This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Exponential decay property for eigenfunctions of quantum walks

Kazuyuki Wada Department of Mathematics, Hokkaido University of Education
9 cho-me, Hokumon-cho
Asahikawa, Hokkaido 070-8621, Japan
[email protected]
(Date: May 20, 2024)
Abstract.

Under an abstract setting, we show that eigenvectors belong to discrete spectra of unitary operators have exponential decay properties. We apply the main theorem to multi-dimensional quantum walks and show that eigenfunctions belong to a discrete spectrum decay exponentially at infinity.

Key words and phrases:
Eigenfunction, Eigenvalue, Exponential decay, Quantum walk, Unitary operator
1991 Mathematics Subject Classification:
Primary 81Q35; Secondary 47B02, 47B15, 47B93

1. Introduction

Exponential decay property (EDP) at infinity is one of the characteristic properties of eigenfunctions associated with Schrödinger operators. Earlier works on EDP are discussed by Šnol’. In [35], he discussed the asymptotic behavior at infinity for eigenfunctions belong to discrete spectra. Moreover, it was clarified that there is a relation between the spectral gap and decay rate at infinity. O’Connor, Combes-Thomas, and Agmon considered EDP for NN-body Schrödinger operators. O’Connor showed EDP for pair potentials belonging to Rollnik class plus LϵL_{\epsilon}^{\infty} class [31]. Combes and Thomas showed it for pair potentials which are analytic for the subgroup of linear transformation groups [4]. Agmon showed it by application of operator positivity methods [1]. For other works on EDP, we refer Froese-Herbst [8], Griesemer [10], Nakamura [30], Bach-Matte [2], Yafaev [38] and Kawamoto [19]. We can also derive EDP from an application of the Feynman-Kac type formula. It is known that semigroups generated by a class of Schrödinger operators can be represented by stochstic processes. In particular, martingale properties are crucial to deriving EDP. In this direction, we refer [3, 17, 18, 24] and references therein. EDP also appears in the context of quantum field theory [11, 14, 15]. Besides, this property is not only shown but also applied to show the existence of ground states in non-relativistic quantum electrodynamics [12, 16].

In this paper, we consider EDP for a class of unitary operators. Let UU be a unitary operator and AA be a non-negative self-adjoint operator on a Hilbert space .\mathcal{H}. We suppose that the discrete spectrum of UU is not empty. The purpose of this paper is to show

eδAψ,\displaystyle e^{\delta A}\psi\in\mathcal{H}, (1.1)

for any eigenvector ψ\psi belongs to the discrete spectrum and any sufficiently small δ>0\delta>0. In this case, we say that ψ\psi has EDP for AA. As we see below, the range of δ\delta is closely related to the distance between the essential spectrum of UU and the discrete eigenvalue which ψ\psi belongs to. A typical example of a non-negative self-adjoint operator AA in our mind is the modules of the position operator.

A motivation we consider EDP for unitary operators comes from quantum walks which are often regarded as a quantum counterpart of random walks [13, 23, 27]. From the viewpoint of partial differential equations, quantum walks are space-time discretized Dirac equations [26]. It is well known that some properties of quantum walks are quite different from that of random walks. In particular, the ballistic transportation and the localization occur in quantum walks [20, 21]. Related to these properties, mathematical analysis is developed from a viewpoint of weak limit theorem [7, 34, 33], spectral theory[28, 29, 32], and references therein as examples.

In the context of quantum walks, results on the existence of discrete spectra are known [22, 25]. In particular, the explicit optimal decay rate is derived. In particular, in nonlinear quantum walks, EDP is applied to obtain the asymptotic stability [25]. However, these references are limited in one dimension. In the one-dimensional case, we can introduce the transfer matrix which is a powerful tool for solving eigenvalue problems and analyzing various quantities. Although, in multi-dimensional cases, the existence of a discrete spectrum is reported in [6, 9], detailed properties of eigenfunctions are not well known. In particular, it is not known whether eigenfunctions have EDP, yet. Motivated by these situations, we show EDP for a class of quantum walks involving multi-dimensional cases.

First, we establish (1.1) under a general setting in Section 2. Since we treat exponential operators of unbounded operators, we have to introduce suitable cut-off functions to avoid domain problems. For the proof, we mainly follow the methods presented by Yafaev [38] concerned the first-order differential systems involving Dirac operators. In our case, the derivative of functions are replaced by commutators. To analyze commutators is the crucial part.

In proofs, instead of AA, we introduce another operator Λ(A)\Lambda(A) which is step-like and approximates AA from above (see (2.1)). In the function space, differential operators and multiplication operators act locally on configuration spaces. From this observation, in addition to introducing Λ(A),\Lambda(A), it may be suitable to assume some locality conditions in UU. Therefore, in this paper, we impose “finite propagation” condition (see Assumption 2.3) for UU. By these two ideas, we can analyze the commutator in detail.

The optimal constant δ\delta in (1.1) depends on dispersion relations of quantum walks. For example, in [22, 25], the optimal constant is derived. However, in quantum walks, we can select graphs, internal degrees of freedom, motion of a quantum walker, and shift parameters. Thus, it would be useful to establish EDP in general settings. For example, in [37], Tiedra de Aldecoa considered spectral and scattering theory for quantum walks on not square lattices but trees. If discrete spectra of such quantum walks are not empty, we can apply our results. Our idea can be applied to discrete Schrödinger operators since they consist of shift operators and multiplication operators that act locally.

As an application, in Section 3, we apply the results for multi-dimensional quantum walks with a defect. Then, we can show that eigenfunctions associated with discrete spectrum possess EDP.

2. Set up and main result

Let \mathcal{H} be the separable Hilbert space over \mathbb{C}. The symbol ,\langle\cdot,\cdot\rangle and \|\cdot\| denotes the inner product and the norm over \mathcal{H}, respectively. Let UU be a unitary operator on \mathcal{H}. Symbols σ(U)\sigma(U), σess(U)\sigma_{\mathrm{ess}}(U) and σd(U)\sigma_{\mathrm{d}}(U) denote the spectrum of UU, the essential spectrum of UU and the discrete spectrum of UU, respectively. First, we introduce the following notion:

Definition 2.1.

Let SS be a self-adjoint operator on .\mathcal{H}. We denote the spectral measure of SS by ES().E_{S}(\cdot). We say that UU finitely propagates with respect to SS if there exists a constant b>0b>0 such that for any ψRanES([R1,R2))\psi\in\mathrm{Ran}E_{S}([R_{1},R_{2})) with R1<R2,R_{1}<R_{2}, UψRanES([R1b,R2+b)).U\psi\in\mathrm{Ran}E_{S}([R_{1}-b,R_{2}+b)).

