This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Existence and uniqueness of solutions to Bogomol’nyi-Prased-Sommerfeld equations on graphs

Yuanyang Hu Yuanyang Hu
School of Mathematics and Statistics
Henan University
Kaifeng, 475004, P. R. China
[email protected]
Abstract.

Let G=(V,E)G=(V,E) be a connected finite graph. We investigate two Bogomol’nyi-Prased-Sommerfeld equations on GG. We establish necessary and sufficient conditions for the existence and uniqueness of solutions to the BPS equations.

Key words and phrases:
BPS equations, finite graph, existence, uniqueness, variational method.
2020 Mathematics Subject Classification:
58E30, 35J91, 05C22.
volume-info: Volume , Number 0,  copyright: ©: Korean Mathematical Society

1. Introduction

Vortices involve momentous roles in multitudinous fields of theoretical physics comprizing quantum Hall effect, condensed-matter physics, electroweak theory, superconductivity theory, optics, and cosmology. Taubes established the multiple vortex static solutions for the Abelian Higgs model for the first time in [29, 30, 38]. After that, a large number of work related to vortex equations has been accomplished; see, for example, [3, 14, 31, 33, 36] and the references therein. Recently, Lin and Yang pursued a systematic research [21, 22] of the multiple vortex equations obtained in [6, 7, 8, 12, 25, 26, 27, 28]. They established a great deal of sharp existence and uniqueness theorems. The approach they employed include a priori estimates, monotone iterations, and a degree-theory argument, and constrained minimization. In [37], Yang and Lieb presented a series of sharp existence and uniqueness theorems for the solutions of some non-Abelian vortex equations derived in [5,6], which provide an essential mechanism for linear confinement. Recently, Han [14] established the existence of multipe vortex solutions for the BPS equations derived in [24] from the theory of multi-intersection of D-branes. Chen and Yang [5] proved two sharp existence theorems for the non-Abelian BPS vortex equations arising in the supersymmetric U(1)×SU(N)U(1)\times SU(N) gauge theory. In this paper, we investigate the existence and uniqueness of the solutions to the two BPS equations in [5, 14] on a connected finite graph.

During the recent time, the investigation on the equations on graphs has drawn a following and considerable attention from scholars; see, for example, [2, 10, 11, 13, 16, 17, 18, 19, 20, 23, 32, 34, 35] and the references therein. Grigor’yan, Lin and Yang [13] studied the Kazdan-Warner equation

Δu=cheu\Delta u=c-he^{u}

on graph. Huang, Lin and Yau [19] proved the existence of solutions to mean field equations

Δu+eu=ρδ0\Delta u+e^{u}=\rho\delta_{0}

and

Δu=λeu(eu1)+4πj=1Mδpj\Delta u=\lambda e^{u}\left(e^{u}-1\right)+4\pi\sum_{j=1}^{M}\delta_{p_{j}}

on graphs. Huang, wang and Yang [18] studied the Mean field equation

Δu+ρ(heuMheu𝑑x1|M|)=4πj=1Nαqj(δqj1|M|)\Delta u+\rho\left(\frac{he^{u}}{\int_{M}he^{u}dx}-\frac{1}{|M|}\right)=4\pi\sum_{j=1}^{N}\alpha_{q_{j}}\left(\delta_{q_{j}}-\frac{1}{|M|}\right)

and the relativistic Ablian Chern-Simons equations

{Δu1=λeu2(eu11)+4πj=1k1αjδpj,Δu2=λeu1(eu21)+4πj=1k2βjδqj\left\{\begin{array}[]{l}\Delta u_{1}=\lambda e^{u_{2}}\left(e^{u_{1}}-1\right)+4\pi\sum_{j=1}^{k_{1}}\alpha_{j}\delta_{p_{j}},\\ \Delta u_{2}=\lambda e^{u_{1}}\left(e^{u_{2}}-1\right)+4\pi\sum_{j=1}^{k_{2}}\beta_{j}\delta_{q_{j}}\end{array}\right.

on the finite connected graphs. For more research on Chern-Simons equations on graphs, we refer the readers to [16, 17, 15, 20] and references therein.

The paper is organized as follows. In Section 2, we introduce preliminaries and then state our main results. Section 3 is devoted to the proof of Theorem 2.1. In section 4, we give the proof of Theorem 2.2.

2. Settings and Main Results

Let G=(V,E)G=(V,E) be a connected finite graph, where VV denotes the vetex set and EE denotes the edge set. Let μ:V(0,+)\mu:V\to(0,+\infty) be a finite measure, and |V||V|=Vol(V)=xVμ(x)\text{Vol}(V)=\sum\limits_{x\in V}\mu(x) be the volume of VV. Denote the space of real-valued functions on VV by VV^{\mathbb{R}}. For x,yVx,y\in V, let xyxy be the edge from xx to yy. We write yxy\sim x if xyExy\in E. Let ω:V×V[0,)\omega:V\times V\to[0,\infty) be an edge weight function satisfying ωxy=ωyx\omega_{xy}=\omega_{yx} for all x,yVx,y\in V and ωxy>0\omega_{xy}>0 iff xyx\sim y. For any function u:Vu:V\to\mathbb{R}, the Laplacian of uu is defined by

(1) Δu(x)=1μ(x)yxwyx(u(y)u(x)).\Delta u(x)=\frac{1}{\mu(x)}\sum_{y\sim x}w_{yx}(u(y)-u(x)).

The gradient \nabla of function ff is defined by a vector

f(x):=([f(y)f(x)]wxy2μ(x))yx.\nabla f(x):=\left(\left[f(y)-f(x)\right]\sqrt{\frac{w_{xy}}{2\mu(x)}}\right)_{y\sim x}.

The associated gradient form reads

(2) Γ(u,v)(x)=12μ(x)yxwxy(u(y)u(x))(v(y)v(x)).\Gamma(u,v)(x)=\frac{1}{2\mu(x)}\sum_{y\sim x}w_{xy}(u(y)-u(x))(v(y)-v(x)).

We denote the length of the gradient of uu by

|u|(x)=Γ(u,u)(x)=(12μ(x)yxwxy(u(y)u(x))2)1/2.|\nabla u|(x)=\sqrt{\Gamma(u,u)(x)}=\left(\frac{1}{2\mu(x)}\sum_{y\sim x}w_{xy}(u(y)-u(x))^{2}\right)^{1/2}.

Denote, for p>0p>0 and any uVu\in V^{\mathbb{R}}, an integral of upu^{p} on VV by Vup𝑑μ=xVμ(x)up(x)\int\limits_{V}u^{p}d\mu=\sum\limits_{x\in V}\mu(x)u^{p}(x).

In this paper, we study two BPS equations on GG. One is

(3) Δuj=euj+i=1leui(l+1)+4πs=1Njδpj,s,j=1,2,,l\Delta u_{j}=e^{u_{j}}+\sum\limits_{i=1}^{l}\mathrm{e}^{u_{i}}-(l+1)+4\pi\sum_{s=1}^{N_{j}}\delta_{p_{j,s}},~{}j=1,2,\cdots,l

ll, Nj(j=1,,l)N_{j}(j=1,\dots,l) are positive integers, pj,s(j=1,,l,s=1,,Nj)p_{j,s}(j=1,\dots,l,s=1,\dots,N_{j}) are arbitrarily chosen distinct vertices on the graph, and δp\delta_{p} is the Dirac mass at the vertex pp. The other is

(4) Δui=j=1Naij(eujθ2)+4πs=1niδpi,s(x),i=1,,N,\Delta u_{i}=\sum_{j=1}^{N}a_{ij}\left(\mathrm{e}^{u_{j}}-\theta^{2}\right)+4\pi\sum_{s=1}^{n_{i}}\delta_{p_{i,s}}(x),\quad i=1,\ldots,N,

where

(5) aij=1N(e22g22N)+δijg22N,i,j=1,,N,a_{ij}=\frac{1}{N}\left(\frac{e^{2}}{2}-\frac{g^{2}}{2N}\right)+\delta_{ij}\frac{g^{2}}{2N},\quad i,j=1,\ldots,N,

ni(i=1,,N)n_{i}(i=1,\dots,N) are positive integers, θ,e,g\theta,e,g are constants and NN is a positive integer.

Our main results can be stated as following:

Theorem 2.1.

