This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Explicit Improvements to the Burgess Bound via Pólya–Vinogradov

Matteo Bordignon
[email protected]
University of New South Wales Canberra, School of Science

Forrest J. Francis
[email protected]
University of New South Wales Canberra, School of Science
Abstract.

We make explicit a theorem of Fromm and Goldmakher [Fromm], which states that one can improve Burgess’ bound for short character sums simply by improving the leading constant in the Pólya–Vinogradov inequality. Towards achieving this, we establish explicit versions of several estimates related to the mean values of real multiplicative functions and the Dickman function.

1. Introduction

Given a Dirichlet character χ(mod q)\chi\,\left(\textnormal{mod }q\right), it is often the case that we need to consider the size of the corresponding character sum,

(1) Sχ(t)=ntχ(n).S_{\chi}(t)=\sum_{n\leq t}\chi(n).

Owing to the orthogonality relation on residues modulo qq, one only ever needs to consider the case that the character sum is short, i.e., tqt\leq q. In this case, we have the trivial estimate,

|Sχ(t)|t.\lvert S_{\chi}(t)\rvert\leq t.

There are two standard non-trivial estimates for the size of (1). First, the Pólya–Vinogradov inequality, Sχ(t)qlogqS_{\chi}(t)\ll\sqrt{q}\log{q} (henceforth referred to as the “P–V inequality”). Second, Burgess’ bound, Sχ(t)t11rqr+14r2+ϵS_{\chi}(t)\ll t^{1-\frac{1}{r}}q^{\frac{r+1}{4r^{2}}+\epsilon}, for ϵ>0\epsilon>0 and an integer r>2r>2. If the modulus qq is a prime, then both of these estimates can be used to show that

(2) Sχ(t)=o(t),S_{\chi}(t)=o\left(t\right),

for large enough tt.

One might consider the Burgess bound to be a better result, however, unless the character sum is particularly long. Specifically, P–V implies that (2) holds for t>q12+ϵt>q^{\frac{1}{2}+\epsilon}, while Burgess’ bound implies that (2) holds for t>q14+o(1)t>q^{\frac{1}{4}+o\left(1\right)}. The proof of the Burgess bound also relies on advanced results due to Weil [weil19481], while the standard proof of the P–V inequality is substantially easier. Finally, one of the best-known P–V inequalities is proved using the effective range of Burgess’ bound, see [Hildebrand1988].

Conversely, when working with explicit versions of these estimates, any improvement to the leading constant in the P–V inequality will immediately yield improvements in the leading constant for Burgess’ bound (see, for example, [trevino2015] and [Forrest]). Fromm and Goldmakher [Fromm] have recently established that, in fact, improvements to the P–V inequality can be used to extract improvements to the effective range (with respect to tt) in Burgess’ bound. Precisely, they establish the following relationship.

Theorem 1.1.

[Fromm]*Theorem A Suppose the P–V inequality can be improved to Sχ(t)=o(qlogq)S_{\chi}(t)=o\left(\sqrt{q}{\log{q}}\right) for all even primitive quadratic χ(mod q)\chi\,\left(\textnormal{mod }q\right). Then Sξ(t)=o(t)S_{\xi}(t)=o\left(t\right) for all tϵpϵt\gg_{\epsilon}p^{\epsilon} for all odd primitive quadratic ξ(mod p)\xi\,\left(\textnormal{mod }p\right).

Based on a suggestion Fromm and Goldmakher made in their paper, we will prove the following explicit version of Theorem 1.1. The interested reader may also consider the work of Mangerel [Mangerel], for a different approach to the relationship between P–V and Burgess.

Theorem 1.2.

Suppose the P–V inequality can be improved to

Sχ(t)(c1+o(1))qlogq,S_{\chi}(t)\leq(c_{1}+o\left(1\right))\sqrt{q}\log q,

for all even primitive quadratic χ(mod q)\chi\,\left(\textnormal{mod }q\right). Then for all odd primitive quadratic characters ξ(mod p)\xi\,\left(\textnormal{mod }p\right) we have Sξ(t)<ctS_{\xi}(t)<ct for t>pϵ(c1,c)t>p^{\epsilon(c_{1},c)}, with ϵ(c1,c)=4πc1δ(c)3/2+ot(1)\epsilon(c_{1},c)=4\pi\frac{c_{1}}{\delta(c)^{3/2}}+o_{t}(1) and δ(c)\delta(c) as in Lemma 1.3, such that δ(c)2/7\delta(c)\leq 2/7.

The above result is particularly interesting, as it the first to shows that a Burgess-like result depends in a meaningful way on the leading constant in the P–V inequality. In Table 1, we compare ϵ(c1,c)\epsilon(c_{1},c) for various cc using the best known P–V constant and several powers of 1010.

Table 1. Sample values for ϵ(c1,c)\epsilon(c_{1},c).
c=0.99c=0.99 0.5 0.25 0.05 0.025
c1c_{1} δ(c)=1.561010\delta(c)=1.56\cdot 10^{-10} 5.5110115.51\cdot 10^{-11} 1.9210111.92\cdot 10^{-11} 1.6510121.65\cdot 10^{-12} 5.7810135.78\cdot 10^{-13}
1 9.1510159.15\cdot 10^{15} 4.3510164.35\cdot 10^{16} 2.1210172.12\cdot 10^{17} 8.3210188.32\cdot 10^{18} 4.0510194.05\cdot 10^{19}
(2π2)1(2\pi^{2})^{-1} 4.6410144.64\cdot 10^{14} 2.2110152.21\cdot 10^{15} 1.0810161.08\cdot 10^{16} 4.2210174.22\cdot 10^{17} 2.0510182.05\cdot 10^{18}
10510^{-5} 9.1510109.15\cdot 10^{10} 4.3510114.35\cdot 10^{11} 2.1210122.12\cdot 10^{12} 8.3210138.32\cdot 10^{13} 4.0510144.05\cdot 10^{14}
101010^{-10} 9.151059.15\cdot 10^{5} 4.351064.35\cdot 10^{6} 2.121072.12\cdot 10^{7} 8.321088.32\cdot 10^{8} 4.051094.05\cdot 10^{9}
101510^{-15} 9.159.15 43.543.5 212212 83208320 4.051044.05\cdot 10^{4}
102010^{-20} 8.4510148.45\cdot 10^{-14} 4.351044.35\cdot 10^{-4} 2.121032.12\cdot 10^{-3} 8.321028.32\cdot 10^{-2} 0.4050.405

From Table 1, one sees that ϵ(c1,c)\epsilon(c_{1},c) roughly decays in magnitude as c1c_{1} does. However, even to obtain an improvement over the trivial bound would require significant improvements over the best available choices of c1c_{1}. One should expect this behaviour, since one also expects to be able to take c1c_{1} tending to 0. Additionally, since the best c1c_{1} in the P–V inequality is obtained via Burgess’ bound, one does not expect to have ϵ(c1,c)<0.25\epsilon(c_{1},c)<0.25 for all cc while c1c_{1} is fixed. While there is room for improvement in ϵ(c1,c)\epsilon(c_{1},c), we believe that our result has significance as the first of its kind. This is also part of the reason, together with the heavy analytic machinery employed, why ϵ(c1,c)\epsilon(c_{1},c) is not yet optimal. We hope this result will increase the interest in the explicit correlation between P–V and Burgess’ bound.

As an aside, note that in Theorem 1.2, we have still included some o(1)o\left(1\right) terms. This is because many of the best known P–V results appear in this form. This choice also makes the exposition more concise. Further attempts in line with this article, in particular those using completely explicit P–V results like [frolenkov2013] or [Bordignon], should be able to make the result completely explicit.

In order to obtain Theorem 1.2, we must establish some notation. Let

𝐌f(x):=1xnxf(n)and𝐋f(x):=1logxnxf(n)n.\mathbf{M}_{f}(x):=\frac{1}{x}\sum_{n\leq x}f(n)\quad\text{and}\quad\mathbf{L}_{f}(x):=\frac{1}{\log x}\sum_{n\leq x}\frac{f(n)}{n}.

The result that allowed Fromm and Goldmakher to obtain Lemma A in [Fromm] is a correlation between the two functions defined above. This correlation, Lemma B in [Fromm], assures us that if 𝐌f(x)\mathbf{M}_{f}(x) is bounded away from zero, then 𝐋f(x)\mathbf{L}_{f}(x) will be as well (for certain ff). The proof of Theorem 1.2 relies on establishing an explicit version of Lemma B in [Fromm].

Lemma 1.3.

Given c>0c>0 and x0=x0(c)1x_{0}=x_{0}(c)\geq 1 such that

|𝐌f(x)|c𝐋f(x)δ(c),|\mathbf{M}_{f}(x)|\geq c\Rightarrow\mathbf{L}_{f}(x)\geq\delta(c),

with

δ(c):=0.2exp(1Klog(9.75105c)(1.42(9.75105c)12K+1/2))+ox(1),\delta(c):=0.2\exp\left(-\frac{1}{K}\log\left(\frac{9.75\cdot 10^{5}}{c}\right)\left(1.42\left(\frac{9.75\cdot 10^{5}}{c}\right)^{\frac{1}{2K}}+1/2\right)\right)+o_{x}(1),

for all completely multiplicative functions f:[1,1]f:\mathbb{Z}\rightarrow[-1,1], x>x0x>x_{0}, K0.3286K\approx 0.3286.

