This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Existence and uniqueness theorems for functional equations

Tamás Glavosits    Zsolt Karácsony Tamás Glavosits – University of Miskolc, Department of Applied Mathematics, Miskolc-Egyetemváros, Hungary, H-3515 [email protected] Zsolt Karácsony – University of Miskolc, Department of Applied Mathematics, Miskolc-Egyetemváros, Hungary, H-3515 [email protected]
Abstract

In this paper we give simple extension and uniqueness theorems for restricted additive and logarithmic functional equations.

keywords:
interval, ordered dense group, ordered field, additive function, logarithmic function, interval, restricted functional equation, extension
\dedication

This article is dedicated to the memory of János Aczél (1924-2020). \msc39B52 \VOLUME32 \NUMBER1 \YEAR2024 \DOIhttps://doi.org/10.46298/cm.10830 {paper}

1 Introduction

The main purpose of this article is to show that if X=X(+,)X=X(+,\leqslant) is an Archimedean ordered dense Abelian group, YY is an Abelian group εX+:={xX|x>0}\varepsilon\in X_{+}:=\left\{x\in X|x>0\right\} and f:]2ε,2ε[XYf:\left]-2\varepsilon,2\varepsilon\right[\subseteq X\to Y is a function such that

f(x+y)=f(x)+f(y)(x,y]ε,ε[),f(x+y)=f(x)+f(y)\qquad(x,y\in\left]-\varepsilon,\varepsilon\right[), (1)

then there uniquely exists an additive function a:XYa:X\to Y such that

f(x)=a(x)x]2ε,2ε[.f(x)=a(x)\qquad x\in\left]-2\varepsilon,2\varepsilon\right[.

Analogue Theorems concerning logarithmic functions are proven as well. Let D2D\subseteq\mathbb{R}^{2} be a fixed set and define the sets DxD_{x}, DyD_{y}, Dx+yD_{x+y} by

Dx\displaystyle D_{x} :={u(v):(u,v)D},\displaystyle:=\left\{u\in\mathbb{R}\mid\exists(v\in\mathbb{R}):(u,v)\in D\right\},
Dy\displaystyle D_{y} :={v(u):(u,v)D},\displaystyle:=\left\{v\in\mathbb{R}\mid\exists(u\in\mathbb{R}):(u,v)\in D\right\},
Dx+y\displaystyle D_{x+y} :={z((u,v)D):z=x+y}.\displaystyle:=\left\{z\in\mathbb{R}\mid\exists((u,v)\in D):z=x+y\right\}.

If the function f:DxDyDx+yf:D_{x}\cup D_{y}\cup D_{x+y}\to\mathbb{R} satisfies the functional equation

f(x+y)=f(x)+f(y)((x,y)D),f(x+y)=f(x)+f(y)\qquad((x,y)\in D), (2)

then the function ff is said to be additive on the set DD and the equation (2) is said to be restricted additive functional equation. The restricted additive functional equations have previously been studied by many researchers. In the book [AL09] Part IV. Geometry, Section Extension of Functional Equations p. 447–460 the authors cite numerous papers that investigate the cases when there exists an additive function F:F:\mathbb{R}\to\mathbb{R}, that is, F(x+y)=F(x)+F(y)F(x+y)=F(x)+F(y) for all x,yx,y\in\mathbb{R} such that the function FF extends the function ff, that is, F(x)=f(x)F(x)=f(x) for all x𝒟fx\in\mathcal{D}_{f} where 𝒟f\mathcal{D}_{f} denotes the domain of the function ff. An incomplete list of such papers is given below:

  • In the paper [AE65] D=(D+{0})2D=(D_{+}\cup\{0\})^{2}.

  • In the book [A66] the first appearance of the concept of quasi-extension can be found. An additive function aa is said to be quasi extension of the function ff if ff is additive on a set D2D\subseteq\mathbb{R}^{2} and there exist constants c1c_{1}, c2c_{2}\in\mathbb{R} such that f(u)=a(u)+c1f(u)=a(u)+c_{1} for all uDxu\in D_{x}; f(v)=a(v)+c2f(v)=a(v)+c_{2} for all vDyv\in D_{y} and f(z)=a(z)+c1+c2f(z)=a(z)+c_{1}+c_{2} for all zDx+yz\in D_{x+y}. For example, if the function f:]0,1[]1,2[f:\left]0,1\right[\cup\left]1,2\right[ is defined by f(x):=0f(x):=0 whenever x]0,1[x\in\left]0,1\right[; f(x):=1f(x):=1 whenever x]1,3[x\in\left]1,3\right[, then it is easy to see that function ff is additive on the set D:=]0,1[×]1,2[D:=\left]0,1\right[\times\left]1,2\right[. Although ff has no additive extension to 2\mathbb{R}^{2} exists, to identically zero function is an additive quasi extension of the function ff from DD to 2\mathbb{R}^{2}.

