This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Explicit zero density estimate near unity

Chiara Bellotti School of Science
The University of New South Wales, Canberra, Australia
[email protected]
Abstract.

We will provide the first explicit zero-density estimate for ζ\zeta of the form N(σ,T)𝒞TB(1σ)3/2(logT)CN(\sigma,T)\leq\mathscr{C}T^{B(1-\sigma)^{3/2}}(\log T)^{C}. In particular, we improve CC to 10393/900=11.547.10393/900=11.547\dots.

Key words and phrases:
Riemann zeta function, zero-density estimates, explicit results
2020 Mathematics Subject Classification:
Primary 11M06, 11M26. Secondary 11Y35

1. Introduction

Let ζ(s)\zeta(s) be the Riemann zeta function and ρ=β+iγ\rho=\beta+i\gamma a non-trivial zero of ζ\zeta, with 0<Re(ρ)<10<\operatorname{Re}(\rho)<1. Given 1/2<σ<11/2<\sigma<1, T>0T>0, we define the quantity

N(σ,T)=#{ρ=β+iγ:ζ(ρ)=0,0<γ<T,σ<β<1},N(\sigma,T)=\#\{\rho=\beta+i\gamma:\zeta(\rho)=0,0<\gamma<T,\ \sigma<\beta<1\},

which counts the number of non-trivial zeros of ζ\zeta with real part greater than the fixed value σ\sigma. Finding upper bounds for N(σ,T)N(\sigma,T), commonly known as zero-density estimates, is a problem that has always attracted much interest in Number Theory. If the Riemann Hypothesis is true, then we have N(σ,T)=0N(\sigma,T)=0 for every 1/2<σ<11/2<\sigma<1, since all the non-trivial zeros of ζ\zeta would lie on the half-line σ=1/2\sigma=1/2. In 2021, Platt and Trudgian [PT21] verified that the Riemann Hypothesis is true up to height 310123\cdot 10^{12} and, consequently, N(σ,T)=0N(\sigma,T)=0 for every 1/2<σ<11/2<\sigma<1, T31012T\leq 3\cdot 10^{12}. This allow us to restrict the range of values of TT for which we aim to estimate N(σ,T)N(\sigma,T) to T>31012T>3\cdot 10^{12}.
Different methods have been used by several mathematicians throughout the years, depending on the range for σ\sigma inside the right half of the critical strip in which we are working. In 1937 Ingham [Ing37] proved that, assuming that ζ(12+it)tc+ϵ\zeta\left(\frac{1}{2}+it\right)\ll t^{c+\epsilon}, one has N(σ,T)T(2+4c)(1σ)(logT)5N(\sigma,T)\ll T^{(2+4c)(1-\sigma)}(\log T)^{5}. In particular, the Lindelöf Hypothesis ζ(12+it)tϵ\zeta\left(\frac{1}{2}+it\right)\ll t^{\epsilon} implies N(σ,T)T2(1σ)+ϵN(\sigma,T)\ll T^{2(1-\sigma)+\epsilon}, known as the Density Hypothesis. Ingham’s type estimate has been made explicit by Ramaré [Ram16] and improved in 2018 by Kadiri, Lumley and Ng [KLN18]. Ingham’s method is particular powerful when σ\sigma is close to the half-line, as the upper bound for ζ(12+it)\zeta(\frac{1}{2}+it) is involved.
When σ\sigma is really close to 11 and TT sufficiently large, estimates of the type

N(σ,T)TB(1σ)3/2(logT)CN(\sigma,T)\ll T^{B(1-\sigma)^{3/2}}(\log T)^{C} (1.1)

become sharper. Indeed, for σ\sigma sufficiently close to 11, and hence TT sufficiently large, Richert’s bound [Ric67] |ζ(σ+it)|A|t|B(1σ)3/2(log|t|)2/3|\zeta(\sigma+it)|\leq A|t|^{B(1-\sigma)^{3/2}}(\log|t|)^{2/3} is the sharpest known upper bound for ζ\zeta. However, contrary to Ingham’s type zero-density estimate, the estimate (1.1) has never been made explicit. The best non-explicit zero-density estimate of this form is due to Heath-Brown [HB17] (actually, this result has been recently slightly improved by Trudgian and Yang [TY23], as they found new optimal exponent pairs; see also [Pin23] for more recent results), in which he used a slightly different bound for ζ\zeta, i.e. ζ(σ+it)tB(1σ)3/2+ϵ\zeta(\sigma+it)\ll t^{B(1-\sigma)^{3/2}+\epsilon}, where the exponent BB turns out to be much smaller (B<12B<\frac{1}{2}) than the currently best-known value for BB in Richert’s bound, that is B=4.43795B=4.43795 [Bel23]. However, differently from Richert’s bound that is fully explicit, the bound used by Heath-Brown cannot be used to get an explicit version for the zero-density estimate of the form (1.1), since the factor tϵt^{\epsilon} cannot be made explicit (see [Ivi03, Mon71] for previous non-explicit results).

The aim of this paper is to provide the first explicit zero-density estimate for ζ\zeta of the form (1.1). Combining Ivić’s zero-detection method [Ivi03] with Richert’s bound and an explicit zero-free region for ζ\zeta, we will prove the following result.

Theorem 1.1.

For every σ[0.98,1]\sigma\in[0.98,1] and T3T\geq 3, the following zero-density estimate holds uniformly:

N(σ,T)\displaystyle N(\sigma,T)
(𝒞1T57.8875(1σ)3/2(logT)197031800+𝒞2T33.08(1σ)3/2(logT)50345+0.27(logT)1410)loglogT,\displaystyle\leq(\mathscr{C}_{1}T^{57.8875(1-\sigma)^{3/2}}(\log T)^{\frac{19703}{1800}}+\mathscr{C}_{2}T^{33.08(1-\sigma)^{3/2}}(\log T)^{\frac{503}{45}}+0.27(\log T)^{\frac{14}{10}})\log\log T,

where 𝒞2=7.651010\mathscr{C}_{2}=7.65\cdot 10^{10} and

𝒞1={4.681023if 31012Te46.2,4.591023if e46.2<Te170.2,1.451023if e170.2<Te481958,9.771021if T>e481958.\mathscr{C}_{1}=\left\{\begin{array}[]{lll}4.68\cdot 10^{23}&\text{if }3\cdot 10^{12}\leq T\leq e^{46.2},\\ \\ 4.59\cdot 10^{23}&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 1.45\cdot 10^{23}&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 9.77\cdot 10^{21}&\text{if }T>e^{481958}.\end{array}\right.

Actually, it is possible to deduce a much simpler upper bound for N(σ,T)N(\sigma,T) compared to Theorem 1.1, at the expense of a slightly worse exponent for the factor (logT)(\log T).

Theorem 1.2.

For every σ[0.98,1]\sigma\in[0.98,1] and T3T\geq 3, the following zero-density estimate holds uniformly:

N(σ,T)𝒞1T57.8875(1σ)3/2(logT)10393/900,N(\sigma,T)\leq\mathscr{C}^{\prime}_{1}T^{57.8875(1-\sigma)^{3/2}}(\log T)^{10393/900}, (1.2)

where

𝒞1={2.151023if 31012<Te46.2,1.891023if e46.2<Te170.2,4.421022if e170.2<Te481958,4.721020if T>e481958.\mathscr{C}^{\prime}_{1}=\left\{\begin{array}[]{lll}2.15\cdot 10^{23}&\text{if }3\cdot 10^{12}<T\leq e^{46.2},\\ \\ 1.89\cdot 10^{23}&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 4.42\cdot 10^{22}&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 4.72\cdot 10^{20}&\text{if }T>e^{481958}.\end{array}\right.

We observe that the exponent 10393/900=11.54710393/900=11.547\dots for the factor logT\log T is less than 11.54811.548, which improves the best-known exponent equal to 1515 due to Ivic [Ivi03]. Furthermore, the value 10393/90010393/900 is the near-optimal one that one can get using Ivić’s zero-detection method. Indeed, a factor (logT)3(\log T)^{3} comes from the relation for the divisor function in Theorem 2.4, where the powers of the logarithm are already the optimal ones. Then, Ivić’s zero-detection method produces 55 more powers of logT\log T, as we will see later, that cannot be reduced, when using this method. Finally, another factor logT\log T comes from the number of zeros in Theorem 2.2. Hence, all these contributions give already 99 powers that cannot be removed. The remaining ones come from convergence arguments throughout the proof, where we already tried to optimize our choices as much as possible.

1.1. Range of σ\sigma for which Theorem 1.2 is the sharpest bound.

As expected, the zero-density estimate found in Theorem 1.2 becomes powerful when σ\sigma is very close to 11, since when σ\sigma is sufficiently close to 11 Richert’s bound becomes the sharpest one for ζ\zeta inside the critical strip and the Korobov–Vinogradov zero-free region is the widest one. We briefly analyze which is the lowest value of σ\sigma from which Theorem 1.2 start being sharper than Kadiri–Lumley–Ng’s result [KLN18], which is of the form

N(σ,T)𝒞12πd(log(kT))2σ(logT)54σT83(1σ)+𝒞22πd(logT)2,N(\sigma,T)\leq\frac{\mathscr{C}_{1}}{2\pi d}(\log(kT))^{2\sigma}(\log T)^{5-4\sigma}T^{\frac{8}{3}(1-\sigma)}+\frac{\mathscr{C}_{2}}{2\pi d}(\log T)^{2}, (1.3)

where 𝒞1,𝒞2\mathscr{C}_{1},\mathscr{C}_{2} and dd are suitable constants defined in Theorem 1.1 of [KLN18]. In order to simplify the notation and the calculus, we rewrite (1.3) as

N(σ,T)CT83(1σ)log3T,N(\sigma,T)\leq CT^{\frac{8}{3}(1-\sigma)}\log^{3}T,

being 54σ+2σ35-4\sigma+2\sigma\rightarrow 3 for σ\sigma close to 11 and the second term in (1.3) is included in the constant C1C\geq 1. We want to find σ,T\sigma,T such that

CT83(1σ)log3T𝒞1TB(1σ)3/2log10393/900T,CT^{\frac{8}{3}(1-\sigma)}\log^{3}T\geq\mathscr{C}_{1}^{\prime}T^{B(1-\sigma)^{3/2}}\log^{10393/900}T, (1.4)

where B=57.8875B=57.8875 and 𝒞1\mathscr{C}_{1}^{\prime} is the constant defined in Theorem 1.2. The inequality (1.4) holds if and only if

T83(1σ)𝒞1CTB(1σ)3/2(logT)7693/900.T^{\frac{8}{3}(1-\sigma)}\geq\frac{\mathscr{C}_{1}^{\prime}}{C}T^{B(1-\sigma)^{3/2}}(\log T)^{7693/900}.

Applying the logarithm to both sides the previous inequality becomes

83(1σ)logTlog𝒞1C+B(1σ)3/2logT+7693900loglogT.\frac{8}{3}(1-\sigma)\log T\geq\log{\frac{\mathscr{C}_{1}^{\prime}}{C}}+B(1-\sigma)^{3/2}\log T+\frac{7693}{900}\log\log T.

Hence, for every fixed T3T\geq 3, our estimate in Theorem 1.2 is sharper when

σ11(83B(1σ)1/2)(log(𝒞1/C)logT+7693loglogT900logT),\sigma\leq 1-\frac{1}{\left(\frac{8}{3}-B(1-\sigma)^{1/2}\right)}\left(\frac{\log(\mathscr{C}_{1}^{\prime}/C)}{\log T}+\frac{7693\log\log T}{900\log T}\right),

or, since the quantity B(1σ)1/2B(1-\sigma)^{1/2} is negligible when σ\sigma is really close to 11, for

σ138(log(𝒞1/C)logT+7693loglogT900logT).\sigma\leq 1-\frac{3}{8}\left(\frac{\log(\mathscr{C}_{1}^{\prime}/C)}{\log T}+\frac{7693\log\log T}{900\log T}\right). (1.5)

Furthermore, we also want to see for which TT Theorem 1.2 is sharper than (1.3) uniformly inside the range σ[0.98,1)\sigma\in[0.98,1). In order to that, we find the range of TT for which the current best-known zero-free regions for ζ\zeta have non-empty intersection with the region (1.5). We start considering the best-known Korobov-Vinogradov zero-free region (2.4) [Bel23], which is the sharpest for Te481958T\geq e^{481958}. The intersection of the two regions is non-empty if

1153.989log2/3T(loglogT)1/3138(log(𝒞1/C)logT+7693loglogT900logT)1-\frac{1}{53.989\log^{2/3}T(\log\log T)^{1/3}}\leq 1-\frac{3}{8}\left(\frac{\log(\mathscr{C}_{1}^{\prime}/C)}{\log T}+\frac{7693\log\log T}{900\log T}\right)

i.e.

153.989log2/3T(loglogT)1/338(log(𝒞1/C)logT+7693loglogT900logT).\frac{1}{53.989\log^{2/3}T(\log\log T)^{1/3}}\geq\frac{3}{8}\left(\frac{\log(\mathscr{C}_{1}^{\prime}/C)}{\log T}+\frac{7693\log\log T}{900\log T}\right).

Using 𝒞1=4.721020\mathscr{C}_{1}^{\prime}=4.72\cdot 10^{20} and C1C\geq 1, the inequality is true for Texp(6.71012)T\geq\exp(6.7\cdot 10^{12}). Since the range of values of TT for which Theorem 1.2 is sharper is included in the range of values for which the Korobov-Vinogradov zero-free region is the widest one, we do not need to check the intersection of the region (1.5) with the classical zero-free region and the Littlewood one.
Furthermore, following exactly the proof of Theorem 1.2, the constant 𝒞1\mathscr{C}_{1}^{\prime} can be further improved for Texp(6.71012)T\geq\exp(6.7\cdot 10^{12}).

