This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Explicit error term of the elliptic asymptotics for the first Painlevé transcendents

Shun Shimomura Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522 Japan [email protected]
Abstract.

For the first Painlevé transcendents Kitaev established an asymptotic representation in terms of the Weierstrass pe-function in cheese-like strips tending along generic directions near the point at infinity. The error term of this asymptotic expression is presented by an explicit formula, which leads to the error bound of exponent 1-1.

2020 Mathematics Subject Classification. 34M55, 34M56, 34M40, 34M60, 33E05.

Key words and phrases. Boutroux ansatz; first Painlevé transcendents; elliptic asymptotics; monodromy data; Weierstrass pe-function.

1. Introduction

The first Painlevé equation

y′′=6y2+xy^{\prime\prime}=6y^{2}+x (1.1)

governs the isomonodromy deformation of the two-dimensional linear system

dΨdξ=\displaystyle\frac{d\Psi}{d\xi}= ((4ξ4+x+2y2)σ3i(4yξ2+x+2y2)σ2(2yξ+12ξ1)σ1)Ψ,\displaystyle\Bigl{(}(4\xi^{4}+x+2y^{2})\sigma_{3}-i(4y\xi^{2}+x+2y^{2})\sigma_{2}-(2y^{\prime}\xi+\tfrac{1}{2}\xi^{-1})\sigma_{1}\Bigr{)}\Psi, (1.2)
σ1=(0110),σ2=(0ii0),σ3=(1001)\displaystyle\sigma_{1}=\begin{pmatrix}0&1\\ 1&0\end{pmatrix},\quad\sigma_{2}=\begin{pmatrix}0&-i\\ i&0\end{pmatrix},\quad\sigma_{3}=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}

([8], [10], [3]). System (1.2) admits the canonical solutions Ψk(ξ)\Psi_{k}(\xi) (k)(k\in\mathbb{Z}) represented by Ψk(ξ)=(I+O(ξ1))exp((45ξ5+xξ)σ3)\Psi_{k}(\xi)=(I+O(\xi^{-1}))\exp((\tfrac{4}{5}\xi^{5}+x\xi)\sigma_{3}) as ξ\xi\to\infty through the sector 3π/10+πk/5<argξ<π/10+πk/5-3\pi/{10}+\pi k/5<\arg\xi<\pi/{10}+\pi k/5, and the Stokes matrices

S2l+1=(1s2l+101),S2l=(10s2l1),l=0,1,2,S_{2l+1}=\begin{pmatrix}1&s_{2l+1}\\ 0&1\end{pmatrix},\quad S_{2l}=\begin{pmatrix}1&0\\ s_{2l}&1\end{pmatrix},\quad l=0,1,2,\ldots

are defined by Ψk+1(ξ)=Ψk(ξ)Sk\Psi_{k+1}(\xi)=\Psi_{k}(\xi)S_{k}. Each solution of (1.1) is parametrised by (sj)1j5(s_{j})_{1\leq j\leq 5} on the manifold of monodromy data for (1.2), which is a two-dimensional complex manifold in 5\mathbb{C}^{5} given by S1S2S3S4S5=iσ2S_{1}S_{2}S_{3}S_{4}S_{5}=i\sigma_{2} (see [10], [12], [14], [15]). For a general solution thus parametrised, Kapaev [10] obtained asymptotic representations as xx\to\infty along the Stokes rays argx=π+2πk/5\arg x=\pi+2\pi k/5 (k=0,±1,±2)(k=0,\pm 1,\pm 2), and subsequent studies on related connection formulas and the Stokes phenomenon are found in [21], [22], [11], [20], [1], and [16], [7] for the τ\tau-function. Along generic directions the Boutroux ansatz [2] suggests the asymptotic behaviour of a general solution of (1.1) expressed by the Weierstrass \wp-function. An approach to such an expression was made by Joshi and Kruskal [9] by the method of multiple-scale expansions, the labelling of the solution by (sj)(s_{j}) not being considered. Based on the isomonodromy deformation of (1.2), using WKB analysis, Kitaev [14], [15], and Kapaev and Kitaev [12] presented the elliptic asymptotic representation of a general solution of (1.1) as xx\to\infty through a cheese-like strip along any direction in the sector 3π/5<ϕ2πk/5<π,3\pi/5<\phi-2\pi k/5<\pi, k.k\in\mathbb{Z}. For k=2k=-2 the asymptotic result is described as follows [14, p. 593, Section 8], [15, Theorem 2], [12, Theorem 2], in which ω𝐚,\omega_{\mathbf{a}}, ω𝐛\omega_{\mathbf{b}} and AϕA_{\phi} are, respectively, the periods of an elliptic curve and a unique solution of the Boutroux equations explained in (1) at the end of this section.

Theorem A.

Let y(x)y(x) be a solution of (1.1) corresponding to the monodromy data (sj)1j5(s_{j})_{1\leq j\leq 5} such that s1s40,s_{1}s_{4}\not=0, and let ϕ\phi be such that |ϕ|<π/5.|\phi|<\pi/5. Then for any real numbers c>0c>0 and ε>0\varepsilon>0 there exists a δ>0\delta>0 such that

y(x)=(eiϕx)1/2((eiϕtt0;g2(ϕ),g3(ϕ))+O(tδ)),t=45(eiϕx)5/4,y(x)=(e^{-i\phi}x)^{1/2}\left(\wp(e^{i\phi}t-t_{0};g_{2}(\phi),g_{3}(\phi))+O(t^{-\delta})\right),\quad t=\tfrac{4}{5}(e^{-i\phi}x)^{5/4}, (1.3)

as xx\to\infty through 𝒟(sj)(ϕ,c,ε),\mathcal{D}_{(s_{j})}(\phi,c,\varepsilon), where

t0=12πi(ω𝐚ln(is1)+ω𝐛lns4s1),t_{0}=\frac{1}{2\pi i}\Bigl{(}\omega_{\mathbf{a}}\ln(is_{1})+\omega_{\mathbf{b}}\ln\frac{s_{4}}{s_{1}}\Bigr{)}, (1.4)

(u;g2,g3)\wp(u;g_{2},g_{3}) is the \wp-function such that (u)2=43g2g3(\wp_{u})^{2}=4\wp^{3}-g_{2}\wp-g_{3} with g2(ϕ)=2eiϕ,g_{2}(\phi)=-2e^{i\phi}, g3(ϕ)=Aϕg_{3}(\phi)=-A_{\phi}, and 𝒟(sj)(ϕ,c,ε)\mathcal{D}_{(s_{j})}(\phi,c,\varepsilon) the cheese-like strip defined by

{x=eiϕ(54t)4/5:Ret>0,|Imt|<c,|teiϕt0+mω𝐚+nω𝐛|>ε;m,n}.\bigl{\{}x=e^{i\phi}(\tfrac{5}{4}t)^{4/5}\in\mathbb{C}\,:\,\,\,\mathrm{Re\,}t>0,\,\,\,|\mathrm{Im\,}t|<c,\,\,\,|te^{i\phi}-t_{0}+m\omega_{\mathbf{a}}+n\omega_{\mathbf{b}}|>\varepsilon;\,\,\,m,n\in\mathbb{Z}\bigr{\}}.
Remark 1.1.

(1) The expression of x𝒟(sj)(ϕ,c,ε)x\in\mathcal{D}_{(s_{j})}(\phi,c,\varepsilon) (and that in Definition 2.1) is in accordance with [15, Theorem 2, (1.38)], that is, each x=eiϕ(54t)4/5𝒟(sj)(ϕ,c,ε)x=e^{i\phi}(\tfrac{5}{4}t)^{4/5}\in\mathcal{D}_{(s_{j})}(\phi,c,\varepsilon) fulfils |x|=(54|t|)4/5|x|=(\tfrac{5}{4}|t|)^{4/5} and argx=ϕ+45argt\arg x=\phi+\tfrac{4}{5}\arg t, where argt|t|1\arg t\ll|t|^{-1} as tt\to\infty, since |Imt|<c.|\mathrm{Im\,}t|<c. The 𝒟(sj)(ϕ,c,ε)\mathcal{D}_{(s_{j})}(\phi,c,\varepsilon) contains the centre line argx=ϕ.\arg x=\phi.

(2) Let 𝒮(c):={t|Ret>0,|Imt|<c}\mathcal{S}(c):=\{t\,|\,\mathrm{Re\,}t>0,|\mathrm{Im\,}t|<c\} be the strip corresponding to 𝒟(sj)(ϕ,c,ε)\mathcal{D}_{(s_{j})}(\phi,c,\varepsilon). If c>2(|ω𝐚|+|ω𝐛|)c>2(|\omega_{\mathbf{a}}|+|\omega_{\mathbf{b}}|), then there exists a string of period parallelograms {LN}N=1\{L_{N}\}_{N=1}^{\infty} such that N=1LN𝒮(c)\bigcup_{N=1}^{\infty}L_{N}\subset\mathcal{S}(c) and that, for every NN, (LN)cl(LN+1)cl(L_{N})^{\mathrm{cl}}\cap(L_{N+1})^{\mathrm{cl}} is one of [v0N,v1N][v^{N}_{0},v^{N}_{1}], [v1N,v2N][v^{N}_{1},v^{N}_{2}], [v0N,v3N],[v^{N}_{0},v^{N}_{3}], [v3N,v2N],[v^{N}_{3},v^{N}_{2}], where v0N,v^{N}_{0}, v1N=v0N+ω𝐚v^{N}_{1}=v^{N}_{0}+\omega_{\mathbf{a}}, v2N=v0N+ω𝐚+ω𝐛v^{N}_{2}=v^{N}_{0}+\omega_{\mathbf{a}}+\omega_{\mathbf{b}}, v3N=v0N+ω𝐛v^{N}_{3}=v^{N}_{0}+\omega_{\mathbf{b}} are the vertices of LNL_{N}, and (LN)cl(L_{N})^{\mathrm{cl}} denotes the closure of LNL_{N}.

(3) Practically we may suppose ε\varepsilon to be so small that, for all (m,n)2(m,n)\in\mathbb{Z}^{2}, the circles |teiϕt0+mω𝐚+nω𝐛|=ε|te^{i\phi}-t_{0}+m\omega_{\mathbf{a}}+n\omega_{\mathbf{b}}|=\varepsilon are disjoint.

The leading term of (1.3) depends on the integration constant t0=t0((sj)1j5)t_{0}=t_{0}((s_{j})_{1\leq j\leq 5}) only and the other one, which may be called the second integration constant, is hidden in the error term O(tδ)O(t^{-\delta}). Thus, in treating y(x)y(x) as a general solution, it is preferable to know the explicit error term. This high-order part is also related, say, to the τ\tau-function [15, p. 121] or to degeneration to trigonometric asymptotics [15, Section 4]. For the τ\tau-function associated with (1.1), by the method of topological recursion, Iwaki [6] obtained a conjectural full-order formal expansion yielding the elliptic expression (see also [7]).

The justification procedure for the asymptotics of y(x)y(x) [15, pp. 105–106, pp. 120–121], [13] is based on the leading terms of (3.1) and of the correction function B(ϕ,t)B(\phi,t), the pair of which should depend on both integration constants labelling the solution y(x)y(x). The second integration constant is also related to B(ϕ,t)B(\phi,t) given in the following [15, Theorem 4], where J𝐚J_{\mathbf{a}} and ϑ(z,τ)\vartheta(z,\tau) with ϑ(z,τ)=(d/dz)ϑ(z,τ)\vartheta^{\prime}(z,\tau)=(d/dz)\vartheta(z,\tau) are as in (1) and (2).

Theorem B.

