This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Existence of steady Navier-Stokes flows
exterior to an infinite cylinder

Mitsuo Higaki, Ryoma Horiuchi

Abstract. We consider the 3D steady Navier-Stokes system on the exterior of an infinite cylinder under the action of an external force. We are concerned with the class of solutions in which the velocity field is vertically uniform and at rest at horizontal infinity. This configuration includes the 2D exterior problem for the steady Navier-Stokes system known to have characteristic difficulties. We prove the existence of solutions in the above class for a given nonsymmetric external force with suitable decay. The proof can be adapted to the 2D problem and gives a generalization of H. (2023) in view of the regularity of solutions.

Keywords. Navier-Stokes system; Two-dimensional exterior domains; Scale-critical decay.

2020 MSC. 35Q30, 35B35, 76D05, 76D17.

1 Introduction

We consider the steady Navier-Stokes system on Ω×\Omega\times\mathbb{R}

{Δu+p=uu+finΩ×divu=0inΩ×u=bonΩ×u(x,z)0as|x|.\left\{\begin{array}[]{ll}-\Delta u+\nabla p=-u\cdot\nabla u+f&\mbox{in}\ \Omega\times\mathbb{R}\\ \operatorname{div}u=0&\mbox{in}\ \Omega\times\mathbb{R}\\ u=b&\mbox{on}\ \partial\Omega\times\mathbb{R}\\ u(x,z)\to 0&\mbox{as}\ |x|\to\infty.\end{array}\right. (NS)

Here Ω={x=(x1,x2)2||x|>1}\Omega=\{x=(x_{1},x_{2})\in\mathbb{R}^{2}~{}|~{}|x|>1\} denotes a exterior disk, and thus Ω×\Omega\times\mathbb{R} is the exterior of an infinite cylinder. The velocity field u=(u1,u2,u3)u=(u_{1},u_{2},u_{3}) and the pressure field pp are unknown functions, while the external force ff and the boundary condition bb are given. We use standard notation for derivatives: j=/xj\partial_{j}=\partial/\partial x_{j}, z=/z\partial_{z}=\partial/\partial z, Δ=j=12j2+z2\Delta=\sum_{j=1}^{2}\partial^{2}_{j}+\partial_{z}^{2}, =(1,2,z)\nabla=(\partial_{1},\partial_{2},\partial_{z}), divu=j=12juj+zu3\operatorname{div}u=\sum_{j=1}^{2}\partial_{j}u_{j}+\partial_{z}u_{3} and uu=(j=12ujj+u3z)uu\cdot\nabla u=(\sum_{j=1}^{2}u_{j}\partial_{j}+u_{3}\partial_{z})u.

Our interest is to construct a solution for ff that does not decay in the vertical direction. This configuration includes the 2D exterior problem for the steady Navier-Stokes system if one takes f=(f1(x),f2(x),0)f=(f_{1}(x),f_{2}(x),0). It is well-known that this problem has characteristic difficulties due to the lack of certain embeddings in 2D unbounded domains and to the famous Stokes paradox [1, 10, 2, 15, 3]. There are many open problems although mathematically fundamental. For an overview of the field, see the recent survey [9] by Korobkov-Ren.

Because of the absence of general theory, it is an important subject to construct 2D steady Navier-Stokes flows for given data Ω,f,b\Omega,f,b belonging to an appropriate class, and to study their properties at infinity. There are two approaches in this context. One is based on symmetry. We impose symmetry on the given data to improve decay of solutions by cancellation in integrals; see [2, 14, 3, 16, 13, 17, 18] for the work in this direction.

The other approach is more constructive and is based on perturbation. We perturb the Navier-Stokes system around an exact solution invariant under the scaling symmetry

u(x)λu(λx),p(x)λ2p(λx)u(x)\mapsto\lambda u(\lambda x),\quad p(x)\mapsto\lambda^{2}p(\lambda x)

and construct a solution, regarded as a remainder at infinity, to the perturbed system. The underlying idea is that the transport by a scale-invariant flow improves decay structure of solutions to the perturbed system. We typically use an exact solution found by Hamel [6]:

𝒱(x)=αx|x|2γx|x|2,𝒬(x)=|𝒱(x)|22,γ,α,{\mathcal{V}}(x)=\alpha\frac{x^{\perp}}{|x|^{2}}-\gamma\frac{x}{|x|^{2}},\quad{\mathcal{Q}}(x)=-\frac{|{\mathcal{V}}(x)|^{2}}{2},\quad\gamma,\alpha\in\mathbb{R},

where x=(x2,x1)x^{\bot}=(-x_{2},x_{1}) and we remark that 𝒱{\mathcal{V}} is a linear combination of the rotating flow x/|x|2x^{\perp}/|x|^{2} and the flow x/|x|2x/|x|^{2} carrying flux 2πγ-2\pi\gamma. Indeed, solutions around (𝒱,𝒬)({\mathcal{V}},{\mathcal{Q}}) are constructed by Hillairet-Wittwer [8] for |α|>48|\alpha|>\sqrt{48} when γ=0\gamma=0 and by [7] for any α\alpha when γ>2\gamma>2. As related work, we refer to [4] analyzing the exterior problem around the fast rotating flows and Maekawa-Tsurumi [12] constructing the Navier-Stokes flows in 2\mathbb{R}^{2} around rotating flows. Besides, Guillod-Wittwer [5] generalizes the Hamel solutions.

In this paper, we are interested in using the perturbation method to construct solutions around (𝒱,𝒬)({\mathcal{V}},{\mathcal{Q}}) to the three-dimensional system (NS). There are at least two difficulties. First, since the equations are three-dimensional, the vorticity-streamfunction formulation useful in 2D settings [8, 7, 12] cannot be applied directly. Second, it is not trivial whether the transport by (𝒱,𝒬)({\mathcal{V}},{\mathcal{Q}}) is also present in the three-dimensional part of the flows.

Let us introduce notation for the main result. For ρ0\rho\geq 0, we define a Banach space by

Lρ(Ω)={fL(Ω)|fLs<},fLs:=esssupxΩ|x|s|f(x)|.\displaystyle\begin{split}L^{\infty}_{\rho}(\Omega)&=\{f\in L^{\infty}(\Omega)~{}|~{}\|f\|_{L^{\infty}_{s}}<\infty\},\qquad\|f\|_{L^{\infty}_{s}}:=\operatorname*{ess\,sup}_{x\in\Omega}\,|x|^{s}|f(x)|.\end{split} (1.1)

In the cylindrical coordinates on Ω×\Omega\times\mathbb{R}

x1=rcosθ,x2=rsinθ,r=|x|1,θ[0,2π),𝐞r=(x|x|,0),𝐞θ=(x|x|,0),𝐞3=(0,0,1),\displaystyle\begin{split}&x_{1}=r\cos\theta,\quad x_{2}=r\sin\theta,\quad r=|x|\geq 1,\quad\theta\in[0,2\pi),\\ &{\bf e}_{r}=\Big{(}\frac{x}{|x|},0\Big{)},\quad{\bf e}_{\theta}=\Big{(}\frac{x^{\bot}}{|x|},0\Big{)},\quad{\bf e}_{3}=(0,0,1),\end{split} (1.2)

we denote a three-dimensional vector field v=(v1,v2,v3)v=(v_{1},v_{2},v_{3}) by

v=vr𝐞r+vθ𝐞θ+v3𝐞3,(vr,vθ):=((v1,v2)𝐞r,(v1,v2)𝐞θ).v=v_{r}{\bf e}_{r}+v_{\theta}{\bf e}_{\theta}+v_{3}{\bf e}_{3},\qquad(v_{r},v_{\theta}):=\big{(}(v_{1},v_{2})\cdot{\bf e}_{r},(v_{1},v_{2})\cdot{\bf e}_{\theta}\big{)}.

For a scalar function s=s(r,θ,z)s=s(r,\theta,z) on Ω×\Omega\times\mathbb{R} and nn\in\mathbb{Z}, we set

sn(r,z)=12π02πs(r,t,z)eintdt.s_{n}(r,z)=\frac{1}{2\pi}\int_{0}^{2\pi}s(r,t,z)e^{-int}\,{\rm d}t.

Then, for a vector field vv on Ω×\Omega\times\mathbb{R}, we define the operator 𝒫n{\mathcal{P}}_{n} by

(𝒫nv)(r,θ,z)=vr,n(r,z)einθ𝐞r+vθ,n(r,z)einθ𝐞θ+vz,n(r,z)einθ𝐞3.({\mathcal{P}}_{n}v)(r,\theta,z)=v_{r,n}(r,z)e^{in\theta}{\bf e}_{r}+v_{\theta,n}(r,z)e^{in\theta}{\bf e}_{\theta}+v_{z,n}(r,z)e^{in\theta}{\bf e}_{3}.

We also define 𝒫n{\mathcal{P}}_{n} acting on scalar- and tensor-valued mappings in an obvious manner.

Our main result states the existence of solutions to (NS) which are vertically uniform.

Theorem 1.1

For α\alpha\in\mathbb{R}, γ>2\gamma>2 and 2<ρ<32<\rho<3 with ργ\rho\leq\gamma, there is a constant ε=ε(α,γ,ρ)\varepsilon=\varepsilon(\alpha,\gamma,\rho) such that the following holds. Suppose that the boundary data bb is given by

b=b(x)=(αxγx,0)b=b(x)=(\alpha x^{\bot}-\gamma x,0)

and that the external force ff is a distribution on Ω\Omega and given by

f=g+divFf=g+\operatorname{div}F

where gL2ρ1(Ω)3g\in L^{\infty}_{2\rho-1}(\Omega)^{3} and FL2(ρ1)(Ω)3×3F\in L^{\infty}_{2(\rho-1)}(\Omega)^{3\times 3} satisfy

n(𝒫ngL2ρ1+𝒫nFL2(ρ2))ε.\displaystyle\sum_{n\in\mathbb{Z}}\big{(}\|\mathcal{P}_{n}g\|_{L^{\infty}_{2\rho-1}}+\|\mathcal{P}_{n}F\|_{L^{\infty}_{2(\rho-2)}}\big{)}\leq\varepsilon.

Then there is a weak solution u=u(x)u=u(x) of (NS) unique in a suitable set (defined in the proof in Section 3). Moreover, the solution u(x)u(x) has the asymptotic behavior

u(x)=α(x|x|2,0)γ(x|x|2,0)+O(|x|ρ+1)as|x|.\displaystyle u(x)=\alpha\Big{(}\frac{x^{\bot}}{|x|^{2}},0\Big{)}-\gamma\Big{(}\frac{x}{|x|^{2}},0\Big{)}+O(|x|^{-\rho+1})\quad\mbox{as}\ |x|\to\infty. (1.3)
Remark 1.2
  1. (i)

    The precise definition of weak solutions is given in Subsection 1.1.

  2. (ii)

    Theorem 1.1 contains [7, Theorem 1.1] for 2D problems as the special case when f=gf=g and g3=0g_{3}=0 in the assumption. In this case, the solutions belong to Wloc2,2(Ω¯)W^{2,2}_{{\rm loc}}(\overline{\Omega}) by elliptic regularity, which cannot expected in Theorem 1.1 due to the regularity of ff.