Theorem 1.3.

For Texp(6.71012)T\geq\exp(6.7\cdot 10^{12}) we have

N(σ,T)4.451012T57.8875(1σ)3/2(logT)10393/900.N(\sigma,T)\leq 4.45\cdot 10^{12}\cdot T^{57.8875(1-\sigma)^{3/2}}(\log T)^{10393/900}.

We notice that our estimate beats Kadiri-Lumley-Ng’s result for values of TT quite large. A major impediment is the power of the log-factor, i.e 10393/90011.54710393/900\sim 11.547 which is much larger than the log-power 3\sim 3 in [KLN18]. To get an explicit estimate of the form (1.1) which is always sharper than (1.3), one should get in Theorem 1.2 a log-power less or at most equal to 33, as in this case the term TB(1σ)3/2T^{B(1-\sigma)^{3/2}} would be always dominant on T8/3(1σ)T^{8/3(1-\sigma)}, being (1σ)<1(1-\sigma)<1. However, as we already explained before, the current argument which uses Ivic’s zero-detection method prevent us from getting (logT)3(\log T)^{3} in Theorem 1.2, having a contribution of a log-factor at least (logT)9(\log T)^{9} based on the previous analysis. One way to overcome the logarithm problem is trying to find an explicit log-free zero density estimate (see [Mon71], §12\S 12 for non-explicit results), which hopefully will improve [KLN18] when TT is relatively small. This might be also some interesting material for future work.
However, an improvement in Richert’s bound and, as a consequence, an improved Korobov-Vinogradov zero-free region would lead anyway to an improved zero-density estimate of this type, getting a better constant 𝒞1\mathscr{C}_{1}^{\prime}, a better value of B<57.8875B<57.8875 in (1.1) and a wider range of values of TT and σ\sigma for which a zero-density estimate of the type (1.1) is sharper than (1.3).

2. Background

We recall some results that will be useful for the proof of Theorem 1.2.
First of all we give an overview of the currently best-known explicit zero-free regions for the Riemann zeta function. As we already mention, Platt and Trudgian [PT21] verified that the Riemann Hypothesis is true up to height 310123\cdot 10^{12}. Hence, in the proof of Theorem 1.2 we will work with T31012T\geq 3\cdot 10^{12}. Now, we list the best-known zero-free regions for ζ\zeta. All of them hold for every |T|3|T|\geq 3, but we indicate the range of values for |T||T| for which each of them is the widest one.

  • For 31012<|T|e46.23\cdot 10^{12}<|T|\leq e^{46.2} the largest zero-free region[MTY22] is the classical one:

    σ115.558691log|T|\sigma\geq 1-\frac{1}{5.558691\log|T|} (2.1)
  • For e46.2<|T|e170.2e^{46.2}<|T|\leq e^{170.2} the currently sharpest known zero-free region is

    σ>10.049620.0196/(J(|T|)+1.15)J(|T|)+0.685+0.155loglog|T|,\sigma>1-\frac{0.04962-0.0196/(J(|T|)+1.15)}{J(|T|)+0.685+0.155\log\log|T|}, (2.2)

    where J(T):=16logT+loglogT+log0.618J(T):=\frac{1}{6}\log T+\log\log T+\log 0.618. As per [Yan23], this result is obtained by substituting Theorem 1.1 of [HPY22] in Theorem 3 of [For22] and observing that J(T)<14logT+1.8521J(T)<\frac{1}{4}\log T+1.8521 for T3T\geq 3.

  • For e170.2<|T|e481958e^{170.2}<|T|\leq e^{481958}, Littlewood zero-free region [Yan23] becomes the largest one111The constant 21.43221.432 in [Yan23] has been updated to 21.23321.233 (communicated by the author, who has sent a proof of the revised Littlewood zero-free region).:

    σ1loglog|T|21.233log|T|.\sigma\geq 1-\frac{\log\log|T|}{21.233\log|T|}. (2.3)
  • Finally, for |T|>e481958|T|>e^{481958}, Korobov–Vinogradov zero-free region [Bel23] is the widest one222The value 54.00454.004 in [Bel23] can be improved to 53.98953.989 due to the improved estimate (2.3).:

    σ1153.989log2/3|T|(loglog|T|)1/3.\sigma\geq 1-\frac{1}{53.989\log^{2/3}|T|(\log\log|T|)^{1/3}}. (2.4)

The method used to detect the Korobov–Vinogradov zero-free region involves Richert’s bound |ζ(σ+it)|A|t|B(1σ)3/2(log|t|)2/3|\zeta(\sigma+it)|\leq A|t|^{B(1-\sigma)^{3/2}}(\log|t|)^{2/3}, which will also be an essential tool in our proof of Theorem 1.2, as we already mentioned. Below, we state the best-known estimate of this type (see [For02] for previous results).

Theorem 2.1 ([Bel23] Th.1.1).

The following estimate holds for every |t|3|t|\geq 3 and 12σ1\frac{1}{2}\leq\sigma\leq 1:

|ζ(σ+it)|\displaystyle|\zeta(\sigma+it)| A|t|B(1σ)3/2log2/3|t|\displaystyle\leq A|t|^{B(1-\sigma)^{3/2}}\log^{2/3}|t|
|ζ(σ+it,u)us|\displaystyle\left|\zeta(\sigma+it,u)-u^{-s}\right| A|t|B(1σ)3/2log2/3|t|,0<u1,\displaystyle\leq A|t|^{B(1-\sigma)^{3/2}}\log^{2/3}|t|,\qquad 0<u\leq 1,

with A=70.6995A=70.6995 and B=4.43795B=4.43795.

Related to the zeros of ζ\zeta, we state the best-known explicit estimate for the quantity N(T)N(T), which is the number of zeros ρ=β+iγ\rho=\beta+i\gamma of ζ(s)\zeta(s) with 0γT0\leq\gamma\leq T.

Theorem 2.2 ([HSW22] Corollary 1.2).

For any TeT\geq e we have

|N(T)T2πlog(T2πe)|0.1038logT+0.2573loglogT+9.3675.\left|N(T)-\frac{T}{2\pi}\log\left(\frac{T}{2\pi e}\right)\right|\leq 0.1038\log T+0.2573\log\log T+9.3675.

A powerful tool that is widely used in Ivić’s zero-detection method is the Halász–Montgomery inequality we recall below.

Theorem 2.3 ([Ivi03] A.39, A.40).

Let ξ,φ1,,φR\xi,\varphi_{1},\dots,\varphi_{R} be arbitrary vectors in an inner-product vector space over \mathbb{C}, where (a,b)(a,b) will be the notation for the inner product and a2=(a,a)||a||^{2}=(a,a). Then

rR|(ξ,φr)|ξ(r,sR|(φr,φs)|)1/2\sum_{r\leq R}|(\xi,\varphi_{r})|\leq||\xi||\left(\sum_{r,s\leq R}|(\varphi_{r},\varphi_{s})|\right)^{1/2}

and

rR|(ξ,φr)|ξ2maxrRsR|(φr,φs)|.\sum_{r\leq R}|(\xi,\varphi_{r})|\leq||\xi||^{2}\max_{r\leq R}\sum_{s\leq R}|(\varphi_{r},\varphi_{s})|.

Then, the following result on the divisor function will be useful.

Theorem 2.4 ([CHT19] Theorem 2).

For x2x\geq 2 we have

nxd(n)2=D1xlog3x+D2xlog2x+D3xlogx+D4x+ϑ(9.73x34logx+0.73x12)\sum_{n\leq x}d(n)^{2}=D_{1}x\log^{3}x+D_{2}x\log^{2}x+D_{3}x\log x+D_{4}x+\vartheta\left(9.73x^{\frac{3}{4}}\log x+0.73x^{\frac{1}{2}}\right)

where

D1=1π2,D2=0.745,D3=0.824,D4=0.461D_{1}=\frac{1}{\pi^{2}},\quad D_{2}=0.745\ldots,\quad D_{3}=0.824\ldots,\quad D_{4}=0.461\ldots

are exact constants. Furthermore, for xxjx\geq x_{j} we have

nxd(n)2Kxlog3x\sum_{n\leq x}d(n)^{2}\leq Kx\log^{3}x

where one may take {K,xj}\left\{K,x_{j}\right\} to be, among others, {14,433}\left\{\frac{1}{4},433\right\} or {1,7}\{1,7\}.

In particular, for our purpose, when x=1085x=10^{85} we have

nxd(n)20.106xlog3x.\sum_{n\leq x}d(n)^{2}\leq 0.106x\log^{3}x.

Finally, we recall an explicit estimate for the Γ\Gamma function ([Olv74], p.294).

Lemma 2.5.

(Explicit Stirling formula) For z=σ+itz=\sigma+it, with |argz|<π|\arg z|<\pi we have

|Γ(z)|(2π)1/2|t|σ12exp(π2|t|+16|z|).\left|\Gamma(z)\right|\leq(2\pi)^{1/2}|t|^{\sigma-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|t|+\frac{1}{6|z|}\right).

3. Proof of Theorem 1.1

We will follow Ivić’s zero-detection method ([Ivi03], §11\S 11) using near-optimal choices. As in [Ivi03], we start considering the following relation derived by a well-known Mellin Transform:

en/Y=12πi2i2+iΓ(w)Ywnw𝑑w.e^{-n/Y}=\frac{1}{2\pi i}\int_{2-i\infty}^{2+i\infty}\Gamma(w)Y^{w}n^{-w}dw.

Then, we consider the function

MX(s)=nXμ(n)ns,s=σ+it,logT|t|T, 1XYTc,M_{X}(s)=\sum_{n\leq X}\frac{\mu(n)}{n^{s}},\qquad s=\sigma+it,\qquad\log T\leq|t|\leq T,\ 1\ll X\ll Y\ll T^{c},

where X=X(T)X=X(T) and Y=Y(T)Y=Y(T) are parameters we will choose later. Furthermore, by our later choices, we will have

X{1085if 31012<Te46.2,1089if e46.2<Te170.2,10100if e170.2<Te481958,10165if T>e481958.X\geq\left\{\begin{array}[]{lll}10^{85}&\text{if }3\cdot 10^{12}<T\leq e^{46.2},\\ \\ 10^{89}&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 10^{100}&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 10^{165}&\text{if }T>e^{481958}.\end{array}\right. (3.1)

By the elementary relation

d|nμ(d)={1if n=10if n>1,\sum_{d|n}\mu(d)=\left\{\begin{array}[]{cc}1&\text{if }n=1\\ 0&\text{if }n>1,\end{array}\right.

we see that each zero ρ=β+iγ\rho=\beta+i\gamma of ζ(s)\zeta(s) counted by N(σ,T)N(\sigma,T) satisfies

e1/Y+n>Xa(n)nρen/Y=12πi2i2+iζ(ρ+w)MX(ρ+w)YwΓ(w)𝑑w\displaystyle e^{-1/Y}+\sum_{n>X}a(n)n^{-\rho}e^{-n/Y}=\frac{1}{2\pi i}\int_{2-i\infty}^{2+i\infty}\zeta(\rho+w)M_{X}(\rho+w)Y^{w}\Gamma(w)dw (3.2)

with

a(n)=d|n,dXμ(d),|a(n)|d(n)<nε.a(n)=\sum_{d|n,\ d\leq X}\mu(d),\qquad|a(n)|\leq d(n)<n^{\varepsilon}.

As per [Ivi03], for a fixed zero ρ=β+iγ\rho=\beta+i\gamma, we move the line of integration to Rew=αβ<0\operatorname{Re}w=\alpha-\beta<0 for some suitable 12α1\frac{1}{2}\leq\alpha\leq 1 . As per Ivić [Ivi03], the optimal choice for α\alpha is α=5σ4\alpha=5\sigma-4. Hence, since in the hypothesis of Theorem 1.2 we assumed σ[0.98,1)\sigma\in[0.98,1), it follows that α0.9\alpha\geq 0.9. If |γ|>2logT|\gamma|>2\log T, the poles we find are at w=0w=0 and w=1ρw=1-\rho. Hence, using the residue theorem, the relation (3.2) becomes

e1/Y+n>Xa(n)nρen/Y=12πi2i2+iζ(ρ+w)MX(ρ+w)YwΓ(w)𝑑w\displaystyle e^{-1/Y}+\sum_{n>X}a(n)n^{-\rho}e^{-n/Y}=\frac{1}{2\pi i}\int_{2-i\infty}^{2+i\infty}\zeta(\rho+w)M_{X}(\rho+w)Y^{w}\Gamma(w)dw (3.3)
=ζ(ρ)MX(ρ)+MX(1)Y1ρΓ(1ρ)+12πiαβiαβ+iζ(ρ+w)MX(ρ+w)YwΓ(w)𝑑w\displaystyle=\zeta(\rho)M_{X}(\rho)+M_{X}(1)Y^{1-\rho}\Gamma(1-\rho)+\frac{1}{2\pi i}\int_{\alpha-\beta-i\infty}^{\alpha-\beta+i\infty}\zeta(\rho+w)M_{X}(\rho+w)Y^{w}\Gamma(w)dw
=MX(1)Y1ρΓ(1ρ)+12πi+ζ(α+iγ+iv)MX(α+iγ+iv)Γ(αβ+iv)Yαβ+ivdv.\displaystyle=M_{X}(1)Y^{1-\rho}\Gamma(1-\rho)+\frac{1}{2\pi i}\int_{-\infty}^{+\infty}\zeta(\alpha+i\gamma+iv)M_{X}(\alpha+i\gamma+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v.