  • In the paper [DL67] the cases are investigated when D=+2D=\mathbb{R}_{+}^{2} and DD is an open interval of the real line containing the origin. In this paper the notations DxD_{x}, DyD_{y}, Dx+yD_{x+y} has appeared first.

  • In [Sz72] the author generalizes the above result that D2D\subseteq\mathbb{R}^{2} is an arbitrary open set, D0=DxDyDx+yD_{0}=D_{x}\cup D_{y}\cup D_{x+y}, f:D0f:D_{0}\to\mathbb{R} is a function such that f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y) for all (x,y)D(x,y)\in D.

  • In [Ri76] a simple extension theorem can be found for Pexider additive functional equation where the additivity is fulfilled in a nonempty connected open set of the real line.

  • In the article [A83] D=H(I)D=H(I) where II is a nonempty open interval of the real line and the set H(I)H(I) is defined by

    H(I):={(x,y)2x,y,x+yI}.H(I):=\left\{(x,y)\in\mathbb{R}^{2}\mid x,y,x+y\in I\right\}.

    The set H(I)H(I) is a hexagon, sometimes a triangle or the empty set.

  • In the book [K08] DND\subseteq\mathbb{R}^{N} is a nonempty connected open set. The extension is brought back to the theory of convex functions, but in this book the author does not consider the restricted Pexider additive functional equations.

  • In the article [RB87] an extension theorem can be found for restricted Pexider additive functional equations where DND\subseteq\mathbb{R}^{N} is a nonempty connected open set.

  • In the book [AD89] several functional equations are considered in more general abstract algebraic settings.

Below some necessary concepts and notations are collected: Let X=X(+,)X=X(+,\leqslant) be an ordered group. The absolute value of an element xXx\in X is defined by

|x|:=max{x,x}.|x|:=\max\{x,-x\}.

Let X=X(+,)X=X(+,\leqslant) be an ordered group. If xXx\in X and nn\in\mathbb{Z} where \mathbb{Z} denotes the ring of integers, then we can define the element nxXnx\in X by

nx:={x++x, if n>0;0, if n=0;(x)++(x), if n<0.nx:=\left\{\begin{array}[]{cl}x+\dots+x,&\hbox{ if $n>0$};\\ 0,&\hbox{ if $n=0$};\\ (-x)+\dots+(-x),&\hbox{ if $n<0$}.\end{array}\right.

An ordered group X=X(+,)X=X(+,\leqslant) is said to be Archimedean ordered, if for every two elements x,yX+:={zX|z>0}x,y\in X_{+}:=\left\{z\in X|z>0\right\}, there exists n+:={1,2,}n\in\mathbb{Z}_{+}:=\left\{1,2,\dots\right\}, such that y<nxy<nx. An ordered group X=X(+,)X=X(+,\leqslant) is said to be dense, if

]a,b[:={xXa<x and x<b}\left]a,b\right[:=\left\{x\in X\mid a<x\text{ and }x<b\right\}\neq\emptyset

for all a,bXa,b\in X with a<ba<b. An ordered field 𝔽=𝔽(+,,)\mathbb{F}=\mathbb{F}(+,\cdot,\leqslant) is said to be Archimedean ordered, if the ordered group 𝔽=𝔽(+,)\mathbb{F}=\mathbb{F}(+,\leqslant) is Archimedean ordered. (We use the concept of the field including the commutativity of the operation ’\cdot’.) A homomorphism a:X(+)Y(+)a:X(+)\to Y(+), that is, a function a:XYa:X\to Y with

a(x+y)=a(x)+a(y)(x,yX)a(x+y)=a(x)+a(y)\qquad(x,y\in X)

is said to be an additive function. A homomorphism l:X()Y(+)l:X(\cdot)\to Y(+), that is, a function l:XYl:X\to Y with

l(xy)=l(x)+l(y)(x,yX)l(xy)=l(x)+l(y)\qquad(x,y\in X)

is said to be a logarithmic function. In the rest of this article we use four properties of the open intervals in the appropriately ordered structure [GK02]:

  1. 1.

