This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Exploring for sub-MeV Boosted Dark Matter from Xenon Electron Direct Detection

Qing-Hong Cao [email protected] Center for High Energy Physics, Peking University, Beijing 100871, China Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China    Ran Ding [email protected] School of Physics and Materials Science, Anhui University, Hefei 230039, China Center for High Energy Physics, Peking University, Beijing 100871, China    Qian-Fei Xiang [email protected] Center for High Energy Physics, Peking University, Beijing 100871, China
Abstract

Direct detection experiments turn to lose sensitivity of searching for a sub-MeV light dark matter candidate due to the threshold of recoil energy. However, such light dark matter particles can be accelerated by energetic cosmic-rays such that they can be detected with existing detectors. We derive the constraints on the scattering of a boosted light dark matter and electron from the XENON100/1T experiment. We illustrate that the energy dependence of the cross section plays a crucial role in improving both the detection sensitivity and also the complementarity of direct detection and other experiments.

Light dark matter (DM) candidate is well motivated and can be naturally realized when the DM candidate couples feebly to visible sector Hall et al. (2010); Chu et al. (2012); Essig et al. (2012a); Knapen et al. (2017); Bernal et al. (2017). In particular, it is difficult for a sub-MeV DM candidate to satisfy observed relic abundance through the thermal freeze-out mechanism Boehm et al. (2013); Nollett and Steigman (2014); Cao et al. (2019); therefore, freeze-in via annihilation of electron-positron pairs is a primary mechanism for DM production  Chu et al. (2012); Essig et al. (2012a); Dvorkin et al. (2019). The traditional direct detection of DM-nucleus scattering loses sensitivity rapidly for a DM candidate whose mass is below GeV\sim{\rm GeV} due to the threshold of recoil energy. An alternative way to search for a light DM candidate is through the scattering off electrons Essig et al. (2012a, b, 2017), which is not sensitive to a sub-MeV DM candidate neither. It is crucial to develop new approach to probe freeze-in DM in such mass range.

A certain fraction of DM candidates in the Galactic halo would be accelerated by energetic Cosmic-Ray (CR) particles as long as the DM candidate interacts with SM particles. The CR-boosted mechanism relaxes the threshold problem and improves the sensitivity of detecting a light DM candidate An et al. (2018); Bringmann and Pospelov (2019). It has been extensively discussed in DM-nucleus direct detections, neutrino experiments and CR observations for various DM models Cappiello et al. (2019); Ema et al. (2019); Alvey et al. (2020); Cappiello and Beacom (2019); Dent et al. (2019); Krnjaic and McDermott (2019); Bondarenko et al. (2019); Berger et al. (2019); Wang et al. (2019). In this Letter we investigate the CR-boosted effect on the DM-electron direct detection in the freeze-in scenario and show that the existing data from xenon experiments are able to probe a sub-MeV DM candidate.

For illustration, we consider a typical freeze-in DM model based on the vector-portal, in which the DM candidate is a Dirac fermion (χ\chi) that couples to the visible sector through an additional gauge boson AμA^{\prime}_{\mu}, named as “dark photon”. The Lagrangian is given by

χ¯(i/mχ)χ+gχχ¯γμχAμ+gSMe¯γμeAμ+12mA2AμAμ,\mathcal{L}\supset\overline{\chi}(i\partial\!\!\!/-m_{\chi})\chi+g_{\chi}\overline{\chi}\gamma^{\mu}\chi A^{\prime}_{\mu}+g_{\rm SM}\overline{e}\gamma^{\mu}eA^{\prime}_{\mu}+\frac{1}{2}m^{2}_{A^{\prime}}A^{\prime}_{\mu}A^{\prime\mu}\,, (1)

where mχm_{\chi} and mAm_{A^{\prime}} denote the mass of DM candidate and the dark photon, respectively. gχg_{\chi} and gSMg_{\rm SM} are the coupling strength of AA^{\prime} to the DM candidate and the electron, respectively. When the DM candidate scatters off an incident CR electron with a given kinetic energy (TCRT_{\rm CR}), the distribution of the DM recoil energy TχT_{\chi} is

dσχedTχ=σ¯e(α2me2+mA2)2μχe2×\displaystyle\frac{d\sigma_{\chi e}}{dT_{\chi}}=\bar{\sigma}_{e}\frac{\left(\alpha^{2}m_{e}^{2}+m_{A^{\prime}}^{2}\right)^{2}}{\mu_{\chi e}^{2}}\times (2)
2mχ(me+TCR)2Tχ((me+mχ)2+2mχTCR)+mχTχ24(2meTCR+TCR2)(2mχTχ+mA2)2,\displaystyle\frac{2m_{\chi}\left(m_{e}+T_{\rm CR}\right)^{2}-T_{\chi}\left(\left(m_{e}+m_{\chi}\right)^{2}+2m_{\chi}T_{\rm CR}\right)+m_{\chi}T_{\chi}^{2}}{4\left(2m_{e}T_{\rm CR}+T_{\rm CR}^{2}\right)\left(2m_{\chi}T_{\chi}+m_{A^{\prime}}^{2}\right)^{2}}\,,

where σ¯e\bar{\sigma}_{e} denotes the cross section of DM-free electron scattering for a fixed momentum transfer q=αmeq=\alpha m_{e} Essig et al. (2012a). The maximal recoil energy of the DM candidate is Goldstein et al. (2001)

Tχmax=2mχTCR(TCR+2me)(me+mχ)2+2TCRmχ.T_{\chi}^{\rm max}=\frac{2m_{\chi}T_{\rm CR}(T_{\rm CR}+2m_{e})}{(m_{e}+m_{\chi})^{2}+2T_{\rm CR}m_{\chi}}\,. (3)

Convoluting the TχT_{\chi} distribution in Eq. (2) with the energy spectrum of incident CR electrons dΦe/dTCRd\Phi_{e}/dT_{\rm CR} yields the recoil flux of boosted DM candidate Bondarenko et al. (2019)

dΦχdTχ=DeffρχlocalmχTCRmin𝑑TCRdΦedTCRdσχedTχ,\frac{d\Phi_{\chi}}{dT_{\chi}}=D_{\rm eff}\frac{\rho^{\rm local}_{\chi}}{m_{\chi}}\int_{T_{\rm CR}^{\rm min}}^{\infty}dT_{\rm CR}\frac{d\Phi_{e}}{dT_{\rm CR}}\frac{d\sigma_{\chi e}}{dT_{\chi}}\,, (4)

where DeffdΩ4πl.o.s𝑑lD_{\rm eff}\equiv\int\frac{d\Omega}{4\pi}\int_{l.o.s}dl is an effective diffusion distance. See supplement materials for details. For a homogeneous CR distribution and NFW DM halo profile Navarro et al. (1996, 1997) (scale radius rs=20r_{s}=20 kpc and local DM density ρχlocal=0.4GeVcm3\rho^{\rm local}_{\chi}=0.4\,{\rm GeV}\,{\rm cm}^{-3}), integrating along the line-of-sight to 10 kpc yields Deff=8.02kpcD_{\rm eff}=8.02~{}{\rm kpc} Bringmann and Pospelov (2019). In order to produce a recoil energy TχT_{\chi} after the DM and CR-electron scattering, the minimum kinetic energy (TCRminT_{\rm CR}^{\rm min}) of the incident CR electron is given by

TCRmin=(Tχ2me)(1±1+2Tχmχ(me+mχ)2(2meTχ)2),T_{\rm CR}^{\rm min}=\left(\frac{T_{\chi}}{2}-m_{e}\right)\left(1\pm\sqrt{1+\frac{2T_{\chi}}{m_{\chi}}\frac{(m_{e}+m_{\chi})^{2}}{(2m_{e}-T_{\chi})^{2}}}\right)\,, (5)

where the plus and minus sign corresponds to Tχ>2meT_{\chi}>2m_{e} and Tχ<2meT_{\chi}<2m_{e}, respectively.

Refer to caption
Figure 1: Recoil flux distributions of the DM candidate for varying for mAm_{A^{\prime}}’s with the choice of mχ=1m_{\chi}=1 keV and σ¯e=1030cm2\bar{\sigma}_{e}=10^{-30}~{}{\rm cm}^{2}. For comparison, the recoil flux distributions for the approximation of a constant σχe\sigma_{\chi e} (black solid) and a constant ||2¯\overline{|\mathcal{M}|^{2}} (black dashed) are also plotted.

