This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Existence of solutions semilinear parabolic equations with singular initial data in the Heisenberg group

The Anh Bui Department of Mathematics of Statistics, Macquarie University, NSW 2109, Australia. [email protected]  and  Kotaro Hisa Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan. [email protected]
Abstract.

In this paper we obtain necessary conditions and sufficient conditions on the initial data for the solvability of fractional semilinear heat equations with power nonlinearities in the Heisenberg group N\mathbb{H}^{N}. Using these conditions, we can prove that 1+2/Q1+2/Q separates the ranges of exponents of nonlinearities for the global-in-time solvability of the Cauchy problem (so-called the Fujita-exponent), where Q=2N+2Q=2N+2 is the homogeneous dimension of N\mathbb{H}^{N}, and identify the optimal strength of the singularity of the initial data for the local-in-time solvability. Furthermore, our conditions lead sharp estimates of the life span of solutions with nonnegative initial data having a polynomial decay at the space infinity.

Key words and phrases:
Semilinear heat equation, Heisenberg group, Global existence, Lifespan estimates, Optimal singularities, fractional Laplacian
2020 Mathematics Subject Classification:
Primary 35A01, Secondary 35K15, 35R03, 35R11

1. Introduction.

1.1. Heisenberg group N\mathbb{H}^{N}.

This paper is concerned with nonnegative solutions of the fractional semilinear heat equation in the Heisenberg group

(1.1) tu+(Δ)α2u=up,ηN,t>0,\partial_{t}u+(-\Delta_{\mathbb{H}})^{\frac{\alpha}{2}}u=u^{p},\quad\eta\in\mathbb{H}^{N},\,\,t>0,

with the initial data

(1.2) u(,0)=μinN,u(\cdot,0)=\mu\quad\mbox{in}\quad\mathbb{H}^{N},

where N1N\geq 1, α(0,2]\alpha\in(0,2], p>1p>1, and μ\mu is a nonnegative Radon measure on N\mathbb{H}^{N}. Here, Δ\Delta_{\mathbb{H}} is the sub-Laplacian on the Heisenberg group N\mathbb{H}^{N} and (Δ)α/2(-\Delta_{\mathbb{H}})^{\alpha/2} denotes the fractional power of Δ-\Delta_{\mathbb{H}} on N\mathbb{H}^{N}. For the exact definition of (Δ)α/2(-\Delta_{\mathbb{H}})^{\alpha/2}, see (1.6) below.

In this paper we show that every nonnegative solution of (1.1) has a unique nonnegative Radon measure in N\mathbb{H}^{N} as the initial trace and study qualitative properties of it. Furthermore, we give sufficient conditions for the solvability of problem (1.1) with (1.2) and obtain sharp estimates of the life span of solutions with small initial data. Throughout of this paper, for d1d\geq 1 and α(0,2]\alpha\in(0,2] denote

pα,d:=1+αd.p_{\alpha,d}:=1+\frac{\alpha}{d}.

The Heisenberg group is the Lie group N=2N+1\mathbb{H}^{N}=\mathbb{R}^{2N+1} equipped with the group law

ηη=(x+x,y+y,τ+τ+2(xyxy)),\eta\circ\eta^{\prime}=(x+x^{\prime},y+y^{\prime},\tau+\tau^{\prime}+2(x\cdot y^{\prime}-x^{\prime}\cdot y)),

and with the Haar measure on N\mathbb{H}^{N}, where η=(x,y,τ)\eta=(x,y,\tau), η=(x,y,τ)2N+1\eta^{\prime}=(x^{\prime},y^{\prime},\tau^{\prime})\in\mathbb{R}^{2N+1}, and \cdot is the scalar product in N\mathbb{R}^{N}. It is well-known that the Haar measure on N\mathbb{H}^{N} coincides with the 2N+12N+1-dimensional Lebesgue measure 2N+1\mathcal{L}^{2N+1}. The identity element for N\mathbb{H}^{N} is 0 and η1=η\eta^{-1}=-\eta for all ηN\eta\in\mathbb{H}^{N}. The homogeneous Heisenberg norm is defined by

|η|N=((|x|2+|y|2)2+τ2)14,|\eta|_{\mathbb{H}^{N}}=((|x|^{2}+|y|^{2})^{2}+\tau^{2})^{\frac{1}{4}},

where |||\cdot| is the Euclidean norm associated to N\mathbb{R}^{N}. Then

𝖽(η,ζ)=|ζ1η|N\mathsf{d}_{\mathbb{H}}(\eta,\zeta)=|\zeta^{-1}\circ\eta|_{\mathbb{H}^{N}}

is a left-invariant distance on N\mathbb{H}^{N}. The homogeneous dimension of N\mathbb{H}^{N} is Q=2N+2Q=2N+2. The left-invariant vector fields that span the Lie algebra are given by

Xi=xj2yiτ,Yi=yi+2xiτ,X_{i}=\partial_{x_{j}}-2y_{i}\partial_{\tau},\quad Y_{i}=\partial_{y_{i}}+2x_{i}\partial_{\tau},

for i=1,,Ni=1,\cdots,N. The Heisenberg gradient is given by

=(X1,,XN,Y1,,YN),\nabla_{\mathbb{H}}=(X_{1},\cdots,X_{N},Y_{1},\cdots,Y_{N}),

and the sub-Laplacian is defined as

(1.3) Δ:=i=1N(Xi2+Yi2)=Δx+Δy+4(|x|2+|y|2)τ2+4i=1N(xiyi,τ2yixi,τ2),\begin{split}\Delta_{\mathbb{H}}&:=\sum_{i=1}^{N}(X_{i}^{2}+Y_{i}^{2})\\ &=\Delta_{x}+\Delta_{y}+4(|x|^{2}+|y|^{2})\partial_{\tau}^{2}+4\sum_{i=1}^{N}(x_{i}\partial^{2}_{y_{i},\tau}-y_{i}\partial^{2}_{x_{i},\tau}),\end{split}

where Δx\Delta_{x} and Δy\Delta_{y} stand for the Laplace operators on N\mathbb{R}^{N}. In particular, the Heisenberg group N\mathbb{H}^{N} is the most typical example of metric measure spaces with a structure different from that of N\mathbb{R}^{N}.

1.2. Semilinear heat equations.

We recall the solvability of (1.1) in N\mathbb{R}^{N}. For xNx\in\mathbb{R}^{N} and r>0r>0, set BN(x,r):={yN:|xy|<r}B_{\mathbb{R}^{N}}(x,r):=\{y\in\mathbb{R}^{N}:|x-y|<r\}. Let us consider nonnegative solutions of the fractional semilinear equation

(1.4) tv+(Δ)α2v=vq,xN,t>0,\partial_{t}v+(-\Delta)^{\frac{\alpha}{2}}v=v^{q},\quad x\in\mathbb{R}^{N},\,\,t>0,

with the initial data

(1.5) v(,0)=ν,v(\cdot,0)=\nu,

where N1N\geq 1, α(0,2]\alpha\in(0,2], q>1q>1, and ν\nu is a nonnegative Radon measure on N\mathbb{R}^{N}. Here, (Δ)α/2(-\Delta)^{\alpha/2} denotes the fractional power of Δ-\Delta on N\mathbb{R}^{N}.

Let us consider the case of α=2\alpha=2 first. The solvability of problem (1.4) with (1.5) has been studied in many papers since the pioneering work due to Fujita [F] (see, e.g., [QS19], which includes an extensive list of references for (1.4)). It is already known from his work and the subsequent works of Hayakawa [H73], Sugitani [S75], and Kobayashi–Sirao–Tanaka [KST77] that 1<qp2,N1<q\leq p_{2,N} implies the nonexistence of any positive global-in-time solutions, while if q>p2,Nq>p_{2,N}, problem (1.4) with (1.5) possesses a positive global-in-time solution for appropriate initial data ν\nu. For this reason, such an exponent p2,Np_{2,N} is called the Fujita-exponent. Note that Sugitani [S75] also dealt with the fractional case α(0,2)\alpha\in(0,2).

Among these studies, Baras–Pierre [BP85] obtained necessary conditions for the solvability in the case of α=2\alpha=2. Subsequently, the second author of this paper and Ishige [HI18] obtained a generalization to the fractional case α(0,2)\alpha\in(0,2) and sufficient conditions for the solvability. Furthermore, they showed that every nonnegative solution of (1.4) has a unique nonnegatuve Radon measure on N\mathbb{R}^{N} as the initial trace (see also [IKO20], which deals with the case where α\alpha is a positive even integer as well as the case of α(0,2]\alpha\in(0,2]). More precisely, the following results have already been obtained.

  • (a)

    Let N1N\geq 1, α(0,2]\alpha\in(0,2], and q>1q>1. Let vv be a nonnegative solution of (1.4) in N×(0,T)\mathbb{R}^{N}\times(0,T), where T(0,)T\in(0,\infty). Then there exists a unique nonnegative Radon measure ν\nu on N\mathbb{R}^{N} such that

    esslimt0+Nv(y,t)ϕ(y)dy=Nϕ(y)dν(y)\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{R}^{N}}v(y,t)\phi(y)\,\mathop{}\!\mathrm{d}y=\int_{\mathbb{R}^{N}}\phi(y)\,\mathop{}\!\mathrm{d}\nu(y)

    for all ϕCc(N)\phi\in C_{c}(\mathbb{R}^{N}).

  • (b)

    Let ν\nu be as in assertion (a). Then ν\nu must satisfy the following:

    • If 1<q<pα,N1<q<p_{\alpha,N}, then supxNν(BN(x,T1α))γTNα1q1\displaystyle{\sup_{x\in\mathbb{R}^{N}}\nu(B_{\mathbb{R}^{N}}(x,T^{\frac{1}{\alpha}}))\leq\gamma T^{\frac{N}{\alpha}-\frac{1}{q-1}}};

    • If q=pα,Nq=p_{\alpha,N}, then supxNν(BN(x,σ))γ[log(e+T1/ασ)]Nα\displaystyle{\sup_{x\in\mathbb{R}^{N}}\nu(B_{\mathbb{R}^{N}}(x,\sigma))\leq\gamma\left[\log\left(e+\frac{T^{1/\alpha}}{\sigma}\right)\right]^{-{\frac{N}{\alpha}}}} for all 0<σ<T1α0<\sigma<T^{\frac{1}{\alpha}};

    • If q>pα,Nq>p_{\alpha,N}, then supxNν(BN(x,σ))γσNαq1\displaystyle{\sup_{x\in\mathbb{R}^{N}}\nu(B_{\mathbb{R}^{N}}(x,\sigma))\leq\gamma\sigma^{N-\frac{\alpha}{q-1}}} for all 0<σ<T1α0<\sigma<T^{\frac{1}{\alpha}}.

    Here γ>0\gamma>0 is a constant depending only on NN, α\alpha, and qq.

From this necessary condition (b) we can find a large constant C>0C_{*}>0 with the following property:

  • (c)

    Problem (1.4) with (1.5) possesses no local-in-time solutions if ν\nu is a nonnegative measurable function in N\mathbb{R}^{N} satisfying ν(x)CΦ(x)\nu(x)\geq C_{*}\Phi(x) in a neighborhood of the origin, where

    Φ(x):={|x|N[log(e+1|x|)]Nα1ifq=pα,N,|x|αq1ifq>pα,N.\Phi(x):=\left\{\begin{array}[]{ll}\displaystyle{|x|^{-N}\left[\log\left(e+\frac{1}{|x|}\right)\right]^{-\frac{N}{\alpha}-1}}&\mbox{if}\quad q=p_{\alpha,N},\vspace{3pt}\\ \displaystyle{|x|^{-\frac{\alpha}{q-1}}}&\mbox{if}\quad q>p_{\alpha,N}.\vspace{3pt}\\ \end{array}\right.

On the other hand, the following sufficient condition for the solvability has also been obtained:

  • (d)

    There exists a small constant c>0c_{*}>0 such that if ν\nu satisfies 0ν(x)cΦ(x)0\leq\nu(x)\leq c_{*}\Phi(x) in N\mathbb{R}^{N}, then problem (1.4) with (1.5) possesses a local-in-time solution. In particular, when p>pα,Np>p_{\alpha,N}, this solution is a global-in-time one.

Note that these results show that q=pα,Nq=p_{\alpha,N} is the Fujita-exponent. For (d), see also the papers written by Kozono–Yamazaki [KY94] , Robinson–Sierż\kega [RS13] (the case where α=2\alpha=2 and q>p2,Nq>p_{2,N}), and Ishige–Kawakami–Okabe [IKO20] (the case where α(0,2]\alpha\in(0,2] and qpα,Nq\geq p_{\alpha,N}). The conditions (c) and (d) demonstrate that strength of the singularity at the origin of the function Φ\Phi is the critical threshold for the local-in-time solvability of problem (1.4) with (1.5). We term such a singularity in the initial data an optimal singularity for the solvability of problem (1.4) with (1.5). For studies on optimal singularities, see e.g. [FHIL23, FHIL24, H24, HI18, HIT23, HS24, HT21, IKO20].

Let us go back to (1.1). For problem (1.1) with (1.2) in the case of α=2\alpha=2, Zhang [Z98] proved that 1<p<p2,Q1<p<p_{2,Q} implies the nonexistence of any positive global-in-time solutions, while if p>p2,Qp>p_{2,Q}, problem (1.1) with (1.2) possesses a positive global-in-time solution for appropriate initial data μ\mu. Later, Pohozaev–Véron [PV00] considered more general equations in N\mathbb{H}^{N} and proved that p=p2,Qp=p_{2,Q} is included in the nonexistence case. Namely, we already know that p=p2,Qp=p_{2,Q} is the Fujita exponent. Recently, Georgiev–Palmieri [GP21] obtained sharp estimates of the life span of solutions of problem (1.1) with small initial data in the case of 1<pp2,Q1<p\leq p_{2,Q} and also proved the global-in-time solvability in the case of p>p2,Qp>p_{2,Q}. Many other studies on the global-in-time solvability in N\mathbb{H}^{N} have been undertaken, see e.g. [A01, AJS15, FRT24, JKS16, P98, P99, RY22]. We would like to emphasize that, in the case of α(0,2)\alpha\in(0,2), there were no previous studies on problem (1.1) with (1.2) to our knowledge.

In this paper we consider (1.1) and obtain analogous results to [HI18] (i.e. assertions (a)–(d)) in the Heisenberg group N\mathbb{H}^{N}. Our conditions are optimal and, as an application, we show that our conditions can lead the sharp estimates of the life span of solutions with μ\mu having a polynomial decay at the space infinity.

1.3. Notation and the definition of solutions.

In order to state our main results, we prepare some notation and formulate the definition of solutions. For any measurable set ANA\subset\mathbb{H}^{N}, |A||A| denotes the Haar measure of AA. For any ηN\eta\in\mathbb{H}^{N} and r>0r>0, set B(η,r):={ζN:𝖽(η,ζ)<r}B(\eta,r):=\{\zeta\in\mathbb{H}^{N}:\mathsf{d}_{\mathbb{H}}(\eta,\zeta)<r\}. Furthermore, for any Lloc1L^{1}_{\rm loc} function ff, we set

B(η,r)f(ζ)dζ:=1|B(η,r)|B(η,r)f(ζ)dζ.\fint_{B(\eta,r)}f(\zeta)\,\mathop{}\!\mathrm{d}\zeta:=\frac{1}{|B(\eta,r)|}\int_{B(\eta,r)}f(\zeta)\,\mathop{}\!\mathrm{d}\zeta.

Following [Folland], for α(0,2)\alpha\in(0,2) we define the fractional sub-Laplacian by

(1.6) (Δ)α2f:=1Γ(1α/2)0tα2(Δ)etΔfdt,(-\Delta_{\mathbb{H}})^{\frac{\alpha}{2}}f:=\frac{1}{\Gamma(1-\alpha/2)}\int_{0}^{\infty}t^{-\frac{\alpha}{2}}(-\Delta_{\mathbb{H}})e^{t\Delta_{\mathbb{H}}}f\,\mathop{}\!\mathrm{d}t,

where Γ\Gamma is the Gamma function, etΔe^{t\Delta_{\mathbb{H}}} is the heat flow, and fL2(N)f\in L^{2}(\mathbb{H}^{N}) is any function for which the relevant limit exists in L2L^{2} norm. For the simplicity of notation, for α(0,2]\alpha\in(0,2], denote

Λα:=(Δ)α2.\Lambda_{\alpha}:=-(-\Delta_{\mathbb{H}})^{\frac{\alpha}{2}}.

Let Gα:=Gα(η,t)G_{\alpha}:=G_{\alpha}(\eta,t) be the fundamental solution of

(1.7) tuΛαu=0inN×(0,),\partial_{t}u-\Lambda_{\alpha}u=0\quad\mbox{in}\quad\mathbb{H}^{N}\times(0,\infty),

where α(0,2]\alpha\in(0,2]. When α=2\alpha=2, we briefly write G(η,t)G(\eta,t) instead of Gα(η,t)G_{\alpha}(\eta,t). For any locally integrable function ff in N\mathbb{H}^{N}, it is well-known that

[et(Δ)α/2f](η)=NGα(ζ1η,t)f(ζ)dζ.[e^{-t(-\Delta_{\mathbb{H}})^{\alpha/2}}f](\eta)=\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)f(\zeta)\,\mathop{}\!\mathrm{d}\zeta.

See e.g., [FS] (for α=2\alpha=2) and [MPS] (for α(0,2)\alpha\in(0,2)).

The key to our arguments is the following two sided estimate of the fundamental solution GαG_{\alpha} of (1.7).

Proposition 1.1.

Gα(η,t)G_{\alpha}(\eta,t) satisfies the following estimate: there exist C1,C2,c1,c2>0C_{1},C_{2},c_{1},c_{2}>0 such that

(1.8) C1tQ/αgα(|η|Nc1t1/α)Gα(η,t)C2tQ/αgα(|η|Nc2t1/α)\frac{C_{1}}{t^{Q/\alpha}}g_{\alpha}\left(\frac{|\eta|_{\mathbb{H}^{N}}}{c_{1}t^{1/\alpha}}\right)\leq G_{\alpha}(\eta,t)\leq\frac{C_{2}}{t^{Q/\alpha}}g_{\alpha}\left(\frac{|\eta|_{\mathbb{H}^{N}}}{c_{2}t^{1/\alpha}}\right)

for η\eta\in\mathbb{H} and t>0t>0, where

gα(s)={(1+s)Qαifα(0,2),es2ifα=2.g_{\alpha}(s)=\left\{\begin{aligned} &(1+s)^{-Q-\alpha}\quad&&\mbox{if}\quad\alpha\in(0,2),\\ &e^{-s^{2}}\quad&&\mbox{if}\quad\alpha=2.\end{aligned}\right.

For the proof of Proposition 1.1, see Subsection 2.3 below. In the case of α=2\alpha=2, (1.8) is well-known (see e.g. [FS]). But in the case of α(0,2)\alpha\in(0,2), this is new. To prove the estimates (1.8) we employ a subordination formula in [G], which allows us to estimate the kernel Gα(η,t)G_{\alpha}(\eta,t) via the heat kernel of the sub-Laplacian Δ-\Delta_{\mathbb{H}}.

We formulate the definition of solutions.

Definition 1.1.

Let uu be a nonnegative measurable function in N×(0,T)\mathbb{H}^{N}\times(0,T), where T(0,]T\in(0,\infty].

  • (i)

    We say that uu is a solution of (1.1) in N×(0,T)\mathbb{H}^{N}\times(0,T) if uu satisfies

    (1.9) >u(η,t)=[e(tτ)Λαu(τ)](η)+τt[e(ts)Λαu(s)p](η)ds\infty>u(\eta,t)=[e^{(t-\tau)\Lambda_{\alpha}}u(\tau)](\eta)+\int_{\tau}^{t}[e^{(t-s)\Lambda_{\alpha}}u(s)^{p}](\eta)\,\mathop{}\!\mathrm{d}s

    for almost all (a.a.) ηN\eta\in\mathbb{H}^{N} and 0<τ<t<T0<\tau<t<T.

  • (ii)

    We say that uu is a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T) if uu satisfies

    (1.10) >u(η,t)=[etΛαμ](η)+0t[e(ts)Λαu(s)p](η)ds\infty>u(\eta,t)=[e^{t\Lambda_{\alpha}}\mu](\eta)+\int_{0}^{t}[e^{(t-s)\Lambda_{\alpha}}u(s)^{p}](\eta)\,\mathop{}\!\mathrm{d}s

    for a.a. ηN\eta\in\mathbb{H}^{N} and 0<t<T0<t<T. If uu satisfies (1.10) with == replaced by \geq, then uu is said to be a supersolution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T).

  • (iii)

    Let uu be a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T). We say that uu is a minimal solution if

    u(η,t)v(η,t)for a.a.ηNand  0<t<Tu(\eta,t)\leq v(\eta,t)\quad\text{for a.a.}\quad\eta\in\mathbb{H}^{N}\,\,\mbox{and}\,\,0<t<T

    for any solution vv of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T).

1.4. Main results.

Now we are ready to state the main results of this paper. In the first theorem we show the existence and the uniqueness of the initial trace of solutions of (1.1) and obtain analogous results to assertions (a) and (b).

Theorem A.

Let N1N\geq 1, α(0,2]\alpha\in(0,2], and p>1p>1. Let uu be a solution of (1.1) in N×(0,T)\mathbb{H}^{N}\times(0,T), where T(0,)T\in(0,\infty). Then there exists a unique Radon measure μ\mu on N\mathbb{H}^{N} such that

(1.11) esslimt0+Nu(ζ,t)ϕ(ζ)dζ=Nϕ(ζ)dμ(ζ)\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{H}^{N}}u(\zeta,t)\phi(\zeta)\,\mathop{}\!\mathrm{d}\zeta=\int_{\mathbb{H}^{N}}\phi(\zeta)\,\mathop{}\!\mathrm{d}\mu(\zeta)

for all ϕCc(N)\phi\in C_{c}(\mathbb{H}^{N}). Furthermore, there exists γA>0\gamma_{A}>0 depending only on QQ, α\alpha, and pp such that

  • (i)

    supηNμ(B(η,T1α))γATQα1p1\displaystyle{\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,T^{\frac{1}{\alpha}}))\leq\gamma_{A}T^{\frac{Q}{\alpha}-\frac{1}{p-1}}}  if 1<p<pα,Q1<p<p_{\alpha,Q};

  • (ii)

    supηNμ(B(η,σ))γA[log(e+T1/ασ)]Qα\displaystyle{\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,\sigma))\leq\gamma_{A}\left[\log\left(e+\frac{T^{{1/\alpha}}}{\sigma}\right)\right]^{-\frac{Q}{\alpha}}}  for all 0<σ<T1α0<\sigma<T^{\frac{1}{\alpha}} if p=pα,Qp=p_{\alpha,Q};

  • (iii)

    supηNμ(B(η,σ))γAσQαp1\displaystyle{\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,\sigma))\leq\gamma_{A}\sigma^{Q-\frac{\alpha}{p-1}}}  for all 0<σ<T1α0<\sigma<T^{\frac{1}{\alpha}} if p>pα,Qp>p_{\alpha,Q}.

Since μ\mu in (1.11) is unique, the following holds:

Remark 1.1.

If problem (1.1) with (1.2) possesses a solution in N×[0,T)\mathbb{H}^{N}\times[0,T), where T(0,)T\in(0,\infty), then μ\mu satisfies assertions (i)–(iii) in Theorem A.

Remark 1.2.

Since Q/α1/(p1)<0Q/\alpha-1/(p-1)<0 when 1<p<pα,Q1<p<p_{\alpha,Q}, assertion (i) in Theorem A is equivalent to

supηNμ(B(η,σ))γAσQαp1\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,\sigma))\leq\gamma_{A}\sigma^{Q-\frac{\alpha}{p-1}}

for all 0<σ<T1/α0<\sigma<T^{1/\alpha}.

Remark 1.3.

Let 1<ppα,Q1<p\leq p_{\alpha,Q} and uu be a solution of problem (1.1) with (1.2) in N×[0,)\mathbb{H}^{N}\times[0,\infty). It follows from the assertions (i) and (ii) in Theorem A that μ\mu must be zero in N\mathbb{H}^{N}. Then, in the case of α=2\alpha=2, Theorem A leads the same conclusion as [A01, AJS15, FRT24, JKS16, P98, P99, PV00, RY22, Z98].

As a corollary of Theorem A, we have:

Corollary 1.1.

Let N1N\geq 1, α(0,2]\alpha\in(0,2], and p>1p>1. Let uu be a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T), where T(0,)T\in(0,\infty). Then there exists γA>0\gamma^{\prime}_{A}>0 depending only on NN, α\alpha, and pp such that

(1.12) supηNB(η,(Tt)1α)u(ζ,t)dζγA(Tt)1p1\sup_{\eta\in\mathbb{H}^{N}}\fint_{B(\eta,(T-t)^{\frac{1}{\alpha}})}u(\zeta,t)\,\mathop{}\!\mathrm{d}\zeta\leq\gamma^{\prime}_{A}(T-t)^{-\frac{1}{p-1}}

for a.a. 0<t<T0<t<T.