    If 𝔾(+,)\mathbb{G}(+,\leqslant) is an ordered group, then the open intervals are translation invariant, that is,

    γ+]α,β[=]γ+α,γ+β[(γ𝔾).\gamma+\left]\alpha,\beta\right[=\left]\gamma+\alpha,\gamma+\beta\right[\qquad(\gamma\in\mathbb{G}).
  2. 2.

    If 𝔾(+,)\mathbb{G}(+,\leqslant) is an ordered dense Abelian group, α\alpha, β\beta, γ\gamma, δ𝔾\delta\in\mathbb{G} such that α<β\alpha<\beta and γ<δ\gamma<\delta, then

    ]α,β[+]γ,δ[=]α+γ,β+δ[.\left]\alpha,\beta\right[+\left]\gamma,\delta\right[=\left]\alpha+\gamma,\beta+\delta\right[.
  3. 3.

    If 𝔽(+,,)\mathbb{F}(+,\cdot,\leqslant) is an ordered field, then the open intervals are homothety invariant, that is, if α\alpha, β\beta, γ𝔽\gamma\in\mathbb{F} such that α<β\alpha<\beta and γ>0\gamma>0, then

    γ]α,β[=]γα,γβ[.\gamma\cdot\left]\alpha,\beta\right[=\left]\gamma\alpha,\gamma\beta\right[.
  4. 4.

    If 𝔽(+,,)\mathbb{F}(+,\cdot,\leqslant) is an ordered field, α\alpha, β\beta, γ\gamma, δ𝔽\delta\in\mathbb{F} such that 0<α<β0<\alpha<\beta and 0<γ<δ0<\gamma<\delta, then

    ]α,β[]γ,δ[=]αγ,βδ[.\left]\alpha,\beta\right[\cdot\left]\gamma,\delta\right[=\left]\alpha\gamma,\beta\delta\right[.

Property (2) can be easily deduced from property (1), although in [GK01] can be found an example of dense Abelian semigroup which has property (2) without property (1). Similarly, property (4) can be easily deduced from property (3), although in [GK01] can also be found an example for dense Abelian semigroup which has property (4) without property (3). Our paper is structured as follows: In section 2 we consider the additive and multiplicative versions of Euclid’s Theorem, which will be the key to our extension theorems for additive and logarithmic functions respectively. In section 3 we give extension theorems for additive and logarithmic functions. In section 4 we give uniqueness theorems for additive and logarithmic functions.

2 Euclid’s Theorem

Euclid’s Elements [Eu] is one of the most influential mathematical textbooks written more than two thousand years ago. In this textbook (book X, proposition 3.) there is an algorithm using the so-called Euclidean or remainder division to give the greatest common measure of two given commensurable magnitudes. We use the modern version of this division to give our extension theorem for restricted additive functional equations. We start with the existence and uniqueness theorem of Euclidean division.

Theorem 2.1.

If 𝔾=𝔾(+,)\mathbb{G}=\mathbb{G}(+,\leqslant) is an Archimedean ordered group, xx, y𝔾y\in\mathbb{G} with y0y\neq 0. Then there uniquely exists an integer qq and an element r𝔾r\in\mathbb{G} such that

x=qy+rwhere0r<|y|.x=qy+r\qquad\text{where}\qquad 0\leqslant r<|y|.
Proof 2.2.

It is easy to see that

𝔾=z(zy+[0,|y|[)\mathbb{G}=\bigcup_{z\in\mathbb{Z}}\left(zy+\left[0,|y|\right[\right)

and the union is disjoint whence the theorem is clear.

Proposition 2.3.

If 𝔽\mathbb{F} is an Archimedean ordered field, xx, y𝔽+y\in\mathbb{F}_{+}, x0x\neq 0. Then there exists nn, m+m\in\mathbb{Z}_{+} such that xm<y<xnx^{m}<y<x^{n}.

Proof 2.4.