Figure 1 plots the recoil flux dΦχ/dTχd\Phi_{\chi}/dT_{\chi} distributions as a function of TχT_{\chi} for various mAm_{A^{\prime}}’s. Two simplified models are also plotted for comparison; one is the cross section σχe\sigma_{\chi e} being a constant (black-solid curve), the other is that the the squared matrix element of the DM-electron scattering (||2¯\overline{|\mathcal{M}|^{2}}), averaged over initial and summed over final spin states, is a constant (black-dashed curve), i.e.

dσχedTχ={σ¯eTχmax,σχe=const,σ¯eTχmax(mχ+me)2(mχ+me)2+2mχTCR,||2¯=const.\frac{d\sigma_{\chi e}}{dT_{\chi}}=\begin{cases}\dfrac{\bar{\sigma}_{e}}{T^{\max}_{\chi}},&\sigma_{\chi e}={\rm const},\\ \dfrac{\bar{\sigma}_{e}}{T^{\max}_{\chi}}\dfrac{\left(m_{\chi}+m_{e}\right)^{2}}{\left(m_{\chi}+m_{e}\right)^{2}+2m_{\chi}T_{\rm CR}},&\overline{|\mathcal{M}|^{2}}={\rm const}.\end{cases} (6)

The former case is commonly used in the study of non-relativistic DM candidates, the later one takes the energy dependence from phase space into account. However, the both treatments are not appropriate for an energetically boosted DM candidate whose kinetic energy is much larger than its mass such that the momentum transfer qq cannot be neglected. We consider the relativistic kinematics throughout this work. As shown in Fig. 1, the flux distribution exhibits a significant enhancement at the large TχT_{\chi} range with increasing mAm_{A^{\prime}}. Note that various recoil flux curves intersect at Tχ=(αme)2/(2mχ)T_{\chi}=(\alpha m_{e})^{2}/(2m_{\chi}), and the recoil flux distribution of the constant ||2¯\overline{|\mathcal{M}|^{2}} slightly deviates from that of the constant σχe\sigma_{\chi e} when 2mχTCR>(me+mχ)22m_{\chi}T_{\mathrm{CR}}>(m_{e}+m_{\chi})^{2}.

It is worth mentioning that the recoil flux distribution is independent of mAm_{A^{\prime}} when the dark photon is very heavy (mA2mχTχm_{A^{\prime}}\gg\sqrt{2m_{\chi}T_{\chi}}) or ultralight (mAαmem_{A^{\prime}}\ll\alpha m_{e}). See the red and blue boundaries of the contour. The recoil flux distributions in the above two limits exhibit distinct dependence on TχT_{\chi}; for example, the recoil flux of ultralight dark photons drops rapidly with TχT_{\chi} while the recoil flux of heavy dark photons mildly decreases with TχT_{\chi}. The heavy dark photon represents the so-called ZZ^{\prime}-portal model while the ultralight dark photon the milli-charged DM model Holdom (1986).

Equipped with the boosted DM flux, we now discuss the DM direct detection through the DM interaction with the electron in xenon atoms. For the ionization process of χ+Aχ+A++e\chi+A\rightarrow\chi+A^{+}+e^{-} with the atom AA in the (n,l)(n,\,l) atomic shell, the velocity-averaged differential cross section with respect to the electron recoil energy ERE_{R} is given by Essig et al. (2012a, 2016)

dσionnlvdlnER=σ¯e8μχe2q𝑑q|FDM(q)|2|fionnl(k,q)|2η(Emin),\frac{d\langle\sigma_{ion}^{nl}v\rangle}{d\ln E_{R}}=\frac{\bar{\sigma}_{e}}{8\mu_{\chi e}^{2}}\int qdq\left|F_{DM}(q)\right|^{2}\left|f_{ion}^{nl}(k^{\prime},q)\right|^{2}\eta\left(E_{\min}\right), (7)

where FDMF_{DM} is the DM form factor, η\eta denotes the mean inverse speed function and |fionnl(k,q)|2\left|f_{ion}^{nl}(k^{\prime},q)\right|^{2} represents the ionization form factor for an electron with initial state (n,l)(n,l) and final state with momentum k=2meERk^{\prime}=\sqrt{2m_{e}E_{R}}. In the case of boosted DM, the DM form factor FDMF_{DM} is

|FDM(q)|2=(α2me2+mA2)2(2meER+mA2)2\displaystyle|F_{DM}(q)|^{2}=\frac{\left(\alpha^{2}m_{e}^{2}+m_{A^{\prime}}^{2}\right)^{2}}{\left(2m_{e}E_{R}+m_{A^{\prime}}^{2}\right)^{2}}
×\displaystyle\times 2me(mχ+Tχ)2ER((mχ+me)2+2meTχ)+meER22memχ2.\displaystyle\frac{2m_{e}\left(m_{\chi}+T_{\chi}\right)^{2}-E_{R}\left(\left(m_{\chi}+m_{e}\right)^{2}+2m_{e}T_{\chi}\right)+m_{e}E_{R}^{2}}{2m_{e}m_{\chi}^{2}}.

In the non-relativistic limit, Tχ,ERmeT_{\chi},E_{R}\ll m_{e}, it reproduces the form factor without CR-boost effects, i.e.,

|FDM(q)|2=(α2me2+mA2q2+mA2)2.|F_{DM}(q)|^{2}=\left(\frac{\alpha^{2}m_{e}^{2}+m_{A^{\prime}}^{2}}{q^{2}+m_{A^{\prime}}^{2}}\right)^{2}. (9)

The mean inverse speed function η\eta is replaced by An et al. (2018)

η(Emin)=Emin𝑑EχΦhalo1mχ2pEχdΦχdTχ,\eta\left(E_{\min}\right)=\int_{E_{\min}}dE_{\chi}\Phi_{\rm halo}^{-1}\frac{m_{\chi}^{2}}{pE_{\chi}}\frac{d\Phi_{\chi}}{dT_{\chi}}\,, (10)

where Φhalo=nχv¯χ\Phi_{\rm halo}=n_{\chi}\bar{v}_{\chi} is the background DM flux in Galactic halo with v¯χ\bar{v}_{\chi} being the corresponding average velocity. Here, EminE_{\min} is the minimal DM energy to trigger electron with recoil energy ERE_{R}. Similarly, Eq. (10) reproduces the conventional expression

η(vmin)=vmin1vf(v)d3v\eta(v_{\min})=\int_{v_{\min}}\frac{1}{v}f(v)d^{3}v (11)

in the non-relativistic limit. The ionization form factor |fionnl(k,q)|2\left|f_{ion}^{nl}(k^{\prime},q)\right|^{2} is calculated by using the Roothaan-Hartree-Fock radial wavefunction Bunge et al. (1993) for initial electron state and applying plane wave approximation for final state. For initial electron state, we take into account contributions from (5p6,5s2,4d10,4p6,4s2)(5p^{6},5s^{2},4d^{10},4p^{6},4s^{2}) xenon electron shells. The differential ionization rate is obtained by multiplying Eq. (7) with background DM flux Φhalo\Phi_{\rm halo}, the number of target atoms NTN_{T}, and sum over different electron shells,

dRiondlnER=NTΦhalonldσionnlvdlnER.\frac{dR_{ion}}{d\ln E_{R}}=N_{T}\Phi_{\rm halo}\sum_{nl}\frac{d\langle\sigma_{ion}^{nl}v\rangle}{d\ln E_{R}}. (12)
Refer to caption
Figure 2: Recoil spectra of electrons for benchmark DM mass mχ=1m_{\chi}=1 keV with scattering cross section σ¯e=1030cm2\bar{\sigma}_{e}=10^{-30}~{}{\rm cm}^{2}. Here we simply consider recoil electron from 5s5s state for demonstration.

Figure 2 shows the ionization rate as a function of the electron recoil energy ERE_{R} (in unit of tonne1year1{\rm tonne}^{-1}~{}{\rm year}^{-1}) for both ultralight (red) and heavy (blue) dark photons with the choices of mχ=1keVm_{\chi}=1~{}{\rm keV} and σ¯e=1030cm2\bar{\sigma}_{e}=10^{-30}~{}\mathrm{cm}^{2}. The vertical band represents the order of magnitude of energy coverage for current xenon experiments. The ultralight dark photon prefers to produce electrons with small recoil energy; however, the heavy dark photon is likely to generate electrons with large recoil energy. The distinct difference follows from the energy dependence in the distribution of dσχe/dTχd\sigma_{\chi e}/dT_{\chi} and the DM form factor FDM(q)F_{DM}(q). It implies that one might distinguish between the dark photon and the heavy dark photon from the recoil energy spectrum of the ionized electron when the background is well understood.

