This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Existence and Optimal Convergence Rates of Multi-dimensional Subsonic Potential Flows Through an Infinitely Long Nozzle with an Obstacle Inside

Lei Ma School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China [email protected]  and  Chunjing Xie School of mathematical Sciences, Institute of Natural Sciences, Ministry of Education Key Laboratory of Scientific and Engineering Computing, and SHL-MAC, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China [email protected]
Abstract.

In this paper, the well-posedness and optimal convergence rates of subsonic irrotational flows through a three dimensional infinitely long nozzle with a smooth obstacle inside are established. More precisely, the global existence and uniqueness of the uniformly subsonic flow are obtained via variational formulation as long as the incoming mass flux is less than a critical value. Furthermore, with the aid of delicate choice of weight functions, we prove the optimal convergence rates of the flow at far fields via weighted energy estimates and Nash-Moser iteration.
Keywords: Subsonic flows, Potential equation, Nozzles, Optimal convergence rates, Body

1. Introduction

The study on compressible inviscid flows provides many significant and challenging problems. The flows past a body, through a nozzle, and past a wall are typical flow patterns which have physical significance and also include the physical effects [3]. The first rigorous mathematical analysis on the problem for irrotational flows past a body is due to Frankl and Keldysh[23]. The important progress for subsonic flows with prescribed circulation was made by Shiffman [39] via the variational approach. Later on, Bers [2] proved the existence of two dimensional irrotational subsonic flows around a profile with a sharp trailing edge if the free stream Mach number is less than a critical value. The uniqueness and asymptotic behavior of the subsonic plane flows were established in [20]. The study of three dimensional irrotational flows around a smooth body was initiated in [21] by Finn and Gilbarg. For the three (or higher) dimensional case, the existence of uniform subsonic irrotational flows around a smooth body was established by Dong [14, 15] in a weighted function space as long as the incoming Mach number is less than a critical value. When the vorticity of the flow is not zero, the Euler system for subsonic solutions is a hyperbolic-elliptic coupled system so that the problem for flows past a body becomes much harder. The well-posedness theory for two dimensional subsonic flows past a wall or a symmetric body was established in [4]. As far as transonic flows past a profile is concerned, it was proved by Morawetz [32, 33, 34, 35] that the smooth transonic flows past an airfoil are usually unstable with respect to the perturbations of the physical boundaries. Later on, Morawetz initiated a program to prove the existence of weak solutions for irrotational flows by the method of compensated compactness [36, 37]. The compensated compactness method was successfully used to deal with subsonic-sonic flows recently, see [7, 10, 27, 42] and reference therein.

The irrotational flows through infinitely long nozzles were first studied in [42, 44] where the authors established the existence and uniqueness of global subsonic flows through two dimensional or three dimensional axially symmetric nozzles as long as the flux is less than a critical value. The existence and uniqueness of the irrotational uniformly subsonic flows in the multidimensional nozzle were established in [18] by the variational method. For subsonic flows with nonzero vorticity, the existence of solutions in two dimensional nozzles was first proved in [43] when the mass flux is less than a critical value and the variation of Bernoulli’s function is sufficiently small. Furthermore, the existence of two dimensional subsonic flows and their optimal convergence rates at far fields were established in [17] for a large class of subsonic flows with large vorticity. Later on, the existence of general two dimensional subsonic flows even with characteristic discontinuity was proved in [11]. Subsonic flows with non-zero vorticity through infinitely long nozzles were also studied in various settings, such as axially symmetric flows, two dimensional periodic flows, etc, see[6, 44, 5, 16] and reference therein. Recently, the subsonic-sonic flow in a convergent nozzle with straight solid walls was studied in [40] and the properties of the sonic curve were investigated in [41]. We would like to mention that there are important progress on stability of transonic shocks in nozzles, see [45, 46, 8] and reference therein., where the key issue is to study subsonic solutions around some background solutions with shocks as free boundary.

Note that, the wind tunnel experiment can be regarded as the problem for flows past an obstacle in a nozzle. Our ultimate goal is to study the well-posedness theory for multidimensional subsonic flows past a non-smooth body (an open problem posed in [14]) and through nozzles with a non-smooth body inside. As a first step, in this paper, we study the well-posedness and the optimal convergence rates at far fields for muiti-dimensional subsonic flows through nozzles with a smooth body inside.

Consider the isentropic compressible Euler equations as follows

(1) {div(ρ𝐮)=0,div(ρ𝐮𝐮)+p=0,\begin{cases}{\rm div}(\rho{\bf u})=0,\\ {\rm div}(\rho{\bf u}\otimes{\bf u})+\nabla p=0,\end{cases}

where ρ\rho represents density, 𝐮=(u1,u2,u3){\bf u}=(u_{1},u_{2},u_{3}) is the flow velocity and pp is the pressure given by the equation of states p=p(ρ)p=p(\rho). In this paper, we always assume p(ρ)>0p^{\prime}(\rho)>0 and p′′(ρ)0p^{\prime\prime}(\rho)\geq 0 for ρ>0\rho>0. For the polytropic gas, the pressure is given by p=Aργp=A\rho^{\gamma}, where AA is a positive number and γ>0\gamma>0 is called the adiabatic exponent.

Suppose that the flow is irrotational, i.e.,

(2) ×𝐮=0.\nabla\times{\bf u}=0.

Thus, there exists a potential function ϕ\phi such that

(3) 𝐮(x)=ϕ.{\bf u}(x)=\nabla\phi.

With the aid of (1) and (2), the following Bernoulli’s law holds for irrotational flows ([13]),

(4) 12|ϕ|2+h(ρ)C,\frac{1}{2}|{\nabla\phi}|^{2}+h(\rho)\equiv C,

where CC is a constant and h(ρ)h(\rho) is the enthalpy defined by h(ρ)=p(ρ)ρh^{\prime}(\rho)=\frac{p^{\prime}(\rho)}{\rho}. It follows from (4) that ρ\rho can be written as ρ(|ϕ|2)\rho(|\nabla\phi|^{2}). Using the mass conservation in (1), the Euler equations can be reduced to the potential equation

(5) div(ρ(|ϕ|2)ϕ)=0.{\rm div}(\rho(|\nabla\phi|^{2})\nabla\phi)=0.