Furthermore, we split both the integral and the sum in (3.3) into the following terms:

+ζ(α+iγ+iv)MX(α+iγ+iv)Γ(αβ+iv)Yαβ+ivdv\displaystyle\int_{-\infty}^{+\infty}\zeta(\alpha+i\gamma+iv)M_{X}(\alpha+i\gamma+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v (3.4)
=logTlogTζ(α+iγ+iv)MX(α+iγ+iv)Γ(αβ+iv)Yαβ+ivdv\displaystyle=\int_{-\log T}^{\log T}\zeta(\alpha+i\gamma+iv)M_{X}(\alpha+i\gamma+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v
+|v|logTζ(α+iγ+iv)MX(α+iγ+iv)Γ(αβ+iv)Yαβ+ivdv\displaystyle+\int_{|v|\geq\log T}\zeta(\alpha+i\gamma+iv)M_{X}(\alpha+i\gamma+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v

and

n>Xa(n)nρen/Y=X<nYlogYa(n)nρen/Y+n>YlogYa(n)nρen/Y.\sum_{n>X}a(n)n^{-\rho}e^{-n/Y}=\sum_{X<n\leq Y\log Y}a(n)n^{-\rho}e^{-n/Y}+\sum_{n>Y\log Y}a(n)n^{-\rho}e^{-n/Y}.

Finally, we define the following quantities:

A\displaystyle A =X<nYlogYa(n)nρen/Y,\displaystyle=\sum_{X<n\leq Y\log Y}a(n)n^{-\rho}e^{-n/Y}, (3.5)
B\displaystyle B =12πilogTlogTζ(α+iγ+iv)MX(α+iγ+iv)Γ(αβ+iv)Yαβ+ivdv,\displaystyle=\frac{1}{2\pi i}\int_{-\log T}^{\log T}\zeta(\alpha+i\gamma+iv)M_{X}(\alpha+i\gamma+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v,
D\displaystyle D =12πi|v|logTζ(α+iγ+iv)MX(α+iγ+iv)Γ(αβ+iv)Yαβ+ivdv\displaystyle=\frac{1}{2\pi i}\int_{|v|\geq\log T}\zeta(\alpha+i\gamma+iv)M_{X}(\alpha+i\gamma+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v
+MX(1)Y1ρΓ(1ρ)n>YlogYa(n)nρen/Y.\displaystyle+M_{X}(1)Y^{1-\rho}\Gamma(1-\rho)-\sum_{n>Y\log Y}a(n)n^{-\rho}e^{-n/Y}.
Remark.

The choice of splitting the integral (LABEL:spllitint) in |v|<logT|v|<\log T and |v|logT|v|\geq\log T is the optimal one. Indeed, in order to get a final estimate as sharp as possible, the power of logT\log T in the estimate of the quantity BB should be the smallest possible. However, if one would take (logT)1ϵ(\log T)^{1-\epsilon}, convergence problems arise in the estimate of the quantity DD.

Using the above notation, the relation (3.3) can be rewritten as

e1/Y+A=B+D.e^{-1/Y}+A=B+D.

Also,

BA=e1/YD11Y+12Y2>0.B-A=e^{-1/Y}-D\geq 1-\frac{1}{Y}+\frac{1}{2Y^{2}}>0.

As we will see in Lemma 3.1, the quantity D0D\rightarrow 0 as YY\rightarrow\infty, hence for Y+Y\rightarrow+\infty one has BA1B-A\rightarrow 1. It follows that at least one between the quantities AA and BB must be 1\gg 1. More precisely, given 0<c<10<c<1, we have |B|c|B|\geq c or, if |B|<c|B|<c, then |A|1ϵc|A|\geq 1-\epsilon-c, where

ϵ=1Y12Y2+D.\epsilon=\frac{1}{Y}-\frac{1}{2Y^{2}}+D.

Putting c=1ϵcc=1-\epsilon-c, the optimal bound for both |A||A| and |B||B| is

0.49999c0=12(1ϵ)=12(11Y+12Y2D)12,0.49999\leq c_{0}=\frac{1}{2}(1-\epsilon)=\frac{1}{2}\left(1-\frac{1}{Y}+\frac{1}{2Y^{2}}-D\right)\leq\frac{1}{2},

where we recall that YX1085Y\geq X\geq 10^{85}.
It follows that each ρr=βr+iγr\rho_{r}=\beta_{r}+i\gamma_{r}, βrσ\beta_{r}\geq\sigma counted by N(σ,T)N(\sigma,T) satisfies at least one of the following conditions:

|X<nYlogYa(n)nσiγr|c0,\left|\sum_{X<n\leq Y\log Y}a(n)n^{-\sigma-i\gamma_{r}}\right|\geq c_{0}, (3.6)
|logTlogTζ(α+iγr+iv)MX(α+iγr+iv)Γ(αβ+iv)Yαβ+ivdv|c0\left|\int_{-\log T}^{\log T}\zeta(\alpha+i\gamma_{r}+iv)M_{X}(\alpha+i\gamma_{r}+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v\right|\geq c_{0} (3.7)

or

|γr|2logT.|\gamma_{r}|\leq 2\log T. (3.8)

We recall that the coefficients a(n)a(n) in (3.6) satisfy |a(n)||d(n)||a(n)|\leq|d(n)|.
The number of zeros ρ\rho satisfying (3.8) is

2N(2logT)\displaystyle 2N(2\log T)
2(2logT2πlog(2logT2πe)+0.1038log(2logT)+0.2573loglog(2logT)+9.3675)\displaystyle\leq 2\left(\frac{2\log T}{2\pi}\log\left(\frac{2\log T}{2\pi e}\right)+0.1038\log(2\log T)+0.2573\log\log(2\log T)+9.3675\right)
0.45logTloglogT\displaystyle\leq 0.45\log T\log\log T

where we used Theorem 2.2 and the fact that T>31012T>3\cdot 10^{12}.
Then, we denote with R1R_{1} the number of zeros satisfying (3.6) and with R2R_{2} the number of zeros satisfying (3.7) so that the imaginary parts of these zeros differ from each other by at least 2log1.4T2\log^{1.4}T. We have

N(σ,T)(R1+R2+1)0.45log1.4TloglogT.N(\sigma,T)\leq\left(R_{1}+R_{2}+1\right)0.45\log^{1.4}T\log\log T. (3.9)
Remark.

The constraint |γrγs|>2log1.4T|\gamma_{r}-\gamma_{s}|>2\log^{1.4}T, where γr,γs\gamma_{r},\gamma_{s} are distinct zeros satisfying (3.6) or (3.7), is necessary for convergence issues we will find later in the estimate of both R1R_{1} and R2R_{2}. A smaller exponent for the log-factor would cause convergence problems.

Before proceeding with the estimate for R1R_{1} and R2R_{2}, we prove that D0D\rightarrow 0 as YY\rightarrow\infty, as we mentioned before, where DD is defined in (3.5).

Lemma 3.1.

Under the above assumptions, the relation D105D\leq 10^{-5} holds. Furthermore, D0D\rightarrow 0 as YY\rightarrow\infty.

Proof.

We will estimate each term of DD in (3.5) separately.
Using Lemma 2.5 with z=αβ+ivz=\alpha-\beta+iv, we have

|Γ(αβ+iv)||v|αβ12eπ|v|/2(2π)1/2e1/(6|v|)=(2π)1/2|v|αβ12exp(π2|v|+16|v|).\left|\Gamma(\alpha-\beta+iv)\right|\leq|v|^{\alpha-\beta-\frac{1}{2}}e^{-\pi|v|/2}(2\pi)^{1/2}e^{1/(6|v|)}=(2\pi)^{1/2}|v|^{\alpha-\beta-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|v|+\frac{1}{6|v|}\right).

This estimate, together with Theorem 2.1 and the relation |γ+v|2T2e|v||\gamma+v|\leq 2T\leq 2e^{|v|}, which holds for |v|logT|v|\geq\log T, gives the following estimate for the first term in DD:

|12πi|v|logTζ(α+iγ+iv)MX(α+iγ+iv)Γ(αβ+iv)Yαβ+ivdv|\displaystyle\left|\frac{1}{2\pi i}\int_{|v|\geq\log T}\zeta(\alpha+i\gamma+iv)M_{X}(\alpha+i\gamma+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v\right| (3.10)
31.091Yβα|v|logTe4.43795(1α)3/2|v|(log(2e|v|))2/3|v|αβ12exp(π2|v|+16|v|)dv\displaystyle\leq 31.09\cdot\frac{1}{Y^{\beta-\alpha}}\int_{|v|\geq\log T}e^{4.43795(1-\alpha)^{3/2}|v|}(\log(2e^{|v|}))^{2/3}|v|^{\alpha-\beta-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|v|+\frac{1}{6|v|}\right)\text{d}v
62.2e16|logT|Yβα|v|logTe4.43795(1α)3/2|v|π|v|2|v|23+αβ12dv\displaystyle\leq 62.2\cdot\frac{e^{\frac{1}{6|\log T|}}}{Y^{\beta-\alpha}}\int_{|v|\geq\log T}e^{4.43795(1-\alpha)^{3/2}|v|-\frac{\pi|v|}{2}}|v|^{\frac{2}{3}+\alpha-\beta-\frac{1}{2}}\text{d}v
124.41018e16|logT|Yβα\displaystyle\leq 124.4\cdot 10^{-18}\cdot\frac{e^{\frac{1}{6|\log T|}}}{Y^{\beta-\alpha}}
1012.\displaystyle\leq 10^{-12}.

Furthermore, for YY\rightarrow\infty, and hence TT\rightarrow\infty, the estimate found in (3.10) goes to 0.
Now, we estimate the second term in DD. Using again Lemma 2.5 but with z=1ρz=1-\rho we have

|Γ(1βiγ)||γ|1β12eπ|γ|/2(2π)1/2e1/(6|γ|)=(2π)1/2|γ|1β12exp(π2|γ|+16|γ|).\left|\Gamma(1-\beta-i\gamma)\right|\leq|\gamma|^{1-\beta-\frac{1}{2}}e^{-\pi|\gamma|/2}(2\pi)^{1/2}e^{1/(6|\gamma|)}=(2\pi)^{1/2}|\gamma|^{1-\beta-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|\gamma|+\frac{1}{6|\gamma|}\right). (3.11)

Since we are dealing with a zero ρ\rho such that |γ|>2logT|\gamma|>2\log T, if we use the estimate (3.28) for YY, it follows that

|MX(1)Y1ρΓ(1ρ)|(2π)1/2e16|γ|Y1βeπ|γ|2|γ|β1+121010.\left|M_{X}(1)Y^{1-\rho}\Gamma(1-\rho)\right|\leq\frac{(2\pi)^{1/2}e^{\frac{1}{6|\gamma|}}Y^{1-\beta}}{e^{\frac{\pi|\gamma|}{2}}|\gamma|^{\beta-1+\frac{1}{2}}}\leq 10^{-10}. (3.12)

As before, we notice that for YY\rightarrow\infty, and hence TT\rightarrow\infty, the estimate (3.12) goes to 0. Finally,

|n>YlogYa(n)nρen/Y|\displaystyle\left|\sum_{n>Y\log Y}a(n)n^{-\rho}e^{-n/Y}\right| n>YlogY|d(n)nβen/Y|\displaystyle\leq\sum_{n>Y\log Y}\left|d(n)n^{-\beta}e^{-n/Y}\right| (3.13)
(YlogY)ϵβ|YlogYeu/Y𝑑u|\displaystyle\leq(Y\log Y)^{\epsilon-\beta}\left|\int_{Y\log Y}^{\infty}e^{-u/Y}du\right|
(YlogY)ϵβYelogY\displaystyle\leq(Y\log Y)^{\epsilon-\beta}\frac{Y}{e^{\log Y}}
=(YlogY)ϵβ\displaystyle=(Y\log Y)^{\epsilon-\beta}

for any ϵ>0\epsilon>0 arbitrarily small. Taking ϵ\epsilon so that ϵβ<0\epsilon-\beta<0 (ϵ=10N\epsilon=10^{-N} with NN large, for example), it follows that (3.13) is less than 101010^{-10} and it goes to 0 as YY\rightarrow\infty.
This concludes the proof. ∎

Remark.

The choice |γ|>2logT|\gamma|>2\log T is near-optimal. Indeed, in order to get the best possible final estimate, we need the smallest admissible power of logT\log T, but if we choose |γ|>log1ϵT|\gamma|>\log^{1-\epsilon}T, with ϵ>0\epsilon>0 arbitrary small, or |γ|>clogT|\gamma|>c\log T, with c<2c<2, the estimate in (3.12) is not o(1)o(1) anymore.

We now proceed with the estimate for both R1R_{1} and R2R_{2}.