Theorem A can be regarded as a generalization of the result in [HI18, Theorem 1.1]. Let uu be a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T), where T(0,)T\in(0,\infty). We first prove the existence and the uniqueness of the initial trace of the solution uu and then obtain necessary conditions for the solvability (i.e. assertions (i)–(iii) in Theorem A). The proof of our necessary conditions in the case of α(0,2)\alpha\in(0,2) follows the arguments in the proofs of [FHIL23, H24, HIT23, HS24, LS21], which enable us to more easily obtain the necessary conditions in [HI18, Theorem 1.1]. Let ζN\zeta\in\mathbb{H}^{N}. Following these results, we get an integral inequality related to

(1.13) tQαNGα(ζ1η,t)u(η,t)dη,t^{\frac{Q}{\alpha}}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)u(\eta,t)\,\mathop{}\!\mathrm{d}\eta,

and then obtain the desired estimates by applying the existence theorem for ordinary differential equations to this estimate. See Lemma 2.10 below.

However, the proof in the case of α=2\alpha=2 is completely different from those in [FHIL23, H24, HIT23, HS24, LS21] and [HI18]. First, we extend solutions to the framework of weak ones and then employ a suitable cut-off function as a test function. This method was developed by Mitidieri–Pohozaev [MP01] and can be applied not only to semilinear heat equations but also to a wider class of equations. For the case of semilinear heat equations, see e.g. [GP21, IKO20, IS19]. In this paper we follow the arguments in [IKO20].

The reason why we adopt two methods comes from the fact that in Proposition 1.1, c1=c2c_{1}=c_{2} does generally not hold in the case of α=2\alpha=2. In order to apply the arguments in [FHIL23, H24, HIT23, HS24, LS21], we have to get

Gα(ζ1η,2ts)(s2t)QαGα(ζ1η,s)G_{\alpha}(\zeta^{-1}\circ\eta,2t-s)\geq\left(\frac{s}{2t}\right)^{\frac{Q}{\alpha}}G_{\alpha}(\zeta^{-1}\circ\eta,s)

for η,ζN\eta,\zeta\in\mathbb{H}^{N} and 0<s<t0<s<t. However, in the case of α=2\alpha=2, we can not get such an estimate from Proposition 1.1, since gαg_{\alpha} is an exponential function. On the other hand, in the case of α(0,2)\alpha\in(0,2), it can be regarded as c1=c2=1c_{1}=c_{2}=1 and we can avoid this problem, since gαg_{\alpha} is a polynomial function. In the previous studies dealing with N\mathbb{R}^{N} [H24, HI18, HIT23, HS24, LS21, FHIL23], this problem did not arise because they were either dealing with the fractional case or had an explicit formula of GαG_{\alpha}.

By Theorem A we have

Theorem B.

Let uu be a solution of (1.1) in N×(0,T)\mathbb{H}^{N}\times(0,T), where T(0,)T\in(0,\infty). If μ\mu is a nonnegative Radon measure satisfying (1.11), then u is a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T).

We give sufficient conditions for the solvability of problem (1.1) with (1.2). The proofs follow the arguments in [HI18].

Theorem C.

Let N1N\geq 1, α(0,2]\alpha\in(0,2], and 1<p<pα,Q1<p<p_{\alpha,Q}. Then there exists γC>0\gamma_{C}>0 such that, if μ\mu is a nonnegative Radon mesure on N\mathbb{H}^{N} satisfying

supηNμ(B(η,T1α))γCTQα1p1for some T>0,\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,T^{\frac{1}{\alpha}}))\leq\gamma_{C}T^{\frac{Q}{\alpha}-\frac{1}{p-1}}\quad\text{for some }T>0,

then problem (1.1) with (1.2) possesses a solution in N×[0,T)\mathbb{H}^{N}\times[0,T).

Theorem D.

Let N1N\geq 1, α(0,2]\alpha\in(0,2], and θ>1\theta>1. Then there exists γD>0\gamma_{D}>0 such that, if μ\mu is a nonnegative measurable function in N\mathbb{H}^{N} satisfying

(1.14) supζN[B(ζ,σ)μ(η)θdη]1θγDσαp1,0<σ<T1α\sup_{\zeta\in\mathbb{H}^{N}}\left[\fint_{B(\zeta,\sigma)}\mu(\eta)^{\theta}\,\mathop{}\!\mathrm{d}\eta\right]^{\frac{1}{\theta}}\leq\gamma_{D}\sigma^{-\frac{\alpha}{p-1}},\quad 0<\sigma<T^{\frac{1}{\alpha}}

for some T>0T>0, then problem (1.1) with (1.2) possesses a solution in N×[0,T)\mathbb{H}^{N}\times[0,T).

Theorem E.

Let N1N\geq 1, α(0,2]\alpha\in(0,2], p=pα,Qp=p_{\alpha,Q}, and β>0\beta>0. For s>0s>0, set

(1.15) Ψβ(s):=s[log(e+s)]β,ρ(s):=sQ[log(e+1s)]Qα.\Psi_{\beta}(s):=s[\log(e+s)]^{\beta},\qquad\rho(s):=s^{-Q}\left[\log\left(e+\frac{1}{s}\right)\right]^{-\frac{Q}{\alpha}}.

Then there exists γE>0\gamma_{E}>0 such that, if μ\mu is a nonnegative measurable function in N\mathbb{H}^{N} satisfying

(1.16) supζNΨβ1[B(ζ,σ)Ψβ(T1p1μ(η))dη]γEρ(σT1α),0<σ<T1α\sup_{\zeta\in\mathbb{H}^{N}}\Psi_{\beta}^{-1}\left[\fint_{B(\zeta,\sigma)}\Psi_{\beta}(T^{\frac{1}{p-1}}\mu(\eta))\,\mathop{}\!\mathrm{d}\eta\right]\leq\gamma_{E}\rho(\sigma T^{-\frac{1}{\alpha}}),\quad 0<\sigma<T^{\frac{1}{\alpha}}

for some T>0T>0, then problem (1.1) with (1.2) possesses a solution in N×[0,T)\mathbb{H}^{N}\times[0,T).

As a corollary of Theorems A, C, D, and E, we have

Corollary 1.2.

Let N1N\geq 1, α(0,2]\alpha\in(0,2], and ppα,Qp\geq p_{\alpha,Q}. Define

Φα(η):={|η|NQ[log(e+1|η|N)]Qα1ifp=pα,Q,|η|Nαp1ifp>pα,Q.\Phi_{\alpha}(\eta):=\left\{\begin{array}[]{ll}\displaystyle{|\eta|_{\mathbb{H}^{N}}^{-Q}\left[\log\left(e+\frac{1}{|\eta|_{\mathbb{H}^{N}}}\right)\right]^{-\frac{Q}{\alpha}-1}}&\mbox{if}\quad p=p_{\alpha,Q},\vspace{3pt}\\ \displaystyle{|\eta|_{\mathbb{H}^{N}}^{-\frac{\alpha}{p-1}}}&\mbox{if}\quad p>p_{\alpha,Q}.\vspace{3pt}\\ \end{array}\right.

Assume that μ(η)=γΦα(η)+Cα\mu(\eta)=\gamma\Phi_{\alpha}(\eta)+C_{\alpha} in N\mathbb{H}^{N} for some γ0\gamma\geq 0 and Cα0C_{\alpha}\geq 0. Then there exists γ>0\gamma_{*}>0 with the following properties:

  • (1)

    problem (1.1) with (1.2) possesses a local-in-time solution if 0γ<γ0\leq\gamma<\gamma_{*};

  • (2)

    problem (1.1) with (1.2) possesses no local-in-time solutions if γ>γ\gamma>\gamma_{*}.

In particular, if p>pα,Qp>p_{\alpha,Q} and Cα=0C_{\alpha}=0, the solution in the assertion (1) is a global-in-time one.

From this corollary it can be seen that Φα\Phi_{\alpha} is an optimal singularity for the local-in-time solvability. In particular, together with Remark 1.3, it can be seen that pα,Q=1+α/Qp_{\alpha,Q}=1+\alpha/Q is the Fujita-exponent.

The rest of this paper is organized as follows. In Section 2 we collect properties of N\mathbb{H}^{N} and GαG_{\alpha} and prepare some preliminary lemmas. In Section 3 we prove (1.11) in Theorem A and Theorem B. In Section 4 we prove assertions (i)–(iii) in Theorem A and complete the proof of Theorem A. In Section 5 we prove Theorems CE. In Section 6, as an application of our theorems, we obtain estimates of the life span of solutions of problem (1.1) with small initial data.

2. Preliminaries.

In what follows, the letters CC and CC^{\prime} denote generic positive constants depending only on NN, α\alpha, and pp. For any two nonnegative functions f1f_{1} and f2f_{2} defined on a subset DD\subset\mathbb{R}, we write f1(τ)f2(τ)f_{1}(\tau)\lesssim f_{2}(\tau) for all τD\tau\in D if f1(τ)Cf2(τ)f_{1}(\tau)\leq Cf_{2}(\tau) for all τD\tau\in D, and we write f1(τ)f2(τ)f_{1}(\tau)\sim f_{2}(\tau) for all τD\tau\in D if f1(τ)f2(τ)f_{1}(\tau)\lesssim f_{2}(\tau) and f2(τ)f1(τ)f_{2}(\tau)\lesssim f_{1}(\tau) for all τD\tau\in D. Furthermore, for A,B0A,B\geq 0, we write ABA\simeq B if CBACBCB\leq A\leq C^{\prime}B for some constants 0<C<C0<C<C^{\prime}.

2.1. Basic properties of N\mathbb{H}^{N} and GαG_{\alpha}.

In this subsection we collect properties of the Heisenberg group N\mathbb{H}^{N} and the fundamental solution GαG_{\alpha}. The following lemma is used when we calculate integrals in the Heisenberg group N\mathbb{H}^{N} and is well-known (see e.g. [BHQ24, P98]). Therefore, we omit the proof.

Lemma 2.1.

Let N1N\geq 1, ζN\zeta\in\mathbb{H}^{N}, a>0a>0, f:[0,)[0,)f:[0,\infty)\to[0,\infty) be a continuous function. Then one has

(2.1) B(ζ,a)f(|ζ1η|N)dη0a2f(r)rNdr.\int_{B(\zeta,a)}f(|\zeta^{-1}\circ\eta|_{\mathbb{H}^{N}})\,\mathop{}\!\mathrm{d}\eta\simeq\int_{0}^{a^{2}}f(\sqrt{r})r^{N}\,\mathop{}\!\mathrm{d}r.

Moreover, one has

(2.2) B(ζ,a)dη=|B(ζ,a)|=|B(0,a)|aQ.\int_{B(\zeta,a)}\,\mathop{}\!\mathrm{d}\eta=|B(\zeta,a)|=|B(0,a)|\simeq a^{Q}.

For λ>0\lambda>0 and η=(x,y,τ)N\eta=(x,y,\tau)\in\mathbb{H}^{N}, define

δλ(η):=(λx,λy,λ2τ).\delta_{\lambda}(\eta):=(\lambda x,\lambda y,\lambda^{2}\tau).

The following properties are taken from [FS, MPS]. Given α(0,2]\alpha\in(0,2], the function GαG_{\alpha} has the following properties:

GαC(N×(0,)),\displaystyle G_{\alpha}\in C^{\infty}(\mathbb{H}^{N}\times(0,\infty)),
(2.3) Gα(η,t)=Gα(η1,t),\displaystyle G_{\alpha}(\eta,t)=G_{\alpha}(\eta^{-1},t),
(2.4) Gα(δλ(η),λαt)=λQGα(η,t),\displaystyle G_{\alpha}(\delta_{\lambda}(\eta),\lambda^{\alpha}t)=\lambda^{-Q}G_{\alpha}(\eta,t),
(2.5) Gα(η,t)=NGα(ζ1η,ts)Gα(ζ,s)dζ,\displaystyle G_{\alpha}(\eta,t)=\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-s)G_{\alpha}(\zeta,s)\,\mathop{}\!\mathrm{d}\zeta,
(2.6) NGα(η,t)dη=1,\displaystyle\displaystyle{\int_{\mathbb{H}^{N}}G_{\alpha}(\eta,t)\,\mathop{}\!\mathrm{d}\eta=1},

for all ηN\eta\in\mathbb{H}^{N}, 0<s<t0<s<t, and λ>0\lambda>0.

Since Xi=XiX^{*}_{i}=-X_{i}, Yi=YiY_{i}^{*}=-Y_{i} for i=1,,Ni=1,\ldots,N and Δ=i=1N(Xi2+Yi2)\Delta_{\mathbb{H}}=\sum_{i=1}^{N}(X_{i}^{2}+Y_{i}^{2}), by integration by parts we have:

(2.7) NΔϕ(η)ψ(η)dη=Nϕ(η)(Δ)ψ(η)dη\int_{\mathbb{H}^{N}}-\Delta_{\mathbb{H}}\phi(\eta)\cdot\psi(\eta)\,\mathop{}\!\mathrm{d}\eta=\int_{\mathbb{H}^{N}}\phi(\eta)(-\Delta_{\mathbb{H}})\psi(\eta)\,\mathop{}\!\mathrm{d}\eta

for all ϕ,ψC0(N)\phi,\psi\in C_{0}^{\infty}(\mathbb{H}^{N}).

2.2. A covering lemma and the Hardy-Littlewood maximal function.

For ηN\eta\in\mathbb{H}^{N} and a nonempty subset ANA\subset\mathbb{H}^{N}, set

dist(η,A):=inf{𝖽(η,η¯):η¯Ac}.\operatorname{dist}(\eta,A):=\inf\{\mathsf{d}_{\mathbb{H}}(\eta,\overline{\eta}):\overline{\eta}\in A^{c}\}.
Lemma 2.2.

  1. (a)

    Let 0<r<R<0<r<R<\infty and ηN\eta\in\mathbb{H}^{N}. Then there exists an universal constant CC such that we can find a family of balls {Bk:=B(ηk,r):ηkB(η,R),kI}\{B_{k}:=B(\eta_{k},r):\eta_{k}\in B(\eta,R),k\in I\} for some countable family of indices II such that

    • (i)

      B(η,R)kIBk\displaystyle{B(\eta,R)\subset\bigcup_{k\in I}B_{k}};

    • (ii)

      IC(R/r)Q\displaystyle\sharp I\leq C\left(R/r\right)^{Q}.

  2. (b)

    Let R>0R>0 and η0N\eta_{0}\in\mathbb{H}^{N}. Then for each k=2,3,k=2,3,\ldots, we can find a family of balls {Bjk:=B(ηjk,R):jJ}\{B^{k}_{j}:=B(\eta^{k}_{j},R):j\in J\} for some countable family of indices JJ such that

    • (i)

      B(η0,2k+1R)\B(η0,2kR)jJBjk\displaystyle{B(\eta_{0},2^{k+1}R)\backslash B(\eta_{0},2^{k}R)\subset\bigcup_{j\in J}B^{k}_{j}};

    • (ii)

      dist(η0,Bjk)2kR{\rm dist}(\eta_{0},B^{k}_{j})\simeq 2^{k}R for each jJj\in J and k2k\geq 2;

    • (iii)

      JC2kQ\displaystyle\sharp J\leq C2^{kQ}, where CC is a constant independent of k,Rk,R, and η0\eta_{0}.

Here, for any set II, I\sharp I denotes the cardinal number of II.

Proof.

Since the proof of (a) is similar to that of (b) and even easier, we need only to prove (b). Fix k2k\geq 2. We consider the following family of balls {B(η,R/5):ηB(η0,2k+1R)\B(η0,2kR)}\{B(\eta,R/5):\eta\in B(\eta_{0},2^{k+1}R)\backslash B(\eta_{0},2^{k}R)\}, which covers B(η0,2k+1R)\B(η0,2kR)B(\eta_{0},2^{k+1}R)\backslash B(\eta_{0},2^{k}R). By Vitali’s covering lemma, we can extract a disjoint family of balls {B(ηjk,R/5):jJ}\{B(\eta^{k}_{j},R/5):j\in J\} for some countable family of indices JJ satisfying

B(η0,2k+1R)\B(η0,2kR)jJB(ηjk,R).B(\eta_{0},2^{k+1}R)\backslash B(\eta_{0},2^{k}R)\subset\bigcup_{j\in J}B(\eta^{k}_{j},R).

By the construction, it is straightforward that the family {Bjk:=B(ηjk,R):jJ}\{B^{k}_{j}:=B(\eta^{k}_{j},R):j\in J\} satisfies (i) and (ii). In addition, by (2.2),

(2kR)Q\displaystyle(2^{k}R)^{Q} |B(η0,2k+1R+R/5)\B(η0,2kRR/5)|jJ|B(ηjk,R/5)|RQ×J,\displaystyle\gtrsim|B(\eta_{0},2^{k+1}R+R/5)\backslash B(\eta_{0},2^{k}R-R/5)|\geq\sum_{j\in J}|B(\eta_{j}^{k},R/5)|\gtrsim R^{Q}\times\sharp J,

which implies (iii). This competes our proof. ∎

Recall that the Hardy-Littlewood maximal function \mathcal{M} is defined by

f(η)=supBη1rBQBf(ζ)dζ,\mathcal{M}f(\eta)=\sup_{B\ni\eta}\frac{1}{r_{B}^{Q}}\int_{B}f(\zeta)\mathop{}\!\mathrm{d}\zeta,

where the supremum is taken over all balls BB containing η\eta and rB>0r_{B}>0 is the radius of BB. It is well-known that \mathcal{M} is bounded on Lp(N)L^{p}(\mathbb{H}^{N}) for 1<p1<p\leq\infty.

We have the following result whose proof is quite elementary and will be omitted.

Lemma 2.3.

For ϵ>0\epsilon>0, there exists C>0C>0 such that

N1tQ/α(1+𝖽(η,ζ)t1/α)(Q+ϵ)|f(ζ)|dζCf(η)\int_{\mathbb{H}^{N}}\frac{1}{t^{Q/\alpha}}\left(1+\frac{\mathsf{d}_{\mathbb{H}}(\eta,\zeta)}{t^{1/\alpha}}\right)^{-(Q+\epsilon)}|f(\zeta)|\mathop{}\!\mathrm{d}\zeta\leq C\mathcal{M}f(\eta)

for all ηN\eta\in\mathbb{H}^{N}, t>0t>0 and fLloc1(N)f\in L^{1}_{\rm loc}(\mathbb{H}^{N}).

2.3. Some kernel estimates.

In this subsection, we obtain estimates of the fundamental solution GαG_{\alpha} and collect the basic properties of Λα\Lambda_{\alpha}.

First, we prove Proposition 1.1 in Subsection 1.3.

Proof of Proposition 1.1.

The case α=2\alpha=2 is well-known. In fact, we have

(2.8) C1tQ/2exp(|η|N2c1t)G(η,t)C2tQ/2exp(|η|N2c2t)\frac{C_{1}}{t^{Q/2}}\exp\left(-\frac{|\eta|_{\mathbb{H}^{N}}^{2}}{c_{1}t}\right)\leq G(\eta,t)\leq\frac{C_{2}}{t^{Q/2}}\exp\left(-\frac{|\eta|_{\mathbb{H}^{N}}^{2}}{c_{2}t}\right)

for all ηN\eta\in\mathbb{H}^{N} and t>0t>0. See e.g. [FS].

It remains to prove for the case α(0,2)\alpha\in(0,2). We use the following subordination formula in [G]:

(2.9) etΛα=0esΛ2ϕtα(s)ds,e^{t\Lambda_{\alpha}}=\int_{0}^{\infty}e^{s\Lambda_{2}}\phi_{t}^{\alpha}(s)\,\mathop{}\!\mathrm{d}s,

where the function ϕtα:[0,)[0,)\phi^{\alpha}_{t}:[0,\infty)\to[0,\infty) satisfies the following properties:

  1. (i)

    ϕtα(s)0\phi^{\alpha}_{t}(s)\geq 0 and 0ϕtα(s)ds=1\displaystyle{\int_{0}^{\infty}\phi_{t}^{\alpha}(s)\,\mathop{}\!\mathrm{d}s=1};

  2. (ii)

    ϕtα(s)=t2αϕ1α(st2α)\phi_{t}^{\alpha}(s)=t^{-\frac{2}{\alpha}}\phi_{1}^{\alpha}(st^{-\frac{2}{\alpha}});

  3. (iii)

    ϕtα(s)Cts1+α/2\displaystyle{\phi_{t}^{\alpha}(s)\leq\frac{Ct}{s^{1+\alpha/2}}} for all s,t>0s,t>0;

  4. (iv)

    ϕtα(s)ts1+α/2\displaystyle{\phi_{t}^{\alpha}(s)\sim\frac{t}{s^{1+\alpha/2}}} for all st2α>0s\geqslant t^{\frac{2}{\alpha}}>0;

  5. (v)

    0sγϕ1α(s)ds<\displaystyle{\int_{0}^{\infty}s^{-\gamma}\phi_{1}^{\alpha}(s)\,\mathop{}\!\mathrm{d}s<\infty} for all γ>0\gamma>0.

We first establish an upper bound for Gα(η,t)G_{\alpha}(\eta,t). By (2.8), (2.9), (iii), and (iv), we have

Gα(η,t)0ts(Q+α)/2exp(|η|N2c2s)dss.\displaystyle G_{\alpha}(\eta,t)\lesssim\int_{0}^{\infty}\frac{t}{s^{(Q+\alpha)/2}}\exp\Big{(}-\frac{|\eta|_{\mathbb{H}^{N}}^{2}}{c_{2}s}\Big{)}\frac{\mathop{}\!\mathrm{d}s}{s}.

Case 1: |η|Nt1/α|\eta|_{\mathbb{H}^{N}}\geq t^{1/\alpha}. Using the change of variable u=|η|N2/su=|\eta|_{\mathbb{H}^{N}}^{2}/s,

Gα(η,t)\displaystyle G_{\alpha}(\eta,t) 0tu(Q+α)/2|η|NQ+αexp(uc2)duu\displaystyle\lesssim\int_{0}^{\infty}\frac{tu^{{(Q+\alpha)/2}}}{|\eta|_{\mathbb{H}^{N}}^{Q+\alpha}}\exp\left(-\frac{u}{c_{2}}\right)\frac{\mathop{}\!\mathrm{d}u}{u}
t|η|NQ+α1tQ/α(1+|η|Nt1/α)(Q+α).\displaystyle\lesssim\frac{t}{|\eta|_{\mathbb{H}^{N}}^{Q+\alpha}}\simeq\frac{1}{t^{Q/\alpha}}\left(1+\frac{|\eta|_{\mathbb{H}^{N}}}{t^{1/\alpha}}\right)^{-(Q+\alpha)}.

Case 2: |η|N<t1/α|\eta|_{\mathbb{H}^{N}}<t^{1/\alpha}. In this case, by (2.9), (2.8), and (ii),

Gα(η,t)\displaystyle G_{\alpha}(\eta,t) 01sQ/2t2αϕ1α(st2α)ds\displaystyle\lesssim\int_{0}^{\infty}\frac{1}{s^{Q/2}}t^{-\frac{2}{\alpha}}\phi_{1}^{\alpha}(st^{-\frac{2}{\alpha}})\,\mathop{}\!\mathrm{d}s
0tQ/αuQ/2ϕ1α(u)du\displaystyle\simeq\int_{0}^{\infty}\frac{t^{-{Q/\alpha}}}{u^{Q/2}}\phi_{1}^{\alpha}(u)\,\mathop{}\!\mathrm{d}u
tQα1tQ/α(1+|η|Nt1/α)(Q+α),\displaystyle\lesssim t^{-\frac{Q}{\alpha}}\simeq\frac{1}{t^{Q/\alpha}}\left(1+\frac{|\eta|_{\mathbb{H}^{N}}}{t^{1/\alpha}}\right)^{-(Q+\alpha)},

where in the second line we used the change of variable u=st2/αu=st^{-2/\alpha} and in the last inequality we used (v). We have proved that

Gα(η,t)1tQ/α(1+|η|Nt1/α)(Q+α)G_{\alpha}(\eta,t)\lesssim\frac{1}{t^{Q/\alpha}}\left(1+\frac{|\eta|_{\mathbb{H}^{N}}}{t^{1/\alpha}}\right)^{-(Q+\alpha)}

for ζN\zeta\in\mathbb{H}^{N} and t>0t>0, which is the upper bound in (1.8).

It remains to prove the lower bound in (1.8) for Gα(η,t)G_{\alpha}(\eta,t). Indeed, by (2.8), (2.9), and (iv),

Gα(η,t)\displaystyle G_{\alpha}(\eta,t) t2/αts(Q+α)/2exp(|η|N2c1s)dss.\displaystyle\gtrsim\int_{t^{2/\alpha}}^{\infty}\frac{t}{s^{(Q+\alpha)/2}}\exp\left(-\frac{|\eta|_{\mathbb{H}^{N}}^{2}}{c_{1}s}\right)\frac{\mathop{}\!\mathrm{d}s}{s}.

By (2.9) and (iv),

Gα(η,t)\displaystyle G_{\alpha}(\eta,t) t2/αts(Q+α)/2exp(|η|N2c1s)dss\displaystyle\gtrsim\int_{t^{2/\alpha}}^{\infty}\frac{t}{s^{(Q+\alpha)/2}}\exp\left(-\frac{|\eta|_{\mathbb{H}^{N}}^{2}}{c_{1}s}\right)\frac{\mathop{}\!\mathrm{d}s}{s}
t2/α+|η|N21sQ/2ts1+α/2ds\displaystyle\gtrsim\int_{t^{2/\alpha}+|\eta|_{\mathbb{H}^{N}}^{2}}^{\infty}\frac{1}{s^{Q/2}}\frac{t}{s^{1+\alpha/2}}\,\mathop{}\!\mathrm{d}s
min{tQα,t|η|NQ+α}=min{tQα,tQα(t1α|η|N)Q+α}\displaystyle\simeq\min\left\{t^{-\frac{Q}{\alpha}},\frac{t}{|\eta|_{\mathbb{H}^{N}}^{Q+\alpha}}\right\}=\min\left\{t^{-\frac{Q}{\alpha}},t^{-\frac{Q}{\alpha}}\left(\frac{t^{\frac{1}{\alpha}}}{|\eta|_{\mathbb{H}^{N}}}\right)^{Q+\alpha}\right\}
1tQ/α(1+|η|Nt1/α)(Q+α).\displaystyle\simeq\frac{1}{t^{Q/\alpha}}\left(1+\frac{|\eta|_{\mathbb{H}^{N}}}{t^{1/\alpha}}\right)^{-(Q+\alpha)}.