Denote c(ρ)=p(ρ)c(\rho)=\sqrt{p^{\prime}(\rho)} which is called the sound speed. It is easy to check that when |𝐮|>c(ρ)|{\bf u}|>c(\rho) (i.e. the flow is supersonic), the equation (5) is hyperbolic; while if |𝐮|<c(ρ)|{\bf u}|<c(\rho) (i.e. the flow is subsonic), the equation (5) is elliptic. Moreover, there is a critical speed qcrq_{cr} such that |𝐮|<c(ρ)|{\bf u}|<c(\rho) if and only if |𝐮|<qcr|{\bf u}|<q_{cr} ([13]). Thus one can normalize (ρ,𝐮)(\rho,{\bf u}) as follows

(6) 𝐮^=𝐮qcrandρ^=ρρ(qcr2).{\bf\hat{u}}=\frac{{\bf u}}{q_{cr}}\quad\text{and}\quad\hat{\rho}=\frac{\rho}{\rho(q_{cr}^{2})}.

With an abuse of the notation, we still use 𝐮{\bf u} and ρ\rho rather than 𝐮^\bf\hat{u} and ρ^\hat{\rho} later. Denote q=|𝐮|q=|\bf u|. It is easy to see that ρq1\rho q\leq 1 for q0q\geq 0 and the subsonic flow means |𝐮|<1|{\bf u}|<1 or ρ>1\rho>1.

We consider the domain to be a nozzle Ω~\tilde{\Omega} which contains an obstacle Ω\Omega^{\prime} inside. By using the cylindrical coordinates, Ω~\tilde{\Omega} and Ω\Omega^{\prime} can be written as

(7) Ω~={(r,θ,x3)|r<f1(θ,x3),θ[0,2π),x3}\tilde{\Omega}=\bigg{\{}(r,\theta,x_{3})\big{|}\,r<f_{1}(\theta,x_{3}),\,\theta\in[0,2\pi),\,x_{3}\in\mathbb{R}\bigg{\}}

and

(8) Ω={(r,θ,x3)|r<f2(θ,x3),θ[0,2π),L1x3L2},\Omega^{\prime}=\bigg{\{}(r,\theta,x_{3})\big{|}\,r<f_{2}(\theta,x_{3}),\,\theta\in[0,2\pi),\,L_{1}\leq x_{3}\leq L_{2}\bigg{\}},

respectively, where L1L_{1} and L2L_{2} are constants. Assume

(9) 0f2Cand1Cf1f2Cfor anyθ[0,2π),x3[L1,L2],0\leq f_{2}\leq C\quad\text{and}\quad\frac{1}{C}\leq f_{1}-f_{2}\leq C\quad\text{for any}\,\theta\in[0,2\pi),\,x_{3}\in[L_{1},L_{2}],

and

(10) 1Cf1Cfor anyθ[0,2π),x3,\frac{1}{C}\leq f_{1}\leq C\quad\text{for any}\,\theta\in[0,2\pi),\,x_{3}\in\mathbb{R},

where CC is a positive constant. Without loss of generality, assume the origin OΩO\in\Omega^{\prime}. Moreover, suppose that Ω~\partial\tilde{\Omega} and Ω\partial\Omega^{\prime} are C2,αC^{2,\alpha}. In the rest of the paper, denote

(11) Ω=Ω~ΩandΣt=Ω{x3=t}.{\Omega}=\tilde{\Omega}\setminus\Omega^{\prime}\quad\text{and}\quad\Sigma_{t}=\Omega\cap\{x_{3}=t\}.

We consider subsonic flows in Ω\Omega which satisfy the slip boundary conditions on the solid walls. The problem can be formulated as follows

(12) {div(ρ(|ϕ|2)ϕ)=0inΩ,ϕn=0onΩ,Σtρ(|ϕ|2)ϕl𝑑s=m0,|ϕ|<1,\begin{cases}{\rm div}(\rho(|\nabla\phi|^{2})\nabla\phi)=0&\text{in}\ \Omega,\\[5.69054pt] \frac{\partial\phi}{\partial\textbf{n}}=0&\text{on}\ \partial\Omega,\\[5.69054pt] \int_{\Sigma_{t}}\rho(|\nabla\phi|^{2})\frac{\partial\phi}{\partial\textbf{l}}ds=m_{0},\\[5.69054pt] |\nabla\phi|<1,\end{cases}

where n is the unit outer normal of Ω\Omega and l is the unit normal pointed to the right of Σt\Sigma_{t}, respectively. m0m_{0} is the mass flux of the flow across the nozzle, which is conserved through each cross section.

Refer to caption
Figure 1. Domain of the problem

Our first main results can be stated as follows.

Theorem 1.

There exists a critical value m^\hat{m} such that

(i) if the mass flux m0<m^m_{0}<\hat{m}, there exists a uniformly subsonic flow through Ω{\Omega}, i.e. there exists a solution ϕ\phi which solves the problem (12) and satisfies

(13) Q(m0)=supΩ¯|ϕ|<1.Q(m_{0})=\sup_{\overline{\Omega}}|\nabla\phi|<1.

Moreover,

(14) ϕC1,α(Ω)Cm0,\|\nabla\phi\|_{C^{1,\alpha}({\Omega})}\leq Cm_{0},

where CC is a constant independent of m0m_{0}.

(ii) The value of Q(m0)Q(m_{0}) ranges over [0,1)[0,1) as m0m_{0} varies in [0,m^)[0,\hat{m}).

Furthermore, if the additional structure of the nozzle is known, we have the following optimal convergence rates of the flows at far fields.

Theorem 2.

Let Σ¯={(r,θ)|rf¯,θ[0,2π)}\overline{\Sigma}=\{(r,\theta)|\,r\leq\bar{f},\,\theta\in[0,2\pi)\} with positive constants f¯\bar{f} and q¯\bar{q} satisfying ρ(q¯2)q¯=m0/(2πf¯2)\rho(\bar{q}^{2})\bar{q}=m_{0}/(2\pi\bar{f}^{2}) and q¯c(ρ(q¯2))\bar{q}\leq c\big{(}{\rho(\bar{q}^{2})}\big{)}.