Remark 2.2.

In Definition 2.1, we introduced the notion of finite propagation for half-open intervals. Of course, we can also define the notion of the finite propagation by open intervals and closed intervals. However, we only consider half-open intervals to cover [0,)[0,\infty) by disjoint intervals.

We impose the following assumption:

Assumption 2.3.
  1. (1)

    σd(U)\sigma_{\mathrm{d}}(U)\neq\emptyset.

  2. (2)

    The unitary operator UU finitely propagates with a constant b>0b>0 with respect to a non-negative, possibly unbounded, self-adjoint operator A.A.

For any λσd(U),\lambda\in\sigma_{\mathrm{d}}(U), we define the constant d(λ)>0d(\lambda)>0 as

d(λ):=dist(λ,σess(U))=infμσess(U)|λμ|.\displaystyle d(\lambda):=\mathrm{dist}(\lambda,\sigma_{\mathrm{ess}}(U))=\displaystyle\inf_{\mu\in\sigma_{\mathrm{ess}}(U)}|\lambda-\mu|.

The main result of this section is as follows:

Theorem 2.4.

Under Assunption 2.3, for any ψKer(Uλ){0}\psi\in\mathrm{Ker}(U-\lambda)\setminus\{0\} with λσd(U)\lambda\in\sigma_{\mathrm{d}}(U), eδAψe^{\delta A}\psi\in\mathcal{H} for any δ>0\delta>0 such that 2sinh(δb)<d(λ)2\sinh(\delta b)<d(\lambda).

Remark 2.5.

The non-negativity in the second part of Assumption 2.3 is not essential. However, for simplicity, we assume the non-negativity of AA in this paper.

In what follows, we always assume Assumption 2.3. To prove Theorem 2.4, we prepare some lemmas.

Lemma 2.6.

We take λσd(U).\lambda\in\sigma_{\mathrm{d}}(U). Then for any ϵ>0,\epsilon>0, there exists R>0R>0 such that

Ufλf{d(λ)ϵ}f,\displaystyle\|Uf-\lambda f\|\geq\{d(\lambda)-\epsilon\}\|f\|,

for all ff\in\mathcal{H} such that EA([0,R))f=0E_{A}([0,R))f=0.

Proof.

We suppose the contrary. Then there exists ϵ>0\epsilon>0 such that for any R>0R>0, there exists fRf_{R}\in\mathcal{H} such that fR=1\|f_{R}\|=1, EA([0,R))fR=0E_{A}([0,R))f_{R}=0 and

UfRλfR<d(λ)ϵ.\displaystyle\|Uf_{R}-\lambda f_{R}\|<d(\lambda)-\epsilon.

We choose θ[0,2π)\theta\in[0,2\pi) such that a:=dist(Arc(λ,θ),σess(U))<d(λ)a:=\mathrm{dist}\left(\mathrm{Arc}(\lambda,\theta),\sigma_{\mathrm{ess}}(U)\right)<d(\lambda) and a>d(λ)ϵa>d(\lambda)-\epsilon, where

Arc(λ,θ):={λeik|θkθ}.\mathrm{Arc}(\lambda,\theta):=\{\lambda e^{ik}|-\theta\leq k\leq\theta\}.

We set X:=Arc(λ,θ),X:=\mathrm{Arc}(\lambda,\theta), and gR:=(1EU(X))fRg_{R}:=(1-E_{U}(X))f_{R}, where EU()E_{U}(\cdot) is the spectral measure of UU. From the spectral theorem for unitary operators, it follows that

UgRλgR2=S1X|μλ|2dEU(μ)gR2>a2gR2,\displaystyle\|Ug_{R}-\lambda g_{R}\|^{2}=\displaystyle\int_{S^{1}\setminus X}|\mu-\lambda|^{2}\mathrm{d}\|E_{U}(\mu)g_{R}\|^{2}>a^{2}\|g_{R}\|^{2},

where S1S^{1} is the unit circle on .\mathbb{C}. Since fRf_{R} weakly converges to 0 (as RR\to\infty) and EU(X)E_{U}(X) is compact, EU(X)fRE_{U}(X)f_{R} strongly converges to 0 (as RR\to\infty). This implies that gRfR0\|g_{R}-f_{R}\|\to 0 (as RR\to\infty). On the other hand, we have

agR\displaystyle a\|g_{R}\| <UgRλgR\displaystyle<\|Ug_{R}-\lambda g_{R}\|
UfRλfR+(Uλ)EU(X)fR\displaystyle\leq\|Uf_{R}-\lambda f_{R}\|+\|(U-\lambda)E_{U}(X)f_{R}\|
<d(λ)ϵ+2EU(X)fR.\displaystyle<d(\lambda)-\epsilon+2\|E_{U}(X)f_{R}\|.

By taking the limit RR\rightarrow\infty, we get ad(λ)ϵa\leq d(\lambda)-\epsilon since gRfR=1(asR).\|g_{R}\|\rightarrow\|f_{R}\|=1\ (\mathrm{as}\ R\rightarrow\infty). This is a contradiction since we took aa like as a>d(λ)ϵa>d(\lambda)-\epsilon. ∎

Before going to next lemma, we introduce followig step-like functions. For NN\in\mathbb{N} and δ>0,\delta>0, we define

Λ(r):=n=1δnb𝕀Bn(r),ΛN(r):={n=1Nδnb𝕀Bn(r),r[0,Nb),δNb,r[Nb,),\displaystyle\Lambda(r):=\displaystyle\sum_{n=1}^{\infty}\delta nb\mathbb{I}_{B_{n}}(r),\quad\Lambda_{N}(r):=\begin{cases}\displaystyle\sum_{n=1}^{N}\delta nb\mathbb{I}_{B_{n}}(r),\ &r\in[0,Nb),\\ \delta Nb,&r\in[Nb,\infty),\end{cases} (2.1)

where Bn:=[(n1)b,nb)B_{n}:=[(n-1)b,nb)\subset\mathbb{R} and 𝕀Bn\mathbb{I}_{B_{n}} is the characteristic function of Bn.B_{n}. Then, Λ\Lambda approximates a function f(r):=δr,(r[0,))f(r):=\delta r,\ (r\in[0,\infty)) from the above and ΛN\Lambda_{N} is a cut-off function of Λ.\Lambda.

