This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

∎ equivariantly Hirzebruch homogènes irreducible 11institutetext: T. Mason 22institutetext: Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460
22email: [email protected]
33institutetext: F. Ziegler (corresponding author) 44institutetext: Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460
44email: f[email protected]

Explicit Pseudo-Kähler Metrics on Flag Manifolds

Thomas Mason    François Ziegler
(November 29, 2022)
Abstract

The coadjoint orbits of compact Lie groups each carry a canonical (positive definite) Kähler structure, famously used to realize the group’s irreducible representations in holomorphic sections of appropriate line bundles (Borel-Weil theorem). Less studied are the (indefinite) invariant pseudo-Kähler structures they also admit, which can be used to realize the same representations in higher cohomology of the sections (Bott’s theorem). Using “eigenflag” embeddings, we give a very explicit description of these metrics in the case of the unitary group. As a byproduct we show that Un/(Un1××Unk)U_{n}/(U_{n_{1}}\times\cdots\times U_{n_{k}}) has exactly k!k! invariant complex structures, a count which seems to have hitherto escaped attention.

Keywords:
Coadjoint orbit Unitary group Pseudo-Kähler manifold Homogeneous complex manifold Flag manifold
MSC:
14M15 17B08 32M10 32Q15 53C50

Contents

\@starttoc

toc

1 Introduction

One of A. Borel’s early claims to fame was his discovery of a complex structure on the quotient G/TG/T of a compact Lie group by its maximal torus (B, 53, §29):

On the off chance, let us point out a property common to the G/TG/T and certain torsion free homogeneous spaces of 𝐔(n)\mathbf{U}(n) (cf. §31, No. 1), but without knowing whether it is related to the topological question which occupies us;

G/TG/T admits a complex manifold structure invariant under the homeomorphisms from GG.

His original argument was that G/TG/T coincides with the quotient of the complexified group by what we now call a Borel subgroup,

G/TG(𝐂)/B,G/T\cong G({\mathbf{C}})/B, (1)

and the pointer to §31 referred to

Un/(Un1××Unk),   (ni=n)U_{n}/(U_{n_{1}}\times\cdots\times U_{n_{k}})\hbox to0.0pt{,\qquad\quad($\sum n_{i}=n$)\hss} (2)

which he described as the manifold “of flags” whose generating element consists of k1k-1 nested subspaces of 𝐂n{\mathbf{C}}^{n}. Soon after, H. C. Wang showed that the property of admitting (finitely many) invariant complex structures is characteristic of homogeneous spaces of the form

G/C(S)G/C(S) (3)

with GG compact and C(S)C(S) the centralizer of a torus SGS\subset G W (54); Borel observed that these spaces admit invariant Kähler metrics B (54), and with Hirzebruch, gave the theory its classic exposition (B, 58, §§12–13).

Notably, this contains a section 13.7 Number of invariant complex structures which actually only gives the count in the two extreme cases where dim(S)=1\dim(S)=1 or rank(G)\mathrm{rank}(G), i.e. (in (2)) k=2k=2 or nn.

The purpose of this paper is to fill this gap and give as explicit a description as possible of all invariant complex structures in the case of the unitary group. (Extension to other types is a seemingly intricate problem.) An ulterior motive is to get a concrete handle on Bott-Borel-Weil modules for various purposes in representation theory; for example, our results should afford a constructive proof of Bott’s theorem in the spirit of T (14).

Paper organization and terminology

The multi-faceted nature of flag manifolds has led different authors to different choices of a working definition, with different connotations. For instance (1) singles out a complex structure, and all of (13) a base point, foreign to the nested subspaces definition. In this paper we follow B (87) and work with

a coadjoint orbit XX of the compact Lie group GG (=Un=U_{n}) (4)

(§2). This is base-point free but singles out a symplectic form ω\omega (of Kirillov-Kostant-Souriau).111Thus the historical order is reversed, in which one finds first complex structures, then metrics (Fubini-Study S (05), Cartan-Ehresmann C (29); E (34)), and only finally symplectic forms. In that setting XX turns out to have a preferred complex structure II and attendant Kähler metric ω(I,)\omega(I\,\cdot,\cdot) (§3), and classifying other invariant complex structures JJ is tantamount to classifying compatible pseudo-Kähler metrics ω(J,)\omega(J\,\cdot,\cdot) (§4). Embeddings into products of Grassmannians then allow us to give for these the very explicit formulas we are after (§5).

We note that Theorems 3.1 to 4.2 are well-known and indeed easily generalized to any compact connected GG in (4): see (B, 82, Exerc. 4.8 and 6.13). For notational simplicity and uniformity, we resisted the temptation to present them in more generality than Theorems 4.3 to 5.2, which we emphatically do not know how to extend beyond type A.

As recently pointed out by G. Nawratil N (17), the idea of nested subspaces and the name flag itself originate with R. de Saussure (in Esperanto! Fig. 1). They were used only sporadically, mainly by associates of projective geometer H. de Vries W (11), (W, 36, p. 15), (F, 49, p. 22), (F, 69, p. 415), until A. Borel revived them in his Thesis.

1.2cmRefer to caption

Figure 1: De Saussure’s flageto (f) in S (08).

2 The coadjoint orbits

2.1 The unitary group and its complexification

Throughout this paper GG will denote the group Un={gG(𝐂):g¯g=1¯}U_{n}=\{g\in G({\mathbf{C}}):\overline{g}g={\underline{1}}\,\} of unitary matrices in G(𝐂)=GLn(𝐂)G({\mathbf{C}})=GL_{n}({\mathbf{C}}), and m¯\overline{m} will always mean the adjoint (a.k.a. complex conjugate transpose) of any row, column or matrix mm. The Lie algebra 𝔤(𝐂)=𝔤𝔩n(𝐂){\mathfrak{g}}({\mathbf{C}})={\mathfrak{gl}}_{n}({\mathbf{C}}) splits as the sum 𝔤i𝔤{\mathfrak{g}}\oplus{\mathrm{i}}{\mathfrak{g}} of the skew-adjoint and the self-adjoint:

{𝔤=𝔲n={Z𝔤(𝐂):Z¯+Z=0},i𝔤=i𝔲n={Z𝔤(𝐂):Z¯=Z}\left\{\begin{array}[]{rcrcl}{\mathfrak{g}}&=&{\mathfrak{u}}_{n}&=&\{Z\in{\mathfrak{g}}({\mathbf{C}}):\overline{Z}+Z=0\},\\[4.30554pt] {\mathrm{i}}{\mathfrak{g}}&=&{\mathrm{i}}{\mathfrak{u}}_{n}&=&\{Z\in{\mathfrak{g}}({\mathbf{C}}):\overline{Z}=Z\}\end{array}\right. (5)

where i=1{\mathrm{i}}=\sqrt{-1}.

2.2 The trace form and duality

We write ,\langle\langle\cdot,\cdot\rangle\rangle for the symmetric, complex bilinear form 𝔤(𝐂)×𝔤(𝐂)𝐂{\mathfrak{g}}({\mathbf{C}})\times{\mathfrak{g}}({\mathbf{C}})\to{\mathbf{C}} defined by

A,B=Trace(AB).\langle\langle A,B\rangle\rangle=-\operatorname{Trace}(AB). (6)

This form is G(𝐂)G({\mathbf{C}})-invariant, i.e. it satisfies AdgA,AdgB=A,B\langle\langle\operatorname{Ad}_{g}A,\operatorname{Ad}_{g}B\rangle\rangle=\langle\langle A,B\rangle\rangle and infinitesimally

adZA,B+A,adZB=0\langle\langle\operatorname{ad}_{Z}A,B\rangle\rangle+\langle\langle A,\operatorname{ad}_{Z}B\rangle\rangle=0 (7)

where AdgA=gAg1\operatorname{Ad}_{g}A=gAg^{-1} and adZA=[Z,A]\operatorname{ad}_{Z}A=[Z,A]. These formulas hold for all gG(𝐂)g\in G({\mathbf{C}}) and A,B,Z𝔤(𝐂)A,B,Z\in{\mathfrak{g}}({\mathbf{C}}), and we have

Proposition 1

The restriction ,𝔤×𝔤\langle\langle\cdot,\cdot\rangle\rangle_{{\mathfrak{g}}\times{\mathfrak{g}}} is real-valued, real bilinear, GG-invariant and positive definite. This allows us to identify 𝔤{\mathfrak{g}}^{*} with i𝔤{\mathrm{i}}{\mathfrak{g}} (and hence 𝔤{\mathfrak{g}} with i𝔤{\mathrm{i}}{\mathfrak{g}}^{*}) so that duality and the coadjoint action read, for (g,x,Z)G×𝔤×𝔤(g,x,Z)\in G\times{\mathfrak{g}}^{*}\times{\mathfrak{g}},

x,Z:=ix,Z,g(x)=gxg1,Z(x)=[Z,x].\langle x,Z\rangle:=\langle\langle{\mathrm{i}}x,Z\rangle\rangle,\qquad\quad g(x)=gxg^{-1},\qquad\quad Z(x)=[Z,x]. (8)

(The restriction ,i𝔤×i𝔤\langle\langle\cdot,\cdot\rangle\rangle_{{\mathrm{i}}{\mathfrak{g}}\times{\mathrm{i}}{\mathfrak{g}}} has the same properties, except it is negative definite.)

2.3 The orbits

A coadjoint orbit is an orbit XX of the action (8) of GG on 𝔤=i𝔤{\mathfrak{g}}^{*}={\mathrm{i}}{\mathfrak{g}}, or in other words, a conjugacy class of self-adjoint matrices. Since such matrices have real eigenvalues and an orthonormal basis of eigenvectors, we have

Proposition 2

Each orbit meets, exactly once, the dominant Weyl chamber

D={λ=(λs1¯λsk¯)𝔤:λs1>λs2>>λsk}D=\left\{\lambda=\begin{pmatrix}\smash{\underline{\lambda_{s_{1}}}}\vphantom{\lambda_{s_{1}}}&\\ &\ddots\\ &&\smash{\underline{\lambda_{s_{k}}}}\vphantom{\lambda_{s_{k}}}\end{pmatrix}\in{\mathfrak{g}}^{*}:\lambda_{s_{1}}>\lambda_{s_{2}}>\dots>\lambda_{s_{k}}\right\} (9)

consisting of nonincreasing real diagonal matrices.∎

Here λsi¯\underline{\lambda_{s_{i}}} denotes the scalar matrix λsi1¯\lambda_{s_{i}}{\underline{1}} of a certain size |si||s_{i}|, i.e. we are lumping equal eigenvalues together: while the map iλii\mapsto\lambda_{i} is nominally {1,,n}𝐑\{1,\dots,n\}\to{\mathbf{R}}, it is constant on the members of a partition

𝒮={s1,,sk}\mathcal{S}=\{s_{1},\dots,s_{k}\} (10)

of {1,,n}\{1,\dots,n\} into consecutive segments whose cardinalities are the |si||s_{i}|; hence it induces a map 𝒮𝐑\mathcal{S}\to{\mathbf{R}} which we write again sλss\mapsto\lambda_{s}.

