This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Existence of smooth solutions to the Landau-Fermi-Dirac equation with Coulomb potential

William Golding Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Austin TX, 78712 [email protected] Maria Pia Gualdani Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Austin TX, 78712 [email protected]  and  Nicola Zamponi Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna (Austria) [email protected]
Abstract.

In this paper, we prove global-in-time existence and uniqueness of smooth solutions to the homogeneous Landau-Fermi-Dirac equation with Coulomb potential. The initial conditions are nonnegative, bounded and integrable. We also show that any weak solution converges towards the steady state given by the Fermi-Dirac statistics. Furthermore, the convergence is algebraic, provided that the initial datum is close to the steady state in a suitable weighted Lebesgue norm.

WG is partially supported by the NSF-DMS grant 1840314
MG is partially supported by the DMS-NSF 2019335 and would like to thank NCTS Mathematical Division of Taipei for their kind hospitality.
NZ acknowledges support from the Alexander von Humboldt Foundation (AvH) and from the Austrian Science Foundation (FWF), grants P30000, P33010.
Key words: Landau-Fermi-Dirac equation, existence and uniqueness, regularity, coercivity, dissipation, long-time behavior, algebraic decay, H-theorem. 2020 Mathematics Subject Classification: 35BXX, 35K59, 35K55, 35P15, 35Q84, 82C40, 82D10

1. Introduction

We consider the homogeneous Landau-Fermi-Dirac equation with Coulomb potential

(1.1) tf=18πdivv3Π(vv)|vv|[f(v)(1εf(v))vff(v)(1εf(v))vf(v)]𝑑v,\displaystyle\partial_{t}f=\frac{1}{8\pi}\textrm{div}_{v}\int_{\mathbb{R}^{3}}\frac{\Pi(v-v_{*})}{|v-v_{*}|}\left[f(v_{*})(1-\varepsilon f(v_{*}))\nabla_{v}f-f(v)(1-\varepsilon f(v))\nabla_{v_{*}}f(v_{*})\right]\;dv_{*},

where Π(z)\Pi(z) is the standard projection matrix

Π(z)=Idzz|z|2.\Pi(z)=Id-\frac{z\otimes z}{|z|^{2}}.

The function f(v,t)f(v,t) models the distribution of velocities within a single species quantum gas. The particles considered here are fermions (e.g. electrons) interacting in a grazing collision regime [1]. The parameter ε\varepsilon quantifies the strength of the quantum effects of the system for the particular species considered and depends on Planck’s constant, the mass of the species, and the number of independent quantum weights of the species. In particular, we notice that in the case ε=0\varepsilon=0 eq. (1.1) reduces to the classical Landau equation. The Pauli exclusion principle implies that ff satisfies the a priori bound

0f1ε.0\leq f\leq\frac{1}{\varepsilon}.

This bound is the key ingredient in our proof. See also [21] for a discussion on the Boltzmann equation with Fermi-Dirac statistic.

Equation (1.1) is well-understood for the cases of moderately soft and hard potentials, namely when the kernel 1|vv|\frac{1}{|v-v^{*}|} is replaced by 1|vv|γ2\frac{1}{|v-v^{*}|^{-\gamma-2}} for γ2\gamma\geq-2. In [2], the authors consider the moderately soft potentials case (2γ0-2\leq\gamma\leq 0) and show algebraic convergence of non degenerate solutions towards equilibrium for initial data satisfying a suitable non saturation condition. Existence and uniqueness of weak solution for hard potentials (γ0\gamma\geq 0) are shown in [7], regularity and smoothing effects are studied in [15, 14], and exponential convergence towards equilibrium in [4]. In [3], the authors present fundamental properties of the entropy and entropy production functional for hard and moderately soft potentials. The existence of nondegenerate steady for any potential is shown in [8].

The Landau-Fermi-Dirac equation shares several properties with the classical Landau equation. Multiplying (1.1) by a test function ϕ\phi, integrating by parts, and applying a straightforward symmetry argument, one obtains

(1.2) 3\displaystyle\int_{\mathbb{R}^{3}} tfϕdv=116π33Π(vv)|vv|[f(1εf)vff(1εf)vf][ϕϕ]𝑑v𝑑v.\displaystyle\partial_{t}f\phi\;dv=-\frac{1}{16\pi}\int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}\frac{\Pi(v-v_{*})}{|v-v_{*}|}[f(1-\varepsilon f)\nabla_{v_{*}}f-f_{*}(1-\varepsilon f_{*})\nabla_{v}f][\nabla\phi_{*}-\nabla\phi]\;dv_{*}dv.

Conservation of mass, momentum and energy conservation follows from (1.2) by choosing ϕ(v){1,v,|v|2}\phi(v)\in\{1,v,|v|^{2}\}. A version of the H-theorem for (1.1) is also available: with

ϕ=ln(εf1εf)\phi=\ln\left(\frac{\varepsilon f}{1-\varepsilon f}\right)

in (1.2), one obtains that

ddtHε[f](t)=116π33\displaystyle\frac{d}{dt}H_{\varepsilon}[f](t)=-\frac{1}{16\pi}\int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}} f(1εf)f(1εf)\displaystyle f(1-\varepsilon f)f_{*}(1-\varepsilon f_{*})\cdot
(1.3) Π(vv)|vv|[vff(1εf)vff(1εf)]2dvdv0,\displaystyle\cdot\frac{\Pi(v-v_{*})}{|v-v_{*}|}\left[\frac{\nabla_{v_{*}}f_{*}}{f_{*}(1-\varepsilon f_{*})}-\frac{\nabla_{v}f}{f(1-\varepsilon f)}\right]^{2}\;dv_{*}dv\leq 0,

where

Hε[f]:=1ε3εfln(εf)+(1εf)ln(1εf)dv.H_{\varepsilon}[f]:=\frac{1}{\varepsilon}\int_{\mathbb{R}^{3}}\varepsilon f\ln(\varepsilon f)+(1-\varepsilon f)\ln(1-\varepsilon f)\;dv.

Eq. (1.3) is the entropy balance equation associated to (1.1), with Hε-H_{\varepsilon} being the (physical) Fermi-Dirac entropy functional. The only smooth function that nullifies the entropy production, ddtHε[f]=0\frac{d}{dt}H_{\varepsilon}[f]=0, is the Fermi-Dirac equilibrium distribution

(1.4) ε(v):=aeb|vu|21+εaeb|vu|2,\displaystyle\mathcal{M}_{\varepsilon}(v):=\frac{ae^{-b|v-u|^{2}}}{1+\varepsilon ae^{-b|v-u|^{2}}},

which is also the only smooth minimizer of HεH_{\varepsilon} under the constraints of given mass, momentum, and energy [8]. The constants a>0a>0, b>0b>0, and u3u\in\mathbb{R}^{3} are determined by the mass, first and second moment of the initial data

3(1v|v|2)ε(v)𝑑v=3(1v|v|2)f(v,t)𝑑v=3(1v|v|2)f(0,v)𝑑v.\displaystyle\int_{\mathbb{R}^{3}}\begin{pmatrix}1\\ v\\ |v|^{2}\end{pmatrix}\mathcal{M}_{\varepsilon}(v)dv=\int_{\mathbb{R}^{3}}\begin{pmatrix}1\\ v\\ |v|^{2}\end{pmatrix}f(v,t)dv=\int_{\mathbb{R}^{3}}\begin{pmatrix}1\\ v\\ |v|^{2}\end{pmatrix}f(0,v)dv.

There are other nonsmooth distributions of the form

ε(v):=ε1χΩ,\mathcal{F}_{\varepsilon}(v):={\varepsilon^{-1}}\chi_{\Omega},

with Ω\Omega of 3\mathbb{R}^{3} a measurable subset, that satisfies (formally) Hε[ε]=ddtHε[ε]=0H_{\varepsilon}[\mathcal{F}_{\varepsilon}]=\frac{d}{dt}H_{\varepsilon}[\mathcal{F}_{\varepsilon}]=0 and solves (1.1). These particular stationary solutions are called saturated Fermi-Dirac states. As such, any solution to (1.1) with general initial data could approach, as time grows, such saturated states. However, given an initial data with mass ρ\rho, momentum uu and energy EE, there exists only one value of ε\varepsilon, uniquely determined by ρ\rho, uu and EE, for which ε(v)\mathcal{F}_{\varepsilon}(v) is an admissible stationary solution. For ε\varepsilon below such value, the only steady-state is ε\mathcal{M}_{\varepsilon}.

Taking the formal limit ε0\varepsilon\to 0 in eq. (1.1), one obtains the classical Landau equation. Furthermore, Hε[f]H[f]=3flnfdvH_{\varepsilon}[f]\to H[f]=\int_{\mathbb{R}^{3}}f\ln f\;dv as ε0\varepsilon\to 0 modulus a multiple of the mass 3f𝑑v\int_{\mathbb{R}^{3}}f\;dv:

Hε[f](lnε1)3f𝑑vH[f]as ε0.\displaystyle H_{\varepsilon}[f]-(\ln\varepsilon-1)\int_{\mathbb{R}^{3}}f\;dv\to H[f]\quad\mbox{as }\varepsilon\to 0.

The addition of a multiple of the mass to Hε[f]H_{\varepsilon}[f] does not change the entropy balance equation (1.3) nor the form of the equilibrium distribution (1.4), thanks to the conservation of mass property. The equilibrium distribution ε(v)\mathcal{M}_{\varepsilon}(v) also converges towards the classical Maxwellian distribution M(v)=aeb|vu|2M(v)=ae^{-b|v-u|^{2}} as ε0\varepsilon\to 0. Finally, strictly related to the limits Hε[f]H[f]H_{\varepsilon}[f]\to H[f] and εM\mathcal{M}_{\varepsilon}\to M is the fact that the relative entropy

Hε[f|ε]:=\displaystyle H_{\varepsilon}[f|\mathcal{M}_{\varepsilon}]:= 3ε[fεln(fε)fε+1]\displaystyle\int_{\mathbb{R}^{3}}\mathcal{M}_{\varepsilon}\left[\frac{f}{\mathcal{M}_{\varepsilon}}\ln\left(\frac{f}{\mathcal{M}_{\varepsilon}}\right)-\frac{f}{\mathcal{M}_{\varepsilon}}+1\right]
+1ε3(1εε)[1εf1εεln(1εf1εε)1εf1εε+1]𝑑v\displaystyle+\frac{1}{\varepsilon}\int_{\mathbb{R}^{3}}(1-\varepsilon\mathcal{M}_{\varepsilon})\left[\frac{1-\varepsilon f}{1-\varepsilon\mathcal{M}_{\varepsilon}}\ln\left(\frac{1-\varepsilon f}{1-\varepsilon\mathcal{M}_{\varepsilon}}\right)-\frac{1-\varepsilon f}{1-\varepsilon\mathcal{M}_{\varepsilon}}+1\right]\;dv

converges to the relative entropy of the classical Landau equation

H[f|M]:=\displaystyle H[f|M]:= 3M[fMln(fM)fM+1]𝑑v.\displaystyle\int_{\mathbb{R}^{3}}M\left[\frac{f}{M}\ln\left(\frac{f}{M}\right)-\frac{f}{M}+1\right]\;dv.

The next observation concerns the structure of the collision operator. For a smooth ff, the interaction term can be expressed as a second order elliptic nonlinear operator with non-local coefficients:

divv(A[f(1εf)]ff(1εf)a[f]),\textrm{div}_{v}\left(A[f(1-\varepsilon f)]\nabla f-f(1-\varepsilon f)\nabla a[f]\right),

where the matrix A[f(1εf)]A[f(1-\varepsilon f)] is defined through the map

A:gA[g],A:g\mapsto A[g],

with

(1.5) A[g]:=18π3Π(vv)|vv|g(v)𝑑v,a[f]:=14π3f(v)|vv|𝑑v.A[g]:=\frac{1}{8\pi}\int_{\mathbb{R}^{3}}\frac{\Pi(v-v_{*})}{|v-v_{*}|}g(v_{*})\;dv_{*},\quad a[f]:=\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{f(v_{*})}{|v-v_{*}|}\;dv_{*}.

1.1. Main Results

Our first result concerns existence of smooth solutions to (1.1). Unlike in the case of the classical Landau equation, we are able to show global-in-time existence of smooth solutions for a general class of initial datum. Our regularity estimates depend on the quantum parameter. At the present moment, it seems out of reach to obtain similar results uniformly with respect to ε\varepsilon. Therefore, in the rest of the manuscript we set ε=1\varepsilon=1.

Theorem 1.1.

Suppose fin:3f_{in}:\mathbb{R}^{3}\rightarrow\mathbb{R} satisfies 0fin10\leq f_{in}\leq 1, (1+|v|3)finL1(3)(1+|v|^{3})f_{in}\in L^{1}(\mathbb{R}^{3}), and H1(fin)<0H_{1}(f_{in})<0. Then, there is a solution f:[0,)×3f:[0,\infty)\times\mathbb{R}^{3}\rightarrow\mathbb{R} with fC([0,);L2(3))f\in C([0,\infty);L^{2}(\mathbb{R}^{3})) such that f(0)=finf(0)=f_{in}, 0f10\leq f\leq 1, fL([0,);Lp(3))L2([0,T];H1(3))f\in L^{\infty}([0,\infty);L^{p}(\mathbb{R}^{3}))\cap L^{2}([0,T];H^{1}(\mathbb{R}^{3})) for each 1p1\leq p\leq\infty, and for each T>0T>0, and φL2([0,T];H1(3))\varphi\in L^{2}([0,T];H^{1}(\mathbb{R}^{3})),

(1.6) 0Tφ,tfH1,H1𝑑t=0T3(A[f(1f)]fa[f]f(1f))φdvdt.\int_{0}^{T}\langle\varphi,\partial_{t}f\rangle_{H^{1},H^{-1}}\;dt=-\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(A[f(1-f)]\nabla f-\nabla a[f]f(1-f)\right)\cdot\nabla\varphi\;dvdt.

Moreover, ff has decreasing (Fermi-Dirac) entropy and satisfies conservation of mass, energy, and momentum.

If the initial data has moments (1+|v|m)finL1(3)(1+|v|^{m})f_{in}\in L^{1}(\mathbb{R}^{3}) with m>9m>9, the solution is unique.

By a simple time rescaling, we obtain global-in-time existence and uniqueness for any quantum parameter:

Corollary 1.2.

Fix ε>0\varepsilon>0 and let fin:3f_{in}:\mathbb{R}^{3}\rightarrow\mathbb{R} satisfies 0finε10\leq f_{in}\leq\varepsilon^{-1}, (1+|v|3)finL1(3)(1+|v|^{3})f_{in}\in L^{1}(\mathbb{R}^{3}), and Hε(fin)<0H_{\varepsilon}(f_{in})<0. Then, there is a unique f:[0,)×3f:[0,\infty)\times\mathbb{R}^{3}\rightarrow\mathbb{R} with fC([0,);L2(3))f\in C([0,\infty);L^{2}(\mathbb{R}^{3})) such that f(0)=finf(0)=f_{in}, 0fε10\leq f\leq\varepsilon^{-1}, fL([0,);Lp(3)L2([0,T];H1(3))f\in L^{\infty}([0,\infty);L^{p}(\mathbb{R}^{3})\cap L^{2}([0,T];H^{1}(\mathbb{R}^{3})) for each 1p1\leq p\leq\infty, and for each T>0T>0, and φL2([0,T];H1(3))\varphi\in L^{2}([0,T];H^{1}(\mathbb{R}^{3})),

0Tφ,tfH1,H1𝑑t=0T3(A[f(1εf)]fa[f]f(1εf))φdvdt.\int_{0}^{T}\langle\varphi,\partial_{t}f\rangle_{H^{1},H^{-1}}\;dt=-\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(A[f(1-\varepsilon f)]\nabla f-\nabla a[f]f(1-\varepsilon f)\right)\cdot\nabla\varphi\;dvdt.

Moreover, ff has decreasing (Fermi-Dirac) entropy and satisfies conservation of mass, energy, and momentum.

Theorem 1.1 is proved in several steps. First, we approximate the problem by discretizing the time variable and adding suitable regularizing terms. The approximating problem is well-posed thanks to suitable fixed point arguments. After, we use uniform L2L^{2} and entropy inequalities to take limits as our regularizing terms vanish. A crucial ingredient is the uniform positive lower bound for the diffusion matrix A[f(1f)]A[f(1-f)], which follows from the boundedness of the second moment of ff and a uniform negative upper bound for the Fermi-Dirac entropy. This guarantees that equation (1.1) remains uniformly parabolic during the evolution of the system.

The weak solutions from Theorem 1.1 are, in fact, smooth solutions, provided the initial data has high enough moments:

Theorem 1.3.

Let ff be a weak solutions as in Theorem 1.1. If the initial data finf_{in} is, in addition, such that (1+|v|12)L1(3)(1+|v|^{12})\in L^{1}(\mathbb{R}^{3}) then fC((0,T];C(3))f\in C^{\infty}((0,T];C^{\infty}(\mathbb{R}^{3})).

The higher regularity of the solution is obtained thanks to parabolic regularity arguments, Morrey’s inequality and Schauder estimates. The parabolic regularity argument yields estimates for ff in W1,(0,T;W1,p)L(0,T;W1,p))W^{1,\infty}(0,T;W^{-1,p})\cap L^{\infty}(0,T;W^{1,p})) for any p[2,6]p\in[2,6]. Via interpolation between Sobolev spaces, we obtain a bound for ff in a fractional Sobolev space. From here, we deduce, the Hölder continuity of ff via Morrey’s inequality. A standard parabolic bootstrap argument yields fC((0,T];C(3))f\in C^{\infty}((0,T];C^{\infty}(\mathbb{R}^{3})).

Our regularity results do not hold in the limit ε0\varepsilon\to 0, since they heavily rely on the bound f1εf\leq\frac{1}{\varepsilon}. For the classical Landau equation, the Cauchy problem has been understood only for weak solutions [35] [18] [6] [1] [29]. Recently, in [28] and [34], the authors showed that, for a short time, weak solutions become instantaneously regular and smooth. The long time asymptotic for weak solutions has been studied in [13] and [12]. However, the question of whether solutions stay smooth for all time or become unbounded after a finite time is still open. Recent research has produced several conditional results regarding this inquiry. These results show regularity properties of solutions that already possess some basic properties (yet to be verified). They include (i) conditional uniqueness [23] [16], and (ii) conditional smoothness for solutions in L(0,T,Lp(d))L^{\infty}(0,T,L^{p}(\mathbb{R}^{d})) with p>d2p>\frac{d}{2} [34] [28]. In a very recent manuscript [19], the authors studied behavior of solutions in the space L(0,T,H˙1()3)L^{\infty}(0,T,\dot{H}^{1}(\mathbb{R}{{}^{3}})). They show that for general initial data there exists a time TT^{*} after which the weak solutions belong to L((T,+),H1()3)L^{\infty}((T^{*},+\infty),{H^{1}}(\mathbb{R}{{}^{3}})). This result agrees with the one in [25], in which the authors showed that the set of singular times for weak solutions has Hausdorff dimension at most 12\frac{1}{2}. In [9], the authors show that self-similar blow-up of type I cannot occur for solutions to the Landau equation.

The second result of this paper concerns the convergence towards the steady state as the time approaches infinity. We show that the convergence is algebraic, provided that the initial datum finf_{in} is close to the steady state ε\mathcal{M}_{\varepsilon} in a suitable weighted Lebesgue norm. Hereafter, we denote with \mathcal{M} the function defined in (1.4) with ε=1\varepsilon=1.

Theorem 1.4.

Given any initial datum fin:3[0,1]f_{in}:\mathbb{R}^{3}\to[0,1], finL21f_{in}\in L^{1}_{2}, such that H1[fin]<0H_{1}[f_{in}]<0, the solution ff to the initial value problem associated to (1.1) converges strongly in L1L^{1} as tt\to\infty to the Fermi-Dirac distribution \mathcal{M} with same mass, momentum and energy as finf_{in}.

Furthermore, there exists a constant >0\ell>0 such that, if

3(fin)21(1)1𝑑v<,\int_{\mathbb{R}^{3}}(f_{in}-\mathcal{M})^{2}\mathcal{M}^{-1}(1-\mathcal{M})^{-1}dv<\ell,
3(fin)21(1)1(1+|v|2)N/2𝑑v<,for someN1,\displaystyle\int_{\mathbb{R}^{3}}(f_{in}-\mathcal{M})^{2}\mathcal{M}^{-1}(1-\mathcal{M})^{-1}(1+|v|^{2})^{N/2}dv<\infty,\quad\textrm{for some}\;N\geq 1,

then

3(f(t))2(1)𝑑v(1+t)N,t>0.\displaystyle\int_{\mathbb{R}^{3}}\frac{(f(t)-\mathcal{M})^{2}}{\mathcal{M}(1-\mathcal{M})}dv\lesssim(1+t)^{-N},\qquad t>0.

The unconditional convergence (without rate) towards the steady state is obtained from the entropy balance equation in the following way. We integrate the balance equation in time and use the ellipticity properties of the entropy dissipation to deduce that f(tn)f(t_{n})\to\mathcal{M} along a suitable sequence of time instants tnt_{n}\to\infty. The monotonicity in time of the relative entropy yields that f(t)f(t)\to\mathcal{M} strongly in L1L^{1} as tt\to\infty.

The algebraic convergence for initial data close to the steady state is achieved by linearizing (1.1) around \mathcal{M}. First, we show existence of a spectral gap for the linearized Landau-Fermi-Dirac operator between two different weighted Lebesgue space. Precisely, such relation has the structure

(Lh,h)E1λhE2,hD(L)N(L),\displaystyle-(Lh,h)_{E_{1}}\geq\lambda\|h\|_{E_{2}},\qquad h\in D(L)\cap N(L)^{\perp},

with E2E_{2} not included in E1E_{1}. This latter fact is the reason why we are not able to obtain exponential convergence towards equilibrium, but only algebraic. After, we derive a uniform bound for some moment of the solution to the linearized equation in a weighted Lebesgue space. In the last step, we bound the contributions of the nonlinear corrections, and derive a differential inequality for the weighted L2L^{2}-norm of the perturbation

h:=f(1).h:=\frac{f-\mathcal{M}}{\mathcal{M}(1-\mathcal{M})}.

An elementary argument of ordinary differential equations’ theory yields algebraic convergence to zero with rate NN for hL2(m)\|h\|_{L^{2}(m)}, provided that, at initial time, the latter is small enough and hL2(m(1+|v|2)N/2)<\|h\|_{L^{2}(m(1+|v|^{2})^{N/2})}<\infty.

1.2. Notations

Here we list some of the notation conventions adopted throughout the manuscript:

  • Universal constants that may change from line to line are denoted CC or C(A,B)C(A,B) if the constant is allowed to depend on the quantities AA and BB.

  • We write ABA\lesssim B to mean there is a universal constant CC such that ACBA\leq CB. Similarly, we write ABA\sim B to mean ABA\lesssim B and BAB\lesssim A. If we write AΛBA\lesssim_{\Lambda}B, the implicit constant CC is allowed to depend on Λ\Lambda.

  • We write Lp([0,T];X)L^{p}([0,T];X) for T>0T>0 and XX a Banach space to denote the space of strongly measurable XX-valued functions satisfying

    0Tf(t)Xp𝑑t<.\int_{0}^{T}\|f(t)\|_{X}^{p}\ dt<\infty.

    When we write LpL^{p} without specifying the measure space, we mean Lp(3)L^{p}(\mathbb{R}^{3}).

  • We use the japanese bracket notation v:=(1+|v|2)1/2\langle v\rangle:=(1+|v|^{2})^{1/2}. Given p[1,]p\in[1,\infty], we denote with LmpL^{p}_{m} the space of functions that have the following norm

    fLmpp:=3|f|pvm𝑑v,\|f\|_{L^{p}_{m}}^{p}:=\int_{\mathbb{R}^{3}}|f|^{p}\langle v\rangle^{m}\ dv,

    finite. We denote with fLp\|f\|_{L^{p}} the Lp(3)L^{p}(\mathbb{R}^{3}) norm of ff.

  • Given p[1,]p\in[1,\infty] we denote with p[1,]p^{*}\in[1,\infty] the conjugate exponent of pp, p:=pp1p^{*}:=\frac{p}{p-1}.

In Section 2, we recall some useful estimates for the coefficients A[f]A[f], a[f]a[f] appearing in (1.1). In Section 3, we prove Theorem  1.1. In Section 4, we prove Theorem  1.3. In Section 5, we prove Theorem  1.4.

2. Coefficient Bounds

The following standard bounds will be used throughout our proofs.

Lemma 2.1.

Any f(v)f(v) such that 0f(v)1ε0\leq f(v)\leq\frac{1}{\varepsilon}, 3f(1+|v|2)=E0\int_{\mathbb{R}^{3}}f(1+|v|^{2})=E_{0}, and Hε[f]H0<0H_{\varepsilon}[f]\leq H_{0}<0 satisfies

A[f(1εf)]ξ,ξC1+|v|3|ξ|2,ξ3,\langle A[f(1-\varepsilon f)]\xi,\xi\rangle\geq\frac{C}{1+|v|^{3}}|\xi|^{2},\quad\forall\xi\in\mathbb{R}^{3},

where CC depends on E0E_{0} and H0H_{0}.

Proof.

We begin by quoting a known result (see [20] Lemma 6 and Proposition 4, or [34] Lemma 3.2 and 3.3) that says that for any nonnegative function φ\varphi with mass, second momentum and entropy bounded, for all v3v\in\mathbb{R}^{3}:

3Π(vv)|vv|φ(v)𝑑vC1+|v|3𝕀,\int_{\mathbb{R}^{3}}\frac{\Pi(v-v_{*})}{|v-v_{*}|}\varphi(v_{*})\;dv_{*}\geq\frac{C}{1+|v|^{3}}\mathbb{I},

where the constant CC depends only on the quantities

φ(v)𝑑v,φ(v)|v|2𝑑v,φ(v)|lnφ(v)|𝑑v.\int\varphi(v)\;dv,\quad\int\varphi(v)|v|^{2}\;dv,\quad\int\varphi(v)|\ln\varphi(v)|\;dv.

In light of this inequality, we need only show that

(2.1) f(1εf)|lnf(1εf)|𝑑v<+,\displaystyle\int f(1-\varepsilon f)|\ln f(1-\varepsilon f)|\;dv<+\infty,

and that there exists a strictly positive constant m0m_{0} such that

(2.2) f(1εf)𝑑vm0.\displaystyle\int f(1-\varepsilon f)\;dv\geq m_{0}.

The proof of (2.1) and (2.2) can be found in [7] in Lemma 3.1. ∎

The previous lemma together with (1.3) show that, as long as the initial data has strictly negative entropy, our equation is uniformly parabolic, and saturated-Fermi-Dirac-distributions are not admissible solutions.

Lemma 2.2 (Upper Bound on A[f]A[f]).

For A[f]A[f] defined in (1.5), and for any fLpLqf\in L^{p}\cap L^{q} with 1p<3/2<q1\leq p<3/2<q\leq\infty, we have

(2.3) A[f]LC(p,q)fLq1αfLpα,\|A[f]\|_{L^{\infty}}\leq C(p,q)\|f\|_{L^{q}}^{1-\alpha}\|f\|_{L^{p}}^{\alpha},

where α=131p1q1p(0,1)\alpha=\frac{\frac{1}{3}-\frac{1}{p^{*}}}{\frac{1}{q^{*}}-\frac{1}{p^{*}}}\in(0,1). Furthermore, A[f]=a[f]\nabla\cdot A[f]=\nabla a[f].

Proof.

For R>0R>0 arbitrary,

|A[f]|\displaystyle|A[f]| |xy|R|f(y)||xy|𝑑y+|xy|R|f(y)||xy|𝑑y\displaystyle\leq\int_{|x-y|\leq R}\frac{|f(y)|}{|x-y|}\ dy+\int_{|x-y|\geq R}\frac{|f(y)|}{|x-y|}\ dy
fLq(|xy|R1|xy|q𝑑y)1/q+fLp(|xy|R1|xy|p𝑑y)1/p\displaystyle\leq\|f\|_{L^{q}}\left(\int_{|x-y|\leq R}\frac{1}{|x-y|^{q^{*}}}\ dy\right)^{1/q^{*}}+\|f\|_{L^{p}}\left(\int_{|x-y|\geq R}\frac{1}{|x-y|^{p^{*}}}\ dy\right)^{1/p^{*}}
p,qfLqR3/q1+fLpR3/p1,\displaystyle\lesssim_{p,q}\|f\|_{L^{q}}R^{{3/q^{*}}-1}+\|f\|_{L^{p}}R^{3/p^{*}-1},

provided q<3q^{*}<3 and p>3p^{*}>3. Optimizing in RR yields RfLqβfLpβR\approx\|f\|_{L^{q}}^{-\beta}\|f\|_{L^{p}}^{\beta} and the bound,

fLqR3(q1)q1+fLpR3(p1)p1fLqαfLp1α,\|f\|_{L^{q}}R^{\frac{3(q-1)}{q}-1}+\|f\|_{L^{p}}R^{\frac{3(p-1)}{p}-1}\lesssim\|f\|_{L^{q}}^{\alpha}\|f\|_{L^{p}}^{1-\alpha},

for β=13(1q1p)\beta=\frac{1}{3\left(\frac{1}{q^{*}}-\frac{1}{p^{*}}\right)}, and α=β(13p)>0\alpha=\beta\left(1-\frac{3}{p^{*}}\right)>0. Note that 0<α<10<\alpha<1.

Finally, notice that

divA[f]=14π3xy|xy|3f(y)𝑑y=14π3f(y)|xy|f(y)𝑑y=a[f].\displaystyle\textrm{div}A[f]=-\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{x-y}{|x-y|^{3}}f(y)\;dy=\frac{1}{4\pi}\nabla\int_{\mathbb{R}^{3}}\frac{f(y)}{|x-y|}f(y)\;dy=\nabla a[f].

Lemma 2.3 (Upper Bound on a[f]\nabla a[f]).

For a[f]a[f] defined in (1.5), we have

a[f]L2CfL6/5,\|\nabla a[f]\|_{L^{2}}\leq C\|f\|_{L^{6/5}},

and

a[f]LC(p,q)fLpαfLq1α,\|\nabla a[f]\|_{L^{\infty}}\leq C(p,q)\|f\|_{L^{p}}^{\alpha}\|f\|_{L^{q}}^{1-\alpha},

for any 1p<3<q1\leq p<3<q\leq\infty, and some α(0,1)\alpha\in(0,1).

Proof.

The Hardy-Littlewood-Sobolev inequality (in 3\mathbb{R}^{3}) states that

1|x|λfLqα,p,qfLp\left\|\frac{1}{|x|^{\lambda}}\ast f\right\|_{L^{q}}\lesssim_{\alpha,p,q}\|f\|_{L^{p}}

provided 1<p,q,3λ<1<p,q,\frac{3}{\lambda}<\infty and 1p+λ3=1+1q\frac{1}{p}+\frac{\lambda}{3}=1+\frac{1}{q} (see [32]). The kernel K(x)K(x) for a\nabla a satisfies K(x)|x|2K(x)\sim|x|^{-2} and the L2L^{2} estimate follows immediately. The LL^{\infty}-bound follows the same steps as in Lemma 2.2. ∎

3. Existence of bounded weak solutions

In order to find weak solutions to (1.1), we first introduce an extra dissipative term δ1Δf\delta_{1}\Delta f to counter the degenerate ellipticity of A[f(1f)]A[f(1-f)] (see Lemma 2.1) and study the approximating problems

(3.1) tf=(A[f(1f)]fa[f]f(1f))+δ1Δf.\partial_{t}f=\nabla\cdot\left(A[f(1-f)]\nabla f-\nabla a[f]f(1-f)\right)+\delta_{1}\Delta f.

We will first prove there exist solutions to (3.1), then taking δ1\delta_{1},we recover global-in-time weak solutions to (1.1). To this end, we introduce an auxiliary equation,

(3.2) (fkfk1)τ=(Ak1fkak1z+(1z)++δ1fk)δ2|v|mfk,\displaystyle\frac{\left(f_{k}-f_{k-1}\right)}{\tau}=\nabla\cdot\left(A_{k-1}\nabla f_{k}-\nabla a_{k-1}z_{+}(1-z)_{+}+\delta_{1}\nabla f_{k}\right)-\delta_{2}|v|^{m}f_{k},
Ak1:=A[fk1(1fk1)]andak1:=a[fk1],\displaystyle A_{k-1}:=A[f_{k-1}(1-f_{k-1})]\qquad\text{and}\qquad a_{k-1}:=a[f_{k-1}],

obtained by dividing the time interval [0,T][0,T] into NN subintervals, each of length τ\tau, linearizing (3.1) around a measurable function zz, and adding an additional localizing term, δ2|v|mf\delta_{2}|v|^{m}f. In the first step of our construction, we use the Lax-Milgram Theorem to find unique weak solutions to (3.2) and prove the following proposition:

Proposition 3.1.

Let fk1L1f_{k-1}\in L^{1} with 0fk110\leq f_{k-1}\leq 1, zz be a measurable function, and m0m\geq 0. Then, there is a unique fkH1Lm2f_{k}\in H^{1}\cap L^{2}_{m} that satisfies

(3.3) (fkfk1)τφak1z+(1z)+φdv=\displaystyle\int\frac{\left(f_{k}-f_{k-1}\right)}{\tau}\varphi-\nabla a_{k-1}z_{+}(1-z)_{+}\cdot\nabla\varphi\;dv= φAk1fkdv\displaystyle-\int\nabla\varphi\cdot A_{k-1}\nabla f_{k}\;dv
δ1φfkδ2|v|mφfk𝑑v,\displaystyle-\delta_{1}\int\nabla\varphi\cdot\nabla f_{k}-\delta_{2}\int|v|^{m}\varphi f_{k}\;dv,

for any φH1Lm2\varphi\in H^{1}\cap L^{2}_{m}.

For a fixed kk, Proposition 3.1 defines a solution operator Φ\Phi to (3.2) via Φ(z)=fk\Phi(z)=f_{k}. In the second step of our construction, we seek solutions fkf_{k} to the nonlinear system:

(3.4) (fkfk1)τ=(Ak1fkak1fk(1fk)+δ1fk)δ2|v|mfk,\frac{\left(f_{k}-f_{k-1}\right)}{\tau}=\nabla\cdot\left(A_{k-1}\nabla f_{k}-\nabla a_{k-1}f_{k}(1-f_{k})+\delta_{1}\nabla f_{k}\right)-\delta_{2}|v|^{m}f_{k},

for any fixed δ1,δ2,τ,m>0\delta_{1},\delta_{2},\tau,m>0. Equivalently, we seek a fixed point fk=Φ(fk)f_{k}=\Phi(f_{k}) satisfying the bound 0fk10\leq f_{k}\leq 1. To this end, we show Φ:L2L2\Phi:L^{2}\rightarrow L^{2} is continuous and compact, and the set {z|z=tΦ(z),for some t[0,1]}\{z\ |\ z=t\Phi(z),\text{for some }t\in[0,1]\} is bounded in L2L^{2}. Therefore, we apply the Schaeffer Fixed Point Theorem to conclude the following proposition:

Proposition 3.2.

