\dots,k_{2r_{n}}^{(n)}), define their product

(2.8) W1Wn:=(k1(1),,k2r1(1),,k1(n),,k2rn(n)).W_{1}\cdots W_{n}:=(k_{1}^{(1)},\dots,k_{2r_{1}}^{(1)},\dots,k_{1}^{(n)},\dots,k_{2r_{n}}^{(n)}).

For an infinite sequence of even words W1=(k1(1),,k2r1(1)),,Wn=(k1(n),,k2rn(n)),W_{1}=(k_{1}^{(1)},\dots,k_{2r_{1}}^{(1)}),\dots,W_{n}=(k_{1}^{(n)},\dots,k_{2r_{n}}^{(n)}),\dots, define

(2.9) [W1Wn]:=[k1(1),,k2r1(1),,k1(n),,k2rn(n),].[W_{1}\cdots W_{n}\cdots]:=[k_{1}^{(1)},\dots,k_{2r_{1}}^{(1)},\dots,k_{1}^{(n)},\dots,k_{2r_{n}}^{(n)},\dots].

For the empty word \emptyset and a non-empty even word W=(k1,,k2r)W=(k_{1},\dots,k_{2r}), define

(2.10) γ\displaystyle\gamma_{\emptyset} :=(1001)SL2(),\displaystyle:=\begin{pmatrix}1&0\\ 0&1\end{pmatrix}\in\operatorname{SL}_{2}(\mathbb{Z}),
(2.11) γW\displaystyle\gamma_{W} :=(k1110)(k2110)(k2r110)SL2(),\displaystyle:=\begin{pmatrix}k_{1}&1\\ 1&0\end{pmatrix}\begin{pmatrix}k_{2}&1\\ 1&0\end{pmatrix}\dots\begin{pmatrix}k_{2r}&1\\ 1&0\end{pmatrix}\in\operatorname{SL}_{2}(\mathbb{Z}),
(2.12) |W|\displaystyle\left\lvert W\right\rvert :=r,\displaystyle:=r,
(2.13) N(W)\displaystyle N(W) :=max{n>0 there exists an even word W1 such that W=W1n}.\displaystyle:=\max\{n\in\mathbb{Z}_{>0}\mid\text{ there exists an even word }W_{1}\text{ such that }W=W_{1}^{n}\}.

Moreover, for an even word V=(l1,,l2s)V=(l_{1},\dots,l_{2s}) and a non-empty even word W=(k1,,k2r)W=(k_{1},\dots,k_{2r}), define

(2.14) [VW¯]\displaystyle[V\overline{W}] :=[l1,,l2s,k1,,k2r,k1,,k2r,k1,,k2r,].\displaystyle:=[l_{1},\dots,l_{2s},k_{1},\dots,k_{2r},k_{1},\dots,k_{2r},k_{1},\dots,k_{2r},\dots].

The matrix γW\gamma_{W} has the following properties.

Lemma 2.4 ([Mur20, Lemma 2.3]).

The following properties hold.

  1. (i)

    For even words W1,,WnW_{1},\dots,W_{n}, we have γW1Wn=γW1γWn\gamma_{W_{1}\cdots W_{n}}=\gamma_{W_{1}}\dots\gamma_{W_{n}}.

  2. (ii)

    Let VV, be an even word and W>0W\in\mathbb{Z}_{>0}^{\mathbb{N}} be an infinite word. Then, for an irrational number x:=[W]x:=[W], we have γVx=[VW]\gamma_{V}x=[VW]. In particular, for a real quadratic number v:=[V¯]v:=[\overline{V}], we have γVv=v\gamma_{V}v=v.

  3. (iii)

    For a reduced real quadratic number ww, there exists the minimal even word WW such that w=[W¯]w=[\overline{W}]. Then we have N(W)=1N(W)=1 and γW=γw\gamma_{W}=\gamma_{w}. Generally, for a non-empty even word WW and a real quadratic number w=[W¯]w=[\overline{W}], we have γW=γwN(W)\gamma_{W}=\gamma_{w}^{N(W)}.

  4. (iv)

    For a real quadratic number ww, there exist even words VV and WW such that w=[VW¯]w=[V\overline{W}]. Then γVγWγV1=γwN(W)\gamma_{V}\gamma_{W}\gamma_{V}^{-1}=\gamma_{w}^{N(W)}.

2.4. Kaneko’s val

Let j:j\colon\mathbb{H}\to\mathbb{C} be the elliptic modular jj-function. For a real quadratic number ww, define

(2.15) val~(w):=z0γwz0jηw,w,1~(w):=z0γwz0ηw,w,val(w):=val~(w)1~(w),\widetilde{\operatorname{val}}(w):=\int_{z_{0}}^{\gamma_{w}z_{0}}j\eta_{w^{\prime},w},\quad\widetilde{1}(w):=\int_{z_{0}}^{\gamma_{w}z_{0}}\eta_{w^{\prime},w},\quad\operatorname{val}(w):=\frac{\widetilde{\operatorname{val}}(w)}{\widetilde{1}(w)},

where z0z_{0}\in\mathbb{H} is any point.

The following lemma follows from Lemmas 2.2 and 2.3.

Lemma 2.5.

For a real quadratic number ww, any point z0Sw,wz_{0}\in S_{w^{\prime},w} and any positive integer nn, it holds

(2.16) nval~(w)\displaystyle n\widetilde{\operatorname{val}}(w) =z0γwnz0jηw,w=z0γwnz0j𝑑s,\displaystyle=\int_{z_{0}}^{\gamma_{w}^{n}z_{0}}j\eta_{w^{\prime},w}=\int_{z_{0}}^{\gamma_{w}^{n}z_{0}}jds,\quad
(2.17) n1~(w)\displaystyle n\widetilde{1}(w) =z0γwnz0ηw,w=z0γwnz0𝑑s=dhyp(z0,γwnz0).\displaystyle=\int_{z_{0}}^{\gamma_{w}^{n}z_{0}}\eta_{w^{\prime},w}=\int_{z_{0}}^{\gamma_{w}^{n}z_{0}}ds=d_{\mathrm{hyp}}(z_{0},\gamma_{w}^{n}z_{0}).

The following lemma is fundamental.

Lemma 2.6 ([Mur20, Propositon 2.7]).

For a real quadratic number ww, it holds

(2.18) 1~(w)=2logεw.\widetilde{1}(w)=2\log\varepsilon_{w}.

By the above lemmas, we obtain the following expression of val(w)\operatorname{val}(w), which are suitable to generalize for badly approximable numbers.

Proposition 2.7.

For a real quadratic number ww and any point z0Sw,wz_{0}\in S_{w^{\prime},w}, it holds

(2.19) val(w)\displaystyle\operatorname{val}(w) =limzSz0,xzw1dhyp(z0,z)Sz0,zj𝑑s.\displaystyle=\lim_{\begin{subarray}{c}z\in S_{z_{0},x}\\ z\to w\end{subarray}}\frac{1}{d_{\mathrm{hyp}}(z_{0},z)}\int_{S_{z_{0},z}}jds.
Proof.

For any positive number d>0d\in\mathbb{R}_{>0}, there exists the unique point zdSz0,wz_{d}\in S_{z_{0},w} such that dhyp(z0,zd)=dd_{\mathrm{hyp}}(z_{0},z_{d})=d. Let l:=dhyp(z0,γwz0)=1~(w)l:=d_{\mathrm{hyp}}(z_{0},\gamma_{w}z_{0})=\widetilde{1}(w). It suffices to show that

(2.20) limn1nl+dSz0,znl+dj𝑑s=val(w)\lim_{n\to\infty}\frac{1}{nl+d}\int_{S_{z_{0},z_{nl+d}}}jds=\operatorname{val}(w)

for any number 0d<l0\leq d<l. Since γwnzdSz0,w\gamma_{w}^{n}z_{d}\in S_{z_{0},w} and dhyp(zd,γwnzd)=nld_{\mathrm{hyp}}(z_{d},\gamma_{w}^{n}z_{d})=nl by Lemma 2.5, we have znl+d=γwnzdz_{nl+d}=\gamma_{w}^{n}z_{d}. Thus, we obtain

(2.21) limn1nl+dSz0,znl+dj𝑑s\displaystyle\lim_{n\to\infty}\frac{1}{nl+d}\int_{S_{z_{0},z_{nl+d}}}jds =limn1nl+d(Sz0,zd+Szd,γwnzd)jds\displaystyle=\lim_{n\to\infty}\frac{1}{nl+d}\left(\int_{S_{z_{0},z_{d}}}+\int_{S_{z_{d},\gamma_{w}^{n}z_{d}}}\right)jds
(2.22) =limn1nl+d(Sz0,zdj𝑑s+nval~(w))\displaystyle=\lim_{n\to\infty}\frac{1}{nl+d}\left(\int_{S_{z_{0},z_{d}}}jds+n\widetilde{\operatorname{val}}(w)\right)
(2.23) =val(w)\displaystyle=\operatorname{val}(w)

by Lemma 2.5. ∎

To generalize val~(w)\widetilde{\operatorname{val}}(w), 1~(w)\widetilde{1}(w), and εw\varepsilon_{w} for badly approximable numbers, we need some notation. For a real quadratic number w=[VW¯]w=[V\overline{W}], define

(2.24) val^(w)=N(W)|W|val~(w),1^(w)=N(W)|W|1~(w),ε^w=εwN(W)/|W|.\widehat{\operatorname{val}}(w)=\frac{N(W)}{\left\lvert W\right\rvert}\widetilde{\operatorname{val}}(w),\quad\widehat{1}(w)=\frac{N(W)}{\left\lvert W\right\rvert}\widetilde{1}(w),\quad\widehat{\varepsilon}_{w}=\varepsilon_{w}^{N(W)/\left\lvert W\right\rvert}.