First, we investigate the case when x>1x>1. Let h:=x1h:=x-1. Thus we have that there exists n+n\in\mathbb{Z}_{+} such that

y<1+nhy<1+nh

and by the Bernoulli inequality [B89] we have that

1+nh(1+h)n=xn.1+nh\leqslant(1+h)^{n}=x^{n}.

From the above two inequalities we obtain, that y<xny<x^{n}. It is also easy to see that

limn(1x)n=0,\lim_{n\to\infty}\left(\frac{1}{x}\right)^{n}=0,

thus we obtain that there exists an integer mm such that xm<yx^{m}<y. The case 0<x<10<x<1 is similar.

Now we show the multiplicative version of the Euclidean division.

Theorem 2.5.

If 𝔽=𝔽(+,,)\mathbb{F}=\mathbb{F}(+,\cdot,\leqslant) is an Archimedean ordered field, xx, y𝔽+y\in\mathbb{F}_{+} such that y1y\neq 1. Then there uniquely exists an integer zz and an element r𝔽+r\in\mathbb{F}_{+} such that

x=yzr.x=y^{z}\cdot r.

Furthermore, if 1<y1<y, then 1<r<y1<r<y; and if y<1y<1, then y<r<1y<r<1.

Proof 2.6.

By Proposition 2.3. we have that

𝔽+={zyz[1,y[ if 1<y;zyz[y,1[ if y<1;\mathbb{F}_{+}=\left\{\begin{array}[]{ll}\displaystyle\bigcup_{z\in\mathbb{Z}}y^{z}\left[1,y\right[&\text{ if }1<y;\\ \\ \displaystyle\bigcup_{z\in\mathbb{Z}}y^{z}\left[y,1\right[&\text{ if }y<1;\end{array}\right.

and the union is disjoint, whence the proof can be easily derived.

3 Extension Theorems for additive and logarithmic functional equations

Theorem 3.1.

Let 𝔾(+,)\mathbb{G}(+,\leqslant) be an Archimedean ordered dense Abelian group, Y(+)Y(+) be a group, ε𝔾+\varepsilon\in\mathbb{G}_{+} and f:]2ε,2ε[Yf:\left]-2\varepsilon,2\varepsilon\right[\to Y be a function such that

f(x+y)=f(x)+f(y)(x,y]ε,ε[),f(x+y)=f(x)+f(y)\qquad(x,y\in\left]-\varepsilon,\varepsilon\right[), (3)

then there exists an additive function a:𝔾Ya:\mathbb{G}\to Y which extends the function ff.

Proof 3.2.

Define the function a:𝔾Ya:\mathbb{G}\to Y by

a(x):=nf(y0)+f(r)a(x):=nf(y_{0})+f(r)

where y0]0,ε[y_{0}\in\left]0,\varepsilon\right[ is an arbitrarily fixed element and the element x𝔾x\in\mathbb{G} is of the form x=ny0+rx=ny_{0}+r where nn\in\mathbb{Z} and r𝔾r\in\mathbb{G} such that 0r<y00\leq r<y_{0}. This form of xx is unique by Theorem 2.1. We show that the function aa is additive. For this let x,y𝔾x,y\in\mathbb{G}. By Theorem 2.1. we have that

x=n1y0+r1,y=n2y0+r2,0r1<y00r2<y0.\begin{aligned} x&=n_{1}y_{0}+r_{1},\\ y&=n_{2}y_{0}+r_{2},\end{aligned}\qquad\begin{aligned} 0&\leqslant r_{1}<y_{0}\\ 0&\leqslant r_{2}<y_{0}.\end{aligned} (4)

Then

x+y=(n1+n2)y0+r1+r2=(n1+n2)y0+r3,x+y=(n_{1}+n_{2})y_{0}+r_{1}+r_{2}=(n_{1}+n_{2})y_{0}+r_{3},

where r3:=r1+r2r_{3}:=r_{1}+r_{2} thus 0r3<2y00\leqslant r_{3}<2y_{0}. There are two cases:

  • If 0r3<y00\leqslant r_{3}<y_{0}, then

    a(x+y)\displaystyle a(x+y) =(n1+n2)f(y0)+f(r3)=\displaystyle=(n_{1}+n_{2})f(y_{0})+f(r_{3})=
    (n1+n2)f(y0)+f(r1+r2)=(3)\displaystyle(n_{1}+n_{2})f(y_{0})+f(r_{1}+r_{2})\stackrel{{\scriptstyle(\ref{Equ:fadd})}}{{=}}
    [n1f(y0)+f(r1)]+[n2f(y0)+f(r2)]=a(x)+a(y).\displaystyle[n_{1}f(y_{0})+f(r_{1})]+[n_{2}f(y_{0})+f(r_{2})]=a(x)+a(y).
  • If y0r3<2y0y_{0}\leqslant r_{3}<2y_{0}, that is, 0r3y0<y00\leqslant r_{3}-y_{0}<y_{0}. Then

    x+y=(n1+n2+1)y0+(r3y0),x+y=(n_{1}+n_{2}+1)y_{0}+(r_{3}-y_{0}), (5)

    and the another hand since r3y0]ε,ε[r_{3}-y_{0}\in\left]\varepsilon,\varepsilon\right[ and y0]ε,ε[y_{0}\in\left]-\varepsilon,\varepsilon\right[ thus

    f(r3)=f(r3y0)+f(y0).f(r_{3})=f(r_{3}-y_{0})+f(y_{0}). (6)

    Whence we have that

    a(x+y)\displaystyle a(x+y){} =(5)(n1+n1+1)f(y0)+f(r3y0)\displaystyle{}\stackrel{{\scriptstyle(\ref{Eku:Euk21})}}{{=}}(n_{1}+n_{1}+1)f(y_{0})+f(r_{3}-y_{0})
    =(n1+n2)f(y0)+[f(r3y0)+f(y0)]\displaystyle=(n_{1}+n_{2})f(y_{0})+[f(r_{3}-y_{0})+f(y_{0})]
    =(6)(n1+n2)f(y0)+f(r3)\displaystyle\stackrel{{\scriptstyle(\ref{Eku:Euk22})}}{{=}}(n_{1}+n_{2})f(y_{0})+f(r_{3})
    =(n1+n2)f(y0)+f(r1+r2)\displaystyle=(n_{1}+n_{2})f(y_{0})+f(r_{1}+r_{2})
    =(3)(n1+n2)f(y0)+f(r1)+f(r2)\displaystyle\stackrel{{\scriptstyle(\ref{Equ:fadd})}}{{=}}(n_{1}+n_{2})f(y_{0})+f(r_{1})+f(r_{2})
    =[n1f(y0)+f(r1)]+[n1f(y0)+f(r1)]\displaystyle=[n_{1}f(y_{0})+f(r_{1})]+[n_{1}f(y_{0})+f(r_{1})]
    =a(x)+a(y).\displaystyle=a(x)+a(y).

We show that

f(x)=a(x)(x]ε,ε[).f(x)=a(x)\qquad(x\in\left]-\varepsilon,\varepsilon\right[).

For this let x]ε,ε[x\in\left]-\varepsilon,\varepsilon\right[. Then by Euclidean division, we obtain that there exists a number nn\in\mathbb{Z} and an element r𝔾r\in\mathbb{G} such that

x=ny0+rwhere0r<y0.x=ny_{0}+r\qquad\text{where}\qquad 0\leqslant r<y_{0}.

There are three cases:

  • If x[0,ε[x\in\left[0,\varepsilon\right[, then

    a(x)=nf(y0)+f(r)=(3)f(ny0)+f(r)=(3)f(ny0+r)=f(x).a(x)=nf(y_{0})+f(r)\stackrel{{\scriptstyle(\ref{Equ:fadd})}}{{=}}f(ny_{0})+f(r)\stackrel{{\scriptstyle(\ref{Equ:fadd})}}{{=}}f(ny_{0}+r)=f(x).
  • If x]ε,0[x\in\left]-\varepsilon,0\right[ and ny0]ε,0[ny_{0}\in\left]-\varepsilon,0\right[, then we can apply the chain of reasoning of the first case.