Suppose f0L1f_{0}\in L^{1} with 0f010\leq f_{0}\leq 1. Then, there is a family of functions {fk}k=0N\{f_{k}\}_{k=0}^{N} such that fkLm2H1f_{k}\in L^{2}_{m}\cap H^{1} and {fk}\{f_{k}\} solve (3.4). That is, for k1k\geq 1, fkf_{k} satisfies that for any φH1Lm2\varphi\in H^{1}\cap L^{2}_{m},

(fkfk1)τφak1fk(1fk)φdv=\displaystyle\int\frac{\left(f_{k}-f_{k-1}\right)}{\tau}\varphi-\nabla a_{k-1}f_{k}(1-f_{k})\cdot\nabla\varphi\;dv= Ak1fkφdv\displaystyle-\int A_{k-1}\nabla f_{k}\cdot\nabla\varphi\;dv
(3.5) δ1fkφdvδ2|v|mfkφ𝑑v.\displaystyle-\delta_{1}\int\nabla f_{k}\cdot\nabla\varphi\;dv-\delta_{2}\int|v|^{m}f_{k}\varphi\;dv.

Furthermore, for each k1k\geq 1, fkL1f_{k}\in L^{1} and 0fk10\leq f_{k}\leq 1.

In the third step of our construction, we seek a weak solution to the auxiliary equation (3.1)on a time interval [0,T][0,T]. To this end, we divide [0,T][0,T] into NN pieces of size τN\tau_{N} and from Proposition 3.2, for an initial datum finf_{in}, we may define

f(N)(v,t)=fin(v)χ0(t)+k=1Nfk(v)χ(tk1,tk](t),f^{(N)}(v,t)=f_{in}(v)\chi_{0}(t)+\sum_{k=1}^{N}f_{k}(v)\chi_{(t_{k-1},t_{k}]}(t),

where {fk}0kN\{f_{k}\}_{0\leq k\leq N} solves (3.4) with parameters τ=δ2=τn\tau=\delta_{2}=\tau_{n}. We show propagation of L1L^{1} moments and use a variant of the Aubin-Lions Lemma to conclude the following proposition:

Proposition 3.3.

Suppose finL1f_{in}\in L^{1}, |v|2finL1|v|^{2}f_{in}\in L^{1}, and 0fin10\leq f_{in}\leq 1 and δ1>0\delta_{1}>0. Then, for any T>0T>0, there is an f:[0,T]×3f:[0,T]\times\mathbb{R}^{3}\rightarrow\mathbb{R} with 0f10\leq f\leq 1 such that for each 1p<1\leq p<\infty, fL([0,T];Lp)f\in L^{\infty}([0,T];L^{p}), fC([0,T];L2)f\in C([0,T];L^{2}), fL2([0,T];H1)f\in L^{2}([0,T];H^{1}), fL([0,T];L21)f\in L^{\infty}([0,T];L^{1}_{2}) and ff satisfies (3.1) in the form,

3finφ(0)𝑑v0T3ftφdvdt=\displaystyle\int_{\mathbb{R}^{3}}f_{in}\varphi(0)\;dv-\int_{0}^{T}\int_{\mathbb{R}^{3}}f\partial_{t}\varphi\;dvdt= 0T3(A[f(1f)]fa[f]f(1f))φdvdt\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(A[f(1-f)]\nabla f-\nabla a[f]f(1-f)\right)\cdot\nabla\varphi\;dvdt
(3.6) δ10T3fφdvdt,\displaystyle-\delta_{1}\int_{0}^{T}\int_{\mathbb{R}^{3}}\nabla f\cdot\nabla\varphi\;dvdt,

for each φCc([0,T)×3)\varphi\in C^{\infty}_{c}([0,T)\times\mathbb{R}^{3}) and

0Ttf,ΦH1,H1𝑑t=\displaystyle\int_{0}^{T}\langle\partial_{t}f,\Phi\rangle_{H^{1},H^{-1}}\;dt= 0T3(A[f(1f)]fa[f]f(1f))Φdvdt\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(A[f(1-f)]\nabla f-\nabla a[f]f(1-f)\right)\cdot\nabla\Phi\;dvdt
(3.7) δ10T3fΦdvdt,\displaystyle-\delta_{1}\int_{0}^{T}\int_{\mathbb{R}^{3}}\nabla f\cdot\nabla\Phi\;dvdt,

for each ΦL2([0,T];H1)\Phi\in L^{2}([0,T];H^{1}). Furthermore, ff conserves mass and satisfies the bound

fL([0,T];L21)+δ1fL2([0,T];L2)+δ1tfL2([0,T];H1)C(finL21,T).\|f\|_{L^{\infty}([0,T];L^{1}_{2})}+\delta_{1}\|\nabla f\|_{L^{2}([0,T];L^{2})}+\delta_{1}\|\partial_{t}f\|_{L^{2}([0,T];H^{-1})}\leq C(\|f_{in}\|_{L^{1}_{2}},T).

Finally, in the fourth step of our construction, we conclude the proof of Theorem 1.1. From Proposition 3.3, for an initial datum finf_{in} and a sequence δn0+\delta_{n}\rightarrow 0^{+}, we obtain a family of solutions {fn}\{f_{n}\} to the equation (3.1) with parameters δ1=δn\delta_{1}=\delta_{n} on the interval [0,T][0,T]. We show propagation of higher L1L^{1} moments and an H-Theorem for the equation (3.1). Combined with Lemma 2.1, this implies a uniform lower bound on the coefficients A[fn(1fn)]A[f_{n}(1-f_{n})], which is sufficient to gain compactness as nn\rightarrow\infty.

3.1. Step 1: Existence and Uniqueness of Solutions to (3.2)

In this step, we use the Lax-Milgram Theorem to prove Proposition 3.1. We recall that in this step, we construct weak solutions fkf_{k} to

(3.8) (fkfk1)τ=(Ak1fkak1z+(1z)++δ1fk)δ2|v|mfk,\displaystyle\frac{\left(f_{k}-f_{k-1}\right)}{\tau}=\nabla\cdot\left(A_{k-1}\nabla f_{k}-\nabla a_{k-1}z_{+}(1-z)_{+}+\delta_{1}\nabla f_{k}\right)-\delta_{2}|v|^{m}f_{k},
Ak1:=A[fk1(1fk1)]andak1:=a[fk1],\displaystyle A_{k-1}:=A[f_{k-1}(1-f_{k-1})]\qquad\text{and}\qquad a_{k-1}:=a[f_{k-1}],

where fk1f_{k-1}, zz, τ\tau, δ1\delta_{1}, δ2\delta_{2}, and mm are fixed.

Proof of Proposition 3.1.

We define

B[u,φ]\displaystyle B[u,\varphi] =Ak1uφ+δ1uφ+τ1uφ+δ2|v|muφdv,\displaystyle=\int A_{k-1}\nabla u\cdot\nabla\varphi+\delta_{1}\nabla u\cdot\nabla\varphi+\tau^{-1}u\varphi+\delta_{2}|v|^{m}u\varphi\;dv,
L[φ]\displaystyle L[\varphi] =τ1fk1φ+ak1z+(1z)+φdv.\displaystyle=\int\tau^{-1}f_{k-1}\varphi+\nabla a_{k-1}z_{+}(1-z)_{+}\cdot\nabla\varphi\;dv.

Since 0fk110\leq f_{k-1}\leq 1, Ak10A_{k-1}\geq 0 and we have

B[u,u]δ1|u|2+τ1u2+δ2|v|mu2dvδ1,δ2,τuH12+uLm22.B[u,u]\geq\int\delta_{1}|\nabla u|^{2}+\tau^{-1}u^{2}+\delta_{2}|v|^{m}u^{2}\;dv\gtrsim_{\delta_{1},\delta_{2},\tau}\|u\|_{H^{1}}^{2}+\|u\|_{L^{2}_{m}}^{2}.

Therefore, B[u,φ]B[u,\varphi] is coercive on H1Lm2H^{1}\cap L^{2}_{m}. Moreover, BB is bounded on H1Lm2H^{1}\cap L^{2}_{m} thanks to Lemma 2.2 and 0fk110\leq f_{k-1}\leq 1 as

|B[u,φ]|\displaystyle|B[u,\varphi]| (Ak1L+δ1)uL2φL2+τ1uL2φL2+δ2uLm2φLm2\displaystyle\leq\left(\|A_{k-1}\|_{L^{\infty}}+\delta_{1}\right)\|\nabla u\|_{L^{2}}\|\nabla\varphi\|_{L^{2}}+\tau^{-1}\|u\|_{L^{2}}\|\varphi\|_{L^{2}}+\delta_{2}\|u\|_{L^{2}_{m}}\|\varphi\|_{L^{2}_{m}}
δ1,δ2,τ,fk1L1uH1Lm2φH1Lm2.\displaystyle\lesssim_{\delta_{1},\delta_{2},\tau,\|f_{k-1}\|_{L^{1}}}\|u\|_{H^{1}\cap L^{2}_{m}}\|\varphi\|_{H^{1}\cap L^{2}_{m}}.

Also, LL is bounded on H1Lm2H^{1}\cap L^{2}_{m} by the Cauchy-Schwarz Inequality and Lemma 2.3,

|L(φ)|\displaystyle|L(\varphi)| τ1fk1L2φL2+ak1L2z+(1z)+LφL2\displaystyle\leq\tau^{-1}\|f_{k-1}\|_{L^{2}}\|\varphi\|_{L^{2}}+\|\nabla a_{k-1}\|_{L^{2}}\|z_{+}(1-z)_{+}\|_{L^{\infty}}\|\nabla\varphi\|_{L^{2}}
τ,fk1L2L6/5φH1.\displaystyle\lesssim_{\tau,\|f_{k-1}\|_{L^{2}\cap L^{6/5}}}\|\varphi\|_{H^{1}}.

We conclude, using the Lax-Milgram Theorem on H1Lm2H^{1}\cap L^{2}_{m}, that there is a unique fkH1Lm2f_{k}\in H^{1}\cap L^{2}_{m} satisfying the weak formulation (3.3).

3.2. Step 2: Existence of Solutions to (3.4)

In this step, we use a fixed point argument to prove Proposition 3.2. We show that the nonlinear, semi-discretized equation,

(fkfk1)τ=(A[(1fk1)fk1]fka[fk1]fk(1fk)+δ1fk)δ2|v|mfk,\frac{\left(f_{k}-f_{k-1}\right)}{\tau}=\nabla\cdot\left(A[(1-f_{k-1})f_{k-1}]\nabla f_{k}-\nabla a[f_{k-1}]f_{k}(1-f_{k})+\delta_{1}\nabla f_{k}\right)-\delta_{2}|v|^{m}f_{k},

has a solution fkf_{k} provided fk1f_{k-1} is known and satisfies 0fk110\leq f_{k-1}\leq 1 and fk1L1f_{k-1}\in L^{1}. Moreover, we show these assumptions are propagated, so that for a fixed f0=finf_{0}=f_{in}, we have the existence of a family {fk}\{f_{k}\} for k=0,1,,Nk=0,1,...,N for any NN.

We begin by showing the existence of solutions fkf_{k} to the nonlinear weak formulation (3.5) provided fk1f_{k-1} is known and satisfies fk1L1f_{k-1}\in L^{1} and 0fk110\leq f_{k-1}\leq 1. To this end, we fix kk and define Φ:XX\Phi:X\to X with Φ(z)=fk\Phi(z)=f_{k}, where fkf_{k} is the unique solution to (3.3) given zz (and fixed δ1,δ2,τ,m,fk1\delta_{1},\delta_{2},\tau,m,f_{k-1}). We also fix XX to be L2L^{2}. We would like to apply the Schaeffer Fixed Point Theorem [24, Theorem 11.3] to Φ:XX\Phi:X\rightarrow X to conclude that there exists a fixed point for Φ\Phi in XX. To apply Schaeffer’s Theorem we need to verify the following conditions:

  • The map Φ\Phi maps XX into XX, i.e. if zL2z\in L^{2}, the weak solution fkf_{k} to (3.3) also satisfies fkL2f_{k}\in L^{2}. This is done in Lemma 3.4 via an L2L^{2} estimate.

  • The set of approximate fixed points,

    {z|z=tΦ(z)for some 0t1}\left\{z\ \big{|}\ z=t\Phi(z)\ \text{for some }0\leq t\leq 1\right\}

    should be bounded in XX. This is done in Lemma 3.5.

  • The map Φ\Phi is compact. This is done in Lemma 3.6 via the compact embedding Φ(X)H1Lm2L2\Phi(X)\subset H^{1}\cap L^{2}_{m}\operatorname{\hookrightarrow}L^{2}.

  • The map Φ:XX\Phi:X\rightarrow X is continuous. This is done in Lemma 3.7 by showing that if zkzz_{k}\rightarrow z, the corresponding weak solutions Φ(zk)\Phi(z_{k}) converge to the unique weak solution Φ(z)\Phi(z) of (3.3).

To this end, we have our first a priori bound:

Lemma 3.4.

For fk1L1f_{k-1}\in L^{1} with 0fk110\leq f_{k-1}\leq 1, let fkf_{k} be the unique solution to (3.3). Then, fkH1Lm2f_{k}\in H^{1}\cap L^{2}_{m} and satisfies the estimate

(3.9) fkL22+τδ1fkL22+2τδ2|v|m/2fkL22fk1L22+Cτδ1fk1L6/52.\|f_{k}\|_{L^{2}}^{2}+\tau\delta_{1}\|\nabla f_{k}\|_{L^{2}}^{2}+2\tau\delta_{2}\||v|^{m/2}f_{k}\|_{L^{2}}^{2}\leq\|f_{k-1}\|_{L^{2}}^{2}+C\frac{\tau}{\delta_{1}}\|f_{k-1}\|_{L^{6/5}}^{2}.
Proof.

We test (3.3) with φ=fk\varphi=f_{k}. Using Ak10A_{k-1}\geq 0, we obtain

τ1fkL22+δ1fkL22+δ2|v|m/2fkL22τ1fk1fk𝑑v+ak1(z)+(1z)+fkdv.\tau^{-1}\|f_{k}\|_{L^{2}}^{2}+\delta_{1}\|\nabla f_{k}\|_{L^{2}}^{2}+\delta_{2}\||v|^{m/2}f_{k}\|_{L^{2}}^{2}\leq\tau^{-1}\int f_{k-1}f_{k}\;dv+\int\nabla a_{k-1}(z)_{+}(1-z)_{+}\cdot\nabla f_{k}\;dv.

We bound the first term on the right hand side with Young’s inequality as

τ1fk1fk𝑑vτ12fk1L22+τ12fkL22,\tau^{-1}\int f_{k-1}f_{k}\;dv\leq\frac{\tau^{-1}}{2}\|f_{k-1}\|_{L^{2}}^{2}+\frac{\tau^{-1}}{2}\|f_{k}\|_{L^{2}}^{2},

and the second term via Young’s inequality and Lemma 2.3 as

ak1(z)+(1z)+fkdvCδ11fk1L6/52+δ12fkL22.\int\nabla a_{k-1}(z)_{+}(1-z)_{+}\cdot\nabla f_{k}\;dv\leq C\delta_{1}^{-1}\|f_{k-1}\|_{L^{6/5}}^{2}+\frac{\delta_{1}}{2}\|\nabla f_{k}\|_{L^{2}}^{2}.

Rearranging terms and combining bounds yield (3.9). ∎

We note that the preceding lemma immediately implies the following result:

Lemma 3.5 (A priori bounds on approximate fixed points).

Let fkf_{k} be the unique solution to (3.3) with fk1L1f_{k-1}\in L^{1} with 0fk110\leq f_{k-1}\leq 1 and X:=L2X:=L^{2}. The map Φ:XX\Phi:X\to X defined as zfkz\mapsto f_{k} is such that A:={zX|tΦ(z)=z for some 0t1}A:=\{z\in X\ |\ t\Phi(z)=z\text{ for some }0\leq t\leq 1\} is a bounded subset of XX.

Proof.

Suppose zAz\in A. Then, we note by Lemma 3.4,

zL22Φ(z)L22fk1L22+Cτδ1fk1L6/52,\|z\|_{L^{2}}^{2}\leq\|\Phi(z)\|_{L^{2}}^{2}\leq\|f_{k-1}\|_{L^{2}}^{2}+C\frac{\tau}{\delta_{1}}\|f_{k-1}\|_{L^{6/5}}^{2},

which completes the proof. ∎

Lemma 3.6 (Compactness).

For Φ\Phi and XX as in Lemma 3.5, Φ(X)\Phi(X) is pre-compact as a subset of Lq(3)L^{q}(\mathbb{R}^{3}) for any 2q<62\leq q<6.

Proof.

Fix any such qq. Then, we note that Lemma 3.4 guarantees that Φ(z)\Phi(z) is bounded in H1Lm2H^{1}\cap L^{2}_{m}, uniformly in zz measurable. We claim that Lm2H1L^{2}_{m}\cap H^{1} embeds compactly in LqL^{q} for 2q<62\leq q<6 provided m>0m>0.

Indeed, fix gng_{n} a sequence uniformly bounded in Lm2L^{2}_{m} and H1H^{1}, so that gnLm2H1M\|g_{n}\|_{L^{2}_{m}\cap H^{1}}\leq M. Then, use Rellich-Kondrachev and a diagonalization argument to extract a subsequence gnkg_{n_{k}} for which gnkgg_{n_{k}}\rightarrow g in L2(K)Lq(K)L^{2}(K)\cap L^{q}(K) for every K3K\subset\mathbb{R}^{3} compact. We will show gnkgg_{n_{k}}\rightarrow g in LqL^{q}. Fix ε>0\varepsilon>0. Then, decompose the norm into two parts via,

(3.10) gnkgLqq=BR(0)|gnkg|q𝑑x+3\BR(0)|gnkg|q𝑑x.\|g_{n_{k}}-g\|_{L^{q}}^{q}=\int_{B_{R}(0)}|g_{n_{k}}-g|^{q}\;dx+\int_{\mathbb{R}^{3}\backslash B_{R}(0)}|g_{n_{k}}-g|^{q}\;dx.

The first term converges to 0 for any fixed RR. For the second, we interpolate between L2L^{2} and L6L^{6} and use the Sobolev embedding H1L6H^{1}\operatorname{\hookrightarrow}L^{6} to guarantee the L6L^{6} norm is uniformly bounded in kk. Thus,

(3.11) (3\B(0,R)|gnkg|q𝑑x)1/q\displaystyle\left(\int_{\mathbb{R}^{3}\backslash B(0,R)}|g_{n_{k}}-g|^{q}\;dx\right)^{1/q} M1α(3\B(0,R)|gnkg|2𝑑x)α/2\displaystyle\lesssim M^{1-\alpha}\left(\int_{\mathbb{R}^{3}\backslash B(0,R)}|g_{n_{k}}-g|^{2}\;dx\right)^{\alpha/2}
M1αRmα/2gnkgLm2αMRmα/2,\displaystyle\lesssim M^{1-\alpha}R^{-m\alpha/2}\|g_{n_{k}}-g\|_{L^{2}_{m}}^{\alpha}\lesssim MR^{-m\alpha{/2}},

where 1q=α2+1α6\frac{1}{q}=\frac{\alpha}{2}+\frac{1-\alpha}{6}, i.e. α=6q2q\alpha=\frac{6-q}{2q}. So for m>0m>0 and 2q<62\leq q<6, this converges to 0 as RR\rightarrow\infty uniformly in kk. Thus, first pick RR sufficiently large that the second term of (3.10) is less than ε/2\varepsilon/2 for all kk. Then, pick kk sufficiently large such that first term of (3.10) is less than ε/2\varepsilon/2. ∎

Lemma 3.7 (Continuity).

Let Φ\Phi be defined as in Lemma 3.5. Suppose znzz_{n}\rightarrow z strongly in XX. Then, Φ(zn)Φ(z)\Phi(z_{n})\rightarrow\Phi(z) strongly in XX.

Proof.

Suppose znzz_{n}\rightarrow z in X=L2X=L^{2}. Combining the a priori bound from Lemma 3.4 and compactness from Lemma 3.5, Φ(zn)\Phi(z_{n}) is uniformly bounded in Lm2H1L^{2}_{m}\cap H^{1} and compact in X=L2X=L^{2}. Therefore, by extracting subsequences, it suffices to show that if znzz_{n}\rightarrow z in XX and Φ(zn)y\Phi(z_{n})\rightarrow y in XX and Φ(zn)y\Phi(z_{n})\operatorname{\rightharpoonup}y in H1Lm2H^{1}\cap L^{2}_{m}, then y=Φ(z)y=\Phi(z). Finally, since Proposition 3.1 guarantees uniqueness of solutions to (3.3), it suffices to show

(3.12) (yfk1)τφak1z+(1z)+φdv=\displaystyle\int\frac{\left(y-f_{k-1}\right)}{\tau}\varphi-\nabla a_{k-1}z_{+}(1-z)_{+}\cdot\nabla\varphi\;dv= φAk1ydv\displaystyle-\int\nabla\varphi\cdot A_{k-1}\nabla y\;dv
δ1φy+δ2|v|mφydv.\displaystyle-\delta_{1}\int\nabla\varphi\cdot\nabla y+\delta_{2}|v|^{m}\varphi y\;dv.

Since Φ(zn)\Phi(z_{n}) solves (3.3) with coefficients znz_{n}, we know

Φ(zn)fk1τφ𝑑v\displaystyle\int\frac{\Phi(z_{n})-f_{k-1}}{\tau}\varphi\;dv =ak1(zn)+(1zn)+φφAk1Φ(zn)dv\displaystyle=\int\nabla a_{k-1}(z_{n})_{+}(1-z_{n})_{+}\cdot\nabla\varphi-\nabla\varphi\cdot A_{k-1}\nabla\Phi(z_{n})\;dv
δ1φΦ(zn)+δ2|v|mφΦ(zn)dv.\displaystyle\qquad-\delta_{1}\int\nabla\varphi\cdot\nabla\Phi(z_{n})+\delta_{2}|v|^{m}\varphi\Phi(z_{n})\;dv.

The weak convergence Φ(zn)y\Phi(z_{n})\operatorname{\rightharpoonup}y in Lm2H1L^{2}_{m}\cap H^{1} is sufficient to pass to the limit nn\rightarrow\infty in each term, except in the term containing (zn)+(1zn)+(z_{n})_{+}(1-z_{n})_{+}. For this term, we first observe that

|[(zn)+(1zn)+z+(1z)+]ak1φ|𝑑vfk1L1φL2\displaystyle\int\left|\left[(z_{n})_{+}(1-z_{n})_{+}-z_{+}(1-z)_{+}\right]\nabla a_{k-1}\cdot\nabla\varphi\right|\;dv\lesssim\|f_{k-1}\|_{L^{1}}\|\nabla\varphi\|_{L^{2}}
×(|(zn)+(1zn)+z+(1z)+|2𝑑v)1/2.\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\times\left(\int\left|(z_{n})_{+}(1-z_{n})_{+}-z_{+}(1-z)_{+}\right|^{2}\;dv\right)^{1/2}.

Since the function φ(x)=x+(1x)+\varphi(x)=x_{+}(1-x)_{+} is Lipschitz, we get

(|(zn)+(1zn)+z+(1z)+|2𝑑v)1/2\displaystyle\left(\int\left|(z_{n})_{+}(1-z_{n})_{+}-z_{+}(1-z)_{+}\right|^{2}\;dv\right)^{1/2} znzL20,\displaystyle\lesssim\|z_{n}-z\|_{L^{2}}\rightarrow 0,

since znzz_{n}\rightarrow z in XX. Therefore, we obtain (3.12) and the proof is complete. ∎

The following lemma states that any fixed point fkf_{k} of Φ\Phi is also a solution to (3.5). Note, this is not immediate because (3.5) does not contain any positive part operators, while (3.3) does.

Lemma 3.8.

Suppose fkH1Lm2f_{k}\in H^{1}\cap L^{2}_{m} satisfies Φ(fk)=fk\Phi(f_{k})=f_{k} with fk1L1f_{k-1}\in L^{1} and 0fk110\leq f_{k-1}\leq 1. Then, 0fk10\leq f_{k}\leq 1 and consequently fkf_{k} solves (3.5).

Proof.

The idea is to test the weak formulation (3.3) with (fk)(f_{k})_{-} and (1fk)(1-f_{k})_{-} and show that both are identically 0:

τ1{fk0}fk2fk1fkdv\displaystyle\tau^{-1}\int_{\{f_{k}\leq 0\}}f_{k}^{2}-f_{k-1}f_{k}\;dv +{fk0}fk(Ak1fk+δ1fk)𝑑v\displaystyle+\int_{\{f_{k}\leq 0\}}\nabla f_{k}\cdot\left(A_{k-1}\nabla f_{k}+\delta_{1}\nabla f_{k}\right)\;dv
+δ2{fk0}|v|mfk2𝑑v=0.\displaystyle+\delta_{2}\int_{\{f_{k}\leq 0\}}|v|^{m}f_{k}^{2}\;dv=0.

Since each term is positive, all are 0 and we conclude fk=0f_{k}=0 on {fk0}\{f_{k}\leq 0\}, i.e. fk0f_{k}\geq 0. Similarly,

τ1{fk1}(fkfk1)(1fk)𝑑v\displaystyle\tau^{-1}\int_{\{f_{k}\geq 1\}}(f_{k}-f_{k-1})(1-f_{k})\;dv {fk1}fk(Ak1fk+δfk)𝑑v\displaystyle-\int_{\{f_{k}\geq 1\}}\nabla f_{k}\cdot\left(A_{k-1}\nabla f_{k}+\delta\nabla f_{k}\right)\;dv
+δ2{fk1}|v|mfk(1fk)𝑑v=0.\displaystyle+\delta_{2}\int_{\{f_{k}\geq 1\}}|v|^{m}f_{k}(1-f_{k})\;dv=0.

Now, because fk11f_{k-1}\leq 1, (fkfk1)χ{fk1}(fk1)χ{fk1}0(f_{k}-f_{k-1})\chi_{\{f_{k}\geq 1\}}\geq(f_{k}-1)\chi_{\{f_{k}\geq 1\}}\geq 0. Thus, each term is negative and we conclude fk1f_{k}\leq 1. ∎

Next, we show the assumption that fk1L1f_{k-1}\in L^{1} is propagated. That is, if fk1L1f_{k-1}\in L^{1}, then fkL1f_{k}\in L^{1} and therefore, we may iterate the fixed point argument to construct a family {fk}\{f_{k}\} solving (3.5).

Lemma 3.9.

Suppose fkH1Lm2f_{k}\in H^{1}\cap L^{2}_{m} satisfies fk=Φ(fk)f_{k}=\Phi(f_{k}) with fk1L1f_{k-1}\in L^{1} and 0fk110\leq f_{k-1}\leq 1. Then, fkf_{k} satisfies the estimate

(3.13) fkL1+τδ2fk|v|mL1=fk1L1.\|f_{k}\|_{L^{1}}+\tau\delta_{2}\|f_{k}|v|^{m}\|_{L^{1}}=\|f_{k-1}\|_{L^{1}}.
Proof.

Let φR(v)\varphi_{R}(v) be a cutoff function in Cc(3)C_{c}^{\infty}(\mathbb{R}^{3}) such that

{0φR1,φR(v)=1if|v|R,φR(v)=0if|v|2R,|φR|CR,|2φR|CR2.\left\{\begin{array}[]{c}0\leq\varphi_{R}\leq 1,\\ \varphi_{R}(v)=1\quad\textrm{if}\quad|v|\leq R,\\ \varphi_{R}(v)=0\quad\textrm{if}\quad|v|\geq 2R,\\ |\nabla\varphi_{R}|\leq\frac{C}{R},\quad|\nabla^{2}\varphi_{R}|\leq\frac{C}{R^{2}}.\end{array}\right.

Then, we test (3.3) with φR\varphi_{R} to obtain

[(fkfk1)τ+δ2|v|mfk]φR𝑑v=\displaystyle\int\left[\frac{\left(f_{k}-f_{k-1}\right)}{\tau}+\delta_{2}|v|^{m}f_{k}\right]\varphi_{R}\;dv= Ak1fkφRdv\displaystyle-\int A_{k-1}\nabla f_{k}\cdot\nabla\varphi_{R}\;dv
ak1fk(1fk)φRdv\displaystyle-\int\nabla a_{k-1}f_{k}(1-f_{k})\cdot\nabla\varphi_{R}\;dv
δ1fkφRdv\displaystyle-\delta_{1}\int\nabla f_{k}\cdot\nabla\varphi_{R}\;dv
=:\displaystyle=: I1+I2+I3.\displaystyle\;I_{1}+I_{2}+I_{3}.

First, we claim that the right hand side converges to 0 as RR\rightarrow\infty. Indeed, we bound each term separately, beginning with I3I_{3} as,

δ1fkφRdv\displaystyle\delta_{1}\int\nabla f_{k}\cdot\nabla\varphi_{R}\;dv Cδ1R2{R|v|2R}fk𝑑v\displaystyle\leq\frac{C\delta_{1}}{R^{2}}\int_{\{R\leq|v|\leq 2R\}}f_{k}\;dv
Cδ1R2fkL2|{R|v|2R}|1/2Cδ1R1/2.\displaystyle\leq\frac{C\delta_{1}}{R^{2}}\|f_{k}\|_{L^{2}}|\{R\leq|v|\leq 2R\}|^{1/2}\leq\frac{C\delta_{1}}{R^{1/2}}.

Next, we bound I2I_{2} using 0fk10\leq f_{k}\leq 1 and Lemma 2.3 to obtain

(ak1fk(1fk))φRdvCak1L2fkL2RCfk1L6/5fkL2R.\int\left(\nabla a_{k-1}f_{k}(1-f_{k})\right)\cdot\nabla\varphi_{R}\;dv\leq\frac{C\|\nabla a_{k-1}\|_{L^{2}}\|f_{k}\|_{L^{2}}}{R}\leq\frac{C\|f_{k-1}\|_{L^{6/5}}\|f_{k}\|_{L^{2}}}{R}.

For I1I_{1}, we integrate by parts to obtain

Ak1fkφRdv\displaystyle-\int A_{k-1}\nabla f_{k}\cdot\nabla\varphi_{R}\;dv =fk(Ak1)φRdv(Ak1fk)φRdv\displaystyle=\int f_{k}{(\nabla\cdot A_{k-1})}\cdot\nabla\varphi_{R}\;dv-\int\nabla\cdot\left(A_{k-1}f_{k}\right)\cdot\nabla\varphi_{R}\;dv
=fk(Ak1)φRdv+tr(fkAk12φR)𝑑v\displaystyle=\int f_{k}(\nabla\cdot A_{k-1})\cdot\nabla\varphi_{R}\;dv+\int\mathrm{tr}\left(f_{k}A_{k-1}\nabla^{2}\varphi_{R}\right)\;dv
=:I11+I12.\displaystyle=:I_{1}^{1}+I_{1}^{2}.

Now, I11I_{1}^{1} vanishes by a similar estimate, using Lemma 2.2. Finally I12I_{1}^{2} vanishes by the estimate

tr(fkAk12φR)𝑑v\displaystyle\int\mathrm{tr}\left(f_{k}A_{k-1}\nabla^{2}\varphi_{R}\right)\;dv Ak1LfkL22φRL2\displaystyle\leq\|A_{k-1}\|_{L^{\infty}}\|f_{k}\|_{L^{2}}\|\nabla^{2}\varphi_{R}\|_{L^{2}}
Cfk1L1fkL2R1/2.\displaystyle\leq\frac{C\|f_{k-1}\|_{L^{1}}\|f_{k}\|_{L^{2}}}{R^{1/2}}.

Thus, piecing together all the above estimates, we conclude that I1+I2+I3I_{1}+I_{2}+I_{3} vanishes as RR\rightarrow\infty. Second, taking RnR_{n}\rightarrow\infty sufficiently fast so that φRn\varphi_{R_{n}} are increasing to 11, the monotone convergence theorem yields

fk𝑑v+τδ2fk|v|m𝑑v=fk1𝑑v.\int f_{k}\;dv+\tau\delta_{2}\int f_{k}|v|^{m}\;dv=\int f_{k-1}\;dv.

By Lemma 3.8, 0fk10\leq f_{k}\leq 1 and the proof is complete. ∎

Proof of Proposition 3.2

Fix f0=finf_{0}=f_{in} as in the statement of Proposition 3.2. Suppose moreover that f1,f2,,fk1f_{1},f_{2},\dots,f_{k-1} have been constructed so that 0fi10\leq f_{i}\leq 1 and fiL1f_{i}\in L^{1} for 0ik10\leq i\leq k-1 and {fi}i=0k1\{f_{i}\}_{i=0}^{k-1} satisfies (3.5). We will now construct fkf_{k}. Indeed, fix X=L2X=L^{2} and Φ\Phi the solution map to (3.3) with fk1f_{k-1} fixed.

As stated at the beginning of this step, the role of Lemma 3.4, 3.5, 3.6 and 3.7 is to verify the hypotheses of the Schaeffer Fixed Point Theorem for Φ:XX\Phi:X\rightarrow X.

  • Lemma 3.4 implies Φ\Phi maps XX to itself;

  • Lemma 3.5 implies that approximate fixed points of Φ\Phi are bounded in XX;

  • Lemma 3.6 implies Φ\Phi is a compact map;

  • Lemma 3.7 implies Φ:XX\Phi:X\rightarrow X is a continuous (nonlinear) map.

Therefore, the Schaeffer Fixed Point Theorem (see [24, Theorem 11.3] for a precise statement) yields a (not necessarily unique) fixed point fkf_{k} of the map zΦ(z)z\mapsto\Phi(z). Because Φ(X)Lm2H1\Phi(X)\subset L^{2}_{m}\cap H^{1}, fkH1Lm2f_{k}\in H^{1}\cap L^{2}_{m}. As Φ(fk)=fk\Phi(f_{k})=f_{k}, fkf_{k} solves

(fkfk1)τφak1(fk)+(1fk)+φdv=\displaystyle\int\frac{\left(f_{k}-f_{k-1}\right)}{\tau}\varphi-\nabla a_{k-1}(f_{k})_{+}(1-f_{k})_{+}\cdot\nabla\varphi\;dv= Ak1fkφdv\displaystyle-\int A_{k-1}\nabla f_{k}\cdot\nabla\varphi\;dv
δ1fkφdvδ2|v|mfkφ𝑑v.\displaystyle-\delta_{1}\int\nabla f_{k}\cdot\nabla\varphi\;dv-\delta_{2}\int|v|^{m}f_{k}\varphi\;dv.