(i) If the nozzle is a straight cylinder in the downstream, i.e. Ω{x3K}=Σ¯×[K,+)\Omega\cap\{x_{3}\geq K\}=\overline{\Sigma}\times[K,+\infty) for some positive KK, then there exists a positive constant 𝔡\mathfrak{d} such that

(15) |ϕ(0,0,q¯)|Ce𝔡x3for xΩ{x3K},|\nabla\phi-(0,0,\bar{q})|\leq Ce^{-{\mathfrak{d}x_{3}}}\quad\text{for $x\in\Omega\cap\{x_{3}\geq K\}$},

where CC is a constant independent of x3x_{3}.

(ii) If there exists a K>0K>0 such that

(16) k=02|x3kk(f1f¯)|Cx3lfor x3>K,\sum\limits_{k=0}^{2}\big{|}x_{3}^{k}\partial^{k}(f_{1}-\bar{f})\big{|}\leq\frac{C}{x_{3}^{l}}\quad\text{for $x_{3}>K$},

with some constant l>0l>0, then the velocity field satisfies

(17) |ϕ(0,0,q¯)|Cx3lfor xΩ{x3K},|\nabla\phi-(0,0,\bar{q})|\leq Cx_{3}^{-{l}}\quad\text{for $x\in\Omega\cap\{x_{3}\geq K\}$},

where CC is a constant independent of x3x_{3}. Similarly, if the boundary of the nozzle satisfying the same asymptotic behavior as (16) at the upstream, the same conclusion as (17) holds at the upstream.

There are few remarks in order.

Remark 1.

The convergence rates (15) and (17) do not depend on Ω\Omega^{\prime}. Hence the convergence rates also hold for subsonic flows in nozzles obtained in [18] .

Remark 2.

The convergence rate (17) is optimal. Indeed, suppose that there exists a constant CC such that

(18) |f1f¯|=Cx3lfor x3>K.|f_{1}-\bar{f}|=\frac{C}{x_{3}^{l}}\quad\text{for $x_{3}>K$}.

It follows from the definition of q¯\bar{q} that

(19) 0=Σx3ρ(|ϕ|2)3ϕdxΣ¯ρ(q¯2)q¯𝑑x=Σx3ρ(|ϕ|2)3ϕρ(q¯2)q¯dx+π(f2f¯2)ρ(q¯2)q¯.\begin{split}0&=\int_{\Sigma_{x_{3}}}\rho(|\nabla\phi|^{2})\partial_{3}\phi dx^{\prime}-\int_{\overline{\Sigma}}\rho{(\bar{q}^{2}})\bar{q}dx^{\prime}\\ &=\int_{\Sigma_{x_{3}}}\rho(|\nabla\phi|^{2})\partial_{3}\phi-\rho{(\bar{q}^{2}})\bar{q}dx^{\prime}+\pi(f^{2}-\bar{f}^{2})\rho(\bar{q}^{2})\bar{q}.\end{split}

The straightforward computations yield that

(20) Σx3ρ(|ϕ|2)3ϕρ(q¯2)q¯dx=Σx3(ρ(|ϕ|2)ρ(q¯2))q¯+ρ(|ϕ|2)(3ϕq¯)dx=Σx3q¯[ρ(q¯2)(|ϕ|2q¯2)+O((|ϕ|2q¯2)2)]+ρ(|ϕ|2)(3ϕq¯)dx=Σx3[q¯ρ(q¯2)(3ϕ+q¯)+ρ(|ϕ|2)](3ϕq¯)+q¯ρ(q¯2)[|1ϕ|2+|2ϕ|2]+O((|ϕ|2q¯2)2).\begin{split}&\quad\int_{\Sigma_{x_{3}}}\rho(|\nabla\phi|^{2})\partial_{3}\phi-\rho{(\bar{q}^{2}})\bar{q}dx^{\prime}\\ &=\int_{\Sigma_{x_{3}}}\bigg{(}\rho(|\nabla\phi|^{2})-\rho(\bar{q}^{2})\bigg{)}\bar{q}+\rho(|\nabla\phi|^{2})(\partial_{3}\phi-\bar{q})dx^{\prime}\\ &=\int_{{\Sigma}_{x_{3}}}\bar{q}\bigg{[}\rho^{\prime}(\bar{q}^{2})\big{(}|\nabla\phi|^{2}-\bar{q}^{2}\big{)}+O\bigg{(}\big{(}|\nabla\phi|^{2}-\bar{q}^{2}\big{)}^{2}\bigg{)}\bigg{]}+\rho(|\nabla\phi|^{2})(\partial_{3}\phi-\bar{q})dx^{\prime}\\ &=\int_{\Sigma_{x_{3}}}\big{[}\bar{q}\rho^{\prime}(\bar{q}^{2})(\partial_{3}\phi+\bar{q})+\rho(|\nabla\phi|^{2})\big{]}(\partial_{3}\phi-\bar{q})+\bar{q}\rho^{\prime}(\bar{q}^{2})\big{[}|\partial_{1}\phi|^{2}+|\partial_{2}\phi|^{2}\big{]}\\ &\quad\quad+O\bigg{(}\big{(}|\nabla\phi|^{2}-\bar{q}^{2}\big{)}^{2}\bigg{)}.\end{split}

Combining (17), (19) and (20) yields that there exists a constant C~\tilde{C} such that

(21) maxxΣx3|3ϕq¯|C~x3lfor x3 sufficiently large.\max\limits_{x\in\Sigma_{x_{3}}}|\partial_{3}\phi-\bar{q}|\geq\frac{\tilde{C}}{x_{3}^{l}}\quad\text{for $x_{3}$ sufficiently large.}

This implies that the convergence rate (17) is optimal.

Remark 3.

Applying the compensated compactness framework developed in [27, Theorem 2.1], one can obtain the existence of the weak subsonic-sonic solutions through an infinitely long nozzle with a body inside.