  • If x]ε,0[x\in\left]-\varepsilon,0\right[ and ny0<εny_{0}<-\varepsilon, then

    ny0<x<(n+1)y0,and(n+1)y0]ε,0[,ny_{0}<x<(n+1)y_{0},\quad\text{and}\quad(n+1)y_{0}\in\left]-\varepsilon,0\right[,

    whence we have that

    (n+1)f(y0)=f((n+1)y0).(n+1)f(y_{0})=f((n+1)y_{0}). (7)

    On the other hand (y0r)]0,ε[(y_{0}-r)\in]0,\varepsilon[, r]0,ε[r\in\left]0,\varepsilon\right[ thus f(y0)=f(y0r)+f(r)f(y_{0})=f(y_{0}-r)+f(r) but f(y0r)=f(ry0)f(y_{0}-r)=-f(r-y_{0}) whence we have that

    f(r)=f(ry0)+f(y0).f(r)=f(r-y_{0})+f(y_{0}). (8)

    Thus we obtain that

    a(x)\displaystyle a(x){} =nf(y0)+f(r)\displaystyle{}=nf(y_{0})+f(r)
    =(8)nf(y0)+f(ry0)+f(y0)\displaystyle\stackrel{{\scriptstyle(\ref{Equ:Euk24})}}{{=}}nf(y_{0})+f(r-y_{0})+f(y_{0})
    =(n+1)f(y0)+f(ry0)\displaystyle=(n+1)f(y_{0})+f(r-y_{0})
    =(7)f((n+1)y0)+f(ry0)\displaystyle\stackrel{{\scriptstyle(\ref{Equ:Euk23})}}{{=}}f((n+1)y_{0})+f(r-y_{0})
    =(3)f(ny0+r)=f(x).\displaystyle\stackrel{{\scriptstyle(\ref{Equ:fadd})}}{{=}}f(ny_{0}+r)=f(x).

Finally we show that

f(x)=a(x)(x]2ε,2ε[).f(x)=a(x)\qquad(x\in\left]-2\varepsilon,2\varepsilon\right[).

For this let x]2ε,2ε[x\in\left]-2\varepsilon,2\varepsilon\right[. Then based on the relation for the sum of the intervals we get that

]2ε,2ε[=]ε,ε[+]ε,ε[\left]-2\varepsilon,2\varepsilon\right[=\left]-\varepsilon,\varepsilon\right[+\left]-\varepsilon,\varepsilon\right[

thus there exist elements u,v]ε,ε[u,v\in\left]-\varepsilon,\varepsilon\right[ such that x=u+vx=u+v. Thus by the previous part of this proof we get

f(x)=f(u+v)=(3)f(u)+f(v)=a(u)+a(v)=a(u+v)=a(x).f(x)=f(u+v)\stackrel{{\scriptstyle(\ref{Equ:fadd})}}{{=}}f(u)+f(v)=a(u)+a(v)=a(u+v)=a(x).
Theorem 3.3.

Let 𝔽(+,,)\mathbb{F}(+,\cdot,\leqslant) be an Archimedean ordered field, Y(+)Y(+) be a group, ε𝔽+\varepsilon\in\mathbb{F}_{+}, f:]ε2,ε2[Yf:\left]\varepsilon^{-2},\varepsilon^{2}\right[\to Y be a function such that

f(xy)=f(x)+f(y)(x,y]ε1,ε[),f(xy)=f(x)+f(y)\qquad(x,y\in\left]\varepsilon^{-1},\varepsilon\right[), (9)

then there exists a logarithmic function l:𝔽+Yl:\mathbb{F}_{+}\to Y which extends the function ff.

Proof 3.4.

Define the function l:𝔽+Yl:\mathbb{F}_{+}\to Y by

l(x):=nf(y0)+f(r)l(x):=nf(y_{0})+f(r)

where y0]1,ε[y_{0}\in\left]1,\varepsilon\right[ is an arbitrarily fixed element and the element x𝔽+x\in\mathbb{F}_{+} is of the form x=y0nrx=y_{0}^{n}\cdot r where nn\in\mathbb{Z} and r𝔽+r\in\mathbb{F}_{+} such that 1r<y01\leq r<y_{0}. This form of xx is unique by Theorem 2.5. Similarly as in the proof of the Theorem 3.1. it is easy to show that the function ll is logarithmic and extends the function ff.

4 Uniqueness Theorem for additive and logarithmic functional equations

Theorem 4.1.

Let 𝔾\mathbb{G} be an Archimedean ordered Abelian group and a:𝔾Ya:\mathbb{G}\to Y be an additive function. If there exist constants α\alpha β𝔾\beta\in\mathbb{G} with α<β\alpha<\beta and cYc\in Y such that

a(x)=c(x]α,β[),a(x)=c\qquad(x\in\left]\alpha,\beta\right[),

then a(x)=0a(x)=0 for all x𝔾x\in\mathbb{G}.