Example

For λ\lambda as in (36) below, 𝒮={{1},{2,3},{4}}\mathcal{S}=\{\{1\},\{2,3\},\{4\}\}.

2.4 The stabilizer and its center

Proposition 3

Under the coadjoint action (8), the stabilizer GλG_{\lambda} of λ\lambda in (9) equals

H=(U|s1|U|sk|)U|s1|××U|sk|.H=\begin{pmatrix}U_{|s_{1}|}&\\ &\ddots\\ &&U_{|s_{k}|}\end{pmatrix}\cong U_{|s_{1}|}\times\dots\times U_{|s_{k}|}.\\ (11)

This subgroup is also the centralizer of its center SU1¯××U1¯S\cong\underline{U_{1}}\times\dots\times\underline{U_{1}} (kk factors). When we move to another point x=g(λ)x=g(\lambda) in the coadjoint orbit X=G(λ)X=G(\lambda), the stabilizer and its center become Gx=gHg1G_{x}=gHg^{-1} and gSg1gSg^{-1}.∎

We note that STHS\subset T\subset H, where TT is the maximal torus of all diagonal matrices in GG, and equality holds when all |si|=1|s_{i}|=1 (nondegenerate eigenvalues). Again the trace form (6) allows us to identify (𝔰,𝔱,𝔥)({\mathfrak{s}}^{*},{\mathfrak{t}}^{*},{\mathfrak{h}}^{*}) with (i𝔰,i𝔱,i𝔥)({\mathrm{i}}{\mathfrak{s}},{\mathrm{i}}{\mathfrak{t}},{\mathrm{i}}{\mathfrak{h}}); under this identification, the projections

𝔥{{\mathfrak{h}}^{*}}𝔱{{\mathfrak{t}}^{*}}𝔰{{\mathfrak{s}}^{*}}avg\scriptstyle{\operatorname{avg}} (12)

consist in taking the diagonal part, resp. the block average

avg(μs1μsk)=(Trace(μs1)/|s1|¯Trace(μsk)/|sk|¯).\operatorname{avg}\begin{pmatrix}\mu_{s_{1}}\,&\\ &\ddots\\ &&\mu_{s_{k}}\end{pmatrix}=\begin{pmatrix}\smash{\underline{\operatorname{Trace}(\mu_{s_{1}})/|s_{1}|}}\vphantom{\operatorname{Trace}(\mu_{s_{1}})/|s_{1}|}&\\ &\ddots\\ &&\smash{\underline{\operatorname{Trace}(\mu_{s_{k}})/|s_{k}|}}\vphantom{\operatorname{Trace}(\mu_{s_{k}})/|s_{k}|}\end{pmatrix}. (13)

2.5 The tangent space TxXT_{x}X and its complexification

Under the identifications of Proposition 1, the last formula in (8) says that the tangent space TxX=𝔤(x)T_{x}X={\mathfrak{g}}(x) to XX at xx is the image of the map

adix=[ix,]:i𝔤i𝔤.\operatorname{ad}_{{\mathrm{i}}x}=[{\mathrm{i}}x,\cdot]:{\mathrm{i}}{\mathfrak{g}}\to{\mathrm{i}}{\mathfrak{g}}. (14)

As this image sits in the real part of 𝔤(𝐂)=𝔤i𝔤{\mathfrak{g}}({\mathbf{C}})={\mathfrak{g}}^{*}\oplus{\mathrm{i}}{\mathfrak{g}}^{*}, we can complexify it “in place” as

TxXiTxX=[ix,i𝔤𝔤]𝔤i𝔤.T_{x}X\oplus{\mathrm{i}}T_{x}X=[{\mathrm{i}}x,{\mathrm{i}}{\mathfrak{g}}\oplus{\mathfrak{g}}]\subset{\mathfrak{g}}^{*}\oplus{\mathrm{i}}{\mathfrak{g}}^{*}. (15)

And as (14) is skew-adjoint (see (7)), its image is the orthogonal of its kernel i𝔤x{\mathrm{i}}{\mathfrak{g}}_{x} relative to ,i𝔤×i𝔤\langle\langle\cdot,\cdot\rangle\rangle_{{\mathrm{i}}{\mathfrak{g}}\times{\mathrm{i}}{\mathfrak{g}}}, i.e. we have

Proposition 4
TxX=i𝔤xand in particularTλX=i𝔥. ∎T_{x}X={\mathrm{i}}{\mathfrak{g}}_{x}^{\perp}\qquad\text{and in particular}\qquad T_{\lambda}X={\mathrm{i}}{\mathfrak{h}}^{\perp}.\hbox to0.0pt{\quad\qed\hss} (16)
Remark 1

When GG is U2U_{2} (or SU2SU_{2}, or SO3SO_{3}), coadjoint orbits are just 2-spheres. Then (16) is the statement that the tangent space at a point is the orthogonal to the axis of rotations around that point (Fig. 2). Counterclockwise rotation by 9090^{\circ} provides one of the complex structures we are about to describe.

2cm xxi𝔤x{\mathrm{i}}{\mathfrak{g}}_{x}TxXT_{x}XXX

Figure 2: The orthogonality (16).

3 The canonical complex structure

Let X=G(λ)X=G(\lambda) be the coadjoint orbit with dominant element λ\lambda, as in (9). The restriction of adix\operatorname{ad}_{{\mathrm{i}}x} (14) to its tangent space (16) has kernel i𝔤xi𝔤x={0}{\mathrm{i}}{\mathfrak{g}}_{x}^{\vphantom{\perp}}\cap{\mathrm{i}}{\mathfrak{g}}_{x}^{\perp}=\{0\}, hence is a (still skew-adjoint) linear bijection we shall denote

Ax:TxXTxX.A_{x}:T_{x}X\to T_{x}X. (17)

Recall that TxXT_{x}X carries the Kirillov-Kostant-Souriau (KKS) 22-form ω\omega, defined by ω(Z(x),Z(x))=Z(x),Z=x,[Z,Z]\omega(Z(x),Z^{\prime}(x))=\langle Z(x),Z^{\prime}\rangle=\langle x,[Z^{\prime},Z]\rangle.

Theorem 3.1

The KKS 22-form of XX is given by

ω(δx,δx)=δx,Ax1δx.\omega({\delta}x,{\delta}^{\prime}x)=\langle\langle{\delta}x,A_{x}^{-1}{\delta}^{\prime}x\rangle\rangle. (18)

Moreover the formulas

Ix=|Ax|1Ax,g(δx,δx)=δx,|Ax|1δx,I_{x}=|A_{x}|^{-1}A_{x},\qquad\qquad{\mathrm{g}}({\delta}x,{\delta}^{\prime}x)=-\langle\langle{\delta}x,|A_{x}|^{-1}{\delta}^{\prime}x\rangle\rangle, (19)

where |Ax|=Ax2,|A_{x}^{\phantom{2}}|=\sqrt{\smash[b]{-A_{x}^{2}}\vphantom{q}}\,, make ω\omega part of a GG-invariant Kähler structure (I,g,ω)(I,{\mathrm{g}},\omega):

  1.  (a)

    II is an (integrable) complex structure,

  2.  (b)

    g{\mathrm{g}} is a positive definite metric,

  3.  (c)

    we have ω(,)=g(,I)\omega(\cdot,\cdot)={\mathrm{g}}(\cdot,I\,\cdot)\ and g(,)=ω(I,)\ {\mathrm{g}}(\cdot,\cdot)=\omega(I\,\cdot,\cdot).

Proof

Fix δx,δxTxX{\delta}x,{\delta}^{\prime}x\in T_{x}X and put iZ=Ax1δxi𝔤{\mathrm{i}}Z=A_{x}^{-1}{\delta}^{\prime}x\in{\mathrm{i}}{\mathfrak{g}}. Then (17, 14, 8) give

δx=AxAx1δx=[ix,iZ]=Z(x),{\delta}^{\prime}x=A_{x}^{\phantom{1}}A_{x}^{-1}{\delta}^{\prime}x=[{\mathrm{i}}x,{\mathrm{i}}Z]=Z(x), (20)

whence the definition of the KKS 2-form and (8) give us (18):

ω(δx,δx)=δx,Z=δx,iZ=δx,Ax1δx.\omega({\delta}x,{\delta}^{\prime}x)=\langle{\delta}x,Z\rangle=\langle\langle{\delta}x,{\mathrm{i}}Z\rangle\rangle=\langle\langle{\delta}x,A_{x}^{-1}{\delta}^{\prime}x\rangle\rangle. (21)

Next we note that |Ax||A_{x}| and IxI_{x} are the (commuting) positive definite and unitary part of the polar decomposition of AxA_{x}. So they depend smoothly on AxA_{x} (S, 70, 6.70) and IxI_{x}, being again skew-adjoint, is an almost complex structure: Ix2=IxIx=1¯I_{x}^{2}=-I_{x}^{*}I_{x}^{\phantom{*}}=-{\underline{1}}. Now (c) is clear by plugging Ax=|Ax|IxA_{x}=|A_{x}|I_{x} into (18, 19), and so is (b) since ,i𝔤×i𝔤\langle\langle\cdot,\cdot\rangle\rangle_{{\mathrm{i}}{\mathfrak{g}}\times{\mathrm{i}}{\mathfrak{g}}} is negative definite. There remains to see (a). For a GG-invariant II, such as ours is by construction, this is equivalent to either of

  1. [20]

  2. (22)

    sections of the bundle of +i-eigenspaces of II in TXiTXTX\oplus{\mathrm{i}}TX are closed under Lie bracket (Frobenius-Newlander-Nirenberg N (57));

  3. (23)

    at x=λx=\lambda, the preimage of the +i-eigenspace of IλI_{\lambda} under the infinitesimal action 𝔤(𝐂)TλXiTλX{\mathfrak{g}}({\mathbf{C}})\to T_{\lambda}X\oplus{\mathrm{i}}T_{\lambda}X (15) is a Lie subalgebra (Frölicher (F, 55, §20)).