However, since 0fk110\leq f_{k-1}\leq 1 by Lemma 3.8, 0fk10\leq f_{k}\leq 1, and we may remove the positive parts to conclude fkf_{k} solves the desired weak formulation, namely (3.5). Finally, Lemma 3.9 implies fkL1f_{k}\in L^{1}. By induction, the proof is complete.

3.3. Step 3: Existence of Solutions to (3.1)

In this step we construct weak solutions f:[0,T]×3f:[0,T]\times\mathbb{R}^{3}\rightarrow\mathbb{R} to the nonlinear, continuous time equation,

(3.14) tf=(A[f(1f)]fa[f]f(1f))+δ1Δf,\partial_{t}f=\nabla\cdot\left(A[f(1-f)]\nabla f-\nabla a[f]f(1-f)\right)+\delta_{1}\Delta f,

on an arbitrary fixed time interval [0,T][0,T] for any fixed δ1>0\delta_{1}>0 and for fixed initial data finf_{in}, where finL1f_{in}\in L^{1} and 0fin10\leq f_{in}\leq 1. We first prove uniform in τ\tau (the time mesh) and δ2\delta_{2} (the strength of the added localization) estimates on solutions to equation (3.4). For all T>0T>0, let N=TτN=\frac{T}{\tau}. Define the piecewise interpolant of {fk}\{f_{k}\} as

(3.15) f(N)(v,t)=fin(v)χ0(t)+k=1Nfk(v)χ(tk1,tk](t),f^{(N)}(v,t)=f_{in}(v)\chi_{0}(t)+\sum_{k=1}^{N}f_{k}(v)\chi_{(t_{k-1},t_{k}]}(t),

and the backward finite difference operator DτD_{\tau} as

Dτf(t):=f(t)f(tτ)τ.D_{\tau}f(t):=\frac{f(t)-f(t-\tau)}{\tau}.

We also introduce the shift operator

σN(f(N))(,t)=fk1fort(tk1,tk].\sigma_{N}(f^{(N)})(\cdot,t)=f_{k-1}\quad\textrm{for}\quad t\in(t_{k-1},t_{k}].

With this new notation, we can rewrite (3.5) as

(3.16) 0TDτf(N)φ\displaystyle\int_{0}^{T}\int D_{\tau}f^{(N)}\varphi- aNf(N)(1f(N))φdvdt\displaystyle\nabla a_{N}f^{(N)}(1-f^{(N)})\cdot\nabla\varphi\;dvdt
=\displaystyle= 0TANf(N)φδ1f(N)φδ2|v|mf(N)φdvdt,\displaystyle-\int_{0}^{T}\int A_{N}\nabla f^{(N)}\cdot\nabla\varphi-\delta_{1}\nabla f^{(N)}\cdot\nabla\varphi-\delta_{2}|v|^{m}f^{(N)}\varphi\;dvdt,

where

AN=A[σN(f(N))(1f(N))]andaN=a[σN(f(N))].A_{N}=A[\sigma_{N}(f^{(N)})(1-f^{(N)})]\qquad\text{and}\qquad a_{N}=a[\sigma_{N}(f^{(N)})].

For strong compactness, we need propagation of moments (shown in Lemma 3.11) in the form of

f(N)L([0,T];L21)TfinL21,\|f^{(N)}\|_{L^{\infty}([0,T];L^{1}_{2})}\lesssim_{T}\|f_{in}\|_{L^{1}_{2}},

and a variation of the Aubin-Lions Lemma for piecewise constant functions, which requires an estimate (shown in Lemma 3.12) of the form

Dτf(N)L2([0,T];H1)+f(N)L2([0,T];H1L21)finL21.\left\|D_{\tau}f^{(N)}\right\|_{L^{2}([0,T];H^{-1})}+\|f^{(N)}\|_{L^{2}([0,T];H^{1}\cap L^{1}_{2})}\lesssim\|f_{in}\|_{L^{1}_{2}}.

We begin with L1L^{1} and L2L^{2} estimates, which are continuous-time analogous of Lemma 3.9 and Lemma 3.4, respectively.

Lemma 3.10 (L1L^{1} and L2L^{2} Estimates).

Suppose finL1f_{in}\in L^{1} and 0fin10\leq f_{in}\leq 1. Then, the following estimates hold:

(3.17) f(N)L([0,T];L2)2+2δ1f(N)L2([0,T];L2)2finL22+TfinL13/2,\|f^{(N)}\|_{L^{\infty}([0,T];L^{2})}^{2}+2\delta_{1}\|\nabla f^{(N)}\|_{L^{2}([0,T];L^{2})}^{2}\leq\|f_{in}\|_{L^{2}}^{2}+T\|f_{in}\|_{L^{1}}^{3/2},

and

(3.18) f(N)L([0,T];L1)finL1.\|f^{(N)}\|_{L^{\infty}([0,T];L^{1})}\leq\|f_{in}\|_{L^{1}}.
Proof.

Inequality (3.18) follows by iterating Lemma 3.9. Next, we estimate the L2L^{2} norm of f(N)f^{(N)} by testing (3.5) with fkf_{k}, using Young’s inequality and Ak10A_{k-1}\geq 0 to obtain

12fkL22+τδ1fkL2212fk1L22+τak1fk(1fk)fkdv.\frac{1}{2}\|f_{k}\|_{L^{2}}^{2}+\tau\delta_{1}\|\nabla f_{k}\|_{L^{2}}^{2}\leq\frac{1}{2}\|f_{k-1}\|_{L^{2}}^{2}+\tau\int\nabla a_{k-1}f_{k}(1-f_{k})\cdot\nabla f_{k}\;dv.

For the last integral, we integrate by parts, using Δak1=fk1-\Delta a_{k-1}=f_{k-1} and get

2ak1fk(1fk)fkdv\displaystyle 2\int\nabla a_{k-1}f_{k}(1-f_{k})\cdot\nabla f_{k}\;dv =2ak1[12fk213fk3]dv\displaystyle=2\int\nabla a_{k-1}\cdot\nabla\left[\frac{1}{2}f_{k}^{2}-\frac{1}{3}f_{k}^{3}\right]\;dv
=2fk1[12(fk)213(fk)3]𝑑v.\displaystyle=2\int f_{k-1}\left[\frac{1}{2}(f_{k})^{2}-\frac{1}{3}(f_{k})^{3}\right]\;dv.

Since 0fk10\leq f_{k}\leq 1, [12(fk)213(fk)3]0\left[\frac{1}{2}(f_{k})^{2}-\frac{1}{3}(f_{k})^{3}\right]\geq 0. Therefore, using 0fk110\leq f_{k-1}\leq 1, the interpolation inequality gL2gL11/4gL33/4\|g\|_{L^{2}}\leq\|g\|^{1/4}_{L^{1}}\|g\|^{3/4}_{L^{3}}, and Young’s inequality, we have

2ak1fk(1fk)fkdv\displaystyle 2\int\nabla a_{k-1}f_{k}(1-f_{k})\cdot\nabla f_{k}\;dv fkL2223fkL33\displaystyle\leq\|f_{k}\|_{L^{2}}^{2}-\frac{2}{3}\|f_{k}\|_{L^{3}}^{3}
fkL11/2fkL33/223fkL33\displaystyle\leq\|f_{k}\|^{1/2}_{L^{1}}\|f_{k}\|^{3/2}_{L^{3}}-{\frac{2}{3}}\|f_{k}\|_{L^{3}}^{3}
38fkL1.\displaystyle\leq\frac{3}{8}\|f_{k}\|_{L^{1}}.

Using Lemma 3.9, we obtain

fkL22+2τδ1fkL22fk1L22+τfk1L13/2,\|f_{k}\|_{L^{2}}^{2}+2\tau\delta_{1}\|\nabla f_{k}\|_{L^{2}}^{2}\leq\|f_{k-1}\|_{L^{2}}^{2}+\tau\|f_{k-1}\|_{L^{1}}^{3/2},

which implies, recursively,

sup0jkfjL22+2δ1(j=1kτfjL22)\displaystyle\sup_{0\leq j\leq k}\|f_{j}\|_{L^{2}}^{2}+2\delta_{1}\left(\sum_{j=1}^{k}\tau\|\nabla f_{j}\|_{L^{2}}^{2}\right) finL22+τj=0k1fjL13/2\displaystyle\leq\|f_{in}\|_{L^{2}}^{2}+\tau\sum_{j=0}^{k-1}\|f_{j}\|_{L^{1}}^{3/2}
finL22+τj=0k1finL13/2\displaystyle\leq\|f_{in}\|_{L^{2}}^{2}+{\tau}\sum_{j=0}^{k-1}\|f_{in}\|_{L^{1}}^{3/2}
finL22+kτfinL13/2.\displaystyle\leq\|f_{in}\|_{L^{2}}^{2}+k\tau\|f_{in}\|^{3/2}_{L^{1}}.

Taking k=Nk=N and recalling the definition of f(N)f^{(N)} in (3.15) finish the proof of the lemma. ∎

Lemma 3.11 (Propagation of Moments).

Suppose finL21f_{in}\in L^{1}_{2} and 0fin10\leq f_{in}\leq 1. Then, the following estimates hold:

(3.19) f(N)L([0,T];L11)finL11+C(finL1)T,\|f^{(N)}\|_{L^{\infty}([0,T];L^{1}_{1})}\leq\|f_{in}\|_{L^{1}_{1}}+C(\|f_{in}\|_{L^{1}})T,

and

(3.20) f(N)L([0,T];L21)finL21+C(finL11)T,\|f^{(N)}\|_{L^{\infty}([0,T];L^{1}_{2})}\leq\|f_{in}\|_{L^{1}_{2}}+C(\|f_{in}\|_{L^{1}_{1}})T,

where the implicit constants are independent of τn\tau_{n}, δ1\delta_{1}, and δ2\delta_{2}.

Proof.

Let φRCc(3)\varphi_{R}\in C^{\infty}_{c}(\mathbb{R}^{3}) be as in Lemma 3.9. Then, we test (3.5) with vφR(v)\langle v\rangle\varphi_{R}(v) to obtain

φRvfk𝑑v+τδ2φRv|v|mfk𝑑v\displaystyle\int\varphi_{R}\langle v\rangle f_{k}dv+\tau\delta_{2}\int\varphi_{R}\langle v\rangle|v|^{m}f_{k}\;dv =φRvfk1𝑑v\displaystyle=\int\varphi_{R}\langle v\rangle f_{k-1}\;dv
τAk1fk(vφR)dv\displaystyle\qquad-\tau\int A_{k-1}\nabla f_{k}\cdot\nabla(\langle v\rangle\varphi_{R})\;dv
+τak1fk(1fk)(vφR)dv\displaystyle\qquad+\tau\int\nabla a_{k-1}f_{k}(1-f_{k})\cdot\nabla(\langle v\rangle\varphi_{R})\;dv
τδ1fk(vφR)dv\displaystyle\qquad-\tau\delta_{1}\int\nabla f_{k}\cdot\nabla(\langle v\rangle\varphi_{R})\;dv
=:φRvfk1dvτ(I1I2+δ1I3).\displaystyle=:\int\varphi_{R}\langle v\rangle f_{k-1}{\;dv}-\tau\left(I_{1}-I_{2}+\delta_{1}I_{3}\right).

We bound I3I_{3} using |Δ(vφR)|C|\Delta(\langle v\rangle\varphi_{R})|\leq C to obtain

|I3|=|fkΔ(vφR)𝑑v|Δ(vφR)LfkL1fkL1.|I_{3}|=\left|\int f_{k}\Delta(\langle v\rangle\varphi_{R})\;dv\right|\leq\|\Delta(\langle v\rangle\varphi_{R})\|_{L^{\infty}}\|f_{k}\|_{L^{1}}\lesssim\|f_{k}\|_{L^{1}}.

For I2I_{2} we use Lemma 2.3, 0fk10\leq f_{k}\leq 1, and |(vφR)|C|\nabla(\langle v\rangle\varphi_{R})|\leq C:

|I2|ak1LfkL1(vφR)L(fk1L1+fk1L)fkL1.\displaystyle|I_{2}|\leq\|\nabla a_{k-1}\|_{L^{\infty}}\|f_{k}\|_{L^{1}}\|\nabla(\langle v\rangle\varphi_{R})\|_{L^{\infty}}\lesssim\left(\|f_{k-1}\|_{L^{1}}+\|f_{k-1}\|_{L^{\infty}}\right)\|f_{k}\|_{L^{1}}.

For I1I_{1}, we integrate by parts twice to get

I1\displaystyle I_{1} =(Ak1fk)(vφR)(Ak1)fk(vφR)dv\displaystyle=\int\nabla\cdot(A_{k-1}f_{k})\cdot\nabla(\langle v\rangle\varphi_{R})-(\nabla\cdot A_{k-1})f_{k}\cdot\nabla(\langle v\rangle\varphi_{R})\;dv
=tr(Ak1fk2(vφR))𝑑v(Ak1)fk(vφR)dv\displaystyle=-\int\mathrm{tr}(A_{k-1}f_{k}\nabla^{2}(\langle v\rangle\varphi_{R}))\;dv-\int(\nabla\cdot A_{k-1})f_{k}\cdot\nabla(\langle v\rangle\varphi_{R})\;dv
=:I1,1I1,2.\displaystyle=:-I_{1,1}-I_{1,2}.

Lemma 2.2 and |2(vφR)|C|\nabla^{2}(\langle v\rangle\varphi_{R})|\leq C yields

|I1,1|\displaystyle|I_{1,1}| Ak1LfkL12(vφR)L\displaystyle\leq\|A_{k-1}\|_{L^{\infty}}\|f_{k}\|_{L^{1}}\|\nabla^{2}(\langle v\rangle\varphi_{R})\|_{L^{\infty}}
(fk1L1+fk1L)fkL1.\displaystyle\lesssim\left(\|f_{k-1}\|_{L^{1}}+\|f_{k-1}\|_{L^{\infty}}\right)\|f_{k}\|_{L^{1}}.

Lemma 2.3 and |(vφR)|C|\nabla(\langle v\rangle\varphi_{R})|\leq C yield

|I1,2|\displaystyle|I_{1,2}| Ak1LfkL1(vφR)L\displaystyle\leq\|\nabla\cdot A_{k-1}\|_{L^{\infty}}\|f_{k}\|_{L^{1}}\|\nabla(\langle v\rangle\varphi_{R})\|_{L^{\infty}}
(fk1L1+fk1L)fkL1.\displaystyle\lesssim\left(\|f_{k-1}\|_{L^{1}}+\|f_{k-1}\|_{L^{\infty}}\right)\|f_{k}\|_{L^{1}}.

Combining all above estimates we obtain

sup0jkφRvfj𝑑v\displaystyle\sup_{0\leq j\leq k}\int\varphi_{R}\langle v\rangle f_{j}\;dv φRvfin𝑑v+Cj=1kτ(fj1L1+fj1L12)\displaystyle\leq\int\varphi_{R}\langle v\rangle f_{in}\;dv+C\sum_{j=1}^{k}\tau\left(\|f_{j-1}\|_{L^{1}}+\|f_{j-1}\|_{L^{1}}^{2}\right)
vfin𝑑v+Ckτ(finL1+finL12).\displaystyle\leq\int\langle v\rangle f_{in}\;dv+Ck\tau\left(\|f_{in}\|_{L^{1}}+\|f_{in}\|_{L^{1}}^{2}\right).

Now, taking k=Nk=N, recalling the definition of f(N)f^{(N)} in (3.15) and letting RR\rightarrow\infty, the monotone convergence theorem implies (3.19).

The proof of (3.20) proceeds nearly identically after testing with v2φR\langle v\rangle^{2}\varphi_{R}. ∎

The bounds in Lemmas 3.10 and 3.11 are sufficient for weak or weak star compactness. For strong compactness, we will use the version of the Aubin-Lions Lemma for piecewise constant functions [22, Theorem 1].

Lemma 3.12.

For any T>0T>0, finL21f_{in}\in L^{1}_{2}, and 0fin10\leq f_{in}\leq 1, for f(N)f^{(N)} defined above with 0<m<10<m<1,

(3.21) Dτf(N)L2([0,T];H1)C(finL21,T,δ1).{\|D_{\tau}f^{(N)}\|_{L^{2}([0,T];H^{-1})}}\leq C(\|f_{in}\|_{L^{1}_{2}},T,\delta_{1}).

Moreover, the family {f(N)}\{f^{(N)}\} is compact in L2([0,T];Lq)L^{2}([0,T];L^{q}), provided 1q<61\leq q<6.

Proof.

Let us define the triple X:=L21H1X:=L^{1}_{2}\cap H^{1}, Y:=LqL2Y:=L^{q}\cap L^{2} and Z:=H1Z:=H^{-1} for a fixed 1q<61\leq q<6. Following the proof of Lemma 3.6, the embedding XYX\operatorname{\hookrightarrow}Y is compact for 1q<61\leq q<6. Certainly, YZY\operatorname{\hookrightarrow}Z continuously for this range of qq. Moreover, we have shown in Lemmas 3.10 and 3.11,

(3.22) f(N)L2([0,T];X)C(δ1,finL1,finL2,T),\|f^{(N)}\|_{L^{2}([0,T];X)}\leq C(\delta_{1},\|f_{in}\|_{L^{1}},\|f_{in}\|_{L^{2}},T),

where the constant on the right hand side is independent of δ2\delta_{2} and τ\tau. To obtain (3.21) we first consider

|0T3Dτf(N)φ𝑑v𝑑t|\displaystyle\left|\int_{0}^{T}\int_{\mathbb{R}{{}^{3}}}D_{\tau}f^{(N)}\varphi\;dvdt\right|\leq |0T3ANf(N)φdvdt|\displaystyle\left|\int_{0}^{T}\int_{\mathbb{R}{{}^{3}}}A_{N}\nabla f^{(N)}\cdot\nabla\varphi\;dvdt\right|
+|0T3aNf(N)(1f(N))φdvdt|\displaystyle+\left|\int_{0}^{T}\int_{\mathbb{R}{{}^{3}}}\nabla a_{N}f^{(N)}(1-f^{(N)})\cdot\nabla\varphi\;dvdt\right|
+δ1|0T3f(N)φdvdt|\displaystyle+\delta_{1}\left|\int_{0}^{T}\int_{\mathbb{R}{{}^{3}}}\nabla f^{(N)}\cdot\nabla\varphi\;dvdt\right|
+δ2|0T3f(N)φ|v|mdvdt|=:I1++I4.\displaystyle+\delta_{2}\left|\int_{0}^{T}\int_{\mathbb{R}{{}^{3}}}f^{(N)}\varphi|v|^{m}\;dvdt\right|=:I_{1}+...+I_{4}.

For φL2([0,T];H1)\varphi\in L^{2}([0,T];H^{1}), thanks to Lemma 2.2, one gets

I1\displaystyle I_{1} 0Tφ(t)H1f(N)L2ANL𝑑t\displaystyle\lesssim\int_{0}^{T}\|\varphi(t)\|_{H^{1}}\|\nabla f^{(N)}\|_{L^{2}}\|A_{N}\|_{L^{\infty}}\;dt
φL2(0,T;H1)f(N)L2(0,T;L2)(finL1+1),\displaystyle\lesssim\|\varphi\|_{L^{2}(0,T;H^{1})}\|\nabla f^{(N)}\|_{L^{2}(0,T;L^{2})}\left(\|f_{in}\|_{L^{1}}+1\right),

and, using Lemma 2.3,

I2\displaystyle I_{2} 0Tφ(t)H1f(N)(1f(N))LaNL2𝑑t\displaystyle\lesssim\int_{0}^{T}\|\varphi(t)\|_{H^{1}}\|f^{(N)}(1-f^{(N)})\|_{L^{\infty}}\|\nabla a_{N}\|_{L^{2}}\;dt
φL2(0,T;H1)f(N)L2(0,T;L6/5).\displaystyle\lesssim\|\varphi\|_{L^{2}(0,T;H^{1})}\|f^{(N)}\|_{L^{2}(0,T;L^{6/5})}.

Finally,

I3φL2(0,T;H1)f(N)L2(0,T;L2),\displaystyle I_{3}\lesssim\|\varphi\|_{L^{2}(0,T;H^{1})}\|\nabla f^{(N)}\|_{L^{2}(0,T;L^{2})},

and since 2m<22m<2,

I4φL2(0,T;L2)f(N)L1(0,T;L2m1)C(T,fin)φL2(0,T;L2),\displaystyle I_{4}\lesssim\|\varphi\|_{L^{2}(0,T;L^{2})}\|f^{(N)}\|_{L^{1}(0,T;L^{1}_{2m})}\leq C(T,f_{in})\|\varphi\|_{L^{2}(0,T;L^{2})},

using Lemma 3.11. We note f(N)L2([0,T];L2)\|\nabla f^{(N)}\|_{L^{2}([0,T];L^{2})}, f(N)L([0,T];L1)\|f^{(N)}\|_{L^{\infty}([0,T];L^{1})}, and f(N)L([0,T];L21)\|f^{(N)}\|_{L^{\infty}([0,T];L^{1}_{2})} are uniformly bounded in δ2\delta_{2} and NN (but not in δ1\delta_{1}) by Lemmas 3.10 and 3.11. Thus (3.21) follows.

Theorem 1 in [22], together with (3.21) and (3.22), yields the desired compactness. ∎

We are now ready to prove Proposition 3.3:

Proof of Proposition 3.3.

Let δ2=τ\delta_{2}=\tau, fix some 0<m<10<m<1, and {f(N)}N\{f^{(N)}\}_{{N}\in\mathbb{N}} be the corresponding sequence of piecewise constant solutions to (3.16). Thanks to the estimates from Lemma 3.10, Lemma 3.11, and Lemma 3.12, we may assume that f(N)f^{(N)} converges to ff, as τ0\tau\to 0, in the following topologies:

  • Weak star in L([0,T]×3)L^{\infty}([0,T]\times\mathbb{R}^{3}),

  • Weakly in L2([0,T];H1)L^{2}([0,T];H^{1}),

  • Weak star in L([0,T];L2)L^{\infty}([0,T];L^{2}),

  • Strongly in Lp([0,T];Lq)L^{p}([0,T];L^{q}) for 1p21\leq p\leq 2 and 1q<61\leq q<6.

Moreover, by taking a further subsequence, we will also have that f(N)ff^{(N)}\rightarrow f pointwise almost everywhere. Therefore, thanks to Fatou’s lemma

fL([0,T];L21)+δ1fL2([0,T];L2)C(finL21,T).\|f\|_{L^{\infty}([0,T];L^{1}_{2})}+\delta_{1}\|\nabla f\|_{L^{2}([0,T];L^{2})}\leq C(\|f_{in}\|_{L^{1}_{2}},T).

All these convergences are enough to pass to the limit N+N\to+\infty in (3.16). We briefly highlight the convergence in the nonlinear terms. Let us first consider φCc([0,T)×3)\varphi\in C^{\infty}_{c}([0,T)\times\mathbb{R}^{3}). We have

|0T3[aN\displaystyle\biggr{|}\int_{0}^{T}\int_{\mathbb{R}^{3}}\bigg{[}\nabla a_{N} f(N)(1f(N))a[f]f(1f)]φdvdt|\displaystyle f^{(N)}(1-f^{(N)})-\nabla a[f]f(1-f)\bigg{]}\cdot\nabla\varphi\;dvdt\biggr{|}
|0T3(aNa[f])f(N)(1f(N))φdvdt|\displaystyle\leq\left|\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(\nabla a_{N}-\nabla a[f]\right)f^{(N)}(1-f^{(N)})\cdot\nabla\varphi\;dvdt\right|
+|0T3a[f][f(1f)f(N)(1f(N))]φdvdt|\displaystyle\qquad+\left|\int_{0}^{T}\int_{\mathbb{R}^{3}}\nabla a[f]\left[f(1-f)-f^{(N)}(1-f^{(N)})\right]\cdot\nabla\varphi\;dvdt\right|
=:I1+I2.\displaystyle=:I_{1}+I_{2}.

We estimate I1I_{1} using Hölder’s inequality and f(N)(1f(N))L1\|f^{(N)}(1-f^{(N)})\|_{L^{\infty}}\leq 1:

I1\displaystyle I_{1} 0Ta[σNf(N)f]L2φL2𝑑t\displaystyle\leq\int_{0}^{T}\|\nabla a[\sigma_{N}f^{(N)}-f]\|_{L^{2}}\|\nabla\varphi\|_{L^{2}}\;dt
0TσNf(N)f]L6/5φL2dt0,\displaystyle\lesssim\int_{0}^{T}\|\sigma_{N}f^{(N)}-f]\|_{L^{6/5}}\|\nabla\varphi\|_{L^{2}}\;dt\to 0,

thanks to the strong convergence, and, similarly, using Lemma 2.3,

I220Ta[f]Lf(N)fL2φL2𝑑t0.\displaystyle I_{2}\leq 2\int_{0}^{T}\|\nabla a[f]\|_{L^{\infty}}\|f^{(N)}-f\|_{L^{2}}\|\nabla\varphi\|_{L^{2}}\;dt\to 0.

Next, we handle the nonlinear term involving ANA_{N}, which we decompose as

|0T3\displaystyle\biggr{|}\int_{0}^{T}\int_{\mathbb{R}^{3}} [ANf(N)A[f(1f)]f]φdvdt|\displaystyle\bigg{[}A_{N}\nabla f^{(N)}-A[f(1-f)]\nabla f\bigg{]}\cdot\nabla\varphi\;dvdt\biggr{|}
|0T3(ANA[f(1f)])f(N)φdvdt|\displaystyle\leq\left|\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(A_{N}-A[f(1-f)]\right)\nabla f^{(N)}\cdot\nabla\varphi\;dvdt\right|
+|0T3A[f(1f)](ff(N))φdvdt|\displaystyle\qquad+\left|\int_{0}^{T}\int_{\mathbb{R}^{3}}A\left[f(1-f)\right](\nabla f-\nabla f^{(N)})\cdot\nabla\varphi\;dvdt\right|
=:J1+J2.\displaystyle=:J_{1}+J_{2}.

The term J2J_{2} convergence to zero thanks to the weak convergence of f(N)f^{(N)} in H1()3H^{1}(\mathbb{R}{{}^{3}}) and Lemma 2.2. For J1J_{1}, we use Hölder’s inequality, Lemma 2.2, estimate (3.17) and the strong convergence in L2([0,T];L2)L^{2}([0,T];L^{2}) to obtain J10J_{1}\to 0, since

J1\displaystyle J_{1} Tf(N)L2([0,T];L2)φL([0,T];H1)σN(f(N))fL([0,T];L1)4/3σN(f(N))fL2([0,T];L2)2/3.\displaystyle\lesssim_{T}\|\nabla f^{(N)}\|_{L^{2}([0,T];L^{2})}\|\varphi\|_{L^{\infty}([0,T];H^{1})}\|\sigma_{N}(f^{(N)})-f\|_{L^{\infty}([0,T];L^{1})}^{4/3}\|\sigma_{N}(f^{(N)})-f\|_{L^{2}([0,T];L^{2})}^{2/3}.

We treat the left hand side of (3.16) by integrating by parts,

0T3Dτf(N)φ𝑑v𝑑t=\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{3}}D_{\tau}f^{(N)}\varphi\;dvdt= 0TτDτφf(N)(t)𝑑v𝑑t\displaystyle-\int_{0}^{T-\tau}D_{-\tau}\varphi f^{(N)}(t)\;dvdt
+1τTτT3f(N)(t)φ(t)𝑑v𝑑t1ττ03f(N)(t)φ(t+τ)𝑑v𝑑t.\displaystyle+\frac{1}{\tau}\int_{T-\tau}^{T}\int_{\mathbb{R}^{3}}f^{(N)}(t)\varphi(t)\;dvdt-\frac{1}{\tau}\int_{-\tau}^{0}\int_{\mathbb{R}^{3}}f^{(N)}(t)\varphi(t+\tau)\;dvdt.

For NN sufficiently large,

1τTτT3f(N)(t)φ(t)𝑑v𝑑t=0,\frac{1}{\tau}\int_{T-\tau}^{T}\int_{\mathbb{R}^{3}}f^{(N)}(t)\varphi(t)\;dvdt=0,

as φ\varphi is compactly supported in [0,T)×3[0,T)\times\mathbb{R}^{3}. Moreover, for 0t<τ0\leq t<\tau, f(N)(t)=finf^{(N)}(t)=f_{in} so that

1ττ03f(N)(t)φ(t+τ)𝑑v𝑑t=1ττ03finφ(t+τ)𝑑v𝑑t.\frac{1}{\tau}\int_{{-\tau}}^{0}\int_{\mathbb{R}^{3}}f^{(N)}(t)\varphi(t+\tau)\;dvdt=\frac{1}{\tau}\int_{{-\tau}}^{0}\int_{\mathbb{R}^{3}}f_{in}\varphi(t+\tau)\;dvdt.

Since φ\varphi is smooth, the right hand side converges to 3φ(0,v)fin(v)\int_{\mathbb{R}^{3}}\varphi(0,v)f_{in}(v) as NN\rightarrow\infty. Finally, since φ\varphi is smooth and f(N)f^{(N)} are uniformly bounded in L2([0,T];L2)L^{2}([0,T];L^{2}), we have

(3.23) 0TτDτφf(N)(t)𝑑v𝑑t0T3f(v,t)tφ(v,t)dvdt.-\int_{0}^{T-\tau}D_{-\tau}\varphi f^{(N)}(t)\;dvdt\rightarrow-\int_{0}^{T}\int_{\mathbb{R}^{3}}f(v,t)\partial_{t}\varphi(v,t)\;dvdt.

This concludes the proof of (3.6). Lemma 3.12 implies that, for some gL2([0,T];H1)g\in L^{2}([0,T];H^{-1}),

0T3Dτf(N)φ𝑑v𝑑t0T3gφ𝑑v𝑑t,\int_{0}^{T}\int_{\mathbb{R}^{3}}D_{\tau}f^{(N)}\varphi\;dvdt\rightarrow\int_{0}^{T}\int_{\mathbb{R}^{3}}g\varphi\;dvdt,

for every φL2([0,T];H1)\varphi\in L^{2}([0,T];H^{1}). Hence, (3.23) yields g=tfg=\partial_{t}f. The distributional formulation implies

0Tφ,tfH1×H1𝑑t=\displaystyle\int_{0}^{T}\langle\varphi,\partial_{t}f\rangle_{H^{1}\times H^{-1}}\;dt= 0T3(A[f(1f)]fa[f]f(1f))φdvdt\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(A[f(1-f)]\nabla f-\nabla a[f]f(1-f)\right)\cdot\nabla\varphi\;dvdt
δ10T3fφdvdt,\displaystyle-\delta_{1}\int_{0}^{T}\int_{\mathbb{R}^{3}}\nabla f\cdot\nabla\varphi\;dvdt,

for each φCc([0,T)×3)\varphi\in C^{\infty}_{c}([0,T)\times\mathbb{R}^{3}). Now, fix ΦL2([0,T];H1)\Phi\in L^{2}([0,T];H^{1}) and let φεCc([0,T)×3)\varphi_{\varepsilon}\in C^{\infty}_{c}([0,T)\times\mathbb{R}^{3}) such that ΦφεL2([0,T];H1)ε\|\Phi-\varphi_{\varepsilon}\|_{L^{2}([0,T];H^{1})}\leq\varepsilon. Then, substituting φε\varphi_{\varepsilon} into the above weak formulation, and passing to the limit ε0\varepsilon\to 0, we obtain (3.3).

Finally, we note that because fL2([0,T];H1)f\in L^{2}([0,T];H^{1}) and tfL2([0,T];H1)\partial_{t}f\in L^{2}([0,T];H^{-1}), fC([0,T];L2)f\in C([0,T];L^{2}) and therefore (3.3) implies f(t)finf(t)\rightarrow f_{in} strongly in L2L^{2} as t0+t\rightarrow 0^{+}. Moreover, repeating the proof of Lemma 3.9, the additional δ2f|v|mL1\delta_{2}\|f|v|^{m}\|_{L^{1}} term disappears thanks to the uniform bound from Lemma 3.11, and we obtain conservation of mass.

3.4. Step 4: Proof of Theorem 1.1

We conclude the proof of Theorem 1.1 by showing compactness in δ1\delta_{1} for solutions to (3.1). We already have uniform in δ1\delta_{1} bounds of the form,

(3.24) fδ1L([0,T];L21)+fδ1L([0,T]×3)C(finL21,T).\|f_{\delta_{1}}\|_{L^{\infty}([0,T];L^{1}_{2})}+\|f_{\delta_{1}}\|_{L^{\infty}([0,T]\times\mathbb{R}^{3})}\leq C(\|f_{in}\|_{L^{1}_{2}},T).

Thus, to gain strong compactness as δ10+\delta_{1}\rightarrow 0^{+}, we will show (in Lemma 3.15) the estimate

(3.25) fδ1L2([0,T];H1)+tfδ1L2([0,T];H1)C(fδ1L([0,T];L31),T),\|f_{\delta_{1}}\|_{L^{2}([0,T];H^{1})}+\|\partial_{t}f_{\delta_{1}}\|_{L^{2}([0,T];H^{-1})}\leq C(\|f_{\delta_{1}}\|_{L^{\infty}([0,T];L^{1}_{3})},T),

by leveraging the degenerate dissipation present in (1.1) (see Lemma 2.1), which up to this point, we have neglected. However, we do not have control over L31L^{1}_{3} and therefore, we also show propagation of higher moments in Lemma 3.13.

To this end, we recall the dependence of our solutions on the parameter δ1\delta_{1}. Throughout this section, we will write fδ:[0,T]×3f_{\delta}:[0,T]\times\mathbb{R}^{3}\rightarrow\mathbb{R} to denote the solution fδf_{\delta} to (3.1) on [0,T][0,T] constructed in Proposition 3.3 with parameter δ1=δ\delta_{1}=\delta. Let us begin with a propagation of higher moments estimate that is uniform in δ\delta:

Lemma 3.13.

Suppose finLs1f_{in}\in L^{1}_{s} for some s>2s>2 and T>0T>0. Then, the family {fδ}0<δ<1\{f_{\delta}\}_{0<\delta<1} satisfies the uniform in δ\delta estimate,

(3.26) fδL([0,T];Ls1)C(finLs1,T).\|f_{\delta}\|_{L^{\infty}([0,T];L^{1}_{s})}\leq C(\|f_{in}\|_{L^{1}_{s}},T).
Proof.