Equations (3) admits a unique solution if and only if max1jl{Nj}<(l+1)4π|V|\max\limits_{1\leq j\leq l}\{N_{j}\}<\frac{(l+1)}{4\pi}|V|.

Theorem 2.2.

Equations (4) admits a unique solution if and only if

ni<g2θ28πN|V|+1N(11N(ge)2)n,i=1,,N,n_{i}<\frac{g^{2}{\theta}^{2}}{8\pi N}|V|+\frac{1}{N}\left(1-\frac{1}{N}\left(\frac{g}{e}\right)^{2}\right)n,\quad i=1,\ldots,N,

where

(6) n=i=1Nni.n=\sum_{i=1}^{N}n_{i}.

As in [13], we define a sobolev space and a norm by

H1(V)=W1,2(V)={u:V:V(|u|2+u2)𝑑μ<+},H^{1}(V)=W^{1,2}(V)=\left\{u:V\rightarrow\mathbb{R}:\int\limits_{V}\left(|\nabla u|^{2}+u^{2}\right)d\mu<+\infty\right\},

and

uH1(V)=uW1,2(V)=(V(|u|2+u2)𝑑μ)1/2.\|u\|_{H^{1}(V)}=\|u\|_{W^{1,2}(V)}=\left(\int\limits_{V}\left(|\nabla u|^{2}+u^{2}\right)d\mu\right)^{1/2}.

We next give the following Sobolev embedding and Poincaré inequality which will be used later in the paper.

Lemma 2.3.

([13, Lemma 5]) Let G=(V,E)G=(V,E) be a finite graph. The Sobolev space W1,2(V)W^{1,2}(V) is precompact. Namely, if uj{u_{j}} is bounded in W1,2(V)W^{1,2}(V), then there exists some uW1,2(V)u\in W^{1,2}(V) such that up to a subsequence, ujuu_{j}\to u in W1,2(V)W^{1,2}(V).

Lemma 2.4.

([13, Lemma 6]) Let G=(V,E)G=(V,E) be a finite graph. For all functions u:Vu:V\to\mathbb{R} with Vu𝑑μ=0\int\limits_{V}ud\mu=0, there exists some constant CC depending only on GG such that Vu2𝑑μCV|u|2𝑑μ\int\limits_{V}u^{2}d\mu\leq C\int\limits_{V}|\nabla u|^{2}d\mu.

Hereafter, we use boldfaced letters to denote column vectors and ATA^{T} to denote the transpose of AA for any matrix AA.

3. The proof of Theorem 2.1

Since V4πs=1Njδpj,sdμ=4πNj\int\limits_{V}4\pi\sum\limits_{s=1}^{N_{j}}\delta_{p_{j,s}}d\mu=4\pi N_{j}, j=1,2,,lj=1,2,\cdots,l, by a similar arguments as in the proof of Lemma 2.4 of [17], we can show that there exists uj0u_{j}^{0} such that

(7) Δuj0=4πs=1Njδpj,s4πNj|V|,xV,j=1,2,,l,\Delta u_{j}^{0}=4\pi\sum\limits_{s=1}^{N_{j}}\delta_{p_{j,s}}-\frac{4\pi N_{j}}{|V|},~{}x\in V,~{}j=1,2,\cdots,l,

and that (u10,u20,,ul0)T(u_{1}^{0},u_{2}^{0},\dots,u_{l}^{0})^{T} is the unique solution of (7) by up to a constant vector 𝐂\mathbf{C}. Suppoe 𝐮=(u1,u2,,ul)\mathbf{u}=(u_{1},u_{2},\cdots,u_{l}) is a solution to (3). Set vj:=ujuj0v_{j}:=u_{j}-u_{j}^{0}, j=1,2,,lj=1,2,\cdots,l. Then we know that

(8) Δvj=euj0+vj+i=1leui0+vi(l+1)+4πNj|V|,j=1,,l.\Delta v_{j}=e^{u_{j}^{0}+v_{j}}+\sum\limits_{i=1}^{l}\mathrm{e}^{u^{0}_{i}+v_{i}}-(l+1)+\frac{4\pi N_{j}}{|V|},~{}j=1,\cdots,l.

The following lemma gives a necessary condition for (3)\eqref{11} to have a solution.

Lemma 3.1.

If equations (3)\eqref{11} admits a solution, then max1jl{Nj}<(l+1)4π|V|\max\limits_{1\leq j\leq l}\{N_{j}\}<\frac{(l+1)}{4\pi}|V|.

Proof.

Integrating (8) on VV, we deduce that

0=VΔvj𝑑μ=Veuj0+vj𝑑μ+i=1lVeui0+vi𝑑μ(l+1)|V|+4πvj,0=\int_{V}\Delta v_{j}d\mu=\int_{V}e^{u_{j}^{0}+v_{j}}d\mu+\sum_{i=1}^{l}\int_{V}e^{u_{i}^{0}+v_{i}}d\mu-(l+1)|V|+4\pi v_{j},

an hence that

(9) Veuj0+vj𝑑μ=(l+1)|V|4πNjj=1leuj0+vjdμ.\int_{V}e^{u_{j}^{0}+v_{j}}d\mu=(l+1)|V|-4\pi N_{j}-\sum_{j=1}^{l}e^{u_{j}^{0}+v_{j}}d\mu.

This implies that

j=1lVeuj0+vj𝑑μ=l(l+1)|V|4πj=1lNjli=1lVeui0+vi𝑑μ,\sum_{j=1}^{l}\int_{V}e^{u_{j}^{0}+v_{j}}d\mu=l(l+1)|V|-4\pi\sum_{j=1}^{l}N_{j}-l\sum_{i=1}^{l}\int_{V}e^{u_{i}^{0}+v_{i}}d\mu,

whence

(10) i=1lVeuj0+vj𝑑μ=l|V|4πj=1lNjl+1.\sum_{i=1}^{l}\int_{V}e^{u_{j}^{0}+v_{j}}d\mu=l|V|-\frac{4\pi\sum_{j=1}^{l}N_{j}}{l+1}.

By (9) and (10), we see that

(11) Veuj0+vjdμ=|V|4πNj+4πl+1i=1lNi=:Kj,j=1,,l.\int\limits_{V}\mathrm{e}^{u_{j}^{0}+v_{j}}\mathrm{~{}d}\mu=|V|-4\pi N_{j}+\frac{4\pi}{l+1}\sum_{i=1}^{l}N_{i}=:K_{j},\quad j=1,\ldots,l.

Since Veuj0+vj𝑑μ>0\int_{V}e^{u_{j}^{0}+v_{j}}d\mu>0, we conclude that

|V|4πNj+4πj=1lNjl+1>0.|V|-4\pi N_{j}+\frac{4\pi\sum_{j=1}^{l}N_{j}}{l+1}>0.

This implies that

|V|+4πl+1j=1lNj>4πNj for j=1,2,,l,|V|+\frac{4\pi}{l+1}\sum_{j=1}^{l}N_{j}>4\pi N_{j}\quad\text{ for }\quad j=1,2,\cdots,l,

whence

|V|+4πl+1lmax1jlNj>4πmax1jlNj.|V|+\frac{4\pi}{l+1}l\max_{1\leq j\leq l}N_{j}>4\pi\max_{1\leq j\leq l}N_{j}.

Thus, we see that

l+14π|V|>maxjNj.\frac{l+1}{4\pi}|V|>\max_{j}N_{j}.

We now finish the proof. ∎

The following lemma gives a sufficient condition for (3) to have a solution.

Lemma 3.2.

If max1jl{Nj}<(l+1)4π|V|\max\limits_{1\leq j\leq l}\{N_{j}\}<\frac{(l+1)}{4\pi}|V|, then (3) has a solution.

Proof.

Rewrite (8), we have

(12) Δv=AE𝚽,\Delta\textbf{v}=A\textbf{E}-\boldsymbol{\Phi},

where

Δv=(Δv1,,Δvl)T,\Delta\textbf{v}=(\Delta v_{1},\cdots,\Delta v_{l})^{T},
E=(eu10+v1,eu20+v2,,eul0+vl)T,\textbf{E}=(e^{u_{1}^{0}+v_{1}},e^{u_{2}^{0}+v_{2}},\cdots,e^{u_{l}^{0}+v_{l}})^{T},
𝚽=(l+14πN1|V|,,l+14πNl|V|)\boldsymbol{\Phi}=(l+1-\frac{4\pi N_{1}}{|V|},\cdots,l+1-\frac{4\pi N_{l}}{|V|})

and

(13) A=(aij)l×l=(2111121111211112).A=(a_{ij})_{l\times l}=\left(\begin{array}[]{ccccc}2&1&1&\ldots&1\\ 1&2&1&\ldots&1\\ 1&1&2&\ldots&1\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 1&1&1&\ldots&2\end{array}\right).