For a two bounded operators SS and TT, we define the commutator [S,T][S,T] as [S,T]:=STTS.[S,T]:=ST-TS.

Lemma 2.7.

For any R>0R>0, we set EA(R):=EA([R,)).E_{A}(R):=E_{A}([R,\infty)). Then, eΛ(A)[U,EA(R)]e^{\Lambda(A)}[U,E_{A}(R)] is bounded on \mathcal{H} and

eΛ(A)[U,EA(R)]eδR+bb+eδRb,\displaystyle\|e^{\Lambda(A)}[U,E_{A}(R)]\|\leq e^{\delta\lceil R+b\rceil_{b}}+e^{\delta\lceil R\rceil_{b}},

where for x>0,xb:=bmin{n|xnb}.x>0,\lceil x\rceil_{b}:=b\cdot\min\{n\in\mathbb{N}|\ x\leq nb\}.

Proof.

Since UU finitely propagates with respect to AA, it follows that

[U,EA(R)]\displaystyle[U,E_{A}(R)]
={UEA(R)EA(R)U}\displaystyle=\{UE_{A}(R)-E_{A}(R)U\}
×{EA([0,Rb))+EA([Rb,R))+EA([R,R+b))+EA(R+b)}\displaystyle\quad\times\{E_{A}([0,R-b))+E_{A}([R-b,R))+E_{A}([R,R+b))+E_{A}(R+b)\}
=EA([R,R+b))UEA([Rb,R))+EA([Rb,R))UEA([R,R+b)),\displaystyle=-E_{A}([R,R+b))UE_{A}([R-b,R))+E_{A}([R-b,R))UE_{A}([R,R+b)),

where if Rb0,R-b\leq 0, we set EA([0,Rb))=0E_{A}([0,R-b))=0 and EA([Rb,R))=EA([0,R)).E_{A}([R-b,R))=E_{A}([0,R)). Thus, for any ψ,\psi\in\mathcal{H}, it follows that [U,EA(R)]ψD(eΛ(A))[U,E_{A}(R)]\psi\in D(e^{\Lambda(A)}) and

eΛ(A)[U,EA(R)]ψ(eδR+bb+eδRb)ψ.\displaystyle\|e^{\Lambda(A)}[U,E_{A}(R)]\psi\|\leq\left(e^{\delta\lceil R+b\rceil_{b}}+e^{\delta\lceil R\rceil_{b}}\right)\|\psi\|.

Therefore the lemma follows. ∎

Lemma 2.8.

For any N,N\in\mathbb{N}, it follows that

[U,eΛN(A)]eΛN(A)2sinh(δb).\displaystyle\|[U,e^{\Lambda_{N}(A)}]e^{-\Lambda_{N}(A)}\|\leq 2\sinh(\delta b).

In particular, the above estimate in the right hand side does not depend on NN.

Proof.

By applying the Duhamel formula, [U,eΛN(A)]eΛN(A)[U,e^{\Lambda_{N}(A)}]e^{-\Lambda_{N}(A)} can be expressed as

[U,eΛN(A)]eΛN(A)=01etΛN(A)[U,ΛN(A)]etΛN(A)dt.\displaystyle[U,e^{\Lambda_{N}(A)}]e^{-\Lambda_{N}(A)}=\displaystyle\int_{0}^{1}e^{t\Lambda_{N}(A)}[U,\Lambda_{N}(A)]e^{-t\Lambda_{N}(A)}\mathrm{d}t. (2.2)

The integrand in (2.2) is decomposed as follows:

etΛN(A)[U,ΛN(A)]etΛN(A)\displaystyle e^{t\Lambda_{N}(A)}[U,\Lambda_{N}(A)]e^{-t\Lambda_{N}(A)}
=etΛN(A){UΛN(A)ΛN(A)U}EA(B1)\displaystyle=e^{t\Lambda_{N}(A)}\{U\Lambda_{N}(A)-\Lambda_{N}(A)U\}E_{A}(B_{1})
+m=2NetΛN(A){UΛN(A)ΛN(A)U}etΛN(A)EA(Bm)\displaystyle+\displaystyle\sum_{m=2}^{N}e^{t\Lambda_{N}(A)}\{U\Lambda_{N}(A)-\Lambda_{N}(A)U\}e^{-t\Lambda_{N}(A)}E_{A}(B_{m})
+etΛN(A){UΛN(A)ΛN(A)U}etΛN(A)EA(BN+1)\displaystyle+e^{t\Lambda_{N}(A)}\{U\Lambda_{N}(A)-\Lambda_{N}(A)U\}e^{-t\Lambda_{N}(A)}E_{A}(B_{N+1})
+etΛN(A){UΛN(A)ΛN(A)U}etΛN(A)EA((N+1)b)\displaystyle+e^{t\Lambda_{N}(A)}\{U\Lambda_{N}(A)-\Lambda_{N}(A)U\}e^{-t\Lambda_{N}(A)}E_{A}((N+1)b)
=:I+II+III+IV.\displaystyle=:\mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}.

The first term I\mathrm{I} can be calculated as follows:

I\displaystyle\mathrm{I} ={EA(B1)+EA(B2)}etΛN(A){UΛN(A)ΛN(A)U}EA(B1)\displaystyle=\{E_{A}(B_{1})+E_{A}(B_{2})\}e^{t\Lambda_{N}(A)}\{U\Lambda_{N}(A)-\Lambda_{N}(A)U\}E_{A}(B_{1})
=EA(B2)e2tδb(Uδb2δbU)etδbEA(B1)\displaystyle=E_{A}(B_{2})e^{2t\delta b}(U\delta b-2\delta bU)e^{-t\delta b}E_{A}(B_{1})
=δbetδbEA(B2)UEA(B1).\displaystyle=-\delta be^{t\delta b}E_{A}(B_{2})UE_{A}(B_{1}).