This completes our proof. ∎

Lemma 2.4.

For each t>0t>0 and for any ϵ(0,α)\epsilon\in(0,\alpha) there exist C,C>0C,C^{\prime}>0 such that

|tGα(η,t)|{CtQ/α+1(1+|η|Nt1/α)(Q+αϵ)ifα(0,2),CtQ/2+1exp(|η|N2Ct)ifα=2,|\partial_{t}G_{\alpha}(\eta,t)|\leq\left\{\begin{aligned} &\frac{C}{t^{Q/\alpha+1}}\left(1+\frac{|\eta|_{\mathbb{H}^{N}}}{t^{{1/\alpha}}}\right)^{-(Q+\alpha-\epsilon)}\quad&&\mbox{if}\quad\alpha\in(0,2),\\ &\frac{C}{t^{Q/2+1}}\exp\left(-\frac{|\eta|_{\mathbb{H}^{N}}^{2}}{C^{\prime}t}\right)\quad&&\mbox{if}\quad\alpha=2,\end{aligned}\right.

for ηN\eta\in\mathbb{H}^{N} and t>0t>0. Consequently, for t>0t>0 we have

|tΛα[etΛαf](η)|f(η)|t\Lambda_{\alpha}[e^{t\Lambda_{\alpha}}f](\eta)|\lesssim\mathcal{M}f(\eta)

for all ηN\eta\in\mathbb{H}^{N} and fLloc1(N)f\in L^{1}_{\rm loc}(\mathbb{H}^{N}).

Proof.

The upper bounds for |tGα(η,t)||\partial_{t}G_{\alpha}(\eta,t)| are just a direct consequence of [CD, Lemma 2.5] and the upper bound (1.8). This together with Lemma 2.3 yields

|tΛα[etΛαf](η)|=|tt[etΛαf](η)|f(η)|t\Lambda_{\alpha}[e^{t\Lambda_{\alpha}}f](\eta)|=|t\partial_{t}[e^{t\Lambda_{\alpha}}f](\eta)|\lesssim\mathcal{M}f(\eta)

for all ηN\eta\in\mathbb{H}^{N}, t>0t>0, and fLloc1(N)f\in L^{1}_{\rm loc}(\mathbb{H}^{N}), as desired. This completes our proof. ∎

Lemma 2.5.

Let N1N\geq 1. For every t>0t>0, we have

etΛαfL(N)fL(N)\|e^{t\Lambda_{\alpha}}f\|_{L^{\infty}(\mathbb{H}^{N})}\leq\|f\|_{L^{\infty}(\mathbb{H}^{N})}

for all fL(N)f\in L^{\infty}(\mathbb{H}^{N}).

Proof.

For t>0t>0, fL(N)f\in L^{\infty}(\mathbb{H}^{N}), and ηN\eta\in\mathbb{H}^{N} we have

|etΛαf(η)|\displaystyle|e^{t\Lambda_{\alpha}}f(\eta)| NGα(ζ1η,t)|f(ζ)|dζ\displaystyle\leq\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)|f(\zeta)|\,\mathop{}\!\mathrm{d}\zeta
fL(N)NGα(ζ1η,t)dζ=fL(N),\displaystyle\leq\|f\|_{L^{\infty}(\mathbb{H}^{N})}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\zeta=\|f\|_{L^{\infty}(\mathbb{H}^{N})},

where in the last inequality we used (2.6). This completes our proof. ∎

Lemma 2.6.

Let N1N\geq 1 and α(0,2]\alpha\in(0,2]. Then ΛαfL(N)\Lambda_{\alpha}f\in L^{\infty}(\mathbb{H}^{N}) for every fCc(N)f\in C^{\infty}_{c}(\mathbb{H}^{N}).

Proof.

The case α=2\alpha=2 is straightforward. We only provide the proof for α(0,2)\alpha\in(0,2). Let fCc(N)f\in C^{\infty}_{c}(\mathbb{H}^{N}). Then we have

Λαf=1Γ(1α/2)0tα2Λ2etΛ2fdt.\Lambda_{\alpha}f=\frac{1}{\Gamma(1-\alpha/2)}\int_{0}^{\infty}t^{-\frac{\alpha}{2}}\Lambda_{2}e^{t\Lambda_{2}}f\,\mathop{}\!\mathrm{d}t.

This together with (2.7), Lemmas 2.4 and 2.5, and the boundedness of the maximal function \mathcal{M} implies

ΛαfL(N)\displaystyle\|\Lambda_{\alpha}f\|_{L^{\infty}(\mathbb{H}^{N})} 01tα2etΛ2Λ2fL(N)dt+1tα2tΛ2etΛ2fL(N)dtt\displaystyle\leq\int_{0}^{1}t^{-\frac{\alpha}{2}}\|e^{t\Lambda_{2}}\Lambda_{2}f\|_{L^{\infty}(\mathbb{H}^{N})}\,\mathop{}\!\mathrm{d}t+\int_{1}^{\infty}t^{-\frac{\alpha}{2}}\|t\Lambda_{2}e^{t\Lambda_{2}}f\|_{L^{\infty}(\mathbb{H}^{N})}\,\frac{\mathop{}\!\mathrm{d}t}{t}
Λ2fL(N)+fL(N)\displaystyle\lesssim\|\Lambda_{2}f\|_{L^{\infty}(\mathbb{H}^{N})}+\|\mathcal{M}f\|_{L^{\infty}(\mathbb{H}^{N})}
Λ2fL(N)+fL(N)<.\displaystyle\lesssim\|\Lambda_{2}f\|_{L^{\infty}(\mathbb{H}^{N})}+\|f\|_{L^{\infty}(\mathbb{H}^{N})}<\infty.

This completes our proof. ∎

Lemma 2.7.

Let N1N\geq 1 and α(0,2]\alpha\in(0,2]. Then we have

  1. (a)

    We have

    limt0+etΛαffL(N)=0\lim_{t\to 0^{+}}\|e^{t\Lambda_{\alpha}}f-f\|_{L^{\infty}(\mathbb{H}^{N})}=0

    for fCc(N)f\in C_{c}(\mathbb{H}^{N}).

  2. (b)

    Let t>0t>0. Then

    limτ0+e(tτ)ΛαfetΛαfL(N)=0\lim_{\tau\to 0^{+}}\|e^{(t-\tau)\Lambda_{\alpha}}f-e^{t\Lambda_{\alpha}}f\|_{L^{\infty}(\mathbb{H}^{N})}=0

    for fCc(N)f\in C_{c}(\mathbb{H}^{N}).

Proof.

Since the proof of (a) is similar to (b) (even easier), we only give the proof of (b).

We prove (b) for fCc(N)f\in C^{\infty}_{c}(\mathbb{H}^{N}). Indeed, for 0<τ<t0<\tau<t we have

e(tτ)ΛαfetΛαf=tτtΛαesΛαfds=ttτesΛα(Λα)fds,e^{(t-\tau)\Lambda_{\alpha}}f-e^{t\Lambda_{\alpha}}f=-\int_{t-\tau}^{t}\Lambda_{\alpha}e^{s\Lambda_{\alpha}}f\,\mathop{}\!\mathrm{d}s=\int_{t}^{t-\tau}e^{s\Lambda_{\alpha}}(-\Lambda_{\alpha})f\,\mathop{}\!\mathrm{d}s,

which implies

e(tτ)ΛαfetΛαfL(N)tτtesΛαΛαfL(N)ds.\|e^{(t-\tau)\Lambda_{\alpha}}f-e^{t\Lambda_{\alpha}}f\|_{L^{\infty}(\mathbb{H}^{N})}\leq\int_{t-\tau}^{t}\|e^{s\Lambda_{\alpha}}\Lambda_{\alpha}f\|_{L^{\infty}(\mathbb{H}^{N})}\,\mathop{}\!\mathrm{d}s.

By Lemmas 2.5 and 2.6, we further imply

e(tτ)ΛαfetΛαfL(N)τΛαfL(N)<.\|e^{(t-\tau)\Lambda_{\alpha}}f-e^{t\Lambda_{\alpha}}f\|_{L^{\infty}(\mathbb{H}^{N})}\leq\tau\|\Lambda_{\alpha}f\|_{L^{\infty}(\mathbb{H}^{N})}<\infty.

Therefore,

limτ0+e(tτ)ΛαfetΛαfL(N)=0\lim_{\tau\to 0^{+}}\|e^{(t-\tau)\Lambda_{\alpha}}f-e^{t\Lambda_{\alpha}}f\|_{L^{\infty}(\mathbb{H}^{N})}=0

for fCc(N)f\in C^{\infty}_{c}(\mathbb{H}^{N}). Assume that fCc(N)f\in C_{c}(\mathbb{H}^{N}). Then for any ϵ>0\epsilon>0 we can find gCc(N)g\in C^{\infty}_{c}(\mathbb{H}^{N}) such that

fgL(N)<ϵ.\|f-g\|_{L^{\infty}(\mathbb{H}^{N})}<\epsilon.

This together with Lemma 2.5 implies

e(tτ)ΛαfetΛαfL(N)e(tτ)Λα(fg)L(N)+e(tτ)ΛαgetΛαgL(N)+etΛαgetΛαfL(N)fgL(N)+e(tτ)ΛαgetΛαgL(N)+gfL(N)2fgL(N)+e(tτ)ΛαgetΛαgL(N),\begin{split}&\|e^{(t-\tau)\Lambda_{\alpha}}f-e^{t\Lambda_{\alpha}}f\|_{L^{\infty}(\mathbb{H}^{N})}\\ &\leq\|e^{(t-\tau)\Lambda_{\alpha}}(f-g)\|_{L^{\infty}(\mathbb{H}^{N})}+\|e^{(t-\tau)\Lambda_{\alpha}}g-e^{t\Lambda_{\alpha}}g\|_{L^{\infty}(\mathbb{H}^{N})}+\|e^{t\Lambda_{\alpha}}g-e^{t\Lambda_{\alpha}}f\|_{L^{\infty}(\mathbb{H}^{N})}\\ &\leq\|f-g\|_{L^{\infty}(\mathbb{H}^{N})}+\|e^{(t-\tau)\Lambda_{\alpha}}g-e^{t\Lambda_{\alpha}}g\|_{L^{\infty}(\mathbb{H}^{N})}+\|g-f\|_{L^{\infty}(\mathbb{H}^{N})}\\ &\leq 2\|f-g\|_{L^{\infty}(\mathbb{H}^{N})}+\|e^{(t-\tau)\Lambda_{\alpha}}g-e^{t\Lambda_{\alpha}}g\|_{L^{\infty}(\mathbb{H}^{N})},\end{split}

which implies

limτ0+e(tτ)ΛαfetΛαfL(N)\displaystyle\lim_{\tau\to 0^{+}}\|e^{(t-\tau)\Lambda_{\alpha}}f-e^{t\Lambda_{\alpha}}f\|_{L^{\infty}(\mathbb{H}^{N})} 2ϵ+limτ0+e(tτ)ΛαgetΛαgL(N)2ϵ\displaystyle\leq 2\epsilon+\lim_{\tau\to 0^{+}}\|e^{(t-\tau)\Lambda_{\alpha}}g-e^{t\Lambda_{\alpha}}g\|_{L^{\infty}(\mathbb{H}^{N})}\leq 2\epsilon

for all ϵ>0\epsilon>0. Therefore,

limt0+e(tτ)ΛαfetΛαfL(N)=0\lim_{t\to 0^{+}}\|e^{(t-\tau)\Lambda_{\alpha}}f-e^{t\Lambda_{\alpha}}f\|_{L^{\infty}(\mathbb{H}^{N})}=0

for all fCc(N)f\in C_{c}(\mathbb{H}^{N}). This completes our proof. ∎

For any Radon measure μ\mu on N\mathbb{H}^{N}, we define

etΛαμ(η)=NGα(ζ1η,t)𝑑μ(ζ)e^{t\Lambda_{\alpha}}\mu(\eta)=\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)d\mu(\zeta)

for ηN\eta\in\mathbb{H}^{N} and t>0t>0.

We have the following estimate.

Lemma 2.8.

Let N1N\geq 1 and α(0,2]\alpha\in(0,2]. For any Radon measure μ\mu on N\mathbb{H}^{N}, there exists a constant C>0C>0 such that

etΛαμL(N)CtQαsupηNμ(B(η,t1α))\|e^{t\Lambda_{\alpha}}\mu\|_{L^{\infty}(\mathbb{H}^{N})}\leq Ct^{-\frac{Q}{\alpha}}\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,t^{\frac{1}{\alpha}}))

for t>0t>0.

Proof.

For ηN\eta\in\mathbb{H}^{N} and t>0t>0, by applying (1.8) we have

|etΛαμ(η)|\displaystyle|e^{t\Lambda_{\alpha}}\mu(\eta)| N1tQ/αgα(|ζ1η|Nt1/α)dμ(ζ)\displaystyle\leq\int_{\mathbb{H}^{N}}\frac{1}{t^{Q/\alpha}}g_{\alpha}\left(\frac{|\zeta^{-1}\circ\eta|_{\mathbb{H}^{N}}}{t^{1/\alpha}}\right)\,\mathop{}\!\mathrm{d}\mu(\zeta)
B(η,2t1α)1tQ/αdμ(ζ)\displaystyle\leq\int_{B(\eta,2t^{\frac{1}{\alpha}})}\frac{1}{t^{Q/\alpha}}\,\mathop{}\!\mathrm{d}\mu(\zeta)
+j1{2jt1α<𝖽(η,ζ)2j+1t1α}1tQ/αgα(𝖽(η,ζ)t1/α)dμ(ζ)\displaystyle+\sum_{j\geq 1}\int_{\{2^{j}t^{\frac{1}{\alpha}}<\mathsf{d}_{\mathbb{H}}(\eta,\zeta)\leq 2^{j+1}t^{\frac{1}{\alpha}}\}}\frac{1}{t^{Q/\alpha}}g_{\alpha}\left(\frac{\mathsf{d}_{\mathbb{H}}(\eta,\zeta)}{t^{1/\alpha}}\right)\,\mathop{}\!\mathrm{d}\mu(\zeta)
B(η,2t1α)1tQ/αdμ(ζ)+j1B(η,2j+1t1α)2j(Q+α)tQ/αdμ(ζ)\displaystyle\lesssim\int_{B(\eta,2t^{\frac{1}{\alpha}})}\frac{1}{t^{Q/\alpha}}\,\mathop{}\!\mathrm{d}\mu(\zeta)+\sum_{j\geq 1}\int_{B(\eta,2^{j+1}t^{\frac{1}{\alpha}})}\frac{2^{-j(Q+\alpha)}}{t^{Q/\alpha}}\,\mathop{}\!\mathrm{d}\mu(\zeta)
j1tQαB(η,2jt1α)2j(Q+α)dμ(ζ).\displaystyle\lesssim\sum_{j\geq 1}t^{-\frac{Q}{\alpha}}\int_{B(\eta,2^{j}t^{\frac{1}{\alpha}})}2^{-j(Q+\alpha)}\,\mathop{}\!\mathrm{d}\mu(\zeta).

Applying Lemma 2.2, for each j1j\geq 1 we can cover the ball B(η,2jt1/α)B(\eta,2^{j}t^{1/\alpha}) by at most C2jQC2^{jQ} balls whose radii all equal to t1/αt^{1/\alpha}. Consequently, for each j1j\geq 1,

B(η,2jt1α)dμ(ζ)2jQsupξNμ(B(ξ,t1α)).\int_{B(\eta,2^{j}t^{\frac{1}{\alpha}})}\,\mathop{}\!\mathrm{d}\mu(\zeta)\lesssim 2^{jQ}\sup_{\xi\in\mathbb{H}^{N}}\mu(B(\xi,t^{\frac{1}{\alpha}})).

Therefore, for ηN\eta\in\mathbb{H}^{N} and t>0t>0,

|etΛαμ(η)|\displaystyle|e^{t\Lambda_{\alpha}}\mu(\eta)| j12jαtQαsupξNμ(B(ξ,t1α))tQαsupξNμ(B(ξ,t1α)).\displaystyle\lesssim\sum_{j\geq 1}2^{-j\alpha}t^{-\frac{Q}{\alpha}}\sup_{\xi\in\mathbb{H}^{N}}\mu(B(\xi,t^{\frac{1}{\alpha}}))\lesssim t^{-\frac{Q}{\alpha}}\sup_{\xi\in\mathbb{H}^{N}}\mu(B(\xi,t^{\frac{1}{\alpha}})).

This completes our proof. ∎

2.4. Preliminary lemmas.

At the end of Section 2, we provide some lemmas to prove the solvability.

Lemma 2.9.

Let μ\mu be a nonnegative Radon measure on N\mathbb{H}^{N} and T(0,]T\in(0,\infty]. Assume that there exists a supersolution vv of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T). Then there exists a minimal solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T).

Proof.

The proof is quite standard. See e.g. [HI18, HIT23, IKS16, RS13]. However, we would like to provide it for the sake of completeness. Define {un}n1\{u_{n}\}_{n\geq 1} as follows. Set u1(η,t):=[etΛαμ](η)u_{1}(\eta,t):=[e^{t\Lambda_{\alpha}}\mu](\eta) and define

(2.10) un(η,t):=[etΛαμ](η)+0t[e(ts)Λαun1(s)p](η)dsu_{n}(\eta,t):=[e^{t\Lambda_{\alpha}}\mu](\eta)+\int_{0}^{t}[e^{(t-s)\Lambda_{\alpha}}u_{n-1}(s)^{p}](\eta)\,\mathop{}\!\mathrm{d}s

for n2n\geq 2. Let vv be a supersolution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T), where T(0,]T\in(0,\infty]. Then it follows inductively that

0u1(η,t)u2(η,t)un(η,t)v(η,t)<0\leq u_{1}(\eta,t)\leq u_{2}(\eta,t)\leq\cdots\leq u_{n}(\eta,t)\leq\cdots\leq v(\eta,t)<\infty

for a.a. ηN\eta\in\mathbb{H}^{N} and t(0,T)t\in(0,T). It follows that

u(η,t):=limnun(η,t)v(η,t)u(\eta,t):=\lim_{n\to\infty}u_{n}(\eta,t)\leq v(\eta,t)

for a.a. ηN\eta\in\mathbb{H}^{N} and t(0,T)t\in(0,T). This, along with (2.10), implies that uu is a solution of problem (1.1) with (1.2). Since any solution is also a supersolution, if u~\tilde{u} is another solution of problem (1.1) with (1.2) then a similar argument also shows that uu~u\leq\tilde{u}. Hence, uu is a minimal solution. This completes our proof. ∎

The key to the proof of Theorem A in the case of α(0,2)\alpha\in(0,2) is the following lemma on the existence of solutions of ordinary differential equations. This idea comes from [LS21].

Lemma 2.10.

Let ff be a nonnegative measurable function on (0,T)(0,T) for some T>0T>0. Assume that

(2.11) >f(t)a1+a2ttsaf(s)bdsfor a.a.t(t,T),\infty>f(t)\geq a_{1}+a_{2}\int_{t_{*}}^{t}s^{-a}f(s)^{b}\,\mathop{}\!\mathrm{d}s\quad\mbox{for a.a.}\quad t\in(t_{*},T),

where a1,a2>0a_{1},a_{2}>0, a0a\geq 0, b>1b>1, and t(0,T/2)t_{*}\in(0,T/2). Then there exists C=C(a,b)>0C=C(a,b)>0 such that

a1Ca21b1ta1b1.a_{1}\leq Ca_{2}^{-\frac{1}{b-1}}t_{*}^{\frac{a-1}{b-1}}.

In addition, if a=1a=1, then

a1(a2(b1))1b1[logT2t]1b1.a_{1}\leq(a_{2}(b-1))^{-\frac{1}{b-1}}\left[\log\frac{T}{2t_{*}}\right]^{-\frac{1}{b-1}}.

We remark that assumption (2.11) implies that there exists a unique solution of the ordinary differential equation f(t)=a2taf(t)bf^{\prime}(t)=a_{2}t^{-a}f(t)^{b} on (t,T)(t_{*},T) with f(t)=a1f(t_{*})=a_{1}. The proof of Lemma 2.10 is done by analyzing the solution of this equation. For details of the proof, see e.g. [HIT23, Lemma 2.5].

3. Initial trace.

In this section we show the existence and uniqueness of the initial trace and prove (1.11). The proof follows the arguments in [HI18].

Lemma 3.1.

Let uu be a solution of (1.1) in N×(0,T)\mathbb{H}^{N}\times(0,T), where T(0,)T\in(0,\infty). Then

(3.1) esssup0<t<TϵB(0,R)u(ζ,t)dζ<\operatorname*{ess\sup}_{0<t<T-\epsilon}\int_{B(0,R)}u(\zeta,t)\,\mathop{}\!\mathrm{d}\zeta<\infty

for all R>0R>0 and 0<ϵ<T0<\epsilon<T. Furthermore, there exists a unique Radon measure ν\nu on N\mathbb{H}^{N} such that

(3.2) esslimt0+Nu(ζ,t)ϕ(ζ)dζ=Nϕ(ζ)dν(ζ)\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{H}^{N}}u(\zeta,t)\phi(\zeta)\,\mathop{}\!\mathrm{d}\zeta=\int_{\mathbb{H}^{N}}\phi(\zeta)\,\mathop{}\!\mathrm{d}\nu(\zeta)

for all ϕCc(N)\phi\in C_{c}(\mathbb{H}^{N}).

Proof.

Let R,ϵ>0R,\epsilon>0. Then, from (1.9) and the nonnegativity of GαG_{\alpha}, there exists η0B(0,R)\eta_{0}\in B(0,R) such that

>u(η0,t)B(η0,2R)Gα(ζ1η0,tτ)u(ζ,τ)dζ\displaystyle\infty>u(\eta_{0},t)\geq\int_{B(\eta_{0},2R)}G_{\alpha}(\zeta^{-1}\circ\eta_{0},t-\tau)u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta

for a.a. τ(0,Tϵ)\tau\in(0,T-\epsilon) and t(Tϵ/2,T)t\in(T-\epsilon/2,T). It follows that

>infξB(η0,2R),ϵ2<s<TGα(ξ1η0,s)B(η0,2R)u(ζ,τ)dζ.\infty>\inf_{\xi\in B(\eta_{0},2R),\frac{\epsilon}{2}<s<T}G_{\alpha}(\xi^{-1}\circ\eta_{0},s)\int_{B(\eta_{0},2R)}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta.

From (1.8), we have

infξB(η0,2R),ϵ<s<TGα(ξ1η0,s)C1TQ/αgα(CRc1ϵ1/α),\inf_{\xi\in B(\eta_{0},2R),\epsilon<s<T}G_{\alpha}(\xi^{-1}\circ\eta_{0},s)\geq\frac{C_{1}}{T^{Q/\alpha}}g_{\alpha}\left(\frac{CR}{c_{1}\epsilon^{1/\alpha}}\right),

which implies

B(η0,2R)u(ζ,τ)dζ<C(T,R,ϵ)\int_{B(\eta_{0},2R)}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta<C(T,R,\epsilon)

for a.a. τ(0,Tϵ)\tau\in(0,T-\epsilon). It follows (3.1) since B(0,R)B(η0,2R)B(0,R)\subset B(\eta_{0},2R).


We now take care of (3.2). It suffices to prove (3.2) for 0ϕCc(N)0\leq\phi\in C_{c}(\mathbb{H}^{N}). From (3.1), the Riesz representation theorem [Cohn, Theorem 7.2.8] and the weak compactness of Radon measures [Simon, 4.4 THEOREM], we can find a sequence {tj}\{t_{j}\} with limjtj=0\lim_{j\to\infty}t_{j}=0 and a nonnegative Radon measure ν\nu on N\mathbb{H}^{N} such that

(3.3) limjNu(ζ,tj)ϕ(ζ)dζ=Nϕ(ζ)dν(ζ)\lim_{j\to\infty}\int_{\mathbb{H}^{N}}u(\zeta,t_{j})\phi(\zeta)\,\mathop{}\!\mathrm{d}\zeta=\int_{\mathbb{H}^{N}}\phi(\zeta)\,\mathop{}\!\mathrm{d}\nu(\zeta)

for all ϕCc(N)\phi\in C_{c}(\mathbb{H}^{N}).