We prove ((23)). First observe that if uu and vv are eigenvectors of xXx\in X for eigenvalues λr\lambda_{r} and λs\lambda_{s}, then the matrix uv¯u\overline{v} is an eigenvector of adx\operatorname{ad}_{x} for eigenvalue λrλs\lambda_{r}-\lambda_{s}:

[x,uv¯]=xuv¯uxv¯=(λrλs)uv¯.[x,u\overline{v}\,]=xu\overline{v}-u\overline{xv}=(\lambda_{r}-\lambda_{s})u\overline{v}. (24)

It follows that adix\operatorname{ad}_{{\mathrm{i}}x} is diagonalizable with spectrum Δ={i(λrλs):r,s𝒮}\Delta=\left\{{\mathrm{i}}(\lambda_{r}-\lambda_{s}):r,s\in\mathcal{S}\right\}, and so is AxA_{x} with spectrum Δ{0}\Delta\smallsetminus\{0\}. And indeed AλA_{\lambda} explicitly is “diagonal” with eigenvectors the elementary matrices Eij=eie¯jE_{ij}=e_{i}\overline{e}_{j}: in more detail, writing tangent vectors VTλX=i𝔥V\in T_{\lambda}X={\mathrm{i}}{\mathfrak{h}}^{\perp} (16) as self-adjoint matrices with blocks Vr|sV_{r|s} in the shape (11), formula (24) gives

Aλ(Vp|qVp|rVq|pVq|rVr|pVr|q)=i((λpλq)Vp|q(λpλr)Vp|r(λqλp)Vq|p(λqλr)Vq|r(λrλp)Vr|p(λrλq)Vr|q)A_{\lambda}\left(\begin{array}[]{c|c|c}&V_{p|q}&V_{p|r}\\[5.0pt] \hline\cr&&\\[-10.0pt] {V_{q|p}}&&V_{q|r}\\[5.0pt] \hline\cr&&\\[-10.0pt] {V_{r|p}}&{V_{r|q}}&\end{array}\right)={\mathrm{i}}\left(\begin{array}[]{c|c|c}&(\lambda_{p}-\lambda_{q})V_{p|q}&(\lambda_{p}-\lambda_{r})V_{p|r}\\[5.0pt] \hline\cr&&\\[-10.0pt] (\lambda_{q}-\lambda_{p})V_{q|p}&&(\lambda_{q}-\lambda_{r})V_{q|r}\\[5.0pt] \hline\cr&&\\[-10.0pt] (\lambda_{r}-\lambda_{p})V_{r|p}&(\lambda_{r}-\lambda_{q})V_{r|q}&\end{array}\right) (25)

(the general pattern should be clear, though we only write out the case where the partition (10) is into 3 segments p,q,rp,q,r). Hence we obtain by definition of |Aλ||A_{\lambda}| and IλI_{\lambda} that the latter is the same as (25) with each i(λaλb){\mathrm{i}}(\lambda_{a}-\lambda_{b}) divided by its modulus, i.e.

Iλ(Vp|qVp|rVq|pVq|rVr|pVr|q)=(iVp|qiVp|riVq|piVq|riVr|piVr|q).I_{\lambda}\left(\begin{array}[]{c|c|c}&V_{p|q}&V_{p|r}\\[5.0pt] \hline\cr&&\\[-10.0pt] V_{q|p}&&V_{q|r}\\[5.0pt] \hline\cr&&\\[-10.0pt] V_{r|p}&{V_{r|q}}&\end{array}\right)=\left(\begin{array}[]{c|c|c}&{\mathrm{i}}V_{p|q}&{\mathrm{i}}V_{p|r}\\[5.0pt] \hline\cr&&\\[-10.0pt] -{\mathrm{i}}V_{q|p}&&{\mathrm{i}}V_{q|r}\\[5.0pt] \hline\cr&&\\[-10.0pt] -{\mathrm{i}}V_{r|p}&-{\mathrm{i}}V_{r|q}&\end{array}\right). (26)

Thus we see that the +i-eigenvectors of IλI_{\lambda}, and likewise their preimages under (14) or adx\operatorname{ad}_{x}, are the block upper triangular matrices — hence a Lie subalgebra in 𝔤(𝐂){\mathfrak{g}}({\mathbf{C}}).∎

Remark 2

We could have shortened the proof by using the fact that, given (b) and (c), (a) is equivalent to dω=0\mathrm{d}\omega=0. But this is a “delicate” fact (B, 87, 2.29), whereas (26) is both easy and useful for the sequel. We note also that Theorem 5.2 will independently reprove (a) from knowing it on Grassmannians (28).

Remark 3

Using the diagonalizability (24) and Lagrange interpolation (H, 71, §6.7) one can give an explicit formula for IxI_{x} at any point, viz.

Ix=δΔ{0}isign(δ)δwithδ=εΔ{0,δ}(adixε)(δε),I_{x}=\sum_{{\delta}\in\Delta\smallsetminus\{0\}}{\mathrm{i}}\operatorname{sign}({\delta})\mathcal{E}_{\delta}\qquad\text{with}\qquad\mathcal{E}_{\delta}=\prod_{\varepsilon\in\Delta\smallsetminus\{0,{\delta}\}}\frac{(\operatorname{ad}_{{\mathrm{i}}x}-\ \varepsilon)}{({\delta}-\varepsilon)}, (27)

which confirms e.g. the GG-invariance and smoothness (indeed algebraicity) of II. Unfortunately this formula seems rather less enlightening than (19).

Remark 4

The idea of using the polar decomposition to produce (“tamed”) almost complex structures occurs in a general context in (W, 77, p. 8); its application to obtain this one seems new. Other, less direct descriptions of II are found in (S, 54, §2), (B, 54, §4), (B, 58, 14.6), (G, 82, p. 522), (B, 87, 8.34), (V, 87, 5.8).

3.1 The case of Grassmannians

Let Grm\operatorname{Gr}_{m} be the Grassmannian of complex mm-planes in 𝐂n{\mathbf{C}}^{n}, each identified with the self-adjoint projector xx upon it, i.e.

Grm={x𝔤:x2=x,Trace(x)=m}=G(1¯m000nm)ϖm.\operatorname{Gr}_{m}=\left\{x\in{\mathfrak{g}}^{*}:x^{2}=x,\operatorname{Trace}(x)=m\right\}=G\underbrace{\left(\begin{array}[]{ll}{\underline{1}}_{m}&0\\ 0&0_{n-m}\end{array}\!\!\right)}_{\varpi_{m}}. (28)

Its dominant element ϖm\varpi_{m} is the highest weight of the fundamental GG-module m𝐂n\wedge^{m}{\mathbf{C}}^{n}.

Proposition 5

In this case we have |Ax|=1¯|A_{x}|={\underline{1}} so that the canonical structure of Grm\operatorname{Gr}_{m} is simply

IδxI{\delta}x =[ix,δx]=[{\mathrm{i}}x,{\delta}x] (29a)
g(δx,δx){\mathrm{g}}({\delta}x,{\delta}^{\prime}x) =Trace(δxδx)=\operatorname{Trace}({\delta}x{\delta}^{\prime}x) (29b)
ω(δx,δx)\omega({\delta}x,{\delta}^{\prime}x) =Trace(δxIδx)=\operatorname{Trace}({\delta}xI{\delta}^{\prime}x). (29c)
Proof

Deriving and reusing the relations x=x2=x3x=x^{2}=x^{3} gives δx=δx.x+x.δx=δx.x+x.δx.x+x.δx{\delta}x={\delta}x.x+x.{\delta}x={\delta}x.x+x.{\delta}x.x+x.{\delta}x. This implies x.δx.x=0x.{\delta}x.x=0 and Ax2δx=[x,[x,δx]]=x.δx2x.δx.x+δx.x=δx-A_{x}^{2}{\delta}x=[x,[x,{\delta}x]]=x.{\delta}x-2x.{\delta}x.x+{\delta}x.x={\delta}x. So Ax2-A_{x}^{2} and hence its square root are the identity.∎

Remark 5

The Hermitian metric g+iω{\mathrm{g}}+{\mathrm{i}}\omega in (29c) can be seen as Kähler reduction of the flat metric (v,v):=2Trace(v¯v)(v,v^{\prime}):=2\operatorname{Trace}(\overline{v}v^{\prime}) on 𝐂n×mHom(𝐂m,𝐂n){\mathbf{C}}^{n\times m}\cong\operatorname{Hom}({\mathbf{C}}^{m},{\mathbf{C}}^{n}).222Alternatively on the dual 𝐂m×n{\mathbf{C}}^{m\times n}, if we insist on obtaining (29a) and not its opposite 1i[x,δx]\frac{1}{{\mathrm{i}}}[x,{\delta}x]. It would be interesting to know if the YY of Theorem 5.2 can be similarly obtained by (pseudo-)Kähler reduction. Indeed UmU_{m} acts there by a(v)=va1a(v)=va^{-1}, preserving Ω=Im(,)\Omega=\operatorname{Im}(\cdot,\cdot) with moment map ψ(v)=v¯v\psi(v)=-\overline{v}v, and (29c) obtains on passing to the quotient Grm=ψ1(1¯)/Um\operatorname{Gr}_{m}=\psi^{-1}(-{\underline{1}}\hskip 1.0pt)/U_{m} (G, 73, §V.5), (T, 06, p. 240). E.g. for m=1m=1 one recovers the Fubini-Study metric on projective space, i.e. (S, 05, §5)

2[(δv,δv)v2(δv,v)(v,δv)v4]onGr1={x=v(v,)v2:v𝐂n{0}}.2\left[\frac{({\delta}v,{\delta}^{\prime}v)}{\|v\|^{2}}-\frac{({\delta}v,v)(v,{\delta}^{\prime}v)}{\|v\|^{4}}\right]\quad\ \text{on}\quad\ \operatorname{Gr}_{1}=\left\{x=\frac{v(v,\cdot)}{\|v\|^{2}}:v\in{\mathbf{C}}^{n}\smallsetminus\{0\}\right\}. (30)

Formulas (29c) are emblematic of the explicitness we’d like to have in general.

4 The invariant complex structures classified: k!k! parabolic subalgebras

In this section we review the classification of complex structures which results from the principle: a GG-invariant structure JJ on X=G(λ)=G/HX=G(\lambda)=G/H amounts to an HH-invariant JλEnd(TλX)J_{\lambda}\in\operatorname{End}(T_{\lambda}X), squaring to 1¯-{\underline{1}}. The results are well-known except perhaps Theorem 4.3.

4.1 The decomposition of the isotropy representation

Let 𝔤r|s(𝐂){\mathfrak{g}}_{r|s}({\mathbf{C}}) denote, for segments rsr\neq s in the partition 𝒮\mathcal{S} (10), the matrices (25) whose blocks all vanish except perhaps Vr|sV_{r|s}, i.e.

𝔤r|s(𝐂)={Z𝔤(𝐂):Zij=0 for (i,j)r×s},{\mathfrak{g}}_{r|s}({\mathbf{C}})=\left\{Z\in{\mathfrak{g}}({\mathbf{C}}):Z_{ij}=0\text{ for }(i,j)\notin r\times s\right\}, (31)

and 𝔛r|s{\mathfrak{X}}_{r|s} (resp. i𝔛r|s{\mathrm{i}}{\mathfrak{X}}_{r|s}) the intersection of 𝔤{\mathfrak{g}} (resp. i𝔤{\mathrm{i}}{\mathfrak{g}}) with 𝔤r|s(𝐂)𝔤s|r(𝐂){\mathfrak{g}}_{r|s}({\mathbf{C}})\oplus{\mathfrak{g}}_{s|r}({\mathbf{C}}).