These values are independent of a choice of an even word WW and have the following expression.

Proposition 2.8.

Let ww be a real quadratic number. Let r0r\geq 0 and s1s\geq 1 be integers and W1,,Wr+sW_{1},\dots,W_{r+s} be non-empty even words such that w=[W1WrWr+1Wr+s¯]w=[W_{1}\cdots W_{r}\overline{W_{r+1}\cdots W_{r+s}}]. For an integer n>r+sn>r+s, let Wn:=Wr+lW_{n}:=W_{r+l} where 0l<s0\leq l<s is an integer such that nr+lmodsn\equiv r+l\bmod s. For a positive integer ii, let γi:=γWi\gamma_{i}:=\gamma_{W_{i}}. Let z0z_{0}\in\mathbb{H} be a point. Then, we have

(2.25) val^(w)\displaystyle\widehat{\operatorname{val}}(w) =limn1nz0γ1γnz0jηw,w,\displaystyle=\lim_{n\to\infty}\frac{1}{n}\int_{z_{0}}^{\gamma_{1}\cdots\gamma_{n}z_{0}}j\eta_{w^{\prime},w},
(2.26) 1^(w)\displaystyle\widehat{1}(w) =limn1nz0γ1γnz0ηw,w.\displaystyle=\lim_{n\to\infty}\frac{1}{n}\int_{z_{0}}^{\gamma_{1}\cdots\gamma_{n}z_{0}}\eta_{w^{\prime},w}.
Proof.

Let N:=N(Wr+1Wr+s)N:=N(W_{r+1}\cdots W_{r+s}). For a positive integer nn, let

(2.27) an:=γ1γn1z0γ1γnz0jηw,w.a_{n}:=\int_{\gamma_{1}\cdots\gamma_{n-1}z_{0}}^{\gamma_{1}\cdots\gamma_{n}z_{0}}j\eta_{w^{\prime},w}.

Since

(2.28) a1++ann=1nz0γ1γnz0jηw,w,val^(w)=Nsval~(w),\frac{a_{1}+\dots+a_{n}}{n}=\frac{1}{n}\int_{z_{0}}^{\gamma_{1}\cdots\gamma_{n}z_{0}}j\eta_{w^{\prime},w},\quad\widehat{\operatorname{val}}(w)=\frac{N}{s}\widetilde{\operatorname{val}}(w),

it suffices to show that

(2.29) limna1++ar+l+nsr+l+ns=Nsval~(w)\lim_{n\to\infty}\frac{a_{1}+\dots+a_{r+l+ns}}{r+l+ns}=\frac{N}{s}\widetilde{\operatorname{val}}(w)

for any integer 0l<s0\leq l<s.

Since γm+s=γm\gamma_{m+s}=\gamma_{m} for any integer m>r+sm>r+s, it holds

(2.30) γ1γr+l+ns\displaystyle\gamma_{1}\cdots\gamma_{r+l+ns} =(γ1γr+lγr+l+1γr+l+s(γ1γr+l)1)nγ1γr+l=γwNnγ1γr+l\displaystyle=\left(\gamma_{1}\cdots\gamma_{r+l}\gamma_{r+l+1}\cdots\gamma_{r+l+s}(\gamma_{1}\cdots\gamma_{r+l})^{-1}\right)^{n}\gamma_{1}\cdots\gamma_{r+l}=\gamma_{w}^{Nn}\gamma_{1}\cdots\gamma_{r+l}

by Lemma 2.4 (iv). Let z0:=γ1γr+lz0z^{\prime}_{0}:=\gamma_{1}\cdots\gamma_{r+l}z_{0}. Then, we have

(2.31) ar+l++ar+l+ns\displaystyle a_{r+l}+\dots+a_{r+l+ns} =γ1γr+lz0γ1γr+l+nsz0jηw,w\displaystyle=\int_{\gamma_{1}\cdots\gamma_{r+l}z_{0}}^{\gamma_{1}\cdots\gamma_{r+l+ns}z_{0}}j\eta_{w^{\prime},w}
(2.32) =z0γwNnz0jηw,w\displaystyle=\int_{z^{\prime}_{0}}^{\gamma_{w}^{Nn}z^{\prime}_{0}}j\eta_{w^{\prime},w}
(2.33) =Nnval~(w)\displaystyle=Nn\widetilde{\operatorname{val}}(w)

by Lemma 2.5. Thus, we obtain 2.29. The second equality is similarly proved. ∎

Remark 2.9.

In Proposition 2.8, the first finite term of a continued fraction does not contribute to the left-hand side. Thus, the right-hand side in Proposition 2.8 depends only on the period in the continued fraction.

3. Fundamental properties of the extended val\operatorname{val} function

With reference to Propositions 2.7 and 2.8, we now define val(x)\operatorname{val}(x) for a badly approximable number xx as follows. Let W1,W2,W_{1},W_{2},\dots be an infinite sequence of even words such that x=[W1W2]x=[W_{1}W_{2}\cdots] and the set {W1,W2,}\{W_{1},W_{2},\dots\} is finite. We remark that if x<1x<1 then the first entry of W1W_{1} is not positive. Let cn>0c_{n}\in\mathbb{Z}_{>0} be the denominator of the rational number [W1Wn][W_{1}\cdots W_{n}] and put

(3.1) L:=limn|W1|++|Wn|n.L:=\lim_{n\to\infty}\frac{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}{n}.

Take x1(){x}x^{\prime}\in\mathbb{P}^{1}(\mathbb{R})\setminus\{x\} and z0z_{0}\in\mathbb{H}. We define the limits val(x),val^(x),1^(x),\operatorname{val}(x),\widehat{\operatorname{val}}(x),\widehat{1}(x), and ε^x\widehat{\varepsilon}_{x} by

(3.2) val(x)\displaystyle\operatorname{val}(x) :=limzSz0,xzx1dhyp(z0,z)Sz0,zj𝑑s,\displaystyle:=\lim_{\begin{subarray}{c}z\in S_{z_{0},x}\\ z\to x\end{subarray}}\frac{1}{d_{\mathrm{hyp}}(z_{0},z)}\int_{S_{z_{0},z}}jds,
(3.3) val^(x)\displaystyle\widehat{\operatorname{val}}(x) :=limn1|W1|++|Wn|z0γW1Wnz0jηx,x,\displaystyle:=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}j\eta_{x^{\prime},x},
(3.4) 1^(x)\displaystyle\widehat{1}(x) :=limn1|W1|++|Wn|z0γW1Wnz0ηx,x,\displaystyle:=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}\eta_{x^{\prime},x},
(3.5) ε^x\displaystyle\widehat{\varepsilon}_{x} :=limncn1/Ln.\displaystyle:=\lim_{n\to\infty}c_{n}^{1/Ln}.
Refer to caption
Figure 1. The paths for the definitions of val(x),val^(x)\operatorname{val}(x),\widehat{\operatorname{val}}(x), and 1^(x)\widehat{1}(x) in 3.2, 3.3, and 3.4

In the later sections, we will prove the following.

Theorem 3.1.

Let xx be a badly approximable number and W1,W2,W_{1},W_{2},\dots be an infinite sequence of even words such that x=[W1W2]x=[W_{1}W_{2}\cdots] and the set {W1,W2,}\{W_{1},W_{2},\dots\} is finite. Take any points x1(){x}x^{\prime}\in\mathbb{P}^{1}(\mathbb{R})\setminus\{x\} and z0z_{0}\in\mathbb{H}. Then the following statements hold.

  1. (i)

    The limit values val(x),val^(x),1^(x),\operatorname{val}(x),\widehat{\operatorname{val}}(x),\widehat{1}(x), and ε^x\widehat{\varepsilon}_{x} defined in each of 3.2, 3.3, 3.4, and 3.5 are bounded. Moreover, if they converge then they are independent of x,z0x^{\prime},z_{0} and W1,W2,W_{1},W_{2},\dots. Further, they are SL2()\operatorname{SL}_{2}(\mathbb{Z})-invariant.

  2. (ii)

    If xx is a real quadratic number, then val(x),val^(x),1^(x),\operatorname{val}(x),\widehat{\operatorname{val}}(x),\widehat{1}(x), and ε^x\widehat{\varepsilon}_{x} converge and coincide with the values defined in 1.1 and 2.24.

  3. (iii)

    If val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x) converge, then for any point x1(){x}x^{\prime}\in\mathbb{P}^{1}(\mathbb{R})\setminus\{x\} and a sequence {xn}n=1\{x_{n}\}_{n=1}^{\infty} of real numbers with zn:=γW1Wn(xn+1)S,x,znxz_{n}:=\gamma_{W_{1}\cdots W_{n}}(x_{n}+\sqrt{-1})\in S_{\infty,x},z_{n}\to x, we have

    (3.6) val^(x)\displaystyle\widehat{\operatorname{val}}(x) =limn1|W1|++|Wn|z0znjηx,x,\displaystyle=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{z_{n}}j\eta_{x^{\prime},x},
    (3.7) 1^(x)\displaystyle\widehat{1}(x) =limn1|W1|++|Wn|z0znηx,x.\displaystyle=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{z_{n}}\eta_{x^{\prime},x}.

    Here we define 1/(z):=01/(z-\infty):=0 if x=x^{\prime}=\infty.

  4. (iv)

    The limit ε^x\widehat{\varepsilon}_{x} converges if and only if 1^(x)\widehat{1}(x) converges. Moreover, we have 1^(x)=2logε^x\widehat{1}(x)=2\log\widehat{\varepsilon}_{x}.

  5. (v)

    It holds ε^x(3+5)/2\widehat{\varepsilon}_{x}\geq(3+\sqrt{5})/2. In particular, 1^(x)>0\widehat{1}(x)>0.