3.1. Estimate for R1R_{1}

First of all, by dyadic division there exists a number MM such that XMYlogYX\leq M\leq Y\log Y and

|M<n2Ma(n)nσiγr|\displaystyle\left|\sum_{M<n\leq 2M}a(n)n^{-\sigma-i\gamma_{r}}\right| c0log(Y)+log(logY)logXlog21\displaystyle\geq\frac{c_{0}}{\frac{\log(Y)+\log(\log Y)-\log X}{\log 2}-1} (3.14)
=1logYc01+(log(logY)/logY)(logX/logY)log21logY\displaystyle=\frac{1}{\log Y}\frac{c_{0}}{\frac{1+(\log(\log Y)/\log Y)-(\log X/\log Y)}{\log 2}-\frac{1}{\log Y}}
=1logYC1,\displaystyle=\frac{1}{\log Y}C_{1},

where

C1=c01+(log(logY)/logY)(logX/logY)log21logY{0.3386if 31012<Te46.2,0.3389if e46.2<Te170.2,0.3395if e170.2<Te481958,0.3418if T>e481958.C_{1}=\frac{c_{0}}{\frac{1+(\log(\log Y)/\log Y)-(\log X/\log Y)}{\log 2}-\frac{1}{\log Y}}\geq\left\{\begin{array}[]{lll}0.3386&\text{if }3\cdot 10^{12}<T\leq e^{46.2},\\ \\ 0.3389&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 0.3395&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 0.3418&\text{if }T>e^{481958}.\end{array}\right. (3.15)

The number of zeros RR satisfying the inequality (3.14) will be RR1C1/(c0logY)R\geq R_{1}C_{1}/(c_{0}\log Y).
Now, we apply the Halász–Montgomery inequality in Theorem 2.3 with ξ={ξn}n=1\xi=\{\xi_{n}\}_{n=1}^{\infty} such that

{ξn=a(n)(en/2Men/M)1/2nσif M<n2Mξn=0otherwise,\left\{\begin{array}[]{ll}\xi_{n}=a(n)(e^{-n/2M}-e^{-n/M})^{-1/2}n^{-\sigma}&\text{if }M<n\leq 2M\\ \\ \xi_{n}=0&\text{otherwise},\end{array}\right.

and

φr={φr,n}n=1,φr,n=(en/2Men/M)1/2nitrn=1,2,.\varphi_{r}=\{\varphi_{r,n}\}_{n=1}^{\infty},\quad\varphi_{r,n}=(e^{-n/2M}-e^{-n/M})^{1/2}n^{-it_{r}}\qquad\forall n=1,2,\dots.

We have

R2\displaystyle R^{2} 1C12log2Y(M<n2Ma(n)2e2n/Yn2σ)(RM+rsR|H(itrits)|),\displaystyle\leq\frac{1}{C^{2}_{1}}\log^{2}Y\left(\sum_{M<n\leq 2M}a(n)^{2}e^{-2n/Y}n^{-2\sigma}\right)\left(RM+\sum_{r\neq s\leq R}|H(it_{r}-it_{s})|\right), (3.16)

where

H(it)=n=1(en/2Men/M)nit=12πi2i2+iζ(w+it)((2M)wMw)Γ(w)𝑑w.H(it)=\sum_{n=1}^{\infty}(e^{-n/2M}-e^{-n/M})n^{-it}=\frac{1}{2\pi i}\int_{2-i\infty}^{2+i\infty}\zeta(w+it)((2M)^{w}-M^{w})\Gamma(w)dw.

Moving the line of integration in the expression for H(it)H(it) to Rew=α\operatorname{Re}w=\alpha, we encounter a pole in w=1itw=1-it and, by the residue theorem we get

H(it)\displaystyle H(it) =((2M)1itM1it)Γ(1it)+12πiαiα+iζ(w+it)((2M)wMw)Γ(w)𝑑w.\displaystyle=((2M)^{1-it}-M^{1-it})\Gamma(1-it)+\frac{1}{2\pi i}\int_{\alpha-i\infty}^{\alpha+i\infty}\zeta(w+it)((2M)^{w}-M^{w})\Gamma(w)dw. (3.17)

Combining (3.17) with (3.16) one has

R21C12log2Y(M<n2Md(n)2e2n/Yn2σ)(RM+rsR|H(itrits)|)\displaystyle R^{2}\leq\frac{1}{C^{2}_{1}}\log^{2}Y\left(\sum_{M<n\leq 2M}d(n)^{2}e^{-2n/Y}n^{-2\sigma}\right)\left(RM+\sum_{r\neq s\leq R}|H(it_{r}-it_{s})|\right)
1C12log2Y(M<n2Md(n)2e2n/Yn2σ)×\displaystyle\leq\frac{1}{C^{2}_{1}}\log^{2}Y\left(\sum_{M<n\leq 2M}d(n)^{2}e^{-2n/Y}n^{-2\sigma}\right)\times
(RM+rsR|((2M)1i(trts)M1i(trts))Γ(1i(trts))|\displaystyle\left(RM+\sum_{r\neq s\leq R}\left|((2M)^{1-i(t_{r}-t_{s})}-M^{1-i(t_{r}-t_{s})})\Gamma(1-i(t_{r}-t_{s}))\right|\right.
+rsR|12πiαiα+iζ(w+i(trts))((2M)wMw)Γ(w)dw|),\displaystyle\left.+\sum_{r\neq s\leq R}\left|\frac{1}{2\pi i}\int_{\alpha-i\infty}^{\alpha+i\infty}\zeta(w+i(t_{r}-t_{s}))((2M)^{w}-M^{w})\Gamma(w)dw\right|\right),

and, splitting the integral in two parts, the above inequality becomes

1C12log2Y(M<n2Md(n)2e2n/Yn2σ)×\displaystyle\leq\frac{1}{C^{2}_{1}}\log^{2}Y\left(\sum_{M<n\leq 2M}d(n)^{2}e^{-2n/Y}n^{-2\sigma}\right)\times (3.18)
(RM+MrsR|Mi(trts)(21i(trts)1)Γ(1i(trts))|\displaystyle\left(RM+M\sum_{r\neq s\leq R}\left|M^{-i(t_{r}-t_{s})}(2^{1-i(t_{r}-t_{s})}-1)\Gamma(1-i(t_{r}-t_{s}))\right|\right.
+Mα2πrsR|log1.5Tlog1.5Tζ(α+itrits+iv)Miv(2iv1)Γ(α+iv)dv|\displaystyle+\frac{M^{\alpha}}{2\pi}\sum_{r\neq s\leq R}\left|\int_{-\log^{1.5}T}^{\log^{1.5}T}\zeta(\alpha+it_{r}-it_{s}+iv)M^{iv}(2^{iv}-1)\Gamma(\alpha+iv)\text{d}v\right|
+Mα2πrsR||v|log1.5Tζ(α+itrits+iv)Miv(2iv1)Γ(α+iv)dv|).\displaystyle\left.+\frac{M^{\alpha}}{2\pi}\sum_{r\neq s\leq R}\left|\int_{|v|\geq\log^{1.5}T}\zeta(\alpha+it_{r}-it_{s}+iv)M^{iv}(2^{iv}-1)\Gamma(\alpha+iv)\text{d}v\right|\right).
Remark.

The choice of splitting the integral in |v|<log1.5T|v|<\log^{1.5}T and |v|log1.5T|v|\geq\log^{1.5}T is near-optimal. Indeed, lower powers of logT\log T give better estimates, but if one would decrease the log-power only to log1.4T\log^{1.4}T, the term (3.26)is not o(1)o(1) sufficiently small anymore.

Now, we start estimating the quantity

(M<n2Md(n)2e2n/Yn2σ).\left(\sum_{M<n\leq 2M}d(n)^{2}e^{-2n/Y}n^{-2\sigma}\right).

Using Theorem 2.4, we get

(M<n2Md(n)2e2n/Yn2σ)0.106M2σe2M/Y(2Mlog3(2M)Mlog3M)\displaystyle\left(\sum_{M<n\leq 2M}d(n)^{2}e^{-2n/Y}n^{-2\sigma}\right)\leq 0.106M^{-2\sigma}e^{-2M/Y}(2M\log^{3}(2M)-M\log^{3}M) (3.19)
0.106M12σe2M/Y1.021log3M0.109M12σe2M/Ylog3M,\displaystyle\leq 0.106M^{1-2\sigma}e^{-2M/Y}1.021\log^{3}M\leq 0.109M^{1-2\sigma}e^{-2M/Y}\log^{3}M,

since MX1085M\geq X\geq 10^{85} by assumption.
Furthermore, using Lemma 2.5, it follows that

|Γ(α+iv)||v|α12eπ|v|/2(2π)1/2e1/(6|v|)=(2π)1/2|v|α12exp(π2|v|+16α)\left|\Gamma(\alpha+iv)\right|\leq|v|^{\alpha-\frac{1}{2}}e^{-\pi|v|/2}(2\pi)^{1/2}e^{1/(6|v|)}=(2\pi)^{1/2}|v|^{\alpha-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|v|+\frac{1}{6\alpha}\right)

and, similarly,

|Γ(1i(trts))|(2π)1/2|trts|112exp(π2|trts|+16).\left|\Gamma(1-i(t_{r}-t_{s}))\right|\leq(2\pi)^{1/2}|t_{r}-t_{s}|^{1-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|t_{r}-t_{s}|+\frac{1}{6}\right).

Then, (3.18) becomes

R20.109C12M12σe2M/Ylog5M×\displaystyle R^{2}\leq\frac{0.109}{C_{1}^{2}}\cdot M^{1-2\sigma}e^{-2M/Y}\log^{5}M\times (3.20)
(RM+2M(2π)1/2rsR|trts|12exp(π2|trts|+16)\displaystyle\left(RM+2M(2\pi)^{1/2}\sum_{r\neq s\leq R}|t_{r}-t_{s}|^{\frac{1}{2}}\exp\left(-\frac{\pi}{2}|t_{r}-t_{s}|+\frac{1}{6}\right)\right.
+MαπrsRlog1.5Tlog1.5T|ζ(α+itrits+iv)Γ(α+iv)|dv\displaystyle+\frac{M^{\alpha}}{\pi}\sum_{r\neq s\leq R}\int_{-\log^{1.5}T}^{\log^{1.5}T}\left|\zeta(\alpha+it_{r}-it_{s}+iv)\Gamma(\alpha+iv)\right|\text{d}v
+MαπrsR||v|log1.5Tζ(α+itrits+iv)Γ(α+iv)dv|).\displaystyle\left.+\frac{M^{\alpha}}{\pi}\sum_{r\neq s\leq R}\left|\int_{|v|\geq\log^{1.5}T}\zeta(\alpha+it_{r}-it_{s}+iv)\Gamma(\alpha+iv)\text{d}v\right|\right).

From now on, we will denote with C3C_{3} the following quantity:

C3=0.109C12{0.9503if 31012<Te46.2,0.9488if e46.2<Te170.2,0.9453if e170.2<Te481958,0.9327if T>e481958,C_{3}=\frac{0.109}{C^{2}_{1}}\leq\left\{\begin{array}[]{lll}0.9503&\text{if }3\cdot 10^{12}<T\leq e^{46.2},\\ \\ 0.9488&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 0.9453&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 0.9327&\text{if }T>e^{481958},\end{array}\right.

where we used the bounds found in (3.15).
Now, we denote

(α,T):=70.6995T4.43795(1α)3/2(logT)2/3.\mathscr{M}(\alpha,T):=70.6995T^{4.43795(1-\alpha)^{3/2}}(\log T)^{2/3}. (3.21)

By Theorem 2.1, we know that

max|t|T|ζ(α+it)|(α,T).\max_{|t|\leq T}|\zeta(\alpha+it)|\leq\mathscr{M}(\alpha,T). (3.22)

Furthermore, the function

yexp(π2y)\sqrt{y}\exp\left(-\frac{\pi}{2}y\right)

is decreasing in yy, hence, since |trts|log1.4T|t_{r}-t_{s}|\geq\log^{1.4}T, the estimate (3.20) becomes

C3e2M/YM12σlog5M(RM+2e16R2M(2π)1/2log1.4/2Texp(π2log1.4T)\displaystyle\leq\frac{C_{3}}{e^{2M/Y}}M^{1-2\sigma}\log^{5}M\left(RM+2e^{\frac{1}{6}}R^{2}M(2\pi)^{1/2}\log^{1.4/2}T\exp\left(-\frac{\pi}{2}\log^{1.4}T\right)\right. (3.23)
+2MαπrsRlog1.5Tlog1.5T|ζ(α+itrits+iv)||v|α12exp(π2|v|+16α)dv\displaystyle+\frac{\sqrt{2}M^{\alpha}}{\sqrt{\pi}}\sum_{r\neq s\leq R}\int_{-\log^{1.5}T}^{\log^{1.5}T}\left|\zeta(\alpha+it_{r}-it_{s}+iv)\right||v|^{\alpha-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|v|+\frac{1}{6\alpha}\right)\text{d}v
+MαπrsR||v|log1.5Tζ(α+itrits+iv)Γ(α+iv)dv|).\displaystyle\left.+\frac{M^{\alpha}}{\pi}\sum_{r\neq s\leq R}\left|\int_{|v|\geq\log^{1.5}T}\zeta(\alpha+it_{r}-it_{s}+iv)\Gamma(\alpha+iv)\text{d}v\right|\right).

Before estimating all the terms on the right side of the inequality (3.23), we define the following quantity:

X=(D1(α,3T)log5T)1/(2σ1α),X=\left(D_{1}\mathscr{M}(\alpha,3T)\log^{5}T\right)^{1/(2\sigma-1-\alpha)}, (3.24)

where D1=1.011012D_{1}=1.01\cdot 10^{12}. Since XMX\leq M by assumption, we have

(α,3T)M2σ1αD1log5T.\mathscr{M}(\alpha,3T)\leq\frac{M^{2\sigma-1-\alpha}}{D_{1}\log^{5}T}.