The second term II\mathrm{II} can be calculated as follows:

II\displaystyle\mathrm{II} =m=2N{EA(Bm1)+EA(Bm)+EA(Bm+1)}\displaystyle=\displaystyle\sum_{m=2}^{N}\{E_{A}(B_{m-1})+E_{A}(B_{m})+E_{A}(B_{m+1})\}
×etΛN(A){UΛN(A)ΛN(A)U}eΛN(A)EA(Bm)\displaystyle\quad\times e^{t\Lambda_{N}(A)}\{U\Lambda_{N}(A)-\Lambda_{N}(A)U\}e^{-\Lambda_{N}(A)}E_{A}(B_{m})
=m=2N[EA(Bm1)etδb(m1){Uδbmδb(m1)U}etδbmEA(Bm)\displaystyle=\displaystyle\sum_{m=2}^{N}\Big{[}E_{A}(B_{m-1})e^{t\delta b(m-1)}\{U\delta bm-\delta b(m-1)U\}e^{-t\delta bm}E_{A}(B_{m})
+EA(Bm+1)etδb(m+1){Uδbmδb(m+1)U}etδbmEA(Bm)]\displaystyle\quad+E_{A}(B_{m+1})e^{t\delta b(m+1)}\{U\delta bm-\delta b(m+1)U\}e^{-t\delta bm}E_{A}(B_{m})\Big{]}
=δbm=2N[etδbEA(Bm1)UEA(Bm)etδbEA(Bm+1)UEA(Bm)].\displaystyle=\delta b\displaystyle\sum_{m=2}^{N}\Big{[}e^{-t\delta b}E_{A}(B_{m-1})UE_{A}(B_{m})-e^{t\delta b}E_{A}(B_{m+1})UE_{A}(B_{m})\Big{]}.

The third term III\mathrm{III} can be calculated as follows:

III\displaystyle\mathrm{III} ={EA(BN)+EA(BN+1)+EA(BN+2)}\displaystyle=\{E_{A}(B_{N})+E_{A}(B_{N+1})+E_{A}(B_{N+2})\}
×etΛN(A){UΛN(A)ΛN(A)U}etΛN(A)EA(BN+1)\displaystyle\quad\times e^{t\Lambda_{N}(A)}\{U\Lambda_{N}(A)-\Lambda_{N}(A)U\}e^{-t\Lambda_{N}(A)}E_{A}(B_{N+1})
=EA(BN)etδbN{Uδb(N+1)δbNU}etδb(N+1)EA(BN+1)\displaystyle=E_{A}(B_{N})e^{t\delta bN}\{U\delta b(N+1)-\delta bNU\}e^{-t\delta b(N+1)}E_{A}(B_{N+1})
=δbetδbEA(BN)UEA(BN+1).\displaystyle=\delta be^{-t\delta b}E_{A}(B_{N})UE_{A}(B_{N+1}).

Lastly, the forth term IV\mathrm{IV} can be calculated as follows:

IV\displaystyle\mathrm{IV} =EA(Nb)etΛN(A){UΛN(A)ΛN(A)U}etΛN(A)EA((N+1)b)\displaystyle=E_{A}(Nb)e^{t\Lambda_{N}(A)}\{U\Lambda_{N}(A)-\Lambda_{N}(A)U\}e^{-t\Lambda_{N}(A)}E_{A}((N+1)b)
=EA(Nb)etΛN(A)(UbδNbδNU)etΛN(A)EA((N+1)b)\displaystyle=E_{A}(Nb)e^{t\Lambda_{N}(A)}(Ub\delta N-b\delta NU)e^{-t\Lambda_{N}(A)}E_{A}((N+1)b)
=0.\displaystyle=0.

Thus, we get the following expression:

[U,eΛN(A)]eΛN(A)\displaystyle[U,e^{\Lambda_{N}(A)}]e^{-\Lambda_{N}(A)}
=δb01etδbdtm=2N+1EA(Bm1)UEA(Bm)δb01etδbdtm=1NEA(Bm+1)UEA(Bm)\displaystyle=\delta b\displaystyle\int_{0}^{1}e^{-t\delta b}\mathrm{d}t\cdot\displaystyle\sum_{m=2}^{N+1}E_{A}(B_{m-1})UE_{A}(B_{m})-\delta b\displaystyle\int_{0}^{1}e^{t\delta b}\mathrm{d}t\cdot\displaystyle\sum_{m=1}^{N}E_{A}(B_{m+1})UE_{A}(B_{m})
=(1eδb)m=2N+1EA(Bm1)UEA(Bm)(eδb1)m=1NEA(Bm+1)UEA(Bm).\displaystyle=(1-e^{-\delta b})\displaystyle\sum_{m=2}^{N+1}E_{A}(B_{m-1})UE_{A}(B_{m})-(e^{\delta b}-1)\displaystyle\sum_{m=1}^{N}E_{A}(B_{m+1})UE_{A}(B_{m}).