  6. (vi)

    If val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x) converge, then val(x)\operatorname{val}(x) converges and we have val(x)=val^(x)/1^(x)\operatorname{val}(x)=\widehat{\operatorname{val}}(x)/\widehat{1}(x).

Here we remark that Theorem 3.1 (vi) follows from Theorem 3.1 (iv) and (v).

Refer to caption
Figure 2. The path of integrals for the limit values in Theorem 3.1 (iii)

4. The extended val\operatorname{val} function as the limit value along a geodesic

In this section, we prove Theorem 3.1 (i) and (ii) for val(x)\operatorname{val}(x). We start with the following properties of badly approximable numbers. Let π:SL2()\\pi\colon\mathbb{H}\to\operatorname{SL}_{2}(\mathbb{Z})\backslash\mathbb{H} be the natural projection.

Proposition 4.1 ([Dal11, Chapter VII, Theorem 3.4], [Dal11, Chapter VII, Lemma 3.5]).

For an irrational number xx\in\mathbb{R}\setminus\mathbb{Q}, the following statements are equivalent.

  1. (i)

    xx is badly approximable;

  2. (ii)

    L(x):=sup{L>0|pn,qn s.t. (pn,qn)=1,qn,|xpn/qn|1/Lqn2}<L(x):=\sup\left\{L>0\mathrel{}\middle|\mathrel{}\exists p_{n},q_{n}\in\mathbb{Z}\text{ s.t. }(p_{n},q_{n})=1,q_{n}\to\infty,\left\lvert x-p_{n}/q_{n}\right\rvert\leq 1/Lq_{n}^{2}\right\}<\infty;

  3. (iii)

    h(x):=sup{t>0znSz0,x s.t. znx,π(zn)π({zIm(z)=t})}<h(x):=\sup\left\{t>0\mid\exists z_{n}\in S_{z_{0},x}\text{ s.t. }z_{n}\to x,\pi(z_{n})\in\pi(\{z\in\mathbb{H}\mid\operatorname{Im}(z)=t\})\right\}<\infty;

  4. (iv)

    For any point z0z_{0}\in\mathbb{H}, the closure π(Sz0,x)¯SL2()\\overline{\pi(S_{z_{0},x})}\subset\operatorname{SL}_{2}(\mathbb{Z})\backslash\mathbb{H} is compact.

The constant L(x)L(x) is called the Lagrange number of xx. Usually, badly approximable numbers are defined as irrational numbers with finite Lagrange numbers.

The following is a key fact in this section.

Theorem 4.2 (Theorem 3.1 (i) and (ii) for val(x)\operatorname{val}(x)).

Let xx be a badly approximable number. Take any point z0z_{0}\in\mathbb{H}. Then the following statements hold.

  1. (i)

    The limit value

    (4.1) val(x):=limzSz0,xzx1dhyp(z0,z)Sz0,zj𝑑s\operatorname{val}(x):=\lim_{\begin{subarray}{c}z\in S_{z_{0},x}\\ z\to x\end{subarray}}\frac{1}{d_{\mathrm{hyp}}(z_{0},z)}\int_{S_{z_{0},z}}jds

    is bounded.

  2. (ii)

    For any matrix γSL2()\gamma\in\operatorname{SL}_{2}(\mathbb{Z}), we have val(γx)=val(x)\operatorname{val}(\gamma x)=\operatorname{val}(x).

  3. (iii)

    If the limit val(x)\operatorname{val}(x) converges, then it is independent of z0z_{0}.

  4. (iv)

    For a real quadratic number xx, val(x)\operatorname{val}(x) converges and coincides with the value defined in 1.1.

Proof.

To begin with, we remark that (iv) follows from Propositions 2.7 and (iii).

We will prove (i). Since xx is badly approximable, the closure π(Sx,z0)¯SL2()\\overline{\pi(S_{x,z_{0}})}\subset\operatorname{SL}_{2}(\mathbb{Z})\backslash\mathbb{H} is compact by Proposition 4.1. Thus, we can choose K>0K>0 such that |j(z)|K\left\lvert j(z)\right\rvert\leq K on Sz0,xS_{z_{0},x}. Since

(4.2) |1dhyp(z0,z)Sz0,zj𝑑s|=1dhyp(z0,z)Sz0,zK𝑑s=K,\displaystyle\left\lvert\frac{1}{d_{\mathrm{hyp}}(z_{0},z)}\int_{S_{z_{0},z}}jds\right\rvert=\frac{1}{d_{\mathrm{hyp}}(z_{0},z)}\int_{S_{z_{0},z}}Kds=K,

the limit is bounded.

The second claim (ii) follows from the fact that j(z)j(z) is SL2()\operatorname{SL}_{2}(\mathbb{Z})-invariant.

As for the third claim (iii), for each point z0z_{0}\in\mathbb{H}, we consider

(4.3) val(x,z0):=limzSz0,xzx1dhyp(z0,z)Sz0,zj𝑑s.\operatorname{val}(x,z_{0}):=\lim_{\begin{subarray}{c}z\in S_{z_{0},x}\\ z\to x\end{subarray}}\frac{1}{d_{\mathrm{hyp}}(z_{0},z)}\int_{S_{z_{0},z}}jds.

We will show that this value is independent of z0z_{0} in two steps.

Step 1. We will show that val(x,z0)=val(x,z1)\operatorname{val}(x,z_{0})=\operatorname{val}(x,z_{1}) for any point z1Sz0,xz_{1}\in S_{z_{0},x}. For i{0,1}i\in\{0,1\}, let

(4.4) ai(z):=Szi,zj𝑑s,bi(z):=Szi,z𝑑s.a_{i}(z):=\int_{S_{z_{i},z}}jds,\quad b_{i}(z):=\int_{S_{z_{i},z}}ds.

Clearly,

(4.5) limzSz0,xzxbi(z)=.\lim_{\begin{subarray}{c}z\in S_{z_{0},x}\\ z\to x\end{subarray}}b_{i}(z)=\infty.

Since

(4.6) a0(z)a1(z)=Sz0,z1j𝑑s,b0(z)b1(z)=Sz0,z1𝑑sa_{0}(z)-a_{1}(z)=\int_{S_{z_{0},z_{1}}}jds,\quad b_{0}(z)-b_{1}(z)=\int_{S_{z_{0},z_{1}}}ds

is bounded, we have

(4.7) val(x,z0)=limzSz0,xzxa0(z)b0(z)=limzSz0,xzxa1(z)+O(1)b1(z)+O(1)=limzSz0,xzxa1(z)b1(z)=val(x,z1).\operatorname{val}(x,z_{0})=\lim_{\begin{subarray}{c}z\in S_{z_{0},x}\\ z\to x\end{subarray}}\frac{a_{0}(z)}{b_{0}(z)}=\lim_{\begin{subarray}{c}z\in S_{z_{0},x}\\ z\to x\end{subarray}}\frac{a_{1}(z)+O(1)}{b_{1}(z)+O(1)}=\lim_{\begin{subarray}{c}z\in S_{z_{0},x}\\ z\to x\end{subarray}}\frac{a_{1}(z)}{b_{1}(z)}=\operatorname{val}(x,z_{1}).
Refer to caption
Figure 3. The paths of integrals appearing in Step 2 in the proof of Theorem 4.2 (iii)

Step 2. We will show that val(x,z0)=val(x,z1)\operatorname{val}(x,z_{0})=\operatorname{val}(x,z_{1}) for any points z0,z1z_{0},z_{1}\in\mathbb{H}. This part is due to Matsusaka. Take a matrix σSL2()\sigma\in\operatorname{SL}_{2}(\mathbb{R}) such that σ1x=\sigma^{-1}x=\infty. Let v0v_{0} be any positive number. By Step 1, we can replace ziz_{i} by Re(zi)+v01\operatorname{Re}(z_{i})+v_{0}\sqrt{-1}. Thus, we may assume v0=Im(σ1z0)=Im(σ1z1)v_{0}=\operatorname{Im}(\sigma^{-1}z_{0})=\operatorname{Im}(\sigma^{-1}z_{1}). Let ui:=Re(σ1zi)u_{i}:=\operatorname{Re}(\sigma^{-1}z_{i}) for i{0,1}i\in\{0,1\}. Then σ1Szi,x\sigma^{-1}S_{z_{i},x} is a subgeodesic of Sui,S_{u_{i},\infty}. Since ds=y1dx2+dy2=y1dyds=y^{-1}\sqrt{dx^{2}+dy^{2}}=y^{-1}dy on Sui,S_{u_{i},\infty}, we have

(4.8) val(x,zi)\displaystyle\operatorname{val}(x,z_{i}) =limzSzi,xzx1dhyp(zi,z)Szi,zj𝑑s\displaystyle=\lim_{\begin{subarray}{c}z\in S_{z_{i},x}\\ z\to x\end{subarray}}\frac{1}{d_{\mathrm{hyp}}(z_{i},z)}\int_{S_{z_{i},z}}jds
(4.9) =limv1dhyp(σ(ui+v1),σ(ui+v01))v0vj(σ(ui+y1))dyy.\displaystyle=\lim_{v\to\infty}\frac{1}{d_{\mathrm{hyp}}(\sigma(u_{i}+v\sqrt{-1}),\sigma(u_{i}+v_{0}\sqrt{-1}))}\int_{v_{0}}^{v}j(\sigma(u_{i}+y\sqrt{-1}))\frac{dy}{y}.