It follows that

2C3M12σ+αlog5Me2M/YπrsRlog1.5Tlog1.5T|ζ(α+itrits+iv)||v|α12exp(π2|v|+16α)dv\displaystyle\frac{\sqrt{2}C_{3}M^{1-2\sigma+\alpha}\log^{5}M}{e^{2M/Y}\sqrt{\pi}}\sum_{r\neq s\leq R}\int_{-\log^{1.5}T}^{\log^{1.5}T}\left|\zeta(\alpha+it_{r}-it_{s}+iv)\right||v|^{\alpha-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|v|+\frac{1}{6\alpha}\right)\text{d}v (3.25)
2C3M12σ+αlog5Me16αR2e2M/Yπ(α,3T)log1.5Tlog1.5T|v|α12exp(π2|v|)dv\displaystyle\leq\frac{\sqrt{2}C_{3}M^{1-2\sigma+\alpha}\log^{5}Me^{\frac{1}{6\alpha}}R^{2}}{e^{2M/Y}\sqrt{\pi}}\mathscr{M}(\alpha,3T)\int_{-\log^{1.5}T}^{\log^{1.5}T}|v|^{\alpha-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|v|\right)\text{d}v
2C3e16αR2M1+α2σπe2M/Y(α,3T)log5M\displaystyle\leq\frac{\sqrt{2}C_{3}e^{\frac{1}{6\alpha}}R^{2}M^{1+\alpha-2\sigma}}{\sqrt{\pi}e^{2M/Y}}\mathscr{M}(\alpha,3T)\log^{5}M
2C3e2M/Ye16αR2πD1log5Mlog5T.\displaystyle\leq\frac{\sqrt{2}C_{3}}{e^{2M/Y}}\frac{e^{\frac{1}{6\alpha}}R^{2}}{\sqrt{\pi}D_{1}}\frac{\log^{5}M}{\log^{5}T}.

Furthermore, by Theorem 2.1, the relation |trts+v|3T3e|v|1/1.5|t_{r}-t_{s}+v|\leq 3T\leq 3e^{|v|^{1/1.5}} which holds for |v|(logT)1.5|v|\geq(\log T)^{1.5} and the fact that α0.9\alpha\geq 0.9 as we explained before, we have

C3e2M/YMα+12σlog5MπrsR||v|log1.5Tζ(α+itrits+iv)Γ(α+iv)dv|\displaystyle\frac{C_{3}}{e^{2M/Y}}\frac{M^{\alpha+1-2\sigma}\log^{5}M}{\pi}\sum_{r\neq s\leq R}\left|\int_{|v|\geq\log^{1.5}T}\zeta(\alpha+it_{r}-it_{s}+iv)\Gamma(\alpha+iv)\text{d}v\right| (3.26)
26.26C3e2M/YMα+12σlog5M\displaystyle\leq 26.26\cdot\frac{C_{3}}{e^{2M/Y}}\cdot M^{\alpha+1-2\sigma}\log^{5}M
×rsR|v|log1.5Te4.43795(1α)3/2|v|1/1.5log(3e|v|1/1.5)2/3|v|α12exp(π2|v|+16|v|)dv\displaystyle\ \ \times\sum_{r\neq s\leq R}\int_{|v|\geq\log^{1.5}T}e^{4.43795(1-\alpha)^{3/2}|v|^{1/1.5}}\log(3e^{|v|^{1/1.5}})^{2/3}|v|^{\alpha-\frac{1}{2}}\exp\left(-\frac{\pi}{2}|v|+\frac{1}{6|v|}\right)\text{d}v
157.8C3e2M/Ye16log1.5Tlog5Me0.01πlog1.5TrsRvlog1.5Te4.43795(1α)3/2v1/1.50.49πvv24.5+α12dv\displaystyle\leq 157.8\cdot\frac{C_{3}}{e^{2M/Y}}\frac{e^{\frac{1}{6\log^{1.5}T}}\log^{5}M}{e^{0.01\pi\log^{1.5}T}}\sum_{r\neq s\leq R}\int_{v\geq\log^{1.5}T}e^{4.43795(1-\alpha)^{3/2}v^{1/1.5}-0.49\pi v}v^{\frac{2}{4.5}+\alpha-\frac{1}{2}}\text{d}v
157.81099C3e2M/YR2e16log1.5Tlog5Me0.01πlog1.5T.\displaystyle\leq 157.8\cdot 10^{-99}\cdot\frac{C_{3}}{e^{2M/Y}}R^{2}\frac{e^{\frac{1}{6\log^{1.5}T}}\log^{5}M}{e^{0.01\pi\log^{1.5}T}}.

Now, we define the following quantity YY:

Y={D2(α,3T)}(3σ2α1)/(σα)(2σ1α)(logT)(1661300σ1661300α+1661150)/2(σα)(2σ1α),Y=\left\{D_{2}\mathscr{M}(\alpha,3T)\right\}^{(3\sigma-2\alpha-1)/(\sigma-\alpha)(2\sigma-1-\alpha)}(\log T)^{(-\frac{1661}{300}\sigma-\frac{1661}{300}\alpha+\frac{1661}{150})/2(\sigma-\alpha)(2\sigma-1-\alpha)}, (3.27)

where D2=7.26106D_{2}=7.26\cdot 10^{6}.

Remark.

The exponent of the log-factor in the definition of YY is the near-optimal one, and allows us to get a final lower exponent for logT\log T, compared to Ivić’s result in [Ivi03]. Furthermore, we already optimize the constants D1D_{1} and D2D_{2} in the definition of XX and YY respectively.

Using (3.27) and α=5σ4\alpha=5\sigma-4, we have, by Theorem 2.1,

MYlogY,YD2712(1σ)70.6995712(1σ)(3T)28.94371σ(log3T)16611200(1σ).M\leq Y\log Y,\qquad Y\leq D_{2}^{\frac{7}{12(1-\sigma)}}70.6995^{\frac{7}{12(1-\sigma)}}(3T)^{28.9437\sqrt{1-\sigma}}(\log 3T)^{\frac{1661}{1200(1-\sigma)}}.

Now, we want to estimate logY\log Y in the four different ranges of values for TT.

  • Case 31012<Te46.23\cdot 10^{12}<T\leq e^{46.2}. By (2.1), we can assume

    σ<115.558691logT.\sigma<1-\frac{1}{5.558691\log T}.

    We have

    logYlog(D2712(1σ)70.6995712(1σ)(3T)28.94371σ(log3T)16611200(1σ))\displaystyle\log Y\leq\log\left(D_{2}^{\frac{7}{12(1-\sigma)}}70.6995^{\frac{7}{12(1-\sigma)}}(3T)^{28.9437\sqrt{1-\sigma}}(\log 3T)^{\frac{1661}{1200(1-\sigma)}}\right) (3.28)
    712(1σ)20.057+4.094log(3T)+16611200(1σ)loglog(3T)\displaystyle\leq\frac{7}{12(1-\sigma)}20.057+4.094\log(3T)+\frac{1661}{1200(1-\sigma)}\log\log(3T)
    65.066logT+4.251logT+29.673logT\displaystyle\leq 65.066\log T+4.251\log T+29.673\log T
    98.99logT.\displaystyle\leq 98.99\log T.
  • Case e46.2<Te170.2e^{46.2}<T\leq e^{170.2} By (3.29), in this range we will work with

    σ10.049620.0196/(J(T)+1.15)J(T)+0.685+0.155loglogT,\sigma\leq 1-\frac{0.04962-0.0196/(J(T)+1.15)}{J(T)+0.685+0.155\log\log T}, (3.29)

    where J(T):=16logT+loglogT+log0.618J(T):=\frac{1}{6}\log T+\log\log T+\log 0.618.
    We get

    logYlog(D2712(1σ)70.6995712(1σ)(3T)28.94371σ(log3T)16611200(1σ))\displaystyle\log Y\leq\log\left(D_{2}^{\frac{7}{12(1-\sigma)}}70.6995^{\frac{7}{12(1-\sigma)}}(3T)^{28.9437\sqrt{1-\sigma}}(\log 3T)^{\frac{1661}{1200(1-\sigma)}}\right) (3.30)
    712(1σ)20.057+4.094log(3T)+16611200(1σ)loglog(3T)\displaystyle\leq\frac{7}{12(1-\sigma)}20.057+4.094\log(3T)+\frac{1661}{1200(1-\sigma)}\log\log(3T)
    65.069logT+4.121logT+29.674logT\displaystyle\leq 65.069\log T+4.121\log T+29.674\log T
    98.864logT.\displaystyle\leq 98.864\log T.
  • Case e170.2<Te481958e^{170.2}<T\leq e^{481958}. By (2.3), in this range we will assume

    σ<1loglogT21.233logT.\sigma<1-\frac{\log\log T}{21.233\log T}.

    In this case we have

    logYlog(D2712(1σ)70.6995712(1σ)(3T)28.94371σ(log3T)16611200(1σ))\displaystyle\log Y\leq\log\left(D_{2}^{\frac{7}{12(1-\sigma)}}70.6995^{\frac{7}{12(1-\sigma)}}(3T)^{28.9437\sqrt{1-\sigma}}(\log 3T)^{\frac{1661}{1200(1-\sigma)}}\right) (3.31)
    712(1σ)20.057+4.094log(3T)+16611200(1σ)loglog(3T)\displaystyle\leq\frac{7}{12(1-\sigma)}20.057+4.094\log(3T)+\frac{1661}{1200(1-\sigma)}\log\log(3T)
    48.382logT+4.121logT+29.427logT\displaystyle\leq 48.382\log T+4.121\log T+29.427\log T
    81.93logT.\displaystyle\leq 81.93\log T.
  • Case T>e481958T>e^{481958}. By (2.4), we assume

    σ<1153.989log2/3T(loglogT)1/3.\sigma<1-\frac{1}{53.989\log^{2/3}T(\log\log T)^{1/3}}.

    We have

    logYlog(D2712(1σ)70.6995712(1σ)(3T)28.94371σ(log3T)16611200(1σ))\displaystyle\log Y\leq\log\left(D_{2}^{\frac{7}{12(1-\sigma)}}70.6995^{\frac{7}{12(1-\sigma)}}(3T)^{28.9437\sqrt{1-\sigma}}(\log 3T)^{\frac{1661}{1200(1-\sigma)}}\right) (3.32)
    712(1σ)20.057+4.094log(3T)+16611200(1σ)loglog(3T)\displaystyle\leq\frac{7}{12(1-\sigma)}20.057+4.094\log(3T)+\frac{1661}{1200(1-\sigma)}\log\log(3T)
    19.023logT+4.095logT+29.392logT\displaystyle\leq 19.023\log T+4.095\log T+29.392\log T
    52.51logT.\displaystyle\leq 52.51\log T.

Since MYlogYY2M\leq Y\log Y\leq Y^{2}, (3.25) becomes

2.4271011C3e2M/Ye16αR2D1.\leq 2.427\cdot 10^{11}\frac{C_{3}}{e^{2M/Y}}\frac{e^{\frac{1}{6\alpha}}R^{2}}{D_{1}}. (3.33)

Also,

log5Me0.01πlog1.5Tlog5(YlogY)e0.01πlog1.5T(2logY)5e0.01πlog1.5T1018,\frac{\log^{5}M}{e^{0.01\pi\log^{1.5}T}}\leq\frac{\log^{5}(Y\log Y)}{e^{0.01\pi\log^{1.5}T}}\leq\frac{(2\log Y)^{5}}{e^{0.01\pi\log^{1.5}T}}\leq 10^{18}, (3.34)

and hence (3.26) becomes

R21070.\leq R^{2}\cdot 10^{-70}.
Remark.

In order to estimate both (3.33) and (3.34), we used the worst estimate for logY\log Y among the four found above, since the contribution is negligible.

Furthermore

2C3e2M/Y(2π)1/2e1/6M22σlog5Mlog1.4/2Texp(π2log1.4T)\displaystyle\frac{2C_{3}}{e^{2M/Y}}(2\pi)^{1/2}e^{1/6}M^{2-2\sigma}\log^{5}M\log^{1.4/2}T\exp\left(-\frac{\pi}{2}\log^{1.4}T\right) (3.35)
2(2π)1/2e1/6C3M0.04(298.99logT)5log1.4/2Texp(π2log1.4T)\displaystyle\leq 2(2\pi)^{1/2}e^{1/6}C_{3}M^{0.04}(2\cdot 98.99\log T)^{5}\log^{1.4/2}T\exp\left(-\frac{\pi}{2}\log^{1.4}T\right)
C32.181012T3.96(logT)5.74exp(π2log1.4T)104.\displaystyle\leq C_{3}2.18\cdot 10^{12}\cdot T^{3.96}(\log T)^{5.74}\exp\left(-\frac{\pi}{2}\log^{1.4}T\right)\leq 10^{-4}.
Remark.

The choice |trts|log1.4T|t_{r}-t_{s}|\geq\log^{1.4}T is almost optimal, as otherwise even with 1.31.3 the above quantity is not small enough.