Theorem 4.1

The isotypic decomposition of the isotropy representation of H=GλH=G_{\lambda} in the complexified tangent space (15) at λ\lambda into inequivalent irreducibles is

TλXiTλX=rs in 𝒮𝔤r|s(𝐂).T_{\lambda}X\oplus{\mathrm{i}}T_{\lambda}X=\bigoplus_{r\neq s\textup{ in }\mathcal{S}}{\mathfrak{g}}_{r|s}({\mathbf{C}}). (32)

Consequently,

  1. (a)

    Every GG-invariant almost complex structure JJ on X=G(λ)X=G(\lambda) is obtained by flipping the sign of II (and hence g{\mathrm{g}}) on some summands in TλX=r<si𝔛r|sT_{\lambda}X=\bigoplus_{r<s}{\mathrm{i}}{\mathfrak{X}}_{r|s}.

  2. (b)

    As g{\mathrm{g}} coincides with 1|λrλs|,\tfrac{-1}{|\lambda_{r}-\lambda_{s}|}\langle\langle\cdot\,,\cdot\rangle\rangle on i𝔛r|s{\mathrm{i}}{\mathfrak{X}}_{r|s}, each such flip affects its signature by turning a block of |r||s||r||s| pluses into minuses.

  3. (c)

    If 𝒮\mathcal{S} has kk segments, then XX admits 2k(k1)/22^{k(k-1)/2} different GG-invariant almost complex structures.

Proof

Using the notation of (11) and (25), one checks without trouble that the isotropy action of h=diag(us1,,usk)Hh=\operatorname{diag}(u_{s_{1}},\dots,u_{s_{k}})\in H takes block Vr|sV_{r|s} of VTλXV\in T_{\lambda}X to

h(Vr|s)=urVr|sus1.h(V_{r|s})=u_{r}^{\vphantom{-1}}V_{r|s}u_{s}^{-1}. (33)

So the 𝔤r|s(𝐂){\mathfrak{g}}_{r|s}({\mathbf{C}}) are HH-invariant and the representation on each factors through the natural representation of U|r|×U|s|U_{|r|}\times U_{|s|} on Hom(𝐂|s|,𝐂|r|)𝐂|r|𝐂|s|¯\smash{\operatorname{Hom}({\mathbf{C}}^{|s|},{\mathbf{C}}^{|r|})}\cong\smash{{\mathbf{C}}^{|r|}}\otimes\smash{\overline{{\mathbf{C}}^{|s|}}}. As these are irreducible and different for different pairs (r,s)(r,s), we obtain (32). Now JλJ_{\lambda} is determined by its ±\pmi-eigenspaces

Tλ±X=Im(Jλ±i¯)=Ker(Jλi¯)T^{\pm}_{\lambda}X=\operatorname{Im}(J_{\lambda}\pm\underline{{\mathrm{i}}}\,)=\operatorname{Ker}(J_{\lambda}\mp\underline{{\mathrm{i}}}\,) (34)

which are (complex conjugate) HH-invariant subspaces of (32), hence are each the sum of some 𝔤r|s(𝐂){\mathfrak{g}}_{r|s}({\mathbf{C}}) (B, 12, Prop. 4.4d) — one per pair (𝔤r|s(𝐂),𝔤s|r(𝐂))({\mathfrak{g}}_{r|s}({\mathbf{C}}),{\mathfrak{g}}_{s|r}({\mathbf{C}})). So they can only differ from those of IλI_{\lambda} (26) by the indicated sign flips, and we obtain (a, b, c).∎

4.2 The invariant complex structures

There remains to characterize which of the almost complex structures of Theorem 4.1 are integrable.

Theorem 4.2

We have

[𝔤p|q(𝐂),𝔤r|s(𝐂)]=\displaystyle\bigl{[}{\mathfrak{g}}_{p|q}({\mathbf{C}}),{\mathfrak{g}}_{r|s}({\mathbf{C}})\bigr{]}= 0\displaystyle\phantom{\big{(}}0 if sps\neq p; qrq\neq r (35a)
[𝔤p|q(𝐂),𝔤r|s(𝐂)]=\displaystyle\bigl{[}{\mathfrak{g}}_{p|q}({\mathbf{C}}),{\mathfrak{g}}_{r|s}({\mathbf{C}})\bigr{]}= 𝔤p|s(𝐂)\displaystyle\phantom{\big{(}}{\mathfrak{g}}_{p|s}({\mathbf{C}}) if sps\neq p; q=rq=r (35b)
[𝔤p|q(𝐂),𝔤r|s(𝐂)]=\displaystyle\bigl{[}{\mathfrak{g}}_{p|q}({\mathbf{C}}),{\mathfrak{g}}_{r|s}({\mathbf{C}})\bigr{]}= 𝔤r|q(𝐂)\displaystyle\phantom{\big{(}}{\mathfrak{g}}_{r|q}({\mathbf{C}}) if s=ps=p; qrq\neq r (35c)
[𝔤p|q(𝐂),𝔤r|s(𝐂)]=\displaystyle\bigl{[}{\mathfrak{g}}_{p|q}({\mathbf{C}}),{\mathfrak{g}}_{r|s}({\mathbf{C}})\bigr{]}= (𝔤p|p(𝐂)+𝔤q|q(𝐂))𝔰𝔩n(𝐂)\displaystyle\big{(}{\mathfrak{g}}_{p|p}({\mathbf{C}})+{\mathfrak{g}}_{q|q}({\mathbf{C}})\big{)}\cap\mathfrak{sl}_{n}({\mathbf{C}}) if s=ps=p; q=rq=r. (35d)

Consequently,

  1. (a)

    An almost complex structure JJ obtained as in Theorem 4.1a is integrable iff it respects the Chasles rule: if the sign is flipped on i𝔛r|s{\mathrm{i}}{\mathfrak{X}}_{r|s} and i𝔛s|t{\mathrm{i}}{\mathfrak{X}}_{s|t} (r<s<t)(r<s<t), then it is also flipped on i𝔛r|t{\mathrm{i}}{\mathfrak{X}}_{r|t}.

  2. (b)

    Such is the case iff the preimage of Tλ+XT^{+}_{\lambda}X (see (34)) under the infinitesimal action ((23)) is a parabolic subalgebra 𝔭{\mathfrak{p}} of 𝔤(𝐂){\mathfrak{g}}({\mathbf{C}}), containing 𝔥(𝐂){\mathfrak{h}}({\mathbf{C}}).

Proof

Relations (35d) follow from noting that 𝔤r|s(𝐂){\mathfrak{g}}_{r|s}({\mathbf{C}}) is the span of elementary matrices Eij=eie¯jE_{ij}=e_{i}\overline{e}_{j} for (i,j)r×s(i,j)\in r\times s, and computing [eie¯j,eke¯l][e_{i}\overline{e}_{j},e_{k}\overline{e}_{l}]. Next (a) translates condition ((23)) that the preimage in (b) be a subalgebra; and (b) translates, via (B, 75, Déf. VIII.3.2), the observation made after (34) that each EijE_{ij} not in 𝔥(𝐂){\mathfrak{h}}({\mathbf{C}}) is in either Tλ+XT^{+}_{\lambda}X or TλXT^{-}_{\lambda}X.∎

Remark 6

Versions of Theorems 4.1 and/or 4.2 valid for any compact GG can be found in K (10); A (03, 98, 97); V (90); A (86); B (82); S (69); B (58). (The latter didn’t have the benefit of the parabolic terminology introduced in G (60), but instead called roots of JJ the roots αij=EiiEjj𝔱\alpha_{ij}=E_{ii}-E_{jj}\in{\mathfrak{t}}^{*} whose root space 𝐂Eij{\mathbf{C}}E_{ij} is in Tλ+XT^{+}_{\lambda}X.)

4.3 Parabolic subalgebras with a given Levi component

Theorem 4.2b reduces the classification of invariant complex structures JJ on XX to describing the set 𝒫(𝔥)\mathcal{P}({\mathfrak{h}}) of parabolic subalgebras 𝔭{\mathfrak{p}} of 𝔤(𝐂){\mathfrak{g}}({\mathbf{C}}) whose Levi component is 𝔥(𝐂){\mathfrak{h}}({\mathbf{C}}) (see (11); this set is discussed in e.g. (A, 81, p. 8), (D, 11, §5)). We claim:

Theorem 4.3

𝒫(𝔥)\mathcal{P}({\mathfrak{h}}) is in natural bijection with the symmetric group 𝔖k\mathfrak{S}_{k}.

Proof

We describe the construction of the bijection in general and illustrate it on the case where λ\lambda in (9) has k=3k=3 eigenvalues with multiplicities 1,2,11,2,1, say λ1>λ2,3>λ4\lambda_{1}>\lambda_{2,3}>\lambda_{4}:

λ=(λ1λ2,3¯λ4).\lambda=\left(\begin{array}[]{c|c|c}{\lambda_{1}}&\phantom{\begin{matrix}+&+\end{matrix}}&\\ \hline\cr\phantom{\begin{matrix}+\\ +\end{matrix}}&\underline{{\lambda_{2,3}}}&\phantom{\begin{matrix}+\\ +\end{matrix}}\\ \hline\cr&&{\lambda_{4}}\end{array}\right). (36)

Let a permutation π𝔖k\pi\in\mathfrak{S}_{k} be given. Regard it as acting on the kk letters λs1,,λsk\lambda_{s_{1}},\dots,\lambda_{s_{k}} and rearrange the blocks of (9) accordingly, obtaining here e.g.