Since

(4.10) dhyp(σ(ui+v1),σ(ui+v01))=dhyp(v1,v01)=v0vdyy=logvv0,\displaystyle d_{\mathrm{hyp}}(\sigma(u_{i}+v\sqrt{-1}),\sigma(u_{i}+v_{0}\sqrt{-1}))=d_{\mathrm{hyp}}(v\sqrt{-1},v_{0}\sqrt{-1})=\int_{v_{0}}^{v}\frac{dy}{y}=\log\frac{v}{v_{0}},

we obtain

(4.11) val(x,z0)val(x,z1)=limv1logv/v0v0v(j(σ(u0+y1))j(σ(u1+y1)))dyy.\operatorname{val}(x,z_{0})-\operatorname{val}(x,z_{1})=\lim_{v\to\infty}\frac{1}{\log v/v_{0}}\int_{v_{0}}^{v}\left(j(\sigma(u_{0}+y\sqrt{-1}))-j(\sigma(u_{1}+y\sqrt{-1}))\right)\frac{dy}{y}.

For two points z,zz,z^{\prime}\in\mathbb{H}, the hyperbolic distances on \mathbb{H} and SL2()\\operatorname{SL}_{2}(\mathbb{Z})\backslash\mathbb{H} are respectively defined by

(4.12) dhyp(z,z):=length(Sz,z),dSL2()\(π(z),π(z)):=min{dhyp(γz,z)γSL2()}.d_{\mathrm{hyp}}(z,z^{\prime}):=\operatorname{length}(S_{z,z^{\prime}}),\quad d_{\operatorname{SL}_{2}(\mathbb{Z})\backslash\mathbb{H}}(\pi(z),\pi(z^{\prime})):=\min\left\{d_{\mathrm{hyp}}(\gamma z,z^{\prime})\mid\gamma\in\operatorname{SL}_{2}(\mathbb{Z})\right\}.

They define the hyperbolic distances on \mathbb{H} and SL2()\\operatorname{SL}_{2}(\mathbb{Z})\backslash\mathbb{H} respectively. By Lemma 2.1, we have

(4.13) coshdhyp(σ(u0+y1),σ(u1+y1))=coshdhyp(u0+y1,u1+y1)=1+|u0u1|22y2.\cosh d_{\mathrm{hyp}}(\sigma(u_{0}+y\sqrt{-1}),\sigma(u_{1}+y\sqrt{-1}))=\cosh d_{\mathrm{hyp}}(u_{0}+y\sqrt{-1},u_{1}+y\sqrt{-1})=1+\frac{\left\lvert u_{0}-u_{1}\right\rvert^{2}}{2y^{2}}.

Thus, we have

(4.14) limydhyp(σ(u0+y1),σ(u1+y1))=0.\lim_{y\to\infty}d_{\mathrm{hyp}}(\sigma(u_{0}+y\sqrt{-1}),\sigma(u_{1}+y\sqrt{-1}))=0.

Since xx is badly approximable, π(Sx,z0)¯π(Sx,z1)¯SL2()\\overline{\pi(S_{x,z_{0}})}\cup\overline{\pi(S_{x,z_{1}})}\subset\operatorname{SL}_{2}(\mathbb{Z})\backslash\mathbb{H} is compact by Proposition 4.1. Thus, j(z)j(z) is continuous on π(Sx,z0)¯π(Sx,z1)¯\overline{\pi(S_{x,z_{0}})}\cup\overline{\pi(S_{x,z_{1}})} with respect to the metric dSL2()\d_{\operatorname{SL}_{2}(\mathbb{Z})\backslash\mathbb{H}}. Hence for any ε>0\varepsilon>0, there exists v0>0v_{0}>0 such that

(4.15) |j(σ(u0+y1))j(σ(u1+y1))|<ε\left\lvert j(\sigma(u_{0}+y\sqrt{-1}))-j(\sigma(u_{1}+y\sqrt{-1}))\right\rvert<\varepsilon

for any y>v0y>v_{0}. Then we have

(4.16) |val(x,z0)val(x,z1)|limv1logv/v0v0vεdyy=ε,\left\lvert\operatorname{val}(x,z_{0})-\operatorname{val}(x,z_{1})\right\rvert\leq\lim_{v\to\infty}\frac{1}{\log v/v_{0}}\int_{v_{0}}^{v}\varepsilon\frac{dy}{y}=\varepsilon,

that is, val(x,z0)=val(x,z1)\operatorname{val}(x,z_{0})=\operatorname{val}(x,z_{1}). ∎

5. The extended val\operatorname{val} function as the limit value along a continued fraction

In this section, we prove Theorem 3.1 (i), (ii), and (iii) for val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x).

To prove Theorem 3.1 (ii), we prepare several lemmas.

Lemma 5.1.

For a badly approximable number x=[k1,k2,]x=[k_{1},k_{2},\dots], let γn:=γ(k1,,k2n)\gamma_{n}:=\gamma_{(k_{1},\dots,k_{2n})}. Then for any point x1()x^{\prime}\in\mathbb{P}^{1}(\mathbb{R}), the set {γn1xn>0}\{\gamma_{n}^{-1}x^{\prime}\mid n\in\mathbb{Z}_{>0}\} is bounded.

Proof.

Let h(x)h(x) be the number defined in Proposition 4.1. By Proposition 4.1, we have

(5.1) γn1Sx,x{zIm(z)h(x)+1}=\gamma_{n}^{-1}S_{x^{\prime},x}\cap\{z\in\mathbb{H}\mid\operatorname{Im}(z)\geq h(x)+1\}=\emptyset

for all sufficiently large nn. Thus, the radius of γn1Sx,x\gamma_{n}^{-1}S_{x^{\prime},x} is less than h(x)+1h(x)+1. Since coefficients of the continued fraction expansion of xx are bounded, {γn1xn>0}\{\gamma_{n}^{-1}x\mid n\in\mathbb{Z}_{>0}\} is bounded. Thus, {γn1xn>0}\{\gamma_{n}^{-1}x^{\prime}\mid n\in\mathbb{Z}_{>0}\} is also bounded. ∎

Refer to caption
Figure 4. Geodesics in the proof of Lemma 5.1
Lemma 5.2.

For an even word WW, a point z0z_{0}\in\mathbb{H}, and sequences {xn},{xn},{yn},{yn}\{x_{n}\},\{x^{\prime}_{n}\},\{y_{n}\},\{y^{\prime}_{n}\}, we have

(5.2) z0γWz0j(ηxn,xnηyn,yn)=O(|xnyn|+|xnyn|).\int_{z_{0}}^{\gamma_{W}z_{0}}j\left(\eta_{x_{n}^{\prime},x_{n}}-\eta_{y_{n}^{\prime},y_{n}}\right)=O(\left\lvert x_{n}-y_{n}\right\rvert+\left\lvert x^{\prime}_{n}-y^{\prime}_{n}\right\rvert).
Proof.

Since

(5.3) |1zxn1zyn||xnyn|min{Im(z0),Im(γWz0)}\left\lvert\dfrac{1}{z-x_{n}}-\dfrac{1}{z-y_{n}}\right\rvert\leq\frac{\left\lvert x_{n}-y_{n}\right\rvert}{\min\{\operatorname{Im}(z_{0}),\operatorname{Im}(\gamma_{W}z_{0})\}}

on the contour {tz0+(1t)γWz00t1}\{tz_{0}+(1-t)\gamma_{W}z_{0}\mid 0\leq t\leq 1\}, it holds

(5.4) |z0γWz0j(z)(1zxn1zyn)||xnyn|min{Im(z0),Im(γWz0)}|z0γWz0j(z)𝑑z|=O(|xnyn|).\left\lvert\int_{z_{0}}^{\gamma_{W}z_{0}}j(z)\left(\dfrac{1}{z-x_{n}}-\dfrac{1}{z-y_{n}}\right)\right\rvert\leq\frac{\left\lvert x_{n}-y_{n}\right\rvert}{\min\{\operatorname{Im}(z_{0}),\operatorname{Im}(\gamma_{W}z_{0})\}}\left\lvert\int_{z_{0}}^{\gamma_{W}z_{0}}j(z)dz\right\rvert=O(\left\lvert x_{n}-y_{n}\right\rvert).

Similar argument shows

(5.5) |z0γWz0j(z)(1zxn1zyn)|=O(|xnyn|).\left\lvert\int_{z_{0}}^{\gamma_{W}z_{0}}j(z)\left(\dfrac{1}{z-x_{n}^{\prime}}-\dfrac{1}{z-y_{n}^{\prime}}\right)\right\rvert=O(\left\lvert x_{n}^{\prime}-y_{n}^{\prime}\right\rvert).

A key result in this section is the following.

Theorem 5.3 (Theorem 3.1 (i) for val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x)).

Let xx be a badly approximable number and W1,W2,W_{1},W_{2},\dots be an infinite sequence of even words such that x=[W1W2]x=[W_{1}W_{2}\cdots] and the set {W1,W2,}\{W_{1},W_{2},\dots\} is finite. Take a point z0z_{0}\in\mathbb{H}. Then the following statements hold.

  1. (i)

    The sequences defining the limits

    (5.6) val^(x)\displaystyle\widehat{\operatorname{val}}(x) :=limn1|W1|++|Wn|z0γW1Wnz0jη,x,\displaystyle:=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}j\eta_{\infty,x},
    (5.7) 1^(x)\displaystyle\widehat{1}(x) :=limn1|W1|++|Wn|z0γW1Wnz0η,x\displaystyle:=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}\eta_{\infty,x}

    is bounded.

  2. (ii)

    The limits val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x) are independent of z0z_{0}.

  3. (iii)

    The limits val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x) are independent of {Wnn1}\{W_{n}\mid n\geq 1\}.

  4. (iv)

    The limits val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x) are SL2()\operatorname{SL}_{2}(\mathbb{Z})-invariant.

Proof.