We note that the propagation of moments for 0s20\leq s\leq 2 follows directly from Proposition 3.3. We will prove the rest of the them by induction on the integer part of ss. Indeed, fix some 2n<sn+12\leq n<s\leq n+1 and suppose that (3.26) holds for any 0sn0\leq s\leq n. Then, we will test (3.3) with Ψ(v,t)=φR(v)|v|sχ[0,t0](t)\Psi(v,t)=\varphi_{R}(v)|v|^{s}\chi_{[0,t_{0}]}(t) where φRCc(3)\varphi_{R}\in C^{\infty}_{c}(\mathbb{R}^{3}) is as in Lemma 3.9. We obtain

3(fδ(t0)fin)φR|v|s𝑑v=\displaystyle\int_{\mathbb{R}^{3}}(f_{\delta}(t_{0})-f_{in})\varphi_{R}|v|^{s}\ dv= 0t03A[fδ(1fδ)]fδ(|v|sφR)dvdt\displaystyle-\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}\cdot\nabla(|v|^{s}\varphi_{R})\;dvdt
+0t03(a[fδ]fδ(1fδ)δfδ)(|v|sφR)dvdt.\displaystyle+\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}(\nabla a[f_{\delta}]f_{\delta}(1-f_{\delta})-\delta\nabla f_{\delta})\cdot\nabla(|v|^{s}\varphi_{R})\;dvdt.

We estimate the right hand side by decomposing into multiple parts:

0t03(A[fδ(1fδ)]fδa[fδ]fδ\displaystyle-\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\bigg{(}A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}-\nabla a[f_{\delta}]f_{\delta} (1fδ)+δfδ)(|v|sφR)dvdt\displaystyle(1-f_{\delta})+\delta\nabla f_{\delta}\bigg{)}\cdot\nabla(|v|^{s}\varphi_{R})\;dvdt
=0t03(A[fδ(1fδ)]fδ)(|v|sφR)dvdt\displaystyle=-\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla\cdot\left(A[f_{\delta}(1-f_{\delta})]f_{\delta}\right)\cdot\nabla(|v|^{s}\varphi_{R})\;dvdt
+0t03fδ(A)[fδ(1fδ)](|v|sφR)dvdt\displaystyle\quad+\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}f_{\delta}\left(\nabla\cdot A\right)[f_{\delta}(1-f_{\delta})]\cdot\nabla(|v|^{s}\varphi_{R})\;dvdt
+0t03(a[fδ]fδ(1fδ))(|v|sφR)dvdt\displaystyle\quad+\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\left(\nabla a[f_{\delta}]f_{\delta}(1-f_{\delta})\right)\cdot\nabla(|v|^{s}\varphi_{R})\;dvdt
δ0t03fδ(|v|sφR)dvdt\displaystyle\quad-\delta\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla f_{\delta}\cdot\nabla(|v|^{s}\varphi_{R})\;dvdt
=I1+I2+I3δI4.\displaystyle=-I_{1}+I_{2}+I_{3}-\delta I_{4}.

For I1I_{1}, after integrating by parts, thanks to Lemma 2.2 and |2(|v|sφR)|C|v|s2|\nabla^{2}(|v|^{s}\varphi_{R})|\leq C|v|^{s-2} we obtain

|I1|\displaystyle|I_{1}| (fδL1([0,T];L)+fδL1([0,T];L1))fδ|v|s2L([0,T];L1)\displaystyle\lesssim\left(\|f_{\delta}\|_{L^{1}([0,T];L^{\infty})}+\|f_{\delta}\|_{L^{1}([0,T];L^{1})}\right)\|f_{\delta}|v|^{s-2}\|_{L^{\infty}([0,T];L^{1})}
C(finLs21,T),\displaystyle\leq C(\|f_{in}\|_{L^{1}_{s-2}},T),

where in the last line we used the induction hypothesis. For I2I_{2}, we use Lemma 2.2 and |(|v|sφR)|C|v|s1|\nabla(|v|^{s}\varphi_{R})|\leq C|v|^{s-1} to obtain

|I2|fδ(|v|sφR)L([0,T];L1)A[fδ(1fδ)]L1([0,T];L)C(finLs11,T).|I_{2}|\leq\|f_{\delta}\nabla(|v|^{s}\varphi_{R})\|_{L^{\infty}([0,T];L^{1})}\|\nabla\cdot A[f_{\delta}(1-f_{\delta})]\|_{L^{1}([0,T];L^{\infty})}\leq C(\|f_{in}\|_{L^{1}_{s-1}},T).

Similarly, for I3I_{3}, we use Lemma 2.3 and 0fδ10\leq f_{\delta}\leq 1 to obtain

|I3|fδ(|v|sφR)L([0,T];L1)a[fδ]L1([0,T];L)C(finLs11,T).|I_{3}|\leq\|f_{\delta}\nabla(|v|^{s}\varphi_{R})\|_{L^{\infty}([0,T];L^{1})}\|\nabla a[f_{\delta}]\|_{L^{1}([0,T];L^{\infty})}\leq C(\|f_{in}\|_{L^{1}_{s-1}},T).

Finally, for I4I_{4}, integration by parts yields

|I4|TfΔ(|v|sφR)L([0,T];L1C(finLs21,T).|I_{4}|\leq T\|f\Delta(|v|^{s}\varphi_{R})\|_{L^{\infty}([0,T];L^{1}}\leq C(\|f_{in}\|_{L^{1}_{s-2}},T).

Combining all above estimates, we prove (3.26) for any s(n,n+1]s\in(n,n+1]. The proof is complete. ∎

The following lemma, combined with Lemma 2.1, gives a quantitative lower bound on the ellipticity of A[fδ(1fδ)]A[f_{\delta}(1-f_{\delta})]. This will allow us to gain some control over fδ\nabla f_{\delta} uniformly in δ\delta.

Lemma 3.14.

Suppose 0fin10\leq f_{in}\leq 1, finL21f_{in}\in L^{1}_{2}, H1(fin)<0H_{1}(f_{in})<0, and T>0T>0. Then, fδf_{\delta} has decreasing entropy, i.e. for almost every 0t1<t2T0\leq t_{1}<t_{2}\leq T,

(3.27) H1(fδ(t2))H1(fδ(t1)).H_{1}(f_{\delta}(t_{2}))\leq H_{1}(f_{\delta}(t_{1})).

Moreover, the dissipative coefficients A[fδ(1fδ)]A[f_{\delta}(1-f_{\delta})] are bounded uniformly from below:

(3.28) A[fδ(1fδ)]C(finL21,H1(fin),T)1+|v|3.A[f_{\delta}(1-f_{\delta})]\geq\frac{C(\|f_{in}\|_{L^{1}_{2}},H_{1}(f_{in}),T)}{1+|v|^{3}}.
Proof.

By Lemma 2.1, (3.28) is a consequence of (3.27) and

(3.29) fδ(t)L21C(finL21),for allt>0.\|f_{\delta}(t)\|_{L^{1}_{2}}\leq C(\|f_{in}\|_{L^{1}_{2}}),\quad\textrm{for all}\;t>0.

The energy bound (3.29) is shown in Lemma 3.13. It remains to estimate the entropy and obtain (3.27). We test (3.3) with

ψη:=log(fδ+η)log(η)log(1fδ+η)+log(1+η),η>0.\psi_{\eta}:=\log(f_{\delta}+\eta)-\log(\eta)-\log(1-f_{\delta}+\eta)+\log(1+\eta),\quad\eta>0.

We have

t1t23ψηtfδdvdt=\displaystyle\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\psi_{\eta}\partial_{t}f_{\delta}\;dvdt= t1t23ψηA[fδ(1fδ)]fδdvdt\displaystyle-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\psi_{\eta}\cdot A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}\;dvdt
+t1t23ψηa[fδ](fδ)(1fδ)𝑑v𝑑tδt1t23ψηfδdvdt\displaystyle+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\psi_{\eta}\cdot\nabla a[f_{\delta}](f_{\delta})(1-f_{\delta})\;dvdt-\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\psi_{\eta}\cdot\nabla f_{\delta}\;dvdt
=\displaystyle= :I1(η)+I2(η)I3(η).\displaystyle:-I_{1}(\eta)+I_{2}(\eta)-I_{3}(\eta).

We now take η0+\eta\rightarrow 0^{+}. For the left hand side, we use conservation of mass from Proposition 3.3 to obtain:

limη0+t1t23ψηtfδdvdt\displaystyle\lim_{\eta\rightarrow 0^{+}}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\psi_{\eta}\partial_{t}f_{\delta}\;dvdt =limη0+t1t23log(fδ+η)tfδlog(1fδ+η)tfδdvdt\displaystyle=\lim_{\eta\rightarrow 0^{+}}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\log(f_{\delta}+\eta)\partial_{t}f_{\delta}-\log(1-f_{\delta}+\eta)\partial_{t}f_{\delta}\;dvdt
=H1(fδ(t2))H1(fδ(t1)).\displaystyle=H_{1}(f_{\delta}(t_{2}))-H_{1}(f_{\delta}(t_{1})).

By the monotone convergence theorem,

limη0+I1(η)\displaystyle\lim_{\eta\rightarrow 0^{+}}I_{1}(\eta) =t1t23[(fδ)1+(1fδ)1]fδA[fδ(1fδ)]fδdvdt\displaystyle=\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\left[(f_{\delta})^{-1}+(1-f_{\delta})^{-1}\right]\nabla f_{\delta}\cdot A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}\;dvdt
=t1t23[log(fδ)log(1fδ)]A[fδ(1fδ)]fδdvdt.\displaystyle=\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\left[\log(f_{\delta})-\log(1-f_{\delta})\right]\cdot A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}\;dvdt.

Next, for I2I_{2}, we decompose further as

I2(η)=\displaystyle I_{2}(\eta)= t1t23[(fδ+η)1+(1fδ+η)1]fδa[fδ](fδ)(1fδ)𝑑v𝑑t\displaystyle\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\left[(f_{\delta}+\eta)^{-1}+(1-f_{\delta}+\eta)^{-1}\right]\nabla f_{\delta}\cdot\nabla a[f_{\delta}](f_{\delta})(1-f_{\delta})\;dvdt
=\displaystyle= (1+2η)t1t23fδa[fδ]𝑑v𝑑t\displaystyle(1+2\eta)\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla f_{\delta}\cdot\nabla a[f_{\delta}]\;dvdt
+η(1η)t1t23[(fδ+η)1+(1fδ+η)1]fδa[fδ]𝑑v𝑑t\displaystyle+\eta(1-\eta)\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\left[(f_{\delta}+\eta)^{-1}+(1-f_{\delta}+\eta)^{-1}\right]\nabla f_{\delta}\cdot\nabla a[f_{\delta}]\;dvdt
=\displaystyle= I21(η)+I22(η).\displaystyle I_{2}^{1}(\eta)+I_{2}^{2}(\eta).

For I21I_{2}^{1}, we integrate by parts to obtain

limδ0I21(η)=t1t23fδ2𝑑v𝑑t.\lim_{\delta\to 0}I_{2}^{1}(\eta)=\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}f_{\delta}^{2}\;dvdt.

For I22I_{2}^{2}, we use 0fδ10\leq f_{\delta}\leq 1 with fδL([0,T];L1)f_{\delta}\in L^{\infty}([0,T];L^{1}) and ηlogη0\eta\log\eta\rightarrow 0 as η0+\eta\rightarrow 0^{+} to obtain

|I22(η)|\displaystyle|I_{2}^{2}(\eta)| =η(1η)|t1t23fδ[log(fδ+η)log(1fδ+η)]𝑑v𝑑t|\displaystyle=\eta(1-\eta)\left|\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}f_{\delta}\left[\log(f_{\delta}+\eta)-\log(1-f_{\delta}+\eta)\right]\;dvdt\right|
2|log(η)|η(1η)t1t23fδ𝑑v𝑑t0.\displaystyle\leq 2|\log(\eta)|\eta(1-\eta)\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}f_{\delta}\;dvdt\rightarrow 0.

Finally, we note for I3I_{3} that

I3(η)=δt1t23[(fδ+η)1+(1fδ+η)1]|fδ|2𝑑v𝑑t0.I_{3}(\eta)=\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\left[(f_{\delta}+\eta)^{-1}+(1-f_{\delta}+\eta)^{-1}\right]|\nabla f_{\delta}|^{2}\;dvdt\geq 0.

Thus, combining our estimates, we have shown

H1(fδ(t2))H1(fδ(t1))t1t23([log(fδ)log(1fδ)]A[fδ(1fδ)]fδfδ2)𝑑v𝑑t.H_{1}(f_{\delta}(t_{2}))-H_{1}(f_{\delta}(t_{1}))\leq{-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\left(\nabla\left[\log(f_{\delta})-\log(1-f_{\delta})\right]\cdot A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}-f_{\delta}^{2}\right)\;dvdt.}

We conclude by noticing that

\displaystyle- t1t23([log(fδ)log(1fδ)]A[fδ(1fδ)]fδfδ2)𝑑v𝑑t\displaystyle{\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\left(\nabla\left[\log(f_{\delta})-\log(1-f_{\delta})\right]\cdot A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}-f_{\delta}^{2}\right)\;dvdt}
=12t1t233fδfδ(1fδ)(1fδ)\displaystyle\quad=-\frac{1}{2}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}f_{\delta}f^{*}_{\delta}(1-f_{\delta})(1-f^{*}_{\delta})
×(Π(vv)|vv|[ff(1f)ff(1f)][ff(1f)ff(1f)])dvdvdt\displaystyle\qquad\qquad\times\left(\frac{\Pi(v-v^{*})}{|v-v^{*}|}\left[\frac{\nabla f^{*}}{f^{*}(1-f^{*})}-\frac{\nabla f}{f(1-f)}\right]\cdot\left[\frac{\nabla f^{*}}{f^{*}(1-f^{*})}-\frac{\nabla f}{f(1-f)}\right]\right)\ dvdv^{*}dt
0.\displaystyle\quad\leq 0.

The next lemma contains the coercive estimate we need to pass to the limit δ0\delta\to 0.

Lemma 3.15 (L2L^{2} Estimate).

Suppose finL31f_{in}\in L^{1}_{3} with H1(fin)<0H_{1}(f_{in})<0 and T>0T>0. Then, the family {fδ}0<δ<1\{f_{\delta}\}_{0<\delta<1} satisfies the estimate

tfδL2([0,T];H1)+fδL([0,T];L31)+fδL2([0,T];L2)C(finL31,H1(fin),T).\|\partial_{t}f_{\delta}\|_{L^{2}([0,T];H^{-1})}+\|f_{\delta}\|_{L^{\infty}([0,T];L^{1}_{3})}+\|\nabla f_{\delta}\|_{L^{2}([0,T];L^{2})}\leq C(\|f_{in}\|_{L^{1}_{3}},H_{1}(f_{in}),T).
Proof.

We test (3.3), with Ψ(v,t)=fδ(v,t)φR(v)v3χ[0,t0](t)\Psi(v,t)=f_{\delta}(v,t)\varphi_{R}(v){\langle v\rangle}^{3}\chi_{[0,t_{0}]}(t) where φRCc(3)\varphi_{R}\in C^{\infty}_{c}(\mathbb{R}^{3}) is a cutoff function as in Lemma 3.9. We obtain,

3|fδ(t0)|2φRv3|fin|2φRv3dv=\displaystyle\int_{\mathbb{R}^{3}}|f_{\delta}(t_{0})|^{2}\varphi_{R}{\langle v\rangle}^{3}-|f_{in}|^{2}\varphi_{R}{\langle v\rangle}^{3}\ dv= 0t03(A[fδ(1fδ)]fδa[fδ]fδ(1fδ))Ψdvdt\displaystyle-\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\left(A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}-\nabla a[f_{\delta}]f_{\delta}(1-f_{\delta})\right)\cdot\nabla\Psi\;dvdt
δ0t03fδΨdvdt.\displaystyle-\delta\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla f_{\delta}\cdot\nabla\Psi\;dvdt.

We expand the right hand side as

0t03\displaystyle-\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}} (A[fδ(1fδ)]fδa[fδ]fδ(1fδ))Ψdvdtδ0t03fδΨdvdt\displaystyle\left(A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}-\nabla a[f_{\delta}]f_{\delta}(1-f_{\delta})\right)\cdot\nabla\Psi\;dvdt-\delta\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla f_{\delta}\cdot\nabla\Psi\;dvdt
=\displaystyle= 0t03φRv3A[fδ(1fδ)]fδfδdvdt0t03fδA[fδ(1fδ)]fδ(φRv3)dvdt\displaystyle-\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\varphi_{R}{\langle v\rangle}^{3}A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}\cdot\nabla f_{\delta}\;dvdt-\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}f_{\delta}A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}\cdot\nabla(\varphi_{R}{\langle v\rangle}^{3})\;dvdt
+0t03a[fδ]fδ(1fδ)fδ(φRv3)dvdt+0t03a[fδ](fδfδ2)φRv3fδdvdt\displaystyle+\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla a[f_{\delta}]f_{\delta}(1-f_{\delta})\cdot f_{\delta}\nabla(\varphi_{R}{\langle v\rangle}^{3})\;dvdt+\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla a[f_{\delta}](f_{\delta}-f_{\delta}^{2})\cdot\varphi_{R}{\langle v\rangle}^{3}\nabla f_{\delta}\;dvdt
δ0t03fδfδ(φRv3)dvdtδ0t03fδφRv3fδdvdt\displaystyle-\delta\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla f_{\delta}\cdot f_{\delta}\nabla(\varphi_{R}{\langle v\rangle}^{3})\;dvdt-\delta\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla f_{\delta}\cdot\varphi_{R}{\langle v\rangle}^{3}\nabla f_{\delta}\;dvdt
=:\displaystyle=: I1I2+I3+I4δI5δI6.\displaystyle-I_{1}-I_{2}+I_{3}+I_{4}-\delta I_{5}-\delta I_{6}.

We bound IjI_{j} for 2j52\leq j\leq 5 using the propagation of moments from Lemma 3.13 and the upper bounds on the coefficients AA and a\nabla a from Lemma 2.2 and 2.3. We will lower bound I1I_{1} using Lemma 3.14. We begin to bound I2I_{2} by decomposing further:

I2=\displaystyle I_{2}= 120t03A[fδ(1fδ)]fδ2(φRv3)dvdt\displaystyle\frac{1}{2}\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}^{2}\cdot\nabla(\varphi_{R}{\langle v\rangle}^{3})\;dvdt
=\displaystyle= 120t03(A[fδ(1fδ)]fδ2)(φRv3)dvdt\displaystyle\frac{1}{2}\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla\cdot\left(A[f_{\delta}(1-f_{\delta})]f_{\delta}^{2}\right)\cdot\nabla(\varphi_{R}{\langle v\rangle}^{3})\;dvdt
120t03(A[fδ(1fδ)])fδ2(φRv3)dvdt\displaystyle-\frac{1}{2}\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}(\nabla\cdot A[f_{\delta}(1-f_{\delta})])f_{\delta}^{2}\cdot\nabla(\varphi_{R}{\langle v\rangle}^{3})\;dvdt
=:\displaystyle=: I21I22.\displaystyle I_{2}^{1}-I_{2}^{2}.

For I21I_{2}^{1}, integration by parts, Lemma 2.2, and |2(φRv3)|v|\nabla^{2}(\varphi_{R}{\langle v\rangle}^{3})|\lesssim{\langle v\rangle} imply

|I21|A[fδ(1fδ)L([0,T]×3)fδ2(φRv3)L1([0,T]×3)C(finL11,T).|I_{2}^{1}|\leq\|A[f_{\delta}(1-f_{\delta})\|_{L^{\infty}([0,T]\times\mathbb{R}^{3})}\|f_{\delta}\nabla^{2}(\varphi_{R}{\langle v\rangle}^{3})\|_{L^{1}([0,T]\times\mathbb{R}^{3})}\lesssim C(\|f_{in}\|_{L^{1}_{1}},T).

For I22I_{2}^{2}, obtain by Lemma 2.2, and |(φRv3)|v2{|}\nabla(\varphi_{R}{\langle v\rangle}^{3}){|}\lesssim{\langle v\rangle}^{2},

|I22|A[fδ(1fδ)L([0,T]×3)fδ(φRv3)L1([0,T]×3)C(finL21,T).|I_{2}^{2}|\leq\|\nabla\cdot A[f_{\delta}(1-f_{\delta})\|_{L^{\infty}([0,T]\times\mathbb{R}^{3})}\|f_{\delta}\nabla(\varphi_{R}{\langle v\rangle}^{3})\|_{L^{1}([0,T]\times\mathbb{R}^{3})}\lesssim C(\|f_{in}\|_{L^{1}_{2}},T).

Piecing together, we obtain

|I2|C(finL21,T).|I_{2}|\leq C(\|f_{in}\|_{L^{1}_{2}},T).

For I3I_{3}, we directly use the estimates from Lemma 3.13, 2.2, and 2.3 and |(φRv3)|v2{|}\nabla(\varphi_{R}{\langle v\rangle}^{3}){|}\lesssim{\langle v\rangle}^{2} to obtain

|I3|a[fδL([0,T]×3)fδ(φRv3)L1([0,T];L1)C(finL21,T).\displaystyle|I_{3}|\leq\|\nabla a[f_{\delta}\|_{L^{\infty}([0,T]\times\mathbb{R}^{3})}\|f_{\delta}\nabla(\varphi_{R}{\langle v\rangle}^{3})\|_{L^{1}([0,T];L^{1})}\leq C(\|f_{in}\|_{L^{1}_{2}},T).

Next, for I4I_{4}, we integrate by parts and recall Δa[f]=f-\Delta a[f]=f to decompose further:

I4\displaystyle I_{4} =0t03a[fδ]φRv3(fδ22fδ33)dvdt\displaystyle=\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla a[f_{\delta}]\cdot\varphi_{R}{\langle v\rangle}^{3}\nabla\left(\frac{f_{\delta}^{2}}{2}-\frac{f_{\delta}^{3}}{3}\right)\;dvdt
=0t03a[fδ](φRv3)(fδ22fδ33)𝑑v𝑑t+0t03φRv3(fδ32fδ43)𝑑v𝑑t\displaystyle=-\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\nabla a[f_{\delta}]\cdot\nabla(\varphi_{R}{\langle v\rangle}^{3})\left(\frac{f_{\delta}^{2}}{2}-\frac{f_{\delta}^{3}}{3}\right)\;dvdt+\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\varphi_{R}{\langle v\rangle}^{3}\left(\frac{f_{\delta}^{3}}{2}-\frac{f_{\delta}^{4}}{3}\right)\;dvdt
=I41+I42.\displaystyle=-I_{4}^{1}+I_{4}^{2}.

We bound I41I_{4}^{1} using Lemma 2.3 and |(φR(v)v3)|v2|\nabla(\varphi_{R}(v){\langle v\rangle}^{3})|\lesssim{\langle v\rangle}^{2}, to obtain

|I41|a[fδ]L([0,T]×3)fδ(φRv3)L1([0,T]×3)C(finL21,T).|I_{4}^{1}|\leq\|\nabla a[f_{\delta}]\|_{L^{\infty}([0,T]\times\mathbb{R}^{3})}\|f_{\delta}\nabla(\varphi_{R}{\langle v\rangle}^{3})\|_{L^{1}([0,T]\times\mathbb{R}^{3})}\leq C(\|f_{in}\|_{L^{1}_{2}},T).

For I42I_{4}^{2}, we bound using 0fδ10\leq f_{\delta}\leq 1 so that

|I42|φRv3fδL1([0,T]×3)fδ2/2fδ3/3L([0,T]×3)C(finL31,T).|I_{4}^{2}|\leq\|\varphi_{R}{\langle v\rangle}^{3}f_{\delta}\|_{L^{1}([0,T]\times\mathbb{R}^{3})}\|f_{\delta}^{2}/2-f_{\delta}^{3}/3\|_{L^{\infty}([0,T]\times\mathbb{R}^{3})}\leq C(\|f_{in}\|_{L^{1}_{3}},T).

Hence,

|I4|C(finL31,T).|I_{4}|\leq C(\|f_{in}\|_{L^{1}_{3}},T).

Using |2(φR(v)v3)|v|\nabla^{2}(\varphi_{R}(v){\langle v\rangle}^{3})|\lesssim{\langle v\rangle} , integration by parts yields

|I5|fδL([0,T]×3)fδ2(φR(v)v3)L1([0,T]×3)C(finL11,T).|I_{5}|\leq\|f_{\delta}\|_{L^{\infty}([0,T]\times\mathbb{R}^{3})}\|f_{\delta}\nabla^{2}(\varphi_{R}(v){\langle v\rangle}^{3})\|_{L^{1}([0,T]\times\mathbb{R}^{3})}\leq C(\|f_{in}\|_{L^{1}_{1}},T).

Finally, we note I60I_{6}\geq 0 and by Lemma 3.14,

I1C(finL21,H1(fin),T)0t03φRv31+|v|3|fδ|2𝑑v𝑑t.I_{1}\geq C(\|f_{in}\|_{L^{1}_{2}},H_{1}(f_{in}),T)\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\frac{\varphi_{R}{\langle v\rangle}^{3}}{1+|v|^{3}}|\nabla f_{\delta}|^{2}\ dvdt.

Summarizing, we obtain

3φRv3fδ(t0)𝑑v\displaystyle\int_{\mathbb{R}^{3}}\varphi_{R}{\langle v\rangle}^{3}f_{\delta}(t_{0})\;dv +C(finL21,H1(fin),T)0t03φR|fδ|2𝑑v𝑑t\displaystyle+C(\|f_{in}\|_{L^{1}_{2}},H_{1}(f_{in}),T)\int_{0}^{t_{0}}\int_{\mathbb{R}^{3}}\varphi_{R}|\nabla f_{\delta}|^{2}\;dvdt
3φRv3fin𝑑v+C(finL31,T).\displaystyle\leq\int_{\mathbb{R}^{3}}\varphi_{R}{\langle v\rangle}^{3}f_{in}\;dv+C(\|f_{in}\|_{L^{1}_{3}},T).

Letting RR\rightarrow\infty, applying the monotone convergence theorem, and taking a supremum over t0[0,T]t_{0}\in[0,T] yield the desired bound on fδ\nabla f_{\delta}.

Next, we test (3.3) with an arbitrary test function ΦL2([0,T];H1)\Phi\in L^{2}([0,T];H^{1}) and, by duality, obtain a bound on tf\partial_{t}f. In particular, we have

tfδL2([0,T];H1)=supΦL2([0,T];H1)10T3(A[fδ(1fδ)]fδa[fδ]fδ(1fδ)+δfδ)Φdvdt.\|\partial_{t}f_{\delta}\|_{L^{2}([0,T];H^{-1})}=\sup_{\|\Phi\|_{L^{2}([0,T];H^{1})}\leq 1}\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}-\nabla a[f_{\delta}]f_{\delta}(1-f_{\delta})+\delta\nabla f_{\delta}\right)\cdot\nabla\Phi\;dvdt.

Since

0T3A[fδ(1fδ)]fδΦdvdtA[fδ(1fδ)]L([0,T]×3)fL2([0,T];L2)ΦL2([0,T];L2),\int_{0}^{T}\int_{\mathbb{R}^{3}}A[f_{\delta}(1-f_{\delta})]\nabla f_{\delta}\cdot\nabla\Phi\;dvdt\leq\|A[f_{\delta}(1-f_{\delta})]\|_{L^{\infty}([0,T]\times\mathbb{R}^{3})}\|\nabla f\|_{L^{2}([0,T];L^{2})}\|\nabla\Phi\|_{L^{2}([0,T];L^{2})},

and

0T3a[fδ]fδ(1fδ)Φdvdta[fδ]L2([0,T];L2)ΦL2([0,T];L2),\int_{0}^{T}\int_{\mathbb{R}^{3}}\nabla a[f_{\delta}]f_{\delta}(1-f_{\delta})\cdot\nabla\Phi\;dvdt\leq\|\nabla a[f_{\delta}]\|_{L^{2}([0,T];L^{2})}\|\nabla\Phi\|_{L^{2}([0,T];L^{2})},

we conclude

|tfδL2([0,T];H1)\displaystyle|\partial_{t}f_{\delta}\|_{L^{2}([0,T];H^{-1})} C(finL1)supΦL2([0,T];H1)1fL2([0,T];H1)ΦL2([0,T];L2)\displaystyle\leq C(\|f_{in}\|_{L^{1}})\sup_{\|\Phi\|_{L^{2}([0,T];H^{1})}\leq 1}\|f\|_{L^{2}([0,T];H^{1})}\|\nabla\Phi\|_{L^{2}([0,T];L^{2})}
C(finL31,H1(fin),T).\displaystyle\leq C(\|f_{in}\|_{L^{1}_{3}},H_{1}(f_{in}),T).

This completes the proof. ∎

In the next lemma we state a weighted L2L^{2} estimate, proved via a slight modification to the L2L^{2}-estimate in Lemma 3.15.

Lemma 3.16.

Let ff be any weak solution to (1.6) as in Theorem 1.1 with initial data finf_{in} as described above. Then, for every m3m\geq 3,

sup(0,T)f()Lm22+0Tf(t)Lm322𝑑tC(fin,m,T).\sup_{(0,T)}\|f(\cdot)\|_{L^{2}_{m}}^{2}+\int_{0}^{T}\|\nabla f(t)\|_{L^{2}_{m-3}}^{2}\ dt\leq C(f_{in}{,m,T}).
Proof.

We test (1.6) with φ=vmf\varphi=\langle v\rangle^{m}f, and estimate the resulting terms as in the proof of Lemma 3.15. ∎

Proof of Theorem 1.1

Fix T>0T>0, finf_{in} with 0fin10\leq f_{in}\leq 1, and finL31f_{in}\in L^{1}_{3} and fix some sequence δn0+\delta_{n}\rightarrow 0^{+} and let fn(v,t)f_{n}(v,t) be the solutions with δ=δn\delta=\delta_{n} constructed in Proposition 3.3. Then, the uniform-in-δ\delta estimates from Lemma 3.13 and Lemma 3.15 together with Aubin-Lions Lemma imply that we may assume that fnff_{n}\rightarrow f for some limit ff in the following topologies:

  • Weak star in L([0,T]×3)L^{\infty}([0,T]\times\mathbb{R}^{3}),

  • Weakly in L2([0,T];H1)L^{2}([0,T];H^{1}),

  • Weak star in L([0,T];L2)L^{\infty}([0,T];L^{2}),

  • Strongly in Lp([0,T];Lq)L^{p}([0,T];L^{q}) for any 1p21\leq p\leq 2 and 1q<61\leq q<6.

Furthermore, we may also assume fnff_{n}\rightarrow f pointwise almost everywhere on [0,T]×3[0,T]\times\mathbb{R}^{3}. Therefore, by Fatou’s lemma, it follows that for almost every t[0,T]t\in[0,T],

(3.30) f(t)L31C(finL31,T).\|f(t)\|_{L^{1}_{3}}\leq C(\|f_{in}\|_{L^{1}_{3}},T).

Note also that the weak star convergence in LL^{\infty} is sufficient to guarantee 0f10\leq f\leq 1.

Next, since each fnf_{n} solves (3.1) on the time interval [0,T][0,T], for any ΦCc([0,T)×3)\Phi\in C^{\infty}_{c}([0,T)\times\mathbb{R}^{3}), we have

0T3fntΦdvdt\displaystyle\int_{0}^{T}\int_{\mathbb{R}^{3}}f_{n}\partial_{t}\Phi\;dvdt 3finΦ(0)𝑑v=\displaystyle-\int_{\mathbb{R}^{3}}f_{in}\Phi(0)\;dv=
0T3(A[fn(1fn)]fna[fn]fn(1fn)+δnfn)Φdvdt.\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{3}}\left(A[f_{n}(1-f_{n})]\nabla f_{n}-\nabla a[f_{n}]f_{n}(1-f_{n})+\delta_{n}\nabla f_{n}\right)\cdot\nabla\Phi\;dvdt.

We conclude the proof of existence by following the same steps as in the proof of Proposition 3.3.

To show uniqueness of solution, we assume by contradiction that there exist two solutions ff and gg. Their difference

w:=fg,w:=f-g,

is identically zero at t=0t=0 and solves the following weak formulation:

0Tφ,twH1,H1𝑑t=\displaystyle\int_{0}^{T}\langle\varphi,\partial_{t}w\rangle_{H^{1},H^{-1}}\;dt= 0T3A[f(1f)]wφdvdt\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{3}}A[f(1-f)]\nabla w\cdot\nabla\varphi\;dvdt
+0T3A[fw+(g1)w]gφdvdt\displaystyle+\int_{0}^{T}\int_{\mathbb{R}^{3}}A[fw+(g-1)w]\nabla g\cdot\nabla\varphi\;dvdt
+0T3f(1f)a[w]φdvdt\displaystyle+\int_{0}^{T}\int_{\mathbb{R}^{3}}f(1-f)\nabla a[w]\cdot\nabla\varphi\;dvdt
0T3(fw+(g1)w)a[g]φdvdt.\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{3}}(fw+(g-1)w)\nabla a[g]\cdot\nabla\varphi\;dvdt.

We consider φ=wv2m\varphi=w\langle v\rangle^{2m} for some m>32m>\frac{3}{2}, and get

123w2(t)v2m𝑑v=\displaystyle\frac{1}{2}\int_{\mathbb{R}^{3}}w^{2}(t)\langle v\rangle^{2m}\;dv= 0T3A[f(1f)]w(wv2m)dvdt\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{3}}A[f(1-f)]\nabla w\cdot\nabla(w\langle v\rangle^{2m})\;dvdt
+0T3A[fw+(g1)w]g(wv2m)dvdt\displaystyle+\int_{0}^{T}\int_{\mathbb{R}^{3}}A[fw+(g-1)w]\nabla g\cdot\nabla(w\langle v\rangle^{2m})\;dvdt
+0T3f(1f)a[w](wv2m)dvdt\displaystyle+\int_{0}^{T}\int_{\mathbb{R}^{3}}f(1-f)\nabla a[w]\cdot\nabla(w\langle v\rangle^{2m})\;dvdt
0T3(fw+(g1)w)a[g](wv2m)dvdt\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{3}}(fw+(g-1)w)\nabla a[g]\cdot\nabla(w\langle v\rangle^{2m})\;dvdt
=:\displaystyle=: I1+I2+I3+I4.\displaystyle\;I_{1}+I_{2}+I_{3}+I_{4}.