  3. (iii)

    Even though the given data f,bf,b are independent of the variable zz, the solvability of (NS) cannot be reduced to that of the 2D Navier-Stokes system on Ω\Omega. Indeed, for a smooth external force f=f(x)f=f(x), the vertical component u3=u3(x)u_{3}=u_{3}(x) is subject to

    (12+22)u3=(u11+u22)u3+f3.-(\partial_{1}^{2}+\partial_{2}^{2})u_{3}=-(u_{1}\partial_{1}+u_{2}\partial_{2})u_{3}+f_{3}.

    If one linearizes this equation, the 2D Laplace operator appears whose fundamental solution has logarithmic growth. Thus the proof of (1.3) needs careful computation.

  4. (iv)

    It is physically more natural to consider solutions of (NS) for given data that are neither vertically uniform nor decaying. However, the problem is difficult even for the vertically periodic data. Indeed, in addition to the analysis of the linearized problem in Section 2, we need to deal with the linear problems corresponding to the non-constant periodic data, which cannot be regarded as small perturbations from the Stokes system due to γ>2\gamma>2. New machinery is needed for this family of linear problems. Let us mention Kozono-Terasawa-Wakasugi [11] providing asymptotic behavior for the axisymmetric steady Navier-Stokes system in the above vertically periodic setting.

Let us outline the proof of Theorem 1.1 whose details will be given in Section 3. To adapt the above exact solution (𝒱,𝒬)({\mathcal{V}},{\mathcal{Q}}) to a three-dimensional system (NS), we set

V(x)=(𝒱(x),0)=α(x|x|2,0)γ(x|x|2,0)\displaystyle V(x)=({\mathcal{V}}(x),0)=\alpha\Big{(}\frac{x^{\bot}}{|x|^{2}},0\Big{)}-\gamma\Big{(}\frac{x}{|x|^{2}},0\Big{)} (1.4)

and Q=𝒬Q={\mathcal{Q}}. Then the new pair (v,q):=(uV,pQ)(v,q):=(u-V,p-Q) solves

{Δv+vV+Vv+q=vv+finΩ×divv=0inΩ×v=0onΩ×v(x,z)0as|x|.\left\{\begin{array}[]{ll}-\Delta v+v\cdot\nabla V+V\cdot\nabla v+\nabla q=-v\cdot\nabla v+f&\mbox{in}\ \Omega\times\mathbb{R}\\ \operatorname{div}v=0&\mbox{in}\ \Omega\times\mathbb{R}\\ v=0&\mbox{on}\ \partial\Omega\times\mathbb{R}\\ v(x,z)\to 0&\mbox{as}\ |x|\to\infty.\end{array}\right. (1.5)

By the formula

uv+vu=u×rotvv×rotu+(|u+v|2|u|2|v|22),\displaystyle u\cdot\nabla v+v\cdot\nabla u=-u\times\operatorname{rot}v-v\times\operatorname{rot}u+\nabla\Big{(}\frac{|u+v|^{2}-|u|^{2}-|v|^{2}}{2}\Big{)}, (1.6)

where ×\times is the cross product in 3\mathbb{R}^{3}, and by rotV=0\operatorname{rot}V=0, we rewrite (1.5) as

{ΔvV×rotv+q1=vv+finΩ×divv=0inΩ×v=0onΩ×v(x,z)0as|x|\left\{\begin{array}[]{ll}-\Delta v-V\times\operatorname{rot}v+\nabla q_{1}=-v\cdot\nabla v+f&\mbox{in}\ \Omega\times\mathbb{R}\\ \operatorname{div}v=0&\mbox{in}\ \Omega\times\mathbb{R}\\ v=0&\mbox{on}\ \partial\Omega\times\mathbb{R}\\ v(x,z)\to 0&\mbox{as}\ |x|\to\infty\end{array}\right. (NP)

with the pressure

q1=(q+|V+v|2|V|2|v|22).\nabla q_{1}=\nabla\Big{(}q+\frac{|V+v|^{2}-|V|^{2}-|v|^{2}}{2}\Big{)}.

We analyze the perturbed nonlinear system (NP) to prove Theorem 1.1. As will be seen in Section 2, the fundamental solution for the linearized problem has better decay compared with the one for the non-perturbed case when α=γ=0\alpha=\gamma=0. Consequently, an improvement of decay can be seen similar to the 2D case [8, 7, 12]. However, it should be emphasized, that a new analysis is necessary because the system (NP) is three-dimensional.

This paper is organized as follows. In Section 2, we study the linearized problem of (NP) and prove decay estimates of the solutions. In Section 3, we prove Theorem 1.1.

1.1 Notation and Terminology

We summarize the notation and terminology used throughout this paper.

Notation. We denote by CC the constant and by C(a,b,c,)C(a,b,c,\ldots) the constant depending on a,b,c,a,b,c,\ldots. Both of these may vary from line to line. We use the function spaces on Ω\Omega

W^1,2(Ω)\displaystyle\widehat{W}^{1,2}(\Omega) ={χLloc2(Ω¯)|χL2(Ω)2},\displaystyle=\{\chi\in L^{2}_{{\rm loc}}(\overline{\Omega})~{}|~{}\nabla\chi\in L^{2}(\Omega)^{2}\},
C0,σ(Ω)\displaystyle C^{\infty}_{0,\sigma}(\Omega) ={ψ=(ψ1,ψ2)C0(Ω)2|1ψ1+2ψ2=0}\displaystyle=\{\psi=(\psi_{1},\psi_{2})\in C^{\infty}_{0}(\Omega)^{2}~{}|~{}\partial_{1}\psi_{1}+\partial_{2}\psi_{2}=0\}

and Lσ2(Ω)L^{2}_{\sigma}(\Omega) which is the completion of C0,σ(Ω)C^{\infty}_{0,\sigma}(\Omega) in the L2L^{2}-norm. If there is no confusion, we use the same notation to denote the quantities concerning scalar-, vector- or tensor-valued mappings. For example, ,\langle\cdot,\cdot\rangle denotes to the inner product on L2(Ω)L^{2}(\Omega), L2(Ω)2L^{2}(\Omega)^{2} or L2(Ω)2×2L^{2}(\Omega)^{2\times 2}.

Weak solutions. Let us clarify the definition of weak solutions of (NS) in Theorem 1.1. Let ff and bb satisfy the assumption in Theorem 1.1. Then a three-dimensional vector field uW^1,2(Ω)3u\in\widehat{W}^{1,2}(\Omega)^{3} is called a weak solution of (NS) if uu satisfies divu=1u1+2u2=0\operatorname{div}u=\partial_{1}u_{1}+\partial_{2}u_{2}=0 in the sense of distributions, (ub)|Ω=0(u-b)|_{\partial\Omega}=0 in the sense of trace, and it holds that

Ωuφ=Ω(uu)φ+ΩgφΩFφ,\displaystyle\int_{\Omega}\nabla u\cdot\nabla\varphi=\int_{\Omega}(u\otimes u)\cdot\nabla\varphi+\int_{\Omega}g\cdot\varphi-\int_{\Omega}F\cdot\nabla\varphi,
for any φ=(φ1,φ2,φ3)C0,σ(Ω)×C0(Ω)\varphi=(\varphi_{1},\varphi_{2},\varphi_{3})\in C^{\infty}_{0,\sigma}(\Omega)\times C^{\infty}_{0}(\Omega).

Axisymmetricity. A scalar function on Ω×\Omega\times\mathbb{R} with variable (r,θ,z)(r,\theta,z) is said to be axisymmetric if it is independent of θ\theta. A vector field v=vr𝐞r+vθ𝐞θ+v3𝐞3v=v_{r}{\bf e}_{r}+v_{\theta}{\bf e}_{\theta}+v_{3}{\bf e}_{3} on Ω×\Omega\times\mathbb{R} with variable (r,θ,z)(r,\theta,z) is said to be axisymmetric if the scalar functions vr,vθ,v3v_{r},v_{\theta},v_{3} are axisymmetric. The axisymmetricity of tensor fields on Ω×\Omega\times\mathbb{R} is defined in a similar manner.

2 Linearized Problem

In this section, we consider the linearized problem of (NP)

{ΔvV×rotv+q=finΩ×divv=0inΩ×v=0onΩ×v(x,z)0as|x|.\left\{\begin{array}[]{ll}-\Delta v-V\times\operatorname{rot}v+\nabla q=f&\mbox{in}\ \Omega\times\mathbb{R}\\ \operatorname{div}v=0&\mbox{in}\ \Omega\times\mathbb{R}\\ v=0&\mbox{on}\ \partial\Omega\times\mathbb{R}\\ v(x,z)\to 0&\mbox{as}\ |x|\to\infty.\end{array}\right. (LP)

Assume that this system does not depend on the variable zz. Set

vh=(v1,v2),rot2Dvh=1v22v1.\displaystyle v_{\rm h}=(v_{1},v_{2}),\qquad\operatorname{rot}_{{\rm 2D}}v_{\rm h}=\partial_{1}v_{2}-\partial_{2}v_{1}. (2.1)

Then, by computation

V×rotv\displaystyle-V\times\operatorname{rot}v =(V1V20)×(2v31v3rot2Dvh)\displaystyle=-\left(\begin{array}[]{c}V_{1}\\ V_{2}\\ 0\end{array}\right)\times\left(\begin{array}[]{c}\partial_{2}v_{3}\\ -\partial_{1}v_{3}\\ \operatorname{rot}_{{\rm 2D}}v_{\rm h}\end{array}\right)
=(V2V10)rot2Dvh+(00Vv3),\displaystyle=\left(\begin{array}[]{c}-V_{2}\\ V_{1}\\ 0\end{array}\right)\operatorname{rot}_{{\rm 2D}}v_{\rm h}+\left(\begin{array}[]{c}0\\ 0\\ V\cdot\nabla v_{3}\end{array}\right),

we separate (LP) into two systems; one is for the horizontal components vhv_{\rm h}

{Δhvh+(Vh)rot2Dvh+hq=fhinΩdivhvh=0inΩvh=0onΩvh(x)0as|x|\left\{\begin{array}[]{ll}-\Delta_{\rm h}v_{\rm h}+(V_{\rm h})^{\bot}\operatorname{rot}_{{\rm 2D}}v_{\rm h}+\nabla_{\rm h}q=f_{\rm h}&\mbox{in}\ \Omega\\ \operatorname{div}_{\rm h}v_{\rm h}=0&\mbox{in}\ \Omega\\ v_{\rm h}=0&\mbox{on}\ \partial\Omega\\ v_{\rm h}(x)\to 0&\mbox{as}\ |x|\to\infty\end{array}\right. (LPh)

where

Δh=(12+22),h=(1,2),divhvh=1v1+2v2,\displaystyle-\Delta_{\rm h}=-(\partial_{1}^{2}+\partial_{2}^{2}),\qquad\nabla_{\rm h}=(\partial_{1},\partial_{2}),\qquad\operatorname{div}_{\rm h}v_{\rm h}=\partial_{1}v_{1}+\partial_{2}v_{2}, (2.2)

and the other is for the vertical component v3v_{3}

{Δhv3+Vhhv3=f3inΩv3=0onΩv3(x)0as|x|.\left\{\begin{array}[]{ll}-\Delta_{\rm h}v_{3}+V_{\rm h}\cdot\nabla_{\rm h}v_{3}=f_{3}&\mbox{in}\ \Omega\\ v_{3}=0&\mbox{on}\ \partial\Omega\\ v_{3}(x)\to 0&\mbox{as}\ |x|\to\infty.\end{array}\right. (LPv)

Notice that both problems are imposed on the 2D exterior domain Ω\Omega. The problem (LPh) is studied in [7] for the case when external forces are more regular. We revisit the results and generalize the class of solutions in view of regularity. On the other hand, (LPv) for the vertical component requires new consideration which is not covered in [7].