Here we give the key ideas and comments on main techniques for the proof of Theorems 1 and 2. The existence of weak solutions is obtained via the variational method inspired by [18] where the major new difficulty is the average estimate presented in Lemma 1. The regularity of weak solutions is improved since the subsonic potential flows are governed by elliptic equations. The key issue to prove convergence rates of subsonic flows at far fields is to study the asymptotic behavior of gradient of solutions to quasilinear elliptic equations. The first difficulty to study the convergence rates is that the domain is of cylindrical type so that it is not easy to use Kelvin transformation to study the asymptotic behavior as what has been done for flows past a body. The another difficulty is that the potential function is not bounded in LL^{\infty}-norm so that it is hard for us to adapt the approach developed in [17] for two dimensional flows which is based on the maximum principle. Some studies on far fields behavior for solution of elliptic equations in cylindrical domains can be found in [30, 22, 12]. Inspired by the work [38], we combine the convergence rates of the boundaries and the weighted energy estimate with delicate choice of weight to get an L2L^{2}- decay of gradients of the velocity potential. LL^{\infty}-norm of the ϕ\nabla\phi is established via Nash-Moser iteration.

The rest of this paper is organized as follows. In Section 22, we adapt the variational method in [18] to establish the existence of subsonic solutions. In Sections 33, the optimal convergence rates of velocity at far fields are established..

2. Existence and uniqueness of subsonic solution with small flux

In order to deal with the possible degeneracy near sonic state, we first study the problem with subsonic truncation so that the truncated equation is uniformly elliptic. The key ingredient is a priori estimate for the truncated domain.

2.1. Subsonic solutions of the truncated problem

When |ϕ||\nabla\phi| goes to 11, the potential equation (5) is not uniformly elliptic. Another difficulty for the problem (12) is that the domain Ω{\Omega} is not bounded. To overcome these difficulties, we truncate both the coefficients and the domain. Define Hϵ(s2)H_{\epsilon}(s^{2}) and Fϵ(q2)F_{\epsilon}(q^{2}) as follows

(22) Hϵ(s2)={ρ(s2)if s2<12ϵ,smooth and decreasingif 12ϵs21ϵ,ρ(13ϵ2)if s21ϵH_{\epsilon}(s^{2})=\begin{cases}\rho(s^{2})&\ \text{if $s^{2}<1-2\epsilon$},\\ \text{smooth and decreasing}&\ \text{if $1-2\epsilon\leq s^{2}\leq 1-\epsilon$},\\ \rho(1-\frac{3\epsilon}{2})&\ \text{if $s^{2}\geq 1-\epsilon$}\end{cases}

and

(23) Fϵ(q2)=120q2Hϵ(τ)𝑑τ,F_{\epsilon}(q^{2})=\frac{1}{2}\int_{0}^{q^{2}}H_{\epsilon}(\tau)d\tau,

where ϵ\epsilon is a small positive constant. One can easily check that there exists a positive constant C(ϵ)C(\epsilon) depending on ϵ\epsilon such that

(24) 1C(ϵ)q2Fϵ(q2)C(ϵ)q2and1C(ϵ)Hϵ(s2)+2Hϵ(s2)s2<Hϵ(s2)<C(ϵ).\frac{1}{C(\epsilon)}q^{2}\leq F_{\epsilon}(q^{2})\leq C(\epsilon)q^{2}\quad\text{and}\quad\frac{1}{C(\epsilon)}\leq H_{\epsilon}(s^{2})+2H_{\epsilon}^{\prime}(s^{2})s^{2}<H_{\epsilon}(s^{2})<C(\epsilon).

Denote

(25) aij(ϕ)=Hϵ(|ϕ|2)δij+2Hϵ(|ϕ|)iϕjϕ.a_{ij}(\nabla\phi)=H_{\epsilon}(|\nabla\phi|^{2})\delta_{ij}+2H_{\epsilon}^{\prime}(|\nabla\phi|)\partial_{i}\phi\partial_{j}\phi.

It is easy to see that there exist two positive constants λ\lambda and Λ\Lambda such that

(26) λ|ξ|2<aijξiξj<Λ|ξ|2,for any ξ3,\lambda|\xi|^{2}<a_{ij}\xi_{i}\xi_{j}<\Lambda|\xi|^{2},\quad\text{for any $\xi\in\mathbb{R}^{3}$},

where the repeated indices mean the summation for ii, jj from 11 to 33. This convention is used in the whole paper.

For any sufficiently large positive number LL and any set UU, denote

ΩL=Ω{|x3|<L}andUf𝑑x=1|U|Uf𝑑x,\Omega_{L}=\Omega\cap\big{\{}|x_{3}|<L\big{\}}\quad\text{and}\quad\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{U}fdx=\frac{1}{|U|}\int_{U}fdx,\quad

where fL1(U)f\in L^{1}(U). Later on, the following notations will be used

S¯=inft|Σt|andS¯=supt|Σt|.\overline{\text{S}}=\inf\limits_{t\in\mathbb{R}}|{\Sigma}_{t}|\quad\text{and}\quad\underline{\text{S}}=\sup\limits_{t\in\mathbb{R}}|{\Sigma}_{t}|.

In order to study the problem (12), we consider the truncated problem:

(27) {div(Hϵ(|ϕ|2)ϕ)=0in ΩL,ϕn=0on ΩL,Hϵ(|ϕ|2)ϕx3=m0|ΣL|on ΣL,ϕ=0onΣL.\begin{cases}{\rm div}(H_{\epsilon}(|\nabla\phi|^{2})\nabla\phi)=0&\text{in }{\Omega}_{L},\\ \frac{\partial\phi}{\partial\textbf{n}}=0&\text{on }\partial\Omega_{L},\\ H_{\epsilon}(|\nabla\phi|^{2})\frac{\partial\phi}{\partial x_{3}}=\frac{m_{0}}{|\Sigma_{L}|}&\text{on }\Sigma_{L},\\ \phi=0&\text{on}\,\Sigma_{-L}.\end{cases}

Define the space

(28) L={ϕH1(ΩL):ϕ=0 on ΣL}.\mathcal{H}_{L}=\{\phi\in H^{1}({\Omega}_{L}):\phi=0\text{ on }\Sigma_{-L}\}.