For the uniqueness of the Radon measure ν\nu, we assume that there exist a sequence {sj}\{s_{j}\} with limjsj=0\lim_{j\to\infty}s_{j}=0 and a nonnegative Radon measure ν\nu^{\prime} on N\mathbb{H}^{N} such that

(3.4) limjNu(ζ,sj)ϕ(ζ)dζ=Nϕ(ζ)dν(ζ)\lim_{j\to\infty}\int_{\mathbb{H}^{N}}u(\zeta,s_{j})\phi(\zeta)\,\mathop{}\!\mathrm{d}\zeta=\int_{\mathbb{H}^{N}}\phi(\zeta)\,\mathop{}\!\mathrm{d}\nu^{\prime}(\zeta)

for all ϕCc(N)\phi\in C_{c}(\mathbb{H}^{N}). Taking a subsequence if necessary, we might assume that tj>sjt_{j}>s_{j} for j=1,2,j=1,2,\dots. From (1.9),

u(η,tj)NGα(ζ1η,tjsj)u(ζ,sj)dζ,j=1,2,u(\eta,t_{j})\geq\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t_{j}-s_{j})u(\zeta,s_{j})\,\mathop{}\!\mathrm{d}\zeta,\quad j=1,2,\dots

for a.a. ηN\eta\in\mathbb{H}^{N}. From the above inequality, the fact (ζ1η)1=η1ζ(\zeta^{-1}\circ\eta)^{-1}=\eta^{-1}\circ\zeta, and (2.3), we have

Nu(η,tj)ϕ(η)dη\displaystyle\int_{\mathbb{H}^{N}}u(\eta,t_{j})\phi(\eta)\,\mathop{}\!\mathrm{d}\eta
N(NGα(ζ1η,tjsj)ϕ(η)dη)u(ζ,sj)dζ\displaystyle\geq\int_{\mathbb{H}^{N}}\left(\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t_{j}-s_{j})\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\right)u(\zeta,s_{j})\,\mathop{}\!\mathrm{d}\zeta
=N(NGα(η1ζ,tjsj)ϕ(η)dη)u(ζ,sj)dζ\displaystyle=\int_{\mathbb{H}^{N}}\left(\int_{\mathbb{H}^{N}}G_{\alpha}(\eta^{-1}\circ\zeta,t_{j}-s_{j})\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\right)u(\zeta,s_{j})\,\mathop{}\!\mathrm{d}\zeta
=N[e(tjsj)Λαϕ](ζ)u(ζ,sj)dζ\displaystyle=\int_{\mathbb{H}^{N}}[e^{(t_{j}-s_{j})\Lambda_{\alpha}}\phi](\zeta)u(\zeta,s_{j})\,\mathop{}\!\mathrm{d}\zeta
B(0,R)[e(tjsj)Λαϕ](ζ)u(ζ,sj)dζ\displaystyle\geq\int_{B(0,R)}[e^{(t_{j}-s_{j})\Lambda_{\alpha}}\phi](\zeta)u(\zeta,s_{j})\,\mathop{}\!\mathrm{d}\zeta
B(0,R)ϕ(ζ)u(ζ,sj)dζe(tjsj)ΛαϕϕL(B(0,R))B(0,R)u(ζ,sj)dζ.\displaystyle\geq\int_{B(0,R)}\phi(\zeta)u(\zeta,s_{j})\,\mathop{}\!\mathrm{d}\zeta-\|e^{(t_{j}-s_{j})\Lambda_{\alpha}}\phi-\phi\|_{L^{\infty}(B(0,R))}\int_{B(0,R)}u(\zeta,s_{j})\,\mathop{}\!\mathrm{d}\zeta.

Letting jj\to\infty, by Lemma 2.7, (3.1), (3.3), and (3.4) we obtain

NϕdνNϕdν\int_{\mathbb{H}^{N}}\phi\,\mathop{}\!\mathrm{d}\nu\geq\int_{\mathbb{H}^{N}}\phi\,\mathop{}\!\mathrm{d}\nu^{\prime}

for all ϕCc(N)\phi\in C_{c}(\mathbb{H}^{N}). Similarly, it follows that

NϕdνNϕdν\int_{\mathbb{H}^{N}}\phi\,\mathop{}\!\mathrm{d}\nu^{\prime}\geq\int_{\mathbb{H}^{N}}\phi\,\mathop{}\!\mathrm{d}\nu

for all ϕCc(N)\phi\in C_{c}(\mathbb{H}^{N}). This completes our proof. ∎

Lemma 3.2.

Let μ\mu be nonnegative Radon measure on N\mathbb{H}^{N}. Let uu be a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T), where T(0,)T\in(0,\infty). Then

(3.5) esslimt0+Nu(η,t)ϕ(η)dη=Nϕ(η)dμ(η)\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{H}^{N}}u(\eta,t)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta=\int_{\mathbb{H}^{N}}\phi(\eta)\,\mathop{}\!\mathrm{d}\mu(\eta)

for all ϕCc(N)\phi\in C_{c}(\mathbb{H}^{N}).

Proof.

Without loss of generality we need only to verify (3.5) with 0ϕCc(N)0\leq\phi\in C_{c}(\mathbb{H}^{N}). Let R1R\geq 1 such that suppϕB(0,R)\operatorname{supp}\phi\subset B(0,R). By Lemma 3.1, we can find a unique Radon measure ν\nu on N\mathbb{H}^{N} such that

(3.6) esslimt0+Nu(η,t)ϕ(η)dη=Nϕ(η)dν(η)\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{H}^{N}}u(\eta,t)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta=\int_{\mathbb{H}^{N}}\phi(\eta)\,\mathop{}\!\mathrm{d}\nu(\eta)

for all 0ϕCc(N)0\leq\phi\in C_{c}(\mathbb{H}^{N}). Furthermore, from (1.9) we have

(3.7) Nu(η,t)ϕ(η)dη\displaystyle\int_{\mathbb{H}^{N}}u(\eta,t)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta =NNGα(ζ1η,tτ)u(ζ,τ)ϕ(η)dηdζ\displaystyle=\int_{\mathbb{H}^{N}}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\zeta
+τtNNGα(ζ1η,ts)u(ζ,s)pϕ(η)dηdζds\displaystyle\quad+\int^{t}_{\tau}\int_{\mathbb{H}^{N}}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-s)u(\zeta,s)^{p}\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s
B(0,R)NGα(ζ1η,tτ)u(ζ,τ)ϕ(η)dηdζ\displaystyle\geq\int_{B(0,R)}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\zeta
+τtNNGα(ζ1η,ts)u(ζ,s)pϕ(η)dηdζds\displaystyle\quad+\int^{t}_{\tau}\int_{\mathbb{H}^{N}}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-s)u(\zeta,s)^{p}\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s

for a.a. 0<τ<t<T0<\tau<t<T and τ(0,T/2)\tau\in(0,T/2). On the other hand, since (ζ1η)1=η1ζ(\zeta^{-1}\circ\eta)^{-1}=\eta^{-1}\circ\zeta, by (2.3) we have

(3.8) B(0,R)NGα(ζ1η,tτ)u(ζ,τ)ϕ(η)dηdζ\displaystyle\int_{B(0,R)}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\zeta
=B(0,R)u(ζ,τ)NGα(η1ζ,tτ)ϕ(η)dηdζ\displaystyle=\int_{B(0,R)}u(\zeta,\tau)\int_{\mathbb{H}^{N}}G_{\alpha}(\eta^{-1}\circ\zeta,t-\tau)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\zeta
=B(0,R)[e(tτ)Λαϕ](ζ)u(τ,ζ)dζ\displaystyle=\int_{B(0,R)}[e^{(t-\tau)\Lambda_{\alpha}}\phi](\zeta)u(\tau,\zeta)\,\mathop{}\!\mathrm{d}\zeta
B(0,R)ϕ(ζ)u(τ,ζ)dζe(tτ)ΛαϕϕL(B(0,R))B(0,R)u(ζ,τ)dζ\displaystyle\geq\int_{B(0,R)}\phi(\zeta)u(\tau,\zeta)\,\mathop{}\!\mathrm{d}\zeta-\|e^{(t-\tau)\Lambda_{\alpha}}\phi-\phi\|_{L^{\infty}(B(0,R))}\int_{B(0,R)}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta
=B(0,R)ϕ(ζ)u(ζ,τ)dζe(tτ)ΛαϕϕL(B(0,R))esssupτ(0,T/2)B(0,R)u(ζ,τ)dζ\displaystyle=\int_{B(0,R)}\phi(\zeta)u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta-\|e^{(t-\tau)\Lambda_{\alpha}}\phi-\phi\|_{L^{\infty}(B(0,R))}\operatorname*{ess\sup}_{\tau\in(0,T/2)}\int_{B(0,R)}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta

for a.a. 0<τ<t<T0<\tau<t<T and τ(0,T/2)\tau\in(0,T/2). This, in combination with (3.6) and Lemma 2.7, yields

essliminfτ0+B(0,R)NGα(ζ1η,tτ)u(ζ,τ)ϕ(η)dηdζ\displaystyle\operatorname*{ess\,liminf}_{\tau\to 0^{+}}\int_{B(0,R)}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\zeta
Nϕ(ζ)dν(ζ)CetΛαϕϕL(B(0,R))\displaystyle\geq\int_{\mathbb{H}^{N}}\phi(\zeta)\,\mathop{}\!\mathrm{d}\nu(\zeta)-C\|e^{t\Lambda_{\alpha}}\phi-\phi\|_{L^{\infty}(B(0,R))}

for some C>0C>0 and a.a. 0<t<T0<t<T. Taking this, (3.7) and (3.8) into account, we obtain

Nu(η,t)ϕ(η)dη\displaystyle\int_{\mathbb{H}^{N}}u(\eta,t)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta Nϕ(ζ)dν(ζ)CetΛαϕϕL(B(0,R))\displaystyle\geq\int_{\mathbb{H}^{N}}\phi(\zeta)\,\mathop{}\!\mathrm{d}\nu(\zeta)-C\|e^{t\Lambda_{\alpha}}\phi-\phi\|_{L^{\infty}(B(0,R))}
+0tNNGα(ζ1η,ts)u(ζ,s)pϕ(η)dηdζds\displaystyle\quad+\int_{0}^{t}\int_{\mathbb{H}^{N}}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-s)u(\zeta,s)^{p}\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s

for a.a. 0<t<T0<t<T. By invoking (3.6) and Lemma 2.7,

esslimt0+0tNNGα(ζ1η,ts)u(ζ,s)pϕ(η)dηdζds=0.\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{0}^{t}\int_{\mathbb{H}^{N}}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-s)u(\zeta,s)^{p}\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s=0.

This, together with (1.10), implies that

esslimt0+Nu(η,t)ϕ(η)dη\displaystyle\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{H}^{N}}u(\eta,t)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta
=esslimt0+NNGα(ζ1η,t)ϕ(η)dηdμ(ζ)\displaystyle=\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{H}^{N}}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\mu(\zeta)
=esslimt0+NNGα(η1ζ,t)ϕ(η)dηdμ(ζ)\displaystyle=\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{H}^{N}}\int_{\mathbb{H}^{N}}G_{\alpha}(\eta^{-1}\circ\zeta,t)\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\mu(\zeta)
=esslimt0+N[etΛαϕ](ζ)dμ(ζ)\displaystyle=\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{H}^{N}}[e^{t\Lambda_{\alpha}}\phi](\zeta)\,\mathop{}\!\mathrm{d}\mu(\zeta)
=esslimt0+N([etΛαϕ](ζ)ϕ(ζ))dμ(ζ)+Nϕ(ζ)dμ(ζ).\displaystyle=\operatorname*{ess\,lim}_{t\to 0^{+}}\int_{\mathbb{H}^{N}}\left([e^{t\Lambda_{\alpha}}\phi](\zeta)-\phi(\zeta)\right)\,\mathop{}\!\mathrm{d}\mu(\zeta)+\int_{\mathbb{H}^{N}}\phi(\zeta)\,\mathop{}\!\mathrm{d}\mu(\zeta).

Hence, it suffices to prove the following

limt0+N([etΛαϕ](ζ)ϕ(ζ))dμ(ζ)=0.\lim_{t\to 0^{+}}\int_{\mathbb{H}^{N}}([e^{t\Lambda_{\alpha}}\phi](\zeta)-\phi(\zeta))\,\mathop{}\!\mathrm{d}\mu(\zeta)=0.

We consider two cases: α(0,2)\alpha\in(0,2) and α=2\alpha=2.

Case 1: α(0,2)\alpha\in(0,2). In this case, by using (1.8),

(ζ)\displaystyle(\zeta) B(0,R)1tQ/α(1+𝖽(ζ,ξ)t1/α)Qαϕ(ξ)dξ\displaystyle\lesssim\int_{B(0,R)}\frac{1}{t^{Q/\alpha}}\left(1+\frac{\mathsf{d}_{\mathbb{H}}(\zeta,\xi)}{t^{1/\alpha}}\right)^{-Q-\alpha}\phi(\xi)\,\mathop{}\!\mathrm{d}\xi
RQt(t1α+|ζ|N)QαϕL(N)\displaystyle\lesssim R^{Q}t(t^{\frac{1}{\alpha}}+|\zeta|_{\mathbb{H}^{N}})^{-Q-\alpha}\|\phi\|_{L^{\infty}(\mathbb{H}^{N})}
RQT|ζ|NQαϕL(N)\displaystyle\lesssim R^{Q}T|\zeta|_{\mathbb{H}^{N}}^{-Q-\alpha}\|\phi\|_{L^{\infty}(\mathbb{H}^{N})}
RQTϕL(N)(1+|ζ|N)Qα\displaystyle\lesssim R^{Q}T\|\phi\|_{L^{\infty}(\mathbb{H}^{N})}(1+|\zeta|_{\mathbb{H}^{N}})^{-Q-\alpha}

for ζN\B(0,2R)\zeta\in\mathbb{H}^{N}\backslash B(0,2R) and 0<tT/20<t\leq T/2. This, together with the fact etΛαϕL(N)ϕL(N)\|e^{t\Lambda_{\alpha}}\phi\|_{L^{\infty}(\mathbb{H}^{N})}\leq\|\phi\|_{L^{\infty}(\mathbb{H}^{N})} (see Lemma 2.5), implies

[etΛαϕ](ζ)C(R,T)ϕL(N)(1+|ζ|N)Qα[e^{t\Lambda_{\alpha}}\phi](\zeta)\leq C(R,T)\|\phi\|_{L^{\infty}(\mathbb{H}^{N})}(1+|\zeta|_{\mathbb{H}^{N}})^{-Q-\alpha}

for all ζN\zeta\in\mathbb{H}^{N} and 0<tT/20<t\leq T/2.

On the other hand, for ζN\zeta\in\mathbb{H}^{N} and s(T/4,T/2)s\in(T/4,T/2), by (1.8),

B(0,T1α)Gα(ζ1η,s)dη\displaystyle\int_{B(0,T^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,s)\,\mathop{}\!\mathrm{d}\eta B(0,T1α)1sQ/α(1+𝖽(η,ζ)s1/α)Qαdη\displaystyle\gtrsim\int_{B(0,T^{\frac{1}{\alpha}})}\frac{1}{s^{Q/\alpha}}\left(1+\frac{\mathsf{d}_{\mathbb{H}}(\eta,\zeta)}{s^{1/\alpha}}\right)^{-Q-\alpha}\,\mathop{}\!\mathrm{d}\eta
B(0,T1α)1sQ/α(1+|ζ|Ns1/α)Qαdη\displaystyle\simeq\int_{B(0,T^{\frac{1}{\alpha}})}\frac{1}{s^{Q/\alpha}}\left(1+\frac{|\zeta|_{\mathbb{H}^{N}}}{s^{1/\alpha}}\right)^{-Q-\alpha}\,\mathop{}\!\mathrm{d}\eta
C(T)(1+|ζ|N)Qα.\displaystyle\geq C(T)(1+|\zeta|_{\mathbb{H}^{N}})^{-Q-\alpha}.

Therefore, for s(T/4,T/2)s\in(T/4,T/2), by Lemma 3.1 we have

N(1+|ζ|N)Qαdμ(ζ)\displaystyle\int_{\mathbb{H}^{N}}(1+|\zeta|_{\mathbb{H}^{N}})^{-Q-\alpha}\,\mathop{}\!\mathrm{d}\mu(\zeta) NB(0,T1α)Gα(ζ1η,s)dηdμ(ζ)\displaystyle\lesssim\int_{\mathbb{H}^{N}}\int_{B(0,T^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,s)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\mu(\zeta)
B(0,T1α)[esΛαμ](η)dη\displaystyle\lesssim\int_{B(0,T^{\frac{1}{\alpha}})}[e^{s\Lambda_{\alpha}}\mu](\eta)\,\mathop{}\!\mathrm{d}\eta
sups(T/4,T/2)B(0,T1α)u(η,s)dη<+.\displaystyle\lesssim\sup_{s\in(T/4,T/2)}\int_{B(0,T^{\frac{1}{\alpha}})}u(\eta,s)\,\mathop{}\!\mathrm{d}\eta<+\infty.

This, in combination with Lemma 2.7 and the Lebesgue Domination theorem, implies that

limt0+N([etΛαϕ](ζ)ϕ(ζ))dμ(ζ)=0\lim_{t\to 0^{+}}\int_{\mathbb{H}^{N}}([e^{t\Lambda_{\alpha}}\phi](\zeta)-\phi(\zeta))\,\mathop{}\!\mathrm{d}\mu(\zeta)=0

as desired and hence this completes the proof for the case α(0,2)\alpha\in(0,2).

Case 2: α=2\alpha=2. The proof of this case has the same spirit as that of the case α(0,2)\alpha\in(0,2). Since ττQ/2exp(τ/(2c2))\tau\mapsto\tau^{Q/2}\exp(-\tau/(2c_{2})) is bounded on (0,)(0,\infty), it follows from (1.8) that,

[etΛαϕ](ζ)\displaystyle[e^{t\Lambda_{\alpha}}\phi](\zeta)
C2B(0,R)1tQ/2exp(𝖽(ζ,ξ)2c2t)ϕ(ξ)dξ\displaystyle\leq C_{2}\int_{B(0,R)}\frac{1}{t^{Q/2}}\exp\left(-\frac{\mathsf{d}_{\mathbb{H}}(\zeta,\xi)^{2}}{c_{2}t}\right)\phi(\xi)\,\mathop{}\!\mathrm{d}\xi
=C2B(0,R)[𝖽(ζ,ξ)QtQ/2exp(𝖽(ζ,ξ)22c2t)]1𝖽(ζ,ξ)Qexp(𝖽(ζ,ξ)22c2t)ϕ(ξ)dξ\displaystyle=C_{2}\int_{B(0,R)}\left[\frac{\mathsf{d}_{\mathbb{H}}(\zeta,\xi)^{Q}}{t^{Q/2}}\exp\left(-\frac{\mathsf{d}_{\mathbb{H}}(\zeta,\xi)^{2}}{2c_{2}t}\right)\right]\frac{1}{\mathsf{d}_{\mathbb{H}}(\zeta,\xi)^{Q}}\exp\left(-\frac{\mathsf{d}_{\mathbb{H}}(\zeta,\xi)^{2}}{2c_{2}t}\right)\phi(\xi)\,\mathop{}\!\mathrm{d}\xi
RQB(0,R)exp(𝖽(ζ,ξ)22c2t)ϕ(ξ)dξ\displaystyle\lesssim R^{-Q}\int_{B(0,R)}\exp\left(-\frac{\mathsf{d}_{\mathbb{H}}(\zeta,\xi)^{2}}{2c_{2}t}\right)\phi(\xi)\,\mathop{}\!\mathrm{d}\xi
exp(|ζ|N22c2t)ϕL(N)exp(8|ζ|N2c1T)ϕL(N)\displaystyle\lesssim\exp\left(-\frac{|\zeta|_{\mathbb{H}^{N}}^{2}}{2c_{2}t}\right)\|\phi\|_{L^{\infty}(\mathbb{H}^{N})}\leq\exp\left(-\frac{8|\zeta|_{\mathbb{H}^{N}}^{2}}{c_{1}T}\right)\|\phi\|_{L^{\infty}(\mathbb{H}^{N})}

for ζN\B(0,2R)\zeta\in\mathbb{H}^{N}\backslash B(0,2R) and 0<tc1T/(16c2)0<t\leq{c_{1}T/(16c_{2})}. This together with the fact etΛαηL(N)CηL(N)\|e^{t\Lambda_{\alpha}}\eta\|_{L^{\infty}(\mathbb{H}^{N})}\leq C\|\eta\|_{L^{\infty}(\mathbb{H}^{N})} (see Lemma 2.5), implies

[etΛαϕ](ζ)C(R,T)ϕL(N)exp(8|ζ|N2c1T)[e^{t\Lambda_{\alpha}}\phi](\zeta)\leq C(R,T)\|\phi\|_{L^{\infty}(\mathbb{H}^{N})}\exp\left(-\frac{8|\zeta|_{\mathbb{H}^{N}}^{2}}{c_{1}T}\right)

for all ζN\zeta\in\mathbb{H}^{N} and 0<tc1T/(16c2)0<t\leq{c_{1}T/(16c_{2})}. On the other hand, for ζN\zeta\in\mathbb{H}^{N} and s(T/4,T/2)s\in(T/4,T/2), by (1.8),

B(0,T1α)Gα(ζ1η,s)dη\displaystyle\int_{B(0,T^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,s)\,\mathop{}\!\mathrm{d}\eta CB(0,T1α)1sQ/αexp(𝖽(η,ζ)2c1s)dη\displaystyle\geq C\int_{B(0,T^{\frac{1}{\alpha}})}\frac{1}{s^{Q/\alpha}}\exp\left(-\frac{\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{2}}{c_{1}s}\right)\,\mathop{}\!\mathrm{d}\eta
CB(0,T1α)1sQ/αexp(2|ζ|N2c1s)dη\displaystyle\geq C\int_{B(0,T^{\frac{1}{\alpha}})}\frac{1}{s^{Q/\alpha}}\exp\Big{(}-\frac{2|\zeta|_{\mathbb{H}^{N}}^{2}}{c_{1}s}\Big{)}\mathop{}\!\mathrm{d}\eta
Cexp(2|ζ|N2c1s)Cexp(8|ζ|N2c1T).\displaystyle\geq C\exp\Big{(}-\frac{2|\zeta|_{\mathbb{H}^{N}}^{2}}{c_{1}s}\Big{)}\geq C\exp\Big{(}-\frac{8|\zeta|_{\mathbb{H}^{N}}^{2}}{c_{1}T}\Big{)}.

Therefore, for s(T/4,T/2)s\in(T/4,T/2), by Lemma 3.1 we have

Nexp(8|ζ|N2c1T)dμ(ζ)\displaystyle\int_{\mathbb{H}^{N}}\exp\Big{(}-\frac{8|\zeta|_{\mathbb{H}^{N}}^{2}}{c_{1}T}\Big{)}\,\mathop{}\!\mathrm{d}\mu(\zeta) NB(0,T1α)Gα(ζ1η,s)dηdμ(ζ)\displaystyle\lesssim\int_{\mathbb{H}^{N}}\int_{B(0,T^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,s)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}\mu(\zeta)
=B(0,T1α)[esΛαμ](η)dη\displaystyle=\int_{B(0,T^{\frac{1}{\alpha}})}[e^{s\Lambda_{\alpha}}\mu](\eta)\,\mathop{}\!\mathrm{d}\eta
sups(T/4,T/2)B(0,T1α)u(η,s)dη<+.\displaystyle\lesssim\sup_{s\in(T/4,T/2)}\int_{B(0,T^{\frac{1}{\alpha}})}u(\eta,s)\,\mathop{}\!\mathrm{d}\eta<+\infty.

This, in combination with Lemma 2.7 and the Lebesgue Domination theorem, implies that

limt0N([etΛαϕ](ζ)ϕ(ζ))dμ(ζ)=0.\lim_{t\to 0}\int_{\mathbb{H}^{N}}([e^{t\Lambda_{\alpha}}\phi](\zeta)-\phi(\zeta))\,\mathop{}\!\mathrm{d}\mu(\zeta)=0.

This completes the proof for the case α=2\alpha=2. The proof is complete. ∎

4. Necessary conditions for the solvability.

In this section we prove assertions (i)–(iii) in Theorem A and complete the proof of Theorem A. Furthermore, we also prove Theorem B. The proof of Theorem A is quite long and will be divided into two cases: α(0,2)\alpha\in(0,2) and α=2\alpha=2.


The case α(0,2)\alpha\in(0,2)

Lemma 4.1.

Let N1N\geq 1, α(0,2)\alpha\in(0,2), and p>1p>1. Let uu be a solution of (1.1) in N×(0,T)\mathbb{H}^{N}\times(0,T), where T(0,)T\in(0,\infty). Then there exist positive constants CC and δ(0,1)\delta\in(0,1) depending only on NN, α\alpha and pp such that

supξNB(ξ,ρ)u(ζ,τ)dζ{C[log(e+T1/αρ)]Qαifp=pα,Q,CρQαp1ifppα,Q,\sup_{\xi\in\mathbb{H}^{N}}\int_{B(\xi,\rho)}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta\leq\left\{\begin{array}[]{ll}\displaystyle{C\left[\log\left(e+\frac{T^{1/\alpha}}{\rho}\right)\right]^{-\frac{Q}{\alpha}}}&\mbox{if}\quad p=p_{\alpha,Q},\vspace{3pt}\\ C\rho^{Q-\frac{\alpha}{p-1}}&\mbox{if}\quad p\neq p_{\alpha,Q},\vspace{3pt}\\ \end{array}\right.

for all ρ>0\rho>0 with 0<ρα<δT0<\rho^{\alpha}<\delta T and for a.a. τ(0,ρα)\tau\in(0,\rho^{\alpha}).

Proof.

Let δ>0\delta>0 be sufficiently small. Let

(4.1) 0<ρ<(δT)1α.0<\rho<(\delta T)^{\frac{1}{\alpha}}.