This result allows us to prove Theorem 1.2.

Proof of Theorem 1.2.

Here we follow the proof of Theorem A [Fromm]. Using Lemma 2.1 [Fromm] and assuming |𝐌ξ(x)|c|\mathbf{M}_{\xi}(x)|\geq c, we obtain infinitely many characters χ\chi such that

|Sχ(N)|(lδ(c)ϵ2πφ(l)+o(1))qlogq,|S_{\chi}(N)|\geq\left(\frac{\sqrt{l}\delta(c)\epsilon}{2\pi\varphi(l)}+o\left(1\right)\right)\sqrt{q}\log q,

with ll the least prime larger than 2δ(c)\frac{2}{\delta(c)} which satisfies l3(mod4)l\equiv 3\pmod{4}. We therefore have a contradiction if lδ(c)ϵ2πφ(l)>c1\frac{\sqrt{l}\delta(c)\epsilon}{2\pi\varphi(l)}>c_{1}, i.e. when ϵ>2πc1φ(l)lδ(c)\epsilon>2\pi c_{1}\frac{\varphi(l)}{\sqrt{l}\delta(c)}. We can further simplify this by observing that we trivially have φ(l)l\varphi(l)\leq l, that results optimal for large ll. Using the version of Bertrand’s postulate for primes in arithmetic progressions in [Breusch], with the assumption 2δ(c)7\frac{2}{\delta(c)}\geq 7, we have that l4δ(c)l\leq\frac{4}{\delta(c)}. Note that assuming a smaller upper bound for δ(c)\delta(c), together with Corollary 6 in [Bennett], is possible to reduce the constant 44 to 2+o(1)2+o(1), we decided not to do so to keep the result as concise as possible. Thus, we obtain

ϵ>4πc1δ(c)32.\epsilon>4\pi\frac{c_{1}}{\delta(c)^{\frac{3}{2}}}.

The proof of Lemma 1.3 will require two results, which will make up the bulk of this article. The easier of these is the following explicit version of Theorem 2 in [Hildebrand] applied to (1f)(n)(1*f)(n) (another non-explicit version of this result can be found in [Granville2007.1]). First, for a given multiplicative function ff, let us define

u:=px1f(p)p.u:=\sum_{p\leq x}\frac{1-f(p)}{p}.
Theorem 1.4.

Let f(x)f(x) be a completely multiplicative function as defined in (1.1) of [Hildebrand]. Then, we have

1xnx(1f)(n)(0.2+o(1))logxeu(1.42eu2+12)+o(1).\frac{1}{x}\sum_{n\leq x}(1*f)(n)\geq\left(0.2+o\left(1\right)\right)\log x\leavevmode\nobreak\ e^{-u\left(1.42e^{\frac{u}{2}}+\frac{1}{2}\right)}+o\left(1\right).

The second result, which is the harder to prove, is an explicit version of Theorem III.4.14 in Hall and Tenenbaum [tenenbaum2015]. In our current application, we focus on functions g(n)g(n) which are quadratic Dirichlet characters, but there are variants of this theorem which cover a much larger class of functions (for example, see the main theorem of [hall1991]).

Theorem 1.5.

Let KK be the unique solution to

12π02π|cos(t)K|𝑑t=1K.\frac{1}{2\pi}\int_{0}^{2\pi}\!\lvert\cos(t)-K\rvert\,dt=1-K.

Note that K0.3286K\approx 0.3286. If ff is a real, completely multiplicative function, we have, uniformly for x1x\geq 1,

(3) |𝐌f(x)|(9.75105+o(1))exp{Kpx1f(p)p}+o(1).|\mathbf{M}_{f}(x)|\leq(9.75\cdot 10^{5}+o\left(1\right))\exp\left\{-K\sum_{p\leq x}\frac{1-f(p)}{p}\right\}+o\left(1\right).

We can now easily prove Lemma 1.3.

Proof of Lemma 1.3.

Here, we follow the proof of Lemma B in [Fromm]. Theorem 1.5 gives

(4) (|𝐌f(x)|+o(1)9.75105+o(1))12Keu2and1Klog(|𝐌f(x)|+o(1)9.75105+o(1))1u.\left(\frac{|\mathbf{M}_{f}(x)|+o\left(1\right)}{9.75\cdot 10^{5}+o\left(1\right)}\right)^{-\frac{1}{2K}}\geq e^{\frac{u}{2}}\quad\text{and}\quad\frac{1}{K}\log\left(\frac{|\mathbf{M}_{f}(x)|+o\left(1\right)}{9.75\cdot 10^{5}+o\left(1\right)}\right)^{-1}\geq u.

It is easy to see that

𝐋f(x)=1xlogxnx(1f)(n)+o(1),\mathbf{L}_{f}(x)=\frac{1}{x\log x}\sum_{n\geq x}(1*f)(n)+o\left(1\right),

and, by Theorem 1.4, we obtain

(5) 𝐋f(x)(0.2+o(1))eu(1.42eu/2+1/2)logx+o(1).\displaystyle\mathbf{L}_{f}(x)\geq\left(0.2+o\left(1\right)\right)e^{-u(1.42e^{u/2}+1/2)}\log x+o\left(1\right).

The result follows substituting (4) in (5) and remembering that |𝐌f(x)|c|\mathbf{M}_{f}(x)|\geq c. ∎

In Section 2 we will prove Theorem 1.4. In Section 3 we will prove a partially explicit version of an upper bound for the mean value of multiplicative functions, that works as an intermediate result for Theorem 1.5. In Section 4, we introduce some explicit bounds related to prime numbers; applying these results to those obtained in the previous sections, we conclude with a proof of Theorem 1.5. To ease the understanding of the relationships between the results we introduce the following scheme.

Theorem 1.2 Theorem 1.3 Lemma 4.9 & 4.10 Theorem 1.4 Theorem 1.5 Theorem 2.1 Theorem 3.2 Theorem 3.1 Lemma 4.8 Lemma 4.7 Proposition 4.4, 4.5 & 4.6 Lemma 4.3 (21) & (23) Lemma 4.2 Lemma 4.1, (11) & (13)

2. Lower bound for the mean value theorem for a non-negative multiplicative function

The aim of this section is to prove Theorem 1.4. We start by giving an explicit lower bound for the Dickman function, ρ(x)\rho(x), defined by

xρ(x)+ρ(x1)=0,x\rho^{\prime}(x)+\rho(x-1)=0,

with initial conditions ρ(x)=1\rho(x)=1 for 0x10\leq x\leq 1. Note that we will follow Buchstab’s approach from [buchstab] for large xx, alongside computations for small xx.

Lemma 2.1.

Assuming x1x\geq 1, we have

(6) ρ(x)x1.42x.\rho(x)\geq x^{-1.42x}.
Proof.

Using the the built-in Dickman function in Sage, we determine that for 1x1301\leq x\leq 130 we can take as an exponent 1.151.15. Note that we are limited to this interval due to the computational complexity. We can thus use the following result due to Buchstab [buchstab], that tells that for x6x\geq 6 and δ=1logx+1+logxx<13\delta=\frac{1}{\log x+1+\frac{\log x}{x}}<\frac{1}{3}, we have

(7) ρ(x)exp(x(1+1logx)(log(x+δ)+log1δ1)2logx),\rho(x)\geq\exp\left(-x\left(1+\frac{1}{\log x}\right)\left(\log(x+\delta)+\log\frac{1}{\delta}-1\right)-2\log x\right),

and the result follows taking x130x\geq 130. ∎

It worth noting that, by [buchstab], the right size for the constant in the exponent of (6) is 1+o(1)1+o(1). Since we want a uniform result, a lower bound for the 1+o(1)1+o(1) term appears, by computation, to be 1.151.15. Obtaining this result appears difficult as (7) does not give a good estimate for small values of xx. One might get around this by making explicit other asymptotic results for ρ(x)\rho(x), such as the one in [deBruijn], but we have not pursued this here. We can now prove Theorem 1.4.

Proof of Theorem 1.4.

This is Theorem 2 [Hildebrand] with K=2K=2, K2=1.1K_{2}=1.1 and z=2z=2, used together with max(0,1(1f)(p))1f(p)2\max\left(0,1-(1*f)(p)\right)\leq\frac{1-f(p)}{2} and Lemma 2.1. We also need to note that

px(11p)(1+(1f)(p)p+(1f)(p2)p2)=px11p1(1f)(p)p\prod_{p\leq x}\left(1-\frac{1}{p}\right)\left(1+\frac{(1*f)(p)}{p}+\frac{(1*f)(p^{2})}{p^{2}}\cdots\right)=\prod_{p\leq x}\frac{1-\frac{1}{p}}{1-\frac{(1*f)(p)}{p}}
euexp(px1p)exp(px(log(11p)+1p)).\geq e^{-u}\exp\left(\sum_{p\leq x}\frac{1}{p}\right)\exp\left(\sum_{p\leq x}\left(\log\left(1-\frac{1}{p}\right)+\frac{1}{p}\right)\right).