For any ψ\psi\in\mathcal{H}, we have

[U,eΛN(A)]eΛN(A)ψ2\displaystyle\|[U,e^{\Lambda_{N}(A)}]e^{-\Lambda_{N}(A)}\psi\|^{2}
=(1eδb)m=2N+1EA(Bm1)UEA(Bm)ψ(eδb1)m=1NEA(Bm+1)UEA(Bm)ψ2\displaystyle=\|(1-e^{-\delta b})\displaystyle\sum_{m=2}^{N+1}E_{A}(B_{m-1})UE_{A}(B_{m})\psi-(e^{\delta b}-1)\displaystyle\sum_{m=1}^{N}E_{A}(B_{m+1})UE_{A}(B_{m})\psi\|^{2}
=(1eδb)2m=2N+1EA(Bm1)UEA(Bm)ψ2+(eδb1)2m=1NEA(Bm+1)UEA(Bm)ψ2\displaystyle=(1-e^{-\delta b})^{2}\displaystyle\sum_{m=2}^{N+1}\|E_{A}(B_{m-1})UE_{A}(B_{m})\psi\|^{2}+(e^{\delta b}-1)^{2}\displaystyle\sum_{m=1}^{N}\|E_{A}(B_{m+1})UE_{A}(B_{m})\psi\|^{2}
2(1eδb)(eδb1)m=2N+1n=1NReEA(Bm1)UEA(Bm)ψ,EA(Bn+1)UEA(Bn)ψ\displaystyle-2(1-e^{-\delta b})(e^{\delta b}-1)\displaystyle\sum_{m=2}^{N+1}\displaystyle\sum_{n=1}^{N}\mathrm{Re}\langle E_{A}(B_{m-1})UE_{A}(B_{m})\psi,E_{A}(B_{n+1})UE_{A}(B_{n})\psi\rangle
=(1eδb)2m=2N+1EA(Bm1)UEA(Bm)ψ2+(eδb1)2m=1NEA(Bm+1)UEA(Bm)ψ2\displaystyle=(1-e^{-\delta b})^{2}\displaystyle\sum_{m=2}^{N+1}\|E_{A}(B_{m-1})UE_{A}(B_{m})\psi\|^{2}+(e^{\delta b}-1)^{2}\displaystyle\sum_{m=1}^{N}\|E_{A}(B_{m+1})UE_{A}(B_{m})\psi\|^{2}
2(1eδb)(eδb1)n=2NReEA(Bn)UEA(Bn+1)ψ,EA(Bn)UEA(Bn1)ψ\displaystyle-2(1-e^{-\delta b})(e^{\delta b}-1)\displaystyle\sum_{n=2}^{N}\mathrm{Re}\langle E_{A}(B_{n})UE_{A}(B_{n+1})\psi,E_{A}(B_{n})UE_{A}(B_{n-1})\psi\rangle
(1eδb)2m=2NEA(Bm)ψ2+(eδb1)2m=1NEA(Bm)ψ2\displaystyle\leq(1-e^{-\delta b})^{2}\displaystyle\sum_{m=2}^{N}\|E_{A}(B_{m})\psi\|^{2}+(e^{\delta b}-1)^{2}\displaystyle\sum_{m=1}^{N}\|E_{A}(B_{m})\psi\|^{2}
+(1eδb)(eδb1)n=2N{EA(Bn)UEA(Bn+1)ψ2+EA(Bn)UEA(Bn1)ψ2}\displaystyle\quad+(1-e^{-\delta b})(e^{\delta b}-1)\displaystyle\sum_{n=2}^{N}\{\|E_{A}(B_{n})UE_{A}(B_{n+1})\psi\|^{2}+\|E_{A}(B_{n})UE_{A}(B_{n-1})\psi\|^{2}\}
(1eδb)2ψ2+(eδb1)2ψ2+2(1eδb)(eδb1)ψ2\displaystyle\leq(1-e^{\delta b})^{2}\|\psi\|^{2}+(e^{\delta b}-1)^{2}\|\psi\|^{2}+2(1-e^{-\delta b})(e^{\delta b}-1)\|\psi\|^{2}
={(1eδb)+(eδb1)}2ψ2\displaystyle=\{(1-e^{-\delta b})+(e^{\delta b}-1)\}^{2}\|\psi\|^{2}
=(eδbeδb)2ψ2.\displaystyle=(e^{\delta b}-e^{-\delta b})^{2}\|\psi\|^{2}.

Thus, the lemma follows. ∎

Proof of Theorem 2.4.

We choose ϵ>0\epsilon>0 as ϵ:=[d(λ)2sinh(δb)]/2.\epsilon:=[d(\lambda)-2\sinh(\delta b)]/2. Then, by Lemma 2.6, there exists R>0R>0 such that for any ff\in\mathcal{H} with EA([0,R))f=0,E_{A}([0,R))f=0, we have

{d(λ)ϵ}fUfλf.\displaystyle\{d(\lambda)-\epsilon\}\|f\|\leq\|Uf-\lambda f\|.

We take ψKer(Uλ){0}\psi\in\mathrm{Ker}(U-\lambda)\setminus\{0\} with λσd(U)\lambda\in\sigma_{\mathrm{d}}(U). For RR and bb, there exists N0N_{0}\in\mathbb{N} such that R<N0bR<N_{0}b. Then we set fN:=eΛN(A)EA(R)ψ,(NN0).f_{N}:=e^{\Lambda_{N}(A)}E_{A}(R)\psi,\ (N\geq N_{0}). Since EA([0,R))fN=0E_{A}([0,R))f_{N}=0, we have the following for arbitrary NN0N\geq N_{0}:

{d(λ)ϵ}fNUfNλfN.\displaystyle\{d(\lambda)-\epsilon\}\|f_{N}\|\leq\|Uf_{N}-\lambda f_{N}\|. (2.3)

From Uψ=λψ,U\psi=\lambda\psi, we get

UfNλfN=[U,eΛN(A)EA(R)]ψ=[U,eΛN(A)]EA(R)ψ+eΛN(A)[U,EA(R)]ψ.\displaystyle Uf_{N}-\lambda f_{N}=[U,e^{\Lambda_{N}(A)}E_{A}(R)]\psi=[U,e^{\Lambda_{N}(A)}]E_{A}(R)\psi+e^{\Lambda_{N}(A)}[U,E_{A}(R)]\psi. (2.4)

From Lemma 2.7, we get

eΛN(A)[U,EA(R)]ψ(eδR+bb+eδRb)ψ,\displaystyle\|e^{\Lambda_{N}(A)}[U,E_{A}(R)]\psi\|\leq\left(e^{\delta\lceil R+b\rceil_{b}}+e^{\delta\lceil R\rceil_{b}}\right)\|\psi\|,

For the first term of (2.4), from Lemma 2.8, we get

[U,eΛN(A)]EA(R)ψ=[U,eΛN(A)]eΛN(A)eΛN(A)EA(R)ψ2sinh(δb)fN.\displaystyle\|[U,e^{\Lambda_{N}(A)}]E_{A}(R)\psi\|=\|[U,e^{\Lambda_{N}(A)}]e^{-\Lambda_{N}(A)}e^{\Lambda_{N}(A)}E_{A}(R)\psi\|\leq 2\sinh(\delta b)\|f_{N}\|.

Thus, we arrive at

UfNλfN(eδR+bb+eδRb)ψ+2sinh(δb)fN.\displaystyle\|Uf_{N}-\lambda f_{N}\|\leq\left(e^{\delta\lceil R+b\rceil_{b}}+e^{\delta\lceil R\rceil_{b}}\right)\|\psi\|+2\sinh(\delta b)\|f_{N}\|.

From the above inequality and (2.3), we arrive at

d(λ)2sinh(δb)2fN(eδR+bb+eδRb)ψ.\displaystyle\displaystyle\frac{d(\lambda)-2\sinh(\delta b)}{2}\|f_{N}\|\leq\left(e^{\delta\lceil R+b\rceil_{b}}+e^{\delta\lceil R\rceil_{b}}\right)\|\psi\|. (2.5)

Since NN is arbitrary and right hand side of (2.5) is independent of NN, we conclude that eΛ(A)ψe^{\Lambda(A)}\psi\in\mathcal{H} by the monotone convergence theorem. This implies eδAψ.e^{\delta A}\psi\in\mathcal{H}.