We set v(η,t):=u(η,t+(2ρ)α)v(\eta,t):=u(\eta,t+(2\rho)^{\alpha}) for a.a. ηN\eta\in\mathbb{H}^{N} and t(0,T(2ρ)α)t\in(0,T-(2\rho)^{\alpha}). Then it follows from (1.9) that

(4.2) >v(t,η)=NGα(ζ1η,tτ)v(τ,ζ)dζ+τtNGα(ζ1η,ts)v(s,ζ)pdζds\begin{split}\infty>v(t,\eta)&=\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)v(\tau,\zeta)\,\mathop{}\!\mathrm{d}\zeta+\int_{\tau}^{t}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-s)v(s,\zeta)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s\end{split}

for a.a. ηN\eta\in\mathbb{H}^{N} and 0<τ<t<T(2ρ)α0<\tau<t<T-(2\rho)^{\alpha}. We shall show that

(4.3) NGα(ζ1ξ,τ)v(ζ,τ)dζ<\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\xi,\tau)v(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta<\infty

for a.a. ξN\xi\in\mathbb{H}^{N} and τ(0,[T(2ρ)α]/3)\tau\in(0,[T-(2\rho)^{\alpha}]/3). From (1.8),

Gα(ζ1η,τ)Gα(ζ1ξ,τ)G_{\alpha}(\zeta^{-1}\circ\eta,\tau)\gtrsim G_{\alpha}(\zeta^{-1}\circ\xi,\tau)

for all 𝖽(η,ξ)<τ1/α\mathsf{d}_{\mathbb{H}}(\eta,\xi)<\tau^{1/\alpha}. Then, using (4.2) with t=2τt=2\tau, we have

>v(η,t)NGα(ζ1η,τ)v(ζ,τ)dζNGα(ζ1ξ,τ)v(ζ,τ)dζ\infty>v(\eta,t)\geq\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,\tau)v(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta\geq\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\xi,\tau)v(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta

for a.a. ηN\eta\in\mathbb{H}^{N} with 𝖽(η,ξ)τ1/α\mathsf{d}_{\mathbb{H}}(\eta,\xi)\leq\tau^{1/\alpha} and τ(0,[T(2ρ)α]/3)\tau\in(0,[T-(2\rho)^{\alpha}]/3). It follows (4.3). Furthermore, by (1.9), (2.5), and (4.2),

v(η,t)τtNGα(ζ1η,ts)v(ζ,s)pdζds\displaystyle v(\eta,t)-\int_{\tau}^{t}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-s)v(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s
=NGα(ζ1η,tτ)u(ζ,τ+(2ρ)α)dζ\displaystyle=\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau+(2\rho)^{\alpha})\,\mathop{}\!\mathrm{d}\zeta
NNGα(ζ1η,tτ)Gα((η)1ζ,(2ρ)α)u(η,τ)dηdζ\displaystyle\geq\int_{\mathbb{H}^{N}}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)G_{\alpha}((\eta^{\prime})^{-1}\circ\zeta,(2\rho)^{\alpha})u(\eta^{\prime},\tau)\,\mathop{}\!\mathrm{d}\eta^{\prime}\mathop{}\!\mathrm{d}\zeta
=NGα((η)1η,tτ+(2ρ)α)u(η,τ)dη,\displaystyle=\int_{\mathbb{H}^{N}}G_{\alpha}((\eta^{\prime})^{-1}\circ\eta,t-\tau+(2\rho)^{\alpha})u(\eta^{\prime},\tau)\,\mathop{}\!\mathrm{d}\eta^{\prime},

which implies for ξN\xi\in\mathbb{H}^{N},

NGα(η1ξ,t)v(η,t)dη\displaystyle\int_{\mathbb{H}^{N}}G_{\alpha}(\eta^{-1}\circ\xi,t)v(\eta,t)\,\mathop{}\!\mathrm{d}\eta NGα((η)1ξ,2tτ+(2ρ)α)u(η,τ)dη\displaystyle\geq\int_{\mathbb{H}^{N}}G_{\alpha}((\eta^{\prime})^{-1}\circ\xi,2t-\tau+(2\rho)^{\alpha})u(\eta^{\prime},\tau)\,\mathop{}\!\mathrm{d}\eta^{\prime}
+τtNGα(ζ1ξ,2ts)v(ζ,s)pdζds\displaystyle+\int_{\tau}^{t}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\xi,2t-s)v(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s
infζB(ξ,ρ)Gα(ζ1ξ,2tτ+(2ρ)α)B(ξ,ρ)u(η,τ)dη\displaystyle\geq\inf_{\zeta\in B(\xi,\rho)}G_{\alpha}(\zeta^{-1}\circ\xi,2t-\tau+(2\rho)^{\alpha})\int_{B(\xi,\rho)}u(\eta^{\prime},\tau)\,\mathop{}\!\mathrm{d}\eta^{\prime}
ραtNGα(ζ1ξ,2ts)v(ζ,s)pdζds\displaystyle\int_{\rho^{\alpha}}^{t}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\xi,2t-s)v(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s

for a.a. 0<τ<ρα<t<[T(2ρ)α]/30<\tau<\rho^{\alpha}<t<[T-(2\rho)^{\alpha}]/3 and ξN\xi\in\mathbb{H}^{N}. From (1.8),

infζB(ξ,ρ)Gα(ζ1ξ,2tτ+(2ρ)α)c0(2tτ+(2ρ)α)Qα\inf_{\zeta\in B(\xi,\rho)}G_{\alpha}(\zeta^{-1}\circ\xi,2t-\tau+(2\rho)^{\alpha})\geq c_{0}(2t-\tau+(2\rho)^{\alpha})^{-\frac{Q}{\alpha}}

and

Gα(ζ1ξ,2ts)1tQ/αgα(𝖽(ξ,ζ)(2ts)1/α)\displaystyle G_{\alpha}(\zeta^{-1}\circ\xi,2t-s)\simeq\frac{1}{t^{Q/\alpha}}g_{\alpha}\left(\frac{\mathsf{d}_{\mathbb{H}}(\xi,\zeta)}{(2t-s)^{1/\alpha}}\right) C2(s2t)Qα1sQ/αgα(𝖽(ξ,ζ)c2s1/α)\displaystyle\gtrsim C_{2}\left(\frac{s}{2t}\right)^{\frac{Q}{\alpha}}\frac{1}{s^{Q/\alpha}}g_{\alpha}\left(\frac{\mathsf{d}_{\mathbb{H}}(\xi,\zeta)}{c_{2}s^{1/\alpha}}\right)
(s2t)QαGα(ζ1ξ,s)\displaystyle\geq\left(\frac{s}{2t}\right)^{\frac{Q}{\alpha}}G_{\alpha}(\zeta^{-1}\circ\xi,s)

for 0<s<t0<s<t. This, in combination with (2.6) and Jensen’s inequality, further implies

NGα(η1ξ,t)v(η,t)dη\displaystyle\int_{\mathbb{H}^{N}}G_{\alpha}(\eta^{-1}\circ\xi,t)v(\eta,t)\,\mathop{}\!\mathrm{d}\eta (2tτ+(2ρ)α)QαB(ξ,ρ)u(η,τ)dη\displaystyle\gtrsim(2t-\tau+(2\rho)^{\alpha})^{-\frac{Q}{\alpha}}\int_{B(\xi,\rho)}u(\eta^{\prime},\tau)\,\mathop{}\!\mathrm{d}\eta^{\prime}
+ραt(s2t)QαNGα(ζ1ξ,s)v(ζ,s)pdζds\displaystyle+\int_{\rho^{\alpha}}^{t}\left(\frac{s}{2t}\right)^{\frac{Q}{\alpha}}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\xi,s)v(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s
tQαB(ξ,ρ)u(η,τ)dη\displaystyle\gtrsim t^{-\frac{Q}{\alpha}}\int_{B(\xi,\rho)}u(\eta^{\prime},\tau)\,\mathop{}\!\mathrm{d}\eta^{\prime}
+ραt(s2t)Qα[NGα(ζ1ξ,s)v(ζ,s)dζ]pds\displaystyle+\int_{\rho^{\alpha}}^{t}\left(\frac{s}{2t}\right)^{\frac{Q}{\alpha}}\left[\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\xi,s)v(\zeta,s)\,\mathop{}\!\mathrm{d}\zeta\right]^{p}\,\mathop{}\!\mathrm{d}s

for a.a. ξN\xi\in\mathbb{H}^{N} and 0<τ<ρα<t<[T(2ρ)α]/30<\tau<\rho^{\alpha}<t<[T-(2\rho)^{\alpha}]/3.

We now set

m(t):=tQαNGα(η1ξ,t)v(η,t)dη,M(τ):=B(ξ,ρ)u(ζ,τ)dζ.m(t):=t^{\frac{Q}{\alpha}}\int_{\mathbb{H}^{N}}G_{\alpha}(\eta^{-1}\circ\xi,t)v(\eta,t)\,\mathop{}\!\mathrm{d}\eta,\quad M(\tau):=\int_{B(\xi,\rho)}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta.

Then we can rewrite the above inequality as

>m(t)\displaystyle\infty>m(t) CM(τ)+CραtsQα(p1)m(s)pds\displaystyle\geq CM(\tau)+C\int_{\rho^{\alpha}}^{t}s^{-\frac{Q}{\alpha}(p-1)}m(s)^{p}\,\mathop{}\!\mathrm{d}s

for a.a. 0<τ<ρα<t<[T(2ρ)α]/30<\tau<\rho^{\alpha}<t<[T-(2\rho)^{\alpha}]/3.

In the case of p=pα,Qp=p_{\alpha,Q}, note that Q(p1)/α=1Q(p-1)/\alpha=1. It follows from Lemma 2.10 with t=ραt_{*}=\rho^{\alpha} that

M(τ)=B(ξ,ρ)u(ζ,τ)dζC[log(T2ρα)]QαC[log(e+Tρα)]Qα\begin{split}M(\tau)=\int_{B(\xi,\rho)}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta\leq C\left[\log\left(\frac{T}{2\rho^{\alpha}}\right)\right]^{-\frac{Q}{\alpha}}\leq C\left[\log\left(e+\frac{T}{\rho^{\alpha}}\right)\right]^{-\frac{Q}{\alpha}}\end{split}

for all 0<ρα<δT0<\rho^{\alpha}<\delta T and a.a. 0<τ<ρα0<\tau<\rho^{\alpha}. In the case of ppα,Qp\neq p_{\alpha,Q}, similarly we have

M(τ)=B(ξ,ρ)u(ζ,τ)dζCρQαp1\begin{split}M(\tau)=\int_{B(\xi,\rho)}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta\leq C\rho^{Q-\frac{\alpha}{p-1}}\end{split}

for all 0<ρα<δT0<\rho^{\alpha}<\delta T and a.a. 0<τ<ρα0<\tau<\rho^{\alpha}. This completes our proof. ∎

Proof of Theorem A in the case of α(0,2)\alpha\in(0,2).

By Lemma 3.1 we can find a unique Radon measure ν\nu satisfying (3.2). Let ξN\xi\in\mathbb{H}^{N} and ψCc(N)\psi\in C_{c}(\mathbb{H}^{N}) be such that

ψ=1inB(ξ,ρ/2),0ψ1inN,ψ=0inNB(ξ,ρ).\psi=1\,\,\mbox{in}\,\,B(\xi,\rho/2),\quad 0\leq\psi\leq 1\,\,\mbox{in}\,\,\mathbb{H}^{N},\quad\psi=0\,\,\mbox{in}\,\,\mathbb{H}^{N}\setminus B(\xi,\rho).

By Lemma 3.1 there exists a unique nonnegative Radon measure ν\nu on N\mathbb{H}^{N} such that

esslimτ0+B(ξ,ρ)u(ζ,τ)dζesslimτ0+B(ξ,ρ)u(τ,ζ)ψ(ζ)dζ=Nψ(ζ)dν(ζ)ν(B(ξ,ρ/2))\begin{split}\operatorname*{ess\,lim}_{\tau\to 0^{+}}\int_{B(\xi,\rho)}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta&\geq\operatorname*{ess\,lim}_{\tau\to 0^{+}}\int_{B(\xi,\rho)}u(\tau,\zeta)\psi(\zeta)\,\mathop{}\!\mathrm{d}\zeta\\ &=\int_{\mathbb{H}^{N}}\psi(\zeta)\,\mathop{}\!\mathrm{d}\nu(\zeta)\geq\nu(B(\xi,\rho/2))\end{split}

for all ξN\xi\in\mathbb{H}^{N} and 0<ρ<(θT)1/α0<\rho<(\theta T)^{1/\alpha}, where θ>0\theta>0 is as in (4.1). This, together with Lemma 4.1, implies that

supξNν(B(ξ,ρ/2)){C[log(e+T1/αρ)]Qαifp=pα,Q,CρQαp1ifppα,Q,\sup_{\xi\in\mathbb{H}^{N}}\nu(B(\xi,\rho/2))\leq\left\{\begin{array}[]{ll}\displaystyle{C\left[\log\left(e+\frac{T^{1/\alpha}}{\rho}\right)\right]^{-\frac{Q}{\alpha}}}&\mbox{if}\quad p=p_{\alpha,Q},\vspace{3pt}\\ C\rho^{Q-\frac{\alpha}{p-1}}&\mbox{if}\quad p\neq p_{\alpha,Q},\vspace{3pt}\\ \end{array}\right.

for all 0<ρ<(θT)1/α0<\rho<(\theta T)^{1/\alpha}.

Setting σ:=θ1/αρ\sigma:=\theta^{-1/\alpha}\rho, then by Lemma 2.2 (a) we see that there exist a positive integer mm depending only on NN, α\alpha, and p>1p>1 and {ξj}j=1m\{\xi_{j}\}_{j=1}^{m} such that

B(ξ,σ)j=1mB(ξj,ρ/2).B(\xi,\sigma)\subset\bigcup_{j=1}^{m}B(\xi_{j},\rho/2).

This implies that

supξNν(B(ξ,σ))msupξNν(B(ξ,ρ/2)){Cm[log(e+T1/αρ)]Qαifp=pα,Q,CmρQαp1ifppα,Q,\begin{split}\sup_{\xi\in\mathbb{H}^{N}}\nu(B(\xi,\sigma))&\leq m\sup_{\xi\in\mathbb{H}^{N}}\nu(B(\xi,\rho/2))\\ &\leq\left\{\begin{array}[]{ll}\displaystyle{Cm\left[\log\left(e+\frac{T^{1/\alpha}}{\rho}\right)\right]^{-\frac{Q}{\alpha}}}&\mbox{if}\quad p=p_{\alpha,Q},\vspace{3pt}\\ Cm\rho^{Q-\frac{\alpha}{p-1}}&\mbox{if}\quad p\neq p_{\alpha,Q},\vspace{3pt}\\ \end{array}\right.\end{split}

By the definition of σ\sigma, we obtain

supξNν(B(ξ,σ)){C[log(e+T1/ασ)]Qαifp=pα,Q,CσQαp1ifppα,Q,\sup_{\xi\in\mathbb{H}^{N}}\nu(B(\xi,\sigma))\leq\left\{\begin{array}[]{ll}\displaystyle{C\left[\log\left(e+\frac{T^{1/\alpha}}{\sigma}\right)\right]^{-\frac{Q}{\alpha}}}&\mbox{if}\quad p=p_{\alpha,Q},\vspace{3pt}\\ C\sigma^{Q-\frac{\alpha}{p-1}}&\mbox{if}\quad p\neq p_{\alpha,Q},\vspace{3pt}\\ \end{array}\right.

for all 0<σ<T1/α0<\sigma<T^{1/\alpha}. This is the desired inequality. Thus, Theorem A in the case of α(0,2)\alpha\in(0,2) follows. ∎


The case α=2\alpha=2 In this case, we consider solutions of problem (1.1) with (1.2) in the following weak framework.

Definition 4.1.

Let uu be a nonnegative measurable function in N×(0,T)\mathbb{H}^{N}\times(0,T), where T(0,)T\in(0,\infty). We say that uu is a weak solution of problem (1.1) in N×[0,T)\mathbb{H}^{N}\times[0,T) if uLlocp(N×[0,T))u\in L^{p}_{\rm loc}(\mathbb{H}^{N}\times[0,T)) and uu satisfies

(4.4) 0TNu(η,t)pφ(η,t)dηdt+Nφ(η,0)dμ(η)=0TNu(η,t)(tΔ)φ(η,t)dηdt\begin{split}&\int_{0}^{T}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t+\int_{\mathbb{H}^{N}}\varphi(\eta,0)\,\mathop{}\!\mathrm{d}\mu(\eta)\\ &\qquad\qquad\qquad\qquad=\int_{0}^{T}\int_{\mathbb{H}^{N}}u(\eta,t)(-\partial_{t}-\Delta_{\mathbb{H}})\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\end{split}

for all φC02,1(N×[0,T))\varphi\in C^{2,1}_{0}(\mathbb{H}^{N}\times[0,T)). If uu satisfies (4.4) with == replaced by \leq, then uu is said to be a weak supersolution.

Lemma 4.2.

Let uu be a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T), where T(0,)T\in(0,\infty). Then uu is also a weak solution.

Proof.

Assume that problem (1.1) with (1.2) possesses a solution in N×(0,T)\mathbb{H}^{N}\times(0,T), where T(0,)T\in(0,\infty).

We shall prove that uLlocp([0,T)×N)u\in L^{p}_{\rm loc}([0,T)\times\mathbb{H}^{N}). Let ϵ(0,T/2)\epsilon\in(0,T/2). By (1.8) and (1.9) we find t(Tϵ,T)t\in(T-\epsilon,T) such that

>u(η,t)0T2ϵNG(ζ1η,ts)u(ζ,s)pdηdsC10T2ϵN(ts)Qαexp(𝖽(η,ζ)2c1(ts))u(ζ,s)pdζdsC1TN20T2ϵNexp(c1𝖽(η,ζ)2c1ϵ)u(ζ,s)pdζds\begin{split}\infty&>u(\eta,t)\geq\int_{0}^{T-2\epsilon}\int_{\mathbb{H}^{N}}G(\zeta^{-1}\circ\eta,t-s)u(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}s\\ &\geq C_{1}\int_{0}^{T-2\epsilon}\int_{\mathbb{H}^{N}}(t-s)^{-\frac{Q}{\alpha}}\exp\left(-\frac{\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{2}}{c_{1}(t-s)}\right)u(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s\\ &\geq C_{1}T^{-\frac{N}{2}}\int_{0}^{T-2\epsilon}\int_{\mathbb{H}^{N}}\exp\left(-\frac{c_{1}\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{2}}{c_{1}\epsilon}\right)u(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s\end{split}

for a.a. ηN\eta\in{\mathbb{H}^{N}}. Since ϵ(0,T/2)\epsilon\in(0,T/2) is arbitrary, we see that uLlocp(N×[0,T))u\in L_{\rm loc}^{p}(\mathbb{H}^{N}\times[0,T)).

Let φC0(N×[0,T))\varphi\in C^{\infty}_{0}(\mathbb{H}^{N}\times[0,T)). By the integral by parts and (2.7) we have

Nφ(ζ,0)dμ(ζ)=N(0TN(tΔ)G(ζ1η,t)φ(η,t)dηdt+φ(ζ,0))dμ(ζ)=N0TNG(ζ1η,t)(tΔ)φ(η,t)dηdtdμ(ζ)=0TN(NG(ζ1η,t)dμ(ζ))(tΔ)φ(η,t)dηdt=0TN(tΔ)φ(η,t)dηdt.\begin{split}&\int_{\mathbb{H}^{N}}\varphi(\zeta,0)\,\mathop{}\!\mathrm{d}\mu(\zeta)\\ &=\int_{\mathbb{H}^{N}}\left(\int_{0}^{T}\int_{\mathbb{H}^{N}}(\partial_{t}-\Delta_{\mathbb{H}})G(\zeta^{-1}\circ\eta,t)\cdot\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t+\varphi(\zeta,0)\right)\,\mathop{}\!\mathrm{d}\mu(\zeta)\\ &=\int_{\mathbb{H}^{N}}\int_{0}^{T}\int_{\mathbb{H}^{N}}G(\zeta^{-1}\circ\eta,t)(-\partial_{t}-\Delta_{\mathbb{H}})\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\mathop{}\!\mathrm{d}\mu(\zeta)\\ &=\int_{0}^{T}\int_{\mathbb{H}^{N}}\left(\int_{\mathbb{H}^{N}}G(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\mu(\zeta)\right)(-\partial_{t}-\Delta_{\mathbb{H}})\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\\ &=\int_{0}^{T}\int_{\mathbb{H}^{N}}(-\partial_{t}-\Delta_{\mathbb{H}})\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t.\end{split}

Similarly, we have

0TNφ(ζ,s)u(ζ,s)pdζds=0TN(sTN(tΔ)G(ζ1η,ts)φ(η,t)dηdt+φ(ζ,s))u(ζ,s)pdζds=0TN(sTNG(ζ1η,ts)(tΔ)φ(η,t)dηdt)u(ζ,s)pdζds=0TN(0TNG(ζ1η,ts)u(ζ,s)pdζds)(tΔ)φ(η,t)dηdt.\begin{split}&\int_{0}^{T}\int_{\mathbb{H}^{N}}\varphi(\zeta,s)u(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s\\ &=\int_{0}^{T}\int_{\mathbb{H}^{N}}\left(\int_{s}^{T}\int_{\mathbb{H}^{N}}(\partial_{t}-\Delta_{\mathbb{H}})G(\zeta^{-1}\circ\eta,t-s)\cdot\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t+\varphi(\zeta,s)\right)u(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s\\ &=\int_{0}^{T}\int_{\mathbb{H}^{N}}\left(\int_{s}^{T}\int_{\mathbb{H}^{N}}G(\zeta^{-1}\circ\eta,t-s)(-\partial_{t}-\Delta_{\mathbb{H}})\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\right)u(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s\\ &=\int_{0}^{T}\int_{\mathbb{H}^{N}}\left(\int_{0}^{T}\int_{\mathbb{H}^{N}}G(\zeta^{-1}\circ\eta,t-s)u(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s\right)(-\partial_{t}-\Delta_{\mathbb{H}})\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t.\end{split}

Then

0TNu(η,t)(tΔ)φ(η,t)dηdt=0TN(NG(ζ1η,t)dμ(ζ)+0TNG(ζ1η,ts)u(ζ,s)pdζds)×(tΔ)φ(η,t)dηdt=Nφ(ζ,0)dμ(ζ)+0TNφ(ζ,s)u(ζ,s)pdζds,\begin{split}&\int_{0}^{T}\int_{\mathbb{H}^{N}}u(\eta,t)(-\partial_{t}-\Delta_{\mathbb{H}})\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\\ &=\int_{0}^{T}\int_{\mathbb{H}^{N}}\left(\int_{\mathbb{H}^{N}}G(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\mu(\zeta)+\int_{0}^{T}\int_{\mathbb{H}^{N}}G(\zeta^{-1}\circ\eta,t-s)u(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s\right)\\ &\qquad\qquad\times(-\partial_{t}-\Delta_{\mathbb{H}})\varphi(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\\ &=\int_{\mathbb{H}^{N}}\varphi(\zeta,0)\,\mathop{}\!\mathrm{d}\mu(\zeta)+\int_{0}^{T}\int_{\mathbb{H}^{N}}\varphi(\zeta,s)u(\zeta,s)^{p}\,\mathop{}\!\mathrm{d}\zeta\mathop{}\!\mathrm{d}s,\end{split}

which implies (4.4). Then Lemma 4.2 follows. ∎

Proof of Theorem A in the case of α=2\alpha=2.

The proof follows the arguments in [IKO20, Theorem 1.2]. Let uu be a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T), where T(0,)T\in(0,\infty). From the proof in the case of α(0,2)\alpha\in(0,2), it is sufficient to show that initial data μ\mu satisfies assertions (i)–(iii) in Theorem A. It follows from Lemma 4.2 that uu satisfies (4.4). Let ρ(0,T/8)\rho\in(0,\sqrt{T}/8). In what follows, denote

η=(x,y,τ)Nandζ=(x,y,τ)N.\eta=(x,y,\tau)\in\mathbb{H}^{N}\quad\mbox{and}\quad\zeta=(x^{\prime},y^{\prime},\tau^{\prime})\in\mathbb{H}^{N}.

Note that

ζ1η=(xx,yy,ττ+2(xyxy)).\zeta^{-1}\circ\eta=(x-x^{\prime},y-y^{\prime},\tau-\tau^{\prime}+2(x\cdot y^{\prime}-x^{\prime}\cdot y)).

Let

f(s):=e1sifs>0,f(s)=0ifs0.f(s):=e^{-\frac{1}{s}}\quad\mbox{if}\quad s>0,\qquad f(s)=0\quad\mbox{if}\quad s\leq 0.

Set

F(s):=f(2s)f(2s)+f(s1).F(s):=\frac{f(2-s)}{f(2-s)+f(s-1)}.

Then FC([0,))F\in C^{\infty}([0,\infty)) and

F(s)=f(2s)f(s1)f(2s)f(s1)[f(2s)+f(s1)]20on[0,),F(s)=1on[0,1],F(s)=0on[2,).\begin{split}&F^{\prime}(s)=\frac{-f^{\prime}(2-s)f(s-1)-f(2-s)f^{\prime}(s-1)}{[f(2-s)+f(s-1)]^{2}}\leq 0\quad\mbox{on}\quad[0,\infty),\\ &F(s)=1\quad\mbox{on}\quad[0,1],\qquad F(s)=0\quad\mbox{on}\quad[2,\infty).\end{split}

Set

F(s):=0on[0,1),F(s):=F(s)on[1,).F^{*}(s):=0\quad\mbox{on}\quad[0,1),\qquad F^{*}(s):=F(s)\quad\mbox{on}\quad[1,\infty).