2.1 Preliminaries

This subsection collects notation for mappings on Ω×\Omega\times\mathbb{R} independent of the variable zz. We denote by (r,θ)(r,\theta) the variables in the polar coordinates on Ω\Omega; see (1.2). Moreover, we identify 𝐞r{\bf e}_{r} and 𝐞θ{\bf e}_{\theta} respectively with the two-dimensional vectors x/|x|x/|x| and x/|x|x^{\bot}/|x| defined on Ω\Omega if there is no confusion. Some of the notation in this subsection are special cases of those in the introduction, but are duplicated for clarity of explanation.

In the polar coordinates, we denote a two-dimensional vector field vh=(v1,v2)v_{\rm h}=(v_{1},v_{2}) by

vh=vr𝐞r+vθ𝐞θ,(vr,vθ):=((v1,v2)𝐞r,(v1,v2)𝐞θ).v_{\rm h}=v_{r}{\bf e}_{r}+v_{\theta}{\bf e}_{\theta},\qquad(v_{r},v_{\theta}):=\big{(}(v_{1},v_{2})\cdot{\bf e}_{r},(v_{1},v_{2})\cdot{\bf e}_{\theta}\big{)}.

Then the operators divh\operatorname{div}_{\rm h}, rot2D\operatorname{rot}_{{\rm 2D}} and Δh-\Delta_{\rm h} in (2.1)–(2.2) are represented by

divhvh=1rr(rvr)+1rθvθ,rot2Dvh=1rr(rvθ)1rθvr,Δhvh={r(1rr(rvr))1r2θ2vr+2r2θvθ}𝐞r+{r(1rr(rvθ))1r2θ2vθ2r2θvr}𝐞θ.\displaystyle\begin{split}\operatorname{div}_{\rm h}v_{\rm h}&=\frac{1}{r}\partial_{r}(rv_{r})+\frac{1}{r}\partial_{\theta}v_{\theta},\\ \operatorname{rot}_{{\rm 2D}}v_{\rm h}&=\frac{1}{r}\partial_{r}(rv_{\theta})-\frac{1}{r}\partial_{\theta}v_{r},\\ -\Delta_{\rm h}v_{\rm h}&=\Big{\{}-\partial_{r}\Big{(}\frac{1}{r}\partial_{r}(rv_{r})\Big{)}-\frac{1}{r^{2}}\partial_{\theta}^{2}v_{r}+\frac{2}{r^{2}}\partial_{\theta}v_{\theta}\Big{\}}{\bf e}_{r}\\ &\quad+\Big{\{}-\partial_{r}\Big{(}\frac{1}{r}\partial_{r}(rv_{\theta})\Big{)}-\frac{1}{r^{2}}\partial_{\theta}^{2}v_{\theta}-\frac{2}{r^{2}}\partial_{\theta}v_{r}\Big{\}}{\bf e}_{\theta}.\end{split} (2.3)

If a 3×33\times 3 tensor field FF on Ω×\Omega\times\mathbb{R}

F\displaystyle F =Frr𝐞r𝐞r+Frθ𝐞r𝐞θ+Fr3𝐞r𝐞3\displaystyle=F_{rr}{\bf e}_{r}\otimes{\bf e}_{r}+F_{r\theta}{\bf e}_{r}\otimes{\bf e}_{\theta}+F_{r3}{\bf e}_{r}\otimes{\bf e}_{3}
+Fθr𝐞θ𝐞r+Fθθ𝐞θ𝐞θ+Fθ3𝐞θ𝐞3\displaystyle\quad+F_{\theta r}{\bf e}_{\theta}\otimes{\bf e}_{r}+F_{\theta\theta}{\bf e}_{\theta}\otimes{\bf e}_{\theta}+F_{\theta 3}{\bf e}_{\theta}\otimes{\bf e}_{3}
+F3r𝐞3𝐞r+F3θ𝐞3𝐞θ+F33𝐞3𝐞3\displaystyle\quad+F_{3r}{\bf e}_{3}\otimes{\bf e}_{r}+F_{3\theta}{\bf e}_{3}\otimes{\bf e}_{\theta}+F_{33}{\bf e}_{3}\otimes{\bf e}_{3}

is independent of zz, then we have

divF=(divF)r𝐞r+(divF)θ𝐞θ+(divF)3𝐞3,\displaystyle\operatorname{div}F=(\operatorname{div}F)_{r}{\bf e}_{r}+(\operatorname{div}F)_{\theta}{\bf e}_{\theta}+(\operatorname{div}F)_{3}{\bf e}_{3}, (2.4)

where

(divF)r\displaystyle(\operatorname{div}F)_{r} =1rr(rFrr)+1r(θFθrFθθ),\displaystyle=\frac{1}{r}\partial_{r}(rF_{rr})+\frac{1}{r}(\partial_{\theta}F_{\theta r}-F_{\theta\theta}),
(divF)θ\displaystyle(\operatorname{div}F)_{\theta} =1rr(rFrθ)+1r(θFθθ+Fθr),\displaystyle=\frac{1}{r}\partial_{r}(rF_{r\theta})+\frac{1}{r}(\partial_{\theta}F_{\theta\theta}+F_{\theta r}),
(divF)3\displaystyle(\operatorname{div}F)_{3} =1rr(rFr3)+1rθFθ3.\displaystyle=\frac{1}{r}\partial_{r}(rF_{r3})+\frac{1}{r}\partial_{\theta}F_{\theta 3}.

In particular, using divh\operatorname{div}_{\rm h} in (2.2), we see that

(divF)3=divh(Fr3𝐞r+Fθ3𝐞θ).\displaystyle(\operatorname{div}F)_{3}=\operatorname{div}_{\rm h}(F_{r3}{\bf e}_{r}+F_{\theta 3}{\bf e}_{\theta}). (2.5)

For a 2×22\times 2 tensor field FF on Ω\Omega

F=Frr𝐞r𝐞r+Frθ𝐞r𝐞θ+Fθr𝐞θ𝐞r+Fθθ𝐞θ𝐞θ,\displaystyle F=F_{rr}{\bf e}_{r}\otimes{\bf e}_{r}+F_{r\theta}{\bf e}_{r}\otimes{\bf e}_{\theta}+F_{\theta r}{\bf e}_{\theta}\otimes{\bf e}_{r}+F_{\theta\theta}{\bf e}_{\theta}\otimes{\bf e}_{\theta},

we have

divhF=(divhF)r𝐞r+(divhF)θ𝐞θ,\displaystyle\operatorname{div}_{\rm h}F=(\operatorname{div}_{\rm h}F)_{r}{\bf e}_{r}+(\operatorname{div}_{\rm h}F)_{\theta}{\bf e}_{\theta},

where

(divhF)r=1rr(rFrr)+1r(θFθrFθθ),(divhF)θ=1rr(rFrθ)+1r(θFθθ+Fθr).\displaystyle\begin{split}(\operatorname{div}_{\rm h}F)_{r}&=\frac{1}{r}\partial_{r}(rF_{rr})+\frac{1}{r}(\partial_{\theta}F_{\theta r}-F_{\theta\theta}),\\ (\operatorname{div}_{\rm h}F)_{\theta}&=\frac{1}{r}\partial_{r}(rF_{r\theta})+\frac{1}{r}(\partial_{\theta}F_{\theta\theta}+F_{\theta r}).\end{split}

Let nn\in\mathbb{Z}. For a scalar function s=s(r,θ)s=s(r,\theta) on Ω\Omega, we define the projection

sn(r)=12π02πs(r,t)eintdt\displaystyle s_{n}(r)=\frac{1}{2\pi}\int_{0}^{2\pi}s(r,t)e^{-int}\,{\rm d}t (2.6)

on the Fourier mode nn. For a vector field v=v(r,θ)v=v(r,\theta) on Ω\Omega

v(r,θ)=vr(r,θ)𝐞r+vθ(r,θ)𝐞θ+v3(r,θ)𝐞3,v(r,\theta)=v_{r}(r,\theta){\bf e}_{r}+v_{\theta}(r,\theta){\bf e}_{\theta}+v_{3}(r,\theta){\bf e}_{3},

using (2.6), we define the operator 𝒫n{\mathcal{P}}_{n} by

(𝒫nv)(r,θ)=vr,n(r)einθ𝐞r+vθ,n(r)einθ𝐞θ+v3,n(r)einθ𝐞3.\displaystyle({\mathcal{P}}_{n}v)(r,\theta)=v_{r,n}(r)e^{in\theta}{\bf e}_{r}+v_{\theta,n}(r)e^{in\theta}{\bf e}_{\theta}+v_{3,n}(r)e^{in\theta}{\bf e}_{3}. (2.7)

Applying the operator 𝒫n{\mathcal{P}}_{n} to (2.4), we obtain

𝒫n(divF)=(divF)r,n(r)einθ𝐞r+(divF)θ,n(r)einθ𝐞θ+(divF)3,n(r)einθ𝐞3,\displaystyle{\mathcal{P}}_{n}(\operatorname{div}F)=(\operatorname{div}F)_{r,n}(r)e^{in\theta}{\bf e}_{r}+(\operatorname{div}F)_{\theta,n}(r)e^{in\theta}{\bf e}_{\theta}+(\operatorname{div}F)_{3,n}(r)e^{in\theta}{\bf e}_{3},

where

(divF)r,n\displaystyle(\operatorname{div}F)_{r,n} =1rddr(rFrr,n)+1r(inFθr,nFθθ,n),\displaystyle=\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rF_{rr,n})+\frac{1}{r}(inF_{\theta r,n}-F_{\theta\theta,n}),
(divF)θ,n\displaystyle(\operatorname{div}F)_{\theta,n} =1rddr(rFrθ,n)+1r(inFθθ,n+Fθr,n),\displaystyle=\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rF_{r\theta,n})+\frac{1}{r}(inF_{\theta\theta,n}+F_{\theta r,n}),
(divF)3,n\displaystyle(\operatorname{div}F)_{3,n} =1rddr(rFr3,n)+inrFθ3,n.\displaystyle=\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rF_{r3,n})+\frac{in}{r}F_{\theta 3,n}.

We also define 𝒫n{\mathcal{P}}_{n} acting on scalar- and tensor-valued mappings in an obvious manner. For vector-valued ff or tensor-valued FF, we simply denote 𝒫nf{\mathcal{P}}_{n}f by fnf_{n} or 𝒫nF{\mathcal{P}}_{n}F by FnF_{n}. We do not identify 𝒫ns{\mathcal{P}}_{n}s with sns_{n} when ss is scalar-valued to avoid confusion with (2.6).