3. Application

In this section, we apply the result to multi-dimensional quantum walks. We choose the Hilbert space \mathcal{H} as

:=2(d;2d):={f:d2d|xdf(x)2d2<}.\displaystyle\mathcal{H}:=\ell^{2}(\mathbb{Z}^{d};\mathbb{C}^{2d}):=\left\{f:\mathbb{Z}^{d}\rightarrow\mathbb{C}^{2d}\Big{|}\ \displaystyle\sum_{x\in\mathbb{Z}^{d}}\|f(x)\|_{\mathbb{C}^{2d}}^{2}<\infty\right\}.

In what follows, we freely use the identification j=1d2(;2)\mathcal{H}\simeq\oplus_{j=1}^{d}\ell^{2}(\mathbb{Z};\mathbb{C}^{2}). Thus

f(x)=[f1(x)f2(x)fd(x)]=[f11(x)f12(x)fd1(x)fd2(x)],f,xd.\displaystyle f(x)=\begin{bmatrix}f_{1}(x)\\ f_{2}(x)\\ \vdots\\ f_{d}(x)\end{bmatrix}=\begin{bmatrix}f_{11}(x)\\ f_{12}(x)\\ \vdots\\ f_{d1}(x)\\ f_{d2}(x)\end{bmatrix},\ f\in\mathcal{H},\ x\in\mathbb{Z}^{d}.

Let {ej}j=1d\{e_{j}\}_{j=1}^{d} be the set of standard orthogonal basis of d\mathbb{Z}^{d}. Let LjL_{j} (j=1,,d)(j=1,\dots,d) be the shift operator on jj-th direction defined by

(Ljf)(x):=f(x+ej),f,xd,j=1,,d.\displaystyle(L_{j}f)(x):=f(x+e_{j}),\ f\in\mathcal{H},\ x\in\mathbb{Z}^{d},\ j=1,\dots,d.

To introduce the shift operator SS, we set

D:={(p,q)=(p1,,pd,q1,,qd)d×d|pj2+|qj|2=1,(j=1,,d)}.\displaystyle D:=\left\{(p,q)=(p_{1},\dots,p_{d},q_{1},\dots,q_{d})\in\mathbb{R}^{d}\times\mathbb{C}^{d}\Big{|}\ p_{j}^{2}+|q_{j}|^{2}=1,\ (j=1,\dots,d)\right\}.

For (p,q)D(p,q)\in D, we define the shift operator SS by

S:=S1S2Sd,Sj:=[pjqjLj(qjLj)pj],j=1,,d.\displaystyle S:=S_{1}\oplus S_{2}\oplus\dots\oplus S_{d},\quad S_{j}:=\begin{bmatrix}p_{j}&q_{j}L_{j}\\ (q_{j}L_{j})^{\ast}&-p_{j}\end{bmatrix},\quad j=1,\dots,d.

Next, we intoduce the coin operator CC. Let {C(x)}xU(2d)\{C(x)\}_{x\in\mathbb{Z}}\subset U(2d) be a set of 2d×2d2d\times 2d self-adjoint and unitary matrices. We define the coin operator CC as a multiplication operator by C(x):C(x):

(Cu)(x):=C(x)u(x),u,x.\displaystyle(Cu)(x):=C(x)u(x),\ u\in\mathcal{H},\ x\in\mathbb{Z}.

For the coin operator C,C, we impose the following assumptioon:

Assumption 3.1.
  1. (1)

    For each xd,x\in\mathbb{Z}^{d}, 1 is a simple eigenvalue of C(x)C(x), i.e., dimker(C(x)1)=1.\mathrm{dimker}(C(x)-1)=1.

  2. (2)

    There exists two self-adjoint and unitary matrices C0C_{0} and C1C_{1} such that

    C(x)={C1,xd{0},C0,x=0.\displaystyle C(x)=\begin{cases}C_{1},\ &x\in\mathbb{Z}^{d}\setminus\{0\},\\ C_{0},\ &x=0.\end{cases}

By the first part of Assumption 3.1, for each xd,x\in\mathbb{Z}^{d}, we can take a unit vector χ(x)\chi(x) as follows:

χ(x)=[χ1(x)χd(x)]ker(C(x)1),χj(x)=[χj1(x)χj2(x)]2,(j=1,d).\displaystyle\chi(x)=\begin{bmatrix}\chi_{1}(x)\\ \vdots\\ \chi_{d}(x)\end{bmatrix}\in\mathrm{ker}(C(x)-1),\quad\chi_{j}(x)=\begin{bmatrix}\chi_{j1}(x)\\ \chi_{j2}(x)\end{bmatrix}\in\mathbb{C}^{2},\quad(j=1,\dots d).

From the first part of Assumption 3.1 and the spectral decomposition of C(x)C(x), we have C(x)=2|χ(x)χ(x)|1.C(x)=2|\chi(x)\rangle\langle\chi(x)|-1. Moreover, the second part of Assumption 3.1 implies that χ\chi has a form of

χ(x)={Φ=[Φ1Φd],Φj=[Φj1Φj2]2,(j=1,,d),xd{0},Ω=[Ω1Ωd],Ωj=[Ωj1Ωj2]2,(j=1,,d),x=0.\displaystyle\chi(x)=\begin{cases}\Phi=\begin{bmatrix}\Phi_{1}\\ \vdots\\ \Phi_{d}\end{bmatrix},\ \Phi_{j}=\begin{bmatrix}\Phi_{j1}\\ \Phi_{j2}\end{bmatrix}\in\mathbb{C}^{2},\quad(j=1,\dots,d),\quad x\in\mathbb{Z}^{d}\setminus\{0\},\\ \Omega=\begin{bmatrix}\Omega_{1}\\ \vdots\\ \Omega_{d}\end{bmatrix},\quad\Omega_{j}=\begin{bmatrix}\Omega_{j1}\\ \Omega_{j2}\end{bmatrix}\in\mathbb{C}^{2},\quad(j=1,\dots,d),\quad x=0.\end{cases}

The condition dimKer(C(x)1)\mathrm{dimKer}(C(x)-1) is needed to construct a coisometry from 2(d;2d)\ell^{2}(\mathbb{Z}^{d};\mathbb{C}^{2d}) to 2(d;d)\ell^{2}(\mathbb{Z}^{d};\mathbb{C}^{d}) and to apply the spectral mapping theorem [36].

Assumption 3.2.