λ=(λ2,3¯λ4λ1).\lambda^{\prime}=\left(\begin{array}[]{c|c|c}\underline{{\lambda_{2,3}}}&\phantom{\begin{matrix}+\\ +\end{matrix}}&\phantom{\begin{matrix}+\\ +\end{matrix}}\\ \hline\cr\phantom{\begin{matrix}+&+\end{matrix}}&{\lambda_{4}}&\\ \hline\cr&&{\lambda_{1}}\end{array}\right). (37)

Next, form the n×nn\times n matrix π¯\underline{\pi} whose columns are the standard basis vectors in the order that indices appear in λ\lambda^{\prime}: in our case

π¯=(e2e3e4e1)=(11¯1).\underline{\pi}=\begin{pmatrix}e_{2}&e_{3}&e_{4}&e_{1}\end{pmatrix}=\left(\begin{array}[]{c|c|c}\phantom{\begin{matrix}+&+\end{matrix}}&&1\\ \hline\cr\underline{1}&\phantom{\begin{matrix}+\\ +\end{matrix}}&\\ \hline\cr&1&\end{array}\right). (38)

This is by construction a (“uniform block”) permutation matrix π¯𝔖n\underline{\pi}\in\mathfrak{S}_{n} such that π¯λπ¯¯=λ\underline{\pi}\,\lambda^{\prime}\,\overline{\underline{\pi}}=\lambda A (08); T (61). Now let 𝔭{\mathfrak{p}} be the π¯\underline{\pi}-conjugate of block upper triangular matrices of shape (37), i.e. (with both \cdot\,s and ++s denoting arbitrary entries)

𝔭:=π¯(+++++)π¯¯=(+++++).{\mathfrak{p}}:=\underline{\pi}\left(\begin{array}[]{c|c|c}\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr\phantom{\begin{matrix}+&+\end{matrix}}&\cdot&+\\ \hline\cr&&\cdot\end{array}\right)\overline{\underline{\pi}}=\left(\begin{array}[]{c|c|c}\cdot&\phantom{\begin{matrix}+&+\end{matrix}}&\\ \hline\cr\begin{matrix}+\\ +\end{matrix}&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr+&&\cdot\end{array}\right). (39)

This is clearly a subalgebra of the form required by Theorem 4.2, i.e. obtained by sign flips from the block upper triangular decoration of (36) (see (26)).

Conversely, let 𝔭𝒫(𝔥){\mathfrak{p}}\in\mathcal{P}({\mathfrak{h}}) be given — e.g. the one in (39). It is a parabolic containing 𝔥(𝐂){\mathfrak{h}}({\mathbf{C}}) (11), with half all off-diagonal blocks marked ++ after Theorem 4.1a. Now collapse all blocks to size 1×11\times 1: 𝔭{\mathfrak{p}} becomes a Borel 𝔟𝔤𝔩k{\mathfrak{b}}\subset{\mathfrak{gl}}_{k} containing the diagonals. By (C, 57, Cor. 3), 𝔟{\mathfrak{b}} is conjugate to the upper triangular Borel by a unique permutation matrix π𝔖k\pi\in\mathfrak{S}_{k}, which is the one we attach to 𝔭{\mathfrak{p}}.

One checks without trouble that the maps π𝔭\pi\mapsto{\mathfrak{p}} and 𝔭π{\mathfrak{p}}\mapsto\pi thus defined are each other’s inverse.∎

Remark 7

The cases k=2k=2 and k=nk=n of Theorem 4.3 are due to Borel and Hirzebruch, who observed that all JJs are then related by the action of complex conjugation (k=2k=2) or the Weyl group (k=nk=n) (B, 58, 13.8), (B, 82, Exerc. 4.8e). But in general our bijection does not arise from a geometrical action of 𝔖k\mathfrak{S}_{k} on X=G/HX=G/H. In fact, as stated in (B, 58, p. 506) and detailed in (N, 84, p. 44), any diffeomorphism transforming one invariant complex structure into another must come from the natural action, a(gH)=a(g)Ha(gH)=a(g)H, of some aa belonging to the stabilizer of HH in the automorphism group

Aut(G)=𝐙2Int(G).\operatorname{Aut}(G)={\mathbf{Z}}_{2}\ltimes\operatorname{Int}(G). (40)

Here Int(G)\operatorname{Int}(G) is inner automorphisms and 𝐙2{\mathbf{Z}}_{2} is the effect of complex conjugation; see (B, 82, Exerc. 4.3), (S, 01, Thm 1.5). As 𝐙2{\mathbf{Z}}_{2} preserves HH, and Int(g)\operatorname{Int}(g) preserves HH iff gg is in the normalizer NG(H)N_{G}(H), and Int(h)\operatorname{Int}(h) (hHh\in H) preserves any GG-invariant JJ, we see that things boil down to an action of

𝐙2(NG(H)/H).{\mathbf{Z}}_{2}\ltimes(N_{G}(H)/H). (41)

The Weyl-like quotient NG(H)/HN_{G}(H)/H is computed in (M, 11, Cor. 12.11) and isomorphic to the subgroup of those ς𝔖n\sigma\in\mathfrak{S}_{n} that send each segment of the partition (10) to a same-sized segment, modulo the ς\sigma that take each segment to itself. When all segments have different sizes, that is trivial and so (41) is far from able to account for all |𝔖k|=k!|\mathfrak{S}_{k}|=k! structures.

Remark 8

Extending Theorem 4.3 to compact groups of other types seems challenging, which may explain its apparent absence from the literature. The role of 𝔖k\mathfrak{S}_{k} should presumably be taken over by a putative Weyl “group” of either the quotient systems of (L, 04, 12.18) or the TT-root systems of A (86, 97, 98, 03); K (10) (their TT is our SS from (3, 12)). One would also need to generalize the rather mysterious (to us) map ππ¯\pi\mapsto\underline{\pi}.

4.4 Example: The adjoint variety

Table 1: The adjoint variety’s 66 complex structures
permutation
π𝔖3\pi\in\mathfrak{S}_{3}
permutation
π¯𝔖4\underline{\pi}\in\mathfrak{S}_{4}
parabolic subalgebra
𝔭𝒫(𝔥){\mathfrak{p}}\in\mathcal{P}({\mathfrak{h}})
signature
of ω(J,)\omega(J\,\cdot,\cdot)
(over 𝐂{\mathbf{C}})
λ1λ2,3λ4\lambda_{1}\,\lambda_{2,3}\,\lambda_{4} (11¯1)\left(\begin{array}[]{c|c|c}1&\phantom{\begin{matrix}+&+\end{matrix}}&\phantom{+}\\ \hline\cr&\underline{1}&\phantom{\begin{matrix}+\\ +\end{matrix}}\\ \hline\cr&&1\end{array}\right) π¯(+++++)π¯¯=(+++++)\underline{\pi}\left(\begin{array}[]{c|c|c}\cdot&\begin{matrix}+&+\end{matrix}&+\\ \hline\cr&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr\phantom{+}&&\cdot\end{array}\right)\overline{\underline{\pi}}=\left(\begin{array}[]{c|c|c}\cdot&\begin{matrix}+&+\end{matrix}&+\\ \hline\cr&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr\phantom{+}&&\cdot\end{array}\right) (5,0)(5,0)
λ4λ2,3λ1\lambda_{4}\,\lambda_{2,3}\,\lambda_{1} (11¯1)\left(\begin{array}[]{c|c|c}&\phantom{\begin{matrix}+&+\end{matrix}}&1\\ \hline\cr&\underline{1}&\phantom{\begin{matrix}+\\ +\end{matrix}}\\ \hline\cr 1&&\end{array}\right) π¯(+++++)π¯¯=(+++++)\underline{\pi}\left(\begin{array}[]{c|c|c}\cdot&\begin{matrix}+&+\end{matrix}&+\\ \hline\cr&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr\phantom{+}&&\cdot\end{array}\right)\overline{\underline{\pi}}=\left(\begin{array}[]{c|c|c}\cdot&&\phantom{+}\\ \hline\cr\begin{matrix}+\\ +\end{matrix}&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\\ \hline\cr+&\begin{matrix}+&+\end{matrix}&\cdot\end{array}\right) (0,5)(0,5)
λ1λ4λ2,3\lambda_{1}\,\lambda_{4}\,\lambda_{2,3} (11¯1)\left(\begin{array}[]{c|c|c}1&&\phantom{\begin{matrix}+&+\end{matrix}}\\ \hline\cr&\phantom{\begin{matrix}+\\ +\end{matrix}}&\underline{1}\\ \hline\cr&1&\end{array}\right) π¯(+++++)π¯¯=(+++++)\underline{\pi}\left(\begin{array}[]{c|c|c}\cdot&+&\begin{matrix}+&+\end{matrix}\\ \hline\cr\phantom{+}&\cdot&\begin{matrix}+&+\end{matrix}\\ \hline\cr&\phantom{\begin{matrix}+\\ +\end{matrix}}&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}\end{array}\right)\overline{\underline{\pi}}=\left(\begin{array}[]{c|c|c}\cdot&\begin{matrix}+&+\end{matrix}&+\\ \hline\cr&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\phantom{\begin{matrix}+\\ +\end{matrix}}\\ \hline\cr\phantom{+}&\begin{matrix}+&+\end{matrix}&\cdot\end{array}\right) (3,2)(3,2)
λ4λ1λ2,3\lambda_{4}\,\lambda_{1}\,\lambda_{2,3} (11¯1)\left(\begin{array}[]{c|c|c}&1&\phantom{\begin{matrix}+&+\end{matrix}}\\ \hline\cr&\phantom{\begin{matrix}+\\ +\end{matrix}}&\underline{1}\\ \hline\cr 1&&\end{array}\right) π¯(+++++)π¯¯=(+++++)\underline{\pi}\left(\begin{array}[]{c|c|c}\cdot&+&\begin{matrix}+&+\end{matrix}\\ \hline\cr\phantom{+}&\cdot&\begin{matrix}+&+\end{matrix}\\ \hline\cr&\phantom{\begin{matrix}+\\ +\end{matrix}}&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}\end{array}\right)\overline{\underline{\pi}}=\left(\begin{array}[]{c|c|c}\cdot&\begin{matrix}+&+\end{matrix}&\phantom{+}\\ \hline\cr&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\phantom{\begin{matrix}+\\ +\end{matrix}}\\ \hline\cr+&\begin{matrix}+&+\end{matrix}&\cdot\end{array}\right) (2,3)(2,3)
λ2,3λ1λ4\lambda_{2,3}\,\lambda_{1}\,\lambda_{4} (11¯1)\left(\begin{array}[]{c|c|c}\phantom{\begin{matrix}+&+\end{matrix}}&1&\\ \hline\cr\underline{1}&\phantom{\begin{matrix}+\\ +\end{matrix}}&\\ \hline\cr&&1\end{array}\right) π¯(+++++)π¯¯=(+++++)\underline{\pi}\left(\begin{array}[]{c|c|c}\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr\phantom{\begin{matrix}+&+\end{matrix}}&\cdot&+\\ \hline\cr&&\cdot\end{array}\right)\overline{\underline{\pi}}=\left(\begin{array}[]{c|c|c}\cdot&\phantom{\begin{matrix}+&+\end{matrix}}&+\\ \hline\cr\begin{matrix}+\\ +\end{matrix}&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr&&\cdot\end{array}\right) (3,2)(3,2)
λ2,3λ4λ1\lambda_{2,3}\,\lambda_{4}\,\lambda_{1} (11¯1)\left(\begin{array}[]{c|c|c}\phantom{\begin{matrix}+&+\end{matrix}}&&1\\ \hline\cr\underline{1}&\phantom{\begin{matrix}+\\ +\end{matrix}}&\\ \hline\cr&1&\end{array}\right) π¯(+++++)π¯¯=(+++++)\underline{\pi}\left(\begin{array}[]{c|c|c}\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr\phantom{\begin{matrix}+&+\end{matrix}}&\cdot&+\\ \hline\cr&&\cdot\end{array}\right)\overline{\underline{\pi}}=\left(\begin{array}[]{c|c|c}\cdot&\phantom{\begin{matrix}+&+\end{matrix}}&\\ \hline\cr\begin{matrix}+\\ +\end{matrix}&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr+&&\cdot\end{array}\right) (2,3)(2,3)