We can conclude using Theorem 5 and Corollary 1 [rosser1962], that gives

exp(px(log(11p)+1p))=exp(Mγ)exp(0.32),\exp\left(\sum_{p\leq x}\left(\log\left(1-\frac{1}{p}\right)+\frac{1}{p}\right)\right)=\exp(M-\gamma)\geq\exp(-0.32),

with MM the Meissel–Mertens constant and γ\gamma the Euler–Mascheroni constant. ∎

3. A partially explicit upper bound for the mean value of multiplicative functions

In this section, we aim to prove an explicit version of a theorem of Montgomery [montgomery1978], regarding the mean value of multiplicative functions. He restricted his interest, as will we, to completely multiplicative functions. The more general case involves technical changes, see [tenenbaum2015], which make the leading constant increase significantly.

We start by introducing a well-known, but useful, result.

Lemma 3.1.

Assuming s=1+α+iτs=1+\alpha+i\tau, with α0\alpha\searrow 0 and |τ|1/2|\tau|\leq 1/2 we have

|ζζ(s)|1|s1|+𝒪(1).\left|\frac{\zeta^{\prime}}{\zeta}(s)\right|\leq\frac{1}{|s-1|}+\mathcal{O}(1).
Proof.

By Euler–Maclaurin, we have

nN1ns=1N1xs𝑑x+12(1Ns+1)s1N1xs+1({x}12)𝑑x.\displaystyle\sum_{n\leq N}\frac{1}{n^{s}}=\int_{1}^{N}\frac{1}{x^{s}}dx+\frac{1}{2}\left(\frac{1}{N^{s}}+1\right)-s\int_{1}^{N}\frac{1}{x^{s+1}}\left(\{x\}-\frac{1}{2}\right)dx.

Thus, taking NN\rightarrow\infty,

|n1ns11xs𝑑x|12(1+|s|).\displaystyle\left|\sum_{n}^{\infty}\frac{1}{n^{s}}-\int_{1}^{\infty}\frac{1}{x^{s}}dx\right|\leq\frac{1}{2}(1+|s|).

Now it follows from

1(logx)xs𝑑x=!(s1)+1,\displaystyle\int_{1}^{\infty}\frac{(\log x)^{\ell}}{x^{s}}dx=\frac{\ell!}{(s-1)^{\ell+1}},

that

|ζ(s)1(s1)|12(1+|s|).\displaystyle\left|\zeta(s)-\frac{1}{(s-1)}\right|\leq\frac{1}{2}(1+|s|).

Proceeding in the same way, we obtain

|ζ(s)+1(s1)2|12(1+|s|).\displaystyle\left|\zeta^{\prime}(s)+\frac{1}{(s-1)^{2}}\right|\leq\frac{1}{2}(1+|s|).

The result easily follows remembering that α0\alpha\searrow 0. ∎

Everything is in place to prove an explicit version of the inequality in [montgomery1978]. Note that our result appears slightly different with compared with the cited one, as we have tailored the optimization of the constant for the current application.

Theorem 3.2.

Let gg be a completely multiplicative function such that |g(n)|1|g(n)|\leq 1. Set

G(x):=nxg(n),F(s):=n=1g(n)ns.G(x):=\sum_{n\leq x}g(n),\;\;\;\;\;\;F(s):=\sum_{n=1}^{\infty}g(n)n^{-s}.

We define

H(α)2:=k1(k1/2)2+1maxσ=1+α|τk|12|F(s)|2.H(\alpha)^{2}:=\sum_{\begin{subarray}{c}k\in\mathbb{Z}\end{subarray}}\frac{1}{(k-1/2)^{2}+1}\max_{\begin{subarray}{c}\sigma=1+\alpha\\ |\tau-k|\leq\frac{1}{2}\end{subarray}}|F(s)|^{2}.

Then, for xx0x\geq x_{0} large enough,

(8) G(x)(3.14+o(1))xlogx1/logx1H(α)dαα+Ox0(xlogx).G(x)\leq\left(3.14+o\left(1\right)\right)\frac{x}{\log x}\int_{1/\log x}^{1}H(\alpha)\frac{d\alpha}{\alpha}+O_{x_{0}}\left(\frac{x}{\sqrt{\log x}}\right).
Proof.

We now establish, for xx0x\geq x_{0}, the following result

(9) xx|G(t)|t2𝑑t(9.452+o(1))H(2logx)+O(logx).\int_{\sqrt{x}}^{x}\frac{|G(t)|}{t^{2}}dt\leq\left(\sqrt{\frac{9.45}{2}}+o\left(1\right)\right)H\left(\frac{2}{\log x}\right)+O\left(\sqrt{\log x}\right).

By the Cauchy–Schwarz inequality, with α=2/logx\alpha=2/\log x,

xx|G(t)|t2𝑑t(1x(|G(t)|logt)2t3+2α𝑑txx1log2tt12α𝑑t)1/2.\int_{\sqrt{x}}^{x}\frac{|G(t)|}{t^{2}}dt\leq\left(\int_{1}^{x}\frac{\left(|G(t)|\log t\right)^{2}}{t^{3+2\alpha}}dt\int_{\sqrt{x}}^{x}\frac{1}{\log^{2}t\leavevmode\nobreak\ t^{1-2\alpha}}dt\right)^{1/2}.

We can observe that, with nn\in\mathbb{N},

xx1log2tt12α𝑑tj=0n1x12(jn+1)x12(j+1n+1)1log2tt12α𝑑t\int_{\sqrt{x}}^{x}\frac{1}{\log^{2}t\leavevmode\nobreak\ t^{1-2\alpha}}dt\leq\sum_{j=0}^{n-1}\int_{x^{\frac{1}{2}\left(\frac{j}{n}+1\right)}}^{x^{\frac{1}{2}\left(\frac{j+1}{n}+1\right)}}\frac{1}{\log^{2}t\leavevmode\nobreak\ t^{1-2\alpha}}dt
1log2xj=0n14(jn+1)2x12(jn+1)x12(j+1n+1)1t12α𝑑t1log2xα(e2n1)2e2j=0n1e2j/n(jn+1)2\leq\frac{1}{\log^{2}x}\sum_{j=0}^{n-1}\frac{4}{\left(\frac{j}{n}+1\right)^{2}}\int_{x^{\frac{1}{2}\left(\frac{j}{n}+1\right)}}^{x^{\frac{1}{2}\left(\frac{j+1}{n}+1\right)}}\frac{1}{\leavevmode\nobreak\ t^{1-2\alpha}}dt\leq\frac{1}{\log^{2}x\leavevmode\nobreak\ \alpha}(e^{\frac{2}{n}}-1)2e^{2}\sum_{j=0}^{n-1}\frac{e^{2j/n}}{(\frac{j}{n}+1)^{2}}
1log2xα(e2n1)2n12e2yy2𝑑y49.45log2xα.\leq\frac{1}{\log^{2}x\leavevmode\nobreak\ \alpha}(e^{\frac{2}{n}}-1)2n\int_{1}^{2}\frac{e^{2y}}{y^{2}}dy\leq\frac{4\cdot 9.45}{\log^{2}x\leavevmode\nobreak\ \alpha}.

Defining K(t):=ntg(n)lognK(t):=\sum_{n\leq t}g(n)\log n, then

G(t)logtK(t)t.G(t)\log t-K(t)\ll t.

Thus, taking α=2/logx\alpha=2/\log x, the proof of (9) reduces to that of

1x|K(t)|2t3+2α𝑑t(12+o(1))H(α)2α.\int_{1}^{x}\frac{|K(t)|^{2}}{t^{3+2\alpha}}dt\leq\left(\frac{1}{2}+o\left(1\right)\right)\frac{H(\alpha)^{2}}{\alpha}.

The equation

0K(eu)euσeiur𝑑u=F(s)s(σ>1),\int_{0}^{\infty}K(e^{u})e^{-u\sigma}e^{-iur}du=\frac{-F^{\prime}(s)}{s}\;\;(\sigma>1),

allows us to write Plancherel’s formula as

1x|K(t)|2t3+2α𝑑t=12π|F(1+α+iτ)1+α+iτ|2𝑑τ.\int_{1}^{x}\frac{|K(t)|^{2}}{t^{3+2\alpha}}dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}\left|\frac{F^{\prime}(1+\alpha+i\tau)}{1+\alpha+i\tau}\right|^{2}d\tau.

We assume TT arbitrary large. For |τ|>T|\tau|>T we have, by (4.46) in [tenenbaum2015]

|τ|>T|F(1+α+iτ)1+α+iτ|2𝑑τ1T+1α3T2.\int_{|\tau|>T}\left|\frac{F^{\prime}(1+\alpha+i\tau)}{1+\alpha+i\tau}\right|^{2}d\tau\ll\frac{1}{T}+\frac{1}{\alpha^{3}T^{2}}.

We now need to estimate the contribution in the complementary range |τ|T|\tau|\leq T. We write

|τ|T|F(1+α+iτ)1+α+iτ|2𝑑τ\int_{|\tau|\leq T}\left|\frac{F^{\prime}(1+\alpha+i\tau)}{1+\alpha+i\tau}\right|^{2}d\tau
|k|T11+(k1/2)2k1/2k+1/2|F(1+α+iτ)|2𝑑τ.\leq\sum_{|k|\leq T}\frac{1}{1+(k-1/2)^{2}}\int_{k-1/2}^{k+1/2}\left|F^{\prime}(1+\alpha+i\tau)\right|^{2}d\tau.