For the first claim (i), let

(5.8) L\displaystyle L :=limn|W1|++|Wn|2n,\displaystyle:=\lim_{n\to\infty}\frac{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}{2n},
(5.9) an(z0)\displaystyle a_{n}(z_{0}) :=γW1Wn1z0γW1Wnz0jη,x,\displaystyle:=\int_{\gamma_{W_{1}\cdots W_{n-1}z_{0}}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}j\eta_{\infty,x},
(5.10) K\displaystyle K :=max{|j(z)|||Re(z)|1/2,|z|1,Im(z)h(x)},\displaystyle:=\max\left\{\left\lvert j(z)\right\rvert\mathrel{}\middle|\mathrel{}\left\lvert\operatorname{Re}(z)\right\rvert\leq 1/2,\left\lvert z\right\rvert\leq 1,\operatorname{Im}(z)\leq h(x)\right\},
(5.11) R\displaystyle R :=min{Im(z0),Im(γWnz0)n>0},\displaystyle:=\min\{\operatorname{Im}(z_{0}),\operatorname{Im}(\gamma_{W_{n}}z_{0})\mid n\in\mathbb{Z}_{>0}\},
(5.12) M\displaystyle M :=sup{γW1Wn1x,γW1Wn1n>0}.\displaystyle:=\sup\{\gamma_{W_{1}\cdots W_{n}}^{-1}x,\gamma_{W_{1}\cdots W_{n}}^{-1}\infty\mid n\in\mathbb{Z}_{>0}\}.

Here KK and RR are positive real numbers and LL converges since the set {W1,W2,}\{W_{1},W_{2},\dots\} is finite. Since xx is badly approximable, MM is a positive real number by Lemma 5.1. We can write

(5.13) val^(x)=1Llimna1(z0)++an(z0)n.\widehat{\operatorname{val}}(x)=\frac{1}{L}\lim_{n\to\infty}\frac{a_{1}(z_{0})+\dots+a_{n}(z_{0})}{n}.

For any positive integer n0n_{0}, we have

(5.14) |a1(z0)++an(z0)|\displaystyle\left\lvert a_{1}(z_{0})+\dots+a_{n}(z_{0})\right\rvert z0γW1Wnz0|jη,x|\displaystyle\leq\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}\left\lvert j\eta_{\infty,x}\right\rvert
(5.15) =z0γW1Wnz0|j(z)1zx||dz|\displaystyle=\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}\left\lvert j(z)\frac{-1}{z-x}\right\rvert\left\lvert dz\right\rvert
(5.16) 2MKR2n\displaystyle\leq\frac{2MK}{R^{2}}n

and thus the sequence {(a1(z0)++an(z0))/n}n1\{(a_{1}(z_{0})+\dots+a_{n}(z_{0}))/n\}_{n\geq 1} is bounded.

For (ii), pick any other point z0z_{0}^{\prime}\in\mathbb{H}. We have

(5.17) (a1(z0)++an(z0))(a1(z0)++an(z0))\displaystyle\left(a_{1}(z_{0})+\dots+a_{n}(z_{0})\right)-\left(a_{1}(z^{\prime}_{0})+\dots+a_{n}(z^{\prime}_{0})\right) =(γW1Wnz0γW1Wnz0z0z0)jη,x\displaystyle=\left(\int_{\gamma_{W_{1}\cdots W_{n}}z_{0}^{\prime}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}-\int_{z_{0}^{\prime}}^{z_{0}}\right)j\eta_{\infty,x}
(5.18) =z0z0j(γW1Wnη,xη,x)\displaystyle=\int_{z_{0}^{\prime}}^{z_{0}}j\left(\gamma_{W_{1}\cdots W_{n}}^{*}\eta_{\infty,x}-\eta_{\infty,x}\right)
(5.19) =z0z0j(ηγW1Wn1,γW1Wn1xη,x)\displaystyle=\int_{z_{0}^{\prime}}^{z_{0}}j\left(\eta_{\gamma_{W_{1}\cdots W_{n}}^{-1}\infty,\gamma_{W_{1}\cdots W_{n}}^{-1}x}-\eta_{\infty,x}\right)

by Lemma 2.2. Since the most right-hand side is bounded by Lemmas 5.1 and 5.2, we have

(5.20) limna1(z0)++an(z0)n=limna1(z0)++an(z0)n.\lim_{n\to\infty}\frac{a_{1}(z_{0})+\dots+a_{n}(z_{0})}{n}=\lim_{n\to\infty}\frac{a_{1}(z^{\prime}_{0})+\dots+a_{n}(z^{\prime}_{0})}{n}.

As for (iii), let x=[k1,k2,],Vn:=(k2n1,k2n)x=[k_{1},k_{2},\dots],V_{n}:=(k_{2n-1},k_{2n}), and Ln:=|W1|++|Wn|L_{n}:=\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert. Since γW1Wn=γV1VLn\gamma_{W_{1}\cdots W_{n}}=\gamma_{V_{1}\cdots V_{L_{n}}}, we have

(5.21) 1Lnz0γW1Wnz0=1Lnz0γV1VLnz0\frac{1}{L_{n}}\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}=\frac{1}{L_{n}}\int_{z_{0}}^{\gamma_{V_{1}\cdots V_{L_{n}}}z_{0}}

and thus the values val^(x)\widehat{\operatorname{val}}(x) and 1^(x)\widehat{1}(x) are independent of {Wnn1}\{W_{n}\mid n\geq 1\}.

Finally, we prove (iv). Since SL2()\operatorname{SL}_{2}(\mathbb{Z})-equivalent real numbers have the same continued fraction expansions except for the first few terms, it suffices to show f~(x)=f~(γ1x)\widetilde{f}(x)=\widetilde{f}(\gamma^{-1}x) in the case when x=[W1W2],γ=γW1γWkx=[W_{1}W_{2}\dots],\gamma=\gamma_{W_{1}}\dots\gamma_{W_{k}}. This follows from the fact that

(5.22) γW1γWmz0γW1γWm+n+kz0jη,x=γWk+1γWmz0γWk+1γWm+n+kz0jηγ1,γ1x\int_{\gamma_{W_{1}}\dots\gamma_{W_{m}}z_{0}}^{\gamma_{W_{1}}\dots\gamma_{W_{m+n+k}}z_{0}}j\eta_{\infty,x}=\int_{\gamma_{W_{k+1}}\dots\gamma_{W_{m}}z_{0}}^{\gamma_{W_{k+1}}\dots\gamma_{W_{m+n+k}}z_{0}}j\eta_{\gamma^{-1}\infty,\gamma^{-1}x}

for m>km>k is bounded by Lemmas 5.1 and 5.2. ∎

In Theorem 5.3 (i), we consider the differential form η,x\eta_{\infty,x}. In fact, we can replace it by ηx,x\eta_{x^{\prime},x} for any point x1(){x}x^{\prime}\in\mathbb{P}^{1}(\mathbb{R})\setminus\{x\}. To prove it, we prepare the following lemma.

Lemma 5.4.

In the setting of Theorem 5.3, let {xn}n=1\{x^{\prime}_{n}\}_{n=1}^{\infty}\subset\mathbb{R} be a bounded sequence such that xx is not an accumulation point. Then the sequence

(5.23) z0γW1Wnz0j(z)dzzxn\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}j(z)\frac{dz}{z-x^{\prime}_{n}}

is bounded.

Proof.

Let

(5.24) K:=max{|j(z)|||Re(z)|1/2,|z|1,Im(z)h(x)}.K:=\max\left\{\left\lvert j(z)\right\rvert\mathrel{}\middle|\mathrel{}\left\lvert\operatorname{Re}(z)\right\rvert\leq 1/2,\left\lvert z\right\rvert\leq 1,\operatorname{Im}(z)\leq h(x)\right\}.

Then

(5.25) |z0γW1Wnz0j(z)dzzxn|KSz0,γW1Wnz0|dz||zxn|\displaystyle\left\lvert\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}j(z)\frac{dz}{z-x^{\prime}_{n}}\right\rvert\leq K\int_{S_{z_{0},\gamma_{W_{1}\cdots W_{n}}z_{0}}}\frac{\left\lvert dz\right\rvert}{\left\lvert z-x^{\prime}_{n}\right\rvert}
(5.26) KSz0,x|dz||zxn|.\displaystyle\leq K\int_{S_{z_{0},x}}\frac{\left\lvert dz\right\rvert}{\left\lvert z-x^{\prime}_{n}\right\rvert}.

By Lemma 5.4, we can reformulate the definition of val^(x)\widehat{\operatorname{val}}(x) in Theorem 5.3 (i) as follows.

Proposition 5.5.

In the setting of Theorem 5.3, let {xn}n=1\{x^{\prime}_{n}\}_{n=1}^{\infty}\subset\mathbb{R} be a bounded sequence such that xx is not an accumulation point. Then

(5.27) val^(x)=limn1|W1|++|Wn|z0γW1Wnz0jηxn,x\widehat{\operatorname{val}}(x)=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{\gamma_{W_{1}\cdots W_{n}}z_{0}}j\eta_{x^{\prime}_{n},x}

holds.

Finally, we prove Theorem 3.1 (iii).

Theorem 5.6 (Theorem 3.1 (iii)).

In the setting of Theorem 5.3, for any point x1(){x}x^{\prime}\in\mathbb{P}^{1}(\mathbb{R})\setminus\{x\} and a sequence {xn}n=1\{x_{n}\}_{n=1}^{\infty} of real numbers such that zn:=γW1Wn(xn+1)S,xz_{n}:=\gamma_{W_{1}\cdots W_{n}}(x_{n}+\sqrt{-1})\in S_{\infty,x} and znxz_{n}\to x, we have

(5.28) val^(x)\displaystyle\widehat{\operatorname{val}}(x) =limn1|W1|++|Wn|z0znjηx,x,\displaystyle=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{z_{n}}j\eta_{x^{\prime},x},
(5.29) 1^(x)\displaystyle\widehat{1}(x) =limn1|W1|++|Wn|z0znηx,x.\displaystyle=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{z_{n}}\eta_{x^{\prime},x}.
Proof.