Following conditions hold:

  1. (1)

    Φj(σ1Ωj):=Φj1Ωj2+Φj2Ωj10\Phi_{j}\cdot(\sigma_{1}\Omega_{j}):=\Phi_{j1}\Omega_{j2}+\Phi_{j2}\Omega_{j1}\neq 0 for all j=1,,dj=1,\dots,d,

  2. (2)

    Φl,σ+Ωl20\langle\Phi_{l},\sigma_{+}\Omega_{l}\rangle_{\mathbb{C}^{2}}\neq 0 for some l=1,,d,l=1,\dots,d,

where

σ1:=[0110],σ+:=[0100].\displaystyle\sigma_{1}:=\begin{bmatrix}0&1\\ 1&0\end{bmatrix},\quad\sigma_{+}:=\begin{bmatrix}0&1\\ 0&0\end{bmatrix}.

We introduce the following quantities:

aΩ(p):=j=1dpjΩj,σ3Ωj2,aΦ(p):=j=1dpjΦj,σ3Φj2,\displaystyle a_{\Omega}(p):=\displaystyle\sum_{j=1}^{d}p_{j}\langle\Omega_{j},\sigma_{3}\Omega_{j}\rangle_{\mathbb{C}^{2}},\quad a_{\Phi}(p):=\displaystyle\sum_{j=1}^{d}p_{j}\langle\Phi_{j},\sigma_{3}\Phi_{j}\rangle_{\mathbb{C}^{2}},

where,

σ3:=[1001].\displaystyle\sigma_{3}:=\begin{bmatrix}1&0\\ 0&-1\end{bmatrix}.
Assumption 3.3.

It follows that aΩ(p0)aΦ(p0)a_{\Omega}(p_{0})\neq a_{\Phi}(p_{0}) for some p0{1,1}d.p_{0}\in\{-1,1\}^{d}.

Remark 3.4.

In d=1d=1, Assumption 3.2 and Assumption 3.3 are not compartible. For d=1d=1, see [5].

To explain the theorem, for l{1,,n}l\in\{1,\dots,n\} stated in Assumption 3.2, we set

Dl:={(p,q)D|plql0}.\displaystyle D_{l}:=\{(p,q)\in D|\ p_{l}q_{l}\neq 0\}.
Theorem 3.5.

[6] Let d2d\geq 2 and we assume Assumption 3.1, 3.2 and 3.3. Then, there exists δ>0\delta>0 such that for any (p,q)Dl(p,q)\in D_{l} with (p,q)(p0,0)d×d,\|(p,q)-(p_{0},0)\|_{\mathbb{R}^{d}\times\mathbb{C}^{d}}, σd(U).\sigma_{\mathrm{d}}(U)\neq\emptyset.

We introduce the moduls of position operator as a non-negative self-adjoint operator AA which appeared in Assumption 2.3:

Dom(|Q|)\displaystyle\mathrm{Dom}(|Q|) :={u|xd|x|2u(x)2d<},\displaystyle:=\left\{u\in\mathcal{H}|\ \displaystyle\sum_{x\in\mathbb{Z}^{d}}|x|^{2}\|u(x)\|_{\mathbb{C}^{2d}}<\infty\right\},
(|Q|u)(x)\displaystyle(|Q|u)(x) :=|x|u(x),uDom(|Q|),xd.\displaystyle:=|x|u(x),\quad u\in\mathrm{Dom}(|Q|),\quad x\in\mathbb{Z}^{d}.

Then, for any 0R1<R2,0\leq R_{1}<R_{2}, and uRanE|Q|([R1,R2)),u\in\mathrm{Ran}E_{|Q|}([R_{1},R_{2})), we have UuRanE|Q|([R11,R2+1)).Uu\in\mathrm{Ran}E_{|Q|}([R_{1}-1,R_{2}+1)). Thus, we can choose the constant bb which appeared in Assumption 2.3 as b=1.b=1. By Theorem 2.4, we get the following result:

Theorem 3.6.

For any λσd(U)\lambda\in\sigma_{\mathrm{d}}(U) and ψKer(Uλ){0},\psi\in\mathrm{Ker}(U-\lambda)\setminus\{0\}, eδ|Q|ψe^{\delta|Q|}\psi\in\mathcal{H} for any δ>0\delta>0 with 2sinhδ<d(λ).2\sinh\delta<d(\lambda).

As a corollary of Theorem 3.6, we can derive the pointwise estimate:

Corollary 3.7.

Under the same assumption of Theorem 3.5, for any δ>0\delta>0 with 2sinhδ<d(λ)2\sinh\delta<d(\lambda), there exists Cδ>0C_{\delta}>0 such that for any xd,x\in\mathbb{Z}^{d}, it follows that

ψ(x)2dCδeδ|x|.\displaystyle\|\psi(x)\|_{\mathbb{C}^{2d}}\leq C_{\delta}e^{-\delta|x|}.
Proof.

Since ψD(eδ|Q|),\psi\in D(e^{\delta|Q|}), {eδ|x|ψ(x)2d}xd\{e^{\delta|x|}\|\psi(x)\|_{\mathbb{C}^{2d}}\}_{x\in\mathbb{Z}^{d}} is bounded. We choose a constant Cδ>0C_{\delta}>0 as Cδ:=supxdeδ|x|ψ(x)2dC_{\delta}:=\sup_{x\in\mathbb{Z}^{d}}e^{\delta|x|}\|\psi(x)\|_{\mathbb{C}^{2d}}. Then, it follows that

ψ(x)2d=eδ|x|eδ|x|ψ(x)2dCδeδ|x|.\displaystyle\|\psi(x)\|_{\mathbb{C}^{2d}}=e^{\delta|x|}e^{-\delta|x|}\|\psi(x)\|_{\mathbb{C}^{2d}}\leq C_{\delta}e^{-\delta|x|}.

Acknowledgments

The author acknowledges support by JSPS KAKENHI Grant Number 23K03224. This work was partially supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. The author thanks the anonymous referee for careful reading and fruitful comments.