The right hand side integral does not exceed

maxσ=1+α|τk|1/2|F(s)|2k1/2k+1/2|FF(1+α+iτ)|2𝑑τ.\max_{\begin{subarray}{c}\sigma=1+\alpha\\ |\tau-k|\leq 1/2\end{subarray}}|F(s)|^{2}\int_{k-1/2}^{k+1/2}\left|\frac{F^{\prime}}{F}(1+\alpha+i\tau)\right|^{2}d\tau.

We can observe that

|FF(s)|2|ζζ(s)|2,\left|\frac{F^{\prime}}{F}(s)\right|^{2}\leq\left|\frac{\zeta^{\prime}}{\zeta}(s)\right|^{2},

and, choosing xx0x\geq x_{0} to have α=2/logx\alpha=2/\log x small enough, by Lemma 3.1 we obtain

k1/2k+1/2|FF(1+α+iτ)|2𝑑τ\displaystyle\int_{k-1/2}^{k+1/2}\left|\frac{F^{\prime}}{F}(1+\alpha+i\tau)\right|^{2}d\tau 1/21/2|ζζ(1+α+iτ)|2𝑑τ\displaystyle\leq\int_{-1/2}^{1/2}\left|\frac{\zeta^{\prime}}{\zeta}(1+\alpha+i\tau)\right|^{2}d\tau
1/21/21α2+τ2𝑑τ+𝒪(1)=πα+𝒪(1).\displaystyle\leq\int_{-1/2}^{1/2}\frac{1}{\alpha^{2}+\tau^{2}}d\tau+\mathcal{O}(1)=\frac{\pi}{\alpha}+\mathcal{O}(1).

Thus (9) is obtained taking TT\rightarrow\infty. We now introduce (4.39) from [tenenbaum2015]

(10) |G(x)|xlogx1x|G(t)|t2𝑑t+O(xlogx).|G(x)|\leq\frac{x}{\log x}\int_{1}^{x}\frac{|G(t)|}{t^{2}}dt+O\left(\frac{x}{\log x}\right).

With the above result and using (9) we can now finish the proof as follows

e2x|G(t)|t2𝑑t\displaystyle\int_{e^{2}}^{x}\frac{|G(t)|}{t^{2}}dt 1log2e2x|G(t)|t2tt2dyylogy𝑑t\displaystyle\leq\frac{1}{\log 2}\int_{e^{2}}^{x}\frac{|G(t)|}{t^{2}}\int_{t}^{t^{2}}\frac{dy}{y\log y}dt
1log2e2x2dyylogyyy|G(t)|t2𝑑t\displaystyle\leq\frac{1}{\log 2}\int_{e^{2}}^{x^{2}}\frac{dy}{y\log y}\int_{\sqrt{y}}^{y}\frac{|G(t)|}{t^{2}}dt
1log2(9.452+o(1))1/logx1H(α)α𝑑α+Ox0(logx).\displaystyle\leq\frac{1}{\log 2}\left(\sqrt{\frac{9.45}{2}}+o\left(1\right)\right)\int_{1/\log x}^{1}\frac{H\left(\alpha\right)}{\alpha}d\alpha+O_{x_{0}}\left(\sqrt{\log x}\right).

4. Explicit mean value estimates for real multiplicative functions

In this section we aim to prove Theorem 1.5. We will first, in subsection 4.1 and 4.2, introduce some useful explicit results and then tackle Theorem 1.5 in subsection 4.3.

4.1. Prime counting estimates

Take π(x)\pi(x) to be the prime counting function. We provide two versions of the Prime Number Theorem (PNT), the first good for small xx and the second for big. Assuming x59x\geq 59, by [rosser1962] we have

(11) xlogx(1+12logx)π(x)xlogx(1+32logx).\frac{x}{\log x}\left(1+\frac{1}{2\log x}\right)\leq\pi(x)\leq\frac{x}{\log x}\left(1+\frac{3}{2\log x}\right).

Defining

(12) li(x)=0x1lny𝑑y\textrm{li}(x)=\int_{0}^{x}\frac{1}{\ln y}dy

and taking x229x\geq 229, by Corollary 2 [Trudgian], we have

(13) |π(x)li(x)|x0.2795(logx)3/4exp(logx6.455).\displaystyle|\pi(x)-\textrm{li}(x)|\leq x\frac{0.2795}{(\log x)^{3/4}}\exp\left(-\sqrt{\frac{\log x}{6.455}}\right).

Note that there is a better version of the PNT due to Platt and Trudgian [Platt2019]. However, we will turn the above result into a uniform one and the improvement obtained using Platt and Trudgian’s result is not clear and would make the following exposition longer and more complicated. We also note that another way to improve the result could be using the improved zero-free region for the Riemann zeta function given in [Mossinghoff]. We now provide some useful bounds on li(x)\textrm{li}(x).

Lemma 4.1.

For x2x\geq 2 we have

li(x)xlogx(1+1logx).\textrm{li}(x)\geq\frac{x}{\log x}\left(1+\frac{1}{\log x}\right).
Proof.

By repeatedly integrating (12) by parts, we have

li(x)=xlogx+xlog2x+0x2ln3y𝑑y,\textrm{li}(x)=\frac{x}{\log x}+\frac{x}{\log^{2}x}+\int_{0}^{x}\frac{2}{\ln^{3}y}dy,

and the result follows by observing that the last integral is positive for x2x\geq 2. ∎

From Lemma 5.9 [Bennett] we have, for x1865x\geq 1865

(14) li(x)xlogx(1+32logx)+li(2).\textrm{li}(x)\leq\frac{x}{\log x}\left(1+\frac{3}{2\log x}\right)+\textrm{li}(2).

We can now prove the main lemma.

Lemma 4.2.

For all x2x\geq 2 we have

(15) |π(x)li(x)|0.4897xlogx,\displaystyle|\pi(x)-\textrm{li}(x)|\leq 0.4897\frac{x}{\log x},
(16) |π(x)li(x)|1.3597xlog2x,\displaystyle|\pi(x)-\textrm{li}(x)|\leq 1.3597\frac{x}{\log^{2}x},

and

(17) |π(x)li(x)|0.1522xexp(logx6.455).\displaystyle|\pi(x)-\textrm{li}(x)|\leq 0.1522x\exp\left(-\sqrt{\frac{\log x}{6.455}}\right).
Proof.

We first prove (15) and (16). For 2x1052\leq x\leq 10^{5}, we obtain the result by computation. Assuming x105x\geq 10^{5}, we obtain the result using (11), Lemma (4.1), and (14). Now, we prove (17). For 2x1032\leq x\leq 10^{3}, we obtain the result by computation. Assuming x103x\geq 10^{3} we obtain the result using (13). ∎

Let ff be a 2π2\pi-periodic function of bounded variation on [0,2π]\left[0,2\pi\right], writing S(f):=supt|f(t)|S(f):=\sup_{t}\lvert f(t)\rvert, V(f):=02π|d{f(t)}|V(f):=\int_{0}^{2\pi}\!\left|d\{f(t)\}\right|, we can now prove the following results. Assuming w>1w>1, by (15) we obtain

(18) ||π(x)li(x)|f(τlogt)t|wz0.9794logwS(f).\displaystyle\left|\frac{|\pi(x)-\textrm{li}(x)|f(\tau\log t)}{t}\right|_{w}^{z}\leq\frac{0.9794}{\log w}S(f).

and, by (16),

(19) |wz|π(x)li(x)|f(τlogt)t2𝑑t|1.3597logwS(f).\displaystyle\left|\int_{w}^{z}\frac{|\pi(x)-\textrm{li}(x)|f(\tau\log t)}{t^{2}}dt\right|\leq\frac{1.3597}{\log w}S(f).

By (17) we obtain

(20) |wzR(t)td{f(τlogt)}|0.1522τlogwτlogzexp(v6.455τ)|df(v)|\left|\int_{w}^{z}\!\frac{R(t)}{t}d\{f(\tau\log{t})\}\right|\leq 0.1522\int_{\tau\log{w}}^{\tau\log{z}}\exp\left(-\sqrt{\frac{v}{6.455\tau}}\right)\,\left|df(v)\right|
0.1522τlogwτlogw+2πk=0exp(v+2πk6.455τ)|df(v)|\leq 0.1522\int_{\tau\log{w}}^{\tau\log{w}+2\pi}\!\sum_{k=0}^{\infty}\exp\left(-\sqrt{\frac{v+2\pi k}{6.455\tau}}\right)\,\left|df(v)\right|
0.1522V(f)k=0exp(τlogw+2πk6.455τ).\leq 0.1522V(f)\sum_{k=0}^{\infty}\exp\left(-\sqrt{\frac{\tau\log w+2\pi k}{6.455\tau}}\right).