Proof 4.2.

By the translation invariant property of intervals, it is easy to see that a(y)=da(y)=d for all y]0,βα[y\in\left]0,\beta-\alpha\right[ where d=ca(α)d=c-a(\alpha). Let ε]0,βα[\varepsilon\in\left]0,\beta-\alpha\right[ and δ]0,ε[\delta\in\left]0,\varepsilon\right[. Then

d=a(ε)=a(εδ+δ)=a(εδ)+a(δ)=d+dd=a(\varepsilon)=a(\varepsilon-\delta+\delta)=a(\varepsilon-\delta)+a(\delta)=d+d

thus we have that a(y)=0a(y)=0 for all y]0,βα[y\in\left]0,\beta-\alpha\right[. Let x𝔾x\in\mathbb{G} be arbitrary. By the Theorem 2.1. there exists an integer zz and an element r𝔾r\in\mathbb{G} such that 0r<ε0\leqslant r<\varepsilon and x=qε+rx=q\varepsilon+r, whence we obtain that

a(x)=a(qε+r)=qa(ε)+a(r)=q0+0=0a(x)=a(q\varepsilon+r)=q\cdot a(\varepsilon)+a(r)=q\cdot 0+0=0

which completes the proof.

Corollary 4.3.

Let 𝔾\mathbb{G} be an Archimedean ordered Abelian group and a1a_{1}, a2:𝔾Ya_{2}:\mathbb{G}\to Y be additive functions. If there exists a nonempty open interval ]α,β[X\left]\alpha,\beta\right[\subseteq X and a constant cYc\in Y such that

a1(x)=a2(x)+c(x]α,β[),a_{1}(x)=a_{2}(x)+c\qquad(x\in\left]\alpha,\beta\right[),

then a1(x)=a2(x)=0a_{1}(x)=a_{2}(x)=0 for all x𝔾x\in\mathbb{G}.

Theorem 4.4.

Let 𝔽(+,,)\mathbb{F}(+,\cdot,\leqslant) be an Archimedean ordered field, Y(+)Y(+) be a group, l:𝔽+Yl:\mathbb{F}_{+}\to Y be a logarithmic function. If there exists a nonempty internal ]a,b[𝔽+\left]a,b\right[\subseteq\mathbb{F}_{+} and a constant cYc\in Y such that

l(x)=c(x]a,b[),l(x)=c\qquad(x\in\left]a,b\right[),

then l(x)=0l(x)=0 for all x𝔽+x\in\mathbb{F}_{+}.

Proof 4.5.

By the homothety invariant property of intervals, it is easy to see that a(y)=da(y)=d for all y]1,βα[y\in\left]1,\frac{\beta}{\alpha}\right[ where d=cl(α)d=c-l(\alpha). Let ε]1,βα[\varepsilon\in\left]1,\frac{\beta}{\alpha}\right[ and δ]1,ε[\delta\in\left]1,\varepsilon\right[, then

d=a(ε)=a(εδδ)=a(εδ)+a(δ)=d+dd=a(\varepsilon)=a\left(\frac{\varepsilon}{\delta}\cdot\delta\right)=a\left(\frac{\varepsilon}{\delta}\right)+a(\delta)=d+d

thus we have that a(y)=0a(y)=0 for all y]1,βα[y\in\left]1,\frac{\beta}{\alpha}\right[. Let x𝔽+x\in\mathbb{F}_{+} be arbitrary. By the Theorem 2.5. there exists an integer zz and an element r𝔽+r\in\mathbb{F}_{+} such that 1r<ε1\leqslant r<\varepsilon and x=εqrx=\varepsilon^{q}\cdot r whence we obtain that

l(x)=l(εqr)=ql(ε)+a(r)=q0+0=0l(x)=l(\varepsilon^{q}\cdot r)=q\cdot l(\varepsilon)+a(r)=q\cdot 0+0=0

which completes the proof.

Corollary 4.6.