It is easy to see that L\mathcal{H}_{L} is a Hilbert space under H1H^{1} norm. ϕ\phi is said to be a weak solution of the problem (27) in L\mathcal{H}_{L} if

(29) ΩLHϵ(|ϕ|2)ϕψdxm0|ΣL|ΣLψ𝑑x=0,for any ψL.\int_{{\Omega}_{L}}H_{\epsilon}(|\nabla\phi|^{2})\nabla\phi\cdot\nabla\psi dx-\frac{m_{0}}{|\Sigma_{L}|}\int_{\Sigma_{L}}\psi dx^{\prime}=0,\quad\text{for any $\psi\in\mathcal{H}_{L}.$}

Define

(30) L(ψ)=ΩLFϵ(|ψ|2)𝑑xm0|ΣL|ΣLψ𝑑x.\mathcal{I}_{L}(\psi)=\int_{{\Omega}_{L}}F_{\epsilon}(|\nabla\psi|^{2})dx-\frac{m_{0}}{|\Sigma_{L}|}\int_{\Sigma_{L}}\psi dx^{\prime}.

The straightforward calculations show that if ϕ\phi is a minimizer of L\mathcal{I}_{L}, i.e.,

(31) L(ϕ)=minψLL(ψ),\mathcal{I}_{L}(\phi)=\min_{\psi\in\mathcal{H}_{L}}\mathcal{I}_{L}(\psi),

then ϕ\phi must satisfy (29).

First, we have the following lemma on the existence of minimizer and basic estimate for the minimizer of the problem (31).

Lemma 1.

For any sufficiently large LL, L(ψ)\mathcal{I}_{L}(\psi) has a minimizer ϕL\phi\in\mathcal{H}_{L}. Moreover, this minimizer satisfies

(32) ΩL|ϕ|2𝑑xCm02,\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{{\Omega}_{L}}|\nabla\phi|^{2}dx\leq Cm_{0}^{2},

where CC is independent of LL.

Proof.

Given a fixed positive constant M>1M>1, let UMU_{M} be a domain satisfying UMΩMU_{M}\subset{\Omega}_{M}, UM{x3=±M}=Σ±MU_{M}\cap\{x_{3}=\pm M\}=\Sigma_{\pm M} and ΩUM=.\Omega^{\prime}\cap U_{M}=\emptyset. Define UL=UM(ΩLΩM){U}_{L}=U_{M}\cup\big{(}\Omega_{L}\setminus\Omega_{M}\big{)}. Furthermore, one can choose UMU_{M} such that UL(ΣLΣL)\partial U_{L}\setminus(\Sigma_{-L}\cup\Sigma_{L}) is C2,αC^{2,\alpha}. Obviously ULΩLU_{L}\subset\Omega_{L} (See figure 2). Let B1(0)2B_{1}(0)\subset\mathbb{R}^{2} be the unit disk centered at origin. Denote 𝒞L=B1(0)×{Lx3L}\mathscr{C}_{L}=B_{1}(0)\times\{-L\leq x_{3}\leq L\}. It is easy to see that there exists an invertiable C2,νC^{2,\nu} map 𝒯\mathcal{T}: UL𝒞L{U}_{L}\rightarrow\mathscr{C}_{L}, xyx\rightarrow y satisfying
(i) 𝒯(UL)=𝒞L\mathcal{T}(\partial{U}_{L})=\partial\mathscr{C}_{L}.
(ii) For any LkL-L\leq k\leq L, 𝒯(UL{x3=k})=B1(0)×{y3=k}\mathcal{T}({U}_{L}\cap\{x_{3}=k\})=B_{1}(0)\times\{y_{3}=k\}.
(iii)𝒯C2,ν,𝒯1C2,νC\|\mathcal{T}\|_{C^{2,\nu}},\ \|\mathcal{T}^{-1}\|_{C^{2,\nu}}\leq C.

Refer to caption
Figure 2. Domain of ULU_{L}

It follows from the straightforward computations that

(33) |ΣLψ𝑑x|CB1(0)|ψ(y,L)|𝑑yCB1(0)(LL|y3ψ|𝑑y3)𝑑yC𝒞L|Dψ|𝑑yCUL|ψ|𝑑xCΩL|ψ|𝑑x.\begin{split}\bigg{|}\int_{\Sigma_{L}}\psi dx^{\prime}\bigg{|}&\leq C\int_{B_{1}(0)}|\psi(y^{\prime},L)|dy^{\prime}\leq C\int_{B_{1}(0)}\bigg{(}\int_{-L}^{L}|\partial_{y_{3}}\psi|dy_{3}\bigg{)}dy^{\prime}\\ &\leq C\int_{\mathscr{C}_{L}}|D\psi|dy\leq C\int_{{U}_{L}}|\nabla\psi|dx\leq C\int_{{\Omega}_{L}}|\nabla\psi|dx.\end{split}

Applying Ho¨\ddot{\text{o}}lder inequality yields

(34) |ΣLψ𝑑x|C|ΩL|12ψL2(ΩL).\bigg{|}\int_{\Sigma_{L}}\psi dx^{\prime}\bigg{|}\leq C|{\Omega}_{L}|^{\frac{1}{2}}\|\nabla\psi\|_{L^{2}(\Omega_{L})}.