2.2 Horizontal Components

Let nn\in\mathbb{Z}. Applying 𝒫n{\mathcal{P}}_{n} to vhv_{\rm h} and fhf_{\rm h}

(𝒫nvh)(θ,r)\displaystyle({\mathcal{P}}_{n}v_{\rm h})(\theta,r) =vr,n(r)einθ𝐞r+vθ,n(r)einθ𝐞θ,\displaystyle=v_{r,n}(r)e^{in\theta}{\bf e}_{r}+v_{\theta,n}(r)e^{in\theta}{\bf e}_{\theta},
(𝒫nfh)(θ,r)\displaystyle({\mathcal{P}}_{n}f_{\rm h})(\theta,r) =fr,n(r)einθ𝐞r+fθ,n(r)einθ𝐞θ\displaystyle=f_{r,n}(r)e^{in\theta}{\bf e}_{r}+f_{\theta,n}(r)e^{in\theta}{\bf e}_{\theta}

and inserting these to (LPh), we see that (vr,n(r),vθ,n(r))(v_{r,n}(r),v_{\theta,n}(r)) and qn(r)q_{n}(r) satisfy

ddr(1rddr(rvr,n))+n2r2vr,n+2inr2vθ,nαr2(ddr(rvθ,n)invr,n)+rqn=fr,n,r>1,\displaystyle\begin{aligned} &-\frac{\,{\rm d}}{\,{\rm d}r}\Big{(}\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rv_{r,n})\Big{)}+\frac{n^{2}}{r^{2}}v_{r,n}+\frac{2in}{r^{2}}v_{\theta,n}\\ &\qquad\qquad-\frac{\alpha}{r^{2}}\Big{(}\frac{\,{\rm d}}{\,{\rm d}r}(rv_{\theta,n})-inv_{r,n}\Big{)}+\partial_{r}q_{n}=f_{r,n},\quad r>1,\\ \end{aligned} (2.8)
ddr(1rddr(rvθ,n))+n2r2vθ,n2inr2vr,nγr2(ddr(rvθ,n)invr,n)+inrqn=fθ,n,r>1,\displaystyle\begin{aligned} &-\frac{\,{\rm d}}{\,{\rm d}r}\Big{(}\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rv_{\theta,n})\Big{)}+\frac{n^{2}}{r^{2}}v_{\theta,n}-\frac{2in}{r^{2}}v_{r,n}\\ &\qquad\qquad-\frac{\gamma}{r^{2}}\Big{(}\frac{\,{\rm d}}{\,{\rm d}r}(rv_{\theta,n})-inv_{r,n}\Big{)}+\frac{in}{r}q_{n}=f_{\theta,n},\quad r>1,\end{aligned} (2.9)

the divergence-free and boundary conditions

ddr(rvr,n)+invθ,n=0,vr,n(1)=vθ,n(1)=0,\displaystyle\frac{\,{\rm d}}{\,{\rm d}r}(rv_{r,n})+inv_{\theta,n}=0,\qquad v_{r,n}(1)=v_{\theta,n}(1)=0, (2.10)

and the condition at infinity

|vr,n(r)|+|vθ,n(r)|0,r.\displaystyle|v_{r,n}(r)|+|v_{\theta,n}(r)|\to 0,\quad r\to\infty. (2.11)

2.2.1 Axisymmetric Part

Proposition 2.1

Let α\alpha\in\mathbb{R}, γ>2\gamma>2 and 2<ργ2<\rho\leq\gamma. Suppose that fh=fh,0f_{\rm h}=f_{{\rm h},0} is given by fh,0=divhF0f_{{\rm h},0}=\operatorname{div}_{\rm h}F_{0} for some F0𝒫0L2(ρ1)(Ω)2×2F_{0}\in{\mathcal{P}}_{0}L^{\infty}_{2(\rho-1)}(\Omega)^{2\times 2}. Then there is a unique weak solution vh,0𝒫0Lσ2(Ω)W01,2(Ω)2v_{{\rm h},0}\in{\mathcal{P}}_{0}L^{2}_{\sigma}(\Omega)\cap W^{1,2}_{0}(\Omega)^{2} of (LPh) satisfying

vh,0(r,θ)=vθ,0(r)𝐞θv_{{\rm h},0}(r,\theta)=v_{\theta,0}(r){\bf e}_{\theta}

and

vh,0Lρ1+1γ1hvh,0Lρ\displaystyle\|v_{{\rm h},0}\|_{L^{\infty}_{\rho-1}}+\frac{1}{\gamma-1}\|\nabla_{\rm h}v_{{\rm h},0}\|_{L^{\infty}_{\rho}} C(γ1)(γ2)(ρ2)F0L2(ρ1).\displaystyle\leq\frac{C(\gamma-1)}{(\gamma-2)(\rho-2)}\|F_{0}\|_{L^{\infty}_{2(\rho-1)}}. (2.12)

The constant CC is independent of α\alpha, γ\gamma and ρ\rho.

Proof.

To simplify, we omit the subscript “h{\rm h}” for vhv_{\rm h} and fhf_{\rm h}. Put n=0n=0 in (LABEL:eq.LPh.polar.vr)–(2.11). The radial part vr,0(r)v_{r,0}(r) is identically zero since both (rvr,0)=0(rv_{r,0})^{\prime}=0 and vr,0(1)=0v_{r,0}(1)=0 hold by (2.10). Besides, the angular part vθ,0(r)v_{\theta,0}(r) solves the ordinary differential equation

d2vθ,0dr21+γrdvθ,0dr+1γr2vθ,0=fθ,0,r>1,vθ,0(1)=0.\displaystyle-\frac{\,{\rm d}^{2}v_{\theta,0}}{\,{\rm d}r^{2}}-\frac{1+\gamma}{r}\frac{\,{\rm d}v_{\theta,0}}{\,{\rm d}r}+\frac{1-\gamma}{r^{2}}v_{\theta,0}=f_{\theta,0},\quad r>1,\qquad v_{\theta,0}(1)=0. (2.13)

As the uniqueness of solutions is clear, we may only consider the existence and estimates.

At first we assume that F0𝒫0C0(Ω)2×2F_{0}\in{\mathcal{P}}_{0}C^{\infty}_{0}(\Omega)^{2\times 2}, which gives

fθ,0=(divhF)θ,0=1rddr(rFrθ,0)+1rFθr,0.\displaystyle f_{\theta,0}=(\operatorname{div}_{\rm h}F)_{\theta,0}=\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rF_{r\theta,0})+\frac{1}{r}F_{\theta r,0}. (2.14)

As is shown in [7, Proof of Proposition 3.1], the solution of (2.13) is represented by

vθ,0(r)=1γ2{(1s2fθ,0(s)ds)rγ+1+rγ+11rsγfθ,0(s)ds+r1rs2fθ,0(s)ds}.\begin{split}v_{\theta,0}(r)&=\frac{1}{\gamma-2}\bigg{\{}-\bigg{(}\int_{1}^{\infty}s^{2}f_{\theta,0}(s)\,{\rm d}s\bigg{)}r^{-\gamma+1}\\ &\qquad\qquad\quad+r^{-\gamma+1}\int_{1}^{r}s^{\gamma}f_{\theta,0}(s)\,{\rm d}s+r^{-1}\int_{r}^{\infty}s^{2}f_{\theta,0}(s)\,{\rm d}s\bigg{\}}.\end{split}

By integration by parts based on (2.14), we rewrite this formula as

vθ,0(r)=1γ2[(1sFrθ,0(s)ds1sFθr,0(s)ds)rγ+1+rγ+1{(γ1)1rsγ1Frθ,0(s)ds+1rsγ1Fθr,0(s)ds}+r1(rsFrθ,0(s)ds+rsFθr,0(s)ds)].\begin{split}&v_{\theta,0}(r)\\ &=\frac{1}{\gamma-2}\bigg{[}\bigg{(}\int_{1}^{\infty}sF_{r\theta,0}(s)\,{\rm d}s-\int_{1}^{\infty}sF_{\theta r,0}(s)\,{\rm d}s\bigg{)}r^{-\gamma+1}\\ &\qquad\qquad\quad+r^{-\gamma+1}\bigg{\{}-(\gamma-1)\int_{1}^{r}s^{\gamma-1}F_{r\theta,0}(s)\,{\rm d}s+\int_{1}^{r}s^{\gamma-1}F_{\theta r,0}(s)\,{\rm d}s\bigg{\}}\\ &\qquad\qquad\quad+r^{-1}\bigg{(}-\int_{r}^{\infty}sF_{r\theta,0}(s)\,{\rm d}s+\int_{r}^{\infty}sF_{\theta r,0}(s)\,{\rm d}s\bigg{)}\bigg{]}.\end{split} (2.15)

An associated pressure 𝒫0q{\mathcal{P}}_{0}q is obtained from the equation (LABEL:eq.LPh.polar.vr). Set v0(r,θ)=vθ,0(r)𝐞θv_{0}(r,\theta)=v_{\theta,0}(r){\bf e}_{\theta}. Then the pair (v0,h𝒫0q)(v_{0},\nabla_{\rm h}{\mathcal{P}}_{0}q) is smooth and satisfies (LABEL:eq.LPh.polar.vr)–(2.11) in the classical sense.

Next we let F0𝒫0L2(ρ1)(Ω)2×2F_{0}\in{\mathcal{P}}_{0}L^{\infty}_{2(\rho-1)}(\Omega)^{2\times 2}. By computation

(1s|F0(s)|ds)rγ+1Cρ2F0L2(ρ1)rγ+1\displaystyle\begin{split}\bigg{(}\int_{1}^{\infty}s|F_{0}(s)|\,{\rm d}s\bigg{)}r^{-\gamma+1}\leq\frac{C}{\rho-2}\|F_{0}\|_{L^{\infty}_{2(\rho-1)}}r^{-\gamma+1}\end{split}

and

rγ+11rsγ1|F0(s)|ds+r1rs|F0(s)|dsCρ2F0L2(ρ1)rρ+1,\displaystyle\begin{split}&r^{-\gamma+1}\int_{1}^{r}s^{\gamma-1}|F_{0}(s)|\,{\rm d}s+r^{-1}\int_{r}^{\infty}s|F_{0}(s)|\,{\rm d}s\leq\frac{C}{\rho-2}\|F_{0}\|_{L^{\infty}_{2(\rho-1)}}r^{-\rho+1},\end{split}

one can verify that the desired estimate (2.12) follows from the formula (2.15).

Finally, we show that v0(r,θ)=vθ,0(r)𝐞θv_{0}(r,\theta)=v_{\theta,0}(r){\bf e}_{\theta} with vθ,0(r)v_{\theta,0}(r) defined in (2.15) is a weak solution of (LPh) for general F0𝒫0L2(ρ1)(Ω)2×2F_{0}\in{\mathcal{P}}_{0}L^{\infty}_{2(\rho-1)}(\Omega)^{2\times 2}. By the definition of v0v_{0}, we have v0Lσ2(Ω)W01,2(Ω)2v_{0}\in L^{2}_{\sigma}(\Omega)\cap W^{1,2}_{0}(\Omega)^{2}. Let {F0(m)}m=1𝒫0C0(Ω)2×2\{F^{(m)}_{0}\}_{m=1}^{\infty}\subset{\mathcal{P}}_{0}C^{\infty}_{0}(\Omega)^{2\times 2} be such that limmF0(m)=F0\displaystyle{\lim_{m\to\infty}F^{(m)}_{0}=F_{0}} in L1(Ω)L2(Ω)L^{1}(\Omega)\cap L^{2}(\Omega). Let v0(m)v^{(m)}_{0} be given by (2.15) replacing F0F_{0} by F0(m)F^{(m)}_{0}, and let 𝒫0q(m){\mathcal{P}}_{0}q^{(m)} be the associated pressure. Then, using the estimate for GL1(0,;sds)2×2G\in L^{1}(0,\infty;s\,{\rm d}s)^{2\times 2}

rγ1rsγ1|G(s)|ds+r2rs|G(s)|ds(1|G(s)|sds)r2\displaystyle r^{-\gamma}\int_{1}^{r}s^{\gamma-1}|G(s)|\,{\rm d}s+r^{-2}\int_{r}^{\infty}s|G(s)|\,{\rm d}s\leq\bigg{(}\int_{1}^{\infty}|G(s)|s\,{\rm d}s\bigg{)}r^{-2}