The recoiling electron are then converted into scintillation (S1S1) and ionization (S2S2) signal in liquid xenon experiments, and the observable is the number of photonelectrons (PE). We consider S2S2 signal hereafter as the XENON100 and XENON1T collaborations release the data sets that are based only on the ionization signal Aprile et al. (2016, 2019a). The event spectrum can be schematically written as following:

dNdS2=TexpεS2nl𝑑ERpdf(S2|ΔEe)dRionnldlnER,\frac{dN}{dS2}=T_{\rm exp}\cdot\varepsilon_{S2}\sum_{nl}\int dE_{R}\,{\rm pdf}\left(S2|\Delta E_{e}\right)\frac{dR^{nl}_{ion}}{dlnE_{R}}\,, (13)

where TexpT_{\rm exp} is the exposure of detector and εS2\varepsilon_{S2} is the efficiency of triggering and accepting the S2S2 signal. For a given deposit energy ΔEe=ER+|EBnl|\Delta E_{e}=E_{R}+|E^{nl}_{B}| with |EBnl||E^{nl}_{B}| the binding energy of (n,l)(n,l) shell, the conversion probability of S2S2 is pdf(S2|ΔEe){\rm pdf}\left(S2|\Delta E_{e}\right), which is modeled as follows Essig et al. (2012b, 2017). The number of primary quanta produced at the interaction point is nQ(1)=Floor(ER/W)n^{(1)}_{Q}={\rm Floor}(E_{R}/W) with W=13.8W=13.8 eV, and nQ(1)n^{(1)}_{Q} is divided into nen_{e} observable ionized electrons escaping from interaction point and nγn_{\gamma} unobservable scintillation photons. The fiducial value of the fraction of primary quanta identified as electrons is chosen as fe0.83f_{e}\simeq 0.83. In addition, in the case of the DM candidate ionizes an inner shell electron, the secondary quanta is produced by subsequent electron transitions from outer to inner shell. The number of the secondary quanta is nQ(2)=Floor((EiEj)/W)n^{(2)}_{Q}={\rm Floor}((E_{i}-E_{j})/W) where EiE_{i} denotes the binding energy of the iith shell. The production number of secondary electrons follows a binomial distribution with nQ(1)+nQ(2)n_{Q}^{(1)}+n_{Q}^{(2)} trials and the success probability fef_{e}. Finally, the number of PE converted from electrons (with total number ne=ne(1)+ne(2)n_{e}=n^{(1)}_{e}+n^{(2)}_{e}) is described by a gaussian distribution with mean value neμn_{e}\mu and width neσ\sqrt{n_{e}}\sigma. The parameters are chosen as μ=19.7(11.4)\mu=19.7~{}(11.4) and σ=6.9(2.8)\sigma=6.9~{}(2.8) Aprile et al. (2016, 2019b).

Refer to caption
Refer to caption
Figure 3: Example of expected PE spectra for DM-electron scattering in XENON100 (A) and XENON1T (B) experiments, for both ultralight and heavy mediator cases. Signal spectra are shown for mχ=1m_{\chi}=1 keV with scattering cross section σ¯e=1.5×1031cm2\bar{\sigma}_{e}=1.5\times 10^{-31}~{}{\rm cm}^{2} (1.5×1033cm21.5\times 10^{-33}~{}{\rm cm}^{2}) in ultralight (heavy) mediator case.
Refer to caption
Refer to caption
Figure 4: (A): exclusion limits in the mχm_{\chi}-σ¯e\bar{\sigma}_{e} plane from the XENON100 data (red-solid) and the XENON1T data (green-solid) for ultralight mediator scenario. For comparison, corresponding limits for constant ||2¯\overline{|\mathcal{M}|^{2}} are presented by dashed lines. Also shown are cooling constraints from supernovae 1987A (“SN 1987”) Chang et al. (2018), energy loss of Red-Giant and Horizontal-Branch stars (“RG & HB”), as well as white dwarfs (“WD”) Vogel and Redondo (2014); we also plot parameter region where DM obtains the correct relic abundance via freeze-in mechanism Essig et al. (2012a); Dvorkin et al. (2019). (B): exclusion limits for heavy mediator scenario. We also plot constraints from Super-Kamiokande neutrino experiment (“Super-K”) Cappiello and Beacom (2019), solar reflection (“Solar Reflection”) An et al. (2018), as well as previous limits from the XENON10 and the XENON100 direct detections (“DD”) Essig et al. (2012b, 2017).

We derive the limits of σ¯e\bar{\sigma}_{e} imposed by the XENON100 data Aprile et al. (2016) (Texp=30kgyearsT_{\rm exp}=30~{}{\rm kg-years}) and by the XENON1T data Aprile et al. (2019a) (effective Texp=22tonnedaysT_{\rm exp}=22~{}{\rm tonne-days}), using the same bin steps. We choose the detection efficiency as εS2=1\varepsilon_{S2}=1 for simplicity and obtain the limits by demanding that signal does not exceed 1σ1\sigma upper bound in each bin. Figure 3 presents benchmark signal spectra versus PE for the ultralight and heavy mediator cases.

Figure 4(A) shows the exclusion limits in the mχm_{\chi}-σ¯e\bar{\sigma}_{e} plane for the case of a ultralight mediator, derived from the XENON100 data (red) and the XENON1T data (green). The acceleration mechanism greatly enhances the discovery potential of direct detection experiments on a light DM candidate. For comparison we also plot the parameter region for the freeze-in DM (brown curve) Essig et al. (2012a); Dvorkin et al. (2019). Even though the parameter space of freeze-in DM is well below the current direct detection sensitivity, it can be reached when large experimental exposures are achieved. For example, the experimental exposure of 30 tonne-years can probe the signal region of freeze-in DM with mχ1m_{\chi}\sim 1 eV when the background is fully controlled. In addition, the DM with a ultralight mediator (or equivalent milli-charged DM) can also be constrained by astrophysical observations from supernova cooling and stellar energy loss Chang et al. (2018); Vogel and Redondo (2014). The bounds from the direct detection experiments are comparable to those astrophysical constraints.

Figure 4(B) displays the exclusion limit of σ¯e\bar{\sigma}_{e} for the case of a heavy mediator. We also plot the limits from Super-Kamiokande neutrino experiment Cappiello and Beacom (2019), solar reflection An et al. (2018), and the direct detection without CR-DM scattering effect Essig et al. (2017). After considering the CR-DM effect, the direct detection experiments have a better sensitivity in the sub-keV mass region.

In summary, we studied the effect of boosted DM on DM-electron direct detections and demonstrate that the current data from liquid noble gas experiments is sensitive to light DM candidates in the range of sub-MeV. More importantly, the energy dependence in cross section plays a crucial role in improving the exclusion limits, e.g., the recoil spectra increase with recoil energy for heavy mediator case while decrease with recoil energy for ultralight mediator. Such opposite energy dependences imply that the neutrino experiments such as Super-K are more powerful for heavy mediator due to their much larger acceptance volume and higher energy coverage Bays et al. (2012). On the other hand, direct detection has more advantage on ultralight mediator. Such two kind of experiments are complementary to each other.

The CR boosted DM mechanism has very rich phenomenologies. For example, it is interesting to investigate boosted DM flux coming from the Galactic center which possesses high DM density and CR flux. One also expects that the morphology of signal resulted from the Galactic center is different from that originated from local interstellar Carlson and Profumo (2015). Moreover, light DM with significant CR acceleration and heavy DM (mχ10MeVm_{\chi}\gtrsim 10~{}\mathrm{MeV}) with negligible CR acceleration could potentially produce degenerate signal; therefore, discrimination of such two kinds of scenarios in both model independent and model specific way is an intriguing issue Cao et al. . The boosted mechanism might explain or be constrained by the recoiled energy spectrum of electrons recently reported by the XENON1T collaboration Aprile et al. (2020).

Acknowledgments.  We thank Tien-Tien Yu and Su-jie Lin for helpful discussions. The work is supported in part by the National Science Foundation of China under Grant Nos. 11725520, 11675002 and 11635001. QFX is also supported by the China Postdoctoral Science Foundation under Grant No. 8206300015.

References

SUPPLEMENTAL MATERIALS

The supplemental materials provide additional details to various results presented in the main text. Some of the results can be applied to other light DM models.

I Calculation of CR electron flux

In order to obtain accurate DM recoil flux, the reliable inputs of electron CR flux are in order. The observed CR electron spectrum at the Earth extend many orders of magnitude energy, ranging from GeV to TeV. Such energetic CR electrons are easy to accelerate a fraction of DM particles to relativistic speeds. The flux of CR electrons is obtained by solving the diffusion equation with a widely used galactic CR propagation model. The flux is also modulated periodically according to the solar activity due to interactions of CR electrons with the heliosphere magnetic field. As a result, the CR spectrum observed at the Earth is different from the one in the interstellar. Such solar modulation is more important for low energy CR electrons and is negligible for energy above several GeV. The unmodulated local interstellar spectra of CR electrons has been measured by Voyager 1 collaboration which covers energy range with 2.7742.7-74 MeV Cummings et al. (2016). For high energy CR electrons, AMS-02 Aguilar et al. (2014) and DAMPE Ambrosi et al. (2017) measurements cover energy ranges from 11 GeV to 4.64.6 TeV. We use the GALPROPv54 Strong and Moskalenko (1998); Moskalenko and Strong (1998) to obtain the best-fit flux for AMS-02 and DAMPE data sets, and combine the best estimation of Voyager 1 data Potgieter et al. (2015). Corresponding local interstellar spectrum of CR electrons is shown in Fig. 5 with measurements.

Refer to caption
Figure 5: Local interstellar flux of CR electrons as a function of electron kinetic energy TCRT_{\rm CR} with the data sets from Voyager 1 Cummings et al. (2016), AMS-02 Aguilar et al. (2014) and DAMPE Ambrosi et al. (2017) measurements. For completeness, we also present Fermi-LAT Abdollahi et al. (2017) measurement.