The constant CC here and subsequently in the rest of the paper may change from line to line as long as what these constants depend on is clear. Substituting the estimate (34) into (30), one can conclude that

(35) L(ψ)=ΩLFϵ(|ψ|2)𝑑xm0|ΣL|ΣLψ𝑑xλΩL|ψ|2𝑑xCψL2(ΩL)λ2ψL2(ΩL)21λC,\begin{split}\mathcal{I}_{L}(\psi)&=\int_{{\Omega}_{L}}F_{\epsilon}(|\nabla\psi|^{2})dx-\frac{m_{0}}{|\Sigma_{L}|}\int_{\Sigma_{L}}\psi dx^{\prime}\\ &\geq\lambda\int_{{\Omega}_{L}}|\nabla\psi|^{2}dx-C^{\prime}\|\nabla\psi\|_{L^{2}({\Omega}_{L})}\\ &\geq\frac{\lambda}{2}\|\nabla\psi\|_{L^{2}({\Omega}_{L})}^{2}-\frac{1}{\lambda}C^{\prime},\end{split}

where CC^{\prime} depends on m0m_{0}, S¯\overline{\text{S}}, S¯\underline{\text{S}}, and |ΩL||{\Omega}_{L}|. This implies that the functional L(ψ)\mathcal{I}_{L}(\psi) is coercive. Hence L(ψ)\mathcal{I}_{L}(\psi) has an infimum. Let {ϕk}\{\phi_{k}\} be a minimizing sequence. One has

(36) ϕkL2(ΩL)22λL(ϕk)+2λ2C2λL(0)+2λ2C2λ2C.\|\nabla\phi_{k}\|_{L^{2}({\Omega}_{L})}^{2}\leq\frac{2}{\lambda}\mathcal{I}_{L}(\phi_{k})+\frac{2}{\lambda^{2}}C^{\prime}\leq\frac{2}{\lambda}\mathcal{I}_{L}(0)+\frac{2}{\lambda^{2}}C^{\prime}\leq\frac{2}{\lambda^{2}}C^{\prime}.

Therefore, there is a subsequence still labeled by {ϕk}\{\phi_{k}\} such that

(37) ϕkϕin Landϕkϕ in L2(ΩL).\phi_{k}\rightharpoonup\phi\quad\text{in $\mathcal{H}_{L}$}\quad\text{and}\quad\phi_{k}\rightarrow\phi\text{ in }L^{2}(\Omega_{L}).

The straightforward computations show that Fϵ(|𝐩|2)F_{\epsilon}(|{\bf{p}}|^{2}) is a convex function with respect to 𝐩3{\bf{p}}\in\mathbb{R}^{3}. It follows from [19, Theorem 8.1] that

(38) ΩLFϵ(|ϕ|2)limkΩLFϵ(|ϕk|2).\int_{{\Omega}_{L}}F_{\epsilon}(|\nabla\phi|^{2})\leq\lim_{k\rightarrow\infty}\int_{{\Omega}_{L}}F_{\epsilon}(|\nabla\phi_{k}|^{2}).

On the other hand, similar to (33), the following estimates hold,

(39) ΣL(ϕkϕ)2𝑑xC(L)ΩL|((ϕkϕ)2)|𝑑xC(L)ΩL|ϕϕk||ϕkϕ|𝑑xC(L)(ΩL|ϕϕk|2𝑑x)12(ΩL|ϕϕk|2𝑑x)12,\begin{split}\int_{\Sigma_{L}}(\phi_{k}-\phi)^{2}dx&\leq C(L)\int_{{\Omega}_{L}}\bigg{|}\nabla\big{(}(\phi_{k}-\phi)^{2}\big{)}\bigg{|}dx\\[5.69054pt] &\leq C(L)\int_{{\Omega}_{L}}|\phi-\phi_{k}|\cdot|\nabla\phi_{k}-\nabla\phi|dx\\[5.69054pt] &\leq C(L)\bigg{(}\int_{{\Omega}_{L}}|\phi-\phi_{k}|^{2}dx\bigg{)}^{\frac{1}{2}}\bigg{(}\int_{{\Omega}_{L}}|\nabla\phi-\nabla\phi_{k}|^{2}dx\bigg{)}^{\frac{1}{2}},\end{split}

where C(L)C(L) is a constant depending on LL. This, together with (37), yields

(40) limkΣL|ϕkϕ|𝑑x=0.\lim_{k\rightarrow\infty}\int_{\Sigma_{L}}|\phi_{k}-\phi|dx^{\prime}=0.

Therefore,

(41) L(ϕ)limkL(ϕk).\mathcal{I}_{L}(\phi)\leq\lim_{k\rightarrow\infty}\mathcal{I}_{L}(\phi_{k}).

Hence L\mathcal{I}_{L} achieves its minimum at ϕL\phi\in\mathcal{H}_{L}. Furthermore, one has

(42) ϕL2(ΩL)21λΩLFϵ(|ϕ|2)𝑑x=1λ(L(ϕ)+m0|ΣL|ΣLϕ𝑑x)1λ(L(0)+m0|ΣL|ΣLϕ𝑑x)Cm0|ΣL||ΩL|12ϕL2(ΩL).\begin{split}\|\nabla\phi\|_{L^{2}(\Omega_{L})}^{2}&\leq\frac{1}{\lambda}\int_{{\Omega}_{L}}F_{\epsilon}(|\nabla\phi|^{2})dx=\frac{1}{\lambda}\bigg{(}\mathcal{I}_{L}(\phi)+\frac{m_{0}}{|\Sigma_{L}|}\int_{\Sigma_{L}}\phi dx^{\prime}\bigg{)}\\ &\leq\frac{1}{\lambda}\bigg{(}\mathcal{I}_{L}(0)+\frac{m_{0}}{|\Sigma_{L}|}\int_{\Sigma_{L}}\phi dx^{\prime}\bigg{)}\leq C\frac{m_{0}}{|\Sigma_{L}|}|{\Omega}_{L}|^{\frac{1}{2}}\|\nabla\phi\|_{L^{2}({\Omega}_{L})}.\end{split}

This implies

(43) ϕL2(ΩL)2Cm02|ΣL|2|ΩL|.\|\nabla\phi\|_{L^{2}(\Omega_{L})}^{2}\leq C\frac{m_{0}^{2}}{|\Sigma_{L}|^{2}}|{\Omega}_{L}|.

Therefore, we have

(44) 1|ΩL|ΩL|ϕ|2𝑑xCm02|ΣL|2Cm02S¯2.\frac{1}{|{\Omega}_{L}|}\int_{{\Omega}_{L}}|\nabla\phi|^{2}dx\leq C\frac{m_{0}^{2}}{|\Sigma_{L}|^{2}}\leq C\frac{m_{0}^{2}}{\underline{\text{S}}^{2}}.