Since p>1p>1, for any kk\in\mathbb{N}, we can find Ck>0C_{k}>0 such that

(4.5) |F(k)(s)|CkF(s)1pfor alls1.|F^{(k)}(s)|\leq C_{k}F^{*}(s)^{\frac{1}{p}}\quad\mbox{for all}\quad s\geq 1.

For any R(0,T]R\in(0,T], we set

ϕR(η,t):=F(9|η|N4+t2R2),ϕR(η,t):=F(9|η|N4+t2R2),\phi_{R}(\eta,t):=F\left(9\frac{|\eta|_{\mathbb{H}^{N}}^{4}+t^{2}}{R^{2}}\right),\qquad\phi^{*}_{R}(\eta,t):=F^{*}\left(9\frac{|\eta|_{\mathbb{H}^{N}}^{4}+t^{2}}{R^{2}}\right),

and for any ζN\zeta\in\mathbb{H}^{N}, we set

ψR(η,t):=ϕR(ζ1η,t)=F(9𝖽(η,ζ)4+t2R2),ψR(η,t):=ϕR(ζ1η,t)=F(9𝖽(η,ζ)4+t2R2).\begin{split}&\psi_{R}(\eta,t):=\phi_{R}(\zeta^{-1}\circ\eta,t)=F\left(9\frac{\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{4}+t^{2}}{R^{2}}\right),\\ &\psi^{*}_{R}(\eta,t):=\phi^{*}_{R}(\zeta^{-1}\circ\eta,t)=F^{*}\left(9\frac{\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{4}+t^{2}}{R^{2}}\right).\\ \end{split}

For the simplicity of notation, set

sR(η,t):=9|η|N4+t2R2=9𝖽(η,0)4+t2R2.s_{R}(\eta,t):=9\frac{|\eta|_{\mathbb{H}^{N}}^{4}+t^{2}}{R^{2}}=9\frac{\mathsf{d}_{\mathbb{H}}(\eta,0)^{4}+t^{2}}{R^{2}}.

Note that

(4.6) ΔψR(η,t)=[ΔϕR](ζ1η,t)\Delta_{\mathbb{H}}\psi_{R}(\eta,t)=[\Delta_{\mathbb{H}}\phi_{R}](\zeta^{-1}\circ\eta,t)

for all η,ζN\eta,\zeta\in\mathbb{H}^{N} and t>0t>0. Then we shall calculate the derivatives of ϕR(η,t)\phi_{R}(\eta,t). Since suppF(sR(η,t))={(η,t)N×[0,):1sR(η,t)2}\operatorname{supp}F^{*}(s_{R}(\eta,t))=\{(\eta,t)\in\mathbb{H}^{N}\times[0,\infty):1\leq s_{R}(\eta,t)\leq 2\}, by (4.5) we may assume that there exists C>0C>0 such that t[0,)t\in[0,\infty) and η=(x,y,τ)\eta=(x,y,\tau) satisfy

(4.7) |x|CR12,|y|CR12,|τ|CR,tCR.|x|\leq CR^{\frac{1}{2}},\quad|y|\leq CR^{\frac{1}{2}},\quad|\tau|\leq CR,\quad t\leq CR.

By (4.5) and (4.7) we have

(4.8) |tϕR(η,t)|1RF(sR(η,t))1p=1RϕR(η,t)1p,|xj2ϕR(η,t)|1RF(sR(η,t))1p=1RϕR(η,t)1p,|yjxj,τ2ϕR(η,t)|1RF(sR(η,t))1p=1RϕR(η,t)1p,|xjyj,τ2ϕR(η,t)|1RF(sR(η,t))1p=1RϕR(η,t)1p,|(|x|2+|y|2)τ2ϕR(η,t)|1RF(sR(η,t))1p=1RϕR(η,t)1p.\begin{split}&|\partial_{t}\phi_{R}(\eta,t)|\lesssim\frac{1}{R}F^{*}(s_{R}(\eta,t))^{\frac{1}{p}}=\frac{1}{R}\phi_{R}^{*}(\eta,t)^{\frac{1}{p}},\\ &|\partial^{2}_{x_{j}}\phi_{R}(\eta,t)|\lesssim\frac{1}{R}F^{*}(s_{R}(\eta,t))^{\frac{1}{p}}=\frac{1}{R}\phi_{R}^{*}(\eta,t)^{\frac{1}{p}},\\ &|y_{j}\partial^{2}_{x_{j},\tau}\phi_{R}(\eta,t)|\lesssim\frac{1}{R}F^{*}(s_{R}(\eta,t))^{\frac{1}{p}}=\frac{1}{R}\phi_{R}^{*}(\eta,t)^{\frac{1}{p}},\\ &|x_{j}\partial^{2}_{y_{j},\tau}\phi_{R}(\eta,t)|\lesssim\frac{1}{R}F^{*}(s_{R}(\eta,t))^{\frac{1}{p}}=\frac{1}{R}\phi_{R}^{*}(\eta,t)^{\frac{1}{p}},\\ &|(|x|^{2}+|y|^{2})\partial^{2}_{\tau}\phi_{R}(\eta,t)|\lesssim\frac{1}{R}F^{*}(s_{R}(\eta,t))^{\frac{1}{p}}=\frac{1}{R}\phi_{R}^{*}(\eta,t)^{\frac{1}{p}}.\end{split}

By (1.3), (4.6), and (4.8) we see that

(4.9) |(tΔ)ψR(η,t)|1RψR(η,t)1p.|(-\partial_{t}-\Delta_{\mathbb{H}})\psi_{R}(\eta,t)|\lesssim\frac{1}{R}\psi_{R}^{*}(\eta,t)^{\frac{1}{p}}.

Substituting φ=ψR\varphi=\psi_{R} into (4.4), by (4.9) and Hölder’s inequality, we obtain

(4.10) 00TNu(η,t)pψR(η,t)dηdt+NψR(η,0)dμ(η)0RNu(η,t)|(tΔ)ψR(η,t)|dηdt1R0RNu(η,t)ψR(η,t)1pdηdt1R(suppψRdηdt)11p(0RNu(η,t)pψR(η,t)dηdt)1p\begin{split}0&\leq\int_{0}^{T}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\psi_{R}(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t+\int_{\mathbb{H}^{N}}\psi_{R}(\eta,0)\,\mathop{}\!\mathrm{d}\mu(\eta)\\ &\leq\int_{0}^{R}\int_{\mathbb{H}^{N}}u(\eta,t)|(-\partial_{t}-\Delta_{\mathbb{H}})\psi_{R}(\eta,t)|\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\\ &\lesssim\frac{1}{R}\int_{0}^{R}\int_{\mathbb{H}^{N}}u(\eta,t)\psi^{*}_{R}(\eta,t)^{\frac{1}{p}}\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\\ &\leq\frac{1}{R}\left(\int\int_{\operatorname{supp}\psi_{R}^{*}}\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\right)^{1-\frac{1}{p}}\left(\int_{0}^{R}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\psi_{R}^{*}(\eta,t)\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\right)^{\frac{1}{p}}\end{split}

for all R(2ρ2,T/2)R\in(2\rho^{2},T/2). On the other hand, it follows from (2.2) that

1R(suppψRdηdt)11p1R(023RB(ζ,(2/9)14R)dηdt)11pRQ2p(p1)1p,andNψR(η,0)dμ(η)μ(B(ζ,914R12))μ(B(ζ,(2/3)12ρ))=:mρ\begin{split}&\frac{1}{R}\left(\int\int_{\operatorname{supp}\psi_{R}^{*}}\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\right)^{1-\frac{1}{p}}\leq\frac{1}{R}\left(\int_{0}^{\frac{\sqrt{2}}{3}R}\int_{B(\zeta,(2/9)^{\frac{1}{4}}\sqrt{R})}\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\right)^{1-\frac{1}{p}}\lesssim R^{\frac{Q}{2p}(p-1)-\frac{1}{p}},\\ \text{and}\ \ &\int_{\mathbb{H}^{N}}\psi_{R}(\eta,0)\,\mathop{}\!\mathrm{d}\mu(\eta)\geq\mu(B(\zeta,9^{-\frac{1}{4}}R^{\frac{1}{2}}))\geq\mu(B(\zeta,(2/3)^{\frac{1}{2}}\rho))=:m_{\rho}\end{split}

for all R(2ρ2,T/2)R\in(2\rho^{2},T/2). This, together with (4.10), implies that

(4.11) mρ+0TNu(η,t)pψR(η,t)dηdtCRQ2p(p1)1p(0RNu(η,t)pψR(η,t)dηdt)1p\begin{split}&m_{\rho}+\int_{0}^{T}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\psi_{R}(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\leq CR^{\frac{Q}{2p}(p-1)-\frac{1}{p}}\left(\int_{0}^{R}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\psi_{R}^{*}(\eta,t)\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\right)^{\frac{1}{p}}\end{split}

for all R(2ρ2,T/2)R\in(2\rho^{2},T/2). Let ϵ>0\epsilon>0 be a sufficiently small positive constant. For any R(2ρ2,T/2)R\in(2\rho^{2},T/2), set

(4.12) z(r):=0RNu(η,t)pψr(η,t)dηdt,Z(R):=0Rz(r)min{r1,ϵ1}dr.\begin{split}&z(r):=\int_{0}^{R}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\psi_{r}^{*}(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t,\\ &Z(R):=\int_{0}^{R}z(r)\min\{r^{-1},\epsilon^{-1}\}\mathop{}\!\mathrm{d}r.\end{split}

Since FF^{*} is decreasing on [1,)[1,\infty) and suppξ[1,2]\operatorname{supp}\xi^{*}\subset[1,2], for any (η,t)N×(0,T)(\eta,t)\in\mathbb{H}^{N}\times(0,T) with 9(𝖽(η,ζ)4+t2)R29(\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{4}+t^{2})\geq R^{2}, we have

(4.13) 0Rψr(η,t)min{r1,ϵ1}dr=0RF(9𝖽(η,ζ)4+t2R2)r1dr=129(𝖽(η,ζ)4+t2)/R2F(s)s1ds12F(9𝖽(η,ζ)4+t2R2)12s1dsCψR(η,t).\begin{split}\int_{0}^{R}\psi_{r}^{*}(\eta,t)\min\{r^{-1},\epsilon^{-1}\}\,\mathop{}\!\mathrm{d}r&=\int_{0}^{R}F^{*}\left(9\frac{\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{4}+t^{2}}{R^{2}}\right)r^{-1}\,\mathop{}\!\mathrm{d}r\\ &=\frac{1}{2}\int_{9(\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{4}+t^{2})/R^{2}}F^{*}(s)s^{-1}\,\mathop{}\!\mathrm{d}s\\ &\leq\frac{1}{2}F^{*}\left(9\frac{\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{4}+t^{2}}{R^{2}}\right)\int_{1}^{2}s^{-1}\,\mathop{}\!\mathrm{d}s\leq C^{\prime}\psi_{R}^{*}(\eta,t).\end{split}

Since ψR(η,t)=0\psi_{R}^{*}(\eta,t)=0 if 9(𝖽(η,ζ)4+t2)<R29(\mathsf{d}_{\mathbb{H}}(\eta,\zeta)^{4}+t^{2})<R^{2}, by (4.12) and (4.13) we obtain

(4.14) 0RNu(η,t)pψR(η,t)dηdt0RNu(η,t)pψR(η,t)dηdtC10RNu(η,t)p(0Rψr(η,t)min{r1,ϵ1}dr)dηdt=C10R0RNu(η,t)pψr(η,t)min{r1,ϵ1}dηdtdr=C1Z(R).\begin{split}&\int_{0}^{R}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\psi_{R}(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\\ &\geq\int_{0}^{R}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\psi_{R}^{*}(\eta,t)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\\ &\geq C^{\prime-1}\int_{0}^{R}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\left(\int_{0}^{R}\psi_{r}^{*}(\eta,t)\min\{r^{-1},\epsilon^{-1}\}\,\mathop{}\!\mathrm{d}r\right)\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\\ &=C^{\prime-1}\int_{0}^{R}\int_{0}^{R}\int_{\mathbb{H}^{N}}u(\eta,t)^{p}\psi_{r}^{*}(\eta,t)\min\{r^{-1},\epsilon^{-1}\}\,\mathop{}\!\mathrm{d}\eta\mathop{}\!\mathrm{d}t\mathop{}\!\mathrm{d}r\\ &=C^{\prime-1}Z(R).\end{split}

Therefore, we deduce from (4.11), (4.12), and (4.14) that

mρ+C1Z(R)CRQ2p(p1)1p(max{R,ϵ}Z(R))1pm_{\rho}+C^{\prime-1}Z(R)\leq CR^{\frac{Q}{2p}(p-1)-\frac{1}{p}}(\max\{R,\epsilon\}Z^{\prime}(R))^{\frac{1}{p}}

for all R(2ρ2,T/2)R\in(2\rho^{2},T/2). Therefore, we have

(4.15) Z(2ρ2)Z(T/2)[mρ+C1Z]pdZC12ρ2T/2RQ2(p1)+1(max{R,ϵ})1dR.\begin{split}&\int_{Z(2\rho^{2})}^{Z(T/2)}[m_{\rho}+C^{\prime-1}Z]^{-p}\,\mathop{}\!\mathrm{d}Z\geq C^{-1}\int_{2\rho^{2}}^{T/2}R^{-\frac{Q}{2}(p-1)+1}(\max\{R,\epsilon\})^{-1}\mathop{}\!\mathrm{d}R.\end{split}

Since

Z(2ρ2)Z(T/2)[mρ+C1Z]pdZZ(2ρ2)[mρ+C1Z]pdZCp1(Z(2ρ2)+mρ)(p1)Cp1mρ(p1),\begin{split}\int_{Z(2\rho^{2})}^{Z(T/2)}[m_{\rho}+C^{\prime-1}Z]^{-p}\,\mathop{}\!\mathrm{d}Z&\leq\int_{Z(2\rho^{2})}^{\infty}[m_{\rho}+C^{\prime-1}Z]^{-p}\,\mathop{}\!\mathrm{d}Z\\ &\leq\frac{C}{p-1}(Z(2\rho^{2})+m_{\rho})^{-(p-1)}\\ &\leq\frac{C}{p-1}m_{\rho}^{-(p-1)},\end{split}

by (4.15) we obtain

Cp1mρ(p1)C12ρ2T/2RQ2(p1)+1(max{R,ϵ})1dR.\frac{C}{p-1}m_{\rho}^{-(p-1)}\geq C^{-1}\int_{2\rho^{2}}^{T/2}R^{-\frac{Q}{2}(p-1)+1}(\max\{R,\epsilon\})^{-1}\mathop{}\!\mathrm{d}R.

Letting ϵ0+\epsilon\to 0^{+}, we see that

(4.16) Cp1mρ(p1)C12ρ2T/2RQ2(p1)dR\frac{C}{p-1}m_{\rho}^{-(p-1)}\geq C^{-1}\int_{2\rho^{2}}^{T/2}R^{-\frac{Q}{2}(p-1)}\mathop{}\!\mathrm{d}R

for all ρ(0,T/4)\rho\in(0,\sqrt{T}/4).

Let p=p2,Qp=p_{2,Q}. Then the inequality (4.16) yields

μ(B(ζ,(2/3)12ρ))=mρC[logT4ρ2]Q2C[log(e+Tρ)]Q2\mu(B(\zeta,(2/3)^{\frac{1}{2}}\rho))=m_{\rho}\leq C\left[\log\frac{T}{4\rho^{2}}\right]^{-\frac{Q}{2}}\leq C\left[\log\left(e+\frac{\sqrt{T}}{\rho}\right)\right]^{-\frac{Q}{2}}

for all ζN\zeta\in\mathbb{H}^{N} and ρ(0,T/8)\rho\in(0,\sqrt{T}/8).

On the other hand, let pp2,Qp\neq p_{2,Q}. Setting T=32ρ2T=32\rho^{2}, then the inequality (4.16) yields

μ(B(ζ,(2/3)12ρ))=mρCρQ2p1\mu(B(\zeta,(2/3)^{\frac{1}{2}}\rho))=m_{\rho}\leq C\rho^{Q-\frac{2}{p-1}}

for all ζN\zeta\in\mathbb{H}^{N} and ρ(0,T/8)\rho\in(0,\sqrt{T}/8).

Setting σ:=8ρ\sigma:=8\rho, similarly to the proof in the case of α(0,2)\alpha\in(0,2), we obtain

supηNμ(B(η,σ)){C[log(e+Tσ)]Q2ifp=p2,Q,CσQ2p1ifpp2,Q,\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,\sigma))\leq\left\{\begin{array}[]{ll}\displaystyle{C\left[\log\left(e+\frac{\sqrt{T}}{\sigma}\right)\right]^{-\frac{Q}{2}}}&\mbox{if}\quad p=p_{2,Q},\vspace{3pt}\\ C\sigma^{Q-\frac{2}{p-1}}&\mbox{if}\quad p\neq p_{2,Q},\vspace{3pt}\\ \end{array}\right.

for all σ(0,T)\sigma\in(0,\sqrt{T}). Thus, assertions (i)–(iii) in Theorem A follow and the proof is complete. ∎

Proof of Corollary 1.1.

Let uu be a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T), where T(0,)T\in(0,\infty). Since for a.a. τ(0,T)\tau\in(0,T), uτ(η,t):=u(η,t+τ)u_{\tau}(\eta,t):=u(\eta,t+\tau) is a solution of problem (1.1) with μ=u(τ)\mu=u(\tau) in N×[0,Tτ)\mathbb{H}^{N}\times[0,T-\tau), the estimate (1.12) is just a direct consequence of Theorem A with σ=(Tτ)1/α\sigma=(T-\tau)^{1/\alpha}. This completes our proof. ∎

At the end of this section, we give a proof of Theorem B.

Proof of Theorem B.

Fix ηN\eta\in\mathbb{H}^{N}. Let uu be a solution of (1.1) in N×(0,T)\mathbb{H}^{N}\times(0,T), where T(0,)T\in(0,\infty). Let α(0,2]\alpha\in(0,2] and 0<t<T0<t<T. For each n1n\geq 1, we have

N\B(η,2nt1α)=i0B(η,2n+i+1t1α)\B(η,2n+it1α).\mathbb{H}^{N}\backslash B(\eta,2^{n}t^{\frac{1}{\alpha}})=\bigcup_{i\geq 0}B(\eta,2^{n+i+1}t^{\frac{1}{\alpha}})\backslash B(\eta,2^{n+i}t^{\frac{1}{\alpha}}).

By the covering lemma in Lemma 2.2 a family of balls :={Bk,i:=B(ηk,i,t1/α):i,kJi}\mathcal{B}:=\{B_{k,i}:=B(\eta_{k,i},t^{1/\alpha}):i\in\mathbb{N},k\in J_{i}\} for some index set JiJ_{i} such that

  1. (i)

    N\B(η,2nt1α)k,iBk,i\displaystyle{\mathbb{H}^{N}\backslash B(\eta,2^{n}t^{\frac{1}{\alpha}})\subset\bigcup_{k,i}B_{k,i}};

  2. (ii)

    𝖽(ηk,i,η)2n+it1α\displaystyle{\mathsf{d}_{\mathbb{H}}(\eta_{k,i},\eta)\sim 2^{n+i}t^{\frac{1}{\alpha}}} for each k,ik,i\in\mathbb{N};

  3. (iii)

    JiC2Q(n+i)\sharp J_{i}\leq C2^{Q(n+i)} for each ii\in\mathbb{N} and some universal constant C>0C>0.

This, together with Theorem A and (1.8), implies that

(4.17) esssup0<τ<t/2NB(η,2nt1α)Gα(ζ1η,tτ)u(ζ,τ)dζ\displaystyle\operatorname*{ess\,sup}_{0<\tau<t/2}\int_{\mathbb{H}^{N}\setminus B(\eta,2^{n}t^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta
i=1kJiesssup0<τ<t/2Bk,iGα(ζ1η,tτ)u(ζ,τ)dζ\displaystyle\leq\sum_{i=1}^{\infty}\sum_{k\in J_{i}}\operatorname*{ess\,sup}_{0<\tau<t/2}\int_{B_{k,i}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta
Cesssup0<τ<t/2supξNB(ξ,t1α)u(ζ,τ)dζi=1kJisup0<τ<t/2(tτ)Qαgα(𝖽(ηk,i,η)c2(tτ)1/α)\displaystyle\leq C\operatorname*{ess\,sup}_{0<\tau<t/2}\sup_{\xi\in\mathbb{H}^{N}}\int_{B(\xi,t^{\frac{1}{\alpha}})}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta\sum_{i=1}^{\infty}\sum_{k\in J_{i}}\sup_{0<\tau<t/2}(t-\tau)^{-\frac{Q}{\alpha}}g_{\alpha}\left(\frac{\mathsf{d}_{\mathbb{H}}(\eta_{k,i},\eta)}{c_{2}(t-\tau)^{{1/\alpha}}}\right)
tQα1p1i=1kJitQα2(Q+α)(n+i)\displaystyle\lesssim t^{\frac{Q}{\alpha}-\frac{1}{p-1}}\sum_{i=1}^{\infty}\sum_{k\in J_{i}}t^{-\frac{Q}{\alpha}}2^{-(Q+\alpha)(n+i)}
t1p1i=12(n+i)αt1p12nα0asn.\displaystyle\lesssim t^{-\frac{1}{p-1}}\sum_{i=1}^{\infty}2^{-(n+i)\alpha}\simeq t^{-\frac{1}{p-1}}2^{-n\alpha}\to 0\quad\mbox{as}\quad n\to\infty.

Similarly, we have

(4.18) NB(η,2nt1α)Gα(ζ1η,t)dμ(ζ)\displaystyle\int_{\mathbb{H}^{N}\setminus B(\eta,2^{n}t^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\mu(\zeta)
CsupξNμ(B(ξ,t1α))i=1kJisup0<τ<t/2tQαgα(𝖽(ηk,i,η)c2t1/α)\displaystyle\leq C\sup_{\xi\in\mathbb{H}^{N}}\mu(B(\xi,t^{\frac{1}{\alpha}}))\sum_{i=1}^{\infty}\sum_{k\in J_{i}}\sup_{0<\tau<t/2}t^{-\frac{Q}{\alpha}}g_{\alpha}\left(\frac{\mathsf{d}_{\mathbb{H}}(\eta_{k,i},\eta)}{c_{2}t^{{1/\alpha}}}\right)
t1p12nα0asn.\displaystyle\lesssim t^{-\frac{1}{p-1}}2^{-n\alpha}\to 0\quad\mbox{as}\quad n\to\infty.

From these two above estimates (4.17) and (4.18), Theorem A and Lemma 3.1 we obtain

(4.19) NGα(ζ1η,tτ)u(ζ,τ)dζ<andNGα(ζ1η,t)dμ(ζ)<,\begin{split}&\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta<\infty\quad\mbox{and}\quad\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\mu(\zeta)<\infty,\end{split}

for a.a. τ(0,t/2)\tau\in(0,t/2). Let ηnCc(N)\eta_{n}\in C_{c}(\mathbb{H}^{N}) be such that 0ηn10\leq\eta_{n}\leq 1 in N\mathbb{H}^{N}, ηn=1\eta_{n}=1 on B(η,2nt1/α)B(\eta,2^{n}t^{1/\alpha}), ηn=0\eta_{n}=0 outside B(η,2n+1t1/α)B(\eta,2^{n+1}t^{1/\alpha}). It follows from (4.19) that

(4.20) |NGα(ζ1η,tτ)u(ζ,τ)dζNGα(ζ1η,t)dμ(ζ)|\displaystyle\left|\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta-\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\mu(\zeta)\right|
|NGα(ζ1η,t)u(ζ,τ)ηn(y)dζNGα(ζ1η,t)ηn(y)dμ(ζ)|\displaystyle\leq\biggl{|}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)u(\zeta,\tau)\eta_{n}(y)\,\mathop{}\!\mathrm{d}\zeta-\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)\eta_{n}(y)\,\mathop{}\!\mathrm{d}\mu(\zeta)\biggr{|}
+|N[Gα(ζ1η,tτ)Gα(ζ1η,t)]u(ζ,τ)ηn(y)dζ|\displaystyle\quad+\left|\int_{\mathbb{H}^{N}}[G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)-G_{\alpha}(\zeta^{-1}\circ\eta,t)]u(\zeta,\tau)\eta_{n}(y)\,\mathop{}\!\mathrm{d}\zeta\right|
+NB(η,2nt1α)Gα(ζ1η,tτ)u(ζ,τ)dζ\displaystyle\quad+\int_{\mathbb{H}^{N}\setminus B(\eta,2^{n}t^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\mathop{}\!\mathrm{d}\zeta
+NB(η,2nt1α)Gα(ζ1η,t)dμ(ζ)\displaystyle\quad+\int_{\mathbb{H}^{N}\setminus B(\eta,2^{n}t^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\mu(\zeta)

for n=1,2,n=1,2,\ldots and a.a. τ(0,t/2)\tau\in(0,t/2). By Lemma 3.2 and the fact that Gα(,t)G_{\alpha}(\cdot,t) is continuous, we see that

(4.21) esslimτ0+[NGα(ζ1η,t)u(ζ,τ)ηn(y)dζNGα(ζ1η,t)ηn(y)dμ(ζ)]=0.\begin{split}&\operatorname*{ess\,lim}_{\tau\to 0^{+}}\biggl{[}\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)u(\zeta,\tau)\eta_{n}(y)\,\mathop{}\!\mathrm{d}\zeta-\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)\eta_{n}(y)\,\mathop{}\!\mathrm{d}\mu(\zeta)\biggr{]}=0.\end{split}

Furthermore, by Lemmas 3.1and 2.4 we have

(4.22) esslimsupτ0+|N[Gα(ζ1η,tτ)Gα(ζ1η,t)]u(τ,ζ)ηn(y)dζ|\displaystyle\operatorname*{ess\,limsup}_{\tau\to 0^{+}}\left|\int_{\mathbb{H}^{N}}[G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)-G_{\alpha}(\zeta^{-1}\circ\eta,t)]u(\tau,\zeta)\eta_{n}(y)\,\mathop{}\!\mathrm{d}\zeta\right|
supζB(η,2n+1t1α),s(t/2,t)|sGα(ζ,s)|esslimsupτ0+[τB(η,2n+1t1α)u(ζ,τ)dζ]\displaystyle\leq\sup_{\zeta\in B(\eta,2^{n+1}t^{\frac{1}{\alpha}}),s\in(t/2,t)}|\partial_{s}G_{\alpha}(\zeta,s)|\operatorname*{ess\,limsup}_{\tau\to 0^{+}}\left[\tau\int_{B(\eta,2^{n+1}t^{\frac{1}{\alpha}})}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta\right]
tQα1esslimsupτ0+[τB(η,2n+1t1α)u(ζ,τ)dζ]=0.\displaystyle\lesssim t^{-\frac{Q}{\alpha}-1}\operatorname*{ess\,limsup}_{\tau\to 0^{+}}\left[\tau\int_{B(\eta,2^{n+1}t^{\frac{1}{\alpha}})}u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta\right]=0.