The term I1I_{1} is estimated with Young’s inequality:

I1=\displaystyle I_{1}= 0T3A[f(1f)]v2m|wv2m|2dvdt+0T3A[f(1f)]wv2mwv2mv2mdvdt\displaystyle-\int_{0}^{T}\int_{\mathbb{R}^{3}}\frac{A[f(1-f)]}{\langle v\rangle^{2m}}|\nabla w\langle v\rangle^{2m}|^{2}\;dvdt+\int_{0}^{T}\int_{\mathbb{R}^{3}}\frac{A[f(1-f)]w}{\langle v\rangle^{2m}}\nabla w\langle v\rangle^{2m}\cdot\nabla\langle v\rangle^{2m}\;dvdt
\displaystyle\leq (1δ)0T3A[f(1f)]v2m|wv2m|2𝑑v𝑑t+C(m,δ,fin)0T3|w|2v2m𝑑v𝑑t.\displaystyle\;-(1-\delta)\int_{0}^{T}\int_{\mathbb{R}^{3}}\frac{A[f(1-f)]}{\langle v\rangle^{2m}}|\nabla w\langle v\rangle^{2m}|^{2}\;dvdt+C(m,\delta,f_{in})\int_{0}^{T}\int_{\mathbb{R}^{3}}|w|^{2}\langle v\rangle^{2m}\;dvdt.

Similarly,

I2\displaystyle I_{2}\leq C(fin)0T3A[w]gwv2m𝑑v𝑑t\displaystyle\;C(f_{in})\int_{0}^{T}\int_{\mathbb{R}^{3}}A[w]\nabla g\cdot\nabla w\langle v\rangle^{2m}\;dvdt
\displaystyle\leq δ0T3|wv2m|2v2m(1+|v|)3𝑑v𝑑t+1δ0T3v2m(1+|v|)3|A[w]|2|g|2𝑑v𝑑t\displaystyle\;\delta\int_{0}^{T}\int_{\mathbb{R}^{3}}\frac{|\nabla w\langle v\rangle^{2m}|^{2}}{\langle v\rangle^{2m}(1+|v|)^{3}}\;dvdt+\frac{1}{\delta}\int_{0}^{T}\int_{\mathbb{R}^{3}}\langle v\rangle^{2m}(1+|v|)^{3}|A[w]|^{2}|\nabla g|^{2}\;dvdt
\displaystyle\leq δ0T3|A[f(1f)]|v2m|wv2m|2𝑑v𝑑t+1δ0TwL2m223(1+|v|)3+2m|g|2𝑑v𝑑t,\displaystyle\;\delta\int_{0}^{T}\int_{\mathbb{R}^{3}}\frac{|A[f(1-f)]|}{\langle v\rangle^{2m}}{|\nabla w\langle v\rangle^{2m}|^{2}}\;dvdt+\frac{1}{\delta}\int_{0}^{T}\|w\|^{2}_{L^{2}_{2m}}\int_{\mathbb{R}^{3}}(1+|v|)^{3+2m}|\nabla g|^{2}\;dvdt,

using the bound from below for A[]A[\cdot] and the bound from above in Lemma 2.2:

A[h]LChL12/3hL21/3ChL2m2,for allm>32.\|A[h]\|_{L^{\infty}}\leq C\|h\|_{L^{1}}^{2/3}\|h\|_{L^{2}}^{1/3}\leq C\|h\|_{L^{2}_{2m}},\quad\textrm{for all}\;m>\frac{3}{2}.

Hölder and Hardy-Littlewood-Sobolev inequalities applied to I3I_{3} lead to

I3\displaystyle I_{3}\leq 0Ta[w]L6(3f6/5|wv2m|6/5𝑑v)56𝑑t\displaystyle\int_{0}^{T}\|\nabla a[w]\|_{L^{6}}\left(\int_{\mathbb{R}^{3}}f^{6/5}|\nabla w\langle v\rangle^{2m}|^{6/5}\;dv\right)^{\frac{5}{6}}dt
\displaystyle\leq 1δ0TwL22𝑑t+δ0T(3f(1+|v|)9/2+3m𝑑v)2/33|wv2m|2v2m(1+|v|)3𝑑v𝑑t\displaystyle\;\frac{1}{\delta}\int_{0}^{T}\|w\|^{2}_{L^{2}}\;dt+\delta\int_{0}^{T}\left(\int_{\mathbb{R}^{3}}f(1+|v|)^{9/2+3m}\;dv\right)^{2/3}\int_{\mathbb{R}^{3}}\frac{|\nabla w\langle v\rangle^{2m}|^{2}}{\langle v\rangle^{2m}(1+|v|)^{3}}\;dvdt
\displaystyle\leq 1δ0TwL2m22𝑑t+δ~0T3A[f(1f)]v2m|wv2m|2𝑑v𝑑t,\displaystyle\;\frac{1}{\delta}\int_{0}^{T}\|w\|^{2}_{L^{2}_{2m}}\;dt+\tilde{\delta}\int_{0}^{T}\int_{\mathbb{R}^{3}}\frac{A[f(1-f)]}{\langle v\rangle^{2m}}{|\nabla w\langle v\rangle^{2m}|^{2}}\;dvdt,

using Lemma 3.16 to bound the 9/2+3m9/2+3m moments of ff (uniformly in time). Similarly,

I41δa[g](1+|v|)3/2Lv,t20T3w2v2m𝑑v𝑑t+δ0T3|wv2m|2v2m(1+|v|)3𝑑v𝑑t.\displaystyle I_{4}\leq\frac{1}{\delta}\|\nabla a[g](1+|v|)^{3/2}\|^{2}_{L^{\infty}_{v,t}}\int_{0}^{T}\int_{\mathbb{R}^{3}}w^{2}\langle v\rangle^{2m}\;dvdt+{\delta}\int_{0}^{T}\int_{\mathbb{R}^{3}}\frac{|\nabla w\langle v\rangle^{2m}|^{2}}{\langle v\rangle^{2m}(1+|v|)^{3}}\;dvdt.

We briefly show how the term a[g](1+|v|)3/2Lv,t2\|\nabla a[g](1+|v|)^{3/2}\|^{2}_{L^{\infty}_{v,t}} is uniformly bounded. Let |v||v| be large enough. For s>3s>3, Hölder inequality yields:

|a[f]|\displaystyle|\nabla a[f]|\leq 3f(y)|vy|2𝑑y|v|32ss(B|v|2(|v|)fs𝑑y)1/s+1|v|2fL1(3)\displaystyle\int_{\mathbb{R}^{3}}\frac{f(y)}{|v-y|^{2}}\;dy\leq|v|^{\frac{3-2s^{\prime}}{s^{\prime}}}\left(\int_{B_{\frac{|v|}{2}}(|v|)}f^{s}\;dy\right)^{1/s}+\frac{1}{|v|^{2}}\|f\|_{L^{1}(\mathbb{R}^{3})}
\displaystyle\leq c|v|32ss(1+|v|)λ/s(3fs(1+|y|)λ𝑑y)1/s+1|v|2fL1(3),\displaystyle\;c\frac{|v|^{\frac{3-2s^{\prime}}{s^{\prime}}}}{(1+|v|)^{\lambda/s}}\left(\int_{\mathbb{R}^{3}}f^{s}(1+|y|)^{\lambda}\;dy\right)^{1/s}+\frac{1}{|v|^{2}}\|f\|_{L^{1}(\mathbb{R}^{3})},

with 1s+1s=1\frac{1}{s}+\frac{1}{s^{\prime}}=1 and s<3/2s^{\prime}<3/2. The choice of λ\lambda so that 3ssλs=2\frac{3-s^{\prime}}{s^{\prime}}-\frac{\lambda}{s}=-2 leads to the desired estimate.

Combining the estimates for I1,,I4I_{1},...,I_{4} and choosing δ\delta small enough, one gets

123w2(T)v2m𝑑vC0TwL2m22(1+3(1+|v|)3+2m|g|2𝑑v)𝑑t.\displaystyle\frac{1}{2}\int_{\mathbb{R}^{3}}w^{2}(T)\langle v\rangle^{2m}\;dv\leq C\int_{0}^{T}\|w\|^{2}_{L^{2}_{2m}}\left(1+\int_{\mathbb{R}^{3}}(1+|v|)^{3+2m}|\nabla g|^{2}\;dv\right)\;dt.

Since 0T3(1+|v|)3+2m|g|2𝑑v𝑑tC\int_{0}^{T}\int_{\mathbb{R}^{3}}(1+|v|)^{3+2m}|\nabla g|^{2}\;dvdt\leq C thanks to Lemma 3.16, Gronwall’s inequality implies that w(t)=0w(t)=0 for all t0t\geq 0. This concludes the proof of the theorem.

4. Regularity of Weak Solutions

In this section, we prove Theorem 1.3. Throughout this section we consider initial data finf_{in} such that 0fin10\leq f_{in}\leq 1, finL1Lm2<\|f_{in}\|_{L^{1}\cap L^{2}_{m}}<\infty for a general m3m\geq{{3}}, and H1(fin)<0H_{1}(f_{in})<0. The exact value of mm needed for Theorem 1.3 is determined in Lemma 4.3.

As a first step, we use Lemma 3.16 to show that weak solutions of (1.1) instantaneously regularize and belong to weighted L(t,T,H1)L^{\infty}(t,T,H^{1}) and weighted L2(t,T,H2)L^{2}(t,T,H^{2}) for any t>0t>0.

Lemma 4.1.

Let ff be any weak solution to (1.6) as in Theorem 1.1. For any t>0t>0 and m3m\geq 3, we have

sup(t,T)f()Lm22+tT2f(s)Lm322𝑑sC(fin)(1+1t).\sup_{(t,T)}\|\nabla f(\cdot)\|_{L^{2}_{m}}^{2}+\int_{t}^{T}\|\nabla^{2}f(s)\|_{L^{2}_{m-3}}^{2}\ ds\leq C(f_{in})\left(1+\frac{1}{t}\right).
Proof.

Fix i=1,2,3i=1,2,3 arbitrary. We first recall the notation for divided differences,

~hg:=g(v+eih)g(v)h,\tilde{\partial}_{h}g:=\frac{g(v+e_{i}h)-g(v)}{h},

for which the following discrete product formula holds,

~h(fg)=g~hf+f~hg+h~hf~hg.\tilde{\partial}_{h}(fg)=g\tilde{\partial}_{h}f+f\tilde{\partial}_{h}g+h\tilde{\partial}_{h}f\tilde{\partial}_{h}g.

We test (1.6) with ψ(v,t)=χ[t1,t2](t)~h(vm~hf)\psi(v,t)=-\chi_{[t_{1},t_{2}]}(t)\tilde{\partial}_{-h}\left(\langle v\rangle^{m}\tilde{\partial}_{h}f\right) and obtain

t1t23tf~h\displaystyle-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\partial_{t}f\tilde{\partial}_{-h} (vm~hf)dvdt\displaystyle\left(\langle v\rangle^{m}\tilde{\partial}_{h}f\right)\;dvdt
=t1t23~h(vm~hf)(A[f(1f)]fa[f]f(1f))𝑑v𝑑t.\displaystyle=\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\tilde{\partial}_{-h}\left(\langle v\rangle^{m}\tilde{\partial}_{h}f\right)\cdot\left(A[f(1-f)]\nabla f-\nabla a[f]f(1-f)\right)\;dvdt.

On the left hand side, we perform a discrete integration by parts:

t1t23tf~h(vm~hf)dvdt\displaystyle-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\partial_{t}f\tilde{\partial}_{-h}\left(\langle v\rangle^{m}\tilde{\partial}_{h}f\right)\;dvdt =12t1t23vmt[~hf]2dvdt\displaystyle=\frac{1}{2}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\partial_{t}\left[\tilde{\partial}_{h}f\right]^{2}\;dvdt
=12vm~hf(t2)L2212vm~hf(t1)L22.\displaystyle=\frac{1}{2}\|\langle v\rangle^{m}\tilde{\partial}_{h}f(t_{2})\|_{L^{2}}^{2}-\frac{1}{2}\|\langle v\rangle^{m}\tilde{\partial}_{h}f(t_{1})\|_{L^{2}}^{2}.

We decompose the right hand side as

RHS\displaystyle RHS =t1t23vm~hfA[f(1f)]~hfdvdtt1t23vm~hf(~hA[f(1f)]f)𝑑v𝑑t\displaystyle=-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f\cdot A[f(1-f)]\nabla\tilde{\partial}_{h}f\;dvdt-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f\cdot\left(\tilde{\partial}_{h}A[f(1-f)]\nabla f\right)\;dvdt
t1t23vm~hf(h~hA[f(1f)]~hf))dvdt+t1t23vm~hf(~ha[f]f(1f))dvdt\displaystyle\qquad-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f\cdot\left(h\tilde{\partial}_{h}A[f(1-f)]\nabla\tilde{\partial}_{h}f)\right)\;dvdt+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f\cdot\left(\tilde{\partial}_{h}\nabla a[f]f(1-f)\right)\;dvdt
+t1t23vm~hf(a[f]~h(f(1f)))𝑑v𝑑t+t1t23vm~hf(h~ha[f]~h[f(1f)])𝑑v𝑑t\displaystyle\qquad+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f\cdot\left(\nabla a[f]\tilde{\partial}_{h}(f(1-f))\right)\;dvdt+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f\cdot\left(h\tilde{\partial}_{h}\nabla a[f]\tilde{\partial}_{h}[f(1-f)]\right)\;dvdt
t1t23vm~hf(~hA[f(1f)]f)dvdtt1t23vm~hf(A[f(1f)]~hf)dvdt\displaystyle\qquad-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f\cdot\left(\tilde{\partial}_{h}A[f(1-f)]\nabla f\right)\;dvdt-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f\cdot\left(A[f(1-f)]\nabla\tilde{\partial}_{h}f\right)\;dvdt
t1t23vm~hf(h~hA[f(1f)]~hf)dvdt+t1t23vm~hf(~ha[f]f(1f))dvdt\displaystyle\qquad-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f\cdot\left(h\tilde{\partial}_{h}A[f(1-f)]\nabla\tilde{\partial}_{h}f\right)\;dvdt+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f\cdot\left(\tilde{\partial}_{h}\nabla a[f]f(1-f)\right)\;dvdt
+t1t23vm~hf(a[f]~h(f(1f)))dvdt+t1t23vm~hf(h~ha[f]~h(f(1f)))dvdt\displaystyle\qquad+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f\cdot\left(\nabla a[f]\tilde{\partial}_{h}(f(1-f))\right)\;dvdt+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f\cdot\left(h\tilde{\partial}_{h}\nabla a[f]\tilde{\partial}_{h}(f(1-f))\right)\;dvdt
=:j=112Ij.\displaystyle=:\sum_{j=1}^{12}I_{j}.

For I1I_{1} we use Lemma 2.1 to obtain

I1C(fin)t1t23vm3|~hf|2𝑑v𝑑t.I_{1}\leq-C(f_{in})\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f|^{2}\;dvdt.

Next, for any δ>0\delta>0, we upper bound I2I_{2} using Young’s inequality and A[f(1f)LC(fin)\|\nabla A[f(1-f)\|_{L^{\infty}}\leq C(f_{in}),

|I2|\displaystyle|I_{2}| δt1t23vm3|~hf|2𝑑v𝑑t+δ1t1t23vm+3|f|2𝑑v𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m+3}|\nabla f|^{2}\;dvdt
δt1t23vm3|~hf|2𝑑v𝑑t+δ1fL2([t1,t2];Lm+32)2.\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f|^{2}\;dvdt+\delta^{-1}\|\nabla f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m+3})}^{2}.

In the same way, we bound I3I_{3}. We bound I4I_{4} using Young’s inequality and 2a[f]LpfLp\|\nabla^{2}a[f]\|_{L^{p}}\lesssim\|f\|_{L^{p}} for 1<p<1<p<\infty by Calderon-Zygmund (see Chapter 9.4 in [24]),

|I4|\displaystyle|I_{4}| δt1t23vm3|~hf|2𝑑v𝑑t+δ1t1t23vm+3|~ha[f]|2f2𝑑v𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m+3}|\tilde{\partial}_{h}\nabla a[f]|^{2}f^{2}\;dvdt
δt1t23vm3|~hf|2𝑑v𝑑t+δ1t1t23(|~ha[f]|2(m+6)3+f2(m+6)m+3vm+6)𝑑v𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\left(|\tilde{\partial}_{h}\nabla a[f]|^{\frac{2(m+6)}{3}}+f^{\frac{2(m+6)}{m+3}}\langle v\rangle^{m+6}\right)\;dvdt
δt1t23vm3|~hf|2𝑑v𝑑t+δ1fL2([t1,t2];Lm+62)2.\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f|^{2}\;dvdt+\delta^{-1}\|f\|_{L^{2}([t_{1},{t_{2}}];L^{2}_{m+6})}^{2}.

For δ>0\delta>0, we bound I5I_{5}, using Young’s inequality and Lemma 2.3, as

|I5|\displaystyle|I_{5}| δt1t23vm3|~hf|2𝑑v𝑑t+δ1t1t23vm+3|~hf(1f)|2𝑑v𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m+3}|\tilde{\partial}_{h}f(1-f)|^{2}\;dvdt
δt1t23vm3|~hf|2𝑑v𝑑t+δ1~hfL2([t1,t2];Lm+32)2.\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f|^{2}\;dvdt+\delta^{-1}\|\tilde{\partial}_{h}f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m+3})}^{2}.

Again, we bound I6I_{6} in a similar manner to I4I_{4} and I5I_{5}. For I7I_{7}, we use |vm)|vm1|\nabla\langle v\rangle^{m})|\lesssim\langle v\rangle^{m-1}, Lemma 2.2, and ~hfLm2fLm2\|\tilde{\partial}_{h}f\|_{L^{2}_{m}}\lesssim\|\nabla f\|_{L^{2}_{m}} (via a simple modification to Proposition IX.9(iii) in [10]), to obtain

|I7|\displaystyle|I_{7}| t1t23vm1|f|2𝑑v𝑑t.\displaystyle\lesssim\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-1}|\nabla f|^{2}\;dvdt.

Next, for I8I_{8}, we integrate by parts and use Lemma 2.2 and |2φR(|v|)vm|vm2|\nabla^{2}\varphi_{R}(|v|)\langle v\rangle^{m}|\lesssim\langle v\rangle^{m-2} to obtain

I8=\displaystyle I_{8}= 12t1t23vmA[f(1f)](~hf)2dvdt\displaystyle-\frac{1}{2}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\cdot A[f(1-f)]\nabla(\tilde{\partial}_{h}f)^{2}\;dvdt
=\displaystyle= 12t1t23vm(A)[f(1f)](~hf)2dvdt\displaystyle\frac{1}{2}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\cdot(\nabla\cdot A)[f(1-f)](\tilde{\partial}_{h}f)^{2}\;dvdt
+12t1t232vm:A[f(1f)](~hf)2dvdt\displaystyle+\frac{1}{2}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla^{2}\langle v\rangle^{m}:A[f(1-f)](\tilde{\partial}_{h}f)^{2}\;dvdt
\displaystyle\lesssim fL2([t1,t2];Lm12)2+fL2([t1,t2];Lm22)2.\displaystyle\|{\nabla}f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m-1})}^{2}+\|{\nabla}f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m-2})}^{2}.

We bound I9I_{9} in a similar manner to I7I_{7} and I8I_{8}. For I10I_{10}, we use Young’s inequality and Calderon-Zygmund, to obtain

|I10|\displaystyle|I_{10}| ~hfL2([t1,t2];Lm12)2+t1t23vm1|~ha[f]|2f2𝑑v𝑑t\displaystyle\lesssim\|\tilde{\partial}_{h}f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m-1})}^{2}+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-1}|\tilde{\partial}_{h}\nabla a[f]|^{2}f^{2}\;dvdt
~hfL2([t1,t2];Lm12)2+fL2([t1,t2];Lm2)2.\displaystyle\lesssim\|\tilde{\partial}_{h}f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m-1})}^{2}+\|f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m})}^{2}.

For I11I_{11}, we use a[f]L([0,T]×3)\nabla a[f]\in L^{\infty}([0,T]\times\mathbb{R}^{3}) from Lemma 2.3 to obtain

|I11|\displaystyle|I_{11}| t1t23vm1|~hf|2𝑑v𝑑t~hfL2([t1,t2];Lm12)2.\displaystyle\lesssim\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-1}|\tilde{\partial}_{h}f|^{2}\;dvdt\lesssim\|\tilde{\partial}_{h}f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m-1})}^{2}.

Finally, I12I_{12} is bounded similarly to I10I_{10} and I11I_{11}. Thus, we have shown (using once more that ~hfLm2fLm2)\|\tilde{\partial}_{h}f\|_{L^{2}_{m}}\lesssim\|\nabla f\|_{L^{2}_{m})}),

3φR(|v|)\displaystyle\int_{\mathbb{R}^{3}}\varphi_{R}(|v|) vm[~hf(t2)2~hf(t1)2]dv+(Cδ)t1t23φR(|v|)vm3|~hf|2𝑑v𝑑t\displaystyle\langle v\rangle^{m}\left[\tilde{\partial}_{h}f(t_{2})^{2}-\tilde{\partial}_{h}f(t_{1})^{2}\right]\;dv+(C-\delta)\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\varphi_{R}(|v|)\langle v\rangle^{m-3}|\tilde{\partial}_{h}\nabla f|^{2}\;dvdt
(1+δ1)(fL2([t1,t2];Lm22Lm+32)2+fL2([t1,t2];Lm2Lm+62)2),\displaystyle\lesssim(1+\delta^{-1})\left(\|\nabla f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m-2}\cap L^{2}_{m+3})}^{2}+\|f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m}\cap L^{2}_{m+6})}^{2}\right),

where the implicit constants depend only on fin,T,f_{in},\ T, and mm. Now, taking δ<C/2\delta<C/2 and taking h0+h\rightarrow 0^{+}, RR\to\infty, we see f\nabla f is weakly differentiable and

3vm\displaystyle\int_{\mathbb{R}^{3}}\langle v\rangle^{m} |f(t2)|2dv+t1t23vm3|2f|2𝑑v𝑑t3vm|f(t1)|2𝑑v\displaystyle|\nabla f(t_{2})|^{2}\;dv+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla^{2}f|^{2}\;dvdt\lesssim\int_{\mathbb{R}^{3}}\langle v\rangle^{m}|\nabla f(t_{1})|^{2}\;dv
+(fL2([t1,t2];Lm22Lm+32)2+fL2([t1,t2];Lm2Lm+62)2).\displaystyle\qquad+\left(\|\nabla f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m-2}\cap L^{2}_{m+3})}^{2}+\|f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m}\cap L^{2}_{m+6})}^{2}\right).

Next, taking a supremum over t2t_{2} in [t,T][t,T] and an average over t1[0,t]t_{1}\in[0,t], and applying Lemma 3.16, we get

sup(t,T)\displaystyle\sup_{(t,T)} f()Lm22+tT2f(s)Lm322𝑑s\displaystyle\|\nabla f(\cdot)\|_{L^{2}_{m}}^{2}+\int_{t}^{T}\|\nabla^{2}f(s)\|_{L^{2}_{m-3}}^{2}\;ds
1tC(fin,T,m)+fL2([0,T];L2Lm+32)2+fL2([0,T];L2Lm+62)2\displaystyle\lesssim{\frac{1}{t}C(f_{in},T,m)+}\|\nabla f\|_{L^{2}([0,T];L^{2}\cap L^{2}_{m+3})}^{2}+\|f\|_{L^{2}([0,T];L^{2}\cap L^{2}_{m+6})}^{2}
C(fin,T,m)(1+1t).\displaystyle\leq C(f_{in},T,m)\left(1+\frac{1}{t}\right).

This concludes the proof of the lemma. ∎

Next, we show how to control the L(t,T,H2)L2(t,T,H3)L^{\infty}(t,T,H^{2})\cap L^{2}(t,T,H^{3})-regularity of ff:

Lemma 4.2.

Let ff be any weak solution to (1.6) as in Theorem 1.1 with initial data as described at the beginning of this section. For any t>0t>0 and m3m\geq 3, we have

sup(t,T)2f()Lm22+tT3f(s)Lm322𝑑sC(fin)(1+1t2).\sup_{(t,T)}\|\nabla^{2}f(\cdot)\|_{L^{2}_{m}}^{2}+\int_{t}^{T}\|\nabla^{3}f(s)\|_{L^{2}_{m-3}}^{2}\;ds\leq C(f_{in})\left(1+\frac{1}{t^{2}}\right).
Proof.

Thanks to Lemma 4.1, we can take

ψ(v,t);=χ[t1,t2]~hvi(vm~hfvi),\psi(v,t);=\chi_{[t_{1},t_{2}]}\tilde{\partial}_{-h}\partial_{v_{i}}\left(\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}\right),

as test function for (1.6), and obtain

t1t23tfvi~h(vm~hfvi)dvdt\displaystyle\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\partial_{t}f\partial_{v_{i}}\tilde{\partial}_{-h}\left(\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}\right)\;dvdt =t1t23vi~h(vm~hfvi)\displaystyle=-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\partial_{v_{i}}\tilde{\partial}_{-h}\left(\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}\right)\cdot
(A[f(1f)]fa[f]f(1f))dvdt.\displaystyle\qquad\cdot\left(A[f(1-f)]\nabla f-\nabla a[f]f(1-f)\right)\;dvdt.

On the left hand side, we perform one discrete integration by parts and one standard integration by parts and get

LHS\displaystyle LHS =12t1t23vmt[~hfvi]2dvdt=12vm~hfvi(t2)L2212vm~hfvi(t1)L22.\displaystyle=\frac{1}{2}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\partial_{t}\left[\tilde{\partial}_{h}f_{v_{i}}\right]^{2}\;dvdt=\frac{1}{2}\|\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}(t_{2})\|_{L^{2}}^{2}-\frac{1}{2}\|\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}(t_{1})\|_{L^{2}}^{2}.

We also perform discrete and standard integration by parts to decompose the right hand side as

RHS=\displaystyle RHS= t1t23vm~hfviA[f(1f)]~hfvidvdt\displaystyle-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f_{v_{i}}\cdot A[f(1-f)]\nabla\tilde{\partial}_{h}f_{v_{i}}\;dvdt
t1t23vm~hfvi(~hA[f(1f)]fvi+viA[f(1f)]~hf)𝑑v𝑑t\displaystyle-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\tilde{\partial}_{h}A[f(1-f)]\nabla f_{v_{i}}+\partial_{v_{i}}A[f(1-f)]\tilde{\partial}_{h}\nabla f\right)\;dvdt
t1t23vm~hfvi(vi~hA[f(1f)]f)𝑑v𝑑t+t1t23vm~hfvi(~hvia[f]f(1f))𝑑v𝑑t\displaystyle-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\partial_{v_{i}}\tilde{\partial}_{h}A[f(1-f)]\nabla f\right)\;dvdt+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\tilde{\partial}_{h}\partial_{v_{i}}\nabla a[f]f(1-f)\right)\;dvdt
+t1t23vm~hfvi(via[f]~h(f(1f))+~ha[f]vi(f(1f)))𝑑v𝑑t\displaystyle+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\partial_{v_{i}}\nabla a[f]\tilde{\partial}_{h}(f(1-f))+\tilde{\partial}_{h}\nabla a[f]\partial_{v_{i}}(f(1-f))\right)\;dvdt
+t1t23vm~hfvi(a[f]vi~h[f(1f)])dvdtt1t23vm~hfvi(A[f(1f)]~hfvi)dvdt\displaystyle+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m}\nabla\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\nabla a[f]\partial_{v_{i}}\tilde{\partial}_{h}[f(1-f)]\right)\;dvdt-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}\cdot\left(A[f(1-f)]\nabla\tilde{\partial}_{h}f_{v_{i}}\right)\;dvdt
t1t23vm~hfvi(~hA[f(1f)]fvi+viA[f(1f)]~hf)dvdt\displaystyle-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\tilde{\partial}_{h}A[f(1-f)]\nabla f_{v_{i}}+\partial_{v_{i}}A[f(1-f)]\tilde{\partial}_{h}\nabla f\right)\;dvdt
t1t23vm~hfvi(vi~hA[f(1f)]f)dvdt+t1t23vm~hfvi(~hvia[f]f(1f))dvdt\displaystyle-\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\partial_{v_{i}}\tilde{\partial}_{h}A[f(1-f)]\nabla f\right)\;dvdt+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\tilde{\partial}_{h}\partial_{v_{i}}\nabla a[f]f(1-f)\right)\;dvdt
+t1t23vm~hfvi(via[f]~h(f(1f))+~ha[f]vi(f(1f)))dvdt\displaystyle+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\partial_{v_{i}}\nabla a[f]\tilde{\partial}_{h}(f(1-f))+\tilde{\partial}_{h}\nabla a[f]\partial_{v_{i}}(f(1-f))\right)\;dvdt
+t1t23vm~hfvi(a[f]vi~h[f(1f)])dvdt+\displaystyle+\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{m}\tilde{\partial}_{h}f_{v_{i}}\cdot\left(\nabla a[f]\partial_{v_{i}}\tilde{\partial}_{h}[f(1-f)]\right)\;dvdt+\mathcal{E}
:=j=112Ij+,\displaystyle:=\sum_{j=1}^{12}I_{j}+\mathcal{E},

where \mathcal{E} denotes the error terms, which originate from the discrepancy between the product rules for ~h\tilde{\partial}_{h} and vi\partial_{v_{i}}. These terms are bounded identically to the others and so we omit the bound on \mathcal{E}. For I1I_{1}, our coercive term, we use Lemma 2.1 to obtain

I1C(fin)t1t23vm3|~hfvi|2.I_{1}\leq-C(f_{in})\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}.

For I3I_{3}, when two derivatives land on the kernel A[f]A[f], we use Young’s inequality, Hölder’s inequality in space, the Sobolev embedding H1(3)L6(3)H^{1}(\mathbb{R}^{3})\operatorname{\hookrightarrow}L^{6}(\mathbb{R}^{3}), and Calderon-Zygmund, to obtain for any δ>0\delta>0, the estimate

|I3|\displaystyle|I_{3}| δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1t1t23vm+3|vi~hA[f(1f)]|2|f|2𝑑v𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m+3}|\partial_{v_{i}}\tilde{\partial}_{h}A[f(1-f)]|^{2}|\nabla f|^{2}\;dvdt
δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1t1t2fL3vm+3|f|2L3𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\|f\|_{L^{3}}\|\langle v\rangle^{m+3}|\nabla f|^{2}\|_{L^{3}}\;dt
δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1t1t2vm+32fL62𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\|\langle v\rangle^{\frac{m+3}{2}}\nabla f\|_{L^{6}}^{2}\;dt
δt1t23vm3|~hfvi|2dvdt+δ1t1t2(vm+12f)L22+vm+322fL22)dt\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\left(\|\langle v\rangle^{\frac{m+1}{2}}\nabla f)\|_{L^{2}}^{2}+\|\langle v\rangle^{\frac{m+3}{2}}\nabla^{2}f\|_{L^{2}}^{2}\right)\;dt
δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1(fL2([t1,t2];Lm+12)2+2fL2([t1,t2];Lm+32)2).\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\left(\|\nabla f\|_{L^{2}\left([t_{1},t_{2}];L^{2}_{m+1}\right)}^{2}+\|\nabla^{2}f\|_{L^{2}\left([t_{1},t_{2}];L^{2}_{m+3}\right)}^{2}\right).

Similarly, for I4I_{4}, when two derivatives land on the kernel a[f]\nabla a[f], we use Young’s inequality, Hölder’s inequality, Calderon-Zygmund, Lebesgue interpolation, the Sobolev embedding H1(3)L6(3)H^{1}(\mathbb{R}^{3})\operatorname{\hookrightarrow}L^{6}(\mathbb{R}^{3}), and Lemma 3.16 to obtain for any δ>0\delta>0, the estimate

|I4|\displaystyle|I_{4}| δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1t1t23vm+3|~hvia[f]|2f2𝑑v𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m+3}|\tilde{\partial}_{h}\partial_{v_{i}}\nabla a[f]|^{2}f^{2}\;dvdt
δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1t1t2|vi~ha[f]|2L3f2vm+3L3/2𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\||\partial_{v_{i}}\tilde{\partial}_{h}a[\nabla f]|^{2}\|_{L^{3}}\|f^{2}\langle v\rangle^{m+3}\|_{L^{3/2}}\;dt
δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1t1t2vi~ha[f]L62fvm+32L32𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\|\partial_{v_{i}}\tilde{\partial}_{h}a[\nabla f]\|_{L^{6}}^{2}\|f\langle v\rangle^{\frac{m+3}{2}}\|_{L^{3}}^{2}\;dt
δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1t1t2fL62(fvm+32L2fvm+32L6)𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\|\nabla f\|_{L^{6}}^{2}\left(\|f\langle v\rangle^{\frac{m+3}{2}}\|_{L^{2}}\|f\langle v\rangle^{\frac{m+3}{2}}\|_{L^{6}}\right)\;dt
δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1t1t22fL22(fLm+32(fvm+32)L2)𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\|\nabla^{2}f\|_{L^{2}}^{2}\left(\|f\|_{L^{2}_{m+3}}\left\|\nabla\left(f\langle v\rangle^{\frac{m+3}{2}}\right)\right\|_{L^{2}}\right)\;dt
δt1t23vm3|~hfvi|2𝑑v𝑑t+δ1t1t22fL22fLm+32(fLm+32+fLm+12)𝑑t\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\int_{t_{1}}^{t_{2}}\|\nabla^{2}f\|_{L^{2}}^{2}\|f\|_{L^{2}_{m+3}}\left(\|\nabla f\|_{L^{2}_{m+3}}+\|f\|_{L^{2}_{m+1}}\right)\;dt
δt1t23vm3|~hfvi|2𝑑v𝑑t+δ12fL2([t1,t2];L2)2(fL([t1,t2];Lm+32)+1).\displaystyle\lesssim\delta\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt+\delta^{-1}\|\nabla^{2}f\|_{L^{2}([t_{1},t_{2}];L^{2})}^{2}{(}\|\nabla f\|_{L^{\infty}([t_{1},t_{2}];L^{2}_{m+3})}{+1).}

To bound the remaining terms I2I_{2} and I5,,I12I_{5},\cdots,I_{12}, we modify the arguments from Lemma 4.1 in a similar fashion, using the additional tool of the Sobolev embedding as necessary, to obtain

3vm|~hfvi(t2)|2𝑑v+(Cδ)t1t23vm3|~hfvi|2𝑑v𝑑t1+3vm|~hfvi|2𝑑v\displaystyle\int_{\mathbb{R}^{3}}\langle v\rangle^{m}|\tilde{\partial}_{h}f_{v_{i}}(t_{2})|^{2}\;dv+(C-\delta)\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{3}}\langle v\rangle^{m-3}|\nabla\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dvdt\lesssim 1+\int_{\mathbb{R}^{3}}\langle v\rangle^{m}|\tilde{\partial}_{h}f_{v_{i}}|^{2}\;dv
+(1+δ1)(fL([t1,t2];Lm+62)4+2fL2([t1,t2];Lm+32)4).\displaystyle\qquad\qquad+(1+\delta^{-1})\left(\|\nabla f\|_{L^{\infty}([t_{1},t_{2}];L^{2}_{m+6})}^{4}+\|\nabla^{2}f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m+3})}^{4}\right).