The orbit with dominant element (36) we have used as a running example is the adjoint variety U4/(U1×U2×U1)U_{4}/(U_{1}\times U_{2}\times U_{1}), studied in (B, 58, 13.9), B (61); K (98); L (02); H (05). Table 1 traces the construction of the entire bijection π𝔭\pi\mapsto{\mathfrak{p}} in this case. Note how

  • Of all 23(31)/2=82^{3(3-1)/2}=8 possible sign flips on the top right matrix, the two not reached are precisely those failing the Chasles rule (Theorem 4.2a):

    (+++++)and(+++++).\left(\begin{array}[]{c|c|c}\cdot&\begin{matrix}+&+\end{matrix}&\\ \hline\cr&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\begin{matrix}+\\ +\end{matrix}\\ \hline\cr+&&\cdot\end{array}\right)\qquad\text{and}\qquad\left(\begin{array}[]{c|c|c}\cdot&&+\\ \hline\cr\begin{matrix}+\\ +\end{matrix}&\begin{matrix}\cdot&\,\,\cdot\\ \cdot&\,\,\cdot\end{matrix}&\\ \hline\cr&\begin{matrix}+&+\end{matrix}&\cdot\end{array}\right). (42)
  • Because (36) has same-sized blocks, (41) is a four-group 𝐙2×𝐙2{\mathbf{Z}}_{2}\times{\mathbf{Z}}_{2}; it has two orbits on 𝒫(𝔥)\mathcal{P}({\mathfrak{h}}): the first two rows of the table, and the other four.

  • Signatures can be read off as (number of ++s above, number of ++s below) the diagonal; this transparently recovers the algorithm of (Y, 14, §4).

Remark 9

A dominant λ\lambda with multiplicities 1,1,21,1,2 can of course lead also to metrics of signature (4,1)(4,1) or (1,4)(1,4) on the “same” manifold U4/(U1×U1×U2)U_{4}/(U_{1}\times U_{1}\times U_{2}): signature depends not only on JJ but also on the chosen ω\omega (or coadjoint orbit).

5 The invariant complex structures realized: k!k! eigenflag embeddings

Theorem 4.2 only spells out complex structures by giving the effect of JJ at the base point λ\lambda. At any other point x=g(λ)x=g(\lambda), computation of Jx=gJλg1J_{x}=gJ_{\lambda}g^{-1} requires use of some gGg\in G, on whose nonuniqueness the outcome is known not to depend. Our goal below is a more tangible picture where JxJ_{x} can be explicit in terms of xx alone, as in (19, 27, 29a). We freely use the notation introduced in (910, 2829c).

5.1 Maps to products of Grassmannians

A first idea is to note that spectral decomposition expresses each xXx\in X as a linear combination of eigenprojectors, EsGr|s|E_{s}\in\operatorname{Gr}_{|s|}, belonging to the (fixed) eigenvalues λs\lambda_{s}:

x=s𝒮λsEs,whereEs=r𝒮{s}(xλr)(λsλr)x=\sum_{s\in\mathcal{S}}\lambda_{s}E_{s},\qquad\text{where}\qquad E_{s}=\prod_{r\in\mathcal{S}\smallsetminus\{s\}}\frac{(x-\lambda_{r})}{(\lambda_{s}-\lambda_{r})} (43)

(Lagrange interpolation (H, 71, §6.7)). So sending xx to y=(Es)s𝒮y=(E_{s})_{s\in\mathcal{S}} embeds XX GG-equivariantly as a submanifold YY of a product s𝒮Gr|s|\prod_{s\in\mathcal{S}}\operatorname{Gr}_{|s|} of Grassmannians (28), hopefully pulling product structures back to useful ones on XX. Alas, Theorem 5.1 below dashes this hope: YY isn’t a complex submanifold of the product, so there is no complex structure to transport back. Fortunately, the same Theorem will also indicate the way out.

To state it, note that the EsE_{s} are just a small part of xx’s spectral measure AEAA\mapsto E_{A} which maps subsets of 𝒮\mathcal{S} (or alternatively, of the spectrum {λs:s𝒮}\{\lambda_{s}:s\in\mathcal{S}\}) to projectors

EA=sAEsGrA,A:=sA|s|,E_{A}=\sum_{s\in A}E_{s}\in\operatorname{Gr}_{\|A\|},\qquad\qquad\|A\|:=\sum_{s\in A}|s|, (44)

with the property that EAB=EAEBE_{A\,\cap\,B}=E_{A}E_{B} (so the EAE_{A} all commute). Thus, not only the singletons but any subfamily 𝒜2𝒮\mathcal{A}\subset 2^{\mathcal{S}} gives rise to a GG-equivariant map, x(EA)A𝒜x\mapsto(E_{A})_{A\in\mathcal{A}}, from XX to a product of Grassmannians.

Theorem 5.1

The image YY of this map is a complex submanifold of A𝒜GrA\prod_{A\in\mathcal{A}}\operatorname{Gr}_{\|A\|} (for the product complex structure) iff 𝒜\mathcal{A} is totally ordered by inclusion.

Proof

First note that as GG is transitive on XX, the map’s equivariance (visible on (43)) ensures that YY is an orbit of a smooth group action, hence as always an (“initial”) submanifold (H, 12, Prop. 10.1.14).

Assume that 𝒜2𝒮\mathcal{A}\subset 2^{\mathcal{S}} is totally ordered by inclusion. Then a tuple (EA)A𝒜(E_{A})_{A\in\mathcal{A}} in A𝒜GrA\prod_{A\in\mathcal{A}}\operatorname{Gr}_{\|A\|} is a member yYy\in Y iff it satisfies

EBEA=EAE_{B}E_{A}=E_{A} (45)

for all pairs ABA\subset B in 𝒜\mathcal{A} (the reverse order follows by taking adjoints); and a tangent vector δy=(δEA)A𝒜{\delta}y=({\delta}E_{A})_{A\in\mathcal{A}} is in TyYT_{y}Y iff we also have the derived relation

δEB.EA+EB.δEA=δEA.{\delta}{E_{B}}.{E_{A}}+{E_{B}}.{\delta}{E_{A}}={\delta}{E_{A}}. (46)

Assume (46). Multiplying it on the left by EB{E_{B}} gives EB.δEB.EA=0{E_{B}}.{\delta}{E_{B}}.{E_{A}}=0 and hence

IδEB.EA+EB.IδEA\displaystyle I{\delta}{E_{B}}.{E_{A}}+{E_{B}}.I{\delta}{E_{A}} =[iEB,δEB]EA+EB[iEA,δEA]\displaystyle=[{\mathrm{i}}{E_{B}},{\delta}{E_{B}}]{E_{A}}+{E_{B}}[{\mathrm{i}}{E_{A}},{\delta}{E_{A}}] (47)
=iδEB.EB.EA+iEB.EA.δEAiEB.δEA.EA\displaystyle=-{\mathrm{i}}{\delta}{E_{B}}.{E_{B}}.{E_{A}}+{\mathrm{i}}{E_{B}}.{E_{A}}.{\delta}{E_{A}}-{\mathrm{i}}{E_{B}}.{\delta}{E_{A}}.{E_{A}}
=iEA.δEAi(δEB.EA+EB.δEA).EA\displaystyle={\mathrm{i}}{E_{A}}.{\delta}{E_{A}}-{\mathrm{i}}({\delta}{E_{B}}.{E_{A}}+{E_{B}}.{\delta}{E_{A}}).{E_{A}}
=iEA.δEAiδEA.EA\displaystyle={\mathrm{i}}{E_{A}}.{\delta}{E_{A}}-{\mathrm{i}}{\delta}{E_{A}}.{E_{A}}
=[iEA,δEA]\displaystyle=[{\mathrm{i}}{E_{A}},{\delta}{E_{A}}]
=IδEA.\displaystyle=I{\delta}{E_{A}}.

Thus we see that IδyI{\delta}y also satisfies (46). This confirms that the product complex structure preserves TyYT_{y}Y.

Conversely, assume that 𝒜\mathcal{A} is not totally ordered. So there are A,B𝒜A,B\in\mathcal{A} such that ABA\not\subset B and BAB\not\subset A. Pick rABr\in A\smallsetminus B and sBAs\in B\smallsetminus A and nonzero eigenvectors u,v𝐂nu,v\in{\mathbf{C}}^{n} for eigenvalues λr,λs\lambda_{r},\lambda_{s} of xx; thus we have

EAu=u,EAv=0,EBu=0,EBv=v.{E_{A}}u=u,\qquad{E_{A}}v=0,\qquad{E_{B}}u=0,\qquad{E_{B}}v=v. (48)

Now put Z=uv¯vu¯𝔤Z=u\overline{v}-v\overline{u}\in{\mathfrak{g}} and consider the image δyTyY{\delta}y\in T_{y}Y of δx:=[Z,x]TxX{\delta}x:=[Z,x]\in T_{x}X. By equivariance and (48), its components in TEAGrAT_{{E_{A}}}\!\operatorname{Gr}_{\|A\|} and TEBGrBT_{{E_{B}}}\!\operatorname{Gr}_{\|B\|} are respectively

δEA=[Z,EA]=[uv¯vu¯,EA]=uv¯vu¯,δEB=[Z,EB]=[uv¯vu¯,EB]=uv¯+vu¯.\begin{gathered}\quad{\delta}{E_{A}}=[Z,{E_{A}}]=[u\overline{v}-v\overline{u},{E_{A}}]=-u\overline{v}-v\overline{u},\\ \quad{\delta}{E_{B}}=[Z,{E_{B}}]=[u\overline{v}-v\overline{u},{E_{B}}]=u\overline{v}+v\overline{u}.\end{gathered} (49)

They (of course) satisfy the relation [δEA,EB]+[EA,δEB]=0[{\delta}{E_{A}},{E_{B}}]+[{E_{A}},{\delta}{E_{B}}]=0 which any tangent vector to YY must, as one sees by deriving [EA,EB]=0[{E_{A}},{E_{B}}]=0. On the other hand, we claim that IδEAI{\delta}{E_{A}} and IδEBI{\delta}{E_{B}} fail that relation. Indeed (29a) gives

IδEA=[iEA,δEA]=i(vu¯uv¯)=iZ,IδEB=[iEB,δEB]=i(vu¯uv¯)=iZ,\begin{gathered}I{\delta}{E_{A}}=[{\mathrm{i}}{E_{A}},{\delta}{E_{A}}]={\mathrm{i}}(v\overline{u}-u\overline{v})={\mathrm{i}}Z,\\ I{\delta}{E_{B}}=[{\mathrm{i}}{E_{B}},{\delta}{E_{B}}]={\mathrm{i}}(v\overline{u}-u\overline{v})={\mathrm{i}}Z,\end{gathered} (50)

whence (using (49))

[IδEA,EB]+[EA,IδEB]\displaystyle{}[I{\delta}{E_{A}},{E_{B}}]+[{E_{A}},I{\delta}{E_{B}}] =[iZ,EBEA]\displaystyle=[{\mathrm{i}}Z,{E_{B}}-{E_{A}}] (51)
=i(δEBδEA)\displaystyle={\mathrm{i}}({\delta}{E_{B}}-{\delta}{E_{A}})
=2i(uv¯+vu¯)0.\displaystyle=2{\mathrm{i}}(u\overline{v}+v\overline{u})\neq 0.