We prove only the first equality. Let γn:=γW1Wn\gamma_{n}:=\gamma_{W_{1}\cdots W_{n}}. By Proposition 5.5, we have

(5.30) val^(x)=limn1|W1|++|Wn|1γn1jηx,x.\widehat{\operatorname{val}}(x)=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{\sqrt{-1}}^{\gamma_{n}\sqrt{-1}}j\eta_{x^{\prime},x}.

Take a point z0Sx,xz_{0}\in S_{x^{\prime},x} such that π(z0)π({z1Im(z)h(x)})\pi(z_{0})\in\pi(\{z\in\mathbb{H}\mid 1\leq\operatorname{Im}(z)\leq h(x)\}). Then we have

(5.31) val^(x)=limn1|W1|++|Wn|z0γn1jηx,x.\widehat{\operatorname{val}}(x)=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{\gamma_{n}\sqrt{-1}}j\eta_{x^{\prime},x}.

Since xn+1γn1(Sx,x)x_{n}+\sqrt{-1}\in\gamma_{n}^{-1}(S_{x^{\prime},x}), we have |xn|max{|γn1x|,|γn1x|}\left\lvert x_{n}\right\rvert\leq\max\{\left\lvert\gamma_{n}^{-1}x\right\rvert,\left\lvert\gamma_{n}^{-1}x^{\prime}\right\rvert\}. Thus, |xn|\left\lvert x_{n}\right\rvert is bounded by Lemma 5.1. Since

(5.32) |d(zn,z0)d(γn1,z0)|d(zn,γn1)d(xn+1,1)=1+xn22\left\lvert d(z_{n},z_{0})-d(\gamma_{n}\sqrt{-1},z_{0})\right\rvert\leq d(z_{n},\gamma_{n}\sqrt{-1})\leq d(x_{n}+\sqrt{-1},\sqrt{-1})=1+\frac{x_{n}^{2}}{2}

by the triangle inequality and Lemma 2.1 (ii), d(zn,z0)d(γn1,z0)d(z_{n},z_{0})-d(\gamma_{n}\sqrt{-1},z_{0}) is bounded. Let

(5.33) K:=max{|j(z)|||Re(z)|1/2,|z|1,Im(z)h(x)}.K:=\max\left\{\left\lvert j(z)\right\rvert\mathrel{}\middle|\mathrel{}\left\lvert\operatorname{Re}(z)\right\rvert\leq 1/2,\left\lvert z\right\rvert\leq 1,\operatorname{Im}(z)\leq h(x)\right\}.

Then

(5.34) (z0znz0γn1)jηx,x\displaystyle\left(\int_{z_{0}}^{z_{n}}-\int_{z_{0}}^{\gamma_{n}\sqrt{-1}}\right)j\eta_{x^{\prime},x} =1xn+1jηγn1x,γn1x\displaystyle=\int_{\sqrt{-1}}^{x_{n}+\sqrt{-1}}j\eta_{\gamma_{n}^{-1}x^{\prime},\gamma_{n}^{-1}x}
(5.35) K1xn+1|γn1xγn1x|(min{Im(xn+1),Im(1)})2𝑑z\displaystyle\leq K\int_{\sqrt{-1}}^{x_{n}+\sqrt{-1}}\frac{\left\lvert\gamma_{n}^{-1}x-\gamma_{n}^{-1}x^{\prime}\right\rvert}{(\min\{\operatorname{Im}(x_{n}+\sqrt{-1}),\operatorname{Im}(\sqrt{-1})\})^{2}}dz
(5.36) K|γn1xγn1x|xn\displaystyle\leq K\left\lvert\gamma_{n}^{-1}x-\gamma_{n}^{-1}x^{\prime}\right\rvert x_{n}

is bounded by Lemma 5.1. Thus, we obtain

(5.37) val^(x)=limn1|W1|++|Wn|z0znjηx,x.\widehat{\operatorname{val}}(x)=\lim_{n\to\infty}\frac{1}{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}\int_{z_{0}}^{z_{n}}j\eta_{x^{\prime},x}.

6. Elementary units for badly approximable numbers

In this section, we consider an analog of elementary units for badly approximable numbers and prove Theorem 3.1 (iv) and (v).

Theorem 6.1 (Theorem 3.1 (iv) and (v)).

Let xx be a badly approximable number and W1,W2,W_{1},W_{2},\dots be an infinite sequence of even words such that x=[W1W2]x=[W_{1}W_{2}\cdots] and the set {W1,W2,}\{W_{1},W_{2},\dots\} is finite. Let cn>0c_{n}\in\mathbb{Z}_{>0} be the denominator of a rational number [W1Wn][W_{1}\cdots W_{n}] and

(6.1) L:=limn|W1|++|Wn|n.L:=\lim_{n\to\infty}\frac{\left\lvert W_{1}\right\rvert+\dots+\left\lvert W_{n}\right\rvert}{n}.

Then the limit

(6.2) εx:=limncn1/Ln\varepsilon_{x}:=\lim_{n\to\infty}c_{n}^{1/Ln}

converges if and only if 1^(x)\widehat{1}(x) converges. In that case, it holds 1^(x)=2logεx\widehat{1}(x)=2\log\varepsilon_{x}.

Here we call εx\varepsilon_{x} the elementary units for each badly approximable number xx. Before giving a proof, we state a remark.

Remark 6.2.

In the situation in Theorem 6.1, we have ε(W1,W2,)(3+5)/2\varepsilon(W_{1},W_{2},\dots)\geq(3+\sqrt{5})/2.

Proof of Theorem 6.1.

Let

(6.3) γn:=γW1Wn=(cndn).\gamma_{n}:=\gamma_{W_{1}\cdots W_{n}}=\begin{pmatrix}*&*\\ c_{n}&d_{n}\end{pmatrix}.

Here cnc_{n} is a denominator of the rational number γn()=[W1Wn]\gamma_{n}(\infty)=[W_{1}\cdots W_{n}]. Pick any point z0z_{0}\in\mathbb{H}. Then we have

(6.4) 1~(x)=limn1nz0γnz01zx𝑑z=limn1n[log(zx)]z0γnz0.\displaystyle\widetilde{1}(x)=\lim_{n\to\infty}\frac{1}{n}\int_{z_{0}}^{\gamma_{n}z_{0}}\frac{-1}{z-x}dz=\lim_{n\to\infty}\frac{1}{n}\biggl{[}-\log(z-x)\biggr{]}_{z_{0}}^{\gamma_{n}z_{0}}.

Since γnz0\gamma_{n}z_{0} converges to xx as nn\to\infty and the argument of log\log is bounded, this limit value is equal to

(6.5) limn1nlog|γnz0x|=limn1nlog|z0γn1x(cnz0+dn)(cnγn1x+dn)|.\displaystyle\lim_{n\to\infty}\frac{-1}{n}\log\left\lvert\gamma_{n}z_{0}-x\right\rvert=\lim_{n\to\infty}\frac{-1}{n}\log\left\lvert\frac{z_{0}-\gamma_{n}^{-1}x}{(c_{n}z_{0}+d_{n})(c_{n}\gamma_{n}^{-1}x+d_{n})}\right\rvert.

This is equal to

(6.6) limn1nlog|(cnz0+dn)(cnγn1x+dn)|\lim_{n\to\infty}\frac{1}{n}\log\left\lvert(c_{n}z_{0}+d_{n})(c_{n}\gamma_{n}^{-1}x+d_{n})\right\rvert

since xx is badly approximable and {γn1xn>0}\{\gamma_{n}^{-1}x\mid n\in\mathbb{Z}_{>0}\} is bounded by Lemma 5.1. Since γn1=dn/cn\gamma_{n}^{-1}\infty=-d_{n}/c_{n} is bounded by Lemma 5.1,

(6.7) {cnz+dncnγn1x+dn}n>0\left\{\frac{c_{n}z+d_{n}}{c_{n}\gamma_{n}^{-1}x+d_{n}}\right\}_{n\in\mathbb{Z}_{>0}}

is bounded for any point zz\in\mathbb{H}\cup\mathbb{R}. Thus, we obtain

(6.8) 1^(x)=limn2nlog|cnz+dn|.\widehat{1}(x)=\lim_{n\to\infty}\frac{2}{n}\log\left\lvert c_{n}z+d_{n}\right\rvert.

By substituting z=0z=0, we have

(6.9) 1^(x)=limn2nlogdn.\widehat{1}(x)=\lim_{n\to\infty}\frac{2}{n}\log d_{n}.

Since dn/cnd_{n}/c_{n} is bounded, we obtain

(6.10) 1^(x)=limn2nlogcn=2logεx.\widehat{1}(x)=\lim_{n\to\infty}\frac{2}{n}\log c_{n}=2\log\varepsilon_{x}.

Example 6.3.

For the case when x=ϕ:=(1+5)/2=[1,1,]x=\phi:=(1+\sqrt{5})/2=[1,1,\dots], since

(6.11) [1,,12n]=F2n+1F2n[\underbrace{1,\dots,1}_{2n}]=\frac{F_{2n+1}}{F_{2n}}

where FnF_{n} denotes the nn-th Fibonacci number, we have

(6.12) εϕ\displaystyle\varepsilon_{\phi} =limnF2nn=limn15(ϕ2n(ϕ)2n)n=ϕ2=3+52.\displaystyle=\lim_{n\to\infty}\sqrt[n]{F_{2n}}=\lim_{n\to\infty}\sqrt[n]{\frac{1}{\sqrt{5}}\left(\phi^{2n}-(-\phi)^{2n}\right)}=\phi^{2}=\frac{3+\sqrt{5}}{2}.