Thus, taking δ\delta sufficiently small and taking the limit h0+h\rightarrow 0^{+}, we conclude that 2f\nabla^{2}f is weakly differentiable and we obtain

2f(t2)Lm22+t1t23fLm322𝑑s\displaystyle\|\nabla^{2}f(t_{2})\|_{L^{2}_{m}}^{2}+\int_{t_{1}}^{t_{2}}\|\nabla^{3}f\|_{L^{2}_{m-3}}^{2}\;ds 1+2f(t1)Lm22+fL([t1,t2];Lm+62)4\displaystyle\lesssim 1+\|\nabla^{2}f(t_{1})\|_{L^{2}_{m}}^{2}+\|\nabla f\|_{L^{\infty}([t_{1},t_{2}];L^{2}_{m+6})}^{4}
+2fL2([t1,t2];Lm+32)4.\displaystyle\qquad+\|\nabla^{2}f\|_{L^{2}([t_{1},t_{2}];L^{2}_{m+3})}^{4}.

Taking a supremum over t2[2t,T]t_{2}\in[2t,T] and an average over t1[t,2t]t_{1}\in[t,2t], and applying Lemma 4.1, we obtain

sup(2t,T)2f()Lm22+2tT3fLm322𝑑s\displaystyle\sup_{(2t,T)}\|\nabla^{2}f(\cdot)\|_{L^{2}_{m}}^{2}+\int_{2t}^{T}\|\nabla^{3}f\|_{L^{2}_{m-3}}^{2}\;ds 1ttT22fLm22𝑑s\displaystyle\lesssim\frac{1}{t}\int_{t}^{T_{2}}\|\nabla^{2}f\|_{L^{2}_{m}}^{2}\;ds
+(tT2fLm+322𝑑s)2\displaystyle\qquad+\left(\int_{t}^{T}\|\nabla^{2}f\|_{L^{2}_{m+3}}^{2}\;ds\right)^{2}
+(sup(t,T)fLm+622)2\displaystyle\qquad+\left(\sup_{(t,T)}\|\nabla f\|_{L^{2}_{m+6}}^{2}\right)^{2}
(1+1t2).\displaystyle\lesssim\left(1+\frac{1}{t^{2}}\right).

Remark 1.

From Lemma 4.2, one can continue to bootstrap spatial regularity, and obtain the corresponding higher regularity estimates, that provided finLm+6k2f_{in}\in L^{2}_{m+6k}, for each 0<t0<T0<t_{0}<T, kfL([t0,T];Lm2)\nabla^{k}f\in L^{\infty}([t_{0},T];L^{2}_{m}), and moreover,

supt0<t<Tkf()Lm2+(t0Tk+1f(s)Lm322𝑑s)1/2fin,k,m,T(1+1t0)k/2.\sup_{t_{0}<t<T}\|\nabla^{k}f(\cdot)\|_{L^{2}_{m}}+\left(\int_{t_{0}}^{T}\|\nabla^{k+1}f(s)\|^{2}_{L^{2}_{m-3}}\;ds\right)^{1/2}\lesssim_{f_{in},k,m,T}\left(1+\frac{1}{t_{0}}\right)^{k/2}.

If finf_{in} is rapidly decaying, i.e. finLm2f_{in}\in L^{2}_{m} for each m0m\geq 0, then ff is Schwartz class in space. That is, fL([t,T];𝒮(3))f\in L^{\infty}([t,T];\mathcal{S}(\mathbb{R}^{3})) for each t>0t>0.

Instead of bootstrapping spatial regularity and deducing the corresponding time regularity from the equation, we use Lemma 4.2 to conclude Hölder regularity of ff. Combined with the parabolic divergence structure of (1.1), we deduce spatial and temporal regularity simultaneously via classical Schauder estimates. As the initial step, we have the following lemma:

Lemma 4.3.

Let ff be any weak solution to (1.6) as in Theorem 1.1, with finL31L2(12)f_{in}\in L^{1}_{3}\cap L^{2}(12). Then, fCα/2((0,T];Cα(3))f\in C^{\alpha/2}((0,T];C^{\alpha}(\mathbb{R}^{3})) for some α(0,1)\alpha\in(0,1).

Proof.

By Lemma 4.2, we conclude fL((0,T];W1,p)f\in L^{\infty}((0,T];W^{1,p}) for each 2p62\leq p\leq 6. Therefore, by a duality argument, tf\partial_{t}f belongs to L((0,T];W1,p)L^{\infty}((0,T];W^{-1,p}) for 2p62\leq p\leq 6. By a (real) interpolation of the Sobolev spaces L((0,T);W1,p)L^{\infty}((0,T);W^{1,p}) and W1,((0,T);W1,p)W^{1,\infty}((0,T);W^{-1,p}), we obtain fWs1,6((0,T);Ws2,6)f\in W^{s_{1},6}((0,T);W^{s_{2},6}) for s2s_{2} strictly less, but as close as one wishes, than 12θ1-2\theta, and s1s_{1} strictly less, but as close as one wishes, than θ\theta, for any θ(0,1)\theta\in(0,1) (see Theorem 3.1 in [5]). Hence, choosing θ<14\theta<\frac{1}{4}, Morrey’s inequality implies fC0,α/2((0,T);C0,α(3))f\in C^{0,\alpha/2}((0,T);C^{0,\alpha}(\mathbb{R}^{3})), for some α>0\alpha>0. ∎

Now, we are ready to apply a standard bootstrapping argument and conclude ff is smooth:

Proof of Theorem 1.3

By Lemma 4.3, we conclude fCα/2((0,T);Cα(3))f\in C^{\alpha/2}((0,T);C^{\alpha}(\mathbb{R}^{3})) for some α(0,1)\alpha\in(0,1) and ff solves the divergence form parabolic equation,

(4.1) tf=(A[f(1f)]fa[f](1f)f),\partial_{t}f=\nabla\cdot(A[f(1-f)]{\nabla f}-\nabla a[f](1-f)f),

in the weak sense. Hence, Lemma 4.7 in [27] shows that a[f]\nabla a[f] and A[f(1f)]A[f(1-f)] belong to C0,η/2((0,T];C0,η)C^{0,\eta/2}((0,T];C^{0,\eta}). Thus, ff satisfies a divergence-form parabolic equation with Hölder continuous coefficients. By Theorem 12.1 from Chapter 3 in [31], we conclude fC1,μ/2((0,T];C1,μ)f\in C^{1,\mu/2}((0,T];C^{1,\mu}). Bootstrapping the argument, we obtain higher regularity of the coefficients A[f(1f)]A[f(1-f)] and a[f]\nabla a[f], from which fC((0,T];C)f\in C^{\infty}((0,T];C^{\infty}) follows, as desired.

5. Long time behavior

In this section we prove Theorem. 1.4. Without loss of generality, we can assume that ε=1\varepsilon=1. We first rewrite the initial value problem associated to (1.1) in the following compact form

(5.1) {tf+𝒯[f]=0v3,t>0,f(0,v)=finv3,\begin{cases}\partial_{t}f+\mathcal{T}[f]=0&v\in\mathbb{R}^{3},\quad t>0,\\ f(0,v)=f_{in}&v\in\mathbb{R}^{3},\end{cases}

where the Landau-Fermi-Dirac operator is defined by

(5.2) 𝒯[f](v)\displaystyle\mathcal{T}[f](v) =3Π(vv)|vv|(f(1f)ff(1f)f)𝑑v\displaystyle=-\nabla\cdot\int_{\mathbb{R}^{3}}\frac{\Pi(v-v^{*})}{|v-v^{*}|}\left(f^{*}(1-f^{*})\nabla f-f(1-f)\nabla f^{*}\right)dv^{*}
=(A[f(1f)]ff(1f)a[f]),\displaystyle=-\nabla\cdot\left(A[f(1-f)]\nabla f-f(1-f)\nabla a[f]\right),

and the quantities A[]A[\cdot], a[]a[\cdot] are defined in (1.5).

We first show unconditional convergence without rate towards the steady state for (1.1), which is the first part of Theorem  1.4.

Proposition 5.1 (Convergence to the steady state).

Given any initial datum fin:3[0,1]f_{in}:\mathbb{R}^{3}\to[0,1], finL21f_{in}\in L^{1}_{2}, such that H1[fin]<0H_{1}[f_{in}]<0, the solution ff to the (5.1) tends to the Fermi-Dirac distribution \mathcal{M} with same mass, momentum and energy as finf_{in} when tt\to\infty.

Proof.

We recall that ff satisfies a uniform in time bound in L1LL^{1}\cap L^{\infty}, and therefore supt0f(t)L2<\sup_{t\geq 0}\|f(t)\|_{L^{2}}<\infty. In what follows we will often make use of this relation without mentioning it.

Integrating the entropy balance equation in time yields

H1[f(t)]+0tD[f(τ)]𝑑τH1[fin],t>0,\displaystyle H_{1}[f(t)]+\int_{0}^{t}D[f(\tau)]d\tau\leq H_{1}[f_{in}],\qquad t>0,

with

D[f]=3A[f(1f)]f(1f)ffdv8π3f2𝑑v0.\displaystyle D[f]=\int_{\mathbb{R}^{3}}\frac{A[f(1-f)]}{f(1-f)}\nabla f\cdot\nabla fdv-8\pi\int_{\mathbb{R}^{3}}f^{2}dv\geq 0.

Since D[f()]L1(0,)D[f(\cdot)]\in L^{1}(0,\infty), there exists a sequence tnt_{n}\to\infty such that D[f(tn)]0D[f(t_{n})]\to 0 as nn\to\infty. Define fn=f(tn)f_{n}=f(t_{n}). Given the lower bound for AA we deduce

3|fn|2v3𝑑v3A[fn(1fn)]fn(1fn)fnfndv3fn2𝑑v+D[fn]1.\displaystyle\int_{\mathbb{R}^{3}}|\nabla f_{n}|^{2}\langle v\rangle^{-3}dv\lesssim\int_{\mathbb{R}^{3}}\frac{A[f_{n}(1-f_{n})]}{f_{n}(1-f_{n})}\nabla f_{n}\cdot\nabla f_{n}dv\lesssim\int_{\mathbb{R}^{3}}f_{n}^{2}dv+D[f_{n}]\lesssim 1.

Therefore v3/2fn\langle v\rangle^{-3/2}\nabla f_{n} is bounded in L2L^{2}. However fnv3/2f_{n}\nabla\langle v\rangle^{-3/2} is bounded in L2L^{2}, so the product fnv3/2f_{n}\langle v\rangle^{-3/2} is bounded in H1H^{1}. Furthermore fnv2f_{n}\langle v\rangle^{2} is bounded in L1L^{1}. We deduce via Sobolev embedding that fnf_{n} is relatively compact in L2L^{2}, and more in general (via the LL^{\infty} bounds and the bound on the second moment of fnf_{n}) in LpL^{p} for every p[1,)p\in[1,\infty). Let us denote with ff_{\infty} its limit. We have that v3/2fnv3/2f\langle v\rangle^{-3/2}\nabla f_{n}\rightharpoonup\langle v\rangle^{3/2}\nabla f_{\infty} weakly in L2L^{2}. This is enough to deduce via a generalized Fatou argument [11, Lemma A.4] that

Dδ[f]lim infnDδ[fn]lim infnD[fn]=0,\displaystyle D_{\delta}[f_{\infty}]\leq\liminf_{n\to\infty}D_{\delta}[f_{n}]\leq\liminf_{n\to\infty}D[f_{n}]=0,

with

Dδ[f]:=B1/δA[f(1f)]f(1f)+δffdv8π3f2𝑑v,\displaystyle D_{\delta}[f]:=\int_{B_{1/\delta}}\frac{A[f(1-f)]}{f(1-f)+\delta}\nabla f\cdot\nabla fdv-8\pi\int_{\mathbb{R}^{3}}f^{2}dv,

and δ>0\delta>0 is arbitrary. Via monotone convergence we deduce

0D[f]=limδ0Dδ[f]0.\displaystyle 0\leq D[f_{\infty}]=\lim_{\delta\to 0}D_{\delta}[f_{\infty}]\leq 0.

It follows that D[f]=0D[f_{\infty}]=0. Since we know that 3fn(1fn)𝑑vc>0\int_{\mathbb{R}^{3}}f_{n}(1-f_{n})dv\geq c>0, it follows [8] that f=f_{\infty}=\mathcal{M}. This means that fn=f(tn)f_{n}=f(t_{n})\to\mathcal{M} strongly in LpL^{p} for p[1,)p\in[1,\infty). In particular the relative Fermi-Dirac entropy H1[f(tn)|]=H1[f(tn)]H1[]0H_{1}[f(t_{n})|\mathcal{M}]=H_{1}[f(t_{n})]-H_{1}[\mathcal{M}]\to 0 as nn\to\infty. On the other hand, we know that tH1[f(t)|]t\mapsto H_{1}[f(t)|\mathcal{M}] is non-increasing, so it must hold limtH1[f(t)|]=0\lim_{t\to\infty}H_{1}[f(t)|\mathcal{M}]=0. This easily implies the strong convergence f(t)f(t)\to\mathcal{M} as tt\to\infty in L1L^{1}. This finishes the proof of the Lemma. ∎

Our next goal is to prove exponential convergence of the solution f(t)f(t) to (1.1) towards the steady state \mathcal{M} in case the initial datum finf_{in} is close enough to \mathcal{M} in the norm L2(m)L^{2}(m). This is in the second part of Theorem  1.4. We linearize our equation around the steady state \mathcal{M}. We will work in weighted Lebesgue spaces with weight mm defined by

(5.3) m:=(1),\displaystyle m:=\mathcal{M}(1-\mathcal{M}),

where \mathcal{M} is the Fermi-Dirac distribution defined in (1.4). Writing

(5.4) h:=fm,and1m𝒯[f]=:Lh+Γ2[h,h]+Γ3[h,h,h]\displaystyle h:=\frac{f-\mathcal{M}}{m},\qquad\textrm{and}\quad-\frac{1}{m}\mathcal{T}[f]=:Lh+\Gamma_{2}[h,h]+\Gamma_{3}[h,h,h]

it defines the linearized operator LL and the quadratic and cubic perturbations Γ2\Gamma_{2}, Γ3\Gamma_{3}, respectively.

Via straightforward computations [4] one finds

(5.5) (Lh)(v)\displaystyle(Lh)(v) =1m(v)3m(v)m(v)|vv|Π(vv)(h(v)h(v))𝑑v,\displaystyle=\frac{1}{m(v)}\nabla\cdot\int_{\mathbb{R}^{3}}\frac{m(v^{*})m(v)}{|v-v^{*}|}\Pi(v-v^{*})(\nabla h(v)-\nabla h(v^{*}))dv^{*},
(5.6) Γ2[h,h](v)\displaystyle\Gamma_{2}[h,h](v) =1m(v)(A[(12)mh](mh)A[m2h2]\displaystyle=\frac{1}{m(v)}\nabla\cdot\left(A[(1-2\mathcal{M})mh]\nabla(mh)-A[m^{2}h^{2}]\nabla\mathcal{M}\right.
(12)mha[mh]+m2h2a[]),\displaystyle\left.\qquad-(1-2\mathcal{M})mh\nabla a[mh]+m^{2}h^{2}\nabla a[\mathcal{M}]\right),
(5.7) Γ3[h,h,h](v)\displaystyle\Gamma_{3}[h,h,h](v) =1m(v)(A[m2h2)](mh)+m2h2a[mh]).\displaystyle=\frac{1}{m(v)}\nabla\cdot\left(-A[m^{2}h^{2})]\nabla(mh)+m^{2}h^{2}\nabla a[mh]\right).

Define the spaces

L2(m):=L2(3,m(v)dv),H1(m):=H1(3,m(v)dv),L^{2}(m):=L^{2}(\mathbb{R}^{3},m(v)dv),\quad H^{1}(m):=H^{1}(\mathbb{R}^{3},m(v)dv),

and recall that v=(1+|v|2)1/2\langle v\rangle=(1+|v|^{2})^{1/2}.

Our goal is to prove a spectral gap estimate for the linearized operator LL. We will apply [17, Lemma 10]. In order to do so, we adapt the latter result’s framework and therefore define for k0k\geq 0 the following Hilbert spaces

0k\displaystyle\mathcal{H}_{0}^{k} =L2(mvk1),\displaystyle=L^{2}(m\langle v\rangle^{k-1}),
k\displaystyle\mathcal{H}^{k} ={h0k:hk2h0k2+3hA[m]hvkm𝑑v<}.\displaystyle=\left\{h\in\mathcal{H}_{0}^{k}~{}:~{}\|h\|_{\mathcal{H}^{k}}^{2}\equiv\|h\|_{\mathcal{H}_{0}^{k}}^{2}+\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv<\infty\right\}.

Clearly k0k\mathcal{H}^{k}\hookrightarrow\mathcal{H}_{0}^{k} with continuous embedding.

We split then the linearized operator LL into two contributions, in the following fashion:

(5.8) L=\displaystyle L= 𝒦kΛk,\displaystyle\mathcal{K}_{k}-\Lambda_{k},
(5.9) (Λkh)(v):=\displaystyle(\Lambda_{k}h)(v):= 1m(v)[(3m(v)m(v)|vv|Π(vv)𝑑v)h(v)]\displaystyle-\frac{1}{m(v)}\nabla\cdot\left[\left(\int_{\mathbb{R}^{3}}\frac{m(v^{*})m(v)}{|v-v^{*}|}\Pi(v-v^{*})dv^{*}\right)\nabla h(v)\right]
8πm(v)h(v)+ξ3mhvk𝑑v,\displaystyle-8\pi m(v)h(v)+\xi\int_{\mathbb{R}^{3}}mh\langle v\rangle^{k}dv,
(5.10) (𝒦kh)(v):=\displaystyle(\mathcal{K}_{k}h)(v):= 1m(v)3m(v)m(v)|vv|Π(vv)h(v)𝑑v\displaystyle-\frac{1}{m(v)}\nabla\cdot\int_{\mathbb{R}^{3}}\frac{m(v^{*})m(v)}{|v-v^{*}|}\Pi(v-v^{*})\nabla h(v^{*})dv^{*}
8πm(v)h(v)+ξ3mhvk𝑑v,\displaystyle-8\pi m(v)h(v)+\xi\int_{\mathbb{R}^{3}}mh\langle v\rangle^{k}dv,

where ξ>0\xi>0 is an arbitrary constant, to be specified later. We also recall the definition of the Maxwellian MM:

M(v)=eb|vu|2,v3,\displaystyle M(v)=e^{-b|v-u|^{2}},\qquad v\in\mathbb{R}^{3},

and point out that MmM\sim m (via direct computations).

We prove now the following coercivity estimate for Λk\Lambda_{k}.

Lemma 5.2.

Λk:k(k)\Lambda_{k}:\mathcal{H}^{k}\to(\mathcal{H}^{k})^{\prime} is bounded and (Λkh,h)L2(mvk)hk2(\Lambda_{k}h,h)_{L^{2}(m\langle v\rangle^{k})}\gtrsim\|h\|_{\mathcal{H}^{k}}^{2} for every hkh\in\mathcal{H}^{k}, provided that ξ>0\xi>0 is large enough.

Proof.

From (5.9) and the definition (1.5) of AA it follows, via an integration by parts,

(Λkh1,h2)L2(mvk)=\displaystyle(\Lambda_{k}h_{1},h_{2})_{L^{2}(m\langle v\rangle^{k})}= 3(vkh2(v))(3m(v)|vv|Π(vv)𝑑v)h1(v)m(v)𝑑v\displaystyle\int_{\mathbb{R}^{3}}\nabla(\langle v\rangle^{k}h_{2}(v))\cdot\left(\int_{\mathbb{R}^{3}}\frac{m(v^{*})}{|v-v^{*}|}\Pi(v-v^{*})dv^{*}\right)\nabla h_{1}(v)\,m(v)dv
8π3h1h2vkm2𝑑v+ξ(3h1vkm𝑑v)(3h2vkm𝑑v)\displaystyle-8\pi\int_{\mathbb{R}^{3}}h_{1}h_{2}\langle v\rangle^{k}m^{2}dv+\xi\left(\int_{\mathbb{R}^{3}}h_{1}\langle v\rangle^{k}mdv\right)\left(\int_{\mathbb{R}^{3}}h_{2}\langle v\rangle^{k}mdv\right)
(5.11) =\displaystyle= 8π3h2(v)A[m]h1(v)vkm(v)𝑑v\displaystyle 8\pi\int_{\mathbb{R}^{3}}\nabla h_{2}(v)\cdot A[m]\nabla h_{1}(v)\,\langle v\rangle^{k}m(v)dv
+8kπ3vk2h2(v)vA[m]h1(v)m(v)𝑑v\displaystyle+8k\pi\int_{\mathbb{R}^{3}}\langle v\rangle^{k-2}h_{2}(v)v\cdot A[m]\nabla h_{1}(v)\,m(v)dv
8π3h1h2m2vk𝑑v+ξ(3h1mvk𝑑v)(3h2mvk𝑑v),\displaystyle-8\pi\int_{\mathbb{R}^{3}}h_{1}h_{2}m^{2}\langle v\rangle^{k}dv+\xi\left(\int_{\mathbb{R}^{3}}h_{1}m\langle v\rangle^{k}dv\right)\left(\int_{\mathbb{R}^{3}}h_{2}m\langle v\rangle^{k}dv\right),

for h1,h2kh_{1},h_{2}\in\mathcal{H}^{k}. Being A[m](v)A[m](v) symmetric and positive definite for v3v\in\mathbb{R}^{3}, Cauchy-Schwartz yields

|(Λkh1,\displaystyle\Big{|}(\Lambda_{k}h_{1}, h2)L2(vkm)|\displaystyle h_{2})_{L^{2}(\langle v\rangle^{k}m)}\Big{|}
\displaystyle\lesssim 3(h2(v)A[m]h2(v))1/2(h1(v)A[m]h1(v))1/2vkm(v)𝑑v\displaystyle\int_{\mathbb{R}^{3}}\left(\nabla h_{2}(v)\cdot A[m]\nabla h_{2}(v)\right)^{1/2}\left(\nabla h_{1}(v)\cdot A[m]\nabla h_{1}(v)\right)^{1/2}\,\langle v\rangle^{k}m(v)dv
+3(h1(v)A[m]h1(v))1/2(h2(v)2v4vA[m]v)1/2vkm(v)𝑑v\displaystyle+\int_{\mathbb{R}^{3}}\left(\nabla h_{1}(v)\cdot A[m]\nabla h_{1}(v)\right)^{1/2}\left(h_{2}(v)^{2}\langle v\rangle^{-4}v\cdot A[m]v\right)^{1/2}\langle v\rangle^{k}m(v)dv
+h10h20\displaystyle+\|h_{1}\|_{\mathcal{H}_{0}}\|h_{2}\|_{\mathcal{H}_{0}}
\displaystyle\lesssim (3h2A[m]h2vkm𝑑v)1/2(3h1A[m]h1vkm𝑑v)1/2\displaystyle\left(\int_{\mathbb{R}^{3}}\nabla h_{2}\cdot A[m]\nabla h_{2}\,\langle v\rangle^{k}mdv\right)^{1/2}\left(\int_{\mathbb{R}^{3}}\nabla h_{1}\cdot A[m]\nabla h_{1}\,\langle v\rangle^{k}mdv\right)^{1/2}
+(3h1(v)A[m]h1(v)vkm(v)𝑑v)1/2(3h2(v)2vk4vA[m]vm𝑑v)1/2\displaystyle+\left(\int_{\mathbb{R}^{3}}\nabla h_{1}(v)\cdot A[m]\nabla h_{1}(v)\langle v\rangle^{k}m(v)dv\right)^{1/2}\left(\int_{\mathbb{R}^{3}}h_{2}(v)^{2}\langle v\rangle^{k-4}v\cdot A[m]v\,mdv\right)^{1/2}
+h10kh20k.\displaystyle+\|h_{1}\|_{\mathcal{H}_{0}^{k}}\|h_{2}\|_{\mathcal{H}_{0}^{k}}.

Therefore

|(Λkh1,h2)L2(mvk)|\displaystyle\left|(\Lambda_{k}h_{1},h_{2})_{L^{2}(m\langle v\rangle^{k})}\right|\lesssim h1kh2k.\displaystyle\|h_{1}\|_{\mathcal{H}^{k}}\|h_{2}\|_{\mathcal{H}^{k}}.

Via a duality argument it follows that Λ\Lambda is bounded as an operator k(k)\mathcal{H}^{k}\to(\mathcal{H}^{k})^{\prime}.

Choosing h1=h2=hh_{1}=h_{2}=h in (5.11) yields

(Λkh,h)L2(mvk)=\displaystyle(\Lambda_{k}h,h)_{L^{2}(m\langle v\rangle^{k})}=  8π3hA[m]hvkm𝑑v8π3h2vkm2𝑑v+ξ(3hvkm𝑑v)2\displaystyle\;8\pi\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv-8\pi\;\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k}m^{2}dv+\xi\left(\int_{\mathbb{R}^{3}}h\langle v\rangle^{k}mdv\right)^{2}
(5.12) +8kπ3vk2h(v)vA[m]h(v)m(v)𝑑v.\displaystyle+8k\pi\int_{\mathbb{R}^{3}}\langle v\rangle^{k-2}h(v)v\cdot A[m]\nabla h(v)\,m(v)dv.

The last integral can be estimated via Cauchy-Schwartz:

(Λkh,h)L2(mvk)\displaystyle(\Lambda_{k}h,h)_{L^{2}(m\langle v\rangle^{k})}\geq  4π3hA[m]hvkm𝑑v8π3h2vkm2𝑑v+ξ(3hvkm𝑑v)2\displaystyle\;4\pi\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv-8\pi\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k}m^{2}dv+\xi\left(\int_{\mathbb{R}^{3}}h\langle v\rangle^{k}mdv\right)^{2}
(5.13) C3h2vk5m𝑑v.\displaystyle-C\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-5}mdv.

Let us focus on the first integral on the right-hand side of (5.13). Lemma 2.1 and the fact that H1[]<0H_{1}[\mathcal{M}]<0 lead to

3hA[m]hvkm𝑑v3|h|2m(v)vk3𝑑v.\displaystyle\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv\gtrsim\int_{\mathbb{R}^{3}}|\nabla h|^{2}m(v){\langle v\rangle^{k-3}}dv.

For every R>0R>0, since m(v)vk3m(v)\langle v\rangle^{k-3} is uniformly positive on BRB_{R} (with an RR-dependent lower bound), it follows via (the standard) Sobolev’s embedding and Poincaré’s Lemma

3hA[m]hvkm𝑑v\displaystyle\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv cRBR|h|2𝑑vcRhBRh𝑑vL6(BR)2\displaystyle\geq c_{R}\int_{B_{R}}|\nabla h|^{2}dv\geq c_{R}\left\|h-\fint_{B_{R}}hdv\right\|_{L^{6}(B_{R})}^{2}
cRhL6(BR)2cR(BRh𝑑v)2\displaystyle\geq c_{R}\|h\|_{L^{6}(B_{R})}^{2}-c_{R}^{\prime}\left(\int_{B_{R}}hdv\right)^{2}
cRhL6(BR)2cR′′BRh2𝑑v.\displaystyle\geq c_{R}\|h\|_{L^{6}(B_{R})}^{2}-c_{R}^{\prime\prime}\int_{B_{R}}h^{2}dv.

From (5.13) and the above inequality we deduce

(Λkh,h)L2(mvk)\displaystyle(\Lambda_{k}h,h)_{L^{2}(m\langle v\rangle^{k})}\geq 3hA[m]hvkm𝑑v+cRhL6(BR)2cR′′BRh2𝑑v\displaystyle\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv+c_{R}\|h\|_{L^{6}(B_{R})}^{2}-c_{R}^{\prime\prime}\int_{B_{R}}h^{2}dv
8πBRh2vkm2𝑑v8π3\BRh2vkm2𝑑v+ξ(3hvkm𝑑v)2\displaystyle-8\pi\int_{B_{R}}h^{2}\langle v\rangle^{k}m^{2}dv-8\pi\int_{\mathbb{R}^{3}\backslash B_{R}}h^{2}\langle v\rangle^{k}m^{2}dv+\xi\left(\int_{\mathbb{R}^{3}}h\langle v\rangle^{k}mdv\right)^{2}
CBRh2vk5m𝑑vC3\BRh2vk5m𝑑v\displaystyle-C\int_{B_{R}}h^{2}\langle v\rangle^{k-5}mdv-C\int_{\mathbb{R}^{3}\backslash B_{R}}h^{2}\langle v\rangle^{k-5}mdv
\displaystyle\geq 3hA[m]hvkm𝑑v+cRhL6(BR)2cR′′′hL2(BR)2\displaystyle\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv+c_{R}\|h\|_{L^{6}(B_{R})}^{2}-c_{R}^{\prime\prime\prime}\|h\|_{L^{2}(B_{R})}^{2}
(5.14) 8π3\BRh2vkm2𝑑v+ξc~RhL1(BR)2C3\BRh2vk5m𝑑v.\displaystyle-8\pi\int_{\mathbb{R}^{3}\backslash B_{R}}h^{2}\langle v\rangle^{k}m^{2}dv+\xi\tilde{c}_{R}\|h\|_{L^{1}(B_{R})}^{2}-C\int_{\mathbb{R}^{3}\backslash B_{R}}h^{2}\langle v\rangle^{k-5}mdv.

Let us now consider

h0k2=3h2vk1m(v)𝑑v3vk3h2v2M(v)𝑑v.\displaystyle\|h\|_{\mathcal{H}_{0}^{k}}^{2}=\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-1}m(v)dv\lesssim\int_{\mathbb{R}^{3}}\langle v\rangle^{k-3}h^{2}\langle v\rangle^{2}M(v)dv.

Young’s inequality with the convex conjugated functions ssδlogsηsδs\mapsto\frac{s}{\delta}\log\frac{s}{\eta}-\frac{s}{\delta}, sηδ1eδss\mapsto\eta\delta^{-1}e^{\delta s} (with η>0\eta>0 arbitrary and δ>0\delta>0 fixed small enough such that 3eδ|v|2M(v)𝑑v<\int_{\mathbb{R}^{3}}e^{\delta|v|^{2}}M(v)dv<\infty) leads to

h0k23[δ1vk3h2log(η1vk3h2)δ1vk3h2]M(v)𝑑v+ηδ13eδv2M(v)𝑑v.\displaystyle\|h\|_{\mathcal{H}_{0}^{k}}^{2}\lesssim\int_{\mathbb{R}^{3}}[\delta^{-1}\langle v\rangle^{k-3}h^{2}\log(\eta^{-1}\langle v\rangle^{k-3}h^{2})-\delta^{-1}\langle v\rangle^{k-3}h^{2}]M(v)dv+\eta\delta^{-1}\int_{\mathbb{R}^{3}}e^{\delta\langle v\rangle^{2}}M(v)dv.

By defining u=v(k3)/2hu=\langle v\rangle^{(k-3)/2}h and rescaling ηuL2(G)2η\eta\mapsto\|u\|_{L^{2}(G)}^{2}\eta, the above inequality can be rewritten as

h0k23u2logu2uL2(M)2M(v)𝑑vcuL2(M)2(1+logη)+ηuL2(M)2.\displaystyle\|h\|_{\mathcal{H}_{0}^{k}}^{2}\lesssim\int_{\mathbb{R}^{3}}u^{2}\log\frac{u^{2}}{\|u\|_{L^{2}(M)}^{2}}M(v)dv-c\|u\|_{L^{2}(M)}^{2}(1+\log\eta)+\eta\|u\|_{L^{2}(M)}^{2}.

By employing the log-Sobolev’s inequality with Gaussian weight [26] one obtains

h0k2uL2(M)2+uL2(M)2(ηcclogη).\displaystyle\|h\|_{\mathcal{H}_{0}^{k}}^{2}\lesssim\|\nabla u\|_{L^{2}(M)}^{2}+\|u\|_{L^{2}(M)}^{2}(\eta-c-c\log\eta).

Replacing uu with v(k3)/2h\langle v\rangle^{(k-3)/2}h and choosing η>0\eta>0 the minimum point of ηcclogη\eta-c-c\log\eta, one finds

(5.15) h0k23|h|2vk3M(v)𝑑v+3h2vk3M(v)𝑑v.\displaystyle\|h\|_{\mathcal{H}_{0}^{k}}^{2}\lesssim\int_{\mathbb{R}^{3}}|\nabla h|^{2}\langle v\rangle^{k-3}M(v)dv+\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-3}M(v)dv.

Lemma 2.1, relation mMm\sim M and (5.15) yield

(5.16) h023hA[m]hvkm𝑑v+3h2vk3m𝑑v.\displaystyle\|h\|_{\mathcal{H}_{0}}^{2}\lesssim\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv+\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-3}mdv.

At this point, (5.14) and (5.16) yield

(Λkh,h)L2(mvk)\displaystyle(\Lambda_{k}h,h)_{L^{2}(m\langle v\rangle^{k})}\gtrsim h0k2+3hA[m]hvkm𝑑v+cRhL6(BR)2cR′′′hL2(BR)2\displaystyle\|h\|_{\mathcal{H}_{0}^{k}}^{2}+\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv+c_{R}\|h\|_{L^{6}(B_{R})}^{2}-c_{R}^{\prime\prime\prime}\|h\|_{L^{2}(B_{R})}^{2}
8π3\BRh2vkm2𝑑v+ξc~RhL1(BR)2C3h2vk3m𝑑v\displaystyle-8\pi\int_{\mathbb{R}^{3}\backslash B_{R}}h^{2}\langle v\rangle^{k}m^{2}dv+\xi\tilde{c}_{R}\|h\|_{L^{1}(B_{R})}^{2}-C\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-3}mdv
C3\BRh2vk5m𝑑v,\displaystyle-C\int_{\mathbb{R}^{3}\backslash B_{R}}h^{2}\langle v\rangle^{k-5}mdv,

which implies, given that mv3m\lesssim\langle v\rangle^{-3},

(5.17) (Λkh,h)L2(mvk)\displaystyle(\Lambda_{k}h,h)_{L^{2}(m\langle v\rangle^{k})}\gtrsim h0k2+3hA[m]hvkm𝑑vC3\BRh2mvk3𝑑v\displaystyle\|h\|_{\mathcal{H}_{0}^{k}}^{2}+\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv-C\int_{\mathbb{R}^{3}\backslash B_{R}}h^{2}m\langle v\rangle^{k-3}dv
+cRhL6(BR)2cR′′′hL2(BR)2+ξc~RhL1(BR)2.\displaystyle+c_{R}\|h\|_{L^{6}(B_{R})}^{2}-c_{R}^{\prime\prime\prime}\|h\|_{L^{2}(B_{R})}^{2}+\xi\tilde{c}_{R}\|h\|_{L^{1}(B_{R})}^{2}.