In order to find the energy functional of (8), we have the following argument.

It is easy to see that A=BBTA={B}{B}^{T}, where B=(bij)l×lB=(b_{ij})_{l\times l} and

bij={1+ii,i=j,1j(j+1),ij,i<j,0,ij,i>j.b_{ij}=\begin{cases}\sqrt{\frac{1+i}{i}},~{}i=j,\\ \sqrt{\frac{1}{j(j+1)}},~{}i\not=j,~{}i<j,\\ 0,~{}i\not=j,~{}i>j.\end{cases}

Let

(14) q=B1v,\textbf{q}=B^{-1}\textbf{v},

where v=(v1,,vl)T\textbf{v}=(v_{1},\cdots,v_{l})^{T} and B1B^{-1} is the inverse of matrix BB. Direct calculations yield that

(15) Bl×l1=(22000666300121212123201l(l+1)1l(l+1)1l(l+1)1l(l+1)).B^{-1}_{l\times l}=\left(\begin{array}[]{ccccc}\frac{\sqrt{2}}{2}&0&0&\ldots&0\\ -\frac{\sqrt{6}}{6}&\frac{\sqrt{6}}{3}&0&\ldots&0\\ \frac{-\sqrt{12}}{12}&-\frac{\sqrt{12}}{12}&\frac{\sqrt{3}}{2}&\ldots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ -\sqrt{\frac{{1}}{l(l+1)}}&-\sqrt{\frac{{1}}{l(l+1)}}&-\sqrt{\frac{{1}}{l(l+1)}}&\ldots&\sqrt{\frac{{1}}{l(l+1)}}\end{array}\right).

Thus, from (12), we know that

(16) Δ𝐪\displaystyle\Delta{\bf q} =B1A𝐄B1𝚽\displaystyle=B^{-1}A{\bf E}-B^{-1}{\bf\Phi}
=B1BBT𝐄B1𝚽\displaystyle=B^{-1}BB^{T}{\bf E}-B^{-1}{\bf\Phi}
=BT𝐄B1𝚽.\displaystyle=B^{T}{\bf E}-B^{-1}{\bf\Phi}.

By (14), we have

(17) {v1=2q1vj=i=1j1qii(i+1)+j+1jqj,j=2,,l.\left\{\begin{array}[]{l}v_{1}=\sqrt{2}q_{1}\\ v_{j}=\sum_{i=1}^{j-1}\frac{q_{i}}{\sqrt{i(i+1)}}+\sqrt{\frac{j+1}{j}}q_{j},\quad j=2,\ldots,l.\end{array}\right.

Applying (16) and (17), we have

(18) Δq1=\displaystyle\Delta q_{1}= 2exp(u10+2q1)\displaystyle\sqrt{2}\exp\left(u_{1}^{0}+\sqrt{2}q_{1}\right)
+12i=2lexp(ui0+k=1i1qkk(k+1)+i+1iqi)g1,\displaystyle+\frac{1}{\sqrt{2}}\sum_{i=2}^{l}\exp\left(u_{i}^{0}+\sum_{k=1}^{i-1}\frac{q_{k}}{\sqrt{k(k+1)}}+\sqrt{\frac{i+1}{i}}q_{i}\right)-g_{1},
(19) Δqj=\displaystyle\Delta q_{j}= j+1jexp(uj0+k=1j1qk(k+1)k+j+1jqj)\displaystyle\sqrt{\frac{j+1}{j}}\exp\left(u_{j}^{0}+\sum_{k=1}^{j-1}\frac{q_{k}}{\sqrt{(k+1)k}}+\sqrt{\frac{j+1}{j}}q_{j}\right)
+1j(j+1)i=j+1lexp(ui0+k=1i1qkk(k+1)+i+1iqi)gj,\displaystyle+\sqrt{\frac{1}{j(j+1)}}\sum_{i=j+1}^{l}\exp\left(u_{i}^{0}+\sum_{k=1}^{i-1}\frac{q_{k}}{\sqrt{k(k+1)}}+\sqrt{\frac{i+1}{i}}q_{i}\right)-g_{j},
j=1,,l,\displaystyle j=1,\cdots,l,
(20) Δql=l+1lexp(ul0+k=1l1qk(k+1)k+l+1lql)gl,\Delta q_{l}=\sqrt{\frac{l+1}{l}}\exp\left(u_{l}^{0}+\sum_{k=1}^{l-1}\frac{q_{k}}{\sqrt{(k+1)k}}+\sqrt{\frac{l+1}{l}}q_{l}\right)-g_{l},

where g=(g1,,gl)T=B1𝚽\textbf{g}=(g_{1},\cdots,g_{l})^{T}=B^{-1}\boldsymbol{\Phi}.

Now we define the energy functional

(21) I(𝐪)=I(q1,,ql)=V{12i=1lΓ(qi,qi)+exp(u10+2q1)g1q1+i=2lexp(ui0+k=1i1qkk(k+1)+i+1iqi)giqi}dμ.\begin{gathered}I(\mathbf{q})=I\left(q_{1},\ldots,q_{l}\right)=\int\limits_{V}\left\{\frac{1}{2}\sum_{i=1}^{l}\Gamma({q}_{i},{q}_{i})+\exp\left(u_{1}^{0}+\sqrt{2}q_{1}\right)-g_{1}q_{1}\right.\\ \left.+\sum_{i=2}^{l}\exp\left(u_{i}^{0}+\sum_{k=1}^{i-1}\frac{q_{k}}{\sqrt{k(k+1)}}+\sqrt{\frac{i+1}{i}}q_{i}\right)-g_{i}q_{i}\right\}\mathrm{d}\mu.\end{gathered}

It is easy to check that if II has a critical point, then it is a solution of equations (18)-(20). Furthermore, one can check that the system of equations (18)-(20) are the Euler Lagrange equations of the functional II.

We next prove II has a critical point.

Define 𝐊:=(K1,,Kl)T\mathbf{K}:=(K_{1},\dots,K_{l})^{T}. By (11), we have 𝐊=|V|(BT)1𝐠.\mathbf{K}=|V|(B^{T})^{-1}\mathbf{g}. For any qH1(V)q\in H^{1}(V), we can write

(22) q=q¯+q^,q=\bar{q}+\hat{q},

where Vq^𝑑μ=0\int\limits_{V}\hat{q}d\mu=0 and q¯=Vq𝑑μ|V|\bar{q}=\frac{\int\limits_{V}qd\mu}{|V|}.

For any qH1(V)××H1(V)l\textbf{q}\in\underbrace{H^{1}(V)\times\dots\times H^{1}(V)}_{l}, from (17) and (21), we conclude that

(23) I(𝐪)\displaystyle I(\mathbf{q}) =V12i=1lΓ(q^i,q^i)dμ+Vi=1lexp(ui0+v^i+v¯i)dμKT𝐯¯\displaystyle=\int\limits_{V}\frac{1}{2}\sum_{i=1}^{l}\Gamma(\hat{q}_{i},\hat{q}_{i})\mathrm{d}\mu+\int\limits_{V}\sum_{i=1}^{l}\exp\left(u^{0}_{i}+\hat{v}_{i}+\bar{v}_{i}\right)\mathrm{d}\mu-K^{T}\bar{\mathbf{v}}
=V12i=1lΓ(q^i,q^i)dμ+Vi=1lexp(ui0+v^i+v¯i)dμi=1lKiv¯i.\displaystyle=\int\limits_{V}\frac{1}{2}\sum_{i=1}^{l}\Gamma(\hat{q}_{i},\hat{q}_{i})\mathrm{d}\mu+\int\limits_{V}\sum_{i=1}^{l}\exp\left(u^{0}_{i}+\hat{v}_{i}+\bar{v}_{i}\right)\mathrm{d}\mu-\sum_{i=1}^{l}K_{i}\bar{v}_{i}.