References

  • [1] Agmon Shmuel, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators. volume 29 of Mathematical Notes. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1982)
  • [2] Bach Volker and Matte Oliver, Exponential decay of eigenfunctions of the Bethe-Salpeter operator. Lett, Math. Phys., 55(1):53-62 (2001)
  • [3] Carmona René, Masters Wen Chen, and Simon Barry. Relativistic Schrödinger operators: asymptotic behavior of the eugenfuctions. J. Funct. Anal., 91(1):117-142 (1990)
  • [4] Combes J. M. and Thomas L., Asymptotic behavior of eigenfunctions for multiparticle Schrödinger operators. Comm. Math. Phys., 34: 251-270 (1973)
  • [5] Fuda T., Funakawa D., and Suzuki A., Localication for a one-dimensional split-step quantum walk with bound states robust ageinst perturbations. J. Math. Phys., 59(8):082201, 13 (2018)
  • [6] Fuda Toru, Funakawa Daiju, and Suzuki Akito, Localization of a multi-dimensional quantum walk with one defect. Quantum Inf. Process., 16(8):Paper No. 203, 24 (2017)
  • [7] Fuda Toru, Funakwa Daiju, and Suzuki Akito, Weak limit theorem for a one-dimensional split-step quantum walk. Rev. Roumaine Math. Pures Appl., 64(2-3):157-165 (2019)
  • [8] Froese Richard and Herbst Ira, Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators. Comm. Math. Phys., 87(3):429-447 (1982/83)
  • [9] Fuda Toru, Funakawa Daiju, Sasayama Satoshi, and Suzuki Akito, Eigenvalues and threshold resonances of a two-dimensional split-step quantum walk wih strong shift. Quantum Stud. Math, Found., 10(4):483-496 (2023)
  • [10] Griesemer M., Exponential bounds for continuum eigenfunctions of N-body Schrödinger operators. Helv. Phys. Acta, 70(6):854-857 (1997)
  • [11] Griesemer M., Exponential decay and ionization thresholds in non-relativistic quantum electrodynamincs. J. Funct. Anal., 210(2):321-340 (2004)
  • [12] Griesemer Marcel, Lieb Elliot H., and Loss Michael, Ground ststes in non-relativistic quantum electrodynamincs. Invent. Math., 145(3)557-595 (2001)
  • [13] Gudder S. P., Quantum probability. Probabolity and Mathematical Statistics. Academic Press, Inc., Boston, MA (1988)
  • [14] Hiroshima Fumio, Functional integral approach to semi-relativistic Pauli-Fierz models. Adv. Math., 259:784-840 (2014)
  • [15] Hiroshima Fumio, Pointwise exponential decay of bound states of the Nelson mdel with Kato-class potentials. In Analysis and operator theory, volume 146 of Springer Optim. Appl., pages 225-250. Springer, Cham (2019)
  • [16] Hidaka Takeru, Hiroshima Fumio and Sasaki Itaru, Spectrum of the semi-relativistic Pauli-Fierz model II. J. Spectr. Theory, 11(4):1779-1830 (2021)
  • [17] Hiroshima Fumio, Ichinose Takashi and Lörinczi József, Probabilistic representation and fall-off of bound states of relativistic Schrödinger operators wiyh spin 1/2. Publ. Res. Inst. Math. Sci., 49(1):189-214 (2013)
  • [18] Hiroshima Fumio and Lörinczi József, Feynman-Kac-type theorems and Gibbs measures on path space. Volume 2. volume 34/2 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, second edition (2020)
  • [19] Kawamoto Masaki, Exponential decay property for eigenfunctions of Landau-Stark Hamiltonian. Rep. Math. PHys., 77(1):129-140 (2016)
  • [20] Konno Norio, Quantum random walks in one dimension. Quantum Inf. Process., 1(5):345-354 (2002)
  • [21] Konno Norio, A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Soc.Japan, 57(4):1179-1195 (2005)
  • [22] Kiumi Chusei and Saito Kei, Eigenvalues of two-phase quantum walks with one defect in one dimension. Quantum Inf. Process., 20(5): Paper No.171, 11 (2021)
  • [23] Lovett N. B., Cooper S., Everitt M., Trevers M., and Kendon V., Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A, 81:042330, Apr (2010)
  • [24] Lörinczi József, Hiroshima fumio and Betz Volker, Feynman-Kac-type theorems and Gibbs measures on path space. Vol. 1. volume 34/1 of De Gruyter Studies on Mathematics. De Gruyter, Berlin, second edition (2020)
  • [25] Maeda Masaya, Asymptotic stability of small bound state of nonlinear quantum walks. Phys. D, 439:Paper No. 133408, 14 (2022)
  • [26] Maeda M., and Suzuki A., Continuous limits of linear and nonlinear quantum walks. Rev.Math. Phys., 32(4):2050008, 20 (2020)
  • [27] Magniez F., Santha M., and Szegedy M., Quantum algorithms for the triangle problem. SIAM J. Comput., 37(2)413-424 (2007)
  • [28] Maeda Masaya, Sasaki Hironobu, Segawa Etsuo, Suzuki Akito, and Suzuki Kanako, Dispersive estimates for quantum walks on 1D lattice. J. Math. Soc. Japan, 74(1):217-246 (2022)
  • [29] Maeda Masaya, Suzuki Akito, and Wada Kazuyuki, Absence of continuous spectra and embedded eigenvalues for one-dimensional quantum walks with general long-range coins. Rev. Math. Phys., 34(5)Paper No. 2250016, 23 (2022)
  • [30] Nakamura Shu, Agmon-type exponential decay estimates for pseudodifferential operators. J. Math. Sci. Univ. Tokto, 5(4):693-712 (1998)
  • [31] O’Connor A. J., Exponential decay of bound state wave functions. Comm. Math, Phys., 32:319-340 (1973)
  • [32] Richard S., Suzuki A., and Tiedra de Aldecoa R., Quantum walks with an anisotropic coin I: spectral theory. Lett. Math. Phys., 108(2):331-357 (2018)
  • [33] Richard S., Suzuki A., and Tiedra de Aldecoa R., Quantum walks with an anisotropic coin II: scattering theory. Lett. Math. Phys., 109(1):61-88 (2019)
  • [34] Suzuki Akito, Asymptotic velocity of a position-dependent quantum walk. Quantum Inf. Process., 15(1):103-119 (2016)
  • [35] Šnol’ , È. È, On the behavior of the eigenfunctions of Schrödinger’s equation. Mat. Sb. (N.S.), 42(84):273-286; erratum:46(88), (1957)
  • [36] Segawa Etsuo, and Suzuki Akito, Spectral mapping theorem of an abstract quantum walk. Quantum Inf. Process 18, 333(2019). https://doi.org/10.1007/s11128-019-2448-6
  • [37] Tiedra de Aldecoa R., Spectral and scattering properties of quantum walks on homogeneous trees of odd degree. Ann. Henri Poincaré, 22(8):2563-2593 (2021)
  • [38] Yafaev D. Y., Exponential decay of eigenfunctions of first order systems. In Advances in mathematical physics, volume 447 of Contemp. Math., page 249-256. Amer. Math. Soc., Providence, RI (2007)