Choosing R>0R>0, we absorb the third integral on the right-hand side of (5.17) via h02\|h\|_{\mathcal{H}_{0}}^{2}, yielding

(5.18) (Λkh,h)L2(mvk)\displaystyle(\Lambda_{k}h,h)_{L^{2}(m\langle v\rangle^{k})}\geq h0k2+3hA[m]hvkm𝑑v\displaystyle\|h\|_{\mathcal{H}_{0}^{k}}^{2}+\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv
+hL6(BR)2KhL2(BR)2+ξhL1(BR)2.\displaystyle+\|h\|_{L^{6}(B_{R})}^{2}-K\|h\|_{L^{2}(B_{R})}^{2}+\xi\|h\|_{L^{1}(B_{R})}^{2}.

By interpolating L2L^{2} between L1L^{1} and L6L^{6} and applying Young’s inequality one finds

KhL2(BR)2KhL1(BR)4/5hL6(BR)6/525ξhL1(BR)2+35K5/3ξ2/3hL6(BR)2.\displaystyle K\|h\|_{L^{2}(B_{R})}^{2}\leq K\|h\|_{L^{1}(B_{R})}^{4/5}\|h\|_{L^{6}(B_{R})}^{6/5}\leq\frac{2}{5}\xi\|h\|_{L^{1}(B_{R})}^{2}+\frac{3}{5}K^{5/3}\xi^{-2/3}\|h\|_{L^{6}(B_{R})}^{2}.

Therefore, for ξ>0\xi>0 large enough, it holds hL6(BR)2KhL2(BR)2+ξhL1(BR)20\|h\|_{L^{6}(B_{R})}^{2}-K\|h\|_{L^{2}(B_{R})}^{2}+\xi\|h\|_{L^{1}(B_{R})}^{2}\geq 0. We conclude

(Λkh,h)L2(mvk)\displaystyle(\Lambda_{k}h,h)_{L^{2}(m\langle v\rangle^{k})}\geq h0k2+3hA[m]hvkm𝑑v=hk2.\displaystyle\|h\|_{\mathcal{H}_{0}^{k}}^{2}+\int_{\mathbb{R}^{3}}\nabla h\cdot A[m]\nabla h\,\langle v\rangle^{k}mdv=\|h\|_{\mathcal{H}^{k}}^{2}.

This finishes the proof of the Lemma. ∎

Concerning 𝒦k\mathcal{K}_{k}, we are going to prove the following result:

Lemma 5.3.

For k0k\geq 0 it holds

(5.19) (𝒦kh)(v)\displaystyle(\mathcal{K}_{k}h)(v) =m(v)m(v)(𝒦~(hm)𝒦~(hm))+𝒦~(hm)+ξ3mhvk𝑑v,\displaystyle=\frac{\nabla m(v)}{m(v)}\cdot\left(\tilde{\mathcal{K}}\ast(h\nabla m)-\nabla\tilde{\mathcal{K}}\ast(hm)\right)+\nabla\tilde{\mathcal{K}}\ast(h\nabla m)+\xi\int_{\mathbb{R}^{3}}mh\langle v\rangle^{k}dv,

with

𝒦~(v)=Π(v)|v|.\displaystyle\tilde{\mathcal{K}}(v)=\frac{\Pi(v)}{|v|}.

Furthermore 𝒦k:0k0k\mathcal{K}_{k}:\mathcal{H}_{0}^{k}\to\mathcal{H}_{0}^{k} is a compact operator and the following bound holds for k0k\geq 0

(5.20) |(𝒦kh,h)L2(mvk)|hL2(mvk2)2.\displaystyle|(\mathcal{K}_{k}h,h)_{L^{2}(m\langle v\rangle^{k})}|\lesssim\|h\|_{L^{2}(m\langle v\rangle^{k-2})}^{2}.
Proof.

An integration by parts yields

(𝒦kh)(v)=\displaystyle(\mathcal{K}_{k}h)(v)= m(v)m(v)3m(v)|vv|Π(vv)h(v)𝑑v\displaystyle-\frac{\nabla m(v)}{m(v)}\cdot\int_{\mathbb{R}^{3}}\frac{m(v^{*})}{|v-v^{*}|}\Pi(v-v^{*})\nabla h(v^{*})dv^{*}
3m(v)|vv|Π(vv)h(v)𝑑v8πm(v)h(v)+ξ3mhvk𝑑v\displaystyle-\nabla\cdot\int_{\mathbb{R}^{3}}\frac{m(v^{*})}{|v-v^{*}|}\Pi(v-v^{*})\nabla h(v^{*})dv^{*}-8\pi m(v)h(v)+\xi\int_{\mathbb{R}^{3}}mh\langle v\rangle^{k}dv
=\displaystyle=\; m(v)m(v)3m(v)|vv|Π(vv)h(v)𝑑v\displaystyle\frac{\nabla m(v)}{m(v)}\cdot\int_{\mathbb{R}^{3}}\frac{\nabla m(v^{*})}{|v-v^{*}|}\Pi(v-v^{*})h(v^{*})dv^{*}
+m(v)m(v)3h(v)m(v)v[Π(vv)|vv|]dv\displaystyle+\frac{\nabla m(v)}{m(v)}\cdot\int_{\mathbb{R}^{3}}h(v^{*})m(v^{*})\nabla_{v^{*}}\left[\frac{\Pi(v-v^{*})}{|v-v^{*}|}\right]dv^{*}
+3h(v)|vv|Π(vv)m(v)𝑑v\displaystyle+\nabla\cdot\int_{\mathbb{R}^{3}}\frac{h(v^{*})}{|v-v^{*}|}\Pi(v-v^{*})\nabla m(v^{*})dv^{*}
3Π(vv)|vv|[m(v)h(v)]dv8πm(v)h(v)+ξ3mhvk𝑑v.\displaystyle-\nabla\cdot\int_{\mathbb{R}^{3}}\frac{\Pi(v-v^{*})}{|v-v^{*}|}\nabla[m(v^{*})h(v^{*})]dv^{*}-8\pi m(v)h(v)+\xi\int_{\mathbb{R}^{3}}mh\langle v\rangle^{k}dv.

Since

3Π(vv)|vv|f(v)𝑑v=8πf(v)fCc(3),\displaystyle-\nabla\cdot\int_{\mathbb{R}^{3}}\frac{\Pi(v-v^{*})}{|v-v^{*}|}\nabla f(v^{*})dv^{*}=8\pi f(v)\qquad\forall f\in C^{\infty}_{c}(\mathbb{R}^{3}),

we deduce that (5.19) holds.

Let now (hn)n(h_{n})_{n\in\mathbb{N}} be a bounded sequence in 0k=L2(mvk1)\mathcal{H}_{0}^{k}=L^{2}(m\langle v\rangle^{k-1}). For 1<p21<p\leq 2, ss\in\mathbb{R}, we have

hnmLp(3)p3|hn|p|m11/p|pvsmvs𝑑v3|hn|pmvs𝑑v.\displaystyle\|h_{n}\nabla m\|_{L^{p}(\mathbb{R}^{3})}^{p}\lesssim\int_{\mathbb{R}^{3}}|h_{n}|^{p}|\nabla m^{1-1/p}|^{p}\langle v\rangle^{-s}~{}m\langle v\rangle^{s}dv\lesssim\int_{\mathbb{R}^{3}}|h_{n}|^{p}m\langle v\rangle^{s}dv.

Hölder’s inequality yields

(5.21) hnmLp(3)hnL2(mvs),1<p2,s.\displaystyle\|h_{n}\nabla m\|_{L^{p}(\mathbb{R}^{3})}\lesssim\|h_{n}\|_{L^{2}(m\langle v\rangle^{s})},\qquad 1<p\leq 2,\quad s\in\mathbb{R}.

In a similar way, one shows

(5.22) hnmLp(3)hnL2(mvs),1<p2,s.\displaystyle\|h_{n}m\|_{L^{p}(\mathbb{R}^{3})}\lesssim\|h_{n}\|_{L^{2}(m\langle v\rangle^{s})},\qquad 1<p\leq 2,\quad s\in\mathbb{R}.

This means that hnmh_{n}\nabla m, hnmh_{n}m are bounded in Lp(3)L^{p}(\mathbb{R}^{3}) for 1<p21<p\leq 2. Let us now consider, for R>0R>0 arbitrary,

𝒦~(hnm)=(𝟏BR𝒦~)(hnm)+(𝟏3\BR𝒦~)(hnm).\displaystyle\nabla\tilde{\mathcal{K}}\ast(h_{n}\nabla m)=({\bf 1}_{B_{R}}\nabla\tilde{\mathcal{K}})\ast(h_{n}\nabla m)+({\bf 1}_{\mathbb{R}^{3}\backslash B_{R}}\nabla\tilde{\mathcal{K}})\ast(h_{n}\nabla m).

Given that 𝒦~L1(BR)\nabla\tilde{\mathcal{K}}\in L^{1}(B_{R}), from [10, Corollary 4.28] it follows that (𝟏BR𝒦~)(hnm)({\bf 1}_{B_{R}}\nabla\tilde{\mathcal{K}})\ast(h_{n}\nabla m) is relatively compact in L2(Ω)L^{2}(\Omega) for every measurable set Ω\Omega with finite measure. A Cantor diagonal argument yields the existence of a subsequence of hnh_{n} (not relabeled) such that (𝟏BR𝒦~)(hnm)({\bf 1}_{B_{R}}\nabla\tilde{\mathcal{K}})\ast(h_{n}\nabla m) is strongly convergent in L2(Br)L^{2}(B_{r}) for every rr\in\mathbb{N}. Given that 3mvk1𝑑v<\int_{\mathbb{R}^{3}}m\langle v\rangle^{k-1}dv<\infty, it is easily seen that

(5.23) (𝟏BR𝒦~)(hnm)(𝟏BR𝒦~)(hm) strongly in L2(mvk1)=0k.\displaystyle({\bf 1}_{B_{R}}\nabla\tilde{\mathcal{K}})\ast(h_{n}\nabla m)\to({\bf 1}_{B_{R}}\nabla\tilde{\mathcal{K}})\ast(h\nabla m)\quad\mbox{ strongly in $L^{2}(m\langle v\rangle^{k-1})=\mathcal{H}_{0}^{k}$.}

On the other hand, Young’s inequality for convolutions yields

(𝟏3\BR𝒦~)(hnm)L2(3)𝒦~Lq(3\BR)hnmLp(3),32=1p+1q,1<p<65.\displaystyle\|({\bf 1}_{\mathbb{R}^{3}\backslash B_{R}}\nabla\tilde{\mathcal{K}})\ast(h_{n}\nabla m)\|_{L^{2}(\mathbb{R}^{3})}\leq\|\nabla\tilde{\mathcal{K}}\|_{L^{q}(\mathbb{R}^{3}\backslash B_{R})}\|h_{n}\nabla m\|_{L^{p}(\mathbb{R}^{3})},\quad\frac{3}{2}=\frac{1}{p}+\frac{1}{q},\quad 1<p<\frac{6}{5}.

Since q>3/2q>3/2 then 𝒦~Lq(3\BR)0\|\nabla\tilde{\mathcal{K}}\|_{L^{q}(\mathbb{R}^{3}\backslash B_{R})}\to 0 as RR\to\infty, while hnmLp(3)1\|h_{n}\nabla m\|_{L^{p}(\mathbb{R}^{3})}\lesssim 1 for 1<p<6/51<p<6/5. From this fact and (5.23) we obtain

(5.24) 𝒦~(hnm)𝒦~(hm) strongly in 0k.\displaystyle\nabla\tilde{\mathcal{K}}\ast(h_{n}\nabla m)\to\nabla\tilde{\mathcal{K}}\ast(h\nabla m)\quad\mbox{ strongly in $\mathcal{H}_{0}^{k}$.}

In a similar way one shows that

(5.25) mm𝒦~(hnm)mm𝒦~(hm) strongly in 0k.\displaystyle\frac{\nabla m}{m}\cdot\nabla\tilde{\mathcal{K}}\ast(h_{n}m)\to\frac{\nabla m}{m}\cdot\nabla\tilde{\mathcal{K}}\ast(hm)\quad\mbox{ strongly in $\mathcal{H}_{0}^{k}$.}

Let us now deal with 𝒦~(hnm)\tilde{\mathcal{K}}\ast(h_{n}\nabla m). One can prove, via a similar argument as the one employed to show (5.23), that (up to subsequences)

(5.26) (𝟏BR𝒦~)(hnm)(𝟏BR𝒦~)(hm) strongly in 0k.\displaystyle({\bf 1}_{B_{R}}\tilde{\mathcal{K}})\ast(h_{n}\nabla m)\to({\bf 1}_{B_{R}}\tilde{\mathcal{K}})\ast(h\nabla m)\quad\mbox{ strongly in $\mathcal{H}_{0}^{k}$.}

On the other hand, for ζ(0,1)\zeta\in(0,1),

|((𝟏3\BR𝒦~)(hnm))(v)|Rζ|(||ζ1|hnm|)(v)|,v3,\displaystyle|(({\bf 1}_{\mathbb{R}^{3}\backslash B_{R}}\tilde{\mathcal{K}})\ast(h_{n}\nabla m))(v)|\leq R^{-\zeta}|(|\cdot|^{\zeta-1}\ast|h_{n}\nabla m|)(v)|,\qquad v\in\mathbb{R}^{3},

so Hardy-Littlewood-Sobolev’s inequality yields

((𝟏3\BR𝒦~)(hnm))Lq(3)RζhnmLp(3),1p+1ζ3=1+1q,1<p2.\displaystyle\|(({\bf 1}_{\mathbb{R}^{3}\backslash B_{R}}\tilde{\mathcal{K}})\ast(h_{n}\nabla m))\|_{L^{q}(\mathbb{R}^{3})}\lesssim R^{-\zeta}\|h_{n}\nabla m\|_{L^{p}(\mathbb{R}^{3})},\qquad\frac{1}{p}+\frac{1-\zeta}{3}=1+\frac{1}{q},\quad 1<p\leq 2.

This means that

limRsupn(𝟏3\BR𝒦~)(hnm)Lq(3)=0.\displaystyle\lim_{R\to\infty}\sup_{n\in\mathbb{N}}\|({\bf 1}_{\mathbb{R}^{3}\backslash B_{R}}\tilde{\mathcal{K}})\ast(h_{n}\nabla m)\|_{L^{q}(\mathbb{R}^{3})}=0.

Putting the above relation and (5.26) together yields the strong convergence of 𝒦~(hnm)\tilde{\mathcal{K}}\ast(h_{n}\nabla m) in 0k\mathcal{H}_{0}^{k}. Finally, 3mhn𝑑v\int_{\mathbb{R}^{3}}mh_{n}dv is obviously relatively compact in 0\mathcal{H}_{0}. Thus 𝒦k:0k0k\mathcal{K}_{k}:\mathcal{H}_{0}^{k}\to\mathcal{H}_{0}^{k} is a compact operator for every k0k\geq 0. Bound (5.20) is a straightforward byproduct of the previous computations and of estimates (5.21), (5.22). This finishes the proof of the Lemma. ∎

We now want to prove the following theorem:

Theorem 5.4 (Spectral gap for LL).

There exists a constant CL>0C_{L}>0 such that

(5.27) (Lh,h)L2(m)\displaystyle-(Lh,h)_{L^{2}(m)} CL(3A[m]hhmdv+hL2(mv1)2),hD(L)N(L).\displaystyle\geq C_{L}\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,mdv+\|h\|_{L^{2}(m\langle v\rangle^{-1})}^{2}\right),\quad\forall h\in D(L)\cap N(L)^{\perp}.
Proof.

From [8] we know that for all h0h\in\mathcal{H}^{0}

(Lh,h)L2(m)0,\displaystyle(Lh,h)_{L^{2}(m)}\leq 0,

and equality holds if and only if hN(L)h\in N(L). This fact, Lemma 5.2, 5.3, and [17, Lemma 10] yield (5.27). ∎

Remark 2.

The constant CLC_{L} appearing in the statement of Theorem  5.4 is not explicit. It is a consequence of [17, Lemma 10], whose proof is non-constructive. A similar estimate already appeared in [30, 33] for the classical Landau equation.

Next, we show some bounds for AA and a\nabla a. Define preliminarily for p,q1p,q\geq 1 and g:3g:\mathbb{R}^{3}\to\mathbb{R} arbitrary measurable function

p,q[g]=\displaystyle\mathcal{E}_{p,q}^{\perp}[g]= 3|g(w)|𝑑w+(3|w|p|g(w)|p𝑑w)1p+(3|w|q|g(w)|q𝑑w)1q,\displaystyle\int_{\mathbb{R}^{3}}|g(w)|dw+\left(\int_{\mathbb{R}^{3}}|w|^{p}|g(w)|^{p}dw\right)^{\frac{1}{p}}+\left(\int_{\mathbb{R}^{3}}|w|^{q}|g(w)|^{q}dw\right)^{\frac{1}{q}},
p,q[g]=\displaystyle\mathcal{E}_{p,q}^{\parallel}[g]= 3|w|2|g(w)|𝑑w+(3|w|3p|g(w)|p𝑑w)1p+(3|w|3q|g(w)|q𝑑w)1q,\displaystyle\int_{\mathbb{R}^{3}}|w|^{2}|g(w)|dw+\left(\int_{\mathbb{R}^{3}}|w|^{3p}|g(w)|^{p}dw\right)^{\frac{1}{p}}+\left(\int_{\mathbb{R}^{3}}|w|^{3q}|g(w)|^{q}dw\right)^{\frac{1}{q}},
p,q[g]=\displaystyle\mathcal{E}_{p,q}[g]= p,q[g]+p,q[g],\displaystyle\mathcal{E}_{p,q}^{\perp}[g]+\mathcal{E}_{p,q}^{\parallel}[g],
~p,q[g]=\displaystyle\widetilde{\mathcal{E}}^{\perp}_{p,q}[g]= (3|g(w)|p𝑑w)1/p+(3|g(w)|q𝑑w)1/q\displaystyle\left(\int_{\mathbb{R}^{3}}|g(w)|^{p}dw\right)^{1/p}+\left(\int_{\mathbb{R}^{3}}|g(w)|^{q}dw\right)^{1/q}
+(3|w|2p|g(w)|2p𝑑w)1/2p+(3|w|2q|g(w)|2q𝑑w)1/2q,\displaystyle+\left(\int_{\mathbb{R}^{3}}|w|^{2p}|g(w)|^{2p}dw\right)^{1/2p}+\left(\int_{\mathbb{R}^{3}}|w|^{2q}|g(w)|^{2q}dw\right)^{1/2q},
~p,q[g]=\displaystyle\widetilde{\mathcal{E}}^{\parallel}_{p,q}[g]= 3|g(w)|𝑑w+(3|w|p|g(w)|p𝑑w)1p+(3|w|q|g(w)|q𝑑w)1q\displaystyle\int_{\mathbb{R}^{3}}|g(w)|dw+\left(\int_{\mathbb{R}^{3}}|w|^{p}|g(w)|^{p}dw\right)^{\frac{1}{p}}+\left(\int_{\mathbb{R}^{3}}|w|^{q}|g(w)|^{q}dw\right)^{\frac{1}{q}}
+(3|w|4p|g(w)|2p𝑑w)1/2p+(3|w|4q|g(w)|2q𝑑w)1/2q,\displaystyle+\left(\int_{\mathbb{R}^{3}}|w|^{4p}|g(w)|^{2p}dw\right)^{1/2p}+\left(\int_{\mathbb{R}^{3}}|w|^{4q}|g(w)|^{2q}dw\right)^{1/2q},
~p,q[g]=\displaystyle\widetilde{\mathcal{E}}_{p,q}[g]= ~p,q[g]+~p,q[g].\displaystyle\widetilde{\mathcal{E}}_{p,q}^{\perp}[g]+\widetilde{\mathcal{E}}_{p,q}^{\parallel}[g].

The following result holds.

Lemma 5.5 (Bounds for AA).

For every p,q[1,)p,q\in[1,\infty), p<32<qp<\frac{3}{2}<q, and every z3z\in\mathbb{R}^{3},

(5.28) zA[g](v)z\displaystyle z\cdot A[g](v)z p,qp,q[g]|v||z|2+p,q[g]|v|3|z|2p,qp,q[g]zA[m](v)z,\displaystyle\lesssim_{p,q}\frac{\mathcal{E}_{p,q}^{\perp}[g]}{|v|}|z^{\perp}|^{2}+\frac{\mathcal{E}_{p,q}^{\parallel}[g]}{|v|^{3}}|z^{\parallel}|^{2}\lesssim_{p,q}\mathcal{E}_{p,q}[g]\,z\cdot A[m](v)z,
(5.29) |Π(v)a[g]|\displaystyle|\Pi(v)\nabla a[g]| p,q~p,q[g]|v|1,|v|v|a[g]|p,q~p,q[g]|v|2,\displaystyle\lesssim_{p,q}\widetilde{\mathcal{E}}^{\perp}_{p,q}[g]|v|^{-1},\qquad\left|\frac{v}{|v|}\cdot\nabla a[g]\right|\lesssim_{p,q}\widetilde{\mathcal{E}}^{\parallel}_{p,q}[g]|v|^{-2},

with z=|v|2(vz)vz^{\parallel}=|v|^{-2}(v\cdot z)v, z=zz=Π(v)zz^{\perp}=z-z^{\parallel}=\Pi(v)z, for every gL1(d)g\in L^{1}(\mathbb{R}^{d}) such that p,q[g]<\mathcal{E}_{p,q}^{\perp}[g]<\infty, p,q[g]<\mathcal{E}_{p,q}^{\parallel}[g]<\infty, ~p,q[g]<\widetilde{\mathcal{E}}_{p,q}^{\perp}[g]<\infty, ~p,q[g]<\widetilde{\mathcal{E}}_{p,q}^{\parallel}[g]<\infty.

Proof.

The upper bound in (5.28) is already known since mm can be estimated from below via the Maxwell-Boltzmann distribution. Therefore we only prove the lower bound.

We first observe that it is enough to prove the statement for z=zz=z^{\parallel} and z=zz=z^{\perp}, since via Cauchy-Schwartz and Young’s inequality it holds (remember that A[g]A[g] is symmetric and positive definite)

zA[g]z(zA[g]z)1/2(zA[g]z)1/212zA[g]z+12zA[g]z.\displaystyle z^{\perp}\cdot A[g]z^{\parallel}\leq\left(z^{\perp}\cdot A[g]z^{\perp}\right)^{1/2}\left(z^{\parallel}\cdot A[g]z^{\parallel}\right)^{1/2}\leq\frac{1}{2}z^{\perp}\cdot A[g]z^{\perp}+\frac{1}{2}z^{\parallel}\cdot A[g]z^{\parallel}.

Let now deal with the case z=zz=z^{\parallel}. We start by considering z=vz=v. It holds

vA[g](v)v\displaystyle v\cdot A[g](v)v =3g(w)|vw|vΠ(vw)v𝑑w\displaystyle=\int_{\mathbb{R}^{3}}\frac{g(w)}{|v-w|}v\cdot\Pi(v-w)v\,dw
=3g(w)|vw|wΠ(vw)w𝑑w\displaystyle=\int_{\mathbb{R}^{3}}\frac{g(w)}{|v-w|}w\cdot\Pi(v-w)w\,dw
3|w|2|g(w)||vw|𝑑w.\displaystyle\leq\int_{\mathbb{R}^{3}}\frac{|w|^{2}|g(w)|}{|v-w|}dw.

Let us now consider

|v|3|w|2|g(w)||vw|𝑑w\displaystyle|v|\int_{\mathbb{R}^{3}}\frac{|w|^{2}|g(w)|}{|v-w|}dw 3(|vw|+|w|)|w|2|g(w)||vw|𝑑w\displaystyle\leq\int_{\mathbb{R}^{3}}(|v-w|+|w|)\frac{|w|^{2}|g(w)|}{|v-w|}dw
3|w|2|g(w)|𝑑w+3|w|3|g(w)||vw|𝑑w.\displaystyle\leq\int_{\mathbb{R}^{3}}|w|^{2}|g(w)|dw+\int_{\mathbb{R}^{3}}\frac{|w|^{3}|g(w)|}{|v-w|}dw.

Since

3|w|3|g(w)||vw|𝑑w=B1(v)|w|3|g(w)||vw|𝑑w+3\B1(v)|w|3|g(w)||vw|𝑑w,\displaystyle\int_{\mathbb{R}^{3}}\frac{|w|^{3}|g(w)|}{|v-w|}dw=\int_{B_{1}(v)}\frac{|w|^{3}|g(w)|}{|v-w|}dw+\int_{\mathbb{R}^{3}\backslash B_{1}(v)}\frac{|w|^{3}|g(w)|}{|v-w|}dw,

Hölder inequality yields

3|w|3|g(w)||vw|dw1,2||3g3/2+1+||3g3/22,1>0,2(0,12].\displaystyle\int_{\mathbb{R}^{3}}\frac{|w|^{3}|g(w)|}{|v-w|}dw\lesssim_{\ell_{1},\ell_{2}}\||\cdot|^{3}g\|_{3/2+\ell_{1}}+\||\cdot|^{3}g\|_{3/2-\ell_{2}},\quad\forall\ell_{1}>0,~{}~{}\forall\ell_{2}\in\left(0,\frac{1}{2}\right].

It follows

v|v|A[g](v)v|v|p,qp,q[g]|v|3,1p<32<q.\displaystyle\frac{v}{|v|}\cdot A[g](v)\frac{v}{|v|}\lesssim_{p,q}\mathcal{E}_{p,q}^{\parallel}[g]\,|v|^{-3},\qquad 1\leq p<\frac{3}{2}<q.

Let us now consider, for z=zz=z^{\perp}, |z|=1|z|=1,

|v|\displaystyle|v|\, zA[g](v)z=3|v|g(w)|vw|zΠ(vw)z𝑑w\displaystyle z\cdot A[g](v)z=\int_{\mathbb{R}^{3}}\frac{|v|g(w)}{|v-w|}z\cdot\Pi(v-w)z\,dw
3|v||g(w)||vw|𝑑w3|g(w)|𝑑w+3|w||g(w)||vw|𝑑w\displaystyle\leq\int_{\mathbb{R}^{3}}\frac{|v||g(w)|}{|v-w|}\,dw\leq\int_{\mathbb{R}^{3}}|g(w)|\,dw+\int_{\mathbb{R}^{3}}\frac{|w||g(w)|}{|v-w|}\,dw
1,2g1+||g3/2+1+||g3/22,1>0,2(0,12].\displaystyle\lesssim_{\ell_{1},\ell_{2}}\|g\|_{1}+\||\cdot|g\|_{3/2+\ell_{1}}+\||\cdot|g\|_{3/2-\ell_{2}},\quad\forall\ell_{1}>0,~{}~{}\forall\ell_{2}\in\left(0,\frac{1}{2}\right].

It follows

zA[g](v)zp,qp,q[g]|v|1,1p<32<q.\displaystyle z\cdot A[g](v)z\lesssim_{p,q}\mathcal{E}_{p,q}^{\perp}[g]\,|v|^{-1},\qquad 1\leq p<\frac{3}{2}<q.

Hence (5.28) holds.

Let us now prove (5.29). It holds (via Young’s inequality for convolutions)

|v||a[g](v)|\displaystyle|v||\nabla a[g](v)| 3|vw|+|w||vw|2|g(w)|𝑑w\displaystyle\leq\int_{\mathbb{R}^{3}}\frac{|v-w|+|w|}{|v-w|^{2}}|g(w)|dw
=3|g(w)||vw|𝑑w+3|w||g(w)||vw|2𝑑w\displaystyle=\int_{\mathbb{R}^{3}}\frac{|g(w)|}{|v-w|}dw+\int_{\mathbb{R}^{3}}\frac{|w||g(w)|}{|v-w|^{2}}dw
~p,q[g],\displaystyle\leq\widetilde{\mathcal{E}}_{p,q}^{\perp}[g],

while

|v|2|v|v|a[g]|=\displaystyle|v|^{2}\left|\frac{v}{|v|}\cdot\nabla a[g]\right|= |v||3g(w)(vw)v|vw|3𝑑w|\displaystyle|v|\left|\int_{\mathbb{R}^{3}}g(w)\frac{(v-w)\cdot v}{|v-w|^{3}}dw\right|
\displaystyle\leq |v|3|g(w)||vw|𝑑w+|v|3|g(w)||w||vw|2𝑑w\displaystyle|v|\int_{\mathbb{R}^{3}}\frac{|g(w)|}{|v-w|}dw+|v|\int_{\mathbb{R}^{3}}\frac{|g(w)||w|}{|v-w|^{2}}dw
\displaystyle\leq 3|g(w)|𝑑w+23|g(w)||w||vw|𝑑w+3|g(w)||w|2|vw|2𝑑w\displaystyle\int_{\mathbb{R}^{3}}|g(w)|dw+2\int_{\mathbb{R}^{3}}\frac{|g(w)||w|}{|v-w|}dw+\int_{\mathbb{R}^{3}}\frac{|g(w)||w|^{2}}{|v-w|^{2}}dw
\displaystyle\leq ~p,q[g].\displaystyle\widetilde{\mathcal{E}}_{p,q}^{\parallel}[g].

This finishes the proof of the Lemma. ∎

The next lemma deals with the nonlinear contributions Γ2\Gamma_{2} and Γ3\Gamma_{3}.

Lemma 5.6 (Bounds for nonlinear terms).

For every p,q1p,q\geq 1, p<32<qp<\frac{3}{2}<q, k0k\geq 0 it holds

(5.30) (\displaystyle( Γ2(h,h),h)L2(mvk)p,q[ρ(p,q[mh]+~p,q[mh])\displaystyle\Gamma_{2}(h,h),h)_{L^{2}(m\langle v\rangle^{k})}\lesssim_{p,q}\Big{[}\rho(\mathcal{E}_{p,q}[mh]+\widetilde{\mathcal{E}}_{p,q}[mh])
+ρm1/2h22/3+ρm1/2h24/3+ρ1](3A[m]hhvkmdv+3h2vk1mdv),\displaystyle+\rho\|m^{1/2}h\|_{2}^{2/3}+\rho\|m^{1/2}h\|_{2}^{4/3}+\rho^{-1}\Big{]}\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-1}mdv\right),
(5.31) (Γ3[h,\displaystyle(\Gamma_{3}[h, h,h],h)L2(mvk)\displaystyle h,h],h)_{L^{2}(m\langle v\rangle^{k})}
p,q\displaystyle\lesssim_{p,q} ρ(p,q[mh]+~p,q[mh])(3A[m]hhvkm𝑑v+3h2vk1m𝑑v)\displaystyle\;\rho(\mathcal{E}_{p,q}[mh]+\widetilde{\mathcal{E}}_{p,q}[mh])\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-1}mdv\right)
+ρ13A[m]hhvkm𝑑v,\displaystyle+\rho^{-1}\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\langle v\rangle^{k}mdv,

for every ρ>0\rho>0.

Proof.

Let us first consider the contribution of the quadratic terms.

(Γ2(h,h),h)L2(mvk)=\displaystyle(\Gamma_{2}(h,h),h)_{L^{2}(m\langle v\rangle^{k})}= 3vkh(A[(12)mh](mh)A[m2h2]\displaystyle-\int_{\mathbb{R}^{3}}\langle v\rangle^{k}\nabla h\cdot\left(A[(1-2\mathcal{M})mh]\nabla(mh)-A[m^{2}h^{2}]\nabla\mathcal{M}\right.
(12)mha[mh]+m2h2a[])dv\displaystyle\left.\qquad-(1-2\mathcal{M})mh\nabla a[mh]+m^{2}h^{2}\nabla a[\mathcal{M}]\right)dv
3hvk(A[(12)mh](mh)A[m2h2]\displaystyle-\int_{\mathbb{R}^{3}}h\nabla\langle v\rangle^{k}\cdot\left(A[(1-2\mathcal{M})mh]\nabla(mh)-A[m^{2}h^{2}]\nabla\mathcal{M}\right.
(12)mha[mh]+m2h2a[])dv,\displaystyle\left.\qquad-(1-2\mathcal{M})mh\nabla a[mh]+m^{2}h^{2}\nabla a[\mathcal{M}]\right)dv,

that can be rewritten as

Γ2(h,h),\displaystyle\langle\Gamma_{2}(h,h), hL2(m)=j=15Ij+j=15Ij,\displaystyle h\rangle_{L^{2}(m)}=\sum_{j=1}^{5}I_{j}+\sum_{j=1}^{5}I^{\prime}_{j},
I1:=\displaystyle I_{1}:= 3A[(12)mh]hhvkm𝑑v,\displaystyle-\int_{\mathbb{R}^{3}}A[(1-2\mathcal{M})mh]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv,
I2:=\displaystyle I_{2}:= 3A[(12)mh]hmvkh𝑑v,\displaystyle-\int_{\mathbb{R}^{3}}A[(1-2\mathcal{M})mh]\nabla h\cdot\nabla m\,\langle v\rangle^{k}hdv,
I3:=\displaystyle I_{3}:= +3hA[m2h2]vk𝑑v,\displaystyle+\int_{\mathbb{R}^{3}}\nabla h\cdot A[m^{2}h^{2}]\nabla\mathcal{M}\,\langle v\rangle^{k}dv,
I4:=\displaystyle I_{4}:= +3h(12)mha[mh]vk𝑑v,\displaystyle+\int_{\mathbb{R}^{3}}\nabla h\cdot(1-2\mathcal{M})mh\nabla a[mh]\,\langle v\rangle^{k}dv,
I5:=\displaystyle I_{5}:= 3hm2h2a[]vk𝑑v,\displaystyle-\int_{\mathbb{R}^{3}}\nabla h\cdot m^{2}h^{2}\nabla a[\mathcal{M}]\,\langle v\rangle^{k}dv,
I1:=\displaystyle I^{\prime}_{1}:= 3A[(12)mh]hvkhmdv,\displaystyle-\int_{\mathbb{R}^{3}}A[(1-2\mathcal{M})mh]\nabla h\cdot\nabla\langle v\rangle^{k}\,hmdv,
I2:=\displaystyle I^{\prime}_{2}:= 3A[(12)mh]vkmh2dv,\displaystyle-\int_{\mathbb{R}^{3}}A[(1-2\mathcal{M})mh]\nabla\langle v\rangle^{k}\cdot\nabla m\,h^{2}dv,
I3:=\displaystyle I^{\prime}_{3}:= +3vkA[m2h2]hdv,\displaystyle+\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{k}\cdot A[m^{2}h^{2}]\nabla\mathcal{M}\,hdv,
I4:=\displaystyle I^{\prime}_{4}:= +3vk(12)mha[mh]hdv,\displaystyle+\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{k}\cdot(1-2\mathcal{M})mh\nabla a[mh]\,hdv,
I5:=\displaystyle I^{\prime}_{5}:= 3vkm2h3a[]dv,\displaystyle-\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{k}\cdot m^{2}h^{3}\nabla a[\mathcal{M}]\,dv,

For every 1p<32<q1\leq p<\frac{3}{2}<q, thanks to (5.28), we get

I1p,qp,q[mh]3A[m]hhmvk𝑑v,\displaystyle I_{1}\lesssim_{p,q}\mathcal{E}_{p,q}[mh]\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,m\langle v\rangle^{k}dv,

while Cauchy-Schwartz and Young’s inequality lead to

I23A[|mh|]hhvkm𝑑v+3A[|mh|]logmlogmh2vkm𝑑v.\displaystyle I_{2}\lesssim\int_{\mathbb{R}^{3}}A[|mh|]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\int_{\mathbb{R}^{3}}A[|mh|]\nabla\log{m}\cdot\nabla\log{m}\,h^{2}\langle v\rangle^{k}mdv.