7. An explicit computation of values of extended val\operatorname{val} function

In this section, we prove Theorem 1.1. The most important point of the proof below is the following lemma which is based on the proof of [BI19, Theorem 4.3] and is a generalization of [Mur20, Lemma 3.3].

Lemma 7.1 (Repetition frequency estimation).

Let {a1,n}n=1\{a_{1,n}\}_{n=1}^{\infty}, \dots, {ak,n}n=1\{a_{k,n}\}_{n=1}^{\infty} be sequences in 0\mathbb{Z}_{\geq 0} such that ai,na_{i,n}\to\infty and 2nai,n02^{-n}a_{i,n}\to 0 as nn\to\infty. Let VV be a non-empty even word and put v:=[V¯]v:=[\overline{V}]. Let VnV_{n} and WnW_{n} be non-empty even words such that VnV_{n} and Vn+1V_{n+1}, WnW_{n} and Wn+1W_{n+1} coincide in the first nn terms respectively. Let {xn}n=1\{x_{n}\}_{n=1}^{\infty} and {xn}n=1\{x^{\prime}_{n}\}_{n=1}^{\infty} be sequences of real numbers whose continued fraction expansions are

(7.1) xn=[VanVn],xn=[0,Wn]x_{n}=[V^{a_{n}}V_{n}\cdots],\quad-x^{\prime}_{n}=[0,W_{n}\cdots]

respectively. Then

(7.2) In:=z0γVanz0jηxn,xnanN(V)val^(v)I_{n}:=\int_{z_{0}}^{\gamma_{V}^{a_{n}}z_{0}}j\eta_{x^{\prime}_{n},x_{n}}-a_{n}N(V)\widehat{\operatorname{val}}(v)

is a Cauchy sequence. In particular, we have

(7.3) z0γVanz0jηxn,xn=anN(V)val^(v)+O(1) as n.\int_{z_{0}}^{\gamma_{V}^{a_{n}}z_{0}}j\eta_{x^{\prime}_{n},x_{n}}=a_{n}N(V)\widehat{\operatorname{val}}(v)+O(1)\quad\text{ as }n\to\infty.
Proof.

Take positive integers m<nm<n with am<ana_{m}<a_{n}. We have

(7.4) InIm=z0γVz0j(0i<anηγVianxn,γVianxn0i<amηγViamxm,γViamxm+(anam)ηv,v).I_{n}-I_{m}=\int_{z_{0}}^{\gamma_{V}z_{0}}j\left(\sum_{0\leq i<a_{n}}\eta_{\gamma_{V}^{i-a_{n}}x^{\prime}_{n},\gamma_{V}^{i-a_{n}}x_{n}}-\sum_{0\leq i<a_{m}}\eta_{\gamma_{V}^{i-a_{m}}x^{\prime}_{m},\gamma_{V}^{i-a_{m}}x_{m}}+(a_{n}-a_{m})\eta_{v^{\prime},v}\right).

Let

(7.5) S1(m,n;z)\displaystyle S_{1}(m,n;z) :=0i<am(1zγVianxn1zγViamxm),\displaystyle:=\sum_{0\leq i<a_{m}}\left(\frac{1}{z-\gamma_{V}^{i-a_{n}}x_{n}}-\frac{1}{z-\gamma_{V}^{i-a_{m}}x_{m}}\right),
(7.6) S1(m,n;z)\displaystyle S^{\prime}_{1}(m,n;z) :=0i<am(1zγVianxn1zγViamxm),\displaystyle:=\sum_{0\leq i<a_{m}}\left(\frac{1}{z-\gamma_{V}^{i-a_{n}}x^{\prime}_{n}}-\frac{1}{z-\gamma_{V}^{i-a_{m}}x^{\prime}_{m}}\right),
(7.7) S2(m,n;z)\displaystyle S_{2}(m,n;z) :=ami<an(1zγVianxn1zv),\displaystyle:=\sum_{a_{m}\leq i<a_{n}}\left(\frac{1}{z-\gamma_{V}^{i-a_{n}}x_{n}}-\frac{1}{z-v}\right),
(7.8) S2(m,n;z)\displaystyle S^{\prime}_{2}(m,n;z) :=ami<an(1zγVianxn1zv).\displaystyle:=\sum_{a_{m}\leq i<a_{n}}\left(\frac{1}{z-\gamma_{V}^{i-a_{n}}x^{\prime}_{n}}-\frac{1}{z-v^{\prime}}\right).

Then we can write

(7.9) InIm=z0γVz0j(S1(m,n;z)+S1(m,n;z)+S2(m,n;z)S2(m,n;z))𝑑z.I_{n}-I_{m}=\int_{z_{0}}^{\gamma_{V}z_{0}}j\left(-S_{1}(m,n;z)+S^{\prime}_{1}(m,n;z)+S_{2}(m,n;z)-S^{\prime}_{2}(m,n;z)\right)dz.

For each 0i<am0\leq i<a_{m}, since

γVianxn\displaystyle\gamma_{V}^{i-a_{n}}x_{n} =[ViVn],\displaystyle=[V^{i}V_{n}\cdots],\quad γViamxm\displaystyle\gamma_{V}^{i-a_{m}}x_{m} =[ViVm],\displaystyle=[V^{i}V_{m}\cdots],
γVianxn\displaystyle\gamma_{V}^{i-a_{n}}x^{\prime}_{n} =[0,ViWn],\displaystyle=-[0,V^{\prime i}W_{n}\cdots],\quad γViamxm\displaystyle\gamma_{V}^{i-a_{m}}x^{\prime}_{m} =[0,ViWm],\displaystyle=-[0,V^{\prime i}W_{m}\cdots],

we have

(7.10) |γVianxnγViamxm|22m,|γVianxnγViamxm|22m.\left\lvert\gamma_{V}^{i-a_{n}}x_{n}-\gamma_{V}^{i-a_{m}}x_{m}\right\rvert\leq 2^{2-m},\quad\left\lvert\gamma_{V}^{i-a_{n}}x^{\prime}_{n}-\gamma_{V}^{i-a_{m}}x^{\prime}_{m}\right\rvert\leq 2^{2-m}.

For each ami<ana_{m}\leq i<a_{n}, since

(7.11) γVianxn=[ViVn],γVianxn=[0,ViWn],\gamma_{V}^{i-a_{n}}x_{n}=[V^{i}V_{n}\cdots],\quad\gamma_{V}^{i-a_{n}}x^{\prime}_{n}=-[0,V^{\prime i}W_{n}\cdots],

we have

(7.12) |γVianxnv|22am,|γVianxnv|22am.\left\lvert\gamma_{V}^{i-a_{n}}x_{n}-v\right\rvert\leq 2^{2-a_{m}},\quad\left\lvert\gamma_{V}^{i-a_{n}}x^{\prime}_{n}-v^{\prime}\right\rvert\leq 2^{2-a_{m}}.

By Lemma 5.2, we obtain

(7.13) |InIm|=0i<amO(2m)+ami<anO(2am)=O(am2m)+O((anam)2am).\left\lvert I_{n}-I_{m}\right\rvert=\sum_{0\leq i<a_{m}}O(2^{-m})+\sum_{a_{m}\leq i<a_{n}}O(2^{-a_{m}})=O(a_{m}2^{-m})+O((a_{n}-a_{m})2^{-a_{m}}).

Since this converges to 0 as mm\to\infty by the assumption, {In}\{I_{n}\} is a Cauchy sequence. ∎

Proof of Theorem 1.1.

Keep the notation in Theorem 1.1 and let

(7.14) L:=limn|U1|++|Un|An.L:=\lim_{n\to\infty}\frac{\left\lvert U_{1}\right\rvert+\cdots+\left\lvert U_{n}\right\rvert}{A_{n}}.

It suffices to show that

(7.15) Lval^(x)=a1val^(W1)++akval^(Wk).L\widehat{\operatorname{val}}(x)=a_{1}\widehat{\operatorname{val}}(W_{1})+\dots+a_{k}\widehat{\operatorname{val}}(W_{k}).

Take any real number x<1x^{\prime}<-1 and for positive integers nn and 1ik1\leq i\leq k, let

(7.16) xn\displaystyle x_{n} :=γU1Un11x=[UnUn+1],\displaystyle:=\gamma_{U_{1}\cdots U_{n-1}}^{-1}x=[U_{n}U_{n+1}\cdots],
(7.17) xn\displaystyle x^{\prime}_{n} :=γU1Un11x=[0,Un1U1,δ0x],\displaystyle:=\gamma_{U_{1}\cdots U_{n-1}}^{-1}x^{\prime}=-[0,U^{\prime}_{n-1}\cdots U^{\prime}_{1},\delta_{0}x^{\prime}],
(7.18) xi,n\displaystyle x_{i,n} :=γV1W1a1,nV2W2a2,nVi1Wi1ai1,n1xn=[ViWiai,nVkWkak,nUn+1Un+2],\displaystyle:=\gamma_{V_{1}W_{1}^{a_{1,n}}V_{2}W_{2}^{a_{2,n}}\cdots V_{i-1}W_{i-1}^{a_{i-1,n}}}^{-1}x_{n}=[V_{i}W_{i}^{a_{i,n}}\cdots V_{k}W_{k}^{a_{k,n}}U_{n+1}U_{n+2}\cdots],
(7.19) xi,n\displaystyle x^{\prime}_{i,n} :=γV1W1a1,nV2W2a2,nVi1Wi1ai1,n1xn=[0,Wi1ai1,nVi1W1a1,nV1Un1U1,δ0x].\displaystyle:=\gamma_{V_{1}W_{1}^{a_{1,n}}V_{2}W_{2}^{a_{2,n}}\cdots V_{i-1}W_{i-1}^{a_{i-1,n}}}^{-1}x_{n}=-[0,{W^{\prime}}_{i-1}^{a_{i-1,n}}V^{\prime}_{i-1}\cdots{W^{\prime}}_{1}^{a_{1,n}}V^{\prime}_{1}U^{\prime}_{n-1}\cdots U^{\prime}_{1},\delta_{0}x^{\prime}].