By Jensen’s inequality, we obtain

(24) exp(Vui0+v^i+v¯idμ|V|)1|V|Vexp(ui0+v^i+v¯i)𝑑μ.exp\left(\frac{\int\limits_{V}u_{i}^{0}+\hat{v}_{i}+\bar{v}_{i}d\mu}{|V|}\right)\leq\frac{1}{|V|}\int\limits_{V}exp\left(u_{i}^{0}+\hat{v}_{i}+\bar{v}_{i}\right)d\mu.

Thus we deduce that

(25) Vexp(ui0+v^i+v¯i)dμ|V|exp(1|V|Vui0dμ)ev¯i=:ciev¯ifori=1,,l.\int\limits_{V}exp\left(u_{i}^{0}+\hat{v}_{i}+\bar{v}_{i}\right)d\mu\geq|V|exp\left(\frac{1}{|V|}\int\limits_{V}u_{i}^{0}d\mu\right)e^{\bar{v}_{i}}=:c_{i}e^{\bar{v}_{i}}~{}\text{for}~{}i=1,\cdots,l.

From (11), we obtain Ki>0K_{i}>0 for i=1,,li=1,\cdots,l. Hence, applying the elementary inequality

(26) ab(1ln[abc])cebxax,a,b,c>0,x\frac{a}{b}\left(1-\ln\left[\frac{a}{bc}\right]\right)\leq ce^{bx}-ax,\quad a,b,c>0,\quad x\in\mathbb{R}

in (23), we have

(27) I(𝐪)\displaystyle I(\mathbf{q}) V12i=1lΓ(q^i,q^i)dμ+i=1l(ciev¯iKiv¯i)\displaystyle\geq\int_{V}\frac{1}{2}\sum\limits_{i=1}^{l}\Gamma(\hat{q}_{i},\hat{q}_{i})d\mu+\sum\limits_{i=1}^{l}(c_{i}e^{\bar{v}_{i}}-K_{i}\bar{v}_{i})
V12i=1lΓ(q^i,q^i)dμ+j=1lKj(lncjKj+1).\displaystyle\geq\int_{V}\frac{1}{2}\sum\limits_{i=1}^{l}\Gamma(\hat{q}_{i},\hat{q}_{i})d\mu+\sum\limits_{j=1}^{l}K_{j}(ln{\frac{c_{j}}{K_{j}}}+1).

It follows that II is bounded from below in H1(V)H^{1}(V). Furthermore, it is easy to check that II is strictly convex. We next show that II is weakly lower semi-continuous in H1(V)H^{1}(V). Suppose that {q1(k),q2(k),,ql(k)}k=1\{q_{1}^{(k)},q_{2}^{(k)},\cdots,q_{l}^{(k)}\}_{k=1}^{\infty} satisfying (q1(k),q2(k),,ql(k))(q1,q2,,ql)(q_{1}^{(k)},q_{2}^{(k)},\cdots,q_{l}^{(k)})\rightharpoonup(q_{1},q_{2},\cdots,q_{l}) in H1(V)××H1(V)l\underbrace{H^{1}(V)\times\dots\times H^{1}(V)}_{l}, i.e., qi(k)qkq_{i}^{(k)}\rightharpoonup q^{k} in H1(V)H^{1}(V) for all i=1,2,,li=1,2,\cdots,l. Since VV is a finite graph, H1(V)=V=L2(V)H^{1}(V)=V^{\mathbb{R}}=L^{2}(V). Hence, we know that the dual space to H1(V)H^{1}(V) is V=L2(V)V^{\mathbb{R}}=L^{2}(V). This implies that

(28) xVqi(k)(x)f(x)μ(x)xVqi(x)f(x)μ(x) as k\sum_{x\in V}q_{i}^{(k)}(x)f(x)\mu(x)\to\sum_{x\in V}q_{i}(x)f(x)\mu(x)~{}\text{ as }~{}k\to\infty

for all fVf\in V^{\mathbb{R}} and i=1,2,,li=1,2,\cdots,l. Fix x0Vx_{0}\in V. Taking

(29) f(x)={1μ(x0),x=x0,0,xx0.f(x)=\left\{\begin{aligned} \frac{1}{\mu(x_{0})},~{}~{}x=x_{0},\\ 0,~{}~{}x\not=x_{0}.\end{aligned}\right.

in (28). Then we see that

(30) qi(k)(x)q(x)ask uniformly for all xVandi=1,2,,l.q_{i}^{(k)}(x)\to q(x)~{}\text{as}~{}k\to\infty~{}\text{ uniformly for all }x\in V\text{and}~{}i=1,2,\cdots,l.

This implies that

(31) I(𝐪)lim inf𝐤𝐈(𝐪𝐤),I(\bf{q})\leq\liminf_{k\to\infty}I(\bf{q}^{k}),

where 𝐪=(q1,q2,,ql)T{\bf{q}}=(q_{1},q_{2},\cdots,q_{l})^{T}, 𝐪(k)=(q1(k),q2(k),,ql(k))T{\bf q}^{(k)}=(q_{1}^{(k)},q_{2}^{(k)},\cdots,q_{l}^{(k)})^{T}. Thus we can choose a minimizing sequence {(q1,k,,ql,k)}k=1\{(q_{1,k},\dots,q_{l,k})\}_{k=1}^{\infty} of the following minimization problem

inf{I(𝐪)|𝐪=(q1,,ql)TH1(V)××H1(V)l}.\inf\limits\{I(\mathbf{q})|\mathbf{q}=(q_{1},\dots,q_{l})^{T}\in\underbrace{H^{1}(V)\times\dots\times H^{1}(V)}_{l}\}.

In view of limt±cietKit=\lim\limits_{t\to\pm\infty}c_{i}e^{t}-K_{i}t=\infty for i=1,,li=1,\dots,l. we deduce from (27) that {v¯i,k}k=1\{\bar{v}_{i,k}\}_{k=1}^{\infty} is bounded for i=1,,li=1,\dots,l. By (14), we know that {q¯i,k}k=1\{\bar{q}_{i,k}\}_{k=1}^{\infty} is bounded for i=1,,li=1,\cdots,l. From (27), we see that {|q^i,k|}k=1\{|\nabla\hat{q}_{i,k}|\}_{k=1}^{\infty} is bounded in L2(V)L^{2}(V) for i=1,,l.i=1,\cdots,l. From Lemma 2.4, we conclude that {q^i,k}k=1\{\hat{q}_{i,k}\}_{k=1}^{\infty} is bounded in L2(V)L^{2}(V), i=1,,l.i=1,\cdots,l. Thus, {qi,k}k=1\{q_{i,k}\}_{k=1}^{\infty} is bounded in L2(V)L^{2}(V). Therefore, {qi,k}k=1\{q_{i,k}\}_{k=1}^{\infty} is bounded in H1(V).H^{1}(V). Therefore, by Lemma 2.3, there exists q:=(q1,,,ql,)TH1(V)××H1(V)l\textbf{q}_{\infty}:=\left(q_{1,\infty},\dots,q_{l,\infty}\right)^{T}\in\underbrace{H^{1}(V)\times\dots\times H^{1}(V)}_{l} so that, by passing to a subsequent,

(32) qi,kqi,inH1(V) as k+ for i=1,,l,q_{i,k}\to q_{i,\infty}~{}in~{}H^{1}(V)\text{ as }k\to+\infty\text{ for }i=1,\cdots,l,

and

(33) qi,kqi, uniformly for xV as k+ for i=1,,l.q_{i,k}\to q_{i,\infty}\text{ uniformly for }x\in V\text{ as }k\to+\infty\text{ for }i=1,\cdots,l.

Thus, 𝐪\mathbf{q}_{\infty} is a critical point of II. Since II is srtictly convex in H1(V)H^{1}(V), we know that the solution of equations (18)-(20) is unique.

We now complete the proof. ∎

Proof of Theorem 2.1.

The desired conclusion follows directly from Lemmas 3.1 and 3.2. ∎

4. The proof of Theorem 2.2

Set ui0u_{i}^{0} be a solution of

(34) Δui0=4πni|V|+4πs=1niδpi,s(x),i=1,,N.\Delta u_{i}^{0}=-\frac{4\pi n_{i}}{|V|}+4\pi\sum_{s=1}^{n_{i}}\delta_{p_{i,s}}(x),\quad i=1,\ldots,N.

Set

(35) ui=ui0+Ui,i=1,,N.u_{i}=u_{i}^{0}+U_{i},\quad i=1,\ldots,N.