Let B(ϕ,t)=t((eiϕx)3/22H(x,y(x),y(x))Aϕ)B(\phi,t)=t((e^{-i\phi}x)^{-3/2}2\mathrm{H}(x,y(x),y^{\prime}(x))-A_{\phi}), where H(x,q,p)=p2/22q3xq\mathrm{H}(x,q,p)=p^{2}/2-2q^{3}-xq is the Hamiltonian of (1.1). Then as tt\to\infty the function B(ϕ,t)B(\phi,t) is bounded uniformly on the set 𝒟(sj)(ϕ,c,ε)\mathcal{D}_{(s_{j})}(\phi,c,\varepsilon) and is given by

B(ϕ,t)=85ω𝐚(lns1s454tJ𝐚+πi+ϑϑ(1ω𝐚(teiϕt0)+ν,τ))+O(tδ),B(\phi,t)=\frac{8}{5\omega_{\mathbf{a}}}\Bigl{(}\ln\frac{s_{1}}{s_{4}}-\frac{5}{4}tJ_{\mathbf{a}}+\pi i+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{1}{\omega_{\mathbf{a}}}(te^{i\phi}-t_{0})+\nu,\tau\Bigr{)}\Bigr{)}+O(t^{-\delta}), (1.5)

ω𝐚\omega_{\mathbf{a}}, t0t_{0}, cc, ε\varepsilon and δ\delta being as in Theorem A.

It is natural to seek explicitly the error term of (1.3). In this paper we present an explicit asymptotic representation of the error term, and this formula leads to the error bound O(t1)=O(x5/4)O(t^{-1})=O(x^{-5/4}) in (1.3). The main results are stated in Theorems 2.1 and 2.2. Corollary 2.3 describes the dependence on the other integration constant β0\beta_{0} in this explicit error term. In Section 4 these results are derived from the tδt^{-\delta}-asymptotics of y(x)y(x) in Theorem A and of B(ϕ,t)B(\phi,t) in Theorem B combined with a system of integral equations equivalent to (1.1), which is constructed in Section 3. Necessary lemmas in our argument are shown in Section 5. The final section is devoted to discussions on our method in deriving the explicit error with the bound O(t1)O(t^{-1}), which is quite different from that in [5], [9] and [17].

Throughout this paper we use the symbols summed up below (cf. [14], [15]).

(1) For each ϕ\phi\in\mathbb{R}, the condition

Re𝐜w𝑑λ=0,\mathrm{Re\,}\int_{\mathbf{c}}wd\lambda=0,

where 𝐜\mathbf{c} is any cycle on the elliptic curve w2=λ3+12eiϕλ+14A,w^{2}=\lambda^{3}+\tfrac{1}{2}e^{i\phi}\lambda+\tfrac{1}{4}A, uniquely determines A=AϕA=A_{\phi}\in\mathbb{C} [15, Lemma 3], [14, Section 7] (The conditions for basic cycles 𝐜=𝐜1,\mathbf{c}=\mathbf{c}_{1}, 𝐜2\mathbf{c}_{2} are the Boutroux equations). Then AϕA_{\phi} is continuous in ϕ\phi and smooth for ϕπ+2πk/5,\phi\not=\pi+2\pi k/5, (k)(k\in\mathbb{Z}), and fulfils the relations Aϕ=Aϕ¯,A_{-\phi}=\overline{A_{\phi}}, Aϕ+2π=Aϕ,A_{\phi+2\pi}=A_{\phi}, Aϕ2πk/5=e2πik/5Aϕ,A_{\phi-2\pi k/5}=e^{2\pi ik/5}A_{\phi}, and Aπ=(23)3/2,A_{\pi}=-(\tfrac{2}{3})^{3/2}, 0.336<A0<0.3800.336<A_{0}<0.380 [15, Lemma 4], [14, Section 7]. Suppose that |ϕ|<π/5|\phi|<\pi/5, and set w=w(Aϕ,λ)=λ3+12eiϕλ+14Aϕ=λλ1λλ2λλ3.w=w(A_{\phi},\lambda)=\sqrt{\lambda^{3}+\tfrac{1}{2}e^{i\phi}\lambda+\tfrac{1}{4}A_{\phi}}=\sqrt{\lambda-\lambda_{1}}\,\sqrt{\lambda-\lambda_{2}}\,\sqrt{\lambda-\lambda_{3}}. Let 𝐚\mathbf{a} and 𝐛\mathbf{b} be basic cycles as in Figure 1.1 on the elliptic curve Γ=Γ+Γ\Gamma=\Gamma_{+}\cup\Gamma_{-} defined by w(Aϕ,λ)w(A_{\phi},\lambda) such that the upper and lower sheets Γ+\Gamma_{+} and Γ\Gamma_{-} are glued along the cuts [λ1,λ2][,λ3][\lambda_{1},\lambda_{2}]\cup[-\infty,\lambda_{3}]; where the branch points λj=λj(ϕ)\lambda_{j}=\lambda_{j}(\phi) for ϕ\phi around ϕ=0\phi=0 are specified in such a way that Reλ1(0)>0,\mathrm{Re\,}\lambda_{1}(0)>0, Imλ1(0)>0,\mathrm{Im\,}\lambda_{1}(0)>0, λ2(0)=λ1(0)¯,\lambda_{2}(0)=\overline{\lambda_{1}(0)}, λ3(0)<0,\lambda_{3}(0)<0, and the branches of λλj\sqrt{\lambda-\lambda_{j}} are determined by λλj+\sqrt{\lambda-\lambda_{j}}\to+\infty as λ+\lambda\to+\infty along the positive real axis on Γ+.\Gamma_{+}.

λ1\lambda_{1}λ2\lambda_{2}λ3\lambda_{3}𝐚\mathbf{a}𝐛\mathbf{b}Γ+\Gamma_{+}
Figure 1.1. Cycles 𝐚\mathbf{a} and 𝐛\mathbf{b}

For the cycles 𝐚\mathbf{a} and 𝐛\mathbf{b} on Γ\Gamma write

ω𝐚=ω𝐚(ϕ)=12𝐚dλw,ω𝐛=ω𝐛(ϕ)=12𝐛dλw,\displaystyle\omega_{\mathbf{a}}=\omega_{\mathbf{a}}(\phi)=\frac{1}{2}\int_{\mathbf{a}}\frac{d\lambda}{w},\quad\omega_{\mathbf{b}}=\omega_{\mathbf{b}}(\phi)=\frac{1}{2}\int_{\mathbf{b}}\frac{d\lambda}{w},\quad
J𝐚=J𝐚(ϕ)=2𝐚w𝑑λ,J𝐛=J𝐛(ϕ)=2𝐛w𝑑λ,\displaystyle J_{\mathbf{a}}=J_{\mathbf{a}}(\phi)=2\int_{\mathbf{a}}wd\lambda,\quad J_{\mathbf{b}}=J_{\mathbf{b}}(\phi)=2\int_{\mathbf{b}}wd\lambda,

where ω𝐚,\omega_{\mathbf{a}}, ω𝐛\omega_{\mathbf{b}} fulfil Imω𝐛/ω𝐚>0.\mathrm{Im\,}\omega_{\mathbf{b}}/{\omega_{\mathbf{a}}}>0. For ϕπ+2πk/5\phi\not=\pi+2\pi k/5 the elliptic curve Γ\Gamma with the cycles 𝐚,\mathbf{a}, 𝐛\mathbf{b} and the integrals ω𝐚,𝐛\omega_{\mathbf{a},\,\mathbf{b}} and J𝐚,𝐛J_{\mathbf{a},\,\mathbf{b}} may be extended by the use of the substitution (ϕ,λ,w)(ϕ+2π/5,e4πi/5λ,e6πi/5w)(\phi,\lambda,w)\mapsto(\phi+2\pi/5,e^{-4\pi i/5}\lambda,e^{-6\pi i/5}w) [15, pp. 95–96].

(2) For τ=ω𝐛/ω𝐚\tau=\omega_{\mathbf{b}}/\omega_{\mathbf{a}} such that Imτ>0\mathrm{Im\,}\tau>0,

ϑ(z,τ)=neπiτn2+2πizn\vartheta(z,\tau)=\sum_{n\in\mathbb{Z}}e^{\pi i\tau n^{2}+2\pi izn}

is the theta-function [4], [23] with ν=(1+τ)/2,\nu=(1+\tau)/2, which satisfies ϑ(z±1,τ)=ϑ(z,τ),\vartheta(z\pm 1,\tau)=\vartheta(z,\tau), ϑ(z±τ,τ)=eπi(τ±2z)ϑ(z,τ).\vartheta(z\pm\tau,\tau)=e^{-\pi i(\tau\pm 2z)}\vartheta(z,\tau).

(3) We write fgf\ll g or gfg\gg f if f=O(g)f=O(g), and fgf\asymp g if fgf\ll g and gf.g\ll f.

2. Main results

To state our results let us define some strips similar to 𝒟(sj)(ϕ,c,ε)\mathcal{D}_{(s_{j})}(\phi,c,\varepsilon). Recall the phase shift t0t_{0} given by (1.4), and the zeros λj\lambda_{j} (1j3)(1\leq j\leq 3) of w(Aϕ,λ)2w(A_{\phi},\lambda)^{2} specified as in (1).

Definition 2.1.

For given t>0,t_{\infty}>0, c>0c>0 and small ε>0\varepsilon>0, set

𝒟(ϕ,t,c,ε)=\displaystyle\mathcal{D}(\phi,t_{\infty},c,\varepsilon)= {x=eiϕ(54t)4/5:\displaystyle\{x=e^{i\phi}(\tfrac{5}{4}t)^{4/5}\in\mathbb{C}\,:
Ret>t,|Imt|<c,|eiϕtt0mω𝐚nω𝐛|>ε,m,n},\displaystyle\,\mathrm{Re\,}t>t_{\infty},\,\,|\mathrm{Im\,}t|<c,\,\,|e^{i\phi}t-t_{0}-m\omega_{\mathbf{a}}-n\omega_{\mathbf{b}}|>\varepsilon,\,m,n\in\mathbb{Z}\},
𝒟ˇ(ϕ,t,c,ε)=\displaystyle\check{\mathcal{D}}(\phi,t_{\infty},c,\varepsilon)= 𝒟(ϕ,t,c,ε)1j3;m,n𝒱j,m,n(ε),\displaystyle\mathcal{D}(\phi,t_{\infty},c,\varepsilon)\setminus\bigcup_{1\leq j\leq 3;\,m,n\in\mathbb{Z}}\mathcal{V}_{j,m,n}(\varepsilon),
𝒱j,m,n(ε)=\displaystyle\mathcal{V}_{j,m,n}(\varepsilon)= {x=eiϕ(54t)4/5:|eiϕ(ttj)t0mω𝐚nω𝐛|ε},\displaystyle\{x=e^{i\phi}(\tfrac{5}{4}t)^{4/5}\in\mathbb{C}\,:\,|e^{i\phi}(t-t_{j})-t_{0}-m\omega_{\mathbf{a}}-n\omega_{\mathbf{b}}|\leq\varepsilon\},

where tjt_{j} (1j3)(1\leq j\leq 3) are such that (eiϕtjt0;g2(ϕ),g3(ϕ))=λj\wp(e^{i\phi}t_{j}-t_{0};g_{2}(\phi),g_{3}(\phi))=\lambda_{j} (for x=eiϕ(54t)4/5x=e^{i\phi}(\tfrac{5}{4}t)^{4/5} in these domains, cf. Remark 1.1).