We focus on the two following cases. For 0<τ10<\tau\leq 1, w=exp(cτ)w=\exp(\frac{c}{\tau}), with c1c\geq 1, and

l(c,τ,x):=exp(c+2πk6.455τ),l(c,\tau,x):=\exp\left(-\sqrt{\frac{c+2\pi k}{6.455\tau}}\right),

we obtain

(21) k=0l(c,τ,k)k=0k1l(c,τ,k)+k1l(c,τ,x)𝑑x\sum_{k=0}^{\infty}l(c,\tau,k)\leq\sum_{k=0}^{k_{1}}l(c,\tau,k)+\int_{k_{1}}^{\infty}l(c,\tau,x)dx
k=0k1l(c,τ,k)+l(c,τ,k1)6.4552πk1+c+6.455π=Ok1,c(1),\leq\sum_{k=0}^{k_{1}}l(c,\tau,k)+l(c,\tau,k_{1})\frac{\sqrt{6.455}\sqrt{2\pi k_{1}+c}+6.455}{\pi}=O_{k_{1},c}(1),

where the Ok1,c(1)O_{k_{1},c}(1) will be computed later, optimizing on k1k_{1} and cc. For τ1\tau\geq 1,

(22) logw=(1+ϵ)6.455log2(τ+3),\log w=(1+\epsilon)6.455\log^{2}(\tau+3),
h(ϵ,τ,x):=exp((1+ϵ)log2(τ+3)+2πx6.455τ),h(\epsilon,\tau,x):=\exp\left(-\sqrt{(1+\epsilon)\log^{2}(\tau+3)+\frac{2\pi x}{6.455\tau}}\right),

with ϵ>0\epsilon>0, we obtain

(23) k=0h(ϵ,τ,k)k=0k2h(ϵ,τ,k)+k2h(ϵ,τ,x)𝑑x\sum_{k=0}^{\infty}h(\epsilon,\tau,k)\leq\sum_{k=0}^{k_{2}}h(\epsilon,\tau,k)+\int_{k_{2}}^{\infty}h(\epsilon,\tau,x)dx\leq
k=0k2h(ϵ,τ,k)+h(ϵ,τ,k2)6.455τ2πk2+τ(1+ϵ)6.455log2(τ+3)+6.455τπ=Oϵ,k2(1),\sum_{k=0}^{k_{2}}h(\epsilon,\tau,k)+h(\epsilon,\tau,k_{2})\cdot\frac{\sqrt{6.455\tau}\sqrt{2\pi k_{2}+\tau(1+\epsilon)6.455\log^{2}(\tau+3)}+6.455\tau}{\pi}=O_{\epsilon,k_{2}}(1),

where the Oϵ,k2(1)O_{\epsilon,k_{2}}(1) will be computed later optimizing on k2k_{2} and ϵ\epsilon.
The above upper bounds (21) and (23) will be used in the next section to prove an explicit version of Lemma III.4.13 of [tenenbaum2015]. It is interesting to note that within this non-explicit result, a stronger version of (13) was used, to assure that (21) and (23) would converge for any w0w\geq 0. As there is no explicit version of this stronger PNT, we have that the two series converge only for certain values of ww. This will come with a loss in a term in Lemma 4.7, and therefore balancing it with the above sums will be fundamental.

4.2. Some useful lemmas

The bulk of the proof of Theorem 1.5 can be contained in the following lemmas, which encapsulate explicit versions of Lemma III.4.13 of [tenenbaum2015].

Lemma 4.3.

Let ff be a 2π2\pi-periodic function of bounded variation on [0,2π]\left[0,2\pi\right] with mean value

f¯:=12π02πf(t)𝑑t.\overline{f}:=\frac{1}{2\pi}\int_{0}^{2\pi}\!f(t)\,dt.

For all real numbers τ\tau, ww, zz such that τ0\tau\neq 0, 1<w<z1<w<z, we have

(24) w<pz1pf(τlogp)=f¯log(logzlogw)+Eτ(w),\sum_{w<p\leq z}\frac{1}{p}f(\tau\log{p})=\overline{f}\log\left(\frac{\log{z}}{\log{w}}\right)+E_{\tau}(w),

where, writing S(f):=supt|f(t)|S(f):=\sup_{t}\lvert f(t)\rvert, V(f):=02π|d{f(t)}|V(f):=\int_{0}^{2\pi}\!\left|d\{f(t)\}\right|. For 0<|τ|10<|\tau|\leq 1, w=exp(cτ)w=\exp(\frac{c}{\tau})

(25) |Eτ(w)|(π2c+0.1522Ok1,c(1))V(f)+2.3391cS(f),\left|E_{\tau}(w)\right|\leq\left(\frac{\pi}{2c}+0.1522O_{k_{1},c}(1)\right)V(f)+\frac{2.3391}{c}S(f),

with Ok1,c(1)O_{k_{1},c}(1) defined in (21), while for |τ|1|\tau|\geq 1, w=exp((1+ϵ)6.455log2(τ+3))w=\exp((1+\epsilon)6.455\log^{2}(\tau+3)), with ϵ>0\epsilon>0,

(26) |Eτ(w)|(π21τlogw+0.1522Ok2,ϵ(1))V(f)+2.3391(1+ϵ)6.455log2(τ+3)S(f),\left|E_{\tau}(w)\right|\leq\left(\frac{\pi}{2}\frac{1}{\tau\log{w}}+0.1522O_{k_{2},\epsilon}(1)\right)V(f)+\frac{2.3391}{(1+\epsilon)6.455\log^{2}(\tau+3)}S(f),

with Ok2,ϵ(1)O_{k_{2},\epsilon}(1) defined in (23).

Proof.

It is sufficient to prove this for τ>0\tau>0. Define R(t):=π(t)li(t)R(t):=\pi(t)-\textrm{li}(t). By partial summation, we have

(27) w<pz1pf(τlogp)\displaystyle\sum_{w<p\leq z}\frac{1}{p}f(\tau\log{p}) =wzf(τlogt)tlogt𝑑t+R(t)f(τlogt)t|wzwzR(t)d(f(τlogt)t)\displaystyle=\int_{w}^{z}\!\frac{f(\tau\log{t})}{t\log{t}}\,dt+\left.\frac{R(t)f(\tau\log{t})}{t}\right|_{w}^{z}-\int_{w}^{z}\!R(t)\,d\left(\frac{f(\tau\log{t})}{t}\right)
=f¯log(logzlogw)+τlogwτlogz(f(t)f¯)dtt+R(t)f(τlogt)t|wz\displaystyle=\overline{f}\log\left(\frac{\log{z}}{\log{w}}\right)+\int_{\tau\log{w}}^{\tau\log{z}}\!\left(f(t)-\overline{f}\right)\frac{dt}{t}+\left.\frac{R(t)f(\tau\log{t})}{t}\right|_{w}^{z}
wzR(t)td{f(τlogt)}+wzR(t)f(τlogt)t2𝑑t.\displaystyle-\int_{w}^{z}\!\frac{R(t)}{t}d\{f(\tau\log{t})\}+\int_{w}^{z}\!\frac{R(t)f(\tau\log{t})}{t^{2}}dt.

For the second term in (27), we have from Equation 3.6 of [hall1988] that, for any real aa and bb,

(28) |ab(f(t)f¯)𝑑t|π4V(f).\left|\int_{a}^{b}\!\left(f(t)-\overline{f}\right)\,dt\right|\leq\frac{\pi}{4}V(f).

By the second mean value theorem for integrals, there exists a c(τlogw,τlogz]c\in(\tau\log{w},\tau\log{z}] so that

(29) τlogwτlogz(f(t)f¯)dtt=1τlogwτlogwc(f(t)f¯)𝑑t+1τlogzcτlogz(f(t)f¯)𝑑t.\int_{\tau\log{w}}^{\tau\log{z}}\!\left(f(t)-\overline{f}\right)\frac{dt}{t}=\frac{1}{\tau\log{w}}\int_{\tau\log{w}}^{c}(f(t)-\overline{f})dt+\frac{1}{\tau\log{z}}\int_{c}^{\tau\log{z}}(f(t)-\overline{f})dt.

Combining (28) and (29), we determine

(30) |τlogwτlogz(f(t)f¯)dtt|π2V(f)τlogw.\left|\int_{\tau\log{w}}^{\tau\log{z}}\!\left(f(t)-\overline{f}\right)\frac{dt}{t}\right|\leq\frac{\pi}{2}\frac{V(f)}{\tau\log{w}}.

The third term was previously estimated in (18), the fourth in (20), (21) and (23), and the fifth in (19). Combining these results together, we have (25) and (26). ∎

Recall Mertens’ second theorem in the following forms.

Proposition 4.4.

Let x>1x>1. We have

px1p=loglogx+M+M(x),\sum_{p\leq x}\frac{1}{p}=\log{\log{x}}+M+M^{\prime}(x),

where M0.2614M\approx 0.2614\ldots and

|M(x)|1log2(x).\lvert M^{\prime}(x)\rvert\leq\frac{1}{\log^{2}(x)}.
Proof.

This is the Corollary to Theorem 5 in [rosser1962]. ∎

Proposition 4.5.

Let x2x\geq 2. We have

(31) loglogx+0.2614px1ploglogx+0.8666.\log{\log{x}}+0.2614\leq\sum_{p\leq x}\frac{1}{p}\leq\log{\log{x}}+0.8666.
Proof.