II Derivation of the CR-DM differential scattering cross section

In the CR-DM scattering, the initial DM particles are treated as being at rest since their typical velocities (v103v\sim 10^{-3}) are negligible compare to the velocities of incoming CR electrons. The recoil energy of DM for a given CR kinetic energy TCRT_{\rm CR} can be calculated from standard relativistic kinematics of 2-body scattering process Goldstein et al. (2001) and are given as

Tχ=Tχmax(1cosθCM)2,Tχmax=2mχTCR(TCR+2me)(me+mχ)2+2TCRmχ,T_{\chi}=T_{\chi}^{\max}\frac{(1-\cos\theta_{\rm CM})}{2},\quad T_{\chi}^{\rm max}=\frac{2m_{\chi}T_{\rm CR}(T_{\rm CR}+2m_{e})}{(m_{e}+m_{\chi})^{2}+2T_{\rm CR}m_{\chi}}\,, (14)

where θCM\theta_{\rm CM} is the center-of-mass scattering angle. From above equation, θCM\theta_{\rm CM} and TχT_{\chi} are related as

dcosθCMdTχ=2Tχmax,\frac{d\cos\theta_{\rm CM}}{dT_{\chi}}=-\frac{2}{T_{\chi}^{\max}}\,, (15)

which allows us to translate the variable in differential cross section from solid angle dΩd\Omega to DM kinetic energy dTχdT_{\chi} via

dσχedTχ=dσχedΩdΩdTχ=||2¯16πs1Tχmax,\frac{d\sigma_{\chi e}}{dT_{\chi}}=\frac{d\sigma_{\chi e}}{d\Omega}\cdot\frac{d\Omega}{dT_{\chi}}=\frac{\overline{|\mathcal{M}|^{2}}}{16\pi s}\frac{1}{T_{\chi}^{\max}}\,, (16)

where ||2¯=14spins||2\overline{|\mathcal{M}|^{2}}=\frac{1}{4}\sum_{\rm spins}|\mathcal{M}|^{2} is the squared DM-electron scattering matrix element, averaged over initial and summed over final spin states. Using Eq. (16) and expressions of Mandelstam variables

{s=(mχ+me)2+2mχTCR,t=2mχTχ=q2,u=(mχme)22mχ(TCRTχ),\left\{\begin{array}[]{l}{s=(m_{\chi}+m_{e})^{2}+2m_{\chi}T_{\rm CR}}\,,\\ {t=-2m_{\chi}T_{\chi}=-q^{2}}\,,\\ {u=(m_{\chi}-m_{e})^{2}-2m_{\chi}(T_{\rm CR}-T_{\chi})}\,,\end{array}\right. (17)

one can drive formula of dσχe/dTχd\sigma_{\chi e}/dT_{\chi} for a given interaction. As below, we list expressions of dσχe/dTχd\sigma_{\chi e}/dT_{\chi} for some typical interactions, which are widely used in light DM model:

  • Scalar interaction: gχχ¯χϕ+gSMf¯fϕ\mathcal{L}\supset g_{\chi}\overline{\chi}\chi\phi+g_{\rm SM}\overline{f}f\phi ,

    ||2¯\displaystyle\overline{|\mathcal{M}|^{2}} =\displaystyle= gχ2gSM24mχ(2mχ+Tχ)(2me2+mχTχ)(2mχTχ+mϕ2)2,\displaystyle g_{\chi}^{2}g_{\rm SM}^{2}\frac{4m_{\chi}\left(2m_{\chi}+T_{\chi}\right)\left(2m_{e}^{2}+m_{\chi}T_{\chi}\right)}{\left(2m_{\chi}T_{\chi}+m_{\phi}^{2}\right)^{2}}\,, (18)
    dσχedTχ\displaystyle\frac{d\sigma_{\chi e}}{dT_{\chi}} =\displaystyle= gχ2gSM2(2mχ+Tχ)(2me2+mχTχ)8π(2meTCR+TCR2)(2mχTχ+mϕ2)2.\displaystyle g_{\chi}^{2}g_{\rm SM}^{2}\frac{\left(2m_{\chi}+T_{\chi}\right)\left(2m_{e}^{2}+m_{\chi}T_{\chi}\right)}{8\pi\left(2m_{e}T_{\rm CR}+T_{\rm CR}^{2}\right)\left(2m_{\chi}T_{\chi}+m_{\phi}^{2}\right)^{2}}\,. (19)
  • Vector interaction: gχχ¯γμχAμ+gSMf¯γμfAμ\mathcal{L}\supset g_{\chi}\overline{\chi}\gamma^{\mu}\chi A^{\prime}_{\mu}+g_{\rm SM}\overline{f}\gamma^{\mu}fA^{\prime}_{\mu} ,

    ||2¯\displaystyle\overline{|\mathcal{M}|^{2}} =\displaystyle= gχ2gSM28mχ(2mχ(me+TCR)2Tχ((me+mχ)2+2mχTCR)+mχTχ2)(2mχTχ+mA2)2,\displaystyle g_{\chi}^{2}g_{\rm SM}^{2}\frac{8m_{\chi}\left(2m_{\chi}\left(m_{e}+T_{\rm CR}\right)^{2}-T_{\chi}\left(\left(m_{e}+m_{\chi}\right)^{2}+2m_{\chi}T_{\rm CR}\right)+m_{\chi}T_{\chi}^{2}\right)}{\left(2m_{\chi}T_{\chi}+m_{A^{\prime}}^{2}\right)^{2}}\,, (20)
    dσχedTχ\displaystyle\frac{d\sigma_{\chi e}}{dT_{\chi}} =\displaystyle= gχ2gSM22mχ(me+TCR)2Tχ((me+mχ)2+2mχTCR)+mχTχ24π(2meTCR+TCR2)(2mχTχ+mA2)2.\displaystyle g_{\chi}^{2}g_{\rm SM}^{2}\frac{2m_{\chi}\left(m_{e}+T_{\rm CR}\right)^{2}-T_{\chi}\left(\left(m_{e}+m_{\chi}\right)^{2}+2m_{\chi}T_{\rm CR}\right)+m_{\chi}T_{\chi}^{2}}{4\pi\left(2m_{e}T_{\rm CR}+T_{\rm CR}^{2}\right)\left(2m_{\chi}T_{\chi}+m_{A^{\prime}}^{2}\right)^{2}}\,. (21)
  • Axial-vector interaction: gχχ¯γμγ5χAμ+gSMf¯γμγ5fAμ\mathcal{L}\supset g_{\chi}\overline{\chi}\gamma^{\mu}\gamma^{5}\chi A^{\prime}_{\mu}+g_{\rm SM}\overline{f}\gamma^{\mu}\gamma^{5}fA^{\prime}_{\mu} ,

    ||2¯\displaystyle\overline{|\mathcal{M}|^{2}} =\displaystyle= gχ2gSM28mχ(2mχ((me+TCR)2+2me2)+Tχ((memχ)22mχTCR)+mχTχ2)(2mχTχ+mA2)2,\displaystyle g_{\chi}^{2}g_{\rm SM}^{2}\frac{8m_{\chi}\left(2m_{\chi}\left(\left(m_{e}+T_{\rm CR}\right)^{2}+2m_{e}^{2}\right)+T_{\chi}\left(\left(m_{e}-m_{\chi}\right)^{2}-2m_{\chi}T_{\rm CR}\right)+m_{\chi}T_{\chi}^{2}\right)}{\left(2m_{\chi}T_{\chi}+m_{A^{\prime}}^{2}\right)^{2}}\,, (22)
    dσχedTχ\displaystyle\frac{d\sigma_{\chi e}}{dT_{\chi}} =\displaystyle= gχ2gSM22mχ((me+TCR)2+2me2)+Tχ((memχ)22mχTCR)+mχTχ24π(2meTCR+TCR2)(2mχTχ+mA2)2.\displaystyle g_{\chi}^{2}g_{\rm SM}^{2}\frac{2m_{\chi}\left(\left(m_{e}+T_{\rm CR}\right)^{2}+2m_{e}^{2}\right)+T_{\chi}\left(\left(m_{e}-m_{\chi}\right)^{2}-2m_{\chi}T_{\rm CR}\right)+m_{\chi}T_{\chi}^{2}}{4\pi\left(2m_{e}T_{\rm CR}+T_{\rm CR}^{2}\right)\left(2m_{\chi}T_{\chi}+m_{A^{\prime}}^{2}\right)^{2}}\,. (23)