Hence, dividing by RR we get

RC3e2M/YM22σlog5M+R104+2.4271011C3e16αRD1+R1070,\displaystyle R\leq\frac{C_{3}}{e^{2M/Y}}M^{2-2\sigma}\log^{5}M+R\cdot 10^{-4}+2.427\cdot 10^{11}\cdot\frac{C_{3}e^{\frac{1}{6\alpha}}R}{D_{1}}+R\cdot 10^{-70}, (3.36)

or equivalently

RC2C3e2M/YM22σlog5M,\displaystyle RC_{2}\leq\frac{C_{3}}{e^{2M/Y}}M^{2-2\sigma}\log^{5}M, (3.37)

where

C2\displaystyle C_{2} =(11042.4271011C3e16αD11070)\displaystyle=\left(1-10^{-4}-2.427\cdot 10^{11}\cdot\frac{C_{3}e^{\frac{1}{6\alpha}}}{D_{1}}-10^{-70}\right)
(11042.4271011C3e16D11070)\displaystyle\geq\left(1-10^{-4}-2.427\cdot 10^{11}\cdot\frac{C_{3}e^{\frac{1}{6}}}{D_{1}}-10^{-70}\right)
{0.7301if 31012<Te46.2,0.7305if e46.2<Te170.2,0.7315if e170.2<Te481958,0.7351if T>e481958.\displaystyle\geq\left\{\begin{array}[]{lll}0.7301&\text{if }3\cdot 10^{12}<T\leq e^{46.2},\\ \\ 0.7305&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 0.7315&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 0.7351&\text{if }T>e^{481958}.\end{array}\right.

Now, for σ(α+1)/2\sigma\geq(\alpha+1)/2, we have

R1maxXM=2kYlogYC4M22σe2M/Ylog5MlogY\displaystyle R_{1}\leq\max_{X\leq M=2^{k}\leq Y\log Y}C_{4}\frac{M^{2-2\sigma}}{e^{2M/Y}}\log^{5}M\log Y (3.38)
C4Y22σ(2logY)5logY(1σ)22σe22σ\displaystyle\leq C_{4}Y^{2-2\sigma}(2\log Y)^{5}\log Y\frac{(1-\sigma)^{2-2\sigma}}{e^{2-2\sigma}}
25C4Y22σlog6Y,\displaystyle\leq 2^{5}\cdot C_{4}\cdot Y^{2-2\sigma}\log^{6}Y,

where

C4C3c0C2C1{1.9213if 31012<Te46.2,1.9157if e46.2<Te170.2,1.9024if e170.2<Te481958,1.8557if T>e481958.,C_{4}\leq\frac{C_{3}c_{0}}{C_{2}\cdot C_{1}}\leq\left\{\begin{array}[]{lll}1.9213&\text{if }3\cdot 10^{12}<T\leq e^{46.2},\\ \\ 1.9157&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 1.9024&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 1.8557&\text{if }T>e^{481958}.\end{array}\right.,

and we used the fact that the maximum of the function for the variable MM

M22σe2M/Y\frac{M^{2-2\sigma}}{e^{2M/Y}}

is reached in M=Y(1σ)M=Y(1-\sigma). It follows that

R1C5Y22σlog6T,R_{1}\leq C_{5}\cdot Y^{2-2\sigma}\log^{6}T, (3.39)

where, using the upper bounds found for logY\log Y in the three different ranges,

C5{5.7851013if 31012<Te46.2,5.7241013if e46.2<Te170.2,1.8421013if e170.2<Te481958,1.2451012if T>e481958.C_{5}\leq\left\{\begin{array}[]{lll}5.785\cdot 10^{13}&\text{if }3\cdot 10^{12}<T\leq e^{46.2},\\ \\ 5.724\cdot 10^{13}&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 1.842\cdot 10^{13}&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 1.245\cdot 10^{12}&\text{if }T>e^{481958}.\end{array}\right.

Finally,

Y22σD27/670.69957/6(3T)57.8875(1σ)3/2(log(3T))7/9(logT)1661/600.\displaystyle Y^{2-2\sigma}\leq D_{2}^{7/6}70.6995^{7/6}(3T)^{57.8875(1-\sigma)^{3/2}}(\log(3T))^{7/9}(\log T)^{1661/600}. (3.40)

It follows that

R1𝒞T57.8875(1σ)3/2(logT)17183/1800,R_{1}\leq\mathscr{C}\cdot T^{57.8875(1-\sigma)^{3/2}}(\log T)^{17183/1800}, (3.41)

where

𝒞{1.041024if 31012<Te46.2,1.021024if e46.2<Te170.2,3.221023if e170.2<Te481958,2.171022if T>e481958.\mathscr{C}\leq\left\{\begin{array}[]{lll}1.04\cdot 10^{24}&\text{if }3\cdot 10^{12}<T\leq e^{46.2},\\ \\ 1.02\cdot 10^{24}&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 3.22\cdot 10^{23}&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 2.17\cdot 10^{22}&\text{if }T>e^{481958}.\end{array}\right.

3.2. Estimate for R2R_{2}

Contrary to what we did for estimating R1R_{1}, for R2R_{2} we will just work with the Korobov–Vinogradov zero-free region, which is asymptotically the widest one. Indeed, the contribution given by the quantity R2R_{2} relies primarily on the power of the log-factor in the final result, which is not affected by the choice of the zero-free region we are working with. Indeed, the difference between the slightly sharper contribution from the optimal zero-free region for each TT and that one obtained with the Korobov–Vinogradov zero-free region for all TT is negligible. Hence, from now on we will just work with the zero-free region (2.4), which, as we already mentioned before, holds for every |T|3|T|\geq 3.
Given

logTlogTζ(α+iγr+iv)MX(α+iγr+iv)Γ(αβ+iv)Yαβ+ivdvc0,\int_{-\log T}^{\log T}\zeta(\alpha+i\gamma_{r}+iv)M_{X}(\alpha+i\gamma_{r}+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v\geq c_{0}, (3.42)

we denote with trt_{r} a real number such that |tr|2T|t_{r}|\leq 2T, |trts|>log1.4T|t_{r}-t_{s}|>\log^{1.4}T for rsr\neq s, and such that the quantity

|ζ(α+itr)MX(α+itr)|\left|\zeta(\alpha+it_{r})M_{X}(\alpha+it_{r})\right|

is maximum. Furthermore, since βσ1+α2\beta\geq\sigma\geq\frac{1+\alpha}{2} and α=5σ4\alpha=5\sigma-4, we have, for every T>31012T>3\cdot 10^{12},

βασ5σ+4=44σ4(53.989)(logT)2/3(loglogT)1/3.\displaystyle\beta-\alpha\geq\sigma-5\sigma+4=4-4\sigma\geq\frac{4}{(53.989)(\log T)^{2/3}(\log\log T)^{1/3}}.

In order to estimate the quantity

logTlogT|Γ(αβ+iv)|dv,\int_{-\log T}^{\log T}|\Gamma(\alpha-\beta+iv)|\text{d}v, (3.43)

we observe that the functional equation for the Gamma function Γ(z+1)=zΓ(z)\Gamma(z+1)=z\Gamma(z) implies

|Γ(αβ+iv)|=1|αβ+iv||Γ(αβ+1+iv)|1|αβ+iv||Γ(αβ+1)|.|\Gamma(\alpha-\beta+iv)|=\frac{1}{|\alpha-\beta+iv|}|\Gamma(\alpha-\beta+1+iv)|\leq\frac{1}{|\alpha-\beta+iv|}|\Gamma(\alpha-\beta+1)|.

Since by our hypotheses on α\alpha and β\beta we have 0<αβ+1<10<\alpha-\beta+1<1, we can apply to Γ(αβ+1)\Gamma(\alpha-\beta+1) the following relation for Γ\Gamma which holds for every real 0<z<10<z<1, i.e.,

Γ(z)=1z0xzexdx<1z0xexdx=1z,\Gamma(z)=\frac{1}{z}\int_{0}^{\infty}x^{z}e^{-x}\text{d}x<\frac{1}{z}\int_{0}^{\infty}xe^{-x}\text{d}x=\frac{1}{z}, (3.44)

obtaining

|Γ(αβ+iv)|1|αβ+iv||αβ+1|.|\Gamma(\alpha-\beta+iv)|\leq\frac{1}{|\alpha-\beta+iv||\alpha-\beta+1|}. (3.45)

Now, we define the following quantity:

𝒜:=453.989(logT)2/3(log(logT))1/3.\mathscr{A}:=\frac{4}{53.989(\log T)^{2/3}(\log(\log T))^{1/3}}.

The integral (3.43) can be rewritten as

logTlogT|Γ(αβ+iv)|dv=20𝒜|Γ(αβ+iv)|dv+2𝒜logT|Γ(αβ+iv)|dv,\int_{-\log T}^{\log T}|\Gamma(\alpha-\beta+iv)|\text{d}v=2\int_{0}^{\mathscr{A}}|\Gamma(\alpha-\beta+iv)|\text{d}v+2\int_{\mathscr{A}}^{\log T}|\Gamma(\alpha-\beta+iv)|\text{d}v, (3.46)

since 𝒜logT\mathscr{A}\leq\log T for every T>31012T>3\cdot 10^{12}. We estimate the two terms separately.
Since |αβ+iv|𝒜|\alpha-\beta+iv|\geq\mathscr{A}, it follows that

20𝒜|Γ(αβ+iv)|dv20𝒜dv|αβ+iv||αβ+1|2𝒜|αβ+1|𝒜2.06,2\int_{0}^{\mathscr{A}}|\Gamma(\alpha-\beta+iv)|\text{d}v\leq 2\int_{0}^{\mathscr{A}}\frac{\text{d}v}{|\alpha-\beta+iv||\alpha-\beta+1|}\leq\frac{2}{\mathscr{A}|\alpha-\beta+1|}\cdot\mathscr{A}\leq 2.06, (3.47)

where we used the inequality (3.45).
However, when |v|>𝒜|v|>\mathscr{A}, we also have |αβ+iv||v||\alpha-\beta+iv|\geq|v|. Hence, using (3.45), one gets

20𝒜|Γ(αβ+iv)|dv20𝒜dv|αβ+iv||αβ+1|\displaystyle 2\int_{0}^{\mathscr{A}}|\Gamma(\alpha-\beta+iv)|\text{d}v\leq 2\int_{0}^{\mathscr{A}}\frac{\text{d}v}{|\alpha-\beta+iv||\alpha-\beta+1|} (3.48)
1|αβ+1|𝒜logTdvv2.06log(logT).\displaystyle\leq\frac{1}{|\alpha-\beta+1|}\int_{\mathscr{A}}^{\log T}\frac{\text{d}v}{v}\leq 2.06\log(\log T).

By (3.47) and (3.48) it follows that

logTlogT|Γ(αβ+iv)|dv2.7log(logT).\displaystyle\int_{-\log T}^{\log T}\left|\Gamma(\alpha-\beta+iv)\right|\text{d}v\leq 2.7\log(\log T).

Now,

logTlogTζ(α+iγr+iv)MX(α+iγr+iv)Γ(αβ+iv)Yαβ+ivdv\displaystyle\int_{-\log T}^{\log T}\zeta(\alpha+i\gamma_{r}+iv)M_{X}(\alpha+i\gamma_{r}+iv)\Gamma(\alpha-\beta+iv)Y^{\alpha-\beta+iv}\text{d}v
2.7log(logT)Yασ(α,2T)MX(α+itr).\displaystyle\leq 2.7\log(\log T)Y^{\alpha-\sigma}\mathscr{M}(\alpha,2T)M_{X}(\alpha+it_{r}).

Hence, one has

MX(α+itr)Yσαc02.7log(logT)(α,2T)M_{X}(\alpha+it_{r})\geq\frac{Y^{\sigma-\alpha}c_{0}}{2.7\log(\log T)\mathscr{M}(\alpha,2T)}

for R2R_{2} points trt_{r} such that |tr|2T|t_{r}|\leq 2T, |trts|>log1.4T|t_{r}-t_{s}|>\log^{1.4}T for rsR2r\neq s\leq R_{2}.
Then, there exists a number N[1,X]N\in[1,X], such that

N<n2Nμ(n)nαitr\displaystyle\sum_{N<n\leq 2N}\mu(n)n^{-\alpha-it_{r}}
c0Yσα2.7log(logT)(α,2T)logT11log21logX\displaystyle\geq\frac{c_{0}Y^{\sigma-\alpha}}{2.7\log(\log T)\mathscr{M}(\alpha,2T)\log T}\frac{1}{\frac{1}{\log 2}-\frac{1}{\log X}}
Yσα(α,2T)log(logT)logTC6,\displaystyle\geq\frac{Y^{\sigma-\alpha}}{\mathscr{M}(\alpha,2T)\log(\log T)\log T}C_{6},

with

C6=c02.711log21logX0.49999log22.70.128,C_{6}=\frac{c_{0}}{2.7}\frac{1}{\frac{1}{\log 2}-\frac{1}{\log X}}\geq\frac{0.49999\log 2}{2.7}\geq 0.128,

for R0R2/(dlogT)R_{0}\geq R_{2}/(d\log T) with d=1log21logX1.45d=\frac{1}{\log 2}-\frac{1}{\log X}\leq 1.45 numbers trt_{r}.
As in the case for R1R_{1}, we apply Halász–Montgomery inequality in Theorem 2.3 with

ξ={ξn}n=1,ξn=μ(n)(en/2Nen/N)1/2nα,N<n2N\xi=\{\xi_{n}\}_{n=1}^{\infty},\quad\xi_{n}=\mu(n)(e^{-n/2N}-e^{-n/N})^{-1/2}n^{-\alpha},\quad N<n\leq 2N

and 0 otherwise. Also,

φr={φr,n}n=1,φr,n=(en/2Men/M)1/2nitr.\varphi_{r}=\{\varphi_{r,n}\}_{n=1}^{\infty},\quad\varphi_{r,n}=(e^{-n/2M}-e^{-n/M})^{1/2}n^{-it_{r}}.