Then (4) is transformed into

(36) ΔUi=j=1Naij(euj0+Ujθ2)+4πni|V|,i=1,,N.\Delta U_{i}=\sum_{j=1}^{N}a_{ij}\left(\mathrm{e}^{u_{j}^{0}+U_{j}}-\theta^{2}\right)+\frac{4\pi n_{i}}{|V|},\quad i=1,\ldots,N.

We now write (36) in the vector form

(37) Δ𝐔=H𝐆+𝐅,\Delta\mathbf{U}=H\mathbf{G}+\mathbf{F},

where

(38) 𝐔=(U1,,UN)T,𝐆=(eu10+U1,,euN0+UN)T,\mathbf{U}=\left(U_{1},\ldots,U_{N}\right)^{T},\quad\mathbf{G}=\left(\mathrm{e}^{u_{1}^{0}+U_{1}},\ldots,\mathrm{e}^{u_{N}^{0}+U_{N}}\right)^{T},
(39) 𝐅=(4πn1|V|θ2j=1Na1j,,4πnN|V|θ2j=1NaNj)T=:(f1,,fN)T,\mathbf{F}=\left(\frac{4\pi n_{1}}{|V|}-\theta^{2}\sum_{j=1}^{N}a_{1j},\ldots,\frac{4\pi n_{N}}{|V|}-\theta^{2}\sum_{j=1}^{N}a_{Nj}\right)^{T}=:\left(f_{1},\ldots,f_{N}\right)^{T},

and H=(aij)N×NH=\left(a_{ij}\right)_{N\times N} is a N×NN\times N matrix. In view of (5), one may check that HH is positive definite. Then, applying the Cholesky decomposition theorem, we can write

(40) H=STS,H=S^{T}S,

where S=(tij)N×NS=(t_{ij})_{N\times N} is an upper triangular matrix,

t11=a+b,t12=t13==t1N=at11=:α1>0,\displaystyle t_{11}=\sqrt{a+b},\quad t_{12}=t_{13}=\cdots=t_{1N}=\frac{a}{t_{11}}=:\alpha_{1}>0,
t22=(a+b)α12,t23=t24==t2N=aα12t22=:α2>0,\displaystyle t_{22}=\sqrt{(a+b)-\alpha_{1}^{2}},\quad t_{23}=t_{24}=\cdots=t_{2N}=\frac{a-\alpha_{1}^{2}}{t_{22}}=:\alpha_{2}>0,
\displaystyle\ldots
tN1,N1=(a+b)i=1N2αi2,tN1,N=ai=1N2αi2tN1,N1=:αN1>0,t_{N-1,N-1}=\sqrt{(a+b)-\sum_{i=1}^{N-2}\alpha_{i}^{2}},\quad t_{N-1,N}=\frac{a-\sum_{i=1}^{N-2}\alpha_{i}^{2}}{t_{N-1,N-1}}=:\alpha_{N-1}>0,
tN,N=(a+b)i=1N1αi2,t_{N,N}=\sqrt{(a+b)-\sum_{i=1}^{N-1}\alpha_{i}^{2}},

a=(e2/2g2/2N)Na=\frac{\left(e^{2}/2-g^{2}/2N\right)}{N} and b=g22Nb=\frac{g^{2}}{2N}. Set 𝐯=(v1,,vN)T,L=(ST)1=:(lij)N×N\mathbf{v}=\left(v_{1},\ldots,v_{N}\right)^{T},L=\left(S^{T}\right)^{-1}=:\left(l_{ij}\right)_{N\times N} and

𝐯=L𝐔.\mathbf{v}=L\mathbf{U}.

Combining this with (37), one may obtain

(41) Δ𝐯=S𝐆+L𝐅.\Delta\mathbf{v}=S\mathbf{G}+L\mathbf{F}.

Taking αN=0\alpha_{N}=0, we rewrite (41) as

(42) Δvi=tiieui0+tiivi+k=1i1αkvk+αij=i+1Neuj0+tjjvj+k=1j1αkvk+j=1ilijfj,i=1,,N.\Delta v_{i}=t_{ii}\mathrm{e}^{u_{i}^{0}+t_{ii}v_{i}+\sum_{k=1}^{i-1}\alpha_{k}v_{k}}+\alpha_{i}\sum_{j=i+1}^{N}\mathrm{e}^{u_{j}^{0}+t_{jj}v_{j}+\sum_{k=1}^{j-1}\alpha_{k}v_{k}}+\sum_{j=1}^{i}l_{ij}f_{j},\quad i=1,\ldots,N.

Here, we understand j=N+1N\sum_{j=N+1}^{N} as j=NN\sum_{j=N}^{N} when i=Ni=N. Define the energy functional

(43) J(𝐯)=V{12i=1NΓ(vi,vi)+i=1Neui0+tiivi+k=1i1αkvk+i=1N(j=1ilijfj)vi}dμ.J(\mathbf{v})=\int\limits_{V}\left\{\frac{1}{2}\sum_{i=1}^{N}\Gamma(v_{i},v_{i})+\sum_{i=1}^{N}\mathrm{e}^{u_{i}^{0}+t_{ii}v_{i}+\sum_{k=1}^{i-1}\alpha_{k}v_{k}}+\sum_{i=1}^{N}\left(\sum_{j=1}^{i}l_{ij}f_{j}\right)v_{i}\right\}\mathrm{d}\mu.

Then it is easy to check that the system of equations (42) are the Euler Lagrange equations of the functional JJ. The following lemma gives a necessary condition for (4) to admit a solution.

Lemma 4.1.

If (4) admits a solution, then

(44) ni<g2θ28πN|V|+1N(11N[ge]2)n,i=1,,N.n_{i}<\frac{g^{2}\theta^{2}}{8\pi N}|V|+\frac{1}{N}\left(1-\frac{1}{N}\left[\frac{g}{e}\right]^{2}\right)n,\quad i=1,\ldots,N.
Proof.

Let

(45) qi=Veui0+tiivi+k=1i1αkvkdμ,i=1,,N.q_{i}=\int_{V}\mathrm{e}^{u_{i}^{0}+t_{ii}v_{i}+\sum_{k=1}^{i-1}\alpha_{k}v_{k}}\mathrm{~{}d}\mu,\quad i=1,\ldots,N.

From (42), we get

(46) tiiqi+αij=i+1Nqj=|V|j=1ilijfj=:pi,i=1,,N.t_{ii}q_{i}+\alpha_{i}\sum_{j=i+1}^{N}q_{j}=-|V|\sum_{j=1}^{i}l_{ij}f_{j}=:p_{i},\quad i=1,\ldots,N.

By (46), we deduce that

(47) S𝐪=|V|L𝐅=𝐩,S\mathbf{q}=-|V|L\mathbf{F}=\mathbf{p},

where 𝐩=(p1,,pN)T\mathbf{p}=(p_{1},\dots,p_{N})^{T} and 𝐪=(q1,,qN)T\mathbf{q}=(q_{1},\dots,q_{N})^{T}. This implies that

(48) 𝐪=|V|S1(ST)1F=|V|H1F.\mathbf{q}=-|V|S^{-1}(S^{T})^{-1}F=-|V|H^{-1}F.

Direct calculations yield that

(49) H1=1b(Na+b)((N1)a+baaa(N1)a+baaa(N1)a+b).H^{-1}=\frac{1}{b(Na+b)}\left(\begin{array}[]{cccc}(N-1)a+b&-a&\cdots&-a\\ -a&(N-1)a+b&\cdots&-a\\ \cdots&\cdots&\cdots&\cdots\\ -a&-a&\cdots&(N-1)a+b\end{array}\right).

From (49) and (48), we deduce that

qi=θ2|V|+4πab(Na+b)j=1Nni4πbni,i=1,,N.q_{i}=\theta^{2}|V|+\frac{4\pi a}{b(Na+b)}\sum_{j=1}^{N}n_{i}-\frac{4\pi}{b}n_{i},\quad i=1,\ldots,N.

Recalling that a=(e2/2g2/2N)Na=\frac{\left(e^{2}/2-g^{2}/2N\right)}{N} and b=g22Nb=\frac{g^{2}}{2N}, it follows that

(50) qi=θ2|V|+8π(1g21Ne2)n8πNg2ni>0,i=1,,N.q_{i}=\theta^{2}|V|+8\pi\left(\frac{1}{g^{2}}-\frac{1}{Ne^{2}}\right)n-\frac{8\pi N}{g^{2}}n_{i}>0,\quad i=1,\ldots,N.