From (4.20), (4.21), and (4.22),

esslimsupτ0+|NGα(ζ1η,tτ)u(ζ,τ)dζNGα(ζ1η,t)dζ|esssup0<τ<t/2NB(η,2nt1α)Gα(ζ1η,tτ)u(ζ,τ)dζ+NB(η,2nt1α)Gα(ζ1η,t)dζ\begin{split}&\operatorname*{ess\,limsup}_{\tau\to 0^{+}}\left|\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta-\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\zeta\right|\\ &\leq\operatorname*{ess\,sup}_{0<\tau<t/2}\int_{\mathbb{H}^{N}\setminus B(\eta,2^{n}t^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta+\int_{\mathbb{H}^{N}\setminus B(\eta,2^{n}t^{\frac{1}{\alpha}})}G_{\alpha}(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\zeta\end{split}

for n=1,2,n=1,2,\ldots. This, in combination with (4.17) and (4.18), implies that

esslimτ0+|NGα(ζ1η,tτ)u(ζ,τ)dζNGα(ζ1η,t)dζ|=0.\operatorname*{ess\,lim}_{\tau\to 0^{+}}\left|\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t-\tau)u(\zeta,\tau)\,\mathop{}\!\mathrm{d}\zeta-\int_{\mathbb{H}^{N}}G_{\alpha}(\zeta^{-1}\circ\eta,t)\,\mathop{}\!\mathrm{d}\zeta\right|=0.

This and (1.10) yield that uu is a solution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T). This completes our proof. ∎

5. Sufficient conditions for the solvability.

In this section we shall prove Theorems CE.

Proof of Theorem C.

It suffices to consider the case of T=1T=1. Indeed, for any solution uu of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T), we see from (2.4) that uλ(η,t):=λαp1u(δλ(η),λαt)u_{\lambda}(\eta,t):=\lambda^{\frac{\alpha}{p-1}}u(\delta_{\lambda}(\eta),\lambda^{\alpha}t) with λ=T1/α\lambda=T^{1/\alpha} is a solution of problem problem (1.1) with (1.2) in N×[0,1)\mathbb{H}^{N}\times[0,1). Set w(η,t):=[etΛαμ](η)w(\eta,t):=[e^{t\Lambda_{\alpha}}\mu](\eta). Then it follows from (2.5) and Lemma 2.8 that

[w](t)\displaystyle\mathcal{F}[w](t) :=etΛαμ+0te(ts)Λα(2w(s))pds\displaystyle:=e^{t\Lambda_{\alpha}}\mu+\int_{0}^{t}e^{(t-s)\Lambda_{\alpha}}(2w(s))^{p}\,\mathop{}\!\mathrm{d}s
w(t)+2pw(t)0tw(s)L(N)p1ds\displaystyle\leq w(t)+2^{p}w(t)\int_{0}^{t}\|w(s)\|_{L^{\infty}(\mathbb{H}^{N})}^{p-1}\,\mathop{}\!\mathrm{d}s
w(t)+Cw(t)0tsN(p1)θ[supηNμ(B(η,s1α))]p1ds\displaystyle\leq w(t)+Cw(t)\int_{0}^{t}s^{-\frac{N(p-1)}{\theta}}[\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,s^{\frac{1}{\alpha}}))]^{p-1}\,\mathop{}\!\mathrm{d}s
w(t)+Cw(t)[supηNμ(B(η,t1α))]p10tsQ(p1)αds\displaystyle\leq w(t)+Cw(t)[\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,t^{\frac{1}{\alpha}}))]^{p-1}\int_{0}^{t}s^{-\frac{Q(p-1)}{\alpha}}\,\mathop{}\!\mathrm{d}s
w(t)+Cw(t)[supηNμ(B(η,T1α))]p10TsQ(p1)αds\displaystyle\leq w(t)+Cw(t)[\sup_{\eta\in\mathbb{H}^{N}}\mu(B(\eta,T^{\frac{1}{\alpha}}))]^{p-1}\int_{0}^{T}s^{-\frac{Q(p-1)}{\alpha}}\,\mathop{}\!\mathrm{d}s

This, together with the assumption of Theorem C and 1<p<pα,Q1<p<p_{\alpha,Q}, implies that

[w](t)[1+CγCp1]w(t)\mathcal{F}[w](t)\leq[1+C\gamma^{p-1}_{C}]w(t)

for all 0t<10\leq t<1. Therefore, taking a sufficiently small γC>0\gamma_{C}>0 if necessary, we obtain [w](t)2w(t)\mathcal{F}[w](t)\leq 2w(t) for 0t<10\leq t<1. This means that 2w(t)2w(t) is a supersolution of problem (1.1) with (1.2) in N×[0,T)\mathbb{H}^{N}\times[0,T). Then the theorem follows from Lemma 2.9. ∎

Proof of Theorem D.

For the same reasons as in the proof of Theorem C, it suffices to consider the case of T=1T=1. Assume (1.14). We can assume, without loss of generality, that 1<θ<p1<\theta<p. Indeed, if θp\theta\geq p, then, for any 1<θ<p1<\theta^{\prime}<p, we apply Jensen’s inequality to obtain

[supηNB(η,σ)μ(η)θdη]1θsupηN[B(η,σ)μ(η)θdη]1θγDσαp1\begin{split}\left[\sup_{\eta\in\mathbb{H}^{N}}\fint_{B(\eta,\sigma)}\mu(\eta)^{\theta^{\prime}}\,\mathop{}\!\mathrm{d}\eta\right]^{\frac{1}{\theta^{\prime}}}\leq\sup_{\eta\in\mathbb{H}^{N}}\left[\fint_{B(\eta,\sigma)}\mu(\eta)^{\theta}\,\mathop{}\!\mathrm{d}\eta\right]^{\frac{1}{\theta}}\leq\gamma_{D}\sigma^{-\frac{\alpha}{p-1}}\end{split}

for all 0<σ<T1/α0<\sigma<T^{1/\alpha}. Thus, (1.14) holds with θ\theta replaced by θ\theta^{\prime}.

Let 1<θ<p1<\theta<p and set w(η,t):=[etΛαfθ](η)1/θw(\eta,t):=[e^{t\Lambda_{\alpha}}f^{\theta}](\eta)^{1/\theta}. It follows from (2.5), (2.6) and Jensen’s inequality that

[w](t)\displaystyle\mathcal{F}[w](t) :=etΛαf(s)+0te(ts)Λα(2w(s))pds\displaystyle:=e^{t\Lambda_{\alpha}}f(s)+\int_{0}^{t}e^{(t-s)\Lambda_{\alpha}}(2w(s))^{p}\,\mathop{}\!\mathrm{d}s
w(t)+2p[etΛαfθ]0tetΛαfθL(N)pθ1ds\displaystyle\leq w(t)+2^{p}[e^{t\Lambda_{\alpha}}f^{\theta}]\int_{0}^{t}\|e^{t\Lambda_{\alpha}}f^{\theta}\|_{L^{\infty}(\mathbb{H}^{N})}^{\frac{p}{\theta}-1}\,\mathop{}\!\mathrm{d}s
w(t)+Cw(t)etΛαfθL(N)11θ0tetΛαfθL(N)pθ1ds\displaystyle\leq w(t)+Cw(t)\|e^{t\Lambda_{\alpha}}f^{\theta}\|_{L^{\infty}(\mathbb{H}^{N})}^{1-\frac{1}{\theta}}\int_{0}^{t}\|e^{t\Lambda_{\alpha}}f^{\theta}\|_{L^{\infty}(\mathbb{H}^{N})}^{\frac{p}{\theta}-1}\,\mathop{}\!\mathrm{d}s

for all 0t<10\leq t<1. Furthermore, by Lemma 2.8 and (1.14) we have

etΛαfθL(N)CγDθtθp1.\|e^{t\Lambda_{\alpha}}f^{\theta}\|_{L^{\infty}(\mathbb{H}^{N})}\leq C\gamma_{D}^{\theta}t^{-\frac{\theta}{p-1}}.

This implies that

[w](t)[1+CγDp1]w(t),0t<1.\mathcal{F}[w](t)\leq[1+C\gamma_{D}^{p-1}]w(t),\quad 0\leq t<1.

Therefore, taking a sufficiently small γD>0\gamma_{D}>0 if necessary, we obtain [w](t)2w(t)\mathcal{F}[w](t)\leq 2w(t) for 0t<10\leq t<1. At this stage, arguing similarly to the proof of Theorem C we complete the proof of Theorem D. ∎

Proof of Theorem E.

For the same reasons as in the proof of Theorem C, it suffices to consider the case of T=1T=1. Let β>0\beta>0 and ρ=ρ(s)\rho=\rho(s) be as in (1.15). Let LeL\geq e be such that

  • (a)

    Ψβ,L(s):=s[log(L+s)]β\Psi_{\beta,L}(s):=s[\log(L+s)]^{\beta} is positive and convex in (0,)(0,\infty);

  • (b)

    sp/Ψβ,Ls^{p}/\Psi_{\beta,L} and Ψβ,L/s\Psi_{\beta,L}/s are monotone increasing in (0,)(0,\infty).

Let μ\mu be a nonnegative measurable function in N\mathbb{H}^{N} satisfying (1.16). Simce Ψβ(τ)Ψβ,L\Psi_{\beta}(\tau)\simeq\Psi_{\beta,L} for τ>0\tau>0, it follows that

(5.1) Ψβ,L1[B(ζ,σ)Ψβ,L(μ(η))dη]CγEρ(σ)\Psi_{\beta,L}^{-1}\left[\fint_{B(\zeta,\sigma)}\Psi_{\beta,L}(\mu(\eta))\,\mathop{}\!\mathrm{d}\eta\right]\leq C\gamma_{E}\rho(\sigma)

for all ηN\eta\in\mathbb{H}^{N} and σ(0,1)\sigma\in(0,1). Set

w(η,t):=Ψβ,L1[etΛαΨβ,L(μ(η))].w(\eta,t):=\Psi_{\beta,L}^{-1}[e^{t\Lambda_{\alpha}}\Psi_{\beta,L}(\mu(\eta))].

By (5.1) we apply Lemma 2.8 to obtain

etΛαΨβ,L(μ)L(N)=Ψβ,L(w(t))L(N)CΨβ,L(CγEρ(t1α))CΨβ,L(γEρ(t1α)),\begin{split}\|e^{t\Lambda_{\alpha}}\Psi_{\beta,L}(\mu)\|_{L^{\infty}(\mathbb{H}^{N})}&=\|\Psi_{\beta,L}(w(t))\|_{L^{\infty}(\mathbb{H}^{N})}\\ &\leq C\Psi_{\beta,L}(C\gamma_{E}\rho(t^{\frac{1}{\alpha}}))\\ &\leq C\Psi_{\beta,L}(\gamma_{E}\rho(t^{\frac{1}{\alpha}})),\end{split}

which implies that

(5.2) w(t)L(N)Ψβ,L1[CΨβ,L(γEρ(t1α))]\|w(t)\|_{L^{\infty}(\mathbb{H}^{N})}\leq\Psi_{\beta,L}^{-1}[C\Psi_{\beta,L}(\gamma_{E}\rho(t^{\frac{1}{\alpha}}))]

for t(0,1)t\in(0,1). Define

[w](t):=etΛαμ+0te(ts)Λα(2w(s))pds,t>0.\mathcal{F}[w](t):=e^{t\Lambda_{\alpha}}\mu+\int_{0}^{t}e^{(t-s)\Lambda_{\alpha}}(2w(s))^{p}\,\mathop{}\!\mathrm{d}s,\quad t>0.

Then by (2.5), (2.6), and Jensen’s inequality,

(5.3) [w](t)w(t)+2p0te(ts)Λα[w(s)pesΛαΨβ,L(μ)esΛαΨβ,L(μ)]dsw(t)+2p[0tw(s)pesΛαΨβ,L(μ)L(N)ds]etΛαΨβ,L(μ)w(t)+2p[0tw(s)pΨβ,L(w(s))L(N)ds]Ψβ,L(w(t))w(t)L(N)w(t)\begin{split}\mathcal{F}[w](t)&\leq w(t)+2^{p}\int_{0}^{t}e^{(t-s)\Lambda_{\alpha}}\left[\frac{w(s)^{p}}{e^{s\Lambda_{\alpha}}\Psi_{\beta,L}(\mu)}e^{s\Lambda_{\alpha}}\Psi_{\beta,L}(\mu)\right]\,\mathop{}\!\mathrm{d}s\\ &\leq w(t)+2^{p}\left[\int_{0}^{t}\left\|\frac{w(s)^{p}}{e^{s\Lambda_{\alpha}}\Psi_{\beta,L}(\mu)}\right\|_{L^{\infty}(\mathbb{H}^{N})}\,\mathop{}\!\mathrm{d}s\right]e^{t\Lambda_{\alpha}}\Psi_{\beta,L}(\mu)\\ &\leq w(t)+2^{p}\left[\int_{0}^{t}\left\|\frac{w(s)^{p}}{\Psi_{\beta,L}(w(s))}\right\|_{L^{\infty}(\mathbb{H}^{N})}\,\mathop{}\!\mathrm{d}s\right]\left\|\frac{\Psi_{\beta,L}(w(t))}{w(t)}\right\|_{L^{\infty}(\mathbb{H}^{N})}w(t)\\ \end{split}

for t>0t>0. On the other hand, by property (b) and (5.2) we see that

(5.4) w(s)pΨβ,L(w(s))L(N)w(s)L(N)pΨβ,L(w(s)L(N))[Ψβ,L1[CΨβ,L(γEρ(t1α))]]pCΨβ,L(γEρ(s1α))\begin{split}\left\|\frac{w(s)^{p}}{\Psi_{\beta,L}(w(s))}\right\|_{L^{\infty}(\mathbb{H}^{N})}&\leq\frac{\|w(s)\|_{L^{\infty}(\mathbb{H}^{N})}^{p}}{\Psi_{\beta,L}(\|w(s)\|_{L^{\infty}(\mathbb{H}^{N})})}\leq\frac{[\Psi_{\beta,L}^{-1}[C\Psi_{\beta,L}(\gamma_{E}\rho(t^{\frac{1}{\alpha}}))]]^{p}}{C\Psi_{\beta,L}(\gamma_{E}\rho(s^{\frac{1}{\alpha}}))}\end{split}

for s(0,1)s\in(0,1). By (1.15) we have

Ψβ,L(γEρ(s1α))=γEρ(s1α)[log(L+γEρ(s1α))]βγEsQα[log(e+1s)]Qα+β\Psi_{\beta,L}(\gamma_{E}\rho(s^{\frac{1}{\alpha}}))=\gamma_{E}\rho(s^{\frac{1}{\alpha}})[\log(L+\gamma_{E}\rho(s^{\frac{1}{\alpha}}))]^{\beta}\simeq\gamma_{E}s^{-\frac{Q}{\alpha}}\left[\log\left(e+\frac{1}{s}\right)\right]^{-\frac{Q}{\alpha}+\beta}

for all s(0,1)s\in(0,1). Since Ψβ,L1(τ)τ[log(e+τ)]β\Psi_{\beta,L}^{-1}(\tau)\simeq\tau[\log(e+\tau)]^{-\beta} for all τ>0\tau>0, it follows that

Ψβ,L1(CΨβ,L(γEρ(t1α)))γsQα[log(e+1s)]Qα\Psi_{\beta,L}^{-1}(C\Psi_{\beta,L}(\gamma_{E}\rho(t^{\frac{1}{\alpha}})))\simeq\gamma s^{-\frac{Q}{\alpha}}\left[\log\left(e+\frac{1}{s}\right)\right]^{-\frac{Q}{\alpha}}

for all s(0,1)s\in(0,1). These together with (5.4) imply that

(5.5) w(s)pΨβ,L(w(s))L(N)CγEαQs1[log(e+1s)]1β\left\|\frac{w(s)^{p}}{\Psi_{\beta,L}(w(s))}\right\|_{L^{\infty}(\mathbb{H}^{N})}\leq C\gamma_{E}^{\frac{\alpha}{Q}}s^{-1}\left[\log\left(e+\frac{1}{s}\right)\right]^{-1-\beta}

for all s(0,1)s\in(0,1). Similarly, by (5.2) and property (b) we have

(5.6) Ψβ,L(w(t))w(t)L(N)CΨβ,L(γEρ(t1α))Ψβ,L1(CΨβ,L(γEρ(t1α)))C[log(e+1t)]β\left\|\frac{\Psi_{\beta,L}(w(t))}{w(t)}\right\|_{L^{\infty}(\mathbb{H}^{N})}\leq\frac{C\Psi_{\beta,L}(\gamma_{E}\rho(t^{\frac{1}{\alpha}}))}{\Psi_{\beta,L}^{-1}(C\Psi_{\beta,L}(\gamma_{E}\rho(t^{\frac{1}{\alpha}})))}\leq C\left[\log\left(e+\frac{1}{t}\right)\right]^{\beta}

for all t(0,1)t\in(0,1). By (5.5) and (5.6) we obtain

(5.7) [0tw(s)pΨβ,L(w(s))L(N)ds]Ψβ,L(w(t))w(t)L(N)CγEαQ[log(e+1t)]β0ts1[log(e+1s)]1βdsCγEαQ\begin{split}&\left[\int_{0}^{t}\left\|\frac{w(s)^{p}}{\Psi_{\beta,L}(w(s))}\right\|_{L^{\infty}(\mathbb{H}^{N})}\,\mathop{}\!\mathrm{d}s\right]\left\|\frac{\Psi_{\beta,L}(w(t))}{w(t)}\right\|_{L^{\infty}(\mathbb{H}^{N})}\\ &\leq C\gamma_{E}^{\frac{\alpha}{Q}}\left[\log\left(e+\frac{1}{t}\right)\right]^{\beta}\int_{0}^{t}s^{-1}\left[\log\left(e+\frac{1}{s}\right)\right]^{-1-\beta}\,\mathop{}\!\mathrm{d}s\leq C\gamma_{E}^{\frac{\alpha}{Q}}\end{split}

for all t(0,1)t\in(0,1). Therefore, taking a sufficiently small γE>0\gamma_{E}>0 if necessary, we deduce from (5.3) and (5.7) that [w](t)2w(t)\mathcal{F}[w](t)\leq 2w(t) for t(0,1)t\in(0,1). At this stage, arguing similarly to the proof of Theorem D we complete the proof of Theorem E. ∎

Finally, we give a proof of Corollary 1.2.

Proof of Corollary 1.2.

Assume that μ=γΦα+Cα\mu=\gamma\Phi_{\alpha}+C_{\alpha} for some γ>0\gamma>0 and Cα0C_{\alpha}\geq 0. Let p>pα,Qp>p_{\alpha,Q} and fix 1<θ<p1<\theta<p so that it satisfies

αθp1<Q.\frac{\alpha\theta}{p-1}<Q.

It follows from (2.1) and (2.2) that

supζN[B(ζ,σ)μ(η)dη]1θ=[B(0,σ)μ(η)dη]1θγσαp1+Cα\begin{split}\sup_{\zeta\in\mathbb{H}^{N}}\left[\fint_{B(\zeta,\sigma)}\mu(\eta)\,\mathop{}\!\mathrm{d}\eta\right]^{\frac{1}{\theta}}=\left[\fint_{B(0,\sigma)}\mu(\eta)\,\mathop{}\!\mathrm{d}\eta\right]^{\frac{1}{\theta}}\lesssim\gamma\sigma^{-\frac{\alpha}{p-1}}+C_{\alpha}\end{split}

for σ>0\sigma>0. Then taking sufficiently small γ>0\gamma>0 and T>0T>0 if necessary, we see that (1.14) holds for all 0<σ<T1/α0<\sigma<T^{1/\alpha}. This implies that problem (1.1) with (1.2) possesses a solution in N×[0,T)\mathbb{H}^{N}\times[0,T). If Cα=0C_{\alpha}=0, we can take T=T=\infty. Let p=pα,Qp=p_{\alpha,Q} and β>0\beta>0. By similar calculations, we see that

supζNΨβ1[B(ζ,σ)Ψβ(T1p1μ(η))dη]=Ψβ1[B(0,σ)Ψβ(T1p1μ(η))dη]γρ(σT1α)+CαT1p1\begin{split}\sup_{\zeta\in\mathbb{H}^{N}}\Psi_{\beta}^{-1}\left[\fint_{B(\zeta,\sigma)}\Psi_{\beta}(T^{\frac{1}{p-1}}\mu(\eta))\,\mathop{}\!\mathrm{d}\eta\right]&=\Psi_{\beta}^{-1}\left[\fint_{B(0,\sigma)}\Psi_{\beta}(T^{\frac{1}{p-1}}\mu(\eta))\,\mathop{}\!\mathrm{d}\eta\right]\\ &\lesssim\gamma\rho(\sigma T^{-\frac{1}{\alpha}})+C_{\alpha}T^{\frac{1}{p-1}}\end{split}

for all σ>0\sigma>0, where Ψβ\Psi_{\beta} and ρ\rho is as in (1.15). Then taking sufficiently small γ>0\gamma>0 and T>0T>0 if necessary, we see that (1.16) holds for all 0<σ<T1/α0<\sigma<T^{1/\alpha}. This implies that problem (1.1) with (1.2) possesses a solution in N×[0,T)\mathbb{H}^{N}\times[0,T).

On the other hand, it follows from (2.1) and (2.2) that

B(0,σ)μ(ζ)dζ{γ[log(e+σ1)]Qα+CαQifp=pα,Q,γσQαp1+CαQifp>pα,Q.\begin{split}\int_{B(0,\sigma)}\mu(\zeta)\,\mathop{}\!\mathrm{d}\zeta\gtrsim\left\{\begin{aligned} &\gamma\left[\log(e+\sigma^{-1})\right]^{-\frac{Q}{\alpha}}+C_{\alpha}^{Q}\quad&&\mbox{if}\quad p=p_{\alpha,Q},\\ &\gamma\sigma^{Q-\frac{\alpha}{p-1}}+C_{\alpha}^{Q}\quad&&\mbox{if}\quad p>p_{\alpha,Q}.\\ \end{aligned}\right.\end{split}

Then we see that if γ>0\gamma>0 is sufficiently large, assertions (ii) and (iii) in Theorem A do not hold for all σ>0\sigma>0. This implies that problem (1.1) with (1.2) possesses no local-in-time solutions. Thus, the proof is complete. ∎

6. Application.

Since the minimal solution is unique, we can define the life span T(μ)T(\mu) as the maximal existence time of the minimal solution of problem (1.1) with (1.2).

For (1.4) and in the case of α=2\alpha=2, Lee–Ni [LN92] obtained sharp estimates of T(λϕ)T(\lambda\phi) as λ0+\lambda\to 0^{+} by use of the behavior of ϕ\phi at the space infinity. Subsequently, the second author of this paper and Ishige [HI18] obtained a generalization to the case of α(0,2]\alpha\in(0,2]. Recently, Georgiev–Palmieri [GP21] obtained a generalization of [LN92] to the Heisenberg group N\mathbb{H}^{N} in the case of α=2\alpha=2. In some cases, however, sharp estimates have not yet been obtained.

In this section, as an application of our theorems, we show that similar estimates of T(λϕ)T(\lambda\phi) as in [LN92, HI18] in the Heisenberg group N\mathbb{H}^{N}. Theorems F and G are generalizations of [LN92, Theorem 3.15 and Theorem 3.21], respectively. At the end of this section, summaries of these theorems and previous study [GP21] are given.

Theorem F.