Finally, given any tt\in\mathbb{R} and any function ψL\psi\in\mathcal{H}_{L}, obviously ϕ+tψL\phi+t\psi\in\mathcal{H}_{L}. Let σ(t)=L(ϕ+tψ)\sigma(t)=\mathcal{I}_{L}(\phi+t\psi). Since σ(t)\sigma(t) achieves its minimum at t=0t=0, one has σ(0)=0.\sigma^{\prime}(0)=0. The straightforward computations give

(45) 0=σ(0)=ΩLHϵ(|ϕ|2)ϕψdxm0|ΣL|ΣLψ𝑑x.0=\sigma^{\prime}(0)=\int_{{\Omega}_{L}}H_{\epsilon}(|\nabla\phi|^{2})\nabla\phi\cdot\nabla\psi dx-\frac{m_{0}}{|\Sigma_{L}|}\int_{\Sigma_{L}}\psi dx^{\prime}.

This means that ϕ\phi is a weak solution of (27). Hence the proof of the lemma is completed. ∎

From now on, denote Ω(t1,t2)=Ω{t1<x3<t2}\Omega(t_{1},t_{2})={\Omega}\cap\{t_{1}<x_{3}<t_{2}\}. With Lemma 1, similar to the proof for [18, Proposition 4], we have the following two propositions.

Proposition 1.

For given t1<t2t_{1}<t_{2}, let

l1=Ω(t11,t1)ϕ𝑑xandl2=Ω(t2,t2+1)ϕ𝑑x.l_{1}=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\Omega(t_{1}-1,t_{1})}\phi dx\quad\text{and}\quad l_{2}=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\Omega(t_{2},t_{2}+1)}\phi dx.

It holds that

(46) |l2l1|CΩ(t11,t2+1)|ϕ|𝑑x,|l_{2}-l_{1}|\leq C\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\phi|dx,

where CC is a positive constant depending on Ω\Omega, independent of t1t_{1} and t2t_{2}.

Proposition 2.

Let ϕ\phi be a solution of the problem (27). For any t(L4,L4)t\in\big{(}\frac{-L}{4},\frac{L}{4}\big{)}, one has

(47) Ω(t,t+1)|ϕ|2𝑑x<Cm02.\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\Omega(t,t+1)}|\nabla\phi|^{2}dx<Cm_{0}^{2}.

where CC is not dependent on tt.

Since ϕ\phi is a weak solution of a quasilinear elliptic equation of divergence form, similar to [18, Lemmas 6 and 7], using the Nash-Moser iteration yields that there exists a positive constant N<L2N^{\prime}<\frac{L}{2} such that

(48) ϕL(Ω(K,K))Cm0andϕC0,α(Ω(K,K))Cm0for K(N,L2).\|\nabla\phi\|_{L^{\infty}(\Omega(-K^{\prime},K^{\prime}))}\leq Cm_{0}\quad\text{and}\quad\|\nabla\phi\|_{C^{0,\alpha}(\Omega(-K^{\prime},K^{\prime}))}\leq Cm_{0}\quad\text{for $K^{\prime}\in(N^{\prime},\frac{L}{2})$}.

2.2. The existence and uniqueness of the subsonic flows

Now, we are in position to prove the existence and uniqueness of the subsonic solution in the whole domain Ω\Omega and remove the coefficients truncations (22) for the equation (27).

Lemma 2.

There exists a critical value m^>0\hat{m}>0 such that if m0<m^m_{0}<\hat{m}, then there exists a unique subsonic solution of (12). Moreover, maxxΩ|ϕ|\max\limits_{x\in\Omega}|\nabla\phi| is a continuous function of m0m_{0}.

Proof.

For any fixed x^Ω\hat{x}\in{\Omega}, choose LL large enough such that x^Ω(L4,L4)\hat{x}\in{\Omega}(\frac{-L}{4},\frac{L}{4}). Let ϕL\phi_{L} be the solution of the truncated problem (27), and denote ϕ^L=ϕLϕL(x^)\hat{\phi}_{L}=\phi_{L}-\phi_{L}(\hat{x}). Obviously, ϕ^L\hat{\phi}_{L} also satisfies (27), then

(49) ϕ^LL(Ω(K,K))Cm0andϕ^LC0,α(Ω(K,K))Cm0.\|\nabla\hat{\phi}_{L}\|_{L^{\infty}({\Omega(-K^{\prime},K^{\prime})})}\leq Cm_{0}\quad\text{and}\quad\|\nabla\hat{\phi}_{L}\|_{C^{0,\alpha}({\Omega}(-K^{\prime},K^{\prime}))}\leq Cm_{0}.

Therefore, by the diagonal procedure, there exists a subsequence {ϕ^Ln}\{\hat{\phi}_{L_{n}}\} and a function ϕCloc1,α(Ω)\phi\in C^{1,\alpha}_{loc}({\Omega}) such that

limnϕ^LnϕC1,δ(Ω(K,K))=0with δ<α.\lim_{n\rightarrow\infty}\|\hat{\phi}_{L_{n}}-\phi\|_{C^{1,\delta}({\Omega}{(-K^{\prime},K^{\prime})})}=0\quad\text{with $\delta<\alpha$}.

Furthermore, ϕ\phi is a strong solution to

(50) {(Hϵ(|ϕ|2)δij+2Hϵ(|ϕ|2)iϕjϕ)ij2ϕ=0 in Ω,ϕn=0 on Ω.\begin{cases}\big{(}H_{\epsilon}(|\nabla\phi|^{2})\delta_{ij}+2H_{\epsilon}^{\prime}(|\nabla\phi|^{2})\partial_{i}\phi\partial_{j}\phi\big{)}\partial_{ij}^{2}\phi=0&\text{ in }{\Omega},\\ \frac{\partial\phi}{\partial\textbf{n}}=0&\text{ on }\partial\Omega.\end{cases}

Similar to the proof of [18, Lemmas 6 and 7], one gets

(51) ϕCloc2,α(Ω)andϕC1,α(Ω)Cm0.\phi\in C^{2,\alpha}_{loc}({\Omega})\quad\text{and}\quad\|\nabla\phi\|_{C^{1,\alpha}({\Omega})}\leq Cm_{0}.