For the purpose of this paper, we concentrate on vector interaction, while the limits for other interactions can be obtained in a straightforward way by using our calculation procedures. The DM-electron elastic scattering cross section is conventionally normalized to σ¯e\bar{\sigma}_{e} with following definitions Essig et al. (2012a):

|free|2¯\displaystyle\overline{|\mathcal{M}_{\rm free}|^{2}} =\displaystyle= |free(αme)|2¯×|FDM(q)|2,\displaystyle\overline{|\mathcal{M}_{\rm free}\left(\alpha m_{e}\right)|^{2}}\times\left|F_{DM}(q)\right|^{2}\,, (24)
σ¯e\displaystyle\bar{\sigma}_{e} =\displaystyle= μχe2|free(αme)|2¯16πmχ2me2,\displaystyle\frac{\mu_{\chi e}^{2}\overline{|\mathcal{M}_{\rm free}\left(\alpha m_{e}\right)|^{2}}}{16\pi m_{\chi}^{2}m_{e}^{2}}\,, (25)

where μχe\mu_{\chi e} is the DM-electron reduced mass, free(αme)\mathcal{M}_{\rm free}\left(\alpha m_{e}\right) is corresponding matrix element for momentum transfer at reference value q=|𝒒|=αmeq=|\boldsymbol{q}|=\alpha m_{e}. The DM form factor, FDM(q)F_{DM}(q), encapsulates all remaining energy dependence of the interaction. With the notation of Eq. (25), the DM-electron reference cross section for benchmark model in Eq. (1) is given by

|free(αme)|2¯\displaystyle\overline{|\mathcal{M}_{\rm free}\left(\alpha m_{e}\right)|^{2}} =\displaystyle= 16gχ2gSM2me2mχ2(α2me2+mA2)2,\displaystyle\frac{16g_{\chi}^{2}g_{\rm SM}^{2}m_{e}^{2}m_{\chi}^{2}}{\left(\alpha^{2}m_{e}^{2}+m_{A^{\prime}}^{2}\right)^{2}}\,, (26)
σ¯e\displaystyle\bar{\sigma}_{e} =\displaystyle= gχ2gSM2μχe2π(α2me2+mA2)2.\displaystyle\frac{g_{\chi}^{2}g_{\rm SM}^{2}\mu_{\chi e}^{2}}{\pi\left(\alpha^{2}m_{e}^{2}+m_{A^{\prime}}^{2}\right)^{2}}\,. (27)

Combining Eqs. (21) and (27) then gives expression of dσχe/dTχd\sigma_{\chi e}/dT_{\chi} in Eq. (2)

dσχedTχ\displaystyle\frac{d\sigma_{\chi e}}{dT_{\chi}} =\displaystyle= σ¯e(α2me2+mA2)2μχe22mχ(me+TCR)2Tχ((me+mχ)2+2mχTCR)+mχTχ24(2meTCR+TCR2)(2mχTχ+mA2)2\displaystyle\bar{\sigma}_{e}\frac{\left(\alpha^{2}m_{e}^{2}+m_{A^{\prime}}^{2}\right)^{2}}{\mu_{\chi e}^{2}}\frac{2m_{\chi}\left(m_{e}+T_{\rm CR}\right)^{2}-T_{\chi}\left(\left(m_{e}+m_{\chi}\right)^{2}+2m_{\chi}T_{\rm CR}\right)+m_{\chi}T_{\chi}^{2}}{4\left(2m_{e}T_{\rm CR}+T_{\rm CR}^{2}\right)\left(2m_{\chi}T_{\chi}+m_{A^{\prime}}^{2}\right)^{2}} (28)
\displaystyle\simeq σ¯e{2mχ(me+TCR)2Tχ((me+mχ)2+2mχTCR)+mχTχ24μχe2(2meTCR+TCR2),heavyAα4me416mχ2Tχ22mχ(me+TCR)2Tχ((me+mχ)2+2mχTCR)+mχTχ2μχe2(2meTCR+TCR2),ultralightA.\displaystyle\bar{\sigma}_{e}\begin{cases}\frac{2m_{\chi}\left(m_{e}+T_{\rm CR}\right)^{2}-T_{\chi}\left(\left(m_{e}+m_{\chi}\right)^{2}+2m_{\chi}T_{\rm CR}\right)+m_{\chi}T_{\chi}^{2}}{4\mu_{\chi e}^{2}\left(2m_{e}T_{\rm CR}+T_{\rm CR}^{2}\right)},\quad\ \ &{\rm heavy}~{}A^{\prime}\\ \frac{\alpha^{4}m_{e}^{4}}{16m^{2}_{\chi}T^{2}_{\chi}}\frac{2m_{\chi}\left(m_{e}+T_{\rm CR}\right)^{2}-T_{\chi}\left(\left(m_{e}+m_{\chi}\right)^{2}+2m_{\chi}T_{\rm CR}\right)+m_{\chi}T_{\chi}^{2}}{\mu_{\chi e}^{2}\left(2m_{e}T_{\rm CR}+T_{\rm CR}^{2}\right)},\quad\ \ &{\rm ultralight}~{}A^{\prime}\end{cases}\,.

Finally, from Eqs. (16) and (25), one can easily drive dσχe/dTχd\sigma_{\chi e}/dT_{\chi} corresponding to constant scattering cross section (||2¯/(16πs)σ¯e\overline{|\mathcal{M}|^{2}}/(16\pi s)\equiv\bar{\sigma}_{e}) and constant matrix element. Which are respectively given as

dσχedTχ=σ¯e{1Tχmax,constantσχe(mχ+me)2(mχ+me)2+2mχTCR1Tχmax,constant||2¯.\frac{d\sigma_{\chi e}}{dT_{\chi}}=\bar{\sigma}_{e}\begin{cases}\frac{1}{T^{\max}_{\chi}},\quad\ \ &{\rm constant}\,\sigma_{\chi e}\\ \frac{\left(m_{\chi}+m_{e}\right)^{2}}{\left(m_{\chi}+m_{e}\right)^{2}+2m_{\chi}T_{\rm CR}}\frac{1}{T^{\max}_{\chi}},\quad\ \ &{\rm constant}\,\overline{|\mathcal{M}|^{2}}\end{cases}\,. (29)

Given differential cross section in Eqs. (28) and (29), we can calculate DM recoil flux as a function of DM kinetic energy according to Eq. (4). In Fig. 6, in additional to the mχ=1m_{\chi}=1 keV recoil flux in the main text, we also present DM recoil fluxes for mχ=1m_{\chi}=1 eV, 10 eV and 0.1 MeV.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: DM recoil fluxes for benchmark DM masses mχ=1m_{\chi}=1 eV,10 eV, 1 keV and 0.10.1 MeV with varying mediator mass mAm_{A^{\prime}}.

III Derivation of the DM-electron scattering cross section

The cross section of DM particle scattering with electron in a bound state can be derived in a standard way using quantum field theory. In the derivation, one conventionally treats the electron is bounded in a static background potential, which means that the recoiling of atoms is neglected. Under such approximation, the cross section for elastic 222\to 2 scattering process χ(p)+e(k)χ(p)+e(k)\chi(p)+e(k)\rightarrow\chi\left(p^{\prime}\right)+e\left(k^{\prime}\right) is given by

dσ\displaystyle d\sigma =\displaystyle= |free|2¯vχe12k02p0(2π)4δ4(k+pkp)d3𝒑(2π)32p0d3𝒌(2π)32k0\displaystyle\frac{\overline{|\mathcal{M_{\rm free}}|^{2}}}{v_{\chi e}}\frac{1}{2k_{0}2p_{0}}(2\pi)^{4}\delta^{4}\left(k+p-k^{\prime}-p^{\prime}\right)\frac{d^{3}\boldsymbol{p}^{\prime}}{(2\pi)^{3}2p_{0}^{\prime}}\frac{d^{3}\boldsymbol{k}^{\prime}}{(2\pi)^{3}2k_{0}^{\prime}} (30)
=\displaystyle= |free|2¯vχe164π2EχEχEeEe1(2π)3δ(ΔEχΔEe)[(2π)3δ3(𝒌𝒌+𝒒)]d3𝒒d3𝒌,\displaystyle\frac{\overline{|\mathcal{M_{\rm free}}|^{2}}}{v_{\chi e}}\frac{1}{64\pi^{2}E_{\chi}E_{\chi}^{\prime}E_{e}E_{e}^{\prime}}\frac{1}{(2\pi)^{3}}\delta\left(\Delta E_{\chi}-\Delta E_{e}\right)\left[(2\pi)^{3}\delta^{3}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}+\boldsymbol{q}\right)\right]d^{3}\boldsymbol{q}d^{3}\boldsymbol{k}^{\prime}\,,

where vχev_{\chi e} is the relative velocity of incoming DM and electron, 𝒒=𝒑𝒑\boldsymbol{q}=\boldsymbol{p}-\boldsymbol{p}^{\prime} is the momentum transfer from DM to electron. ΔEχ\Delta E_{\chi} is the amount of energy lost by DM in the scattering. Notice that for the initial state is bounded electron, one just need to take replacement (2π)3δ3(𝒌𝒌+𝒒)|fi𝒌(𝒒)|2(2\pi)^{3}\delta^{3}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}+\boldsymbol{q}\right)\rightarrow|f_{i\to\boldsymbol{k}^{\prime}}(\boldsymbol{q})|^{2} in Eq. (30). The atomic form factor, fi𝒌(𝒒)=Vd3𝒓ψi(𝒓)ψ𝒌(𝒓)ei𝒒𝒓f_{i\to\boldsymbol{k}^{\prime}}(\boldsymbol{q})=\sqrt{V}\int d^{3}\boldsymbol{r}\psi_{i}(\boldsymbol{r})\psi^{*}_{\boldsymbol{k}^{\prime}}(\boldsymbol{r})e^{i\boldsymbol{q}\cdot\boldsymbol{r}}, accounts for transition from initial to final electron states, and VV is the volume for wavefunction normalization. To understand the consistency of such replacement, notice that for both initial and final states are free electrons, such atomic form factor reduces to fi𝒌(𝒒)=(2π)3δ3(𝒌𝒌+𝒒)f_{i\to\boldsymbol{k}^{\prime}}(\boldsymbol{q})=(2\pi)^{3}\delta^{3}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}+\boldsymbol{q}\right). Here we have included the normalization of the wavefuctions in terms of the volume VV, and used the large volume limit (2π)3δ3(0)/V1(2\pi)^{3}\delta^{3}(0)/V\rightarrow 1. Then for the ionization process χ+Aχ+A++e\chi+A\rightarrow\chi+A^{+}+e^{-} in the (n,l)(n,\,l) atomic shell, Eq. (30) is recast as

dσ=|free|2¯vχe164π2EχEχEeEe1(2π)3δ(ΔEχΔEe)|fnl(𝒒)|2d3𝒒d3𝒌.d\sigma=\frac{\overline{|\mathcal{M_{\rm free}}|^{2}}}{v_{\chi e}}\frac{1}{64\pi^{2}E_{\chi}E_{\chi}^{\prime}E_{e}E_{e}^{\prime}}\frac{1}{(2\pi)^{3}}\delta\left(\Delta E_{\chi}-\Delta E_{e}\right)\left|f_{nl}(\boldsymbol{q})\right|^{2}d^{3}\boldsymbol{q}d^{3}\boldsymbol{k}^{\prime}. (31)