Let tjm,n𝒮(t,c):={t|Ret>t,|Imt|<c}t_{j}^{m,n}\in\mathcal{S}(t_{\infty},c):=\{t\,|\,\mathrm{Re\,}t>t_{\infty},|\mathrm{Im\,}t|<c\} (j=1,2,3,)(j=1,2,3,\infty) be such that tjm,n=tj+eiϕ(t0+mω𝐚+nω𝐛)t_{j}^{m,n}=t_{j}+e^{-i\phi}(t_{0}+m\omega_{\mathbf{a}}+n\omega_{\mathbf{b}}) if 1j31\leq j\leq 3, and that tm,n=eiϕ(t0+mω𝐚+nω𝐛)t_{\infty}^{m,n}=e^{-i\phi}(t_{0}+m\omega_{\mathbf{a}}+n\omega_{\mathbf{b}}) if j=j=\infty. We may suppose ε\varepsilon so small that all the circles |ttjm,n|=ε|t-t_{j}^{m,n}|=\varepsilon (j=1,2,3,;m,n𝐙)(j=1,2,3,\infty;m,n\in\mathbf{Z}) are disjoint. Let l(tjm,n)𝒮(t,c)l(t^{m,n}_{j})\in\mathcal{S}(t_{\infty},c) (j=1,2,3,)(j=1,2,3,\infty) be the lines defined by t=Retjm,n+iηt=\mathrm{Re\,}t^{m,n}_{j}+i\eta, ηImtjm,n\eta\geq\mathrm{Im\,}t^{m,n}_{j} if Imtjm,n0\mathrm{Im\,}t^{m,n}_{j}\geq 0 (respectively, ηImtjm,n\eta\leq\mathrm{Im\,}t^{m,n}_{j} if Imtjm,n<0\mathrm{Im\,}t^{m,n}_{j}<0), and let lx(tjm,n)l^{x}(t^{m,n}_{j}) be the images of l(tjm,n)l(t^{m,n}_{j}) under the mapping x=x(t)=eiϕ(54t)4/5x=x(t)=e^{i\phi}(\tfrac{5}{4}t)^{4/5}.

Definition 2.2.

For t,t_{\infty}, cc, ε\varepsilon as in Definition 2.1, 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon) denotes 𝒟ˇ(ϕ,t,c,ε)\check{\mathcal{D}}(\phi,t_{\infty},c,\varepsilon) having cuts along lx(tjm,n)l^{x}(t^{m,n}_{j}) for all j=1,2,3,j=1,2,3,\infty and m,n,m,n\in\mathbb{Z}, where some local segments contained in lx(tjm,n)l^{x}(t^{m,n}_{j}) are replaced with suitable arcs, if necessary, not to touch the image of another small circle |ttjm,n|=ε|t-t^{m^{\prime},n^{\prime}}_{j^{\prime}}|=\varepsilon with (j,m,n)(j,m,n)(j^{\prime},m^{\prime},n^{\prime})\not=(j,m,n) under the mapping x(t).x(t).

x(tjm,n)x(t^{m,n}_{j})(a)  𝒟ˇ(ϕ,t,c,ε)\check{\mathcal{D}}(\phi,t_{\infty},c,\varepsilon)
lx(tjm,n)l^{x}(t^{m,n}_{j})(b)  𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon)
Figure 2.1. 𝒟ˇ(ϕ,t,c,ε)\check{\mathcal{D}}(\phi,t_{\infty},c,\varepsilon) and 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon)

These domains are strips lying in the xx-plane. For a function f(x)f(x) we may deal with f^(t)=f(x(t))\hat{f}(t)=f(x(t)) with t=45(eiϕx)5/4t=\tfrac{4}{5}(e^{-i\phi}x)^{5/4} or f^(z)=f(x(z))\hat{f}(z)=f(x(z)) with z=eiϕt=45eiϕ(eiϕx)5/4z=e^{i\phi}t=\tfrac{4}{5}e^{i\phi}(e^{-i\phi}x)^{5/4} as xx\to\infty, say, through 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon), and then we write, in short, f(t)f(t) or f(z)f(z) in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon).

Suppose that |ϕ|<π/5.|\phi|<\pi/5. Let y(x)y(x) be a solution of (1.1) corresponding to (sj)1j5(s_{j})_{1\leq j\leq 5} such that s1s40.s_{1}s_{4}\not=0. Then we have the following.

Theorem 2.1.

Let c>0c>0 and ε>0\varepsilon>0 be given positive numbers as in Theorem A. Then

y(x)=(eiϕx)1/2((eiϕtt0;g2(ϕ),g3(ϕ))+O(t1))y(x)=(e^{-i\phi}x)^{1/2}\left(\wp(e^{i\phi}t-t_{0};g_{2}(\phi),g_{3}(\phi))+O(t^{-1})\right)

as x=eiϕ(54t)4/5x=e^{i\phi}(\tfrac{5}{4}t)^{4/5}\to\infty through 𝒟(ϕ,t,c,ε)\mathcal{D}(\phi,t_{\infty},c,\varepsilon), where tt_{\infty} is sufficiently large.

To deal with the error term explicitly, let us write (1.3) in the form

y(x)=(eiϕx)1/2(eiϕtt0+h(eiϕt);g2(ϕ),g3(ϕ)).y(x)=(e^{-i\phi}x)^{1/2}\wp(e^{i\phi}t-t_{0}+h(e^{i\phi}t);g_{2}(\phi),g_{3}(\phi)).

Set z=eiϕtz=e^{i\phi}t and write

𝔭=𝔭(z)=(zt0;g2(ϕ),g3(ϕ)),\displaystyle\mathfrak{p}=\mathfrak{p}(z)=\wp(z-t_{0};g_{2}(\phi),g_{3}(\phi)),
β=β(z)=8eiϕ5ω𝐚(β054eiϕJ𝐚(zt0)+ϑϑ(zt0ω𝐚+ν,τ)),\displaystyle\beta=\beta(z)=\frac{8e^{i\phi}}{5\omega_{\mathbf{a}}}\Bigl{(}\beta_{0}-\frac{5}{4}e^{-i\phi}J_{\mathbf{a}}(z-t_{0})+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{z-t_{0}}{\omega_{\mathbf{a}}}+\nu,\tau\Bigr{)}\Bigr{)},
β0=lns1s454eiϕJ𝐚t0+πi.\displaystyle\beta_{0}=\ln\frac{s_{1}}{s_{4}}-\frac{5}{4}e^{-i\phi}J_{\mathbf{a}}t_{0}+\pi i.

The quantity β(z)=eiϕBas(ϕ,t)\beta(z)=e^{i\phi}B_{\mathrm{as}}(\phi,t) is the leading term of the correction function eiϕB(ϕ,t)e^{i\phi}B(\phi,t) in Theorem B, and β(z)\beta(z) and 𝔭(z)\mathfrak{p}(z) are bounded uniformly in 𝒟(ϕ,t,c,ε)\mathcal{D}(\phi,t_{\infty},c,\varepsilon). Then we have the following explicit expression of h(z).h(z).

Theorem 2.2.

Let P(λ)=4w(Aϕ,λ)2=4λ3+2eiϕλ+Aϕ,P(\lambda)=4w(A_{\phi},\lambda)^{2}=4\lambda^{3}+2e^{i\phi}\lambda+A_{\phi}, and let c,c, ε\varepsilon, δ\delta be as in Theorem A. Then as x=eiϕ(54eiϕz)4/5x=e^{i\phi}(\tfrac{5}{4}e^{-i\phi}z)^{4/5}\to\infty through 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon),

h(z)=\displaystyle h(z)= zF(𝔭,β)dζζz(F(𝔭,β)2+G(𝔭,β))dζζ2\displaystyle\int^{z}_{\infty}F(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}-\int^{z}_{\infty}(F(\mathfrak{p},\beta)^{2}+G(\mathfrak{p},\beta))\frac{d\zeta}{\zeta^{2}}
110zK(𝔭,β)(ζ)dζζ+O(z1δ),\displaystyle-\frac{1}{10}\int^{z}_{\infty}K(\mathfrak{p},\beta)\mathcal{I}(\zeta)\frac{d\zeta}{\zeta}+O(z^{-1-\delta}),

in which

F(𝔭,β)\displaystyle F(\mathfrak{p},\beta) =β2P(𝔭)2𝔭5P(𝔭),G(𝔭,β)=β28P(𝔭)2,\displaystyle=\frac{\beta}{2P(\mathfrak{p})}-\frac{2\mathfrak{p}}{5\sqrt{P(\mathfrak{p})}},\quad G(\mathfrak{p},\beta)=\frac{\beta^{2}}{8P(\mathfrak{p})^{2}},
K(𝔭,β)\displaystyle K(\mathfrak{p},\beta) =2(4eiϕ𝔭+3Aϕ)F(𝔭,β)β,(z)=z1P(𝔭)dζζ\displaystyle=2(4e^{i\phi}\mathfrak{p}+3A_{\phi})F(\mathfrak{p},\beta)-\beta,\quad\mathcal{I}(z)=\int^{z}_{\infty}\frac{1}{P(\mathfrak{p})}\frac{d\zeta}{\zeta}

with 𝔭=𝔭(ζ),\mathfrak{p}=\mathfrak{p}(\zeta), β=β(ζ)\beta=\beta(\zeta), and in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon) the integrals converge and are evaluated as

(z)z1,zF(𝔭,β)dζζz1,\displaystyle\mathcal{I}(z)\ll z^{-1},\quad\int^{z}_{\infty}F(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}\ll z^{-1},
z(F(𝔭,β)2+G(𝔭,β))dζζ2z1,zK(𝔭,β)(ζ)dζζz1.\displaystyle\int^{z}_{\infty}(F(\mathfrak{p},\beta)^{2}+G(\mathfrak{p},\beta))\frac{d\zeta}{\zeta^{2}}\ll z^{-1},\quad\int^{z}_{\infty}K(\mathfrak{p},\beta)\mathcal{I}(\zeta)\frac{d\zeta}{\zeta}\ll z^{-1}.
Remark 2.1.

For the sake of convenience the integrals are considered in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon), which is simply connected, to avoid the possible multi-valuedness around poles of the integrands. Then h(z)h(z) is considered substantially along the ray argx=ϕ\arg x=\phi and expressed by the \wp-function with (g2(ϕ),g3(ϕ))=(2eiϕ,Aϕ)(g_{2}(\phi),g_{3}(\phi))=(-2e^{i\phi},-A_{\phi}).

The integration constant β0\beta_{0} appears in h(z)h(z) as described in the following.

Corollary 2.3.

In 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon) we have zh(z)=h0β02+h1(z)β0+h2(z)+O(zδ)zh(z)=h_{0}\beta_{0}^{2}+h_{1}(z)\beta_{0}+h_{2}(z)+O(z^{-\delta}) with h1(z)=O(1),h_{1}(z)=O(1), h2(z)=O(1)h_{2}(z)=O(1) and

h0=245ω𝐚2e2iϕ(8e3iϕ+27Aϕ2)1.h_{0}=-\frac{24}{5\omega_{\mathbf{a}}^{2}}e^{2i\phi}(8e^{3i\phi}+27A_{\phi}^{2})^{-1}.
Remark 2.2.

Along any direction in the sector 3π/5<ϕ2πk/5<π,3\pi/5<\phi-2\pi k/5<\pi, kk\in\mathbb{Z}, the formulas of the main results are written in terms of t0t_{0} and β0\beta_{0} with (s22k,s52k/s22k)(s_{2-2k},s_{5-2k}/s_{2-2k}) in place of (s1,s4/s1)(s_{1},s_{4}/s_{1}) (cf. [15, Theorems 2 and 4]). This discontinuity of integration constants may also be considered as a nonlinear Stokes phenomenon [3, p. 379].

Remark 2.3.