which implies

h(v0v0(m))L2C(F0F0(m)L1+F0F0(m)L2),\|\nabla_{\rm h}(v_{0}-v^{(m)}_{0})\|_{L^{2}}\leq C(\|F_{0}-F^{(m)}_{0}\|_{L^{1}}+\|F_{0}-F^{(m)}_{0}\|_{L^{2}}),

we have, by integration by parts,

hv0,hφ+Vhrot2Dv0,φ+F0,hφ=limm(hv0(m),hφ+Vhrot2Dv0(m),φ+F0(m),hφ)=limmΔhv0(m)+Vhrot2Dv0(m)divhF0(m),φ=limmh𝒫0q(m),φ=0,φC0,σ(Ω).\displaystyle\begin{split}&\langle\nabla_{\rm h}v_{0},\nabla_{\rm h}\varphi\rangle+\langle V_{\rm h}^{\bot}\operatorname{rot}_{{\rm 2D}}v_{0},\varphi\rangle+\langle F_{0},\nabla_{\rm h}\varphi\rangle\\ &=\lim_{m\to\infty}\Big{(}\langle\nabla_{\rm h}v^{(m)}_{0},\nabla_{\rm h}\varphi\rangle+\langle V_{\rm h}^{\bot}\operatorname{rot}_{{\rm 2D}}v^{(m)}_{0},\varphi\rangle+\langle F^{(m)}_{0},\nabla_{\rm h}\varphi\rangle\Big{)}\\ &=\lim_{m\to\infty}\langle-\Delta_{\rm h}v^{(m)}_{0}+V_{\rm h}^{\bot}\operatorname{rot}_{{\rm 2D}}v^{(m)}_{0}-\operatorname{div}_{\rm h}F^{(m)}_{0},\varphi\rangle\\ &=\lim_{m\to\infty}\langle\nabla_{\rm h}{\mathcal{P}}_{0}q^{(m)},\varphi\rangle=0,\quad\varphi\in C^{\infty}_{0,\sigma}(\Omega).\end{split}

Hence we see that v0v_{0} is a weak solution of (LPh). This completes the proof. ∎

2.2.2 Non-axisymmetric Part

Let n0n\neq 0. We set

nγ={n2+(γ2)2}12,ζn=(nγ2+iαn)12\displaystyle n_{\gamma}=\Big{\{}n^{2}+\Big{(}\frac{\gamma}{2}\Big{)}^{2}\Big{\}}^{\frac{1}{2}},\qquad\zeta_{n}=(n_{\gamma}^{2}+i\alpha n)^{\frac{1}{2}} (2.16)

and

ξn=(ζn)=nγ2[{1+(αnnγ2)2}12+1]12.\displaystyle\begin{split}\xi_{n}&=\Re(\zeta_{n})=\frac{n_{\gamma}}{\sqrt{2}}\bigg{[}\Big{\{}1+\Big{(}\frac{\alpha n}{n_{\gamma}^{2}}\Big{)}^{2}\Big{\}}^{\frac{1}{2}}+1\bigg{]}^{\frac{1}{2}}.\end{split} (2.17)

By direct computation, we have

ξn|ζn|2ξn,C1ξn|n|(|α|12+γ),0<(ξnγ2)1<C2γ|n|\displaystyle\xi_{n}\leq|\zeta_{n}|\leq\sqrt{2}\xi_{n},\qquad C_{1}\leq\frac{\xi_{n}}{|n|}\leq(|\alpha|^{\frac{1}{2}}+\gamma),\qquad 0<\Big{(}\xi_{n}-\frac{\gamma}{2}\Big{)}^{-1}<C_{2}\frac{\gamma}{|n|} (2.18)

with C1,C2C_{1},C_{2} independent of nn, α\alpha and γ\gamma.

Proposition 2.2

Let n0n\neq 0 and let α\alpha\in\mathbb{R}, γ>2\gamma>2 and 2<ρ<32<\rho<3 with ργ\rho\leq\gamma. Suppose that fh=fh,nf_{\rm h}=f_{{\rm h},n} is give by fh,n=divhFnf_{{\rm h},n}=\operatorname{div}_{\rm h}F_{n} for some Fn𝒫nL2(ρ1)(Ω)2×2F_{n}\in{\mathcal{P}}_{n}L^{\infty}_{2(\rho-1)}(\Omega)^{2\times 2}. Then there is a unique weak solution vh,n𝒫nLσ2(Ω)W01,2(Ω)2v_{{\rm h},n}\in{\mathcal{P}}_{n}L^{2}_{\sigma}(\Omega)\cap W^{1,2}_{0}(\Omega)^{2} of (LPh) satisfying

vh,nLρ1+1|n|hvh,nLρC|n|(|n|ρ+2)ξn2(ξnγ2)1FnL2(ρ1).\displaystyle\|v_{{\rm h},n}\|_{L^{\infty}_{\rho-1}}+\frac{1}{|n|}\|\nabla_{\rm h}v_{{\rm h},n}\|_{L^{\infty}_{\rho}}\leq\frac{C}{|n|(|n|-\rho+2)}\xi_{n}^{2}\Big{(}\xi_{n}-\frac{\gamma}{2}\Big{)}^{-1}\|F_{n}\|_{L^{\infty}_{2(\rho-1)}}. (2.19)

The constant CC is independent of nn, α\alpha, γ\gamma and ρ\rho.

Proof.

To simplify, we omit the subscript “h{\rm h}” for vhv_{\rm h} and fhf_{\rm h}. As the uniqueness of solutions can be shown as in [7, Proof of Proposition 3.2], we only prove the existence and estimates.

At first we assume that Fn𝒫nC0(Ω)2×2F_{n}\in{\mathcal{P}}_{n}C^{\infty}_{0}(\Omega)^{2\times 2}, which gives

fr,n=(divhF)r,n=1rddr(rFrr,n)+1r(inFθr,nFθθ,n),fθ,n=(divhF)θ,n=1rddr(rFrθ,n)+1r(inFθθ,n+Fθr,n).\displaystyle\begin{split}f_{r,n}&=(\operatorname{div}_{\rm h}F)_{r,n}=\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rF_{rr,n})+\frac{1}{r}(inF_{\theta r,n}-F_{\theta\theta,n}),\\ f_{\theta,n}&=(\operatorname{div}_{\rm h}F)_{\theta,n}=\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rF_{r\theta,n})+\frac{1}{r}(inF_{\theta\theta,n}+F_{\theta r,n}).\end{split} (2.20)

Set

ωn(r)=((rot2Dvn)einθ)(r).\displaystyle\omega_{n}(r)=\big{(}(\operatorname{rot}_{{\rm 2D}}v_{n})e^{-in\theta}\big{)}(r).

From [7, Proof of Proposition 3.2], we see that ωn(r)\omega_{n}(r) solves

d2ωndr21+γrdωndr+n2+iαnr2ωn=(rotfn)n,r>1\displaystyle-\frac{\,{\rm d}^{2}\omega_{n}}{\,{\rm d}r^{2}}-\frac{1+\gamma}{r}\frac{\,{\rm d}\omega_{n}}{\,{\rm d}r}+\frac{n^{2}+i\alpha n}{r^{2}}\omega_{n}=({\rm rot}\,f_{n})_{n},\quad r>1 (2.21)

and, recalling ζn\zeta_{n} in (2.16), that it can be represented by

ωn(r)=Φn[fn](r)+cn[fn]rζnγ2.\displaystyle\omega_{n}(r)=\Phi_{n}[f_{n}](r)+c_{n}[f_{n}]r^{-\zeta_{n}-\frac{\gamma}{2}}. (2.22)

Here 111Due to a typographical error, the denominator 2ζn2\zeta_{n} in Φn[fn](r)\Phi_{n}[f_{n}](r) is written as ζn\zeta_{n} in [7, (3.19)–(3.20)]. It should be emphasized, however, that this error does not affect the main results in [7].

Φn[fn](r)=rζnγ22ζn1rsζn+γ2+1(rotfn)n(s)ds+rζnγ22ζnrsζn+γ2+1(rotfn)n(s)ds=rζnγ22ζn1rsζn+γ2{infr,n(s)+(ζn+γ2)fθ,n(s)}ds+rζnγ22ζnrsζn+γ2{infr,n(s)+(ζnγ2)fθ,n(s)}ds\displaystyle\begin{split}\Phi_{n}[f_{n}](r)&=\frac{r^{-\zeta_{n}-\frac{\gamma}{2}}}{2\zeta_{n}}\int_{1}^{r}s^{\zeta_{n}+\frac{\gamma}{2}+1}({\rm rot}\,f_{n})_{n}(s)\,{\rm d}s\\ &\quad+\frac{r^{\zeta_{n}-\frac{\gamma}{2}}}{2\zeta_{n}}\int_{r}^{\infty}s^{-\zeta_{n}+\frac{\gamma}{2}+1}({\rm rot}\,f_{n})_{n}(s)\,{\rm d}s\\ &=-\frac{r^{-\zeta_{n}-\frac{\gamma}{2}}}{2\zeta_{n}}\int_{1}^{r}s^{\zeta_{n}+\frac{\gamma}{2}}\Big{\{}inf_{r,n}(s)+\Big{(}\zeta_{n}+\frac{\gamma}{2}\Big{)}f_{\theta,n}(s)\Big{\}}\,{\rm d}s\\ &\quad+\frac{r^{\zeta_{n}-\frac{\gamma}{2}}}{2\zeta_{n}}\int_{r}^{\infty}s^{-\zeta_{n}+\frac{\gamma}{2}}\Big{\{}-inf_{r,n}(s)+\Big{(}\zeta_{n}-\frac{\gamma}{2}\Big{)}f_{\theta,n}(s)\Big{\}}\,{\rm d}s\end{split}

and

cn[fn]=(ζn+|n|+γ22)1s|n|+1Φn[fn](s)ds.\displaystyle\begin{split}c_{n}[f_{n}]&=-\Big{(}\zeta_{n}+|n|+\frac{\gamma}{2}-2\Big{)}\int_{1}^{\infty}s^{-|n|+1}\Phi_{n}[f_{n}](s)\,{\rm d}s.\end{split} (2.23)

By integration by parts based on (2.20), we rewrite the formula of Φn[fn](r)\Phi_{n}[f_{n}](r) as