We now complete the proof. ∎

We give a sufficient condition for equations (36) to have a solution in the following lemma.

Lemma 4.2.

If

(51) ni<g2θ28πN|V|+1N(11N(ge)2)n,i=1,,N,n_{i}<\frac{g^{2}\theta^{2}}{8\pi N}|V|+\frac{1}{N}\left(1-\frac{1}{N}\left(\frac{g}{e}\right)^{2}\right)n,\quad i=1,\ldots,N,

then (36) admits a solution.

Proof.

For any 𝐯=(v1,,vN)TH1(V)××H1(V)N\mathbf{v}=(v_{1},\dots,v_{N})^{T}\in\underbrace{H^{1}(V)\times\dots\times H^{1}(V)}_{N}. By the notation (22) and Jensen’s inequality, we have

(52) Veui0+tii(v¯i+v^i)+k=1i1αk(v¯k+v^k)dμ\displaystyle\int_{V}\mathrm{e}^{u_{i}^{0}+t_{ii}\left(\bar{v}_{i}+\hat{v}_{i}\right)+\sum_{k=1}^{i-1}\alpha_{k}\left(\bar{v}_{k}+\hat{v}_{k}\right)}\mathrm{d}\mu |V|exp(1|V|Vui0dμ)exp(tiiv¯i+k=1i1αkv¯k)\displaystyle\geq|V|\exp\left(\frac{1}{|V|}\int_{V}u_{i}^{0}\mathrm{~{}d}\mu\right)\exp\left(t_{ii}\bar{{v}}_{i}+\sum_{k=1}^{i-1}\alpha_{k}\bar{{v}}_{k}\right)
=:Cietiiv¯i+k=1i1αkv¯k,i=1,,N.\displaystyle=:C_{i}\mathrm{e}^{t_{ii}\bar{v}_{i}+\sum_{k=1}^{i-1}\alpha_{k}\bar{v}_{k}},\quad i=1,\ldots,N.

By (46), we rewrite (43) as

(53) J(𝐯)=V(12i=1NΓ(v^i,v^i)+i=1Neui0+tiivi+k=1i1αkvk)dμi=1Npiv¯i.J(\mathbf{v})=\int_{V}\left(\frac{1}{2}\sum_{i=1}^{N}\Gamma(\hat{v}_{i},\hat{v}_{i})+\sum_{i=1}^{N}\mathrm{e}^{u_{i}^{0}+t_{ii}v_{i}+\sum_{k=1}^{i-1}\alpha_{k}v_{k}}\right)\mathrm{d}\mu-\sum_{i=1}^{N}p_{i}\bar{v}_{i}.

Combining (53) with (52), we know that

(54) J(𝐯)12Vi=1NΓ(v^i,v^i)dμi=1NCietiiv¯i+k=1i1αkv¯ki=1Npiv¯i.J(\mathbf{v})-\frac{1}{2}\int_{V}\sum_{i=1}^{N}\Gamma(\hat{v}_{i},\hat{v}_{i})\mathrm{~{}d}\mu\geq\sum_{i=1}^{N}C_{i}\mathrm{e}^{t_{ii}\bar{v}_{i}+\sum_{k=1}^{i-1}\alpha_{k}\bar{v}_{k}}-\sum_{i=1}^{N}p_{i}\bar{v}_{i}.

From (47), one may obtain

(55) pi=tiiqi+αij=i+1Nqj,i=1,,N.p_{i}=t_{ii}q_{i}+\alpha_{i}\sum_{j=i+1}^{N}q_{j},\quad i=1,\ldots,N.

It follows that

(56) i=1Npiv¯i=i=1Nqi(tiiv¯i+k=1i1αkv¯k).\sum_{i=1}^{N}p_{i}\bar{v}_{i}=\sum_{i=1}^{N}q_{i}\left(t_{ii}\bar{v}_{i}+\sum_{k=1}^{i-1}\alpha_{k}\bar{v}_{k}\right).

Define

(57) w¯i:=tiiv¯i+k=1i1αkv¯k,i=1,,N.\bar{w}_{i}:=t_{ii}\bar{v}_{i}+\sum_{k=1}^{i-1}\alpha_{k}\bar{v}_{k},\quad i=1,\ldots,N.

Hence by inequality (26), we conclude that

(58) J(𝐯)12Vi=1N|v^i|2dμ\displaystyle J(\mathbf{v})-\frac{1}{2}\int\limits_{V}\sum_{i=1}^{N}\left|\nabla\hat{v}_{i}\right|^{2}\mathrm{~{}d}\mu i=1N(Ciew¯iqiw¯i)\displaystyle\geq\sum_{i=1}^{N}\left(C_{i}\mathrm{e}^{\bar{w}_{i}}-q_{i}\bar{w}_{i}\right)
i=1Nqi(1+ln(Ciqi)).\displaystyle\geq\sum_{i=1}^{N}q_{i}\left(1+\ln\left(\frac{C_{i}}{q_{i}}\right)\right).

Considering the following minimization problem

(59) ηinf{J(𝐯)𝐯H1(V)××H1(V)N}.\eta\equiv\inf\left\{J(\mathbf{v})\mid\mathbf{v}\in\underbrace{H^{1}(V)\times\dots\times H^{1}(V)}_{N}\right\}.

By a similar argument as in the proof of Lemma 3.2, we see that JJ is weakly lower semi-continuous in H1(V)H^{1}(V). Let {(v1,k,,vN,k)}k=1\{(v_{1,k},\dots,v_{N,k})\}_{k=1}^{\infty} be a minimizing sequence of (59), In view of

(60) limtCietqit= for i=1,,N.\lim_{t\to\infty}C_{i}e^{t}-q_{i}t=\infty~{}\text{ for }~{}i=1,\cdots,N.

Using (58), one may deduce that

(61) {w¯i,k}k=1 is bounded for i=1,,N,\{\bar{w}_{i,k}\}_{k=1}^{\infty}\text{ is bounded for }i=1,\cdots,N,

where

(62) w¯i,k:=tiiv¯i,k+j=1i1αjv¯j,k,i=1,,N.\bar{w}_{i,k}:=t_{ii}\bar{v}_{i,k}+\sum_{j=1}^{i-1}\alpha_{j}\bar{v}_{j,k},\quad i=1,\ldots,N.

Combining this with (62),

(63) {v¯i,k}k=1 is bounded for i=1,,N.\{\bar{v}_{i,k}\}_{k=1}^{\infty}\text{ is bounded for }i=1,\cdots,N.

From (58), we see that {v^i,k2}k=1\{\|\nabla\hat{v}_{i,k}\|_{2}\}_{k=1}^{\infty} is bounded for all i=1,2,,Ni=1,2,\cdots,N. Then, by Lemma 2.4, one may obtain {v^i,k2}k=1\{\|\hat{v}_{i,k}\|_{2}\}_{k=1}^{\infty} is bounded for all i=1,2,,Ni=1,2,\cdots,N. From this and (63), {vi,k}k=1={v¯i,k+v^i,k}i=1\{{v}_{i,k}\}_{k=1}^{\infty}=\{\bar{v}_{i,k}+\hat{v}_{i,k}\}_{i=1}^{\infty} is bounded in H1(V)H^{1}(V) for all i=1,2,,Ni=1,2,\cdots,N. Therefore, we can deduce that there exists 𝐯:=(v1,,,vN,)T\mathbf{v_{\infty}}:=(v_{1,\infty},\dots,v_{N,\infty})^{T} such that, by passing to a subsequence,

(64) vi,kvi,v_{i,k}\to v_{i,\infty}

uniformly for xVx\in V as k+k\to+\infty for i=1,,N.i=1,\dots,N. Thus, 𝐯\mathbf{v}_{\infty} is a critical point of JJ. It’s easy to check that JJ is strictly convex in H1(V)H^{1}(V). Thus, we know that the solution of equations (42) is unique.

The proof is finished. ∎

Proof of Theorem 2.2.

The desired conclusion follows directly from Lemmas 4.1 and 4.2. ∎

Next, we give a constrained minimization approach to the problem.