Since x<1x^{\prime}<-1, the far right-hand sides in the second and fourth rows are continued fraction expansions. Then we have

(7.20) Lval^(x)\displaystyle L\widehat{\operatorname{val}}(x) =limn1An1mnγU1Um1z0γU1Umz0jηx,x\displaystyle=\lim_{n\to\infty}\frac{1}{A_{n}}\sum_{1\leq m\leq n}\int_{\gamma_{U_{1}\cdots U_{m-1}}z_{0}}^{\gamma_{U_{1}\cdots U_{m}}z_{0}}j\eta_{x^{\prime},x}
(7.21) =limn1An1mnz0γUmz0jηxm,xm\displaystyle=\lim_{n\to\infty}\frac{1}{A_{n}}\sum_{1\leq m\leq n}\int_{z_{0}}^{\gamma_{U_{m}}z_{0}}j\eta_{x^{\prime}_{m},x_{m}}
(7.22) =limn1An1mn1ik(z0γViz0jηxi,m,xi,m+z0Wiai,mz0jηγVi1xi,m,γVi1xi,m).\displaystyle=\lim_{n\to\infty}\frac{1}{A_{n}}\sum_{1\leq m\leq n}\sum_{1\leq i\leq k}\left(\int_{z_{0}}^{\gamma_{V_{i}}z_{0}}j\eta_{x^{\prime}_{i,m},x_{i,m}}+\int_{z_{0}}^{W_{i}^{a_{i,m}}z_{0}}j\eta_{\gamma_{V_{i}}^{-1}x^{\prime}_{i,m},\gamma_{V_{i}}^{-1}x_{i,m}}\right).

Since we have

(7.23) |xi,mγViwi|22ai,m,|xi,mγwi1|22ai1,m\left\lvert x_{i,m}-\gamma_{V_{i}}w_{i}\right\rvert\leq 2^{2-a_{i,m}},\,\left\lvert x^{\prime}_{i,m}-\gamma_{w^{\prime}_{i-1}}\right\rvert\leq 2^{2-a_{i-1,m}}

by continued fraction expansion, it follows from Lemma 5.2 that

(7.24) z0γViz0j(ηxi,m,xi,mηwi1,γViwi)=O(2ai,m+2ai1,m).\int_{z_{0}}^{\gamma_{V_{i}}z_{0}}j\left(\eta_{x^{\prime}_{i,m},x_{i,m}}-\eta_{w^{\prime}_{i-1},\gamma_{V_{i}}w_{i}}\right)=O(2^{-a_{i,m}}+2^{-a_{i-1,m}}).

Since

(7.25) γVi1xi,m\displaystyle\gamma_{V_{i}}^{-1}x_{i,m} =[Wiai,mVkWkak,mUn+1Un+2],\displaystyle=[W_{i}^{a_{i,m}}\cdots V_{k}W_{k}^{a_{k,m}}U_{n+1}U_{n+2}\cdots],
(7.26) γVi1xi,m\displaystyle\gamma_{V_{i}}^{-1}x^{\prime}_{i,m} =[0,ViWi1ai1,mVi1W1a1,mV1Um1U1,δ0x],\displaystyle=-[0,V^{\prime}_{i}{W^{\prime}}_{i-1}^{a_{i-1,m}}V^{\prime}_{i-1}\cdots{W^{\prime}}_{1}^{a_{1,m}}V^{\prime}_{1}U^{\prime}_{m-1}\cdots U^{\prime}_{1},\delta_{0}x^{\prime}],

we have

(7.27) z0Wiai,mz0jηγVi1xi,m,γVi1xi,m=ai,mN(Wi)val^(wi)+O(1)\int_{z_{0}}^{W_{i}^{a_{i,m}}z_{0}}j\eta_{\gamma_{V_{i}}^{-1}x^{\prime}_{i,m},\gamma_{V_{i}}^{-1}x_{i,m}}=a_{i,m}N(W_{i})\widehat{\operatorname{val}}(w_{i})+O(1)

by Lemma 7.1. Thus, we obtain

(7.28) Lval^(x)\displaystyle L\widehat{\operatorname{val}}(x) =limn1An1mn1ikai,mN(Wi)val^(wi)\displaystyle=\lim_{n\to\infty}\frac{1}{A_{n}}\sum_{1\leq m\leq n}\sum_{1\leq i\leq k}a_{i,m}N(W_{i})\widehat{\operatorname{val}}(w_{i})
(7.29) =1ikaiN(Wi)val^(wi).\displaystyle=\sum_{1\leq i\leq k}a_{i}N(W_{i})\widehat{\operatorname{val}}(w_{i}).

8. The value of val\operatorname{val} function at the Thue–Morse word

In this section, we calculate the value of val\operatorname{val} function at the Thue–Morse word and prove Theorem 1.2.

We fix two even words VV and WW. Let h:{V,W}{V,W}h\colon\{V,W\}^{*}\to\{V,W\}^{*} be a monoid homomorphism such that h(V):=VW,h(W):=WVh(V):=VW,h(W):=WV and Vh:=limnhn(V)V_{h}:=\lim_{n\to\infty}h^{n}(V) be the Thue–Morse word. For a word U=U1Un{V,W}U=U_{1}\cdots U_{n}\in\{V,W\}^{*} with U1,,Un{V,W}U_{1},\dots,U_{n}\in\{V,W\}, let U:=UnU1U^{\prime}:=U_{n}\cdots U_{1}.

To begin with, we give a simple representation of the Thue–Morse word.

Lemma 8.1.

Let τ:{V,W}{V,W}\tau\colon\{V,W\}^{*}\to\{V,W\}^{*} be a monoid homomorphism such that τ(V):=W\tau(V):=W and τ(W):=V\tau(W):=V. Then the following statements hold.

  1. (i)

    For any positive integer nn, we have hn(V)=hn1(V)τhn1(V)h^{n}(V)=h^{n-1}(V)\tau h^{n-1}(V).

  2. (ii)

    h2n(V)=h2n(V)h^{2n}(V)^{\prime}=h^{2n}(V).

Proof.

The first claim (i) follows from the facts that hτ=τhh\circ\tau=\tau\circ h and h2(U)=h(U)τh(U)h^{2}(U)=h(U)\tau h(U) for a word U{V,W}U\in\{V,W\}^{*} such that h(U)=Uτ(U)h(U)=U\tau(U). The last claim (ii) follows from the fact that h2(U)=h2(U)h^{2}(U)^{\prime}=h^{2}(U) for a word U{V,W}U\in\{V,W\}^{*} such that h(U)=Uτ(U)h(U)=U\tau(U) and U=UU^{\prime}=U. ∎

Proof of Theorem 1.2.

Let Vn:=hn(V)V_{n}:=h^{n}(V). Since [Vn]=[0,Vn][V_{n}]^{\prime}=-[0,V_{n}] by Lemma 8.1 (ii), we have

(8.1) val^([Vh])=limn122nz0γVnz0jη[0,Vh],Vh,val^([Vn])=z0γVnz0jη[0,Vn],Vn.\widehat{\operatorname{val}}([V_{h}])=\lim_{n\to\infty}\frac{1}{2^{2n}}\int_{z_{0}}^{\gamma_{V_{n}}z_{0}}j\eta_{-[0,V_{h}],V_{h}},\quad\widehat{\operatorname{val}}([V_{n}])=\int_{z_{0}}^{\gamma_{V_{n}}z_{0}}j\eta_{-[0,V_{n}],V_{n}}.

Here the first 22n2^{2n} terms of VhV_{h} are VnV_{n} by Lemma 8.1 (i). Thus, we obtain the claim. ∎

References

  • [Aig97] M. Aigner. Markov’s theorem and 100 years of the uniqueness conjecture. Springer, 1997.
  • [Bea83] A. F. Beardon. The geometry of discrete groups, volume 91 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1983.
  • [BI19] P. Bengoechea and Ö. Imamoglu. Cycle integrals of modular functions, Markov geodesics and a conjecture of Kaneko. Algebra Number Theory, 13(4):943––962, 2019.
  • [CK97] C. Choffrut and J. Karhumäki. Combinatorics of words. In Handbook of formal languages, Vol. 1, pages 329–438. Springer, Berlin, 1997.
  • [Dal11] F. Dal’Bo. Geodesic and horocyclic trajectories. Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. Translated from the 2007 French original.
  • [DIT11] W. Duke, Ö. Imamoḡlu, and Á. Tóth. Cycle integrals of the jj-function and mock modular forms. Ann. of Math. (2), 173(2):947–981, 2011.
  • [Kan09] M. Kaneko. Observations on the ‘values’ of the elliptic modular function j(τ)j(\tau) at real quadratics. Kyushu Journal of Mathematics, 63(2):353–364, 2009.
  • [Mat20] T. Matsusaka. A hyperbolic analogue of the rademacher symbol. 2020. arXiv:2003.12354.
  • [Mur20] Y. Murakami. A continuity of cycle integrals of modular functions. Ramanujan J., 2020.
  • [Shi72] G. Shimura. Class fields over real quadratic fields and Hecke operators. Ann. of Math. (2), 95:130–190, 1972.
  • [Shi78] Takuro Shintani. On certain ray class invariants of real quadratic fields. J. Math. Soc. Japan, 30(1):139–167, 1978.
  • [Zag02] D. Zagier. Traces of singular moduli. In Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), volume 3 of Int. Press Lect. Ser., pages 211–244. Int. Press, Somerville, MA, 2002.