Φn[fn](r)=Frθ,n(r)+rζnγ21rsζn+γ21G1(s)ds+rζnγ2rsζn+γ21G2(s)ds,\displaystyle\begin{split}\Phi_{n}[f_{n}](r)&=-F_{r\theta,n}(r)+r^{-\zeta_{n}-\frac{\gamma}{2}}\int_{1}^{r}s^{\zeta_{n}+\frac{\gamma}{2}-1}G_{1}(s)\,{\rm d}s\\ &\quad+r^{\zeta_{n}-\frac{\gamma}{2}}\int_{r}^{\infty}s^{-\zeta_{n}+\frac{\gamma}{2}-1}G_{2}(s)\,{\rm d}s,\end{split} (2.24)

where

G1(r)=in2ζn(ζn+γ21)Frr,n(r)+12ζn(ζn+γ2)(ζn+γ21)Frθ,n(r)12ζn(ζn+γ2n2)Fθr,n(r)in2ζn(ζn+γ21)Fθθ,n(r),G2(r)=in2ζn(ζnγ2+1)Frr,n(r)+12ζn(ζnγ2)(ζnγ2+1)Frθ,n(r)+12ζn(ζnγ2+n2)Fθr,n(r)+in2ζn(ζnγ2+1)Fθθ,n(r).\displaystyle\begin{split}G_{1}(r)&=\frac{in}{2\zeta_{n}}\Big{(}\zeta_{n}+\frac{\gamma}{2}-1\Big{)}F_{rr,n}(r)+\frac{1}{2\zeta_{n}}\Big{(}\zeta_{n}+\frac{\gamma}{2}\Big{)}\Big{(}\zeta_{n}+\frac{\gamma}{2}-1\Big{)}F_{r\theta,n}(r)\\ &\quad-\frac{1}{2\zeta_{n}}\Big{(}\zeta_{n}+\frac{\gamma}{2}-n^{2}\Big{)}F_{\theta r,n}(r)-\frac{in}{2\zeta_{n}}\Big{(}\zeta_{n}+\frac{\gamma}{2}-1\Big{)}F_{\theta\theta,n}(r),\\ G_{2}(r)&=-\frac{in}{2\zeta_{n}}\Big{(}\zeta_{n}-\frac{\gamma}{2}+1\Big{)}F_{rr,n}(r)+\frac{1}{2\zeta_{n}}\Big{(}\zeta_{n}-\frac{\gamma}{2}\Big{)}\Big{(}\zeta_{n}-\frac{\gamma}{2}+1\Big{)}F_{r\theta,n}(r)\\ &\quad+\frac{1}{2\zeta_{n}}\Big{(}\zeta_{n}-\frac{\gamma}{2}+n^{2}\Big{)}F_{\theta r,n}(r)+\frac{in}{2\zeta_{n}}\Big{(}\zeta_{n}-\frac{\gamma}{2}+1\Big{)}F_{\theta\theta,n}(r).\end{split}

Then, using ωn(r)\omega_{n}(r) in (2.22), we see that vnv_{n} defined by the Biot-Savart law

vn(r,θ)=vr,n(r)einθ𝐞r+vr,n(r)einθ𝐞θ,vr,n(r)=in2|n|(r|n|11rs|n|+1ωn(s)ds+r|n|1rs|n|+1ωn(s)ds),vθ,n(r)=12(r|n|11rs|n|+1ωn(s)dsr|n|1rs|n|+1ωn(s)ds)\displaystyle\begin{split}v_{n}(r,\theta)&=v_{r,n}(r)e^{in\theta}{\bf e}_{r}+v_{r,n}(r)e^{in\theta}{\bf e}_{\theta},\\ v_{r,n}(r)&=\frac{in}{2|n|}\Big{(}r^{-|n|-1}\int_{1}^{r}s^{|n|+1}\omega_{n}(s)\,{\rm d}s+r^{|n|-1}\int_{r}^{\infty}s^{-|n|+1}\omega_{n}(s)\,{\rm d}s\Big{)},\\ v_{\theta,n}(r)&=\frac{1}{2}\Big{(}r^{-|n|-1}\int_{1}^{r}s^{|n|+1}\omega_{n}(s)\,{\rm d}s-r^{|n|-1}\int_{r}^{\infty}s^{-|n|+1}\omega_{n}(s)\,{\rm d}s\Big{)}\end{split} (2.25)

is a smooth solution of (LPh) with some smooth associated pressure 𝒫nq{\mathcal{P}}_{n}q. The reader is referred to [7, Proof of Proposition 3.2] for the details when ff is a regular function.

Next we let Fn𝒫nL2(ρ1)(Ω)2×2F_{n}\in{\mathcal{P}}_{n}L^{\infty}_{2(\rho-1)}(\Omega)^{2\times 2}. Recalling (2.17)–(2.18), we compute

|rζnγ21rsζn+γ21G1(s)ds|+|rζnγ2rsζn+γ21G2(s)ds|Cξn(rξnγ21rsξn+γ22ρ+1ds+rξnγ2rsξn+γ22ρ+1ds)Cξn(ξnγ2)1FnL2(ρ1)rρ\displaystyle\begin{split}&\bigg{|}r^{-\zeta_{n}-\frac{\gamma}{2}}\int_{1}^{r}s^{\zeta_{n}+\frac{\gamma}{2}-1}G_{1}(s)\,{\rm d}s\bigg{|}+\bigg{|}r^{\zeta_{n}-\frac{\gamma}{2}}\int_{r}^{\infty}s^{-\zeta_{n}+\frac{\gamma}{2}-1}G_{2}(s)\,{\rm d}s\bigg{|}\\ &\leq C\xi_{n}\bigg{(}r^{-\xi_{n}-\frac{\gamma}{2}}\int_{1}^{r}s^{\xi_{n}+\frac{\gamma}{2}-2\rho+1}\,{\rm d}s+r^{\xi_{n}-\frac{\gamma}{2}}\int_{r}^{\infty}s^{-\xi_{n}+\frac{\gamma}{2}-2\rho+1}\,{\rm d}s\bigg{)}\\ &\leq C\xi_{n}\Big{(}\xi_{n}-\frac{\gamma}{2}\Big{)}^{-1}\|F_{n}\|_{L^{\infty}_{2(\rho-1)}}r^{-\rho}\end{split}

to estimate the terms in (2.22)–(2.24) as

rρ|Φn[fn](r)|+|n|ξn|cn[fn]|+|n|ξnrρ|ωn(r)|Cξn(ξnγ2)1FnL2(ρ1).\displaystyle\begin{split}r^{\rho}|\Phi_{n}[f_{n}](r)|+\frac{|n|}{\xi_{n}}|c_{n}[f_{n}]|+\frac{|n|}{\xi_{n}}r^{\rho}|\omega_{n}(r)|\leq C\xi_{n}\Big{(}\xi_{n}-\frac{\gamma}{2}\Big{)}^{-1}\|F_{n}\|_{L^{\infty}_{2(\rho-1)}}.\end{split}

Hence the desired estimate (2.19) is obtained by (2.25) and easy computation using

|vn(r,θ)|+r|n||vn(r,θ)|C|n|ξn2(ξnγ2)1FL2(ρ1)×(r|n|11rs|n|ρ+1ds+r|n|1rs|n|ρ+1ds).\displaystyle\begin{split}&|v_{n}(r,\theta)|+\frac{r}{|n|}|\nabla v_{n}(r,\theta)|\\ &\leq\frac{C}{|n|}\xi_{n}^{2}\Big{(}\xi_{n}-\frac{\gamma}{2}\Big{)}^{-1}\|F\|_{L^{\infty}_{2(\rho-1)}}\\ &\quad\times\bigg{(}r^{-|n|-1}\int_{1}^{r}s^{|n|-\rho+1}\,{\rm d}s+r^{|n|-1}\int_{r}^{\infty}s^{-|n|-\rho+1}\,{\rm d}s\bigg{)}.\end{split}

It remains to show that vnv_{n} defined in (2.25) is a weak solution of (LPh) for general Fn𝒫nL2(ρ1)(Ω)2×2F_{n}\in{\mathcal{P}}_{n}L^{\infty}_{2(\rho-1)}(\Omega)^{2\times 2}. However, the proof by a density argument using the estimates

rξnγ21rsξn+γ21|H(s)|ds\displaystyle r^{-\xi_{n}-\frac{\gamma}{2}}\int_{1}^{r}s^{\xi_{n}+\frac{\gamma}{2}-1}|H(s)|\,{\rm d}s (1|H(s)|sds)r2,\displaystyle\leq\bigg{(}\int_{1}^{\infty}|H(s)|s\,{\rm d}s\bigg{)}r^{-2},
rξnγ2rsξn+γ21|H(s)|ds\displaystyle r^{\xi_{n}-\frac{\gamma}{2}}\int_{r}^{\infty}s^{-\xi_{n}+\frac{\gamma}{2}-1}|H(s)|\,{\rm d}s (1|H(s)|sds)r2\displaystyle\leq\bigg{(}\int_{1}^{\infty}|H(s)|s\,{\rm d}s\bigg{)}r^{-2}

is similar to the one of Proposition 2.1. Thus we omit the details. The proof is complete. ∎

2.3 Vertical Component

Let nn\in\mathbb{Z}. Applying 𝒫n{\mathcal{P}}_{n} to v3v_{3} and f3f_{3}

(𝒫nv3)(θ,r)=v3,n(r)einθ,(𝒫nf3)(θ,r)=f3,n(r)einθ\displaystyle({\mathcal{P}}_{n}v_{3})(\theta,r)=v_{3,n}(r)e^{in\theta},\qquad({\mathcal{P}}_{n}f_{3})(\theta,r)=f_{3,n}(r)e^{in\theta}

and inserting these to (LPv), we see that v3,n(r)v_{3,n}(r) satisfies

d2v3,ndr21+γrdv3,ndr+n2+iαnr2v3,n=f3,n,r>1\displaystyle-\frac{\,{\rm d}^{2}v_{3,n}}{\,{\rm d}r^{2}}-\frac{1+\gamma}{r}\frac{\,{\rm d}v_{3,n}}{\,{\rm d}r}+\frac{n^{2}+i\alpha n}{r^{2}}v_{3,n}=f_{3,n},\quad r>1 (2.26)

and the boundary conditions

v3,n(1)=0,|v3,n(r)|0,r.\displaystyle v_{3,n}(1)=0,\qquad|v_{3,n}(r)|\to 0,\quad r\to\infty. (2.27)

2.3.1 Axisymmetric Part

Proposition 2.3

Let α\alpha\in\mathbb{R}, γ>2\gamma>2 and 2<ργ2<\rho\leq\gamma.

  1. (1)

    Suppose that f3=f3,0𝒫0L2ρ1(Ω)f_{3}=f_{3,0}\in{\mathcal{P}}_{0}L^{\infty}_{2\rho-1}(\Omega). Then there is a unique weak solution v3,0𝒫0W01,2(Ω)v_{3,0}\in{\mathcal{P}}_{0}W^{1,2}_{0}(\Omega) of (LPv) satisfying

    v3,0Lρ1+1γhv3,0LρCγ(ρ2)f3,0L2ρ1.\displaystyle\|v_{3,0}\|_{L^{\infty}_{\rho-1}}+\frac{1}{\gamma}\|\nabla_{\rm h}v_{3,0}\|_{L^{\infty}_{\rho}}\leq\frac{C}{\gamma(\rho-2)}\|f_{3,0}\|_{L^{\infty}_{2\rho-1}}. (2.28)
  2. (2)

    Suppose that f3=f3,0f_{3}=f_{3,0} is given by f3,0=divhF0f_{3,0}=\operatorname{div}_{\rm h}F_{0} for some F𝒫0L2(ρ1)(Ω)2F\in{\mathcal{P}}_{0}L^{\infty}_{2(\rho-1)}(\Omega)^{2}. Then there is a unique weak solution v3,0𝒫0W01,2(Ω)v_{3,0}\in{\mathcal{P}}_{0}W^{1,2}_{0}(\Omega) of (LPv) satisfying

    v3,0Lρ1+1γhv3,0LρCρ2F0L2(ρ1).\displaystyle\|v_{3,0}\|_{L^{\infty}_{\rho-1}}+\frac{1}{\gamma}\|\nabla_{\rm h}v_{3,0}\|_{L^{\infty}_{\rho}}\leq\frac{C}{\rho-2}\|F_{0}\|_{L^{\infty}_{2(\rho-1)}}. (2.29)

The constant CC is independent of α\alpha, γ\gamma and ρ\rho.