Here both initial bounded and recoil electron are non-relativistic, but incoming DM particle could be relativistic in general. The initial bounded electron and recoil electron respectively have energy Ee=me|EBnl|E_{e}=m_{e}-|E^{nl}_{B}| and Ee=me+ERE_{e}^{\prime}=m_{e}+E_{R}, with ER,|EBnl|meE_{R},|E^{nl}_{B}|\ll m_{e}. One can thus take replacement EeEeme2E_{e}E_{e}^{\prime}\simeq m_{e}^{2} in Eq. (31). The deposit energy in electron, ΔEe\Delta E_{e}, is determined by energy conservation ΔEe=ΔEχ\Delta E_{e}=\Delta E_{\chi} with

ΔEχ\displaystyle\Delta E_{\chi} =\displaystyle= EχEχ=mχ(1+p2mχ21+p2+q22pqcosθmχ2),\displaystyle E_{\chi}-E_{\chi}^{\prime}=m_{\chi}\left(\sqrt{1+\frac{p^{2}}{m_{\chi}^{2}}}-\sqrt{1+\frac{p^{2}+q^{2}-2pq\cos\theta}{m_{\chi}^{2}}}\right)\,, (32)
ΔEe\displaystyle\Delta E_{e} =\displaystyle= EeEe=|EBnl|+ER,\displaystyle E_{e}^{\prime}-E_{e}=|E^{nl}_{B}|+E_{R}\,, (33)

where q=|𝒒|q=|\boldsymbol{q}|, p=|𝒑|p=|\boldsymbol{p}|. Applying the definitions in Eqs. (24) and (25), one can simplify Eq. (31) to

dσvχe=σ¯e4πmχ2μχe2|FDM(q)|2EχEχδ(ΔEχΔEe)1(2π)3|fnl(𝒒)|2d3𝒒d3𝒌.d\sigma v_{\chi e}=\frac{\bar{\sigma}_{e}}{4\pi}\frac{m_{\chi}^{2}}{\mu_{\chi e}^{2}}\frac{\left|F_{DM}(q)\right|^{2}}{E_{\chi}E_{\chi}^{\prime}}\delta\left(\Delta E_{\chi}-\Delta E_{e}\right)\frac{1}{(2\pi)^{3}}\left|f_{nl}(\boldsymbol{q})\right|^{2}d^{3}\boldsymbol{q}d^{3}\boldsymbol{k}^{\prime}. (34)

In order to express differential cross section with respect to electron recoil energy ERE_{R}, using the relation d3𝒌=12k3dlnERdΩ𝒌^d^{3}\boldsymbol{k}^{\prime}=\frac{1}{2}k^{\prime 3}\,d\ln E_{R}\,d\Omega_{\boldsymbol{\hat{k}}^{\prime}}, and rewrite δ\delta-function as

δ(ΔEχΔEe)=Eχpqsinθδ(θ).\delta\left(\Delta E_{\chi}-\Delta E_{e}\right)=\frac{E_{\chi}^{\prime}}{pq\sin\theta}\delta(\theta). (35)

Then by taking derivative of ΔEχ\Delta E_{\chi} in Eq. (33) with respect to θ\theta, Eq. (34) is recast to the expected form

dσvχedlnER=σ¯e8μχe2q𝑑q|FDM(q)|2(2k3(2π)3deg|fnl(𝒒)|2)(mχ2pEχ).\frac{d\sigma v_{\chi e}}{d\ln E_{R}}=\frac{\bar{\sigma}_{e}}{8\mu_{\chi e}^{2}}\int qdq\left|F_{DM}(q)\right|^{2}\left(\frac{2k^{\prime 3}}{(2\pi)^{3}}\sum_{\rm{deg}}\left|f_{nl}(\boldsymbol{q})\right|^{2}\right)\left(\frac{m_{\chi}^{2}}{pE_{\chi}}\right)\,. (36)

Integrated with the incoming flux of boosted DM dΦχ/dTχd{\Phi_{\chi}}/{dT_{\chi}}, we finally obtain the velocity averaged differential ionization cross section

dσionnlvdlnER=σ¯e8μχe2q𝑑q|FDM(q)|2|fionnl(k,q)|2η(Emin).\displaystyle\frac{d\langle\sigma_{ion}^{nl}v\rangle}{d\ln E_{R}}=\frac{\bar{\sigma}_{e}}{8\mu_{\chi e}^{2}}\int qdq\left|F_{DM}(q)\right|^{2}\left|f_{ion}^{nl}(k^{\prime},q)\right|^{2}\eta\left(E_{\min}\right)\,. (37)

Here the DM form factor FDM(q)F_{DM}(q) is evaluated by inverting matrix element in Eq. (20)with applying Eqs. (24) and (26), which reads

|FDM(q)|2\displaystyle|F_{DM}(q)|^{2} =\displaystyle= (α2me2+mA2)2(2meER+mA2)22me(mχ+Tχ)2ER((mχ+me)2+2meTχ)+meER22memχ2\displaystyle\frac{\left(\alpha^{2}m_{e}^{2}+m_{A^{\prime}}^{2}\right)^{2}}{\left(2m_{e}E_{R}+m_{A^{\prime}}^{2}\right)^{2}}\frac{2m_{e}\left(m_{\chi}+T_{\chi}\right)^{2}-E_{R}\left(\left(m_{\chi}+m_{e}\right)^{2}+2m_{e}T_{\chi}\right)+m_{e}E_{R}^{2}}{2m_{e}m_{\chi}^{2}} (38)
\displaystyle\simeq {2me(mχ+Tχ)2ER((mχ+me)2+2meTχ)+meER22memχ2,heavyAα4me48me2ER22me(mχ+Tχ)2ER((mχ+me)2+2meTχ)+meER2memχ2,ultralightA.\displaystyle\begin{cases}\frac{2m_{e}\left(m_{\chi}+T_{\chi}\right)^{2}-E_{R}\left(\left(m_{\chi}+m_{e}\right)^{2}+2m_{e}T_{\chi}\right)+m_{e}E_{R}^{2}}{2m_{e}m_{\chi}^{2}},\quad\ \ &{\rm heavy}~{}A^{\prime}\\ \frac{\alpha^{4}m_{e}^{4}}{8m_{e}^{2}E_{R}^{2}}\frac{2m_{e}\left(m_{\chi}+T_{\chi}\right)^{2}-E_{R}\left(\left(m_{\chi}+m_{e}\right)^{2}+2m_{e}T_{\chi}\right)+m_{e}E_{R}^{2}}{m_{e}m_{\chi}^{2}},\quad\ \ &{\rm ultralight}~{}A^{\prime}\end{cases}\,.

It is easy to verify that |FDM||F_{DM}| is reduced to conventional expression |FDM(q)|2=((α2me2+mA2)/(q2+mA2))2|F_{DM}(q)|^{2}=((\alpha^{2}m_{e}^{2}+m_{A^{\prime}}^{2})/(q^{2}+m_{A^{\prime}}^{2}))^{2} in non-relativistic limit, e.g., Tχ,ERmeT_{\chi},E_{R}\ll m_{e}.