Denote

(65) Ii(𝐯)=Veui0+tiivi+k=1i1αkvkdμ=qi,i=1,,N,I_{i}(\mathbf{v})=\int\limits_{V}\mathrm{e}^{u_{i}^{0}+t_{ii}v_{i}+\sum_{k=1}^{i-1}\alpha_{k}v_{k}}\mathrm{~{}d}\mu=q_{i},\quad i=1,\ldots,N,

We consider the following constrained minimization problem

(66) γ=inf{J(𝐯)𝐯H1(V)××H1(V)N,I1(𝐯)=q1,,IN(𝐯)=qN}.\gamma=\inf\left\{J(\mathbf{v})\mid\mathbf{v}\in\underbrace{H^{1}(V)\times\dots\times H^{1}(V)}_{N},I_{1}(\mathbf{v})=q_{1},\ldots,I_{N}(\mathbf{v})=q_{N}\right\}.

We now investigate whether the constraints in (66) give rise to the so-called ”constraints” problem due to the issue of the Lagrange multipliers. For this purpose, let 𝐯=(v1,,vN)T\mathbf{v}=(v_{1},\dots,v_{N})^{T} be a critical point of JJ subject to the constraints

(67) Ii(𝐯)=qi,i=1,,N.I_{i}(\mathbf{v})=q_{i},~{}i=1,\dots,N.

Then we can find real numbers σ1,,σN\sigma_{1},\dots,\sigma_{\textsc{N}} such that

(68) diJ=j=1NσjdiIj,i=1,,N,d_{i}J=\sum\limits_{j=1}^{N}\sigma_{j}d_{i}I_{j},~{}i=1,\dots,N,

where di(i=1,,N)d_{i}(i=1,\dots,N) denote the Fre´\acute{e}chet differention with respect to the i-th arguments, respectively. Let F=(tij)F=(t_{ij}), lijl_{ij} be the entries of the matrix L=(FT)1L=(F^{T})^{-1}. Then, for any z1,,zNH1(V),z_{1},\dots,z_{N}\in H^{1}(V),

(69) V{Γ(vi,zi)+(tiieui0+tiivi+k=1i1αkvk+αij=i+1Neuj0+tjjvj+k=1j1αkvk+j=1ilijfj)zi}dμ\displaystyle\int\limits_{V}\left\{\Gamma(v_{i},z_{i})+\left(t_{ii}\mathrm{e}^{u_{i}^{0}+t_{ii}v_{i}+\sum\limits_{k=1}^{i-1}\alpha_{k}v_{k}}+\alpha_{i}\sum_{j=i+1}^{N}\mathrm{e}^{u_{j}^{0}+t_{jj}v_{j}+\sum\limits_{k=1}^{j-1}\alpha_{k}v_{k}}+\sum_{j=1}^{i}l_{ij}f_{j}\right)z_{i}\right\}\mathrm{d}\mu
=σitiiVeui0+tiivi+k=1i1αkvkzidμ+αij=i+1NσjVeuj0+tjjvj+k=1j1αkvkzidμ.\displaystyle=\sigma_{i}t_{ii}\int\limits_{V}\mathrm{e}^{u_{i}^{0}+t_{ii}v_{i}+\sum\limits_{k=1}^{i-1}\alpha_{k}v_{k}}z_{i}\mathrm{~{}d}\mu+\alpha_{i}\sum\limits_{j=i+1}^{N}\sigma_{j}\int\limits_{V}\mathrm{e}^{u_{j}^{0}+t_{jj}v_{j}+\sum\limits_{k=1}^{j-1}\alpha_{k}v_{k}}z_{i}\mathrm{~{}d}\mu.

Taking z1,,zN=1z_{1},\dots,z_{N}=1 in (69), we deduce that

(70) σitiiqi+αij=i+1Nσjqj=0,i=1,,N,\sigma_{i}t_{ii}q_{i}+\alpha_{i}\sum_{j=i+1}^{N}\sigma_{j}q_{j}=0,\quad i=1,\ldots,N,

and hence that

(71) σN=σN1==σ1=0,\sigma_{N}=\sigma_{N-1}=\dots=\sigma_{1}=0,

which reveals that all terms in (68) arising from the Lagrange multipliers are automatically absent. Thus, a solution of (66) satisfies (42). Applying the notation (22), we rewrite (65) as

(72) etiiv¯i+k=1i1αkv¯kVeui0+tiiv^i+k=1i1αkv^kdμ=qi,i=1,,N,\mathrm{e}^{t_{ii}\bar{v}_{i}+\sum\limits_{k=1}^{i-1}\alpha_{k}\bar{v}_{k}}\int\limits_{V}\mathrm{e}^{u_{i}^{0}+t_{ii}\hat{v}_{i}+\sum\limits_{k=1}^{i-1}\alpha_{k}\hat{v}_{k}}\mathrm{~{}d}\mu=q_{i},\quad i=1,\ldots,N,

from which we deduce that

(73) v¯i=j=1ilij(lnqjlnIj(𝐯^)),i=1,,N,\bar{v}_{i}=\sum_{j=1}^{i}l_{ij}\left(\ln q_{j}-\ln I_{j}(\hat{\mathbf{v}})\right),\quad i=1,\ldots,N,

where

𝐯^=(v^1,,v^N)T.\hat{\mathbf{v}}=\left(\hat{v}_{1},\ldots,\hat{v}_{N}\right)^{T}.

Thus, using (73), we can rewrite (43) as

(74) J(𝐯)i=1NV12Γ(v^i,v^i)dμ\displaystyle J(\mathbf{v})-\sum_{i=1}^{N}\int\limits_{V}\frac{1}{2}\Gamma(\hat{v}_{i},\hat{v}_{i})\mathrm{~{}d}\mu =i=1Nqii=1Npiv¯i\displaystyle=\sum_{i=1}^{N}q_{i}-\sum_{i=1}^{N}p_{i}\bar{v}_{i}
=i=1Nj=1ipilijlnIj(𝐯^)+i=1N(qipij=1ilijlnqj).\displaystyle=\sum_{i=1}^{N}\sum_{j=1}^{i}p_{i}l_{ij}\ln I_{j}(\hat{\mathbf{v}})+\sum_{i=1}^{N}\left(q_{i}-p_{i}\sum_{j=1}^{i}l_{ij}\ln q_{j}\right).

We rewrite (47) as

(75) J(𝐯)=12i=1NVΓ(v^i,v^i)dμ+i=1NqilnIi(v^)C,J(\mathbf{v})=\frac{1}{2}\sum_{i=1}^{N}\int\limits_{V}\Gamma(\hat{v}_{i},\hat{v}_{i})\mathrm{~{}d}\mu+\sum_{i=1}^{N}q_{i}\ln I_{i}(\hat{\mathrm{v}})-C,

where C=C(L,𝐩,𝐪)C=C(L,\mathbf{p},\mathbf{q}) ia a constant. By the Jensen inequality, we deduce that

(76) Ii(𝐯^)|V|exp(Vui0dμ)=:μi,i=1,,N.I_{i}(\hat{\mathbf{v}})\geq|V|\exp\left(\int_{V}u_{i}^{0}\mathrm{~{}d}\mu\right)=:\mu_{i},\quad i=1,\ldots,N.

Since qi>0q_{i}>0 for i=1,2,,Ni=1,2,\cdots,N, we obtain

(77) J(𝐯)12i=1NV|v^i|2dμi=1NqilnμiC.J(\mathbf{v})-\frac{1}{2}\sum_{i=1}^{N}\int\limits_{V}\left|\nabla\hat{v}_{i}\right|^{2}\mathrm{~{}d}\mu\geq\sum_{i=1}^{N}q_{i}\ln\mu_{i}-C.

Set {(v1,k,,vN,k)}k=1\{(v_{1,k},\dots,v_{N,k})\}_{k=1}^{\infty} be a minimizing sequence of (66). By (77),

{(|v^1,k|,,|v^N,k|)}k=1 is bounded in L2(V).\{(|\nabla\hat{v}_{1,k}|,\dots,|\nabla\hat{v}_{N,k}|)\}_{k=1}^{\infty}\text{ is bounded in }~{}L^{2}(V).

By Lemma 2.4, {(v^1,k,,v^N,k)}k=1\{(\hat{v}_{1,k},\dots,\hat{v}_{N,k})\}_{k=1}^{\infty} is bounded in L2(V)L^{2}(V). By Lemma 2.3, we deduce that, by passing to a subsequence,

(78) v^i,kwi, uniformly for xV as k+ for i=1,,N.\hat{v}_{i,k}\to w_{i,\infty}\text{ uniformly for }x\in~{}V\text{ as }k\to+\infty\text{ for }i=1,\dots,N.