We get

R02(α,2T)(loglogT)2(logT)2Y2α2σ1C62(N<n2Nμ(n)2e2n/Xn2α)\displaystyle R_{0}\leq\mathscr{M}^{2}(\alpha,2T)(\log\log T)^{2}(\log T)^{2}Y^{2\alpha-2\sigma}\frac{1}{C^{2}_{6}}\left(\sum_{N<n\leq 2N}\mu(n)^{2}e^{-2n/X}n^{-2\alpha}\right)
×(R0N+rsR0|H(itrits)|)\displaystyle\ \times\left(R_{0}N+\sum_{r\neq s\leq R_{0}}|H(it_{r}-it_{s})|\right)
2(α,2T)(loglogT)2(logT)2Y2α2σ1C62(N<n2Nμ(n)2e2n/Xn2α)\displaystyle\leq\mathscr{M}^{2}(\alpha,2T)(\log\log T)^{2}(\log T)^{2}Y^{2\alpha-2\sigma}\frac{1}{C^{2}_{6}}\left(\sum_{N<n\leq 2N}\mu(n)^{2}e^{-2n/X}n^{-2\alpha}\right)
(R0N+rsR0|((2N)1i(trts)N1i(trts))Γ(1i(trts))|\displaystyle\left(R_{0}N+\sum_{r\neq s\leq R_{0}}\left|((2N)^{1-i(t_{r}-t_{s})}-N^{1-i(t_{r}-t_{s})})\Gamma(1-i(t_{r}-t_{s}))\right|\right.
+rsR0|12πiαiα+iζ(w+i(trts))((2N)wNw)Γ(w)dw|),\displaystyle\left.+\sum_{r\neq s\leq R_{0}}\left|\frac{1}{2\pi i}\int_{\alpha-i\infty}^{\alpha+i\infty}\zeta(w+i(t_{r}-t_{s}))((2N)^{w}-N^{w})\Gamma(w)dw\right|\right),

and, splitting the integral in two terms, the previous relation becomes

2(α,2T)(loglogT)2(logT)2Y2α2σ1C62(N<n2Nμ(n)2e2n/Xn2α)\displaystyle\leq\mathscr{M}^{2}(\alpha,2T)(\log\log T)^{2}(\log T)^{2}Y^{2\alpha-2\sigma}\frac{1}{C^{2}_{6}}\left(\sum_{N<n\leq 2N}\mu(n)^{2}e^{-2n/X}n^{-2\alpha}\right) (3.49)
(R0N+NrsR0|Ni(trts)(21i(trts)1)Γ(1i(trts))|\displaystyle\left(R_{0}N+N\sum_{r\neq s\leq R_{0}}\left|N^{-i(t_{r}-t_{s})}(2^{1-i(t_{r}-t_{s})}-1)\Gamma(1-i(t_{r}-t_{s}))\right|\right.
+Nα2πrsR0|log2Tlog2Tζ(α+itrits+iv)Niv(2iv1)Γ(α+iv)dv|\displaystyle+\frac{N^{\alpha}}{2\pi}\sum_{r\neq s\leq R_{0}}\left|\int_{-\log^{2}T}^{\log^{2}T}\zeta(\alpha+it_{r}-it_{s}+iv)N^{iv}(2^{iv}-1)\Gamma(\alpha+iv)\text{d}v\right|
+Nα2πrsR0||v|log2Tζ(α+itrits+iv)Niv(2iv1)Γ(α+iv)dv|).\displaystyle\left.+\frac{N^{\alpha}}{2\pi}\sum_{r\neq s\leq R_{0}}\left|\int_{|v|\geq\log^{2}T}\zeta(\alpha+it_{r}-it_{s}+iv)N^{iv}(2^{iv}-1)\Gamma(\alpha+iv)\text{d}v\right|\right).

We want to estimate all the terms in the above inequality.
First of all, a trivial estimate gives

(N<n2Nμ(n)2e2n/Xn2α)N12αe2N/X.\left(\sum_{N<n\leq 2N}\mu(n)^{2}e^{-2n/X}n^{-2\alpha}\right)\leq N^{1-2\alpha}e^{-2N/X}.

Then, following exactly the same argument as for R1R_{1}, together with the upper bound for the Gamma function in Lemma 2.5, the previous inequality (3.49) becomes

2(α,2T)(loglogT)2(logT)2Y2α2σ1C62N12αe2N/X\displaystyle\leq\mathscr{M}^{2}(\alpha,2T)(\log\log T)^{2}(\log T)^{2}Y^{2\alpha-2\sigma}\frac{1}{C^{2}_{6}}N^{1-2\alpha}e^{-2N/X}
×(R0N+2e16NR02(2π)1/2log1.4/2Texp(π2log1.4T)\displaystyle\ \ \times\left(R_{0}N+2e^{\frac{1}{6}}NR_{0}^{2}(2\pi)^{1/2}\log^{1.4/2}T\exp\left(-\frac{\pi}{2}\log^{1.4}T\right)\right.
+2e16αR02Nαπ(α,3T)\displaystyle\quad+\ \left.\frac{\sqrt{2}e^{\frac{1}{6\alpha}}R_{0}^{2}N^{\alpha}}{\sqrt{\pi}}\mathscr{M}(\alpha,3T)\right.
+NαπrsR0|v|log2T|ζ(α+itrits+iv)||Γ(α+iv)|dv)\displaystyle\left.\quad+\frac{N^{\alpha}}{\pi}\sum_{r\neq s\leq R_{0}}\int_{|v|\geq\log^{2}T}|\zeta(\alpha+it_{r}-it_{s}+iv)||\Gamma(\alpha+iv)|\text{d}v\right)
2(α,2T)(loglogT)2(logT)2Y2α2σ1C62e2N/X\displaystyle\leq\mathscr{M}^{2}(\alpha,2T)(\log\log T)^{2}(\log T)^{2}Y^{2\alpha-2\sigma}\frac{1}{C^{2}_{6}}e^{-2N/X}
×(R0N22α+2R02N22αe16(2π)1/2log1.4/2Texp(π2log1.4T)\displaystyle\ \ \times\left(R_{0}N^{2-2\alpha}+2R_{0}^{2}N^{2-2\alpha}e^{\frac{1}{6}}(2\pi)^{1/2}\log^{1.4/2}T\exp\left(-\frac{\pi}{2}\log^{1.4}T\right)\right.
+2e16αR02N1απ(α,3T)\displaystyle\left.\quad+\frac{\sqrt{2}e^{\frac{1}{6\alpha}}R_{0}^{2}N^{1-\alpha}}{\sqrt{\pi}}\mathscr{M}(\alpha,3T)\right.
+N1απrsR0|v|log2T|ζ(α+itrits+iv)||Γ(α+iv)|dv).\displaystyle\left.\quad+\frac{N^{1-\alpha}}{\pi}\sum_{r\neq s\leq R_{0}}\int_{|v|\geq\log^{2}T}|\zeta(\alpha+it_{r}-it_{s}+iv)||\Gamma(\alpha+iv)|\text{d}v\right).

In order to estimate the last term in the previous inequality, since the relation |trts+v|5T5e|v|1/2|t_{r}-t_{s}+v|\leq 5T\leq 5e^{|v|^{1/2}} holds for |v|log2T|v|\geq\log^{2}T, we observe that

2(α,2T)(loglogT)2(logT)2Y2α2σN1αC62πe2N/X\displaystyle\mathscr{M}^{2}(\alpha,2T)(\log\log T)^{2}(\log T)^{2}\frac{Y^{2\alpha-2\sigma}N^{1-\alpha}}{C^{2}_{6}\pi e^{2N/X}} (3.50)
×rsR0|v|log2T|ζ(α+itrits+iv)||Γ(α+iv)|dv\displaystyle\ \ \times\sum_{r\neq s\leq R_{0}}\int_{|v|\geq\log^{2}T}|\zeta(\alpha+it_{r}-it_{s}+iv)||\Gamma(\alpha+iv)|\text{d}v
82.48e16log2TC622(α,2T)N1αY2α2σ(loglogT)2(logT)2\displaystyle\leq\frac{82.48e^{\frac{1}{6\log^{2}T}}}{C_{6}^{2}}\mathscr{M}^{2}(\alpha,2T)N^{1-\alpha}Y^{2\alpha-2\sigma}(\log\log T)^{2}(\log T)^{2}
×rsR0|v|log2Te4.43795(1α)3/2|v|1/2π2|v||v|13+α12dv\displaystyle\ \ \times\sum_{r\neq s\leq R_{0}}\int_{|v|\geq\log^{2}T}e^{4.43795(1-\alpha)^{3/2}|v|^{1/2}-\frac{\pi}{2}|v|}|v|^{\frac{1}{3}+\alpha-\frac{1}{2}}\text{d}v
164.96C62e16log2T2(α,2T)N1αY2α2σ(loglogT)2(logT)2e0.01πlog2T\displaystyle\leq\frac{164.96}{C_{6}^{2}}\frac{e^{\frac{1}{6\log^{2}T}}\mathscr{M}^{2}(\alpha,2T)N^{1-\alpha}Y^{2\alpha-2\sigma}(\log\log T)^{2}(\log T)^{2}}{e^{0.01\pi\log^{2}T}}
×rsR0vlog2Te4.43795(1α)3/2v1/20.49πvvα16dv\displaystyle\ \ \times\sum_{r\neq s\leq R_{0}}\int_{v\geq\log^{2}T}e^{4.43795(1-\alpha)^{3/2}v^{1/2}-0.49\pi v}v^{\alpha-\frac{1}{6}}\text{d}v
164.96C621092R02e16log2T2(α,2T)N1αY2α2σ(loglogT)2(logT)2e0.01πlog2T.\displaystyle\leq\frac{164.96}{C^{2}_{6}}\cdot 10^{-92}R_{0}^{2}\frac{e^{\frac{1}{6\log^{2}T}}\mathscr{M}^{2}(\alpha,2T)N^{1-\alpha}Y^{2\alpha-2\sigma}(\log\log T)^{2}(\log T)^{2}}{e^{0.01\pi\log^{2}T}}.

Using the definition of XX in (3.24), since XYX\leq Y, NXN\leq X and ασ<0\alpha-\sigma<0, we have

Y2α2σN1α2(α,2T)log2TXα+12σ2(α,3T)log2T(α,3T)D1(logT)3.\displaystyle Y^{2\alpha-2\sigma}N^{1-\alpha}\mathscr{M}^{2}(\alpha,2T)\log^{2}T\leq X^{\alpha+1-2\sigma}\mathscr{M}^{2}(\alpha,3T)\log^{2}T\leq\frac{\mathscr{M}(\alpha,3T)}{D_{1}(\log T)^{3}}.

Hence, (3.50) becomes

164.96D1C621092R02e16log2T(α,3T)(loglogT)2e0.01πlog2Tlog3T\displaystyle\leq\frac{164.96}{D_{1}C^{2}_{6}}\cdot 10^{-92}R_{0}^{2}\frac{e^{\frac{1}{6\log^{2}T}}\mathscr{M}(\alpha,3T)(\log\log T)^{2}}{e^{0.01\pi\log^{2}T}\log^{3}T} (3.51)
11663C62D11092R02e16log2T(3T)4.43795(1α)3/2log2/3(3T)(loglogT)2e0.01πlog2Tlog3T\displaystyle\leq\frac{11663}{C_{6}^{2}D_{1}}\cdot 10^{-92}R_{0}^{2}\frac{e^{\frac{1}{6\log^{2}T}}(3T)^{4.43795(1-\alpha)^{3/2}}\log^{2/3}(3T)(\log\log T)^{2}}{e^{0.01\pi\log^{2}T}\log^{3}T}
R021080.\displaystyle\leq R_{0}^{2}10^{-80}.

Furthermore, we observe that

2(α,2T)Y2α2σX22αlog3T2(α,2T)((α,3T))4/3D214/3D110/3(logT)1289/150\displaystyle\mathscr{M}^{2}(\alpha,2T)Y^{2\alpha-2\sigma}X^{2-2\alpha}\log^{3}T\leq\mathscr{M}^{2}(\alpha,2T)(\mathscr{M}(\alpha,3T))^{-4/3}D_{2}^{-14/3}D_{1}^{10/3}(\log T)^{1289/150} (3.52)
((α,3T))2/3D214/3D110/3(logT)1289/150\displaystyle\leq(\mathscr{M}(\alpha,3T))^{2/3}D_{2}^{-14/3}D_{1}^{10/3}(\log T)^{1289/150}
C9T33.08(1σ)3/2log4067/450T,\displaystyle\leq C_{9}T^{33.08(1-\sigma)^{3/2}}\log^{4067/450}T,

with

C9=1.017(70.6995)2/33234.43795(1α)3/2D214/3D110/31.92109.C_{9}=1.017\cdot(70.6995)^{2/3}\cdot 3^{\frac{2}{3}\cdot 4.43795(1-\alpha)^{3/2}}\cdot D_{2}^{-14/3}D_{1}^{10/3}\leq 1.92\cdot 10^{9}.