The generalized η\eta function is given by

η(Emin)=Emin𝑑EχΦhalo1mχ2pEχdΦχdEχ,\eta\left(E_{\min}\right)=\int_{E_{\min}}dE_{\chi}\Phi_{\rm halo}^{-1}\frac{m_{\chi}^{2}}{pE_{\chi}}\frac{d\Phi_{\chi}}{dE_{\chi}}\,, (39)

where Φhalonχv¯\Phi_{\rm halo}\equiv n_{\chi}\bar{v} is the background DM flux in the Galactic halo. EminE_{\min} is the minimum incoming DM energy to produce an electron with recoil energy ERE_{R}, which is determined by energy conservation ΔEχ=ΔEe\Delta E_{\chi}=\Delta E_{e} when 𝒑\boldsymbol{p} and 𝒒\boldsymbol{q} are parallel (cosθ=1)(\cos\theta=1) and

pmin=q2(1ΔEe2/q2)(1ΔEe2q2+ΔEeq(1ΔEe2q2)(1+4mχ2q2ΔEe2q2)).p^{\min}=\frac{q}{2\left(1-\Delta E_{e}^{2}/q^{2}\right)}\left(1-\frac{\Delta E_{e}^{2}}{q^{2}}+\frac{\Delta E_{e}}{q}\sqrt{\left(1-\frac{\Delta E_{e}^{2}}{q^{2}}\right)\left(1+\frac{4m_{\chi}^{2}}{q^{2}}-\frac{\Delta E_{e}^{2}}{q^{2}}\right)}\right)\,. (40)

Notice that the flux is related to the velocity distribution f(𝒗)f(\boldsymbol{v}) with dΦχ(𝒗)=nχ|𝒗|f(𝒗)d3𝒗d\Phi_{\chi}(\boldsymbol{v})=n_{\chi}|\boldsymbol{v}|f(\boldsymbol{v})d^{3}\boldsymbol{v}. Eq. (39) can be expressed as standard form

η(Emin)\displaystyle\eta\left(E_{\min}\right) =\displaystyle= Emin(1nχv¯)mχ2vEχ2nχv¯f(v)d3v\displaystyle\int_{E_{\min}}\left(\frac{1}{n_{\chi}\bar{v}}\right)\frac{m_{\chi}^{2}}{vE_{\chi}^{2}}n_{\chi}\bar{v}f(v)d^{3}v (41)
=\displaystyle= Eminmχ2vEχ2f(v)d3v.\displaystyle\int_{E_{\min}}\frac{m_{\chi}^{2}}{vE_{\chi}^{2}}f(v)d^{3}v\,.

Similarly, in the non-relativistic limit, one has

pmin\displaystyle p^{\min} \displaystyle\simeq q2(1+ΔEeq2mχq)=q2+mχΔEeq,\displaystyle\frac{q}{2}\left(1+\frac{\Delta E_{e}}{q}\frac{2m_{\chi}}{q}\right)=\frac{q}{2}+\frac{m_{\chi}\Delta E_{e}}{q}\,, (42)
vmin\displaystyle v_{\min} =\displaystyle= pminmχ=q2mχ+ΔEeq.\displaystyle\frac{p^{\min}}{m_{\chi}}=\frac{q}{2m_{\chi}}+\frac{\Delta E_{e}}{q}\,. (43)

Equation (41) reduces to standard mean inverse speed function η(vmin)=vmin1vf(v)d3v\eta(v_{\min})=\int_{v_{\min}}\frac{1}{v}f(v)d^{3}v.

Finally, the atomic ionization form factor |fionnl(k,q)|2\left|f_{ion}^{nl}(k^{\prime},q)\right|^{2} is defined as

|fionnl(k,q)|22k3(2π)3deg|fnl(𝒒)|2,\left|f_{ion}^{nl}(k^{\prime},q)\right|^{2}\equiv\frac{2k^{\prime 3}}{(2\pi)^{3}}\sum_{\rm deg}\left|f_{nl}(\boldsymbol{q})\right|^{2}\,, (44)

where fnl(𝒒)f_{nl}(\boldsymbol{q}) is the atomic form factor for (n,l)(n,l) electron shell. For our interested case, the final electron state is always ionizaed thus can be taken as a free wavefunction with momentum k=2meERk^{\prime}=\sqrt{2m_{e}E_{R}}. In this case, fnl(𝒒)f_{nl}(\boldsymbol{q}) is simplified to

deg|fnl(𝒒)|2\displaystyle\sum_{\rm deg}\left|f_{nl}(\boldsymbol{q})\right|^{2} =\displaystyle= deg|𝒌|ei𝒒𝒓|nlm|2=deg|d3𝒓ei𝒌𝒓ψnlm(𝒓)|2\displaystyle\sum_{\text{deg}}\left|\langle\boldsymbol{k}^{\prime}|e^{i\boldsymbol{q}\cdot\boldsymbol{r}}|nlm\rangle\right|^{2}=\sum_{\text{deg}}\left|\int d^{3}\boldsymbol{r}e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}\psi_{nlm}(\boldsymbol{r})\right|^{2} (45)
=\displaystyle= deg|χnl(k)Ylm(𝒌^)|2,\displaystyle\sum_{\rm deg}\left|\chi_{nl}(k)Y_{lm}(\hat{\boldsymbol{k}})\right|^{2}\,,

where we have used the definition of momentum space wavefunction of the initial bounded electron ψnlm(𝒌)=d3𝒓ψnlm(𝒓)ei𝒌𝒓χnl(k)Ylm(𝒌^)\psi_{nlm}(\boldsymbol{k})=\int d^{3}\boldsymbol{r}\psi_{nlm}(\boldsymbol{r})e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}\equiv\chi_{nl}(k)Y_{lm}(\hat{\boldsymbol{k}}), with the normalization d3𝒌|ψnlm(𝒌)|2=(2π)3\int d^{3}\boldsymbol{k}\left|\psi_{nlm}(\boldsymbol{k})\right|^{2}=(2\pi)^{3}. χnl(k)\chi_{nl}(k) is the radial wavefunction in momentum space, and Ylm(𝒌^)Y_{lm}(\hat{\boldsymbol{k}}) is the spherical harmonic function which accounts for angular part of the wavefunction. Writing the sum of degenerate states explicitly, we arrive at

deg|fnl(𝒒)|2=2𝑑Ω𝒌^m=ll|χnl(k)Ylm(𝒌^)|2,\sum_{\rm{deg}}\left|f_{nl}(\boldsymbol{q})\right|^{2}=2\int d\Omega_{\hat{\boldsymbol{k}}}\sum_{m=-l}^{l}\left|\chi_{nl}(k)Y_{lm}\left(\hat{\boldsymbol{k}}\right)\right|^{2}\,, (46)

where factor 2 takes account of electron spin. Applying the property of harmonics function

m=ll|Ylm(𝒌^)|2=2l+14π,\sum_{m=-l}^{l}\left|Y_{lm}\left(\hat{\boldsymbol{k}}\right)\right|^{2}=\frac{2l+1}{4\pi}\,, (47)

and change the integration variable to initial electron momentum kk by using sinθdθ=kdk/(kq)\sin\theta d\theta=kdk/(k^{\prime}q), we obtain the expression of atomic ionization form factor in the literature Essig et al. (2012a)

|fionnl(k,q)|2\displaystyle\left|f_{ion}^{nl}(k^{\prime},q)\right|^{2} =\displaystyle= 2k3(2π)3(2l+12π𝑑Ωk^|χnl(k)|2)\displaystyle\frac{2k^{\prime 3}}{(2\pi)^{3}}\left(\frac{2l+1}{2\pi}\int d\Omega_{\hat{k}}\left|\chi_{nl}(k)\right|^{2}\right) (48)
=\displaystyle= 2k3(2l+1)(2π)3sinθdθ|χnl(k2+q22kqcosθ)|2\displaystyle\frac{2k^{\prime 3}(2l+1)}{(2\pi)^{3}}\int\sin\theta d\theta\left|\chi_{nl}\left(\sqrt{k^{\prime 2}+q^{2}-2k^{\prime}q\cos\theta}\right)\right|^{2}
=\displaystyle= (2l+1)k24π3q|kq||k+q|k𝑑k|χnl(k)|2.\displaystyle\frac{(2l+1)k^{\prime 2}}{4\pi^{3}q}\int_{|k^{\prime}-q|}^{|k^{\prime}+q|}kdk\left|\chi_{nl}(k)\right|^{2}\,.

IV Calculation of the radial Roothaan-Hartree-Fock wavefunction

We here give the detailed computation of the momentum space radial wave function χnl(p)\chi_{nl}(p) for DM-electron elastic scattering, which is used to calculate atomic ionization form factor. χnl(p)\chi_{nl}(p) is obtained by splitting the coordinate space wavefunction ψnlm(x)\psi_{nlm}(x) into its radial part Rnl(r)R_{nl}(r) and its angular part Ylm(𝜽,ϕ)Y_{lm}(\boldsymbol{\theta},~{}\boldsymbol{\phi}), the exact expression is given by Kopp et al. (2009)

χnl(p)\displaystyle\chi_{nl}(p) =\displaystyle= 4π2l+1mψnlm(𝐩)Ylm(θp,ϕp)\displaystyle\frac{4\pi}{2l+1}\sum_{m}\psi_{nlm}(\mathbf{p})Y_{lm}\left(\theta_{p},\phi_{p}\right) (49)
=\displaystyle= 4πil𝑑rr2Rnl(r)jl(pr).\displaystyle 4\pi i^{l}\int drr^{2}R_{nl}(r)j_{l}(pr).