Let N1N\geq 1 and p>1p>1. Let A>0A>0 and ϕ\phi be a nonnegative measurable function in N\mathbb{H}^{N} such that

(1+|η|N)Aϕ(η)L(N)(1+|\eta|_{\mathbb{H}^{N}})^{-A}\leq\phi(\eta)\in L^{\infty}(\mathbb{H}^{N})

for a.a. ηN\eta\in\mathbb{H}^{N}.

  • (i)

    Let p=pα,Qp=p_{\alpha,Q} and Aα/(p1)=QA\geq\alpha/(p-1)=Q. Then there exists a constant C>0C>0 such that

    logT(λϕ){Cλ(p1)ifA>Q,Cλp1pifA=Q,\log T(\lambda\phi)\leq\left\{\begin{aligned} &C\lambda^{-(p-1)}\quad&&\mbox{if}\quad A>Q,\\ &C\lambda^{-\frac{p-1}{p}}\quad&&\mbox{if}\quad A=Q,\\ \end{aligned}\right.

    for all sufficiently small λ>0\lambda>0.

  • (ii)

    Let 1<p<pα,Q1<p<p_{\alpha,Q} or A<α/(p1)A<\alpha/(p-1). Then there exists a constant C>0C^{\prime}>0 such that

    T(λϕ){Cλ(1p11αmin{A,Q})1ifAQ,C(λ1log(λ1))(1p1Qα)1ifA=Q,T(\lambda\phi)\leq\left\{\begin{aligned} &C^{\prime}\lambda^{-\left(\frac{1}{p-1}-\frac{1}{\alpha}\min\{A,Q\}\right)^{-1}}\quad&&\mbox{if}\quad A\neq Q,\\ &C^{\prime}\left(\frac{\lambda^{-1}}{\log(\lambda^{-1})}\right)^{\left(\frac{1}{p-1}-\frac{Q}{\alpha}\right)^{-1}}\quad&&\mbox{if}\quad A=Q,\\ \end{aligned}\right.

    for all sufficiently small λ>0\lambda>0.

For the simplicity of notation, we denote Tλ:=T(λϕ)T_{\lambda}:=T(\lambda\phi). We give a proof of Theorem F.

Proof of Theorem F.

Since ϕL(N)\phi\in L^{\infty}(\mathbb{H}^{N}), by Theorem D we have

Tλλ(p1)T_{\lambda}\gtrsim\lambda^{-(p-1)}

for all sufficiently small λ>0\lambda>0. This implies that limλ0+Tλ=\lim_{\lambda\to 0^{+}}T_{\lambda}=\infty. So, we can assume without loss of generality that Tλ>0T_{\lambda}>0 is sufficiently large.

We apply Theorem A to prove Theorem F and assume that problem (1.1) with μ=λϕ\mu=\lambda\phi possesses a solution in N×[0,Tλ)\mathbb{H}^{N}\times[0,T_{\lambda}). For any p>1p>1, we see that

(6.1) B(0,σ)λϕ(η)dηλB(0,σ)(1+|η|N)Adη{λifσ>1,A>Q,λlog(e+σ)ifσ>1,A=Q,λσQAifσ>1,0<A<Q,\begin{split}\int_{B(0,\sigma)}\lambda\phi(\eta)\,\mathop{}\!\mathrm{d}\eta&\geq\lambda\int_{B(0,\sigma)}(1+|\eta|_{\mathbb{H}^{N}})^{-A}\,\mathop{}\!\mathrm{d}\eta\\ &\gtrsim\left\{\begin{aligned} &\lambda\quad&&\mbox{if}\quad\sigma>1,A>Q,\\ &\lambda\log(e+\sigma)\quad&&\mbox{if}\quad\sigma>1,A=Q,\\ &\lambda\sigma^{Q-A}\quad&&\mbox{if}\quad\sigma>1,0<A<Q,\\ \end{aligned}\right.\end{split}

for all σ>1\sigma>1 and sufficiently small λ>0\lambda>0. In the case of p=pα,Qp=p_{\alpha,Q}, it follows from assertion (ii) in Theorem A that

B(0,σ)λϕ(η)dηγA[log(e+Tλ1/ασ)]Qα\int_{B(0,\sigma)}\lambda\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\leq\gamma_{A}\left[\log\left(e+\frac{T_{\lambda}^{1/\alpha}}{\sigma}\right)\right]^{-\frac{Q}{\alpha}}

for all 0<σ<Tλ1/α0<\sigma<T_{\lambda}^{1/\alpha} and sufficiently small λ>0\lambda>0. This implies that

(6.2) B(0,Tλ12α)λϕ(η)dηγA[logTλ]Qα,\int_{B(0,T_{\lambda}^{\frac{1}{2\alpha}})}\lambda\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\lesssim\gamma_{A}[\log T_{\lambda}]^{-\frac{Q}{\alpha}},
(6.3) B(0,Tλ1α)λϕ(η)dηγA,\int_{B(0,T_{\lambda}^{\frac{1}{\alpha}})}\lambda\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\lesssim\gamma_{A},

for all sufficiently small λ>0\lambda>0. By (6.1) and (6.2) with σ=Tλ1/2α\sigma=T_{\lambda}^{1/2\alpha} we obtain assertion (i). Furthermore, by (6.1) and (6.3) with σ=Tλ1/α\sigma=T_{\lambda}^{1/\alpha} we obtain assertion (ii) in the case where p=pα,Qp=p_{\alpha,Q} and A<1/(p1)A<1/(p-1).

We prove assertion (ii) in the case of 1<p<pα,Q1<p<p_{\alpha,Q}. By assertion (i) in Theorem A we see that

(6.4) B(0,Tλ1α)λϕ(η)dηγATλQα1p1.\int_{B(0,T_{\lambda}^{\frac{1}{\alpha}})}\lambda\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\leq\gamma_{A}T_{\lambda}^{\frac{Q}{\alpha}-\frac{1}{p-1}}.

By (6.1) and (6.4), we obtain assertion (ii) in the case of 1<p<pα,Q1<p<p_{\alpha,Q}. Similarly, we obtain assertion (ii) in the case of p>pα,Qp>p_{\alpha,Q}. Thus, the proof is complete. ∎

Theorem G.

Let N1N\geq 1 and p>1p>1. Let A>0A>0 and ϕ\phi be a nonnegative measurable function in N\mathbb{H}^{N} such that

0ϕ(η)(1+|η|N)A0\leq\phi(\eta)\leq(1+|\eta|_{\mathbb{H}^{N}})^{-A}

for a.a. ηN\eta\in\mathbb{H}^{N}.

  • (i)

    Let p=pα,Qp=p_{\alpha,Q} and Aα/(p1)=QA\geq\alpha/(p-1)=Q. Then there exists a constant C>0C>0 such that

    logT(λϕ){Cλ(p1)ifA>Q,Cλp1pifA=Q,\log T(\lambda\phi)\geq\left\{\begin{aligned} &C\lambda^{-(p-1)}\quad&&\mbox{if}\quad A>Q,\\ &C\lambda^{-\frac{p-1}{p}}\quad&&\mbox{if}\quad A=Q,\\ \end{aligned}\right.

    for all sufficiently small λ>0\lambda>0.

  • (ii)

    Let 1<p<pα,Q1<p<p_{\alpha,Q} or A<α/(p1)A<\alpha/(p-1). Then there exists a positive constant C>0C^{\prime}>0 such that

    T(λϕ){Cλ(1p11αmin{A,Q})1ifAQ,C(λ1log(λ1))(1p1Qα)1ifA=Q,T(\lambda\phi)\geq\left\{\begin{aligned} &C^{\prime}\lambda^{-\left(\frac{1}{p-1}-\frac{1}{\alpha}\min\{A,Q\}\right)^{-1}}\quad&&\mbox{if}\quad A\neq Q,\\ &C^{\prime}\left(\frac{\lambda^{-1}}{\log(\lambda^{-1})}\right)^{\left(\frac{1}{p-1}-\frac{Q}{\alpha}\right)^{-1}}\quad&&\mbox{if}\quad A=Q,\\ \end{aligned}\right.

    for all sufficiently small λ>0\lambda>0.

Proof.

We apply Theorem E to prove assertion (i). Let p=pα,Qp=p_{\alpha,Q} and set

Ψ(s):=s[log(e+s)]Qα,ρ(s):=sQ[log(e+1s)]Qα,\Psi(s):=s[\log(e+s)]^{\frac{Q}{\alpha}},\qquad\rho(s):=s^{-Q}\left[\log\left(e+\frac{1}{s}\right)\right]^{-\frac{Q}{\alpha}},

for s>0s>0 (see (1.15)). For any λ(0,1)\lambda\in(0,1) and ϵ(0,1)\epsilon\in(0,1), set

T¯λ:={exp(ϵλ(p1)),ifA>Q,exp(ϵλp1p),ifA=Q.\overline{T}_{\lambda}:=\left\{\begin{aligned} &\exp(\epsilon\lambda^{-(p-1)}),\quad&&\mbox{if}\quad A>Q,\\ &\exp(\epsilon\lambda^{-\frac{p-1}{p}}),\quad&&\mbox{if}\quad A=Q.\\ \end{aligned}\right.

We shall prove that problem (1.1) with μ=λϕ\mu=\lambda\phi possesses a solution in N×[0,T¯λ)\mathbb{H}^{N}\times[0,\overline{T}_{\lambda}). Let LeL\geq e be such that

s[log(L+s)]Qαis increasing in[0,).s[\log(L+s)]^{-\frac{Q}{\alpha}}\quad\mbox{is increasing in}\,\,[0,\infty).

Then we see that Ψ(s)s[log(L+s)]Q/α\Psi(s)\sim s[\log(L+s)]^{{Q/\alpha}} and Ψ1(s)s[log(e+s)]Q/αs[log(L+s)]Q/α\Psi^{-1}(s)\sim s[\log(e+s)]^{-{Q/\alpha}}\sim s[\log(L+s)]^{-{Q/\alpha}} for all s>0s>0.

We consider the case of A>QA>Q. By (2.1) and (2.2), we have

(6.5) supζNΨ1[B(ζ,σ)Ψ(T¯λ1p1λϕ(η))dη]Ψ1[B(0,σ)Ψ(T¯λQαλ(1+|η|N)A)dη]Ψ1[CσQ0σ2Ψ(T¯λQαλ(1+r)A)rNdr]\begin{split}&\sup_{\zeta\in\mathbb{H}^{N}}\Psi^{-1}\left[\fint_{B(\zeta,\sigma)}\Psi\left(\overline{T}_{\lambda}^{\frac{1}{p-1}}\lambda\phi(\eta)\right)\,\mathop{}\!\mathrm{d}\eta\right]\\ &\leq\Psi^{-1}\left[\fint_{B(0,\sigma)}\Psi\left(\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\lambda(1+|\eta|_{\mathbb{H}^{N}})^{-A}\right)\,\mathop{}\!\mathrm{d}\eta\right]\\ &\leq\Psi^{-1}\left[C\sigma^{-Q}\int_{0}^{\sigma^{2}}\Psi\left(\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\lambda(1+\sqrt{r})^{-A}\right)r^{N}\,\mathop{}\!\mathrm{d}r\right]\\ \end{split}

for all σ>0\sigma>0. Since

(6.6) log[L+T¯λQαλ(1+r)A]log(CT¯λQα)ϵλαQ\log\left[L+\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\lambda(1+\sqrt{r})^{-A}\right]\leq\log(C\overline{T}_{\lambda}^{\frac{Q}{\alpha}})\lesssim\epsilon\lambda^{-\frac{\alpha}{Q}}

for sufficiently small λ>0\lambda>0, we have

(6.7) σQ0σ2Ψ(T¯λQαλ(1+r)A)rNdrϵQαT¯λQασQ0σ2(1+r)ArNdrϵQαT¯λQασQ\begin{split}&\sigma^{-Q}\int_{0}^{\sigma^{2}}\Psi\left(\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\lambda(1+\sqrt{r})^{-A}\right)r^{N}\,\mathop{}\!\mathrm{d}r\\ &\lesssim\epsilon^{\frac{Q}{\alpha}}\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\sigma^{-Q}\int_{0}^{\sigma^{2}}(1+\sqrt{r})^{-A}r^{N}\,\mathop{}\!\mathrm{d}r\lesssim\epsilon^{\frac{Q}{\alpha}}\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\sigma^{-Q}\end{split}

for all 0<σ<T¯λ1/α0<\sigma<\overline{T}_{\lambda}^{1/\alpha} and sufficiently small λ>0\lambda>0. This together with (6.5) implies that

supζNΨ1[B(ζ,σ)Ψ(T¯λ1p1λϕ(η))dη]Ψ1(CϵQαT¯λQασQ)ϵQαT¯λQασQ[log(L+CϵQαT¯λQασQ)]QαϵQαT¯λQασQ[log(L+T¯λ1/ασ)]Qα=ϵQαρ(σT¯λ1α)\begin{split}&\sup_{\zeta\in\mathbb{H}^{N}}\Psi^{-1}\left[\fint_{B(\zeta,\sigma)}\Psi\left(\overline{T}_{\lambda}^{\frac{1}{p-1}}\lambda\phi(\eta)\right)\,\mathop{}\!\mathrm{d}\eta\right]\\ &\leq\Psi^{-1}(C\epsilon^{\frac{Q}{\alpha}}\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\sigma^{-Q})\lesssim\epsilon^{\frac{Q}{\alpha}}\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\sigma^{-Q}\left[\log\left(L+C\epsilon^{\frac{Q}{\alpha}}\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\sigma^{-Q}\right)\right]^{-\frac{Q}{\alpha}}\\ &\lesssim\epsilon^{\frac{Q}{\alpha}}\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\sigma^{-Q}\left[\log\left(L+\frac{\overline{T}_{\lambda}^{1/\alpha}}{\sigma}\right)\right]^{-\frac{Q}{\alpha}}=\epsilon^{\frac{Q}{\alpha}}\rho(\sigma\overline{T}_{\lambda}^{-\frac{1}{\alpha}})\\ \end{split}

for all 0<σ<T¯λ1/α0<\sigma<\overline{T}_{\lambda}^{1/\alpha} and sufficiently small λ>0\lambda>0. Therefore, taking a sufficiently small ϵ>0\epsilon>0 if necessary, we apply Theorem E to see that problem (1.1) with μ=λϕ\mu=\lambda\phi possesses a solution in N×[0,Tλ)\mathbb{H}^{N}\times[0,T_{\lambda}) and

T(λϕ)T¯λ=exp(ϵλ(p1))T(\lambda\phi)\geq\overline{T}_{\lambda}=\exp(\epsilon\lambda^{-(p-1)})

for all sufficiently small λ>0\lambda>0.

We consider the case of A=QA=Q. Similarly to (6.6) and (6.7), we have

σQ0σ2Ψ(T¯λQαλ(1+r)A)rNdrλT¯λQα[logT¯λ]QασQ0σ2(1+r)ArNdrλT¯λQα[logT¯λ]Qα+1σQϵQ+ααT¯λQασQ\begin{split}\sigma^{-Q}\int_{0}^{\sigma^{2}}\Psi\left(\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\lambda(1+\sqrt{r})^{-A}\right)r^{N}\,\mathop{}\!\mathrm{d}r&\lesssim\lambda\overline{T}_{\lambda}^{\frac{Q}{\alpha}}[\log\overline{T}_{\lambda}]^{\frac{Q}{\alpha}}\sigma^{-Q}\int_{0}^{\sigma^{2}}(1+\sqrt{r})^{-A}r^{N}\,\mathop{}\!\mathrm{d}r\\ &\lesssim\lambda\overline{T}_{\lambda}^{\frac{Q}{\alpha}}[\log\overline{T}_{\lambda}]^{\frac{Q}{\alpha}+1}\sigma^{-Q}\lesssim\epsilon^{\frac{Q+\alpha}{\alpha}}\overline{T}_{\lambda}^{\frac{Q}{\alpha}}\sigma^{-Q}\end{split}

for all 0<σ<T¯λ1/α0<\sigma<\overline{T}_{\lambda}^{1/\alpha} and sufficiently small λ>0\lambda>0. Then we apply the same argument as in the case of A>QA>Q to see that

T(λϕ)T¯λ=exp(ϵλp1p)T(\lambda\phi)\geq\overline{T}_{\lambda}=\exp(\epsilon\lambda^{-\frac{p-1}{p}})

for all sufficiently small λ>0\lambda>0. Thus, assertion (i) follows.

We shall prove assertion (ii) in the case where ppα,Qp\geq p_{\alpha,Q} and A<α/(p1)A<\alpha/(p-1). It follows that A<α/(p1)QA<\alpha/(p-1)\leq Q. For λ(0,1)\lambda\in(0,1) and ϵ(0,1)\epsilon\in(0,1), set

T~λ:=ϵλ(1p1Aα)1.\tilde{T}_{\lambda}:=\epsilon\lambda^{-\left(\frac{1}{p-1}-\frac{A}{\alpha}\right)^{-1}}.

Let θ>1\theta>1 be such that Aθ<QA\theta<Q. Then by (2.1) and (2.2) we have

(6.8) (B(η,σ)(λϕ(ζ))θdζ)1θλ(B(0,σ)(1+|ζ|N)Aθ)1θλσA\left(\fint_{B(\eta,\sigma)}(\lambda\phi(\zeta))^{\theta}\,\mathop{}\!\mathrm{d}\zeta\right)^{\frac{1}{\theta}}\leq\lambda\left(\fint_{B(0,\sigma)}(1+|\zeta|_{\mathbb{H}^{N}})^{-A\theta}\right)^{\frac{1}{\theta}}\lesssim\lambda\sigma^{-A}

for all ζN\zeta\in\mathbb{H}^{N} and 0<σ<T~λ1/α0<\sigma<\tilde{T}_{\lambda}^{1/\alpha}. On the other hand, it follows that

(6.9) λσA=σαp1λσαp1Aσαp1λT~λ1p1Aα=ϵ1p1Aασαp1\lambda\sigma^{-A}=\sigma^{-\frac{\alpha}{p-1}}\cdot\lambda\sigma^{\frac{\alpha}{p-1}-A}\leq\sigma^{-\frac{\alpha}{p-1}}\cdot\lambda\tilde{T}_{\lambda}^{\frac{1}{p-1}-\frac{A}{\alpha}}=\epsilon^{\frac{1}{p-1}-\frac{A}{\alpha}}\sigma^{-\frac{\alpha}{p-1}}

for all 0<σ<T~λ1/α0<\sigma<\tilde{T}_{\lambda}^{1/\alpha}. Taking a sufficiently small ϵ>0\epsilon>0 if necessary, by (6.8) and (6.9) we obtain (1.14) for all 0<σ<T~λ1/α0<\sigma<\tilde{T}_{\lambda}^{1/\alpha}. Then it follows from Theorem D that problem (1.1) with μ=λϕ\mu=\lambda\phi possesses a solution in N×[0,T~λ)\mathbb{H}^{N}\times[0,\tilde{T}_{\lambda}) and

TλT~λ=ϵλ(1p1Aα)1.T_{\lambda}\geq\tilde{T}_{\lambda}=\epsilon\lambda^{-\left(\frac{1}{p-1}-\frac{A}{\alpha}\right)^{-1}}.

Thus, assertion (ii) in the case where ppα,Qp\geq p_{\alpha,Q} and A<α/(p1)A<\alpha/(p-1) follows.

It remains to prove assertion (ii) in the case of 1<p<pα,Q1<p<p_{\alpha,Q}. For λ(0,1)\lambda\in(0,1) and ϵ(0,1)\epsilon\in(0,1), set

T^λ:={ϵλ(1p11αmin{A,Q})1ifAQ,ϵ(λ1log(λ1))(1p1Qα)1ifA=Q.\hat{T}_{\lambda}:=\left\{\begin{aligned} &\epsilon\lambda^{-\left(\frac{1}{p-1}-\frac{1}{\alpha}\min\{A,Q\}\right)^{-1}}\quad&&\mbox{if}\quad A\neq Q,\\ &\epsilon\left(\frac{\lambda^{-1}}{\log(\lambda^{-1})}\right)^{\left(\frac{1}{p-1}-\frac{Q}{\alpha}\right)^{-1}}\quad&&\mbox{if}\quad A=Q.\\ \end{aligned}\right.

It follows from (2.1) that

supζNB(ζ,T^λ1α)λϕ(η)dη{λifA>Q,λlog(e+T^λ1α)ifA=Q,λT^λQAαif0<A<Q.\sup_{\zeta\in\mathbb{H}^{N}}\int_{B(\zeta,\hat{T}_{\lambda}^{\frac{1}{\alpha}})}\lambda\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\lesssim\left\{\begin{aligned} &\lambda\quad&&\mbox{if}\quad A>Q,\\ &\lambda\log(e+\hat{T}_{\lambda}^{\frac{1}{\alpha}})\quad&&\mbox{if}\quad A=Q,\\ &\lambda\hat{T}_{\lambda}^{\frac{Q-A}{\alpha}}\quad&&\mbox{if}\quad 0<A<Q.\\ \end{aligned}\right.

Then taking a sufficiently small ϵ>0\epsilon>0 if necessary, we obtain

supζNB(ζ,T^λ1α)λϕ(η)dηγCT^λQα1p1\sup_{\zeta\in\mathbb{H}^{N}}\int_{B(\zeta,\hat{T}_{\lambda}^{\frac{1}{\alpha}})}\lambda\phi(\eta)\,\mathop{}\!\mathrm{d}\eta\leq\gamma_{C}\hat{T}_{\lambda}^{\frac{Q}{\alpha}-\frac{1}{p-1}}

for all sufficiently small λ>0\lambda>0, where γC>0\gamma_{C}>0 is as in Theorem C. Then it follows from Theorem C that problem (1.1) with μ=λϕ\mu=\lambda\phi possesses a solution in N×[0,T~λ)\mathbb{H}^{N}\times[0,\tilde{T}_{\lambda}) and

TλT^λ={ϵλ(1p11αmin{A,Q})1ifAQ,ϵ(λ1log(λ1))(1p1Qα)1ifA=Q.T_{\lambda}\geq\hat{T}_{\lambda}=\left\{\begin{aligned} &\epsilon\lambda^{-\left(\frac{1}{p-1}-\frac{1}{\alpha}\min\{A,Q\}\right)^{-1}}\quad&&\mbox{if}\quad A\neq Q,\\ &\epsilon\left(\frac{\lambda^{-1}}{\log(\lambda^{-1})}\right)^{\left(\frac{1}{p-1}-\frac{Q}{\alpha}\right)^{-1}}\quad&&\mbox{if}\quad A=Q.\\ \end{aligned}\right.

Thus, the proof is complete. ∎

At the end of this section, we describe summaries of Theorems F and G in tables. The following tables show the behavior of the life span Tλ:=T(λϕ)T_{\lambda}:=T(\lambda\phi) as λ0+\lambda\to 0^{+}, where

ϕ(η):=(1+|η|N)AandA>0.\phi(\eta):=(1+|\eta|_{\mathbb{H}^{N}})^{-A}\quad\mbox{and}\quad A>0.

If it is marked with †, it is already shown in [GP21] in the case of α=2\alpha=2.

Table 1. The behavior of TλT_{\lambda} in the case of AQA\neq Q (as λ0+\lambda\to 0^{+}).
pp AA A<αp1A<\frac{\alpha}{p-1} A=αp1A=\frac{\alpha}{p-1} A>αp1A>\frac{\alpha}{p-1}
p<pα,Qp<p_{\alpha,Q} Tλλ(1p11αmin{A,Q})1T_{\lambda}\sim\lambda^{-\left(\frac{1}{p-1}-\frac{1}{\alpha}\min\{A,Q\}\right)^{-1}} Tλλ(1p1Qα)1T_{\lambda}\sim\lambda^{-\left(\frac{1}{p-1}-\frac{Q}{\alpha}\right)^{-1}} Tλλ(1p1Qα)1T_{\lambda}\sim\lambda^{-\left(\frac{1}{p-1}-\frac{Q}{\alpha}\right)^{-1}}
p=pα,Qp=p_{\alpha,Q} Tλλ(1p1Aα)1T_{\lambda}\sim\lambda^{-\left(\frac{1}{p-1}-\frac{A}{\alpha}\right)^{-1}} (A=QA=Q, see Table 2) logTλλ(p1)\log T_{\lambda}\sim\lambda^{-(p-1)}
p>pα,Qp>p_{\alpha,Q} Tλλ(1p1Aα)1T_{\lambda}\sim\lambda^{-\left(\frac{1}{p-1}-\frac{A}{\alpha}\right)^{-1}} Tλ=T_{\lambda}=\infty Tλ=T_{\lambda}=\infty
Table 2. The behavior of TλT_{\lambda} in the case of A=QA=Q (as λ0+\lambda\to 0^{+}).
pp AA A=QA=Q
p<pα,Qp<p_{\alpha,Q} Tλ(λ1log(λ1))(1p1Qα)1T_{\lambda}\sim\left(\frac{\lambda^{-1}}{\log(\lambda^{-1})}\right)^{\left(\frac{1}{p-1}-\frac{Q}{\alpha}\right)^{-1}}
p=pα,Qp=p_{\alpha,Q} logTλλp1p\log T_{\lambda}\sim\lambda^{-\frac{p-1}{p}}
p>pα,Qp>p_{\alpha,Q} Tλ=T_{\lambda}=\infty

Acknowledgments.

The first-named author was supported by the research grant ARC DP220100285 from the Australian Research Council.

Statements and Declarations.

  • The second-named author did not receive support from any organization for the submitted work.

  • The authors have no relevant financial or non-financial interests to disclose.

References