However, it is easy to see (via direct computation) that

logm(v)=b1aeb|uv|2/21+aeb|uv|2/2(uv),\nabla\log m(v)=b\frac{1-ae^{-b|u-v|^{2}/2}}{1+ae^{-b|u-v|^{2}/2}}(u-v),

so, using (5.28), we obtain

A[|mh|]logmlogmp,qp,q[mh]v1,\displaystyle A[|mh|]\nabla\log{m}\cdot\nabla\log{m}\lesssim_{p,q}\mathcal{E}_{p,q}[mh]\langle v\rangle^{-1},

which implies

I2p,q3A[|mh|]hhvkm𝑑v+p,q[mh]3h2vk1m𝑑v.\displaystyle I_{2}\lesssim_{p,q}\int_{\mathbb{R}^{3}}A[|mh|]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\mathcal{E}_{p,q}[mh]\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-1}mdv.

Applying (5.28) once again leads to

I2p,qp,q[mh](3A[m]hhvkm𝑑v+3h2vk1m𝑑v).\displaystyle I_{2}\lesssim_{p,q}\mathcal{E}_{p,q}[mh]\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-1}mdv\right).

Let us now consider, for arbitrary ρ>0\rho>0,

I3\displaystyle I_{3} ρ3A[m2h2]hhvkm𝑑v+ρ13A[m2h2]log(1)log(1)vkm𝑑v\displaystyle\leq\rho\int_{\mathbb{R}^{3}}A[m^{2}h^{2}]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\rho^{-1}\int_{\mathbb{R}^{3}}A[m^{2}h^{2}]\nabla\log\left(\frac{\mathcal{M}}{1-\mathcal{M}}\right)\cdot\nabla\log\left(\frac{\mathcal{M}}{1-\mathcal{M}}\right)\langle v\rangle^{k}mdv
=ρ3A[m2h2]hhvkm𝑑v+ρ1b23A[m2h2](uv)(uv)vkm𝑑v.\displaystyle=\rho\int_{\mathbb{R}^{3}}A[m^{2}h^{2}]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\rho^{-1}b^{2}\int_{\mathbb{R}^{3}}A[m^{2}h^{2}](u-v)\cdot(u-v)\langle v\rangle^{k}mdv.

It is quite easy to see that

3A[m2h2](uv)(uv)vkm𝑑v\displaystyle\int_{\mathbb{R}^{3}}A[m^{2}h^{2}](u-v)\cdot(u-v)\langle v\rangle^{k}mdv 3m2(w)h2(w)3m(v)|uv|2|vw|vk𝑑v𝑑w\displaystyle\leq\int_{\mathbb{R}^{3}}m^{2}(w)h^{2}(w)\int_{\mathbb{R}^{3}}\frac{m(v)|u-v|^{2}}{|v-w|}\langle v\rangle^{k}dv\,dw
3m2h2𝑑v3mh2vk1𝑑v,\displaystyle\lesssim\int_{\mathbb{R}^{3}}m^{2}h^{2}dv\lesssim\int_{\mathbb{R}^{3}}mh^{2}\langle v\rangle^{k-1}dv,

while, on the other hand,

3A[m2h2]hhvkm𝑑vp,qp,q[m2h2]3A[m]hhvkm𝑑v.\displaystyle\int_{\mathbb{R}^{3}}A[m^{2}h^{2}]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv\lesssim_{p,q}\mathcal{E}_{p,q}[m^{2}h^{2}]\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv.

Since |mh|=|f|1|mh|=|f-\mathcal{M}|\leq 1, it follows

I3p,qρ13mh2vk1𝑑v+ρp,q[mh]3A[m]hhvkm𝑑v.\displaystyle I_{3}\lesssim_{p,q}\rho^{-1}\int_{\mathbb{R}^{3}}mh^{2}\langle v\rangle^{k-1}dv+\rho\mathcal{E}_{p,q}[mh]\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv.

Let us now deal with I4I_{4}. Young’s inequality yields

I4=\displaystyle I_{4}= 3h(12)mha[mh]vk𝑑v\displaystyle\int_{\mathbb{R}^{3}}\nabla h\cdot(1-2\mathcal{M})mh\nabla a[mh]\,\langle v\rangle^{k}dv
=\displaystyle= 3Π(v)h(12)mhΠ(v)a[mh]vk𝑑v\displaystyle\int_{\mathbb{R}^{3}}\Pi(v)\nabla h\cdot(1-2\mathcal{M})mh\Pi(v)\nabla a[mh]\,\langle v\rangle^{k}dv
+3vv|v|2h(12)mhvv|v|2a[mh]vk𝑑v\displaystyle+\int_{\mathbb{R}^{3}}\frac{v\otimes v}{|v|^{2}}\nabla h\cdot(1-2\mathcal{M})mh\frac{v\otimes v}{|v|^{2}}\nabla a[mh]\,\langle v\rangle^{k}dv
\displaystyle\lesssim 1ρ3|Π(v)h|2vk1m𝑑v+ρ3h2|Π(v)a[mh]|2vk+1m𝑑v\displaystyle\frac{1}{\rho}\int_{\mathbb{R}^{3}}|\Pi(v)\nabla h|^{2}\langle v\rangle^{k-1}mdv+\rho\int_{\mathbb{R}^{3}}h^{2}|\Pi(v)\nabla a[mh]|^{2}\langle v\rangle^{k+1}mdv
+1ρ3|vv|v|2h|2vk3m𝑑v+ρ3h2|vv|v|2a[mh]|2vk+3m𝑑v.\displaystyle+\frac{1}{\rho}\int_{\mathbb{R}^{3}}\left|\frac{v\otimes v}{|v|^{2}}\nabla h\right|^{2}\langle v\rangle^{k-3}mdv+\rho\int_{\mathbb{R}^{3}}h^{2}\left|\frac{v\otimes v}{|v|^{2}}\nabla a[mh]\right|^{2}\langle v\rangle^{k+3}mdv.

From (5.28), (5.29) it follows

I4\displaystyle I_{4}\lesssim 1ρ3A[m]hhvkm𝑑v+ρ~p,q[mh]3mh2vk1𝑑v.\displaystyle\frac{1}{\rho}\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\langle v\rangle^{k}mdv+\rho\widetilde{\mathcal{E}}_{p,q}[mh]\int_{\mathbb{R}^{3}}mh^{2}\langle v\rangle^{k-1}dv.

Finally, let us consider, for a generic 0<η<1/30<\eta<1/3,

I5=\displaystyle I_{5}= 3hm2h2a[]vk𝑑v\displaystyle-\int_{\mathbb{R}^{3}}\nabla h\cdot m^{2}h^{2}\nabla a[\mathcal{M}]\,\langle v\rangle^{k}dv
\displaystyle\lesssim 3m1/2+η|h|m3/2η|h|2vk𝑑v\displaystyle\int_{\mathbb{R}^{3}}m^{1/2+\eta}|\nabla h|\,m^{3/2-\eta}|h|^{2}\,\langle v\rangle^{k}dv
\displaystyle\lesssim 3m1/2+η|h|m7/6η|h|5/3vk𝑑v,\displaystyle\int_{\mathbb{R}^{3}}m^{1/2+\eta}|\nabla h|\,m^{7/6-\eta}|h|^{5/3}\,\langle v\rangle^{k}dv,

where the last inequality holds because |mh|1/3=|f|1/31|mh|^{1/3}=|f-\mathcal{M}|^{1/3}\leq 1. It follows via Cauchy-Schwartz inequality

I5\displaystyle I_{5}\lesssim vkm1/2+η|h|2m7/6η|h|5/32ηv(k3)/2m1/2|h|2m7/103η/5|h|10/35/3.\displaystyle\|\langle v\rangle^{k}m^{1/2+\eta}|\nabla h|\|_{2}\|m^{7/6-\eta}|h|^{5/3}\|_{2}\lesssim_{\eta}\|\langle v\rangle^{(k-3)/2}m^{1/2}|\nabla h|\|_{2}\|m^{7/10-3\eta/5}|h|\|_{10/3}^{5/3}.

Gagliardo-Nirenberg inequality leads to

I5η\displaystyle I_{5}\lesssim_{\eta} v(k3)/2m1/2|h|2m7/103η/5h22/3(m7/103η/5h)2\displaystyle\|\langle v\rangle^{(k-3)/2}m^{1/2}|\nabla h|\|_{2}\|m^{7/10-3\eta/5}h\|_{2}^{2/3}\|\nabla(m^{7/10-3\eta/5}h)\|_{2}
η\displaystyle\lesssim_{\eta} v(k3)/2m1/2|h|2m7/103η/5h22/3(m7/103η/5h2+h(m7/103η/5)2)\displaystyle\|\langle v\rangle^{(k-3)/2}m^{1/2}|\nabla h|\|_{2}\|m^{7/10-3\eta/5}h\|_{2}^{2/3}\left(\|m^{7/10-3\eta/5}\nabla h\|_{2}+\|h\nabla(m^{7/10-3\eta/5})\|_{2}\right)
η\displaystyle\lesssim_{\eta} v(k3)/2m1/2|h|22m7/103η/5h22/3\displaystyle\|\langle v\rangle^{(k-3)/2}m^{1/2}|\nabla h|\|_{2}^{2}\|m^{7/10-3\eta/5}h\|_{2}^{2/3}
+v(k3)/2m1/2|h|2m7/103η/5h22/3hm7/103η/5logm2.\displaystyle+\|\langle v\rangle^{(k-3)/2}m^{1/2}|\nabla h|\|_{2}\|m^{7/10-3\eta/5}h\|_{2}^{2/3}\|h\,m^{7/10-3\eta/5}\nabla\log m\|_{2}.

Choosing η=1/6\eta=1/6 yields

I5\displaystyle I_{5}\lesssim v(k3)/2m1/2|h|22m1/2h22/3\displaystyle\|\langle v\rangle^{(k-3)/2}m^{1/2}|\nabla h|\|_{2}^{2}\|m^{1/2}h\|_{2}^{2/3}
+v(k3)/2m1/2|h|2v(k1)/2m1/2h2m1/2h22/3\displaystyle+\|\langle v\rangle^{(k-3)/2}m^{1/2}|\nabla h|\|_{2}\|\langle v\rangle^{(k-1)/2}m^{1/2}h\|_{2}\|m^{1/2}h\|_{2}^{2/3}
\displaystyle\lesssim ρ(m1/2h22/3+m1/2h24/3)v(k3)/2m1/2|h|22+ρ1v(k1)/2m1/2h22.\displaystyle\rho(\|m^{1/2}h\|_{2}^{2/3}+\|m^{1/2}h\|_{2}^{4/3})\|\langle v\rangle^{(k-3)/2}m^{1/2}|\nabla h|\|_{2}^{2}+\rho^{-1}\|\langle v\rangle^{(k-1)/2}m^{1/2}h\|_{2}^{2}.

From (5.28) we conclude

I5\displaystyle I_{5}\lesssim ρ(m1/2h22/3+m1/2h24/3)3A[m]hhvkm𝑑v+ρ13h2vk1m𝑑v.\displaystyle\rho(\|m^{1/2}h\|_{2}^{2/3}+\|m^{1/2}h\|_{2}^{4/3})\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\rho^{-1}\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-1}mdv.

Since |vk|vk1|\nabla\langle v\rangle^{k}|\lesssim\langle v\rangle^{k-1}, the terms I1,,I5I^{\prime}_{1},\ldots,I^{\prime}_{5} can be estimated in a similar way as the terms I1,,I5I_{1},\ldots,I_{5}. Therefore we deduce that (5.30) holds.

Next, we deal with the contributions from the cubic terms:

Γ3[h,h,h],hL2(m)=\displaystyle\langle\Gamma_{3}[h,h,h],h\rangle_{L^{2}(m)}= 3h(A[m2h2](mh)m2h2a[mh])vk𝑑v\displaystyle\int_{\mathbb{R}^{3}}\nabla h\cdot\left(A[m^{2}h^{2}]\nabla(mh)-m^{2}h^{2}\nabla a[mh]\right)\langle v\rangle^{k}dv
+3vk(A[m2h2](mh)m2h2a[mh])hdv\displaystyle+\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{k}\cdot\left(A[m^{2}h^{2}]\nabla(mh)-m^{2}h^{2}\nabla a[mh]\right)hdv
=\displaystyle= I6+I7+I8+I6+I7+I8,\displaystyle I_{6}+I_{7}+I_{8}+I^{\prime}_{6}+I^{\prime}_{7}+I^{\prime}_{8},
I6:=\displaystyle I_{6}:= 3hA[m2h2]hvkm𝑑v,\displaystyle\int_{\mathbb{R}^{3}}\nabla h\cdot A[m^{2}h^{2}]\nabla h\,\langle v\rangle^{k}mdv,
I7:=\displaystyle I_{7}:= 3hA[m2h2]mvkh𝑑v,\displaystyle\int_{\mathbb{R}^{3}}\nabla h\cdot A[m^{2}h^{2}]\nabla m\,\langle v\rangle^{k}hdv,
I8:=\displaystyle I_{8}:= 3hm2h2a[mh]vk𝑑v,\displaystyle-\int_{\mathbb{R}^{3}}\nabla h\cdot m^{2}h^{2}\nabla a[mh]\langle v\rangle^{k}dv,
I6:=\displaystyle I^{\prime}_{6}:= 3vkA[m2h2]hhmdv,\displaystyle\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{k}\cdot A[m^{2}h^{2}]\nabla h\,hmdv,
I7:=\displaystyle I^{\prime}_{7}:= 3vkA[m2h2]mh2dv,\displaystyle\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{k}\cdot A[m^{2}h^{2}]\nabla m\,h^{2}dv,
I8:=\displaystyle I^{\prime}_{8}:= 3vkm2h3a[mh]dv.\displaystyle-\int_{\mathbb{R}^{3}}\nabla\langle v\rangle^{k}\cdot m^{2}h^{3}\nabla a[mh]dv.

From (5.28) and relation |mh|1|mh|\leq 1 it follows

I6p,q\displaystyle I_{6}\lesssim_{p,q} p,q[mh]3A[m]hhvkm𝑑v.\displaystyle\mathcal{E}_{p,q}[mh]\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv.

The term I7I_{7} can be estimated like I2I_{2} to obtain

I7p,qp,q[mh](3A[m]hhvkm𝑑v+3h2vk1m𝑑v).\displaystyle I_{7}\lesssim_{p,q}\mathcal{E}_{p,q}[mh]\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\int_{\mathbb{R}^{3}}h^{2}\langle v\rangle^{k-1}mdv\right).

The term I8I_{8} can be estimated like I4I_{4} to obtain

I8\displaystyle I_{8}\lesssim 1ρ3A[m]hhvkm𝑑v+ρ~p,q[mh]3m3h4vk1𝑑v,\displaystyle\frac{1}{\rho}\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\langle v\rangle^{k}mdv+\rho\widetilde{\mathcal{E}}_{p,q}[mh]\int_{\mathbb{R}^{3}}m^{3}h^{4}\langle v\rangle^{k-1}dv,

but, given that m2h21m^{2}h^{2}\leq 1, it follows

I8\displaystyle I_{8}\lesssim 1ρ3A[m]hhvkm𝑑v+ρ~p,q[mh]3mh2vk1𝑑v.\displaystyle\frac{1}{\rho}\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\langle v\rangle^{k}mdv+\rho\widetilde{\mathcal{E}}_{p,q}[mh]\int_{\mathbb{R}^{3}}mh^{2}\langle v\rangle^{k-1}dv.

Finally, since |vk|vk1|\nabla\langle v\rangle^{k}|\lesssim\langle v\rangle^{k-1}, the terms I6,,I8I^{\prime}_{6},\ldots,I^{\prime}_{8} can be estimated in a similar way as the terms I6,,I8I_{6},\ldots,I_{8}. Therefore we deduce that (5.31) holds. This finishes the proof of the Lemma. ∎

We are now ready to prove the conditional algebraic convergence result, thereby concluding the proof of Thr. 1.4.

Lemma 5.7 (Algebraic rate of convergence for initial data close to equilibrium).

There exists a constant >0\ell>0 such that, if 3(fin)2m1𝑑v<\int_{\mathbb{R}^{3}}(f_{in}-\mathcal{M})^{2}m^{-1}dv<\ell, and if 3(fin)2vNm1𝑑v<\int_{\mathbb{R}^{3}}(f_{in}-\mathcal{M})^{2}\langle v\rangle^{N}m^{-1}dv<\infty for some N1N\geq 1, then

3(f(t))2m1𝑑v(1+t)N,t>0.\displaystyle\int_{\mathbb{R}^{3}}(f(t)-\mathcal{M})^{2}m^{-1}dv\lesssim(1+t)^{-N},\qquad t>0.
Proof.

From (1.1), (5.4) it follows that the perturbation h=(f)/mh=(f-\mathcal{M})/m satisfies the equation

(5.32) th=Lh+Γ2[h,h]+Γ3[h,h,h].\displaystyle\partial_{t}h=Lh+\Gamma_{2}[h,h]+\Gamma_{3}[h,h,h].

Testing the above equation against hh in the sense of L2(m)L^{2}(m) yields

ddt123h2m𝑑v=Lh,hL2(m)+Γ2[h,h],hL2(m)+Γ3[h,h,h],hL2(m).\displaystyle\frac{d}{dt}\frac{1}{2}\int_{\mathbb{R}^{3}}h^{2}mdv=\langle Lh,h\rangle_{L^{2}(m)}+\langle\Gamma_{2}[h,h],h\rangle_{L^{2}(m)}+\langle\Gamma_{3}[h,h,h],h\rangle_{L^{2}(m)}.

From (5.27), (5.30), (5.31) it follows that a suitable constant C(p,q)>0C(p,q)>0 exists such that

ddt\displaystyle\frac{d}{dt} 123h2mdv[ρC(p,q)(p,q[mh]+~p,q[mh])\displaystyle\frac{1}{2}\int_{\mathbb{R}^{3}}h^{2}mdv\leq\Big{[}\rho C(p,q)(\mathcal{E}_{p,q}[mh]+\widetilde{\mathcal{E}}_{p,q}[mh])
+ρm1/2h22/3+ρm1/2h24/3+ρ1CL](3A[m]hhmdv+3h2mv1dv).\displaystyle+\rho\|m^{1/2}h\|_{2}^{2/3}+\rho\|m^{1/2}h\|_{2}^{4/3}+\rho^{-1}-C_{L}\Big{]}\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,mdv+\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{-1}dv\right).

We are now going to prove that

(5.33) α1>0:p,q[mh]+~p,q[mh]p,qρ2+ρα1m1/2h2.\exists\alpha_{1}>0:\quad\mathcal{E}_{p,q}[mh]+\widetilde{\mathcal{E}}_{p,q}[mh]\lesssim_{p,q}\rho^{-2}+\rho^{\alpha_{1}}\|m^{1/2}h\|_{2}.

Indeed, the left-hand side of (5.33) is a sum of terms having the form

Jk,s=(3|v|k|mh|s𝑑v)1/s,k0,s1.\displaystyle J_{k,s}=\left(\int_{\mathbb{R}^{3}}|v|^{k}|mh|^{s}dv\right)^{1/s},\quad k\geq 0,~{}~{}s\geq 1.

If s2s\geq 2 then from the property |mh|1|mh|\leq 1 and the fact that |v|km(v)|v|^{k}\sqrt{m(v)} is bounded in 3\mathbb{R}^{3} for every k0k\geq 0 it follows immediately that

Jk,s(3|v|k|mh|2𝑑v)1/sk(3mh2𝑑v)1/s,\displaystyle J_{k,s}\leq\left(\int_{\mathbb{R}^{3}}|v|^{k}|mh|^{2}dv\right)^{1/s}\lesssim_{k}\left(\int_{\mathbb{R}^{3}}mh^{2}dv\right)^{1/s},

so via Young’s inequality

Jk,ss,kρ2+ρs2m1/2h2.\displaystyle J_{k,s}\lesssim_{s,k}\rho^{-2}+\rho^{s-2}\|m^{1/2}h\|_{2}.

If 1s<21\leq s<2, it suffices to notice that

Jk,s=m1/2hLs(3,|v|kms/2(v)dv).\displaystyle J_{k,s}=\|m^{1/2}h\|_{L^{s}(\mathbb{R}^{3},|v|^{k}m^{s/2}(v)dv)}.

Since |v|kms/2L1L(3)|v|^{k}m^{s/2}\in L^{1}\cap L^{\infty}(\mathbb{R}^{3}), Jensen’s inequality yields

Jk,sk,sm1/2hL2(3,|v|kms/2(v)dv)k,sm1/2h2.\displaystyle J_{k,s}\lesssim_{k,s}\|m^{1/2}h\|_{L^{2}(\mathbb{R}^{3},|v|^{k}m^{s/2}(v)dv)}\lesssim_{k,s}\|m^{1/2}h\|_{2}.

Therefore (5.33) holds. We therefore conclude that, for some suitable constant C(p,q)>0C^{\prime}(p,q)>0 and α>1\alpha>1,

ddt\displaystyle\frac{d}{dt} 3h2m𝑑v[C(p,q)(ραm1/2h22+ρ1)CL](3A[m]hhmdv+3h2mv1𝑑v),\displaystyle\int_{\mathbb{R}^{3}}h^{2}mdv\leq\Big{[}C^{\prime}(p,q)(\rho^{\alpha}\|m^{1/2}h\|_{2}^{2}+\rho^{-1})-C_{L}\Big{]}\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,mdv+\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{-1}dv\right),

for every ρ>1\rho>1. We point out that

C(p,q)(ραm1/2h22+ρ1)CL=C(p,q)ρα(m1/2h22~(ρ)),~(ρ)=(CLC(p,q)ρ1)ρα.\displaystyle C^{\prime}(p,q)(\rho^{\alpha}\|m^{1/2}h\|_{2}^{2}+\rho^{-1})-C_{L}=C^{\prime}(p,q)\rho^{\alpha}\left(\|m^{1/2}h\|_{2}^{2}-\tilde{\ell}(\rho)\right),\quad\tilde{\ell}(\rho)=\left(\frac{C_{L}}{C^{\prime}(p,q)}-\rho^{-1}\right)\rho^{-\alpha}.

The maximum of ~(ρ)\tilde{\ell}(\rho) is achieved for ρ=1+ααCLC(p,q)\rho=\frac{1+\alpha}{\alpha C_{L}}C^{\prime}(p,q). Choosing ρ\rho in this way yields

ddt\displaystyle\frac{d}{dt} 3h2m𝑑vC′′(p,q)[m1/2h22](3A[m]hhmdv+3h2mv1𝑑v),\displaystyle\int_{\mathbb{R}^{3}}h^{2}mdv\leq C^{\prime\prime}(p,q)\Big{[}\|m^{1/2}h\|_{2}^{2}-\ell\Big{]}\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,mdv+\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{-1}dv\right),

for C′′(p,q)=(1+ααCL)αC(p,q)1+αC^{\prime\prime}(p,q)=\left(\frac{1+\alpha}{\alpha C_{L}}\right)^{\alpha}C^{\prime}(p,q)^{1+\alpha} and

:=CL(1+α)C(p,q)(1+ααCLC(p,q))α=(CLC(p,q))1+ααα(1+α)1+α.\ell:=\frac{C_{L}}{(1+\alpha)C^{\prime}(p,q)}\left(\frac{1+\alpha}{\alpha C_{L}}C^{\prime}(p,q)\right)^{-\alpha}=\left(\frac{C_{L}}{C^{\prime}(p,q)}\right)^{1+\alpha}\frac{\alpha^{\alpha}}{(1+\alpha)^{1+\alpha}}.

Since m1/2h(,0)22<0\|m^{1/2}h(\cdot,0)\|_{2}^{2}-\ell<0 by assumption on the initial data, we deduce that m1/2h(,t)2m1/2h(,0)2\|m^{1/2}h(\cdot,t)\|_{2}\leq\|m^{1/2}h(\cdot,0)\|_{2} for all t>0t>0. It follows that, for some λ>0\lambda>0,

(5.34) ddt\displaystyle\frac{d}{dt} 3h2m𝑑vλ(3A[m]hhmdv+3h2mv1𝑑v).\displaystyle\int_{\mathbb{R}^{3}}h^{2}mdv\leq-\lambda\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,mdv+\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{-1}dv\right).

Integrating (5.34) in time yields

(5.35) supt>03h2m𝑑v+λ03h2mv1𝑑v𝑑t3h(,0)2m𝑑v.\displaystyle\sup_{t>0}\int_{\mathbb{R}^{3}}h^{2}mdv+\lambda\int_{0}^{\infty}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{-1}dvdt\leq\int_{\mathbb{R}^{3}}h(\cdot,0)^{2}mdv.

We will now show that supt>03h2mvN𝑑v<\sup_{t>0}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{N}dv<\infty. We proceed iteratively, proving that

(5.36) supt>03h2mvj𝑑v+03h2mvj1𝑑v𝑑t<,\displaystyle\sup_{t>0}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{j}dv+\int_{0}^{\infty}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{j-1}dvdt<\infty,

for j=0,,Nj=0,\ldots,\lfloor N\rfloor. We argue by induction on jj. Estimate (5.35) and the assumption on the initial datum imply that (5.36) holds for j=0j=0. Let us now assume that (5.36) holds for j=0,,k1j=0,\ldots,k-1, 1kN1\leq k\leq\lfloor N\rfloor generic. By testing (5.32) against hh in the sense of L2(mvk)L^{2}(m\langle v\rangle^{k}), exploiting Lemma 5.2 and bound (5.20) and proceeding like in the proof of (5.34) one finds

(5.37) ddt3h2mvk𝑑v\displaystyle\frac{d}{dt}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{k}dv\leq λk(3A[m]hhvkm𝑑v+3h2mvk1𝑑v)\displaystyle-\lambda_{k}\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,\langle v\rangle^{k}mdv+\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{k-1}dv\right)
+μk3h2mvk2𝑑v,\displaystyle+\mu_{k}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{k-2}dv,

for some λk\lambda_{k}, μk>0\mu_{k}>0. By integrating (5.37) in time we get

(5.38) supt>03h2mvk𝑑v\displaystyle\sup_{t>0}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{k}dv +λk03h2mvk1𝑑v𝑑t\displaystyle+\lambda_{k}\int_{0}^{\infty}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{k-1}dvdt
μk03h2mvk2𝑑v𝑑t+3h(,0)2mvk𝑑v.\displaystyle\leq\mu_{k}\int_{0}^{\infty}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{k-2}dvdt+\int_{\mathbb{R}^{3}}h(\cdot,0)^{2}m\langle v\rangle^{k}dv.

From the assumption that 3h(,0)2mvk𝑑v<\int_{\mathbb{R}^{3}}h(\cdot,0)^{2}m\langle v\rangle^{k}dv<\infty for kNk\leq N as well as the inductive hypothesis it follows that the right-hand side of (5.38) is finite, meaning that (5.36) holds for j=kj=k. Via the induction principle we deduce that (5.36) holds for j=0,,Nj=0,\ldots,\lfloor N\rfloor. Choosing k=Nk=N in (5.38) and exploiting (5.36) for j=Nj=\lfloor N\rfloor yields (5.36) for k=Nk=N. In particular

supt>03h2mvN𝑑v<.\sup_{t>0}\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{N}dv<\infty.

Therefore via Hölder’s inequality

3h2m𝑑v(3h2mv1𝑑v)NN+1(3h2mvN𝑑v)1N+1(3h2mv1𝑑v)NN+1,\displaystyle\int_{\mathbb{R}^{3}}h^{2}mdv\leq\left(\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{-1}dv\right)^{\frac{N}{N+1}}\left(\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{N}dv\right)^{\frac{1}{N+1}}\lesssim\left(\int_{\mathbb{R}^{3}}h^{2}m\langle v\rangle^{-1}dv\right)^{\frac{N}{N+1}},

so from (5.34) it follows

ddt\displaystyle\frac{d}{dt} 3h2m𝑑vλ(3A[m]hhmdv+(3h2m𝑑v)N+1N).\displaystyle\int_{\mathbb{R}^{3}}h^{2}mdv\leq-\lambda\left(\int_{\mathbb{R}^{3}}A[m]\nabla h\cdot\nabla h\,mdv+\left(\int_{\mathbb{R}^{3}}h^{2}mdv\right)^{\frac{N+1}{N}}\right).

This (via Gronwall’s inequality) finishes the proof of the lemma, and of Theorem 1.4. ∎

References

  • [1] R. Alexandre and C. Villani. On the Landau approximation in plasma physics. Ann. Inst. Henri Poincare (C) Anal. Non Lineaire, 21(1):61–95, 2004.
  • [2] R. Alonso, V. Bagland, L. Desvillettes, and B. Lods. About the Landau-Fermi-Dirac equation with moderately soft potentials, 2021. arXiv: 2104.09170 [math.AP].
  • [3] R Alonso, V. Bagland, L. Desvillettes, and B. Lods. About the use of entropy production for the Landau-Fermi-Dirac equation. J. Stat. Phys., 183(1):1–27, 2021.
  • [4] R. Alonso, V. Bagland, and B. Lods. Long time dynamics for the Landau-Fermi-Dirac equation with hard potentials. J. Differ. Equ., 270:596–663, 2021.
  • [5] H. Amann. Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat., 35(55):161–177, 2000.
  • [6] A.A. Arsen’ev and N.V. Peskov. On the existence of a generalized solution of Landau’s equation. USSR Comput. Maths math. Phys., 17(4):241–246, 1977.
  • [7] V. Bagland. Well-posedness for the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Proc. R. Soc. Edinb. A, 134(3):415–447, 2004.
  • [8] V. Bagland and M. Lemou. Equilibrium states for the Landau-Fermi-Dirac equation. In Nonlocal Elliptic and Parabolic Problems, volume 66, pages 29–37, 2004.
  • [9] J. Bedrossian, M. Gualdani, and S. Snelson. Non-existence of some approximately self-similar singularities for the Landau, Vlasov-Poisson-Landau, and Boltzmann equations. Trans. Amer. Math. Soc., 375(3):2187–2216, 2022.
  • [10] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
  • [11] M. Buliček, A. Jüngel, M. Pokornỳ, and N. Zamponi. Existence analysis of a stationary compressible fluid model for heat-conducting and chemically reacting mixtures, 2020. arXiv:2001.06082 [math.AP].
  • [12] K. Carrapatoso, L. Desvillettes, and L. He. Estimates for the large time behavior of the Landau equation in the Coulomb case. Arch. Ration. Mech. Anal., 224(2):381–420, 2017.
  • [13] K. Carrapatoso and S. Mischler. Landau equation for very soft and Coulomb potentials near Maxwellians. Ann. PDE, 3(1), 2017.
  • [14] Y. Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinet. Relat. Models, 3(4):645–667, 2010.
  • [15] Y. Chen. Smoothing effects for weak solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Acta Appl. Math., 113(1):101–116, 2011.
  • [16] J.L. Chern and M. Gualdani. Uniqueness of higher integrable solution to the Landau equation with Coulomb interactions. Math. Res. Let., 2020.
  • [17] Esther S Daus, Ansgar Jüngel, Clément Mouhot, and Nicola Zamponi. Hypocoercivity for a linearized multispecies Boltzmann system. SIAM Journal on Mathematical Analysis, 48(1):538–568, 2016.
  • [18] L. Desvillettes. Entropy dissipation estimates for the Landau equation in the Coulomb case and applications. J. Funct. Anal., 269(5):1359–1403, 2015.
  • [19] L. Desvillettes, L.-B. He, and J.-C. Jiang. A new monotonicity formula for the spatially homogeneous Landau equation with Coulomb potential and its applications, 2020. arXiv:2011.00386 [math.AP].
  • [20] L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness. Comm. Partial Differ. Equ., 25(1-2):179–259, 2000.
  • [21] J. Dolbeault. Kinetic models and quantum effects: a modified Boltzmann equation for Fermi-Dirac particles. Arch. Ration. Mech. Anal., 127(2):101–131, 1994.
  • [22] M. Dreher and A. Jüngel. Compact families of piecewise constant functions in Lp(0,T;B){Lp}({0},{T};{B}). Nonlinear Anal. Theory Methods Appl., 75(6):3072–3077, 2012.
  • [23] Nicolas Fournier. Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential. Commun. Math. Phys., 299(3):765–782, 2010.
  • [24] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
  • [25] F. Golse, M. Gualdani, C. Imbert, and A. Vasseur. Partial regularity in time for the space homogeneous Landau equation with Coulomb potential, 2019. arXiv: 1906.02841.
  • [26] Leonard Gross. Logarithmic Sobolev inequalities. American Journal of Mathematics, 97(4):1061–1083, 1975.
  • [27] M. Gualdani and N. Guillen. Estimates for radial solutions of the homogeneous Landau equation with Coulomb potential. Anal. PDE, 9(8):1772–1809, 2016.
  • [28] M. Gualdani and N. Guillen. On Ap weights and regularization effects for homogeneous Landau equations. Calc. Var. Partial Differ. Equ., 1(58), 2019.
  • [29] M. Gualdani and N. Zamponi. Global existence of weak even solutions for an isotropic Landau equation with Coulomb potential. SIAM J. Math. Anal., 50(4):3676 – 3714, 2018.
  • [30] Yan Guo. The Landau equation in a periodic box. Communications in mathematical physics, 231(3):391–434, 2002.
  • [31] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Uralceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968.
  • [32] E. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math., 118(2):349–374, 1983.
  • [33] Clément Mouhot. Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Communications in Partial Differential Equations, 31(9):1321–1348, 2006.
  • [34] L. Silvestre. Upper bounds for parabolic equations and the Landau equation. J. Differ. Equ., 262(3):3034–3055, 2017.
  • [35] C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal., 143(3):273–307, 1998.