Proof.

We may only consider the existence and estimates of solutions.

(1) Putting n=0n=0 in (2.26)–(2.27), we see that v3,0(r)v_{3,0}(r) solves

d2v3,0dr21+γrdv3,0dr=f3,0,r>1,v3,0(1)=0.\displaystyle-\frac{\,{\rm d}^{2}v_{3,0}}{\,{\rm d}r^{2}}-\frac{1+\gamma}{r}\frac{\,{\rm d}v_{3,0}}{\,{\rm d}r}=f_{3,0},\quad r>1,\qquad v_{3,0}(1)=0. (2.30)

The linearly independent solutions of the homogeneous equation of (2.30) are

rγand1,\displaystyle r^{-\gamma}\quad{\rm and}\quad 1,

and their Wronskian is γrγ1\gamma r^{-\gamma-1}. Hence the solution of (2.30) vanishing at infinity is

v3,0(r)=1γ{(1sf3,0(s)ds)rγ+rγ1rsγ+1f3,0(s)ds+rsf3,0(s)ds}.\displaystyle\begin{split}v_{3,0}(r)=\frac{1}{\gamma}\bigg{\{}&-\bigg{(}\int_{1}^{\infty}sf_{3,0}(s)\,{\rm d}s\bigg{)}r^{-\gamma}\\ &+r^{-\gamma}\int_{1}^{r}s^{\gamma+1}f_{3,0}(s)\,{\rm d}s+\int_{r}^{\infty}sf_{3,0}(s)\,{\rm d}s\bigg{\}}.\end{split} (2.31)

Thus the estimate (2.28) follows from

rγ1rsγ2ρ+2ds+rs2ρ+2dsCρ2rρ+1.\displaystyle\begin{split}r^{-\gamma}\int_{1}^{r}s^{\gamma-2\rho+2}\,{\rm d}s+\int_{r}^{\infty}s^{-2\rho+2}\,{\rm d}s\leq\frac{C}{\rho-2}r^{-\rho+1}.\end{split} (2.32)

One easily checks that v3,0(r)v_{3,0}(r) defined in (2.31) is a weak solution of (LPv).

(2) At first we assume that F0𝒫0C0(Ω)2F_{0}\in{\mathcal{P}}_{0}C^{\infty}_{0}(\Omega)^{2}, which gives

f3,0=divhF0=1rddr(rFr,0).\displaystyle f_{3,0}=\operatorname{div}_{\rm h}F_{0}=\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rF_{r,0}).

By integration by parts, we rewrite the formula (2.31) as

v3,0(r)=rγ1rsγFr,0(s)ds.\begin{split}v_{3,0}(r)=-r^{-\gamma}\int_{1}^{r}s^{\gamma}F_{r,0}(s)\,{\rm d}s.\end{split} (2.33)

Next we let F0𝒫0L2(ρ1)(Ω)2F_{0}\in{\mathcal{P}}_{0}L^{\infty}_{2(\rho-1)}(\Omega)^{2}. The estimate (2.29) follows from (2.32). One can verify that v3,0(r)v_{3,0}(r) defined in (2.33) is a weak solution of (LPv) by a density argument similar to the one in the proof of Proposition 2.1. This completes the proof. ∎

2.3.2 Non-axisymmetric Part

Recall that ξn\xi_{n} is defined in (2.17).

Proposition 2.4

Let n0n\neq 0 and let α\alpha\in\mathbb{R}, γ>2\gamma>2 and 2<ρ<32<\rho<3 with ργ\rho\leq\gamma.

  1. (1)

    Suppose that f3=f3,n𝒫nL2ρ1(Ω)f_{3}=f_{3,n}\in{\mathcal{P}}_{n}L^{\infty}_{2\rho-1}(\Omega). Then there is a unique weak solution v3,n𝒫nW01,2(Ω)v_{3,n}\in{\mathcal{P}}_{n}W^{1,2}_{0}(\Omega) of (LPv) satisfying

    v3,nLρ1+1ξnhv3,nLρ\displaystyle\|v_{3,n}\|_{L^{\infty}_{\rho-1}}+\frac{1}{\xi_{n}}\|\nabla_{\rm h}v_{3,n}\|_{L^{\infty}_{\rho}} Cξn(ξnγ2)1f3,nL2ρ1.\displaystyle\leq\frac{C}{\xi_{n}}\Big{(}\xi_{n}-\frac{\gamma}{2}\Big{)}^{-1}\|f_{3,n}\|_{L^{\infty}_{2\rho-1}}. (2.34)
  2. (2)

    Suppose that f3=f3,nf_{3}=f_{3,n} is given by f3,n=divhFnf_{3,n}=\operatorname{div}_{\rm h}F_{n} for some F𝒫nL2(ρ1)(Ω)2F\in{\mathcal{P}}_{n}L^{\infty}_{2(\rho-1)}(\Omega)^{2}. Then there is a unique weak solution v3,n𝒫nW01,2(Ω)v_{3,n}\in{\mathcal{P}}_{n}W^{1,2}_{0}(\Omega) of (LPv) satisfying

    v3,nLρ1+1ξnhv3,nLρ\displaystyle\|v_{3,n}\|_{L^{\infty}_{\rho-1}}+\frac{1}{\xi_{n}}\|\nabla_{\rm h}v_{3,n}\|_{L^{\infty}_{\rho}} C(ξnγ2)1FnL2(ρ1).\displaystyle\leq C\Big{(}\xi_{n}-\frac{\gamma}{2}\Big{)}^{-1}\|F_{n}\|_{L^{\infty}_{2(\rho-1)}}. (2.35)

The constant CC is independent of nn, α\alpha, γ\gamma and ρ\rho.

Proof.

We may only consider the existence and estimates of solutions.

(1) Since v3,n(r)v_{3,n}(r) satisfies (2.21) with (rotfn)n(\operatorname{rot}f_{n})_{n} replaced by f3,nf_{3,n}, it is given by

v3,n(r)=12ζn{(1sζn+γ2+1f3,n(s)ds)rζnγ2+rζnγ21rsζn+γ2+1f3,n(s)ds+rζnγ2rsζn+γ2+1f3,n(s)ds}.\displaystyle\begin{split}&v_{3,n}(r)\\ &=\frac{1}{2\zeta_{n}}\bigg{\{}-\bigg{(}\int_{1}^{\infty}s^{-\zeta_{n}+\frac{\gamma}{2}+1}f_{3,n}(s)\,{\rm d}s\bigg{)}r^{-\zeta_{n}-\frac{\gamma}{2}}\\ &\qquad\qquad+r^{-\zeta_{n}-\frac{\gamma}{2}}\int_{1}^{r}s^{\zeta_{n}+\frac{\gamma}{2}+1}f_{3,n}(s)\,{\rm d}s+r^{\zeta_{n}-\frac{\gamma}{2}}\int_{r}^{\infty}s^{-\zeta_{n}+\frac{\gamma}{2}+1}f_{3,n}(s)\,{\rm d}s\bigg{\}}.\end{split} (2.36)

Thus the estimate (2.34) follows from (2.17)–(2.18) and

rξnγ21rsξn+γ22ρ+2ds+rξnγ2rsξn+γ22ρ+2dsC(ξnγ2)1rρ+1.\displaystyle\begin{split}&r^{-\xi_{n}-\frac{\gamma}{2}}\int_{1}^{r}s^{\xi_{n}+\frac{\gamma}{2}-2\rho+2}\,{\rm d}s+r^{\xi_{n}-\frac{\gamma}{2}}\int_{r}^{\infty}s^{-\xi_{n}+\frac{\gamma}{2}-2\rho+2}\,{\rm d}s\\ &\leq C\Big{(}\xi_{n}-\frac{\gamma}{2}\Big{)}^{-1}r^{-\rho+1}.\end{split} (2.37)

One easily checks that v3,n(r)einθv_{3,n}(r)e^{in\theta} with v3,n(r)v_{3,n}(r) defined in (2.36) is a weak solution of (LPv).

(2) At first we assume that Fn𝒫nC0(Ω)2F_{n}\in{\mathcal{P}}_{n}C^{\infty}_{0}(\Omega)^{2}, which gives

f3,n=(divhF)n=1rddr(rFr,n)+inrFθ,n.\displaystyle f_{3,n}=(\operatorname{div}_{\rm h}F)_{n}=\frac{1}{r}\frac{\,{\rm d}}{\,{\rm d}r}(rF_{r,n})+\frac{in}{r}F_{\theta,n}.

By integration by parts, we rewrite the formula (2.36) as

v3,n(r)=12ζn[{1sζn+γ2((ζnγ2)Fr,n(s)+inFθ,n(s))ds}rζnγ2+rζnγ21rsζn+γ2((ζn+γ2)Fr,n(s)+inFθ,n(s))ds+rζnγ2rsζn+γ2((ζnγ2)Fr,n(s)+inFθ,n(s))ds].\begin{split}v_{3,n}(r)&=\frac{1}{2\zeta_{n}}\bigg{[}-\bigg{\{}\int_{1}^{\infty}s^{-\zeta_{n}+\frac{\gamma}{2}}\bigg{(}\Big{(}\zeta_{n}-\frac{\gamma}{2}\Big{)}F_{r,n}(s)+inF_{\theta,n}(s)\bigg{)}\,{\rm d}s\bigg{\}}r^{-\zeta_{n}-\frac{\gamma}{2}}\\ &\qquad\qquad\quad+r^{-\zeta_{n}-\frac{\gamma}{2}}\int_{1}^{r}s^{\zeta_{n}+\frac{\gamma}{2}}\bigg{(}-\Big{(}\zeta_{n}+\frac{\gamma}{2}\Big{)}F_{r,n}(s)+inF_{\theta,n}(s)\bigg{)}\,{\rm d}s\\ &\qquad\qquad\quad+r^{\zeta_{n}-\frac{\gamma}{2}}\int_{r}^{\infty}s^{-\zeta_{n}+\frac{\gamma}{2}}\bigg{(}\Big{(}\zeta_{n}-\frac{\gamma}{2}\Big{)}F_{r,n}(s)+inF_{\theta,n}(s)\bigg{)}\,{\rm d}s\bigg{]}.\end{split} (2.38)

Next we let Fn𝒫nL2(ρ1)(Ω)2F_{n}\in{\mathcal{P}}_{n}L^{\infty}_{2(\rho-1)}(\Omega)^{2}. The estimate (2.35) follows from (2.37). One can check that v3,n(r)einθv_{3,n}(r)e^{in\theta} with v3,n(r)v_{3,n}(r) defined in (2.38) is a weak solution of (LPv) by a density argument similar to the one in the proof of Proposition 2.1. This completes the proof. ∎

3 Proof of Theorem 1.1

We prove Theorem 1.1 in this section. As the proof is similar to [7, Proof of Theorem 1.1], we give only the outline to avoid duplication. For ρ0\rho\geq 0, we define the Banach space

l1(Lρ(Ω))\displaystyle l^{1}\big{(}L^{\infty}_{\rho}(\Omega)\big{)} ={f=n𝒫nf|fl1Lρ:=n𝒫nfLρ<}.\displaystyle=\bigg{\{}f=\sum_{n\in\mathbb{Z}}\mathcal{P}_{n}f~{}\bigg{|}~{}\|f\|_{l^{1}L^{\infty}_{\rho}}:=\sum_{n\in\mathbb{Z}}\|\mathcal{P}_{n}f\|_{L^{\infty}_{\rho}}<\infty\bigg{\}}.