For a given simply connected unbounded subdomain 𝒟0𝒟ˇ(ϕ,t,c,ε)\mathcal{D}_{0}\subset\check{\mathcal{D}}(\phi,t_{\infty},c,\varepsilon), Theorem 2.2 and Corollary 2.3 are also valid as xx\to\infty through 𝒟0.\mathcal{D}_{0}.

3. System of equations and integral representations

Let cc, ε\varepsilon and δ\delta be as in Theorem A. The number tt_{\infty} is retaken if necessary, being denoted by the same letter tt_{\infty} in each appearance in our argument. In the proofs of our theorems we may suppose that 0<δ<1.0<\delta<1.

By the change of variables t=45(eiϕx)5/4,t=\tfrac{4}{5}(e^{-i\phi}x)^{5/4}, y=(eiϕx)1/2vy=(e^{-i\phi}x)^{1/2}v, equation (1.1) or (d/dx)((y)24y32xy)=2y(d/dx)((y^{\prime})^{2}-4y^{3}-2xy)=-2y is taken to

tddtaϕ+65aϕ=85eiϕvt\frac{d}{dt}a_{\phi}+\frac{6}{5}a_{\phi}=-\frac{8}{5}e^{i\phi}v

with

aϕ=e2iϕ(vt+(2/5)t1v)24v32eiϕv,a_{\phi}=e^{-2i\phi}\bigl{(}v_{t}+(2/5)t^{-1}v\bigr{)}^{2}-4v^{3}-2e^{i\phi}v,

which is the Lagrangian or the Hamiltonian 2(eiϕx)3/2H(x,y(x),y(x))2(e^{-i\phi}x)^{-3/2}\mathrm{H}(x,y(x),y^{\prime}(x)) appearing in Theorem B, [15, Theorem 4]. Setting aϕ=Aϕ+t1B(ϕ,t)a_{\phi}=A_{\phi}+t^{-1}B(\phi,t) with eiϕt=z,e^{i\phi}t=z, eiϕB(ϕ,t)=b,e^{i\phi}B(\phi,t)=b, we have the system of equations

(vz+(2/5)z1v)2=4v3+2eiϕv+Aϕ+z1b,bz=85eiϕv65Aϕ15z1b.\begin{split}&\bigl{(}v_{z}+(2/5)z^{-1}v\bigr{)}^{2}=4v^{3}+2e^{i\phi}v+A_{\phi}+z^{-1}b,\\ &b_{z}=-\frac{8}{5}e^{i\phi}v-\frac{6}{5}A_{\phi}-\frac{1}{5}z^{-1}b.\end{split} (3.1)

Note that (1.5) is written as B(ϕ,t)=Bas(ϕ,t)+O(tδ)B(\phi,t)=B_{\mathrm{as}}(\phi,t)+O(t^{-\delta}). The system

𝔭z2=4𝔭3+2eiϕ𝔭+Aϕ,βz=85eiϕ𝔭65Aϕ\begin{split}&\mathfrak{p}_{z}^{2}=4\mathfrak{p}^{3}+2e^{i\phi}\mathfrak{p}+A_{\phi},\\ &\beta_{z}=-\frac{8}{5}e^{i\phi}\mathfrak{p}-\frac{6}{5}A_{\phi}\end{split} (3.2)

admits a solution (𝔭,β)=(𝔭(z),β(z))=((zt0;g2(ϕ),g3(ϕ)),eiϕBas(ϕ,eiϕz))(\mathfrak{p},\beta)=(\mathfrak{p}(z),\beta(z))=(\wp(z-t_{0};g_{2}(\phi),g_{3}(\phi)),e^{i\phi}B_{\mathrm{as}}(\phi,e^{-i\phi}z)), where validity of the second equation is due to [15, Proposition 6, (3.13)]. System (3.2) is, at least formally, an approximation to (3.1).

Proposition 3.1.

For y(x)y(x) given by (1.3) set 𝔭(z+h(z))=(eiϕx)1/2y(x)\mathfrak{p}(z+h(z))=(e^{-i\phi}x)^{-1/2}y(x) with eiϕt=ze^{i\phi}t=z in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon). Then (v,b)=(𝔭(z+h(z)),eiϕB(ϕ,eiϕz))(v,b)=(\mathfrak{p}(z+h(z)),e^{i\phi}B(\phi,e^{-i\phi}z)) solves (3.1).

By (1.3) and [15, Theorem 4] with b(z)β(z)=eiϕ(B(ϕ,eiϕz)Bas(ϕ,eiϕz))b(z)-\beta(z)=e^{i\phi}(B(\phi,e^{-i\phi}z)-B_{\mathrm{as}}(\phi,e^{-i\phi}z)), we have the following.

Proposition 3.2.

In 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon), h(z)zδ,h(z)\ll z^{-\delta}, and b(z)b(z) is bounded and satisfies b(z)β(z)zδ.b(z)-\beta(z)\ll z^{-\delta}.

Recall that P(λ)=4λ3+2eiϕλ+Aϕ.P(\lambda)=4\lambda^{3}+2e^{i\phi}\lambda+A_{\phi}. Let us insert v=𝔭(h)(z):=𝔭(z+h(z))v={\mathfrak{p}_{(h)}}(z):=\mathfrak{p}(z+h(z)) into the first equation of (3.1). Observing that vz=(1+h)𝔭(z+h)=(1+h)P(𝔭(h)),v_{z}=(1+h^{\prime})\mathfrak{p}^{\prime}(z+h)=(1+h^{\prime})\sqrt{P({\mathfrak{p}_{(h)}})}, and that (1+h)P(𝔭(h))+(2/5)z1𝔭(h)=P(𝔭(h))(1+z1bP(𝔭(h))1)1/2,(1+h^{\prime})\sqrt{P({\mathfrak{p}_{(h)}})}+(2/5)z^{-1}{\mathfrak{p}_{(h)}}=\sqrt{P({\mathfrak{p}_{(h)}})}(1+z^{-1}bP({\mathfrak{p}_{(h)}})^{-1})^{1/2}, we have, in 𝒟ˇ(ϕ,t,c,ε)\check{\mathcal{D}}(\phi,t_{\infty},c,\varepsilon),

h=(b2P(𝔭(h))2𝔭(h)5P(𝔭(h)))z1b28P(𝔭(h))2z2+O(z3).h^{\prime}=\Bigl{(}\frac{b}{2P({\mathfrak{p}_{(h)}})}-\frac{2{\mathfrak{p}_{(h)}}}{5\sqrt{P({\mathfrak{p}_{(h)}})}}\Bigr{)}z^{-1}-\frac{b^{2}}{8P({\mathfrak{p}_{(h)}})^{2}}z^{-2}+O(z^{-3}).

Furthermore, by 𝔭(h)(z)=𝔭(z)+h𝔭(z)+O(h2),\mathfrak{p}_{(h)}(z)=\mathfrak{p}(z)+h\mathfrak{p}^{\prime}(z)+O(h^{2}),

h=F(𝔭,b)z1G(𝔭,b)z2+Fv(𝔭,b)𝔭hz1+O(z1(|z1|+|h|)2)h^{\prime}=F(\mathfrak{p},b)z^{-1}-G(\mathfrak{p},b)z^{-2}+F_{v}(\mathfrak{p},b)\mathfrak{p}^{\prime}hz^{-1}+O(z^{-1}(|z^{-1}|+|h|)^{2}) (3.3)

with F(v,b)=12bP(v)125vP(v)1/2,F(v,b)=\tfrac{1}{2}bP(v)^{-1}-\tfrac{2}{5}vP(v)^{-1/2}, G(v,b)=18b2P(v)2G(v,b)=\tfrac{1}{8}b^{2}P(v)^{-2} as in Theorem 2.2. Write χ:=bβ.\chi:=b-\beta. Then the second equations of (3.1) and (3.2) yield

χ=\displaystyle\chi^{\prime}= 85eiϕ(𝔭(h)(z)𝔭(z))b(z)5z1\displaystyle-\frac{8}{5}e^{i\phi}(\mathfrak{p}_{(h)}(z)-\mathfrak{p}(z))-\frac{b(z)}{5}z^{-1}
=\displaystyle= 85eiϕ(𝔭h+𝔭′′2!h2++𝔭(m)m!hm+Emhm+1)b5z1\displaystyle-\frac{8}{5}e^{i\phi}\Bigl{(}\mathfrak{p}^{\prime}h+\frac{\mathfrak{p}^{\prime\prime}}{2!}h^{2}+\cdots+\frac{\mathfrak{p}^{(m)}}{m!}h^{m}+E_{m}h^{m+1}\Bigr{)}-\frac{b}{5}z^{-1}

for any positive integer mm, where Em1E_{m}\ll 1 in 𝒟ˇ(ϕ,t,c,ε).\check{\mathcal{D}}(\phi,t_{\infty},c,\varepsilon). Let {zn}𝒟ˇ(ϕ,t,c,ε)\{z_{n}\}\subset\check{\mathcal{D}}(\phi,t_{\infty},c,\varepsilon) be any sequence such that znz_{n}\to\infty. Then integration by parts leads to

χ(z)χ(zn)=\displaystyle\chi(z)-\chi(z_{n})= 85eiϕ[𝔭h+𝔭2h2++𝔭(m1)m!hm]znz\displaystyle-\frac{8}{5}e^{i\phi}\Bigl{[}\mathfrak{p}h+\frac{\mathfrak{p}^{\prime}}{2}h^{2}+\cdots+\frac{\mathfrak{p}^{(m-1)}}{m!}h^{m}\Bigr{]}^{z}_{z_{n}}
+85eiϕznz\displaystyle+\frac{8}{5}e^{i\phi}\int^{z}_{z_{n}} ((𝔭+𝔭h++𝔭(m1)(m1)!hm1)hEmhm+1)dζ15znz(β+χ)dζζ.\displaystyle\Bigl{(}\Bigl{(}\mathfrak{p}+{\mathfrak{p}^{\prime}}h+\cdots+\frac{\mathfrak{p}^{(m-1)}}{(m-1)!}h^{m-1}\Bigr{)}h^{\prime}-E_{m}h^{m+1}\Bigr{)}d\zeta-\frac{1}{5}\int^{z}_{z_{n}}(\beta+\chi)\frac{d\zeta}{\zeta}.