The bounds follow from Theorem 5 in [rosser1962] and some simple computations. Note that the upper bound is optimal, with equality occurring at x=2x=2. ∎

We also introduce a helpful estimate.

Proposition 4.6.

Let x>1x>1. We have

pxlog2pp(1+108)log2x2.\sum_{p\leq x}\frac{\log^{2}{p}}{p}\leq(1+10^{-8})\frac{\log^{2}{x}}{2}.
Proof.

For 1<x<3559911<x<355991, one may verify that

pxlog2pplog2x2.\sum_{p\leq x}\frac{\log^{2}{p}}{p}\leq\frac{\log^{2}{x}}{2}.

When x355991x\geq 355991, we begin by applying partial summation to the sum in question

(32) pxlog2pp\displaystyle\sum_{p\leq x}\frac{\log^{2}{p}}{p} =π(x)log2xx+2355991π(t)(log2t2logtt2)𝑑t\displaystyle=\pi(x)\frac{\log^{2}{x}}{x}+\int_{2}^{355991}\pi(t)\left(\frac{\log^{2}{t}-2\log{t}}{t^{2}}\right)dt
(33) +355991xπ(t)(log2t2logtt2)𝑑t.\displaystyle+\int_{355991}^{x}\pi(t)\left(\frac{\log^{2}{t}-2\log{t}}{t^{2}}\right)dt.

One may compute the first integral exactly and find that it is bounded by 65.204. For the other instances of π(t)\pi(t), it is suitable to use [dusart1998]*Theorem 1.10.7, which states that, for t355991t\geq 355991,

(34) π(t)tlogt(1+1logt+2.51log2t).\pi(t)\leq\frac{t}{\log{t}}\left(1+\frac{1}{\log{t}}+\frac{2.51}{\log^{2}{t}}\right).

Taking (34) in (32) and simplifying, one arrives at

pxlog2pplog2x2(1+ϵ(x)),\sum_{p\leq x}\frac{\log^{2}{p}}{p}\leq\frac{\log^{2}{x}}{2}\left(1+\epsilon(x)\right),

where

ϵ(x)1.02loglogxlog2x8.808log2x+15.06log3x.\epsilon(x)\leq\frac{1.02\log\log{x}}{\log^{2}{x}}-\frac{8.808}{\log^{2}{x}}+\frac{15.06}{\log^{3}{x}}.

We observe that ϵ(x)<0\epsilon(x)<0 until x>ee8.634x>e^{e^{8.634}}, and then ϵ(x)\epsilon(x) takes a maximum at x0ee9.134x_{0}\approx e^{e^{9.134}}. At this maximum, ϵ(x0)108\epsilon(x_{0})\leq 10^{-8}, establishing the result. ∎

We can now obtain an important explicit estimate.

Lemma 4.7.

Define f(t):=|cos(t)K|f(t):=\lvert\cos(t)-K\rvert, where KK is defined in Theorem 1.5. Uniformly for 0<α1,τ0<\alpha\leq 1,\tau\in\mathbb{R}, we have

(35) pexp(1/α)f(τlogp)p(1K)log1α+(2+2K)loglog(|τ|+3)+C0,\sum_{p\leq\exp(\nicefrac{{1}}{{\alpha}})}\frac{f(\tau\log{p})}{p}\leq(1-K)\log{\frac{1}{\alpha}}+(2+2K)\log{\log(\lvert\tau\rvert+3)}+C_{0},

where C0=7.28C_{0}=7.28.

Proof.

We may assume τ>0\tau>0. Start by considering τα\tau\leq\alpha. We observe that the Taylor expansion of cosx\cos{x} yields

(36) |f(τlogp)(1K)|12(τlogp)2.\lvert f(\tau\log{p})-(1-K)\rvert\leq\frac{1}{2}(\tau\log{p})^{2}.

Hence,

(37) pwf(τlogp)p(1K)pw1p+τ22pwlog2pp.\sum_{p\leq w}\frac{f(\tau\log{p})}{p}\leq(1-K)\sum_{p\leq w}\frac{1}{p}+\frac{\tau^{2}}{2}\sum_{p\leq w}\frac{\log^{2}{p}}{p}.

Applying Propositions 4.4 and 4.6 to (37), we obtain

(38) pexp(1/α)f(τlogp)p(1K)(log1α+M+M(exp(1/α)))+(1+108)4(τα)2.\sum_{p\leq\exp(\nicefrac{{1}}{{\alpha}})}\frac{f(\tau\log{p})}{p}\leq(1-K)\left(\log{\frac{1}{\alpha}}+M+M^{\prime}(\exp(\nicefrac{{1}}{{\alpha}}))\right)+\frac{(1+10^{-8})}{4}\left(\frac{\tau}{\alpha}\right)^{2}.

Let c>1c>1 be a constant that will be chosen later. When τcα1\tfrac{\tau}{c}\leq\alpha\leq 1, we have

(39) pexp(1/α)f(τlogp)p(1K)log1α+(1K)(M+1)+(1+108)c24.\sum_{p\leq\exp(\nicefrac{{1}}{{\alpha}})}\frac{f(\tau\log{p})}{p}\leq(1-K)\log{\frac{1}{\alpha}}+(1-K)(M+1)+\frac{(1+10^{-8})c^{2}}{4}.

Now, we consider α<τc1\alpha<\tfrac{\tau}{c}\leq 1. If w=exp(cτ)w=\exp(\frac{c}{\tau}), then (37) yields

(40) pwf(τlogp)p\displaystyle\sum_{p\leq w}\frac{f(\tau\log{p})}{p} (1K)(loglogw+M+M(w))+(1+108)4\displaystyle\leq(1-K)\left(\log{\log{w}}+M+M^{\prime}(w)\right)+\frac{(1+10^{-8})}{4}
(1K)loglogw+(1K)(M+1)+(1+108)c24.\displaystyle\leq(1-K)\log{\log{w}}+(1-K)(M+1)+\frac{(1+10^{-8})c^{2}}{4}.

Noting that f¯=1K\overline{f}=1-K, S(f)=1+KS(f)=1+K, and V(f)=4V(f)=4, we can now take z=exp(α1)z=\exp(\alpha^{-1}) in Lemma 4.3. This yields

(41) w<pzf(τlogp)p(1K)(log1αloglogw)+|Eτ(w)|,\sum_{w<p\leq z}\frac{f(\tau\log{p})}{p}\leq(1-K)\left(\log{\frac{1}{\alpha}}-\log{\log{w}}\right)+\lvert E_{\tau}(w)\rvert,

where Eτ(w)E_{\tau}(w) is taken from (25). Combining (40) and (41) gives

(42) pexp(1/α)f(τlogp)p(1K)log1α+(1K)(M+1)+(1+108)c24+|Eτ(w)|.\sum_{p\leq\exp(\nicefrac{{1}}{{\alpha}})}\frac{f(\tau\log{p})}{p}\leq(1-K)\log{\frac{1}{\alpha}}+(1-K)(M+1)+\frac{(1+10^{-8})c^{2}}{4}+\lvert E_{\tau}(w)\rvert.

For our choice of cc, we focus on minimizing (1+108)c24+|Eτ(w)|\frac{(1+10^{-8})c^{2}}{4}+\lvert E_{\tau}(w)\rvert. Taking k1=0k_{1}=0, we find that the best choice of cc is 2.67 and this leads to (42) becoming

(43) pexp(α1)f(τlogp)p(1K)log1α+7.28.\sum_{p\leq\exp(\alpha^{-1})}\frac{f(\tau\log{p})}{p}\leq(1-K)\log{\frac{1}{\alpha}}+7.28.

If |τ|>1\lvert\tau\rvert>1, we first consider the case that (1+ϵ)6.455log2(|τ|+3)1α(1+\epsilon)6.455\log^{2}(\lvert\tau\rvert+3)\leq\tfrac{1}{\alpha}. Taking ww as in (22) and z=exp(α1)z=\exp(\alpha^{-1}) in Lemma 4.3, we obtain

(44) w<pzf(τlogp)p(1K)(log(1/α)loglogw)+Eτ(w),\sum_{w<p\leq z}\frac{f(\tau\log{p})}{p}\leq(1-K)\left(\log(\nicefrac{{1}}{{\alpha}})-\log{\log{w}}\right)+E_{\tau}(w),

where |Eτ(w)|\lvert E_{\tau}(w)\rvert is bounded in (26) (and therefore depends on choices of ϵ\epsilon and k2k_{2}). It follows trivially from Proposition 4.4 and f(τlogp)1+Kf(\tau\log{p})\leq 1+K that

(45) pwf(τlogp)p\displaystyle\sum_{p\leq w}\frac{f(\tau\log{p})}{p} (1+K)(loglogw+M+1((1+ϵ)6.455)2log4(|τ|+3)).\displaystyle\leq(1+K)\left(\log{\log{w}}+M+\frac{1}{\left((1+\epsilon)6.455\right)^{2}\log^{4}(\lvert\tau\rvert+3)}\right).