Thus, from (73), by passing to a subsequence,

(79) v¯i,kw¯i, as k+ for all i=1,2,,N.\bar{v}_{i,k}\to\bar{w}_{i,\infty}\text{ as }k\to+\infty\text{ for all }i=1,2,\cdots,N.

Hence

(80) vi,k=v¯i,k+v^i,kw¯i,+w^i,:=wi, as k+,i=1,2,,N.v_{i,k}=\bar{v}_{i,k}+\hat{v}_{i,k}\to\bar{w}_{i,\infty}+\hat{w}_{i,\infty}:=w_{i,\infty}\text{ as }k\to+\infty,~{}i=1,2,\cdots,N.

From (67),

(81) Ii(𝐯(k))=qi,i=1,2,,N.I_{i}({\bf v}^{(k)})=q_{i},~{}i=1,2,\cdots,N.

where 𝐯(k):=(v1,k,v2,k,,vN,k)T{\bf v}^{(k)}:=({v}_{1,k},{v}_{2,k},\cdots,{v}_{N,k})^{T}. Letting kk\to\infty in above equality, we deduce that

(82) Ii(𝐰)=qi,I_{i}({\bf w_{\infty}})={q_{i}},

where 𝐰:=(w1,,,wN,)T\mathbf{w}_{\infty}:=(w_{1,\infty},\dots,w_{N,\infty})^{T}. Thus, by (65), we know that

γ=J(𝐰),\gamma=J(\mathbf{w}_{\infty}),

where 𝐰:=(w1,,,wN,)\mathbf{w}_{\infty}:=(w_{1,\infty},\dots,w_{N,\infty}). Therefore, we know that 𝐰\mathbf{w}_{\infty} is a solution to the problem (66). It follows that 𝐰\mathbf{w}_{\infty} is a solution to the problem (42).

Acknowledgements

The author thanks the unknown referee very much for helpful suggestions. This work is financially supported by the China Postdoctoral Science Foundation (Grant No. 2022M711045), and the National Natural Science Foundation of China (Grant No. 12201184).

References

  • [1] E. B. Bogomol’nyi, The stability of classical solutions, Soviet J. Nuclear Phys. 24 (1976), 449-454.
  • [2] D. Bazeia, E. da Hora, C. dos Santos, R. Menezes, Generalized self-dual Chern–Simons vortices, Phys. Rev. D 81 (2010), 125014.
  • [3] D. Chae, O. Y. Imanuvilov, Non-topological solutions in the generalized self-dual Chern- Simons-Higgs theory, Calc. Var. Partial Differential Equations 16 (2003), 47-61.
  • [4] L. Caffarelli, Y. Yang, Vortex condensation in the Chern–Simons Higgs model: an existence theorem, Comm. Math. Phys. 168 (1995), 321–336.
  • [5] S. Chen, Y. Yang, Existence of multiple vortices in supersymmetric gauge field theory, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468(2148) (2012), 3923-3946.
  • [6] M. Eto, T. Fujimori, T. Nagashima, M. Nitta, K. Ohashi, N. Sakai, Multiple layer structure of non-Abelian vortex, Phys. Lett. B 678 (2009), 254–258.
  • [7] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, N. Sakai, Solitons in the Higgs phase – the moduli matrix approach, J. Phys. A 39(26) (2006), R315.
  • [8] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, N. Sakai, Moduli space of non-Abelian vortices, Phys. Rev. Lett. 96(16) (2006), 161601.
  • [9] H. Ge, B. Hua, W. Jiang, A note on Liouville type equations on graphs, Proc. Amer. Math. Soc. 146(11) (2018), 4837-4842.
  • [10] H. Ge, W. Jiang, The 1-Yamabe equation on graphs, Commun. Contemp. Math. 21(08) (2019), 1850040.
  • [11] H. Ge, W. Jiang, Kazdan-Warner equation on infinite graphs, Journal of the Korean Mathematical Society 55 (2018), 1091–1101.
  • [12] S.B. Gudnason, Y. Jiang, K. Konishi, Non-Abelian vortex dynamics: effective world-sheet action,. J. High Energy Phys. 2010(8) (2010), 1-22.
  • [13] A. Grigor’yan, Y. Lin, Y. Yang, Kazdan–Warner equation on graph, Calc. Var. Partial Differential Equations 55 (2016), 1-13.
  • [14] X. Han, A Sharp Existence Theorem for Vortices in the Theory of Branes, Annales Henri Poincaré, 15(12) (2014), 2467-2487.
  • [15] S. Hou, J. Sun, Existence of solutions to Chern–Simons–Higgs equations on graphs, Calc. Var. Partial Differential Equations 61 (2022).
  • [16] Y. Hu, Existence of solutions to a generalized self-dual Chern-Simons equation on finite graphs, J. Korean Math. Soc. 61(1) (2024), 133-147.
  • [17] Y. Hu, Existence and uniqueness of solutions to the Bogomol’nyi equation on graphs, arXiv: 2202.05039 (2022).
  • [18] H.Y. Huang, J. Wang, W. Yang, Mean field equation and relativistic Abelian Chern-Simons model on finite graphs, Journal of Functional Analysis 281(10) (2021), 109218.
  • [19] A. Huang, Y. Lin, S. T. Yau, Existence of solutions to mean field equations on graphs, Comm. Math. Phys. 377 (2019), 613-621.
  • [20] Y. Lü, P. Zhong, Existence of solutions to a generalized self-dual Chern-Simons equation on graphs, arXiv: 2107.12535 (2021).
  • [21] C.S. Lin, Y. Yang, Non-Abelian multiple vortices in supersymmetric field theory, Commun. Math. Phys. 304 (2011), 433–457.
  • [22] C.S. Lin, Y. Yang, Sharp existence and uniqueness theorems for non-Abelian multiple vortex solutions, Nucl. Phys. B 846 (2011), 650–676.
  • [23] Y. Lin, Y. Wu, Blow-up problems for nonlinear parabolic equations on locally finite graphs, Acta Mathematica Scientia 38(3) (2018), 843-856.
  • [24] T. Suyama, Intersecting branes and generalized vortices, arXiv: hep-th/9912261v1.
  • [25] M. Shifman, A. Yung, Non-Abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004), 045004.
  • [26] M. Shifman, A.Yung, Localization of non-Abelian gauge fields on domain walls at weak coupling: D-brane prototypes, Phys. Rev. D 70 (2004), 025013.
  • [27] M. Shifman, A.Yung, Supersymmetric solitons and how they help us understand non-Abelian gauge theories, Rev. Mod. Phys. 79 (2007), 1139 .
  • [28] M. Shifman, A. Yung, Supersymmetric Solitons, Cambridge University Press, 2009.
  • [29] C.H. Taubes, Arbitrary N-vortex solutions to the first order Ginzburg–Landau equations, Commun. Math. Phys. 72 (1980), 277–292.
  • [30] C.H. Taubes, On the equivalence of the first and second order equations for gauge theories, Commun. Math. Phys. 75 (1980), 207–227.
  • [31] G. Tarantello, Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys. 37 (1996) 3769–3796.
  • [32] Canrong Tian, Qunying Zhang, Lai Zhang, Global stability in a networked SIR epidemic model, Appl. Math. Lett. 107 (2020), 106444.
  • [33] D. H. Tchrakian, Y. Yang, The existence of generalised self-dual Chern-Simons vortices, Lett. Math. Phys. 36(4) (1996), 403-413.
  • [34] Y. Wu, On-diagonal lower estimate of heat kernels for locally finite graphs and its application to the semilinear heat equations, Comput. Math. Appl. 76 (2018), 810-817.
  • [35] Y. Wu, On nonexistence of global solutions for a semilinear heat equation on graphs, Nonlinear Analysis 171 (2018), 73-84.
  • [36] Y. Yang, Chern-Simons solitons and a nonlinear elliptic equation, Helv. Phys. Acta 71(5) (1998), 573-585.
  • [37] E. H. Lieb, Y. Yang, Non-Abelian vortices in supersymmetric gauge field theory via direct methods, Communications in Mathematical Physics 313(2) 2012, 445-478.
  • [38] A. Jaffe, C. H. Taubes, Vortices and monopoles, Birkhäuser, Boston (1980).