By (3.3), h=(F(𝔭,β)+12χP(𝔭)1+R~)z1h^{\prime}=(F(\mathfrak{p},\beta)+\tfrac{1}{2}\chi P(\mathfrak{p})^{-1}+\tilde{R})z^{-1} with R~|z1|+|h|,\tilde{R}\ll|z^{-1}|+|h|, and hence the sum of the integrals on the right-hand side is

15znz(8eiϕF(𝔭,β)𝔭β)dζζ+15znzR(h,χ)dζζ85eiϕznzEmhm+1𝑑ζ,\frac{1}{5}\int^{z}_{z_{n}}(8e^{i\phi}F(\mathfrak{p},\beta)\mathfrak{p}-\beta)\frac{d\zeta}{\zeta}+\frac{1}{5}\int^{z}_{z_{n}}R(h,\chi)\frac{d\zeta}{\zeta}-\frac{8}{5}e^{i\phi}\int^{z}_{z_{n}}E_{m}h^{m+1}d\zeta,

with

R(h,χ):=\displaystyle R(h,\chi):= 8eiϕ(𝔭++𝔭(m1)(m1)!hm2)(F(𝔭,β)+χ2P(𝔭)+R~)h\displaystyle 8e^{i\phi}\Bigl{(}\mathfrak{p}^{\prime}+\cdots+\frac{\mathfrak{p}^{(m-1)}}{(m-1)!}h^{m-2}\Bigr{)}\Bigl{(}F(\mathfrak{p},\beta)+\frac{\chi}{2P(\mathfrak{p})}+\tilde{R}\Bigr{)}h
+8eiϕ𝔭(χ2P(𝔭)+R~)χ|h|+|χ|+|ζ1|.\displaystyle+8e^{i\phi}\mathfrak{p}\Bigl{(}\frac{\chi}{2P(\mathfrak{p})}+\tilde{R}\Bigr{)}-\chi\ll|h|+|\chi|+|\zeta^{-1}|. (3.4)

Now suppose that, for a positive number μ\mu satisfying δμ1,\delta\leq\mu\leq 1,

h(z)zμh(z)\ll z^{-\mu} (3.5)

in 𝒟ˇcut(ϕ,t,c,ε).\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon). By Proposition 3.2 this supposition is true for μ=δ,\mu=\delta, and χ(z)zδ.\chi(z)\ll z^{-\delta}. Choose mm such that δ(m+1)3\delta(m+1)\geq 3. The passage to the limit znz_{n}\to\infty leads to

χ+85eiϕ𝔭h=15z(8eiϕF(𝔭,β)𝔭β)dζζ+15zR(h,χ)dζζ+O(z2μ),\chi+\frac{8}{5}e^{i\phi}\mathfrak{p}h=\frac{1}{5}\int^{z}_{\infty}(8e^{i\phi}F(\mathfrak{p},\beta)\mathfrak{p}-\beta)\frac{d\zeta}{\zeta}+\frac{1}{5}\int^{z}_{\infty}R(h,\chi)\frac{d\zeta}{\zeta}+O(z^{-2\mu}), (3.6)

in which the convergence of

z(8eiϕF(𝔭,β)𝔭β)dζζzδ\int^{z}_{\infty}(8e^{i\phi}F(\mathfrak{p},\beta)\mathfrak{p}-\beta)\frac{d\zeta}{\zeta}\ll z^{-\delta}

is guaranteed by the absolute convergence of zR(h,χ)ζ1𝑑ζzδ\int^{z}_{\infty}R(h,\chi)\zeta^{-1}d\zeta\ll z^{-\delta} (cf. (3.4) and Proposition 3.2). Under (3.5), observing that, in (3.3),

G(𝔭,b)z2+Fv(𝔭,b)𝔭hz1=G(𝔭,β)z2+Fv(𝔭,β)𝔭hz1+O(z1μδ),-G(\mathfrak{p},b)z^{-2}+F_{v}(\mathfrak{p},b)\mathfrak{p}^{\prime}hz^{-1}=-G(\mathfrak{p},\beta)z^{-2}+F_{v}(\mathfrak{p},\beta)\mathfrak{p}^{\prime}hz^{-1}+O(z^{-1-\mu-\delta}),

and that

znzFv(𝔭,β)𝔭hdζζ=\displaystyle\int^{z}_{z_{n}}F_{v}(\mathfrak{p},\beta)\mathfrak{p}^{\prime}h\frac{d\zeta}{\zeta}= znz(F(𝔭,β)β2P(𝔭))hdζζ\displaystyle\int^{z}_{z_{n}}\Bigl{(}F(\mathfrak{p},\beta)^{\prime}-\frac{\beta^{\prime}}{2P(\mathfrak{p})}\Bigr{)}h\frac{d\zeta}{\zeta}
=\displaystyle= [F(𝔭,β)hζ1]znzznz(F(𝔭,β)h+βh2P(𝔭))dζζ+[O(z1μ)]znz\displaystyle\Bigl{[}F(\mathfrak{p},\beta)h\zeta^{-1}\Bigr{]}^{z}_{z_{n}}-\int^{z}_{z_{n}}\Bigl{(}F(\mathfrak{p},\beta)h^{\prime}+\frac{\beta^{\prime}h}{2P(\mathfrak{p})}\Bigr{)}\frac{d\zeta}{\zeta}+\Bigl{[}O(z^{-1-\mu})\Bigr{]}^{z}_{z_{n}}
=\displaystyle= znz(F(𝔭,β)2ζ1+βh2P(𝔭))dζζ+[O(z1δ)]znz,\displaystyle-\int^{z}_{z_{n}}\Bigl{(}F(\mathfrak{p},\beta)^{2}\zeta^{-1}+\frac{\beta^{\prime}h}{2P(\mathfrak{p})}\Bigr{)}\frac{d\zeta}{\zeta}+\Bigl{[}O(z^{-1-\delta})\Bigr{]}^{z}_{z_{n}},

we may apply a similar argument to (3.3) with F(𝔭,b)=F(𝔭,β)+12χP(𝔭)1F(\mathfrak{p},b)=F(\mathfrak{p},\beta)+\tfrac{1}{2}\chi P(\mathfrak{p})^{-1}, and the convergence of zF(𝔭,β)ζ1𝑑ζ\int^{z}_{\infty}F(\mathfrak{p},\beta)\zeta^{-1}d\zeta follows. Thus we have the following relations, in which the second equation follows from (3.6) and (3.2).

Proposition 3.3.

Under the supposition (3.5), in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon),

h=\displaystyle h= zF(𝔭,β)dζζz(F(𝔭,β)2+G(𝔭,β))dζζ2+zχβh2P(𝔭)dζζ+O(zμδ),\displaystyle\int^{z}_{\infty}F(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}-\int^{z}_{\infty}(F(\mathfrak{p},\beta)^{2}+G(\mathfrak{p},\beta))\frac{d\zeta}{\zeta^{2}}+\int^{z}_{\infty}\frac{\chi-\beta^{\prime}h}{2P(\mathfrak{p})}\frac{d\zeta}{\zeta}+O(z^{-\mu-\delta}),
χ\displaystyle\chi- βh=65Aϕh+15zH(𝔭,β)dζζ+15zR(h,χ)dζζ+O(z2μ),\displaystyle\beta^{\prime}h=\frac{6}{5}A_{\phi}h+\frac{1}{5}\int^{z}_{\infty}H(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}+\frac{1}{5}\int^{z}_{\infty}R(h,\chi)\frac{d\zeta}{\zeta}+O(z^{-2\mu}),

in which H(𝔭,β)=8eiϕF(𝔭,β)𝔭β,H(\mathfrak{p},\beta)=8e^{i\phi}F(\mathfrak{p},\beta)\mathfrak{p}-\beta, every integral converges, and

zF(𝔭,β)dζζzδ,z(F(𝔭,β)2+G(𝔭,β))dζζ2z1,zχβh2P(𝔭)dζζzδ,\displaystyle\int^{z}_{\infty}F(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}\ll z^{-\delta},\quad\int^{z}_{\infty}(F(\mathfrak{p},\beta)^{2}+G(\mathfrak{p},\beta))\frac{d\zeta}{\zeta^{2}}\ll z^{-1},\quad\int^{z}_{\infty}\frac{\chi-\beta^{\prime}h}{2P(\mathfrak{p})}\frac{d\zeta}{\zeta}\ll z^{-\delta},
zH(𝔭,β)dζζzδ,zR(h,χ)dζζzδ.\displaystyle\int^{z}_{\infty}H(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}\ll z^{-\delta},\quad\int^{z}_{\infty}R(h,\chi)\frac{d\zeta}{\zeta}\ll z^{-\delta}.

4. Proofs of the main results

By Proposition 3.3,

h35AϕzhP(𝔭)dζζ=zF(𝔭,β)dζζz(F(𝔭,β)2+G(𝔭,β))dζζ2+I1+O(zμδ)h-\frac{3}{5}A_{\phi}\int^{z}_{\infty}\frac{h}{P(\mathfrak{p})}\frac{d\zeta}{\zeta}=\int^{z}_{\infty}F(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}-\int^{z}_{\infty}(F(\mathfrak{p},\beta)^{2}+G(\mathfrak{p},\beta))\frac{d\zeta}{\zeta^{2}}+I_{1}+O(z^{-\mu-\delta})

with

I1=110z1P(𝔭)ζ(H(𝔭,β)+R(h,χ))dζ1ζ1dζζI_{1}=\frac{1}{10}\int^{z}_{\infty}\frac{1}{P(\mathfrak{p})}\int^{\zeta}_{\infty}(H(\mathfrak{p},\beta)+R(h,\chi))\frac{d\zeta_{1}}{\zeta_{1}}\frac{d\zeta}{\zeta}

in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon) since μδ.\mu\geq\delta. Note that zP(𝔭)1ζ1𝑑ζz1\int^{z}_{\infty}P(\mathfrak{p})^{-1}\zeta^{-1}d\zeta\ll z^{-1} by Lemma 5.5 shown later, and zH(𝔭,β)ζ1𝑑ζzδ\int^{z}_{\infty}H(\mathfrak{p},\beta)\zeta^{-1}d\zeta\ll z^{-\delta}, zR(h,χ)ζ1𝑑ζzδ\int^{z}_{\infty}R(h,\chi)\zeta^{-1}d\zeta\ll z^{-\delta} by Proposition 3.3 and (3.4). Then integration by parts leads to

10I1\displaystyle 10I_{1} =z1P(𝔭)dζζz(H(𝔭,β)+R(h,χ))dζζ\displaystyle=\int^{z}_{\infty}\frac{1}{P(\mathfrak{p})}\frac{d\zeta}{\zeta}\int^{z}_{\infty}(H(\mathfrak{p},\beta)+R(h,\chi))\frac{d\zeta}{\zeta}
zζ1P(𝔭)dζ1ζ1(H(𝔭,β)+R(h,χ))dζζ\displaystyle\phantom{---}-\int^{z}_{\infty}\int^{\zeta}_{\infty}\frac{1}{P(\mathfrak{p})}\frac{d\zeta_{1}}{\zeta_{1}}(H(\mathfrak{p},\beta)+R(h,\chi))\frac{d\zeta}{\zeta}
=zH(𝔭,β)ζ1P(𝔭)dζ1ζ1dζζ+O(z1δ).\displaystyle=-\int^{z}_{\infty}H(\mathfrak{p},\beta)\int^{\zeta}_{\infty}\frac{1}{P(\mathfrak{p})}\frac{d\zeta_{1}}{\zeta_{1}}\frac{d\zeta}{\zeta}+O(z^{-1-\delta}). (4.1)

Furthermore, by (3.3), (3.5), Lemma 5.5 and Proposition 3.2,

zhP(𝔭)dζζ\displaystyle\int^{z}_{\infty}\frac{h}{P(\mathfrak{p})}\frac{d\zeta}{\zeta} =hz1P(𝔭)dζζzhζ1P(𝔭)dζ1ζ1𝑑ζ\displaystyle=h\int^{z}_{\infty}\frac{1}{P(\mathfrak{p})}\frac{\mathrm{d}\zeta}{\zeta}-\int^{z}_{\infty}h^{\prime}\int^{\zeta}_{\infty}\frac{1}{P(\mathfrak{p})}\frac{d\zeta_{1}}{\zeta_{1}}d\zeta
=z(F(𝔭,β)+χ2P(𝔭))ζ1P(𝔭)dζ1ζ1dζζ+O(z1μ)\displaystyle=-\int^{z}_{\infty}\Bigl{(}F(\mathfrak{p},\beta)+\frac{\chi}{2P(\mathfrak{p})}\Bigr{)}\int^{\zeta}_{\infty}\frac{1}{P(\mathfrak{p})}\frac{d\zeta_{1}}{\zeta_{1}}\frac{d\zeta}{\zeta}+O(z^{-1-\mu})
=zF(𝔭,β)ζ1P(𝔭)dζ1ζ1dζζ+O(z1δ).\displaystyle=-\int^{z}_{\infty}F(\mathfrak{p},\beta)\int^{\zeta}_{\infty}\frac{1}{P(\mathfrak{p})}\frac{d\zeta_{1}}{\zeta_{1}}\frac{d\zeta}{\zeta}+O(z^{-1-\delta}). (4.2)