Thus the product complex structure fails to preserve TyYT_{y}Y, as claimed.∎

5.2 The eigenflag embeddings

Choosing 𝒜={{sπ(1),,sπ(i)}:i=1,,k}\mathcal{A}=\{\{s_{\pi(1)},\dots,s_{\pi(i)}\}:i=1,\dots,k\} in Theorem 5.1, we obtain our main result which provides

  1. for π=1¯\pi={\underline{1}}, an independent reconstruction of the Kähler structure (18, 19);

  2. for other π𝔖k\pi\in\mathfrak{S}_{k}, explicit models of XX with every pseudo-Kähler structure:

Theorem 5.2

Let π𝔖k\pi\in\mathfrak{S}_{k} give rise to complex structure JJ and metric h=ω(J,)\mathrm{h}=\omega(J\,\cdot,\cdot) (Theorems 4.2, 4.3) and write Ai={sπ(1),,sπ(i)}A_{i}=\{s_{\pi(1)},\dots,s_{\pi(i)}\} where {s1,,sk}\{s_{1},\dots,s_{k}\} is the partition (10). Then the coadjoint orbit XX with pseudo-Kähler structure (J,h,ω)(J,\mathrm{h},\omega) is isomorphic to the orbit YY of (ϖAi)i=1k\smash{(\varpi_{\|A_{i}\|})_{i=1}^{k}} in GrAii=1k\prod\!{}_{i=1}^{k}\operatorname{Gr}_{\|A_{i}\|} endowed with the product complex structure and the metric and 22-form

i=1k(λsπ(i)λsπ(i+1))gAi,i=1k(λsπ(i)λsπ(i+1))ωAi,\sum_{i=1}^{k}(\lambda_{s_{\pi(i)}}-\lambda_{s_{\pi(i+1)}}){\mathrm{g}}_{\|A_{i}\|},\qquad\qquad\sum_{i=1}^{k}(\lambda_{s_{\pi(i)}}-\lambda_{s_{\pi(i+1)}})\omega_{\|A_{i}\|}, (52)

where (Grm,Im,gm,ωm)(\operatorname{Gr}_{m},I_{m},{\mathrm{g}}_{m},\omega_{m}) is the Grassmannian (28, 29c) and we set λsπ(k+1)=0\lambda_{s_{\pi(k+1)}}=0. The (moment) map from YY to XX and inverse map from XX to YY are respectively, with EAiE_{A_{i}} defined by (43, 44),

(yAi)i=1ki=1k(λsπ(i)λsπ(i+1))yAiandx(EAi)i=1k.(y_{\|A_{i}\|})_{i=1}^{k}\mapsto\sum_{i=1}^{k}(\lambda_{s_{\pi(i)}}-\lambda_{s_{\pi(i+1)}})y_{\|A_{i}\|}\qquad\text{and}\qquad x\mapsto(E_{A_{i}})_{i=1}^{k}. (53)
Proof

Formula (52) defines on the product P=GrAii=1kP=\prod\!{}_{i=1}^{k}\operatorname{Gr}_{\|A_{i}\|} a 22-form which is clearly symplectic and GG-invariant with moment map given by (53). Its restriction to YY is a priori presymplectic with moment map Φ\Phi still given by (53). Equivariance ensures that Φ\Phi maps YY onto a coadjoint orbit, which is XX since summation by parts gives i=1k(λsπ(i)λsπ(i+1))ϖAi\smash{\sum_{i=1}^{k}(\lambda_{s_{\pi(i)}}-\lambda_{s_{\pi(i+1)}})\varpi_{\|A_{i}\|}} == λsπ(1)ϖA1+i=2kλsπ(i)(ϖAiϖAi1)=λ\smash{\lambda_{s_{\pi(1)}}\varpi_{\|A_{1}\|}}+\sum_{i=2}^{k}\lambda_{s_{\pi(i)}}(\varpi_{\|A_{i}\|}-\varpi_{\|A_{i-1}\|})=\lambda^{\prime} (37).

An easy dimension count, or indeed the explicit inverse in (53), then shows that Φ\Phi is a diffeomorphism YXY\to X which is symplectic by (S, 70, 11.17\sharp). There remains to see that the derivative of Φ\Phi maps (the +i-eigenspace of) the product complex structure at ϖ=(ϖAi)i=1k\varpi=\smash{(\varpi_{\|A_{i}\|})_{i=1}^{k}} to (the +i-eigenspace of) JJ at the base point λ\lambda^{\prime}. But this boils down to the observation that linear combination takes the block upper triangular matrices in Tϖm+GrmT^{+}_{\varpi_{m}}\!\operatorname{Gr}_{m} to block upper triangular matrices in Tλ+XT^{+}_{\lambda^{\prime}}X (39).∎

Remark 10

It seems natural to refer to yy as an eigenflag of the corresponding matrix xx. Thus we have as many “eigenflag embeddings” of XX as there are orderings of its eigenvalues, and each induces a different complex structure. Note that by the observation made before (45), YY is algebraic in GrAii=1k\prod\!{}_{i=1}^{k}\operatorname{Gr}_{\|A_{i}\|} with equations yAi+1yAi=yAiy_{\|A_{i+1}\|}y_{\|A_{i}\|}=y_{\|A_{i}\|} (i=1,,k2)(i=1,\dots,k-2).

5.3 Example: The adjoint variety (continued)

Table 2 details all embeddings when XX is the adjoint variety (§4.4) with λ=diag(1,0,0,1)\lambda=\operatorname{diag}(1,0,0,-1); the singleton Gr4={1¯}\operatorname{Gr}_{4}=\{{\underline{1}}\} could of course be mostly omitted from the notation. Taking the last row as an example, the signature (2,3)(2,3) metric is

h(δy,δy)=Trace(δy2δy2)2Trace(δy3δy3)\mathrm{h}({\delta}y,{\delta}^{\prime}y)=\operatorname{Trace}({\delta}y_{2}{\delta}^{\prime}y_{2})-2\operatorname{Trace}({\delta}y_{3}{\delta}^{\prime}y_{3}) (54)

and gives ω(,)=h(,J)\omega(\cdot,\cdot)=\mathrm{h}(\cdot,J\,\cdot) with the product complex structure Jδy=([iy2,δy2][iy3,δy3][iy4,δy4])J{\delta}y=\left(\begin{smallmatrix}[{\mathrm{i}}y_{2},{\delta}y_{2}]\\ [{\mathrm{i}}y_{3},{\delta}y_{3}]\\ [{\mathrm{i}}y_{4},{\delta}y_{4}]\\ \end{smallmatrix}\right).

Table 2: The adjoint variety’s 66 eigenflag embeddings
permutation
π𝔖3\pi\in\mathfrak{S}_{3}
base point
λX𝔱\lambda^{\prime}\in X\cap{\mathfrak{t}}^{*}
manifold YY
moment map:
yy\mapsto
1,2,31,2,3 (10¯1)\vphantom{\dfrac{\int}{\int}}\left(\begin{smallmatrix}1&&\\ &\,\,\underline{0}&\\ &&\!\!-1\end{smallmatrix}\right) {y=(y1y3y4)Gr1×Gr3×Gr4:y3y1=y1y4y3=y3}\Biggl{\{}y=\Biggl{(}\,\begin{matrix}y_{1}\\ y_{3}\\ y_{4}\end{matrix}\,\Biggr{)}\in\operatorname{Gr}_{1}\times\operatorname{Gr}_{3}\times\operatorname{Gr}_{4}\,:\,\begin{matrix}y_{3}y_{1}=y_{1}\\[2.15277pt] y_{4}y_{3}=y_{3}\end{matrix}\Biggr{\}} y1+y3y4\phantom{-}y_{1}+y_{3}-y_{4}
3,2,13,2,1 (10¯1)\vphantom{\dfrac{\int}{\int}}\left(\begin{smallmatrix}-1&&\\ &\underline{0}&\\ &&1\end{smallmatrix}\right) y1y3+y4-y_{1}-y_{3}+y_{4}
1,3,21,3,2 (110¯)\vphantom{\dfrac{\int}{\int}}\left(\begin{smallmatrix}1&&\\ &\!-1&\\ &&\,\underline{0}\end{smallmatrix}\right) {y=(y1y2y4)Gr1×Gr2×Gr4:y2y1=y1y4y2=y2}\Biggl{\{}y=\Biggl{(}\,\begin{matrix}y_{1}\\ y_{2}\\ y_{4}\end{matrix}\,\Biggr{)}\in\operatorname{Gr}_{1}\times\operatorname{Gr}_{2}\times\operatorname{Gr}_{4}\,:\,\begin{matrix}y_{2}y_{1}=y_{1}\\[2.15277pt] y_{4}y_{2}=y_{2}\end{matrix}\Biggr{\}} 2y1y2\phantom{-}2y_{1}-y_{2}
3,1,23,1,2 (110¯)\vphantom{\dfrac{\int}{\int}}\left(\begin{smallmatrix}-1&&\\ &1&\\ &&\underline{0}\end{smallmatrix}\right) 2y1+y2-2y_{1}+y_{2}
2,1,32,1,3 (0¯  11)\vphantom{\dfrac{\int}{\int}}\left(\begin{smallmatrix}\underline{0}&&\\ &\,\,1&\\ &&\!\!-1\end{smallmatrix}\right) {y=(y2y3y4)Gr2×Gr3×Gr4:y3y2=y2y4y3=y3}\Biggl{\{}y=\Biggl{(}\,\begin{matrix}y_{2}\\ y_{3}\\ y_{4}\end{matrix}\,\Biggr{)}\in\operatorname{Gr}_{2}\times\operatorname{Gr}_{3}\times\operatorname{Gr}_{4}\,:\,\begin{matrix}y_{3}y_{2}=y_{2}\\[2.15277pt] y_{4}y_{3}=y_{3}\end{matrix}\Biggr{\}} y2+2y3y4-y_{2}+2y_{3}-y_{4}
2,3,12,3,1 (0¯1 1)\vphantom{\dfrac{\int}{\int}}\left(\begin{smallmatrix}\underline{0}&&\\ &\!-1&\\ &&\,1\end{smallmatrix}\right) y22y3+y4\phantom{-}y_{2}-2y_{3}+y_{4}
Acknowledgements.
We wish to thank Arnaud Beauville, Ivan Penkov, Jacqueline Rey-Glardon, Loren Spice and Alan Weinstein for very helpful indications.