Taking (44) and (45) together, with our choice for ww, yields

(46) pexp(α1)f(τlogp)p\displaystyle\sum_{p\leq\exp(\alpha^{-1})}\frac{f(\tau\log{p})}{p} (1K)log1α+4Kloglog(|τ|+3)+2Klog((1+ϵ)6.455)\displaystyle\leq(1-K)\log{\frac{1}{\alpha}}+4K\log\log(\lvert\tau\rvert+3)+2K\log((1+\epsilon)6.455)
+(1+K)(M+1((1+ϵ)6.455)2log4(|τ|+3))+Eτ(w).\displaystyle+(1+K)\left(M+\frac{1}{\left((1+\epsilon)6.455\right)^{2}\log^{4}(\lvert\tau\rvert+3)}\right)+E_{\tau}(w).

We need to optimize the last three terms of (46) with respect to ϵ\epsilon and k2k_{2}. For fixed ϵ\epsilon and τ\tau, it appears that Ok2,ϵ(1)O_{k_{2},\epsilon}(1) as defined in (23) is decreasing in k2k_{2}, but the savings are slight for large enough k2k_{2}. Therefore, in the interest of simpler computations, we choose k2=3105k_{2}=3\cdot 10^{5}. Some rough optimization over the terms involving ϵ\epsilon in (46) shows that ϵ=3.61\epsilon=3.61 gives a relatively small maximum over these terms as a function of τ\tau. Making this choice of ϵ\epsilon and bounding the terms by their maximum in τ\tau, we determine that

(47) pexp(α1)f(τlogp)p(1K)log1α+4Kloglog(|τ|+3)+3.25.\sum_{p\leq\exp(\alpha^{-1})}\frac{f(\tau\log{p})}{p}\leq(1-K)\log{\frac{1}{\alpha}}+4K\log\log(\lvert\tau\rvert+3)+3.25.

The final case to consider is |τ|>1\lvert\tau\rvert>1 and (1+ϵ)6.455log2(|τ|+3)>1α(1+\epsilon)6.455\log^{2}(\lvert\tau\rvert+3)>\tfrac{1}{\alpha}, but in this case the sum in question is bounded by the sum estimated in (45). Given our choice of ϵ\epsilon, this implies

(48) pexp(α1)f(τlogp)p(2+2K)loglog(|τ|+3)+4.87.\sum_{p\leq\exp(\alpha^{-1})}\frac{f(\tau\log{p})}{p}\leq(2+2K)\log\log(\lvert\tau\rvert+3)+4.87.

Taking (43) as the worst case between (39), (43), (47) and (48), completes the proof.

Here is interesting to note that, as it will be clear from the following results, the constant C0C_{0} is the main contributor to the size of the constant in Theorem 1.5, and thus of δ(c)\delta(c). Thus reducing C0C_{0} would be a good starting point to improve Theorem 1.2.

Lemma 4.8.

For α[0,1]\alpha\in\left[0,1\right], define λ:=λ(α)\lambda:=\lambda(\alpha) to be the real number satisfying

pexp(α1)1g(p)p=λpexp(α1)1p.\sum_{p\leq\exp(\alpha^{-1})}\frac{1-g(p)}{p}=\lambda\sum_{p\leq\exp(\alpha^{-1})}\frac{1}{p}.

Then,

pexp(α1)g(p)p1+iτ\displaystyle\Re\sum_{p\leq\exp(\alpha^{-1})}\frac{g(p)}{p^{1+i\tau}} (1Kλ)log(1α)+(2+2K)(loglog|τ|+3)\displaystyle\leq(1-K\lambda)\log(\frac{1}{\alpha})+(2+2K)(\log{\log{\lvert\tau\rvert+3}})
+C0+(KKλ)(M+M(exp(1/α))),\displaystyle+C_{0}+(K-K\lambda)(M+M^{\prime}(\exp(\nicefrac{{1}}{{\alpha}}))),

for any τ\tau\in\mathbb{R}.

Proof.

Consider the identity

(g(p)piτ)=g(p)(cos(τlogp)K)+Kg(p)|cos(τlogp)K|=f(τlogp)+Kg(p).\Re\left(\frac{g(p)}{p^{i\tau}}\right)=g(p)(\cos(\tau\log{p})-K)+Kg(p)\leq\lvert\cos(\tau\log{p})-K\rvert=f(\tau\log{p})+Kg(p).

The definition of λ\lambda implies that

(49) pexp(α1)g(p)p=(1λ)(log1α+M+M(exp(1/α))).\sum_{p\leq\exp(\alpha^{-1})}\frac{g(p)}{p}=(1-\lambda)\left(\log{\frac{1}{\alpha}}+M+M^{\prime}(\exp(\nicefrac{{1}}{{\alpha}}))\right).

Therefore,

(pexp(α1)g(p)p1+iτ)pexp(α1)f(τlogp)p+Kpexp(1/α)g(p)p.\Re\left(\sum_{p\leq\exp(\alpha^{-1})}\frac{g(p)}{p^{1+i\tau}}\right)\leq\sum_{p\leq\exp(\alpha^{-1})}\frac{f(\tau\log{p})}{p}+K\sum_{p\leq\exp(\nicefrac{{1}}{{\alpha}})}\frac{g(p)}{p}.

The result follows by applying Lemma 4.7 and (49) to the terms above. ∎

Let F(s)F(s) be the Dirichlet series corresponding to g(n)g(n). We have the following estimate.

Lemma 4.9.

For (s)>1\Re(s)>1, we have

(50) |F(s)|exp(ν2)exp{(pg(p)ps)},\left|F(s)\right|\leq\exp(\nu_{2})\cdot\exp\left\{\Re\left(\sum_{p}\frac{g(p)}{p^{s}}\right)\right\},

where ν2=γM0.316\nu_{2}=\gamma-M\leq 0.316.

Proof.

Since g(n)g(n) is completely multiplicative, we have that

F(s)=p(1g(p)ps)1.F(s)=\prod_{p}\left(1-\frac{g(p)}{p^{s}}\right)^{-1}.

Therefore,

|F(s)|=|exp(plog(1g(p)ps))|.\left|F(s)\right|=\left|\exp\left(-\sum_{p}\log\left(1-\frac{g(p)}{p^{s}}\right)\right)\right|.

Applying the Taylor expansion of log(1x)\log(1-x) to the inside of the above sum, we obtain

(51) |F(s)|=|exp(pk=11k(g(p)ps)k)|=|exp(pg(p)ps)||exp(k=21kpg(p)kpks)|.\left|F(s)\right|=\left|\exp\left(\sum_{p}\sum_{k=1}^{\infty}\frac{1}{k}\left(\frac{g(p)}{p^{s}}\right)^{k}\right)\right|=\left|\exp\left(\sum_{p}\frac{g(p)}{p^{s}}\right)\right|\cdot\left|\exp\left(\sum_{k=2}^{\infty}\frac{1}{k}\sum_{p}\frac{g(p)^{k}}{p^{ks}}\right)\right|.

The sum over primes in the right-most term can be bounded above by the “prime” zeta function

P(s):=p1ps,P(s):=\sum_{p}\frac{1}{p^{s}},

which converges for (s)>1\Re(s)>1. Therefore, we have

(52) |k=21kpg(p)kpks||k=2P(ks)k|k=2P(k)k=γM.\left|\sum_{k=2}^{\infty}\frac{1}{k}\sum_{p}\frac{g(p)^{k}}{p^{ks}}\right|\leq\left|\sum_{k=2}^{\infty}\frac{P(ks)}{k}\right|\leq\sum_{k=2}\frac{P(k)}{k}=\gamma-M.

The equality in (52) follows from the definition of BB, since

γM=plog(11p)1p=pk=21kpk=k=2P(k)k.\gamma-M=\sum_{p}-\log\left(1-\frac{1}{p}\right)-\frac{1}{p}=\sum_{p}\sum_{k=2}^{\infty}\frac{1}{kp^{k}}=\sum_{k=2}^{\infty}\frac{P(k)}{k}.

Inserting (52) into (51) yields the desired result. ∎

The following result will be used in bounding the sum over the primes in Lemma 4.9.

Lemma 4.10.

Uniformly for 0<α10<\alpha\leq 1, we have

exp(α1)1p1+α0.9235=:v1.\sum_{\exp(\alpha^{-1})}^{\infty}\frac{1}{p^{1+\alpha}}\leq 0.9235=:v_{1}.
Proof.

By partial summation we have

exp(α1)1p1+α=π(exp(α1))exp((1+α1))+(1+α)exp(α1)π(x)x2+α𝑑x.\sum_{\exp(\alpha^{-1})}^{\infty}\frac{1}{p^{1+\alpha}}=-\pi(\exp(\alpha^{-1}))\exp(-(1+\alpha^{-1}))+(1+\alpha)\int_{\exp(\alpha^{-1})}^{\infty}\frac{\pi(x)}{x^{2+\alpha}}dx.

Using (3.6) from [rosser1962], we then obtain

exp(α1)1p1+α(1+α)1.2551exp(α1)1x1+αlogx𝑑x(1+α)1.2551e,\sum_{\exp(\alpha^{-1})}^{\infty}\frac{1}{p^{1+\alpha}}\leq(1+\alpha)1.2551\int_{\exp(\alpha^{-1})}^{\infty}\frac{1}{x^{1+\alpha}\log x}dx\leq\frac{(1+\alpha)1.2551}{e},

the result now follows taking the maximum over α(0,1]\alpha\in(0,1]. ∎

Note that using a better explicit version of the PNT could improve the above result, as this improvement appears to be minor we decided, for the sake of simplicity, for the above version.