Using (4.1) and (4.2) we obtain, under supposition (3.5),

h=z\displaystyle h=\int^{z}_{\infty} F(𝔭,β)dζζz(F(𝔭,β)2+G(𝔭,β))dζζ2\displaystyle F(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}-\int^{z}_{\infty}(F(\mathfrak{p},\beta)^{2}+G(\mathfrak{p},\beta))\frac{d\zeta}{\zeta^{2}}
110zK(𝔭,β)(ζ)dζζ+O(zμδ)\displaystyle-\frac{1}{10}\int^{z}_{\infty}K(\mathfrak{p},\beta)\mathcal{I}(\zeta)\frac{d\zeta}{\zeta}+O(z^{-\mu-\delta}) (4.3)

in 𝒟ˇcut(ϕ,t,c,ε),\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon), in which the implied constant possibly depends on μ\mu, and K(𝔭,β)=H(𝔭,β)+6AϕF(𝔭,β)=2(4eiϕ𝔭+3Aϕ)F(𝔭,β)β,K(\mathfrak{p},\beta)=H(\mathfrak{p},\beta)+6A_{\phi}F(\mathfrak{p},\beta)=2(4e^{i\phi}\mathfrak{p}+3A_{\phi})F(\mathfrak{p},\beta)-\beta, (z)=zP(𝔭)1ζ1𝑑ζ.\mathcal{I}(z)=\int^{z}_{\infty}P(\mathfrak{p})^{-1}\zeta^{-1}d\zeta. The integrals on the right-hand side of (4.3) satisfy

zF(𝔭,β)dζζz1,z(F(𝔭,β)2+G(𝔭,β))dζζ2z1,zK(𝔭,β)(ζ)dζζz1,(z)z1,\begin{split}&\int^{z}_{\infty}F(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}\ll z^{-1},\quad\int^{z}_{\infty}(F(\mathfrak{p},\beta)^{2}+G(\mathfrak{p},\beta))\frac{d\zeta}{\zeta^{2}}\ll z^{-1},\\ &\int^{z}_{\infty}K(\mathfrak{p},\beta)\mathcal{I}(\zeta)\frac{d\zeta}{\zeta}\ll z^{-1},\quad\mathcal{I}(z)\ll z^{-1},\end{split} (4.4)

in which the first nontrivial estimate follows from Lemmas 5.5 and 5.4 with 𝔭/P(𝔭)=𝔭𝔭/P(𝔭)\mathfrak{p}/\sqrt{P(\mathfrak{p})}=\mathfrak{p}\mathfrak{p}^{\prime}/P(\mathfrak{p}) and β(z)=85eiϕω𝐚1(β0+𝔟(zt0))\beta(z)=\tfrac{8}{5}e^{i\phi}\omega_{\mathbf{a}}^{-1}(\beta_{0}+\mathfrak{b}(z-t_{0})) (cf. (5.4)).

4.1. Derivation of Theorem 2.2 and Corollary 2.3

To prove Theorem 2.2 let us start with (1.3) and (1.5) of Theorems A and B with given c>0,c>0, ε>0\varepsilon>0 and a small δ>0.\delta>0. By (4.4) the sum of the integrals on the right-hand side of (4.3) is O(z1)O(z^{-1}) in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon) for sufficiently large tt_{\infty}. Note that (3.5) is valid for μ=δ,\mu=\delta, i.e. h(z)zδ.h(z)\ll z^{-\delta}. Then, by (4.3) with μ=δ,\mu=\delta, we have h(z)|z1|+|z2δ|.h(z)\ll|z^{-1}|+|z^{-2\delta}|. If 2δ<1,2\delta<1, then (3.5) is valid for μ=2δ,\mu=2\delta, which implies asymptotic formula (4.3) with the error bound O(z3δ)O(z^{-3\delta}) and h(z)|z1|+|z3δ|.h(z)\ll|z^{-1}|+|z^{-3\delta}|. For m0m_{0} such that m0δ<1(m0+1)δ,m_{0}\delta<1\leq(m_{0}+1)\delta, m0m_{0}-times repetition of this procedure results in (4.3) with μ=m0δ\mu=m_{0}\delta, which yields (3.5) with μ=1.\mu=1. Then (4.3) with μ=1\mu=1 is valid in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon), implying Theorem 2.2. Calculation of the coefficient of β02\beta_{0}^{2} by the use of Lemma 5.5 leads us to Corollary 2.3.

4.2. Derivation of Theorem 2.1

Theorem 2.2 implies h(z)z1h(z)\ll z^{-1} in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon). Note that

(eiϕx)1/2y(x)(eiϕtt0;g2(ϕ),g3(ϕ))\displaystyle(e^{-i\phi}x)^{-1/2}y(x)-\wp(e^{i\phi}t-t_{0};g_{2}(\phi),g_{3}(\phi))
=\displaystyle= (eiϕtt0+h(eiϕt);g2(ϕ),g3(ϕ))(eiϕtt0;g2(ϕ),g3(ϕ))\displaystyle\wp(e^{i\phi}t-t_{0}+h(e^{i\phi}t);g_{2}(\phi),g_{3}(\phi))-\wp(e^{i\phi}t-t_{0};g_{2}(\phi),g_{3}(\phi))
\displaystyle\ll (eiϕtt0;g2(ϕ),g3(ϕ))h(eiϕt)t1\displaystyle\wp^{\prime}(e^{i\phi}t-t_{0};g_{2}(\phi),g_{3}(\phi))h(e^{i\phi}t)\ll t^{-1}

in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon), and that the function on the first line is holomorphic in 𝒟(ϕ,t,c,ε){\mathcal{D}}(\phi,t_{\infty},c,\varepsilon). By using the maximal modulus principle in excluded discs around tjm,nt_{j}^{m,n} (1j3;m,n),(1\leq j\leq 3;\,m,n\in\mathbb{Z}), we obtain Theorem 2.1.

5. Lemmas on primitive functions

It remains to show the lemmas on primitive functions used in the proofs of the main results. Recall that P(λ)=4w(Aϕ,λ)2P(\lambda)=4w(A_{\phi},\lambda)^{2} as in Theorem 2.2, and let us write

P(λ)\displaystyle P(\lambda) =4λ3g2λg3=4(λλ1)(λλ2)(λλ3),g2=2eiϕ,g3=Aϕ,\displaystyle=4\lambda^{3}-g_{2}\lambda-g_{3}=4(\lambda-\lambda_{1})(\lambda-\lambda_{2})(\lambda-\lambda_{3}),\quad g_{2}=-2e^{i\phi},\quad g_{3}=-A_{\phi},
λ1=(ω1),λ2=(ω2),λ3=(ω3),\displaystyle\lambda_{1}=\wp(\omega_{1}),\quad\lambda_{2}=\wp(\omega_{2}),\quad\lambda_{3}=\wp(\omega_{3}),

where

ω1=12ω𝐚,ω3=12ω𝐛,ω1+ω2+ω3=0.\omega_{1}=\frac{1}{2}\omega_{\mathbf{a}},\quad\omega_{3}=\frac{1}{2}\omega_{\mathbf{b}},\quad\omega_{1}+\omega_{2}+\omega_{3}=0.

Then

λ1+λ2+λ3=0,λ2λ3+λ3λ1+λ1λ2=g2/4,λ1λ2λ3=g3/4,\displaystyle\lambda_{1}+\lambda_{2}+\lambda_{3}=0,\quad\lambda_{2}\lambda_{3}+\lambda_{3}\lambda_{1}+\lambda_{1}\lambda_{2}=-g_{2}/4,\quad\lambda_{1}\lambda_{2}\lambda_{3}=g_{3}/4,
(λ2λ3)2(λ3λ1)2(λ1λ2)2=116(g2327g32),\displaystyle(\lambda_{2}-\lambda_{3})^{2}(\lambda_{3}-\lambda_{1})^{2}(\lambda_{1}-\lambda_{2})^{2}=\frac{1}{16}(g_{2}^{3}-27g_{3}^{2}),

and ω𝐚\omega_{\mathbf{a}} and J𝐚J_{\mathbf{a}} are also written in the form

ω𝐚=𝐚dλP(λ),J𝐚=𝐚P(λ)𝑑λ.\omega_{\mathbf{a}}=\int_{\mathbf{a}}\frac{d\lambda}{\sqrt{P(\lambda)}},\quad J_{\mathbf{a}}=\int_{\mathbf{a}}\sqrt{P(\lambda)}d\lambda.
Lemma 5.1.

Let

γ1=(λ1λ2)(λ1λ3),γ2=(λ2λ3)(λ2λ1),γ3=(λ3λ1)(λ3λ2),\displaystyle\gamma_{1}=(\lambda_{1}-\lambda_{2})(\lambda_{1}-\lambda_{3}),\quad\gamma_{2}=(\lambda_{2}-\lambda_{3})(\lambda_{2}-\lambda_{1}),\quad\gamma_{3}=(\lambda_{3}-\lambda_{1})(\lambda_{3}-\lambda_{2}),
γ0=5(g2327g32)1\displaystyle\gamma_{0}=5(g_{2}^{3}-27g_{3}^{2})^{-1}

and (z)=(z;g2,g3).\wp(z)=\wp(z;g_{2},g_{3}). Then

0zdzP((z))=\displaystyle\int^{z}_{0}\frac{dz}{P(\wp(z))}= 14ω𝐚(γ12(5J𝐚2g2z+ϑϑ(zω𝐚+τ2,τ))+γ22(5J𝐚2g2z+ϑϑ(zω𝐚,τ))\displaystyle-\frac{1}{4\omega_{\mathbf{a}}}\Bigl{(}\gamma_{1}^{-2}\Bigl{(}\frac{5J_{\mathbf{a}}}{2g_{2}}z+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{z}{\omega_{\mathbf{a}}}+\frac{\tau}{2},\tau\Bigr{)}\Bigr{)}+\gamma_{2}^{-2}\Bigl{(}\frac{5J_{\mathbf{a}}}{2g_{2}}z+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{z}{\omega_{\mathbf{a}}},\tau\Bigr{)}\Bigr{)}
+γ32(5J𝐚2g2z+ϑϑ(zω𝐚+12,τ)))+C0,\displaystyle+\gamma_{3}^{-2}\Bigl{(}\frac{5J_{\mathbf{a}}}{2g_{2}}z+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{z}{\omega_{\mathbf{a}}}+\frac{1}{2},\tau\Bigr{)}\Bigr{)}\Bigr{)}+C_{0},
0zdzP((z))2=\displaystyle\int^{z}_{0}\frac{dz}{P(\wp(z))^{2}}= γ0z196ω𝐚(γ14(z248λ1)(5J𝐚2g2z+ϑϑ(zω𝐚+τ2,τ))\displaystyle\gamma_{0}z-\frac{1}{96\omega_{\mathbf{a}}}\Bigl{(}\gamma_{1}^{-4}(\partial_{z}^{2}-48\lambda_{1})\Bigl{(}\frac{5J_{\mathbf{a}}}{2g_{2}}z+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{z}{\omega_{\mathbf{a}}}+\frac{\tau}{2},\tau\Bigr{)}\Bigr{)}
+γ24(z248λ2)(5J𝐚2g2z+ϑϑ(zω𝐚,τ))\displaystyle+\gamma_{2}^{-4}(\partial_{z}^{2}-48\lambda_{2})\Bigl{(}\frac{5J_{\mathbf{a}}}{2g_{2}}z+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{z}{\omega_{\mathbf{a}}},\tau\Bigr{)}\Bigr{)}
+γ34(z248λ3)(5J𝐚2g2z+ϑϑ(zω𝐚+12,τ)))+C1,\displaystyle+\gamma_{3}^{-4}(\partial_{z}^{2}-48\lambda_{3})\Bigl{(}\frac{5J_{\mathbf{a}}}{2g_{2}}z+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{z}{\omega_{\mathbf{a}}}+\frac{1}{2},\tau\Bigr{)}\Bigr{)}\Bigr{)}+C_{1},

where C0C_{0} and C1C_{1} are some constants and z=d/dz\partial_{z}=d/dz.