Here, 𝒑\boldsymbol{p} is a momentum space vector with arbitrary orientation (θp,ϕp)(\theta_{p},\phi_{p}), and p=|𝒑|p=|\boldsymbol{p}|. Pl(cosθ)P_{l}(\cos\theta) is a Legendre polynomial. To obtain above result, we have used the orthogonality of the spherical harmonics

0π02πYlm(θ,ϕ)Ylm(θ,ϕ)sinθdθdφ=δllδmm,\int_{0}^{\pi}\int_{0}^{2\pi}Y\operatorname{lm}(\theta,\phi)Yl^{\prime}m^{\prime}(\theta,\phi)\sin\theta d\theta d\varphi=\delta_{ll^{\prime}}\delta_{mm^{\prime}}\,, (50)

and the Gegenbauer formula

jl(pr)=(i)l20πd(cosθ)Pl(cosθ)eiprcosθ,j_{l}(pr)=\frac{(-i)^{l}}{2}\int_{0}^{\pi}-d(\cos\theta)P_{l}(\cos\theta)e^{ipr\cos\theta}\,, (51)

which expresses the spherical Bessel function jl(x)j_{l}(x) with Fourier type integration over Legendre polynomial. In the RHF method, the radial wavefunctions Rnl(r)R_{nl}(r) is approximated by a linear combination of Slater-type orbitals Bunge et al. (1993):

Rnl(r)=kCnlk(2Zlk)nlk+1/2a03/2(2nlk)!(r/a0)nlk1exp(Zlkra0),R_{nl}(r)=\sum_{k}C_{nlk}\frac{\left(2Z_{lk}\right)^{n_{lk}+1/2}}{a_{0}^{3/2}\sqrt{\left(2n_{lk}\right)!}}\left(r/a_{0}\right)^{n_{lk}-1}\exp\left(-\frac{Z_{lk}r}{a_{0}}\right)\,, (52)

where a0a_{0} is the Bohr radius, and the values of coefficients CnlkC_{nlk}, ZlkZ_{lk} and nlkn_{lk} are provided in Ref. Bunge et al. (1993). Then χnl(p)\chi_{nl}(p) can be expressed as

χnl(p)=4πilkCnlk(2Zlk)nlk+1/2(2nlk)!a01nlk3/20𝑑rrnlk+1eZlk/a0jl(pr).\chi_{nl}(p)=4\pi i^{l}\sum_{k}C_{nlk}\frac{\left(2Z_{lk}\right)^{n_{lk}+1/2}}{\sqrt{\left(2n_{lk}\right)!}}a_{0}^{1-n_{lk}-3/2}\int_{0}^{\infty}dr\,r^{n_{lk}+1}\,e^{-Z_{lk}/a_{0}}\,j_{l}(pr)\,. (53)

Applying the Hankel transform formula Wang and Guo (1989)

0eatJν(bt)tμ1𝑑t=Γ(μ+ν)aμ+νΓ(ν+1)(b2)2νF1[μ+ν2,μ+ν+12,ν+1,b2a2],\int_{0}^{\infty}e^{-at}\,J_{\nu}(bt)\,t^{\mu-1}dt=\frac{\Gamma(\mu+\nu)}{a^{\mu+\nu}\Gamma(\nu+1)}\left(\frac{b}{2}\right)^{\nu}\,_{2}F_{1}\left[\frac{\mu+\nu}{2},\frac{\mu+\nu+1}{2},\nu+1,-\frac{b^{2}}{a^{2}}\right]\,, (54)

with F12(a,b,c,x)\,{}_{2}F_{1}\left(a,\,b,\,c,\,x\right) being the hypergeometric function, Jν(x)J_{\nu}(x) the Bessel function of the first kind and jl(x)=π2xJν+12(x)j_{l}(x)=\sqrt{\frac{\pi}{2x}}J_{\nu+\frac{1}{2}}(x), we can evaluate Eq. (49) analytically, which yields

χnl(p)\displaystyle\chi_{nl}(p) =\displaystyle= kCnlk2nlkl(2πa0Zlk)3/2(ipa0Zlk)lΓ(nlk+l+2)Γ(l+32)(2nlk)!\displaystyle\sum_{k}C_{nlk}2^{n_{lk}-l}\left(\frac{2\pi a_{0}}{Z_{lk}}\right)^{3/2}\left(\frac{ipa_{0}}{Z_{lk}}\right)^{l}\frac{\Gamma\left(n_{lk}+l+2\right)}{\Gamma(l+\frac{3}{2})\sqrt{\left(2n_{lk}\right)!}} (55)
×\displaystyle\times F12[12(nlk+l+2),12(nlk+l+3),l+32,(pa0Zlk)2].\,{}_{2}F_{1}\left[\frac{1}{2}\left(n_{lk}+l+2\right),\frac{1}{2}\left(n_{lk}+l+3\right),l+\frac{3}{2},-\left(\frac{pa_{0}}{Z_{lk}}\right)^{2}\right]\,.

We notice that Eq. (55) has a slightly different expression from Eq. (C3) in Ref. Kopp et al. (2009), which leads to a small difference of χnl(p)\chi_{nl}(p) value especially for high ll. As a crosscheck, we have performed full numerical integration to Eq. (53) for sample points and found a good agreement with our analytical result.

V Modeling of the electron and photonelectron Yields

We provide additional details to convert the recoiling electron’s recoil energy into a specific number of electrons. Our modeling procedure is closely follow Refs. Essig et al. (2012b, 2017). A primary electron with deposit energy ΔEe=ER+|EBnl|\Delta E_{e}=E_{R}+|E^{nl}_{B}| can produce nen_{e} observable electrons, nγn_{\gamma} unobservable scintillation photons and heat. The relevant quantities satisfy following relations

ER\displaystyle E_{R} =\displaystyle= (nγ+ne)W,\displaystyle(n_{\gamma}+n_{e})W\,,
nγ\displaystyle n_{\gamma} =\displaystyle= Nex+fRNi,\displaystyle N_{\rm ex}+f_{R}N_{i}\,,
ne\displaystyle n_{e} =\displaystyle= (1fR)Ni.\displaystyle(1-f_{R})N_{i}\,. (56)

Here W=13.8W=13.8 eV is the average energy required to produce a single quanta (photon or electron), NiN_{i} and NexN_{\rm ex} are corresponding numbers of ions and excited atoms created by ERE_{R} and follow Nex/Ni0.2N_{\rm ex}/N_{i}\simeq 0.2 Doke et al. (2002) at energies above a keV. fRf_{R} is the fraction of ions that can recombine, and we assume fR=0f_{R}=0 at low energy Thomas and Imel (1987). This then implies that ne=Nin_{e}=N_{i} and nγ=Nexn_{\gamma}=N_{\rm ex}, and the fraction of initial quanta observed as electrons is given by Sorensen and Dahl (2011)

fe=nene+nγ=1fR1+Nex/Ni0.83.f_{e}=\frac{n_{e}}{n_{e}+n_{\gamma}}=\frac{1-f_{R}}{1+N_{\rm ex}/N_{i}}\simeq 0.83. (57)

Furthermore, we assume that the photons associated with the de-excitation of the next-to-outer shells can photoionize to create an additional nQ(2)n^{(2)}_{Q} quanta, which is listed in Table 1 for full Xenon electron shells. While in the calculation, we only consider contributions from (5p6,5s2,4d10,4p6,4s2)(5p^{6},5s^{2},4d^{10},4p^{6},4s^{2}) shells. The total number of electrons is given by ne=ne(1)+ne(2)n_{e}=n^{(1)}_{e}+n^{(2)}_{e}, where ne(1)n^{(1)}_{e} is the primary electron and n(2)n^{(2)} are the secondary electrons produced. n(1)n^{(1)} equals to 0 and 1 with probability fRf_{R} and 1fR1-f_{R} respectively, and ne(2)n^{(2)}_{e} follows a binomial distribution with nQ(1)+nQ(2)n^{(1)}_{Q}+n^{(2)}_{Q} trials and success probability fef_{e}. As an example, in Fig. 7 we plot differential rate dN/dnedN/dn_{e} as a function of number of electrons nen_{e} for both ultralight and heavy mediator cases.

Shell 5p65p^{6} 5s25s^{2} 4d104d^{10} 4p64p^{6} 4s24s^{2} 3d103d^{10} 3p63p^{6} 3s23s^{2} 2p62p^{6} 2s22s^{2} 1s21s^{2}
|EBnl||E^{nl}_{B}| [eV] 12.4 25.7 75.6 163.5 213.8 710.7 958.4 1093.2 4837.7 5152.2 33317.6
nQ(2)n^{(2)}_{Q} 0 0 4 6-9 3-14 36-50 17-68 9-78 271-349 22-372 2040-2431
Table 1: Binding energy and number of additional quanta for full Xenon electron shells.
Refer to caption
(a)  Ultralight mediator, mχ=10m_{\chi}=10 eV
Refer to caption
(b)  Ultralight mediator, mχ=1m_{\chi}=1 keV
Refer to caption
(c)  Heavy mediator, mχ=10m_{\chi}=10 eV
Refer to caption
(d)  Heavy mediator, mχ=1m_{\chi}=1 keV
Figure 7: Differential rate dN/dnedN/dn_{e} versus number of electrons nen_{e} for mχ=10m_{\chi}=10 eV and 1 keV, where top (bottom) panel corresponding to ultralight (heavy) mediator cases. The colored lines present the contributions from various xenon shells and the black lines show total contributions.