4.3. Proof of Theorem 1.5

Consider F(1+α+it)F(1+\alpha+it), where 0<α10<\alpha\leq 1 and tt\in\mathbb{R}. By Lemma 4.9, we have

(53) |F(1+α+it)|exp(ν2)exp{(pg(p)p1+α+it)}.\left|F(1+\alpha+it)\right|\leq\exp(\nu_{2})\cdot\exp\left\{\Re\left(\sum_{p}\frac{g(p)}{p^{1+\alpha+it}}\right)\right\}.

We break the sum over primes in (53) at exp(α1)\exp(\alpha^{-1}), yielding the bound

(54) |(pg(p))p1+α+it)|\displaystyle\left|\Re\left(\sum_{p}\frac{g(p))}{p^{1+\alpha+it}}\right)\right| =\displaystyle= |(pexp(α1)g(p)p1+α+it)+(p>exp(α1)g(p)p1+α+it)|\displaystyle\left|\Re\left(\sum_{p\leq\exp(\alpha^{-1})}\frac{g(p)}{p^{1+\alpha+it}}\right)+\Re\left(\sum_{p>\exp(\alpha^{-1})}\frac{g(p)}{p^{1+\alpha+it}}\right)\right|
\displaystyle\leq |pexp(α1)g(p)p1+α+it|+|p>exp(α1)1p1+α|.\displaystyle\left|\sum_{p\leq\exp(\alpha^{-1})}\frac{g(p)}{p^{1+\alpha+it}}\right|+\left|\sum_{p>\exp(\alpha^{-1})}\frac{1}{p^{1+\alpha}}\right|.

Simply ignoring pαp^{\alpha} in the first sum on the right of (54) and applying Lemma 4.10 to the second sum, we obtain

(55) |(pg(p)p1+α+it)||pexp(α1)g(p)p1+it|+ν1.\left|\Re\left(\sum_{p}\frac{g(p)}{p^{1+\alpha+it}}\right)\right|\leq\left|\sum_{p\leq\exp(\alpha^{-1})}\frac{g(p)}{p^{1+it}}\right|+\nu_{1}.

Now, we may apply Lemma 4.8 to the remaining sum in (55) and place this estimate in (53) to establish

(56) |F(1+α+iτ)|exp(C0+ν1+ν2+(KKλ)(M+1)).\lvert F(1+\alpha+i\tau)\rvert\leq\exp(C_{0}+\nu_{1}+\nu_{2}+(K-K\lambda)(M+1)).

Write C:=C0+ν1+ν2+K(M+1)C:=C_{0}+\nu_{1}+\nu_{2}+K(M+1). Recalling Theorem 3.2, we see that (56) implies

H2(α)exp(2C)α2Kλ2klog2+2K(|k|+4)(k1/2)2+1.H^{2}(\alpha)\leq\exp(2C)\alpha^{2K\lambda-2}\sum_{k\in\mathbb{Z}}\frac{\log^{2+2K}(\lvert k\rvert+4)}{(k-\nicefrac{{1}}{{2}})^{2}+1}.

The integer sum above is a computable constant. Calling its square root ν3\nu_{3}, we have

(57) H(α)ν3exp(C)αKλ1,H(\alpha)\leq\nu_{3}\exp(C)\alpha^{K\lambda-1},

and note that ν34.36\nu_{3}\leq 4.36. Now, if Λ:=Λ(x)\Lambda:=\Lambda(x) is defined by

(58) px1g(p)p=Λpx1p,\sum_{p\leq x}\frac{1-g(p)}{p}=\Lambda\sum_{p\leq x}\frac{1}{p},

then, for 1/logxα1\nicefrac{{1}}{{\log{x}}}\leq\alpha\leq 1,

(59) pexp(α1)1g(p)p\displaystyle\sum_{p\leq\exp(\alpha^{-1})}\frac{1-g(p)}{p} px1g(p)pexp(α1)<px2p\displaystyle\geq\sum_{p\leq x}\frac{1-g(p)}{p}-\sum_{\exp(\alpha^{-1})<p\leq x}\frac{2}{p}
(Λ2)px1p+2pexp(α1)1p.\displaystyle\geq(\Lambda-2)\sum_{p\leq x}\frac{1}{p}+2\sum_{p\leq\exp(\alpha^{-1})}\frac{1}{p}.

Recalling the definition of λ\lambda in Lemma 4.8 and using Proposition 4.5 we easily obtain,

αλα2(logx)2Λe3(0.8670.261)α2(logx)2Λe1.82,\alpha^{\lambda}\leq\alpha^{2}(\log{x})^{2-\Lambda}e^{3(0.867-0.261)}\leq\alpha^{2}(\log{x})^{2-\Lambda}e^{1.82},

which, when applied to (57) implies

(60) H(α)ν3exp(C)e1.82Kα2K1(logx)(2Λ)K.H(\alpha)\leq\nu_{3}\exp(C)e^{1.82K}\alpha^{2K-1}(\log{x})^{(2-\Lambda)K}.

Taking this estimate for H(α)H(\alpha) in Theorem 3.2, we find that

(61) |G(x)|(3.14ν3exp(C)e1.82K+o(1))x(logx)(2Λ)Klogx1/logx1α2K2𝑑α+𝒪x0(xlogx)\displaystyle\lvert G(x)\rvert\leq\left(3.14\nu_{3}\exp(C)e^{1.82K}+o\left(1\right)\right)\frac{x(\log{x})^{(2-\Lambda)K}}{\log{x}}\int_{\nicefrac{{1}}{{\log{x}}}}^{1}\!\alpha^{2K-2}\,d\alpha+\mathcal{O}_{x_{0}}\left(\frac{x}{\sqrt{\log{x}}}\right)
=(3.14ν3exp(C)e1.82K12K+o(1))x(logx)(2Λ)Klogx(logx1KΛlogx2Λ)+𝒪x0(xlogx)\displaystyle=\left(\frac{3.14\nu_{3}\exp(C)e^{1.82K}}{1-2K}+o\left(1\right)\right)\frac{x(\log{x})^{(2-\Lambda)K}}{\log{x}}\left(\log{x}^{1-K\Lambda}-\log{x}^{2-\Lambda}\right)+\mathcal{O}_{x_{0}}\left(\frac{x}{\sqrt{\log{x}}}\right)
(a+o(1))xlogx(logx)12K+(2Λ)K+𝒪x0(xlogx)\displaystyle\leq(\textbf{a}+o\left(1\right))\frac{x}{\log{x}}(\log{x})^{1-2K+(2-\Lambda)K}+\mathcal{O}_{x_{0}}\left(\frac{x}{\sqrt{\log{x}}}\right)
=(a+o(1))x(logx)ΛK+𝒪x0(xlogx).\displaystyle=(\textbf{a}+o\left(1\right))x(\log{x})^{-\Lambda K}+\mathcal{O}_{x_{0}}\left(\frac{x}{\sqrt{\log{x}}}\right).

Here, a5.5105\textbf{a}\approx 5.5\cdot 10^{5} is the collected constant term up to this point. It follows from (58) that

Λ=px1g(p)pΛMΛM(x)loglogx,\Lambda=\frac{\sum_{p\leq x}\frac{1-g(p)}{p}-\Lambda M-\Lambda M^{\prime}(x)}{\log\log{x}},

and that for x<2x<2, we can take Λ=0\Lambda=0. For x2x\geq 2, we have Λ2\Lambda\leq 2. Furthermore, one may verify that |M(x)|<0.6051\lvert M^{\prime}(x)\rvert<0.6051 for 2x<42\leq x<4 and |M(x)|1ln24<0.6051\lvert M^{\prime}(x)\rvert\leq\tfrac{1}{\ln^{2}{4}}<0.6051 for x>4x>4. Therefore, we may write

(62) a(logx)ΛK\displaystyle\textbf{a}(\log{x})^{-\Lambda K} =aexp(KΛM)exp(KΛM(x))exp(Kpx1g(p)p)\displaystyle=\textbf{a}\exp(K\Lambda M)\exp\left(K\Lambda M^{\prime}(x)\right)\exp\left(-K\sum_{p\leq x}\frac{1-g(p)}{p}\right)
aexp(2KM+1.21K)exp(Kpx1g(p)p)\displaystyle\leq\textbf{a}\exp\left(2KM+{1.21K}\right)\exp\left(-K\sum_{p\leq x}\frac{1-g(p)}{p}\right)
=9.75105exp(Kpx1g(p)p).\displaystyle=9.75\cdot 10^{5}\exp\left(-K\sum_{p\leq x}\frac{1-g(p)}{p}\right).

Taking (62) in (61) completes the proof.

Acknowledgments

We would like to thank our supervisor, Tim Trudgian, for suggesting this topic to us and for his insightful comments. We are also grateful to Leo Goldmakher for his comments on an earlier version of this article and for bringing [Mangerel] to our attention.

References