Proof..

Around ωj\omega_{j} (j=1,2,3)(j=1,2,3),

1P((z))=14γj2(zωj)2(1+O(zωj)2)\frac{1}{P(\wp(z))}=\frac{1}{4}\gamma_{j}^{-2}(z-\omega_{j})^{-2}(1+O(z-\omega_{j})^{2})

since (z)=λj+γj(zωj)2+O(zωj)4.\wp(z)=\lambda_{j}+\gamma_{j}(z-\omega_{j})^{2}+O(z-\omega_{j})^{4}. Hence

1P((z))14(γ12(zω1)+γ22(zω2)+γ32(zω3))Γ0,\frac{1}{P(\wp(z))}-\frac{1}{4}(\gamma_{1}^{-2}\wp(z-\omega_{1})+\gamma_{2}^{-2}\wp(z-\omega_{2})+\gamma_{3}^{-2}\wp(z-\omega_{3}))\equiv\Gamma_{0}, (5.1)

in which, by putting z=0z=0, we find Γ0=9g3(g2327g32)1.\Gamma_{0}=9g_{3}(g_{2}^{3}-27g_{3}^{2})^{-1}. We may set, for some c0c_{0},

(z)+1ω𝐚zϑϑ(zω𝐚+ν,τ)c0,\wp(z)+\frac{1}{\omega_{\mathbf{a}}}\partial_{z}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{z}{\omega_{\mathbf{a}}}+\nu,\tau\Bigr{)}\equiv c_{0}, (5.2)

integration of which yields

ω𝐚c0=c0ω1ω1𝑑z=ω1ω1(z)𝑑z=𝐚λP(λ)𝑑λ.\omega_{\mathbf{a}}c_{0}=c_{0}\int^{\omega_{1}}_{-\omega_{1}}dz=\int^{\omega_{1}}_{-\omega_{1}}\wp(z)dz=\int_{\mathbf{a}}\frac{\lambda}{\sqrt{P(\lambda)}}d\lambda.

Observing that

J𝐚=\displaystyle J_{\mathbf{a}}= 𝐚P(λ)𝑑λ=𝐚(23λ(P(λ))23g2λP(λ)g3P(λ))𝑑λ\displaystyle\int_{\mathbf{a}}\sqrt{P(\lambda)}d\lambda=\int_{\mathbf{a}}\Bigl{(}\frac{2}{3}\lambda\,\bigl{(}\!\sqrt{P(\lambda)}\bigr{)}^{\prime}-\frac{2}{3}\frac{g_{2}\lambda}{\sqrt{P(\lambda)}}-\frac{g_{3}}{\sqrt{P(\lambda)}}\Bigr{)}d\lambda
=\displaystyle= 23J𝐚23g2𝐚λP(λ)𝑑λg3ω𝐚,\displaystyle-\frac{2}{3}J_{\mathbf{a}}-\frac{2}{3}g_{2}\int_{\mathbf{a}}\frac{\lambda}{\sqrt{P(\lambda)}}d\lambda-g_{3}\omega_{\mathbf{a}},

we have c0=5J𝐚/(2g2ω𝐚)3g3/(2g2).c_{0}=-5J_{\mathbf{a}}/(2g_{2}\omega_{\mathbf{a}})-3g_{3}/(2g_{2}). Inserting (5.2) with zzωjz\mapsto z-\omega_{j} (j=1,2,3)(j=1,2,3) into (5.1), and using

Γ03g38g2(γ12+γ22+γ32)=0,\Gamma_{0}-\frac{3g_{3}}{8g_{2}}(\gamma_{1}^{-2}+\gamma_{2}^{-2}+\gamma_{3}^{-2})=0,

we obtain the first primitive function. To derive the second formula, we note that, around z=ωjz=\omega_{j} (j=1,2,3)(j=1,2,3),

16P((z))2=\displaystyle\frac{16}{P(\wp(z))^{2}}= (γj2(zωj)4γj2λj+O(zωj)2)2\displaystyle\Bigl{(}\gamma_{j}^{-2}\wp(z-\omega_{j})-4\gamma_{j}^{-2}\lambda_{j}+O(z-\omega_{j})^{2}\Bigr{)}^{2}
=\displaystyle= γj4((zωj)28λj(zωj)+O(1))\displaystyle\gamma_{j}^{-4}(\wp(z-\omega_{j})^{2}-8\lambda_{j}\wp(z-\omega_{j})+O(1))

by (5.1), since, say around z=ω1z=\omega_{1}, (zω2)=(ω3)+O(zω1)2,\wp(z-\omega_{2})=\wp(\omega_{3})+O(z-\omega_{1})^{2}, (zω3)=(ω2)+O(zω1)2,\wp(z-\omega_{3})=\wp(\omega_{2})+O(z-\omega_{1})^{2}, with γ22λ3+γ32λ2+4Γ0=4γ12λ1.\gamma_{2}^{-2}\lambda_{3}+\gamma_{3}^{-2}\lambda_{2}+4\Gamma_{0}=-4\gamma_{1}^{-2}\lambda_{1}. Then we set

16P((z))2\displaystyle\frac{16}{P(\wp(z))^{2}} γ14((zω1)28λ1(zω1))γ24((zω2)28λ2(zω2))\displaystyle-\gamma_{1}^{-4}(\wp(z-\omega_{1})^{2}-8\lambda_{1}\wp(z-\omega_{1}))-\gamma_{2}^{-4}(\wp(z-\omega_{2})^{2}-8\lambda_{2}\wp(z-\omega_{2}))
γ34((zω3)28λ3(zω3))Γ1\displaystyle-\gamma_{3}^{-4}(\wp(z-\omega_{3})^{2}-8\lambda_{3}\wp(z-\omega_{3}))\equiv\Gamma_{1} (5.3)

with

Γ1=7((λ2λ3)4λ12+(λ3λ1)4λ22+(λ1λ2)4λ32)(λ2λ3)4(λ3λ1)4(λ1λ2)4.\Gamma_{1}=\frac{7((\lambda_{2}-\lambda_{3})^{4}\lambda_{1}^{2}+(\lambda_{3}-\lambda_{1})^{4}\lambda_{2}^{2}+(\lambda_{1}-\lambda_{2})^{4}\lambda_{3}^{2})}{(\lambda_{2}-\lambda_{3})^{4}(\lambda_{3}-\lambda_{1})^{4}(\lambda_{1}-\lambda_{2})^{4}}.

Insertion of (5.2) and

(z)2+z36ω𝐚ϑϑ(zω𝐚+ν,τ)g212\wp(z)^{2}+\frac{\partial_{z}^{3}}{6\omega_{\mathbf{a}}}\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{z}{\omega_{\mathbf{a}}}+\nu,\tau\Bigr{)}\equiv\frac{g_{2}}{12}

with zzωjz\mapsto z-\omega_{j} (j=1,2,3)(j=1,2,3) into (5.3) leads to the second formula. ∎

Lemma 5.2.

Under the same supposition as in Lemma 5.1, for k=0,1,2k=0,1,2,

z0z(z)k(z)P((z))𝑑z=\displaystyle\int^{z}_{z_{0}}\frac{\wp(z)^{k}\wp^{\prime}(z)}{P(\wp(z))}dz= 14(γ11λ1kln((z)λ1)\displaystyle\frac{1}{4}\Bigl{(}\gamma_{1}^{-1}\lambda_{1}^{k}\ln(\wp(z)-\lambda_{1})
+γ21λ2kln((z)λ2)+γ31λ3kln((z)λ3))+C(z0),\displaystyle+\gamma_{2}^{-1}\lambda_{2}^{k}\ln(\wp(z)-\lambda_{2})+\gamma_{3}^{-1}\lambda_{3}^{k}\ln(\wp(z)-\lambda_{3})\Bigr{)}+C(z_{0}),

where z0{0,ω1,ω2,ω3}+ω𝐚+ω𝐛,z_{0}\not\in\{0,\omega_{1},\omega_{2},\omega_{3}\}+\omega_{\mathbf{a}}\mathbb{Z}+\omega_{\mathbf{b}}\mathbb{Z}, and C(z0)C(z_{0}) is some constant.

Proof..

Note that, for k=0,1,2,k=0,1,2,

4kP()=γ11λ1k(λ1)1+γ21λ2k(λ2)1+γ31λ3k(λ3)1,\frac{4\wp^{k}}{P(\wp)}=\gamma_{1}^{-1}\lambda_{1}^{k}(\wp-\lambda_{1})^{-1}+\gamma_{2}^{-1}\lambda_{2}^{k}(\wp-\lambda_{2})^{-1}+\gamma_{3}^{-1}\lambda_{3}^{k}(\wp-\lambda_{3})^{-1},

from which the lemma follows. ∎

Recall that 𝔭(z)=(zt0)\mathfrak{p}(z)=\wp(z-t_{0}) and

β(z)=8eiϕ5ω𝐚(β0+𝔟(zt0)),𝔟(σ)=54eiϕJ𝐚σ+ϑϑ(σω𝐚+ν,τ).\beta(z)=\frac{8e^{i\phi}}{5\omega_{\mathbf{a}}}(\beta_{0}+\mathfrak{b}(z-t_{0})),\quad\mathfrak{b}(\sigma)=-\frac{5}{4}e^{-i\phi}J_{\mathbf{a}}\sigma+\frac{\vartheta^{\prime}}{\vartheta}\Bigl{(}\frac{\sigma}{\omega_{\mathbf{a}}}+\nu,\tau\Bigr{)}. (5.4)

Then we have the following.

Lemma 5.3.

Let α0\alpha_{0}\in\mathbb{C} be a given number. Then

s(𝔟(σα0)+𝔟(σ+α0))σ𝔟(σ)dσσ~s1,σ~=σ+t0\int^{s}_{\infty}(\mathfrak{b}(\sigma-\alpha_{0})+\mathfrak{b}(\sigma+\alpha_{0}))_{\sigma}\mathfrak{b}(\sigma)\frac{d\sigma}{\tilde{\sigma}}\ll s^{-1},\quad\tilde{\sigma}=\sigma+t_{0}

as x=eiϕ(54eiϕs)4/5x=e^{i\phi}(\tfrac{5}{4}e^{-i\phi}s)^{4/5}\to\infty through 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon), in which the integral on the left-hand side is convergent.

Proof..