The following is a corollary to Propositions 2.12.4 and the results in [7] for 2D problems.

Corollary 3.1

Let α\alpha\in\mathbb{R}, γ>2\gamma>2 and 2<ρ<32<\rho<3 with ργ\rho\leq\gamma. Suppose that the external force ff is a distribution on Ω\Omega given by f=g+divFf=g+\operatorname{div}F where gl1(L2ρ1(Ω))3g\in l^{1}\big{(}L^{\infty}_{2\rho-1}(\Omega)\big{)}^{3} and Fl1(L2(ρ1)(Ω))3×3F\in l^{1}\big{(}L^{\infty}_{2(\rho-1)}(\Omega)\big{)}^{3\times 3}. Then there is a unique weak solution v=(vh,v3)(Lσ2(Ω)×L2(Ω))W01,2(Ω)3v=(v_{\rm h},v_{3})\in(L^{2}_{\sigma}(\Omega)\times L^{2}(\Omega))\cap W^{1,2}_{0}(\Omega)^{3} of (LPh)–(LPv) satisfying

vl1Lρ1+hvl1Lρλ(gl1L2ρ1+Fl1L2(ρ1)),\displaystyle\begin{split}\|v\|_{l^{1}L^{\infty}_{\rho-1}}+\|\nabla_{\rm h}v\|_{l^{1}L^{\infty}_{\rho}}\leq\lambda\big{(}\|g\|_{l^{1}L^{\infty}_{2\rho-1}}+\|F\|_{l^{1}L^{\infty}_{2(\rho-1)}}\big{)},\end{split} (3.1)

where λ=λ(α,γ,ρ)\lambda=\lambda(\alpha,\gamma,\rho) is given by

λ=C0γ2(|α|12+γ)2(ρ2)2(3ρ).\displaystyle\begin{split}\lambda=\frac{C_{0}\gamma^{2}(|\alpha|^{\frac{1}{2}}+\gamma)^{2}}{(\rho-2)^{2}(3-\rho)}.\end{split}

The constant C0C_{0} is independent of α\alpha, γ\gamma and ρ\rho.

Proof.

By [7, Lemma 4.1], for solutions of the 2D problem

{Δhwh+(Vh)rot2Dwh+hs=ghinΩdivhwh=0inΩwh=0onΩwh(x)0as|x|,\left\{\begin{array}[]{ll}-\Delta_{\rm h}w_{\rm h}+(V_{\rm h})^{\bot}\operatorname{rot}_{{\rm 2D}}w_{\rm h}+\nabla_{\rm h}s=g_{\rm h}&\mbox{in}\ \Omega\\ \operatorname{div}_{\rm h}w_{\rm h}=0&\mbox{in}\ \Omega\\ w_{\rm h}=0&\mbox{on}\ \partial\Omega\\ w_{\rm h}(x)\to 0&\mbox{as}\ |x|\to\infty,\end{array}\right.

there is a constant C0~\tilde{C_{0}} independent of α\alpha, γ\gamma and ρ\rho such that

whl1Lρ1+hwl1LρC0~γ(|α|12+γ)(ρ2)2(3ρ)ghl1L2ρ1.\displaystyle\begin{split}\|w_{\rm h}\|_{l^{1}L^{\infty}_{\rho-1}}+\|\nabla_{\rm h}w\|_{l^{1}L^{\infty}_{\rho}}\leq\frac{\tilde{C_{0}}\gamma(|\alpha|^{\frac{1}{2}}+\gamma)}{(\rho-2)^{2}(3-\rho)}\|g_{\rm h}\|_{l^{1}L^{\infty}_{2\rho-1}}.\end{split} (3.2)

Hence the desired estimate (3.1) is a consequence of the estimates in Propositions 2.12.4 combined with (2.5), (2.17)–(2.18) and (3.2). In addition, the existence and uniqueness of solutions follow from Propositions 2.12.4 and [7, Lemma 4.1]. The proof is complete. ∎


Proof of Theorem 1.1: We consider the Banach space

𝒳ρ={wW01,2(Ω)3l1(Lρ1(Ω))3|whLσ2(Ω),hwl1(Lρ(Ω))2×3}\displaystyle{\mathcal{X}}_{\rho}=\Big{\{}w\in W^{1,2}_{0}(\Omega)^{3}\cap l^{1}\big{(}L^{\infty}_{\rho-1}(\Omega)\big{)}^{3}~{}\Big{|}~{}w_{\rm h}\in L^{2}_{\sigma}(\Omega),\mkern 9.0mu\nabla_{\rm h}w\in l^{1}\big{(}L^{\infty}_{\rho}(\Omega)\big{)}^{2\times 3}\Big{\}}

equipped with the norm w𝒳ρ:=wl1Lρ1+hwl1Lρ\|w\|_{{\mathcal{X}}_{\rho}}:=\|w\|_{l^{1}L^{\infty}_{\rho-1}}+\|\nabla_{\rm h}w\|_{l^{1}L^{\infty}_{\rho}}. By Corollary 3.1, for any w𝒳ρw\in{\mathcal{X}}_{\rho}, there is a unique weak solution vwv_{w} to (LPh)–(LPv) with the external force

ww+f=g+div(ww+F)-w\cdot\nabla w+f=g+\operatorname{div}(-w\otimes w+F)

and the solution vwv_{w} satisfies

vwl1Lρ1+hvwl1Lρλ(gl1L2ρ1+ww+Fl1L2(ρ1))λ(w𝒳ρ2+gl1L2ρ1+Fl1L2(ρ1)).\displaystyle\begin{split}\|v_{w}\|_{l^{1}L^{\infty}_{\rho-1}}+\|\nabla_{\rm h}v_{w}\|_{l^{1}L^{\infty}_{\rho}}&\leq\lambda\big{(}\|g\|_{l^{1}L^{\infty}_{2\rho-1}}+\|-w\otimes w+F\|_{l^{1}L^{\infty}_{2(\rho-1)}}\big{)}\\ &\leq\lambda\big{(}\|w\|_{{\mathcal{X}}_{\rho}}^{2}+\|g\|_{l^{1}L^{\infty}_{2\rho-1}}+\|F\|_{l^{1}L^{\infty}_{2(\rho-1)}}\big{)}.\end{split}

We have used the Young inequality for sequences to estimate ww-w\otimes w in the last line. Hence the mapping 𝒳ρwvw𝒳ρ{\mathcal{X}}_{\rho}\ni w\mapsto v_{w}\in{\mathcal{X}}_{\rho} is well-defined, and will be denoted by TT.

It is not hard to check that TT is a contraction on the closed subset

ρ(δ)={w𝒳ρ|w𝒳ρδ},δ>0\displaystyle\mathcal{B}_{\rho}(\delta)=\{w\in{\mathcal{X}}_{\rho}~{}|~{}\|w\|_{{\mathcal{X}}_{\rho}}\leq\delta\},\quad\delta>0

if g,F,δg,F,\delta are small enough depending on λ=λ(α,γ,ρ)\lambda=\lambda(\alpha,\gamma,\rho). Thus the existence of a weak solution of (NP) in Introduction unique in ρ(δ)\mathcal{B}_{\rho}(\delta) follows from the Banach fixed-point theorem.

Let us set uW^1,2(Ω)3u\in\widehat{W}^{1,2}(\Omega)^{3} by u=V+vu=V+v. Then one can check that uu is a weak solution of (NS) with b=(αxγx,0)b=(\alpha x^{\perp}-\gamma x,0) by using (1.6). Moreover, uu is unique in the set

{u|u=V+v,vρ(δ)}\displaystyle\{u~{}|~{}u=V+v,\mkern 9.0muv\in\mathcal{B}_{\rho}(\delta)\}

and satisfies the limit (1.3). This completes the proof of Theorem 1.1.  \Box

Acknowledgements

MH is partially supported by JSPS KAKENHI Grant Number JP 20K14345.

References

  • [1] I-Dee Chang and Robert Finn. On the solutions of a class of equations occurring in continuum mechanics, with application to the Stokes paradox. Arch. Rational Mech. Anal., 7:388–401, 1961.
  • [2] Giovanni P. Galdi. Stationary Navier-Stokes problem in a two-dimensional exterior domain. In Stationary partial differential equations. Vol. I, Handb. Differ. Equ., pages 71–155. North-Holland, Amsterdam, 2004.
  • [3] Giovanni P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Springer Monographs in Mathematics. Springer, New York, second edition, 2011. Steady-state problems.
  • [4] Isabelle Gallagher, Mitsuo Higaki, and Yasunori Maekawa. On stationary two-dimensional flows around a fast rotating disk. Math. Nachr., 292(2):273–308, 2019.
  • [5] Julien Guillod and Peter Wittwer. Generalized scale-invariant solutions to the two-dimensional stationary Navier-Stokes equations. SIAM J. Math. Anal., 47(1):955–968, 2015.
  • [6] Georg Hamel. Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 25:34–60, 1917.
  • [7] Mitsuo Higaki. Existence of planar non-symmetric stationary flows with large flux in an exterior disk. J. Differential Equations, 360:182–200, 2023.
  • [8] Matthieu Hillairet and Peter Wittwer. On the existence of solutions to the planar exterior Navier Stokes system. J. Differential Equations, 255(10):2996–3019, 2013.
  • [9] Mikhail Korobkov and Xiao Ren. Stationary solutions to the Navier-Stokes system in an exterior plane domain: 90 years of search, mysteries and insights. J. Math. Fluid Mech., 25(3):Paper No. 55, 22, 2023.
  • [10] Hideo Kozono and Hermann Sohr. On a new class of generalized solutions for the Stokes equations in exterior domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19(2):155–181, 1992.
  • [11] Hideo Kozono, Yutaka Terasawa, and Yuta Wakasugi. Asymptotic behavior and Liouville-type theorems for axisymmetric stationary Navier-Stokes equations outside of an infinite cylinder with a periodic boundary condition. J. Differential Equations, 365:905–926, 2023.
  • [12] Yasunori Maekawa and Hiroyuki Tsurumi. Existence of the stationary Navier-Stokes flow in 2\mathbb{R}^{2} around a radial flow. J. Differential Equations, 350:202–227, 2023.
  • [13] Konstantin Pileckas and Remigio Russo. On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier-Stokes problem. Math. Ann., 352(3):643–658, 2012.
  • [14] Antonio Russo. A note on the exterior two-dimensional steady-state Navier-Stokes problem. J. Math. Fluid Mech., 11(3):407–414, 2009.
  • [15] Remigio Russo. On Stokes’ problem. In Advances in mathematical fluid mechanics, pages 473–511. Springer, Berlin, 2010.
  • [16] Masao Yamazaki. Unique existence of stationary solutions to the two-dimensional Navier-Stokes equations on exterior domains. In Mathematical analysis on the Navier-Stokes equations and related topics, past and future, volume 35 of GAKUTO Internat. Ser. Math. Sci. Appl., pages 220–241. Gakkotosho, Tokyo, 2011.
  • [17] Masao Yamazaki. Two-dimensional stationary Navier-Stokes equations with 4-cyclic symmetry. Math. Nachr., 289(17-18):2281–2311, 2016.
  • [18] Masao Yamazaki. Existence and uniqueness of weak solutions to the two-dimensional stationary Navier-Stokes exterior problem. J. Math. Fluid Mech., 20(4):2019–2051, 2018.

M. Higaki

Department of Mathematics, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.

Email: [email protected]

R. Horiuchi

Department of Mathematics, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.

Email: [email protected]