Let 𝔽(+,,)\mathbb{F}(+,\cdot,\leqslant) be an Archimedean ordered group and l1l_{1}, l2:𝔽+Yl_{2}:\mathbb{F}_{+}\to Y be an additive functions. If there exists a nonempty open interval ]α,β[𝔽+\left]\alpha,\beta\right[\subseteq\mathbb{F}_{+} and a constant cYc\in Y such that

l1(x)=l2(x)+c(x]α,β[),l_{1}(x)=l_{2}(x)+c\qquad(x\in\left]\alpha,\beta\right[),

then l1(x)=l2(x)l_{1}(x)=l_{2}(x) for all x𝔽+x\in\mathbb{F}_{+}.

References

  • [1] \referBookA 66 \RauthorAczél J. \RtitleLectures on Functional Equations and Their Applications, \RpublisherAcademic Press, New York-London \RvolumeMathematics in Science and Engineering, Vol. 19 \Ryear1966 \Rpages544
  • [2] \referPaperA 83 \RauthorAczél J. \RtitleDiamonds are not the Cauchy extensionist’s best friend \RjournalC. R.Math. Rep. Acad. Sci. Canada \Rvolume5 \Ryear1983 \Rpages259 - 264
  • [3] \referBookAD 89 \RauthorAczél J. and Dhombres J. \RtitleFunctional equations in several variables \RpublisherCambridge University Press \Ryear1989 \Rpages480
  • [4] \referPaperAE 65 \RauthorAczél J. and Erdős P. \RtitleThe non-existence of a Hamel-basis and the general solution of Cauchyś functional equation for nonnegative numbers \RjournalPubl. Math. Debrecen \Rvolume12 \Ryear1965 \Rpages259 - 265
  • [5] \referBookB 89 \RauthorBernoulli J. \RtitlePositiones Arithmeticae de Seriebus Infinitis \RpublisherBasel \Ryear1689
  • [6] \referBookEu \RauthorEuclid of Alexandria \RtitleElements \ReditorRichard Fitzpatrick’s bilingual edition \RseriesFreely downloadable PDF, typeset in a two-column format with the original Greek beside a modern English translation; also available in print as ISBN 978-0-615-17984-1 \RyearFirst edition - 2007, Revised and corrected - 2008
  • [7] \referPaperGK 01 \RauthorGlavosits T. and Karácsony Zs. \RtitleSums of intervals in ordered semigroups \RjournalAn. Şt. Univ. Ovidius Constanţa, Ser. Mat. \Rvolume29 \Ryear2021 \Rnumber2 \Rpages187 - 198
  • [8] \referPaperGK 02 \RauthorGlavosits T. and Karácsony Zs. \RtitleSums and products of intervals in ordered groups and fields \RjournalActa Univ. Sap., Math. \Rvolume13 \Ryear2021 \Rnumber1 \Rpages182 - 191.
  • [9] \referBookAL 09 \RauthorEdited by Graham R. L., Nesetřil J. and Butler S. \RtitleThe Mathematics of Paul Erdös I, \RpublisherSpringer \Ryear2013
  • [10] \referPaperDL 67 \RauthorDaróczy Z. and Losonczi L. \RtitleÜber die Erweiterung der auf einer Punktmenge additiven Funktionenen, \RjournalPubl. Math. Debrecen \Rvolume14 \Ryear1967 \Rpages239 - 245
  • [11] \referBookK 08 \RauthorKuczma M. \RtitleAn introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality, \RpublisherFirst edition: Uniwersytet Slaski w Katowicach \Ryear1985 \RpublisherSecond edition: Birkhäuser Basel \Ryear2009
  • [12] \referPaperRB 87 \RauthorRadó F. and Baker J. A. \RtitlePexider’s equation and aggregation of allocations \RjournalAequationes Math. \Rvolume32 \Ryear1987 \Rpages227 - 239
  • [13] \referPaperRi 76 \RauthorRimán J. \RtitleOn an extension of pexiders’s equation \RjournalZbornik Radova Mat. Inst. Beograd N. S., Symposium en Quasigroupes et Équations Fonctionnelles (Belgrade-Novi Sad, 1974) \Rvolume1 \Ryear1976 \Rnumber9 \Rpages65 - 72
  • [14] \referPaperSz 72 \RauthorSzékelyhidi L. \RtitleThe general representation of an additive function on an open point set \RjournalMagyar Tud. Akad. Mat. Fiz. Oszt. Közl. \Rvolume21 \Ryear1972
  • [15]
\EditInfo

August 04, 2020March 16, 2021Attila Berczes