Let xν=eiϕ(54eiϕsν)4/5x_{\nu}=e^{i\phi}(\tfrac{5}{4}e^{-i\phi}s_{\nu})^{4/5} be any sequence tending to \infty through 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon). Note that 𝔟(s)\mathfrak{b}(s) and 𝔟(s±α0)\mathfrak{b}(s\pm\alpha_{0}) are bounded in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon). Integration by parts leads to

sνs𝔟(σα0)σ𝔟(σ)dσσ~=\displaystyle\int^{s}_{s_{\nu}}\mathfrak{b}(\sigma-\alpha_{0})_{\sigma}\mathfrak{b}(\sigma)\frac{d\sigma}{\tilde{\sigma}}= [𝔟(σα0)𝔟(σ)σ~1]sνs\displaystyle\Bigl{[}\mathfrak{b}(\sigma-\alpha_{0})\mathfrak{b}(\sigma)\tilde{\sigma}^{-1}\Bigr{]}^{s}_{s_{\nu}}
sνs𝔟(σα0)𝔟σ(σ)dσσ~+sνs𝔟(σα0)𝔟(σ)dσσ~2\displaystyle-\int^{s}_{s_{\nu}}\mathfrak{b}(\sigma-\alpha_{0})\mathfrak{b}_{\sigma}(\sigma)\frac{d\sigma}{\tilde{\sigma}}+\int^{s}_{s_{\nu}}\mathfrak{b}(\sigma-\alpha_{0})\mathfrak{b}(\sigma)\frac{d\sigma}{\tilde{\sigma}^{2}}
=\displaystyle= sνα0sα0𝔟(σ)𝔟σ(σ+α0)dσσ~+α0+O(s1)+O(sν1)\displaystyle-\int^{s-\alpha_{0}}_{s_{\nu}-\alpha_{0}}\mathfrak{b}(\sigma)\mathfrak{b}_{\sigma}(\sigma+\alpha_{0})\frac{d\sigma}{\tilde{\sigma}+\alpha_{0}}+O(s^{-1})+O(s_{\nu}^{-1})
=\displaystyle= sνs𝔟(σ+α0)σ𝔟(σ)dσσ~+O(s1)+O(sν1).\displaystyle-\int^{s}_{s_{\nu}}\mathfrak{b}(\sigma+\alpha_{0})_{\sigma}\mathfrak{b}(\sigma)\frac{d\sigma}{\tilde{\sigma}}+O(s^{-1})+O(s_{\nu}^{-1}).

The passage to the limit sνs_{\nu}\to\infty leads to the lemma. ∎

By Lemma 5.1 with g2=2eiϕ,g_{2}=-2e^{i\phi}, we may write

1P((z))=\displaystyle\frac{1}{P(\wp(z))}= 14ω𝐚ddz(γ122(𝔟(zω𝐚/2)+𝔟(z+ω𝐚/2))\displaystyle-\frac{1}{4\omega_{\mathbf{a}}}\frac{d}{dz}\Bigl{(}\frac{\gamma_{1}^{-2}}{2}(\mathfrak{b}(z-\omega_{\mathbf{a}}/2)+\mathfrak{b}(z+\omega_{\mathbf{a}}/2))
+γ222(𝔟(zω𝐚ν)+𝔟(z+ω𝐚ν))+γ322(𝔟(zω𝐚τ/2)+𝔟(z+ω𝐚τ/2))).\displaystyle+\frac{\gamma_{2}^{-2}}{2}(\mathfrak{b}(z-\omega_{\mathbf{a}}\nu)+\mathfrak{b}(z+\omega_{\mathbf{a}}\nu))+\frac{\gamma_{3}^{-2}}{2}(\mathfrak{b}(z-\omega_{\mathbf{a}}\tau/2)+\mathfrak{b}(z+\omega_{\mathbf{a}}\tau/2))\Bigr{)}.

Substituting zz by zt0z-t_{0} and using Lemma 5.3 we have the following.

Lemma 5.4.

In 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon),

z𝔟(ζt0)P(𝔭(ζ))dζζz1,\int^{z}_{\infty}\frac{\mathfrak{b}(\zeta-t_{0})}{P(\mathfrak{p}(\zeta))}\frac{d\zeta}{\zeta}\ll z^{-1},

in which the integral on the left-hand is convergent.

Lemma 5.5.

In 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon),

z1P(𝔭(ζ))dζζz1,z1P(𝔭(ζ))2dζζ2=γ0z1+O(z2),z𝔭(ζ)𝔭(ζ)P(𝔭(ζ))dζζz1,\int^{z}_{\infty}\frac{1}{P(\mathfrak{p}(\zeta))}\frac{d\zeta}{\zeta}\ll z^{-1},\,\,\,\int^{z}_{\infty}\frac{1}{P(\mathfrak{p}(\zeta))^{2}}\frac{d\zeta}{\zeta^{2}}=-\gamma_{0}z^{-1}+O(z^{-2}),\,\,\,\int^{z}_{\infty}\frac{\mathfrak{p}(\zeta)\mathfrak{p}^{\prime}(\zeta)}{P(\mathfrak{p}(\zeta))}\frac{d\zeta}{{\zeta}}\ll z^{-1},

where γ0=5(8e3iϕ+27Aϕ2)1.\gamma_{0}=-5(8e^{3i\phi}+27A_{\phi}^{2})^{-1}.

Proof..

Let γ0z+F(z)\gamma_{0}z+F(z) be the primitive function of 1/P((z))21/P(\wp(z))^{2} given in Lemma 5.1, where F(z)F(z) is bounded in 𝒟ˇcut(ϕ,t,c,ε)\check{\mathcal{D}}_{\mathrm{cut}}(\phi,t_{\infty},c,\varepsilon). Then

z1P(𝔭(ζ))2dζζ2=\displaystyle\int^{z}_{\infty}\frac{1}{P(\mathfrak{p}(\zeta))^{2}}\frac{d\zeta}{{\zeta}^{2}}= [(F(ζt0)+γ0ζ)1ζ2]z+2z(F(ζt0)+γ0ζ)dζζ3\displaystyle\Bigl{[}(F(\zeta-t_{0})+\gamma_{0}\zeta)\frac{1}{{\zeta}^{2}}\Bigl{]}^{z}_{\infty}+2\int^{z}_{\infty}(F(\zeta-t_{0})+\gamma_{0}\zeta)\frac{d\zeta}{{\zeta}^{3}}
=\displaystyle= γ0z1+O(z2),\displaystyle-\gamma_{0}z^{-1}+O(z^{-2}),

which is the second integral. The remaining estimates are similarly obtained by the use of Lemmas 5.1 and 5.2. ∎

6. Discussion

Our main results Theorems 2.1 and 2.2 are derived by combining expressions (1.3) and (1.5) of y(x)y(x) and of B(ϕ,t)B(\phi,t) in Theorems A and B, respectively, with analysis on the integral equations (associated with system (3.1)) in Proposition 3.3 via (4.3). The formulas of Theorems A and B with the error bounds O(tδ)O(t^{-\delta}) have been obtained in [14] and [15] by WKB analysis on isomonodromy linear system (1.2). Our approach to the error term is said to be purely classical iterative calculation via (4.3) by the use of (1.3) and (1.5). This is just in the situation as referred to in [15, Remark 1]. The essential part of this procedure owes much to the structure of the integral relation (4.3) containing the term

zF(𝔭,β)dζζz1,\int^{z}_{\infty}F(\mathfrak{p},\beta)\frac{d\zeta}{\zeta}\ll z^{-1},

in which the key to the estimate is Lemma 5.3. The corresponding error O(t1)O(t^{-1}), say in [5], is a quantity arising in constructing the solution of the related Riemann-Hilbert problem.

It may be conjectured that the error bound of (1.5) in Theorem B is O(t1)O(t^{-1}). If this is valid, then, in Theorem 2.2, the error bound of the expression for h(z)h(z) is O(z2).O(z^{-2}). For the fifth Painlevé transcendents the corresponding error bound estimates are valid [19], [18].

References

  • [1] Baldino, S., Schiappa, R., Schwick, M., Vega, R.: Resurgent Stokes data for Painlevé equations and two-dimensional quantum (super) gravity. Commun. Num. Theor. Phys. 17(2), 385–552, 2203.13726 (2023)
  • [2] Boutroux, P.: Recherches sur les transcendantes de M. Painlevé et l’etude asymptotique des eq́uations différentielles du second ordre. Ann. Sci. École Norm. Sup. 30(3), 255–375 (1913)
  • [3] Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Yu.: Painlevé Transcendents, The Riemann-Hilbert Approach, Math. Surveys and Monographs 128. AMS, Providence (2006)
  • [4] Hurwitz, A., Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer, Berlin (1922)
  • [5] Its, A.R., Kapaev, A.A.: The nonlinear steepest descent approach to the asymptotics of the second Painlev’e transcendent in the complex domain, MathPhys odyssey, 2001, pp. 273–311. Prog. Math. Phys., 23, Birkhauser, Boston, Boston, MA (2002)
  • [6] Iwaki, K.: 2-parameter τ\tau-function for the first Painlevé equation: topological recursion and direct monodromy problem via exact WKB analysis. Comm. Math. Phys. 377, 1047–1098 (2020)
  • [7] Iwaki, K., Mariño, M.: Resurgent structure of the topological string and the first Painlevé equation. SIGMA 20, 21 pages (2024)
  • [8] Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2, 407–448 (1981)
  • [9] Joshi, N., Kruskal, M.D.: An asymptotic approach to the connection problem for the first and the second Painlevé equations. Phys. Lett. A 130, 129–137 (1988)
  • [10] Kapaev, A.A.: Asymptotic behaviour of the solutions of the Painlevé equation of the first kind. (Russian) Differentsial’nye Uravneniya 24, 1684–1695 (1988); translation in Differential Equations 24, 1107–1115 (1988)
  • [11] Kapaev, A.A.: Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A: Math. Gen. 37, 11149 (2004)
  • [12] Kapaev, A.A., Kitaev, A.V.: Connection formulae for the first Painlevé transcendent in the complex domain. Lett. Math. Phys. 27, 243–252 (1993)
  • [13] Kitaev, A.V.: The justification of asymptotic formulas that can be obtained by the method of isomonodromic deformations. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel.  Mat. Inst. Steklov. (LOMI) 179, Mat. Vopr. Teor. Rasprostr. Voln. 19, 101–109, 189–190 (1989); translation in J. Soviet Math. 57(3), 3131–3135 (1991)
  • [14] Kitaev, A.V.: The isomonodromy technique and the elliptic asymptotics of the first Painlevé transcendent. (Russian) Algebra i Analiz 5, 179–211 (1993); translation in St. Petersburg Math. J. 5, 577–605 (1994)
  • [15] Kitaev, A.V.: Elliptic asymptotics of the first and second Painlevé transcendents. (Russian) Uspekhi Mat. Nauk 49, 77–140 (1994); translation in Russian Math. Surveys 49, 81–150 (1994)
  • [16] Lisovyy, O., Roussillon, J.: On the connection problem for Painlevé I. J. Phys. A: Math. Theor. 50, 255202 (2017)
  • [17] Novokshenov, V.Yu.; The Boutroux ansatz for the second Painlevé equation in the complex domain. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 54, 1229–1251 (1990); translation in Math. USSR-Izv. 37, 587–609 (1991)
  • [18] Shimomura, S.: Elliptic asymptotic representation of the fifth Painlevé transcendents. Kyushu J. Math. 76, 43–99 (2022); Corrigendum to ‘Elliptic asymptotic representation of the fifth Painlevé transcendents’. Kyushu J. Math. 77, 191–202 (2023), arXiv:2012.07321 math.CA
  • [19] Shimomura, S.: Two error bounds of the elliptic asymptotics for the fifth Painlevé transcendents. Kyushu J. Math, 78, 487–502 (2024) arXiv:2307.01424 math.CA
  • [20] van Spaendonck, A., Vonk, M.: Painlevé I and exact WKB: Stokes phenomenon for two-parameter transseries. J. Phys. A 55(45), 454003, 2204.09062 (2022)
  • [21] Takei, Y.: On the connection formula for the first Painlevé equation – from the viewpoint of the exact WKB analysis. Sūrikaisekikenkyūsho Kōkyūroku 931, 70–99 (1995)
  • [22] Takei, Y.: An explicit description of the connection formula for the first Painlevé equation, Toward the exact WKB analysis of differential equations, linear or non-linear (Kyoto, 1998), pp. 271–296. Kyoto Univ. Press, Kyoto (2000)
  • [23] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Reprint of the fourth (1927) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996)