Hence,

2C62e2N/X2(α,2T)Y2α2σR02N22αe16(2π)1/2(loglogT)2log2+1.4/2Texp(π2log1.4T)\displaystyle\frac{2}{C^{2}_{6}}e^{-2N/X}\mathscr{M}^{2}(\alpha,2T)Y^{2\alpha-2\sigma}R_{0}^{2}N^{2-2\alpha}e^{\frac{1}{6}}(2\pi)^{1/2}(\log\log T)^{2}\log^{2+1.4/2}T\exp\left(-\frac{\pi}{2}\log^{1.4}T\right) (3.53)
2C622(α,2T)Y2α2σX22αR02e16(2π)1/2(loglogT)2log2.7Texp(π2log1.4T)\displaystyle\leq\frac{2}{C^{2}_{6}}\mathscr{M}^{2}(\alpha,2T)Y^{2\alpha-2\sigma}X^{2-2\alpha}R_{0}^{2}e^{\frac{1}{6}}(2\pi)^{1/2}(\log\log T)^{2}\log^{2.7}T\exp\left(-\frac{\pi}{2}\log^{1.4}T\right)
R021030.\displaystyle\leq R_{0}^{2}10^{-30}.

Finally, by definition of X,YX,Y (3.24), (3.27), we have

Y2α2σX1α3(α,3T)log2T(loglogT)2Y2α2σX1α3(α,3T)(logT)2.74\displaystyle Y^{2\alpha-2\sigma}X^{1-\alpha}\mathscr{M}^{3}(\alpha,3T)\log^{2}T(\log\log T)^{2}\leq Y^{2\alpha-2\sigma}X^{1-\alpha}\mathscr{M}^{3}(\alpha,3T)(\log T)^{2.74} (3.54)
=D1(1α)/(2σ1α)D22(3σ2α1)/(2σ1α)=D15/3D214/3,\displaystyle=D_{1}^{(1-\alpha)/(2\sigma-1-\alpha)}D_{2}^{-2(3\sigma-2\alpha-1)/(2\sigma-1-\alpha)}=D_{1}^{5/3}D_{2}^{-14/3},

where we used the inequality loglogT(logT)0.37\log\log T\leq(\log T)^{0.37}, which holds for T>31012T>3\cdot 10^{12}. It follows that, being NXN\leq X,

2πC62e16αR02e2N/XY2α2σN1α3(α,3T)log2T(loglogT)2\displaystyle\frac{\sqrt{2}}{\sqrt{\pi}C^{2}_{6}}e^{\frac{1}{6\alpha}}R^{2}_{0}e^{-2N/X}Y^{2\alpha-2\sigma}N^{1-\alpha}\mathscr{M}^{3}(\alpha,3T)\log^{2}T(\log\log T)^{2} (3.55)
2πC62e16αR02Y2α2σX1α3(α,3T)(logT)2.74\displaystyle\leq\frac{\sqrt{2}}{\sqrt{\pi}C^{2}_{6}}e^{\frac{1}{6\alpha}}R^{2}_{0}Y^{2\alpha-2\sigma}X^{1-\alpha}\mathscr{M}^{3}(\alpha,3T)(\log T)^{2.74}
2e16αR02πC62D15/3D214/3\displaystyle\leq\frac{\sqrt{2}e^{\frac{1}{6\alpha}}R^{2}_{0}}{\sqrt{\pi}C^{2}_{6}}D_{1}^{5/3}D_{2}^{-14/3}
R021010.\displaystyle\leq R_{0}^{2}\cdot 10^{-10}.

Using the estimates (3.51),(3.53) and (3.55) and dividing by R0R_{0} we get

R01C62e2N/X2(α,2T)Y2α2σX22α(logT)2(loglogT)2+R0(1030+1010+1080),\displaystyle R_{0}\leq\frac{1}{C^{2}_{6}}e^{-2N/X}\mathscr{M}^{2}(\alpha,2T)Y^{2\alpha-2\sigma}X^{2-2\alpha}(\log T)^{2}(\log\log T)^{2}+R_{0}(10^{-30}+10^{-10}+10^{-80}), (3.56)

or equivalently,

C7R01C62e2N/X2(α,2T)Y2α2σX22α(logT)2(loglogT)2,C_{7}R_{0}\leq\frac{1}{C_{6}^{2}}e^{-2N/X}\mathscr{M}^{2}(\alpha,2T)Y^{2\alpha-2\sigma}X^{2-2\alpha}(\log T)^{2}(\log\log T)^{2},

where

C7=11030101010800.9999.C_{7}=1-10^{-30}-10^{-10}-10^{-80}\geq 0.9999.

It follows that

R0C8e2N/X2(α,2T)Y2α2σX22α(logT)2(loglogT)2,R_{0}\leq C_{8}e^{-2N/X}\mathscr{M}^{2}(\alpha,2T)Y^{2\alpha-2\sigma}X^{2-2\alpha}(\log T)^{2}(\log\log T)^{2},

with

C8=1C7C6261.05.C_{8}=\frac{1}{C_{7}C_{6}^{2}}\leq 61.05.

Hence, for σ(α+1)/2\sigma\geq(\alpha+1)/2, using (3.52) we have

R2\displaystyle R_{2} max1N=2kXdC8e2N/X2(α,2T)Y2α2σX22α(logT)3(loglogT)2\displaystyle\leq\max_{1\leq N=2^{k}\leq X}d\cdot C_{8}e^{-2N/X}\mathscr{M}^{2}(\alpha,2T)Y^{2\alpha-2\sigma}X^{2-2\alpha}(\log T)^{3}(\log\log T)^{2} (3.57)
dC82(α,2T)Y2α2σX22α(logT)3(loglogT)2\displaystyle\leq d\cdot C_{8}\mathscr{M}^{2}(\alpha,2T)Y^{2\alpha-2\sigma}X^{2-2\alpha}(\log T)^{3}(\log\log T)^{2}
dC8C9T33.08(1σ)3/2(logT)4067/450(logT)0.74\displaystyle\leq d\cdot C_{8}C_{9}T^{33.08(1-\sigma)^{3/2}}(\log T)^{4067/450}(\log T)^{0.74}
C10T33.08(1σ)3/2log88/9T,\displaystyle\leq C_{10}T^{33.08(1-\sigma)^{3/2}}\log^{88/9}T,

where

C10=dC8C91.71011.C_{10}=dC_{8}C_{9}\leq 1.7\cdot 10^{11}.

We can conclude that

R2C10T33.08(1σ)3/2log88/9T.R_{2}\leq C_{10}T^{33.08(1-\sigma)^{3/2}}\log^{88/9}T. (3.58)

3.3. Conclusion

From (3.9), we recall that

N(σ,T)(R1+R2+1)0.45log1.4TloglogT.N(\sigma,T)\leq\left(R_{1}+R_{2}+1\right)0.45\log^{1.4}T\log\log T. (3.59)

Inserting the estimates found for both R1R_{1} and R2R_{2}, i.e. (3.41) and (3.58) respectively, we finally get

N(σ,T)(R1+R2+1)0.45log1.4TloglogT\displaystyle N(\sigma,T)\leq\left(R_{1}+R_{2}+1\right)0.45\log^{1.4}T\log\log T (3.60)
(𝒞T57.8875(1σ)3/2(logT)17183/1800+C10T33.08(1σ)3/2(logT)88/9+1)0.45(logT)1.4loglogT\displaystyle\leq\left(\mathscr{C}T^{57.8875(1-\sigma)^{3/2}}(\log T)^{17183/1800}+C_{10}T^{33.08(1-\sigma)^{3/2}}(\log T)^{88/9}+1\right)0.45(\log T)^{1.4}\log\log T
𝒞1T57.8875(1σ)3/2(logT)19703/1800loglogT+𝒞2T33.08(1σ)3/2(logT)503/45loglogT\displaystyle\leq\mathscr{C}_{1}T^{57.8875(1-\sigma)^{3/2}}(\log T)^{19703/1800}\log\log T+\mathscr{C}_{2}T^{33.08(1-\sigma)^{3/2}}(\log T)^{503/45}\log\log T
+0.27(logT)14/10loglogT,\displaystyle\ \ +0.27(\log T)^{14/10}\log\log T,

where 𝒞2=7.651010\mathscr{C}_{2}=7.65\cdot 10^{10} and

𝒞1={4.681023if 31012Te46.2,4.591023if e46.2<Te170.2,1.451023if e170.2<Te481958,9.771021if T>e481958.\mathscr{C}_{1}=\left\{\begin{array}[]{lll}4.68\cdot 10^{23}&\text{if }3\cdot 10^{12}\leq T\leq e^{46.2},\\ \\ 4.59\cdot 10^{23}&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 1.45\cdot 10^{23}&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 9.77\cdot 10^{21}&\text{if }T>e^{481958}.\end{array}\right. (3.61)

This concludes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Using the estimate in Theorem 1.1 and the maximum between the exponents 19703/180019703/1800 and 503/45503/45 of the log-factors, we have

N(σ,T)𝒞1T57.8875(1σ)3/2(logT)50345loglogT,\displaystyle N(\sigma,T)\leq\mathscr{C}^{\prime}_{1}T^{57.8875(1-\sigma)^{3/2}}(\log T)^{\frac{503}{45}}\log\log T, (4.1)

where

𝒞1={2.151023if 31012<Te46.2,1.891023if e46.2<Te170.2,4.421022if e170.2<Te481958,4.721020if T>e481958.\mathscr{C}^{\prime}_{1}=\left\{\begin{array}[]{lll}2.15\cdot 10^{23}&\text{if }3\cdot 10^{12}<T\leq e^{46.2},\\ \\ 1.89\cdot 10^{23}&\text{if }e^{46.2}<T\leq e^{170.2},\\ \\ 4.42\cdot 10^{22}&\text{if }e^{170.2}<T\leq e^{481958},\\ \\ 4.72\cdot 10^{20}&\text{if }T>e^{481958}.\end{array}\right. (4.2)

Finally, for T31012T\geq 3\cdot 10^{12}, we recall that loglogT(logT)0.37\log\log T\leq(\log T)^{0.37}. Hence, (4.1) becomes

N(σ,T)𝒞1T57.8875(1σ)3/2(logT)10393/900,N(\sigma,T)\leq\mathscr{C}^{\prime}_{1}T^{57.8875(1-\sigma)^{3/2}}(\log T)^{10393/900}, (4.3)

where 𝒞1\mathscr{C}_{1}^{\prime} is defined in (4.2).
This concludes the proof of Theorem 1.2.

Acknowledgements

I would like to thank my supervisor Timothy S. Trudgian for his support and helpful suggestions throughout the writing of this article.

References

  • [Bel23] Chiara Bellotti “Explicit bounds for the Riemann zeta function and a new zero-free region” arXiv:2306.10680, 2023
  • [CHT19] Michaela Cully-Hugill and Tim Trudgian “Two explicit divisor sums” In The Ramanujan Journal 56, 2019, pp. 141 –149
  • [For22] K. Ford “Zero-free regions for the Riemann zeta function” Preprint available at arXiv:1910.08205, 2022
  • [For02] Kevin Ford “Vinogradov’s integral and bounds for the Riemann zeta function” In Proceedings of the London Mathematical Society 85.3, 2002, pp. 565–633
  • [HSW22] Elchin Hasanalizade, Quanli Shen and Peng-Jie Wong “Counting zeros of the Riemann zeta function” In Journal of Number Theory 235, 2022, pp. 219–241
  • [HB17] D. R. Heath-Brown “A new kth derivative estimate for exponential sums via Vinogradov’s mean value” In Proceedings of the Steklov Institute of Mathematics 296.1, 2017, pp. 88–103
  • [HPY22] Ghaith A. Hiary, Dhir Patel and Andrew Yang “An improved explicit estimate for ζ(1/2+it)\zeta(1/2+it)” arXiv:2207.02366, 2022
  • [Ing37] Albert Edward Ingham “On the difference between consecutive primes” In The Quarterly Journal of Mathematics Oxford University Press, 1937, pp. 255–266
  • [Ivi03] Aleksandar Ivic “The Riemann Zeta-Function : Theory and Applications”, Dover Books on Mathematics Series Dover Publications, Incorporated, 2003
  • [KLN18] Habiba Kadiri, Allysa Lumley and Nathan Ng “Explicit zero density for the Riemann zeta function” In Journal of Mathematical Analysis and Applications 465.1, 2018, pp. 22–46
  • [Mon71] Hugh L. Montgomery “Topics in Multiplicative Number Theory” 227, Lecture Notes in Mathematics Berlin, Heidelberg: Springer Berlin Heidelberg, 1971 DOI: 10.1007/BFb0060851
  • [MTY22] Mike J. Mossinghoff, Timothy S. Trudgian and Andrew Yang “Explicit zero-free regions for the Riemann zeta-function” arXiv:2212.06867, 2022
  • [Olv74] Frank W. J. Olver “Asymptotics and Special Functions” Academic Press, New York, 1974
  • [Pin23] Janos Pintz “A remark on density theorems for Riemann’s zeta-function” arXiv:2310.04544, 2023
  • [PT21] D. J. Platt and T. S. Trudgian “The Riemann hypothesis is true up to 310123\cdot 10^{12} In Bull. Lond. Math. Soc. 53.3, 2021, pp. 792–797
  • [Ram16] Olivier Ramaré “An explicit density estimate for Dirichlet L-series” In Mathematics of Computation 85.297, 2016, pp. 325–356
  • [Ric67] H. E. Richert “Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ=1\sigma=1 In Mathematische Annalen 169.1, 1967, pp. 97–101
  • [TY23] Timothy S. Trudgian and Andrew Yang “On optimal exponent pairs” arXiv:2306.05599, 2023
  • [Yan23] Andrew Yang “Explicit bounds on ζ(s)\zeta(s) in the critical strip and a zero-free region” arXiv:2301.03165, 2023