References

  • \hyper@normalise
  • A (08) Marcelo Aguiar and Rosa C. Orellana, The Hopf algebra of uniform block permutations. J. Algebraic Combin. 28 (2008) 115–138. \hyper@normalise
  • A (86) Dmitri V. Alekseevskii and Askold M. Perelomov, Invariant Kähler-Einstein metrics on compact homogeneous spaces. Funktsional. Anal. i Prilozhen. 20 (1986), no. 3, 1–16, 96. (Translation: Funct. Anal. Appl. 20 (1986) 171–182.) \hyper@normalise
  • A (97) Dmitri V. Alekseevskii, Flag manifolds. Zbornik Radova (N.S.) 6(14) (1997) 3–35. \hyper@normalise
  • A (98)  , Isotropy representation of flag manifolds. Rend. Circ. Mat. Palermo (2) Suppl. 54 (1998) 13–24. \hyper@normalise
  • A (81) James Arthur, The trace formula in invariant form. Ann. of Math. (2) 114 (1981) 1–74. \hyper@normalise
  • A (03) Andreas Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, Student Mathematical Library, vol. 22. Amer. Math. Soc., Providence, RI, 2003. \hyper@normalise
  • B (87) Arthur L. Besse, Einstein Manifolds. Springer-Verlag, Berlin, 1987. \hyper@normalise
  • B (61) William M. Boothby, Homogeneous complex contact manifolds. Proc. Symp. Pure Math. 3 (1961) 144–154. \hyper@normalise
  • B (53) Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. of Math. (2) 57 (1953) 115–207. \hyper@normalise
  • B (54)  , Kählerian coset spaces of semisimple Lie groups. Proc. Nat. Acad. Sci. U. S. A. 40 (1954) 1147–1151. \hyper@normalise
  • B (58) Armand Borel and Friedrich Hirzebruch, Characteristic classes and homogeneous spaces. I. Amer. J. Math. 80 (1958) 458–538. \hyper@normalise
  • B (75) Nicolas Bourbaki, Groupes et algèbres de Lie. Chapitres 7 et 8. Hermann, Paris, 1975. \hyper@normalise
  • B (82)  , Groupes et algèbres de Lie. Chapitre 9. Groupes de Lie réels compacts. Masson, Paris, 1982. \hyper@normalise
  • B (12)  , Algèbre. Chapitre 8. Modules et anneaux semi-simples. Springer-Verlag, Berlin, 2012. \hyper@normalise
  • C (29) Élie Cartan, Sur les invariants intégraux de certains espaces homogènes clos et les propriétés topologiques de ces espaces. Ann. Soc. Polon. Math. 8 (1929) 181–225. \hyper@normalise
  • C (57) Claude Chevalley, Le normalisateur d’un groupe de Borel. In Séminaire Claude Chevalley. Classification des groupes de Lie algébriques, Vol. 1, chap. 9, pp. 1–8. Secrétariat mathématique, Paris, 1957. \hyper@normalise
  • D (11) Elizabeth Dan-Cohen and Ivan Penkov, Levi components of parabolic subalgebras of finitary Lie algebras. In Jeffrey Adams, Bong Lian, and Siddhartha Sahi (Eds.), Representation Theory and Mathematical Physics (New Haven, October 24–27, 2009), Contemp. Math., vol. 557, pp. 129–149. Amer. Math. Soc., Providence, RI, 2011. \hyper@normalise
  • E (34) Charles Ehresmann, Sur la topologie de certains espaces homogènes. Ann. of Math. (2) 35 (1934) 396–443. \hyper@normalise
  • F (49) Hans Freudenthal, La géométrie énumérative. In Topologie algébrique (Paris, 26 Juin – 2 Juillet 1947), Colloques Internationaux du Centre National de la Recherche Scientifique, vol. 12, pp. 17–33. C. N. R. S., Paris, 1949. \hyper@normalise
  • F (69) Hans Freudenthal and Hendrik de Vries, Linear Lie Groups. Academic Press, New York-London, 1969. \hyper@normalise
  • F (55) Alfred Frölicher, Zur Differentialgeometrie der komplexen Strukturen. Math. Ann. 129 (1955) 50–95. \hyper@normalise
  • G (60) Roger Godement, Groupes linéaires algébriques sur un corps parfait. In Séminaire Bourbaki, Vol. 6, Exp. No. 206, pp. 1–22. Secrétariat mathématique, Paris, 1960. \hyper@normalise
  • G (73) Werner Greub, Stephen Halperin, and Ray Vanstone, Connections, curvature, and cohomology. Vol. II: Lie groups, principal bundles, and characteristic classes. Academic Press, New York-London, 1973. \hyper@normalise
  • G (82) Victor Guillemin and Shlomo Sternberg, Geometric quantization and multiplicities of group representations. Invent. Math. 67 (1982) 515–538. \hyper@normalise
  • H (12) Joachim Hilgert and Karl-Hermann Neeb, Structure and Geometry of Lie Groups. Springer, New York, 2012. \hyper@normalise
  • H (05) Friedrich Hirzebruch, The projective tangent bundles of a complex three-fold. Pure Appl. Math. Q. 1 (2005) 441–448. \hyper@normalise
  • H (71) Kenneth Hoffman and Ray A. Kunze, Linear Algebra. 2nd ed. Prentice-Hall Inc., Englewood Cliffs, N.J., 1971. \hyper@normalise
  • K (98) Hajime Kaji, Secant varieties of adjoint varieties. Matemática Contemporânea 14 (1998) 75–87. \hyper@normalise
  • K (10) Bertram Kostant, Root systems for Levi factors and Borel-de Siebenthal theory. In H. E. A. (Eddy) Campbell, Aloysius G. Helminck, Hanspeter Kraft, and David Wehlau (Eds.), Symmetry and spaces, pp. 129–152. Birkhäuser, Boston, 2010. \hyper@normalise
  • L (02) Joseph M. Landsberg and Laurent Manivel, Construction and classification of complex simple Lie algebras via projective geometry. Selecta Math. (N.S.) 8 (2002) 137–159. \hyper@normalise
  • L (04) Ottmar Loos and Erhard Neher, Locally Finite Root Systems. Mem. Amer. Math. Soc., vol. 171 (2004), x+214 pp. \hyper@normalise
  • M (11) Gunter Malle and Donna Testerman, Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge University Press, Cambridge, 2011. \hyper@normalise
  • N (17) Georg Nawratil, Point-models for the set of oriented line-elements – a survey. Mechanism and Machine Theory 111 (2017) 118–134. \hyper@normalise
  • N (57) August Newlander and Louis Nirenberg, Complex analytic coordinates in almost complex manifolds. Ann. of Math. (2) 65 (1957) 391–404. \hyper@normalise
  • N (84) Musubi Nishiyama, Classification of invariant complex structures on irreducible compact simply connected coset spaces. Osaka J. Math. 21 (1984), no. 1, 39–58. \hyper@normalise
  • S (08) René de Saussure, La Geometrio “Folietara”. Internacia Scienca Revuo 5 (1908) 165–172, 197–208, 236–243. (Translation: Mém. Soc. phys. hist. nat. Genève 36 (1910) 211–266.) \hyper@normalise
  • S (54) Jean-Pierre Serre, Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d’après Armand Borel et André Weil). In Séminaire Bourbaki, Vol. 2, Exp. No. 100, pp. 1–8. Secrétariat mathématique, Paris, 1954. \hyper@normalise
  • S (01) Krishnan Shankar, Isometry groups of homogeneous spaces with positive sectional curvature. Differential Geom. Appl. 14 (2001) 57–78. \hyper@normalise
  • S (69) Jean de Siebenthal, Sur certains modules dans une algèbre de Lie semisimple. Comment. Math. Helv. 44 (1969) 1–44. \hyper@normalise
  • S (70) Jean-Marie Souriau, Structure des systèmes dynamiques. Dunod, Paris, 1970. (Reprint: Éditions Jacques Gabay, Sceaux, 2008. Translation: Structure of Dynamical Systems. Birkhäuser, Boston, 1997.) \hyper@normalise
  • S (05) Eduard Study, Kürzeste Wege im komplexen Gebiet. Math. Ann. 60 (1905) 321–378. \hyper@normalise
  • T (61) Olga Taussky, Commutators of unitary matrices which commute with one factor. J. Math. Mech. 10 (1961) 175–178. \hyper@normalise
  • T (06) Richard P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties. In Shing-Tung Yau (Ed.), Surveys in Differential Geometry, Vol. X, pp. 221–273. Int. Press, Somerville, MA, 2006. \hyper@normalise
  • T (14) Kostiantyn Timchenko, A Constructive Proof of the Borel-Weil Theorem for Classical Groups. Master’s thesis, Georgia Southern University, Statesboro, 2014. \hyper@normalise
  • V (90) Èrnest B. Vinberg, Vladimir V. Gorbatsevich, and Arkadii L. Onishchik, Structure of Lie Groups and Lie Algebras, Itogi Nauki i Tekhniki, vol. 41. VINITI, Moscow, 1990. (Translation: Encycl. Math. Sci., vol. 41. Springer-Verlag, Berlin (1994).) \hyper@normalise
  • V (87) David A. Vogan, Jr, Representations of reductive Lie groups. In Proc. Internat. Congr. Math. (Berkeley, 1986) Vol. 1, pp. 245–266. Amer. Math. Soc., Providence, RI, 1987. \hyper@normalise
  • W (36) Bartel L. van der Waerden, Reihenentwicklungen und Überschiebungen in der Invariantentheorie, insbesondere im quaternären Gebiet. Math. Ann. 113 (1936) 14–35. \hyper@normalise
  • W (54) Hsien Chung Wang, Closed manifolds with homogeneous complex structure. Amer. J. Math. 76 (1954) 1–32. \hyper@normalise
  • W (77) Alan Weinstein, Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics, vol. 29. Amer. Math. Soc., Providence, RI, 1977. \hyper@normalise
  • W (11) Willem A. Wythoff, Review of La géométrie des “feuillets” S (08). Revue semestrielle des publications mathématiques (Amsterdam) 19 (1911) 110–111. \hyper@normalise
  • Y (14) Takumi Yamada, Invariant pseudo-Kähler metrics on generalized flag manifolds. Differential Geom. Appl. 36 (2014) 44–55.