Choosing m0m_{0} small enough such that Cm01ϵCm_{0}\leq 1-\epsilon, then we have

Hϵ(|ϕ|2)=ρ(|ϕ|2).H_{\epsilon}(|\nabla\phi|^{2})=\rho(|\nabla\phi|^{2}).

Hence, ϕ\phi indeed solves the problem (12).

Next, for the uniqueness of the uniformly subsonic solution, one may refer to [18] for the proof.

Finally, we show that maxΩ|ϕ|\max\limits_{\Omega}|\nabla\phi| depends on m0m_{0} continuously. Let {mj}\{m_{j}\} be a sequence satisfying mjmm_{j}\uparrow m and ϕj\phi^{j} be the unique subsonic solution of (12) with mass flux mjm_{j}. Then the Areza-Ascoli Theorem leads to that for some α<α\alpha^{\prime}<\alpha, one has

(52) ϕjϕ0in C0,α(Ω),\nabla\phi^{j}\rightarrow\nabla\phi_{0}\quad\text{in }C^{0,\alpha^{\prime}}(\Omega),

where ϕ0\phi_{0} is the solution of (12) with mass flux mm. One can conclude that for this convergence maxxΩ|ϕ|\max\limits_{x\in\Omega}|\nabla\phi| is a continuous function of m0m_{0}.

Let {ri}i=1\{r_{i}\}_{i=1}^{\infty} be a strictly increasing sequence satisfying limiri=1\lim\limits_{i\rightarrow\infty}r_{i}=1. Because of the continuity of Q(m)Q(m), there exists the largest Rn>0R_{n}>0 such that

(53) 0<Q(m)<rn for any m(0,Rn).0<Q(m)<r_{n}\text{ for any }m\in(0,R_{n}).

Obviously Rn+1RnR_{n+1}\geq R_{n}. Moreover,

(54) Rn=Σtρ(|ϕ|2)ϕl𝑑s|Σt|ρ(Q2(Rn))Q(Rn).R_{n}=\int_{{\Sigma_{t}}}\rho(|\nabla\phi|^{2})\frac{\partial\phi}{\partial\textbf{l}}ds\leq|{{\Sigma_{t}}}|\rho(Q^{2}(R_{n}))Q(R_{n}).

Hence {Rn}\{R_{n}\} is bounded. Set limnRn=m^\lim\limits_{n\rightarrow\infty}R_{n}=\hat{m}. Therefore, for any m0<m^m_{0}<\hat{m}, there exists an nn such that m0<Rnm_{0}<R_{n}, Q(m0)<rn<1Q(m_{0})<r_{n}<1. Moreover, for any Q¯(0,1)\bar{Q}\in(0,1), there exists an nn such that Q¯(0,rn)\bar{Q}\in(0,r_{n}). Using the continuity of Q(m)Q(m) again yields that there exists an m0(0,Rn)m_{0}\in(0,R_{n}) satisfying Q(m0)=Q¯Q(m_{0})=\bar{Q}. ∎

Theorem 1 is the direct consequence in Section 2.2, Lemma 2.

3. Convergence rates at far fields

It follows from the study in [18] that the uniformly subsonic solution in Theorem 1 tends to an uniform state at far fields if the nozzle tends to be a straight one. In this section, we investigate the convergence rates of uniform subsonic flows at far fields and prove Theorem 2. Let ϕ1(x)\phi_{1}(x) be the uniformly subsonic solution of

(55) {div(ρ(|ϕ1|2)ϕ1)=0in Ω,ϕ1𝐧=0on Ω,Σtρ(|ϕ1|2)ϕ1𝐥𝑑s=m0\begin{cases}{\rm div}(\rho(|\nabla\phi_{1}|^{2})\nabla\phi_{1})=0&\text{in }\Omega,\\[5.69054pt] \frac{\partial\phi_{1}}{\partial\mathbf{n}}=0&\text{on }\partial\Omega,\\[5.69054pt] \int_{\Sigma_{t}}\rho(|\nabla\phi_{1}|^{2})\frac{\partial\phi_{1}}{\partial\mathbf{l}}ds=m_{0}\end{cases}

obtained in Theorem 1 which satisfies

(56) ϕ1C1,α(Ω)Cm0.\|\nabla\phi_{1}\|_{C^{1,\alpha}(\Omega)}\leq Cm_{0}.

The basic idea is to establish the local energy decay via weighted energy estimates, which is the core part to get the convergence rates. The pointwise convergence rates is proved by the Nash-Moser iteration. The whole proof is divided into three sections. We start with the simple case where the nozzle boundary is straight when x3>Kx_{3}>K.

3.1. Energy estimates for the boundary is straight at far fields

Assume f1=f¯f_{1}=\bar{f} for x3>Kx_{3}>K with some positive constant KK. In this case, one has n3=0n_{3}=0 for Ω{x3>K}\partial\Omega\cap\{x_{3}>K\}. Let ϕ1\phi_{1} be the solution of (55) and ϕ2=q¯x3\phi_{2}=\bar{q}x_{3}. Obviously, ϕ2\phi_{2} satisfies

(57) {div(ρ(|ϕ2|2)ϕ2)=0in Ω{x3>K},ϕ2𝐧=0onΩ{x3>K}.\begin{cases}{\rm div}(\rho(|\nabla\phi_{2}|^{2})\nabla\phi_{2})=0&\text{in }\Omega\cap\{x_{3}>K\},\\ \frac{\partial\phi_{2}}{\partial\mathbf{n}}=0&\text{on}\ \partial\Omega\cap\{x_{3}>K\}.\end{cases}

Denote Φ=ϕ1ϕ2\Phi=\phi_{1}-\phi_{2}. Then Φ\Phi satisfies

(58) {i(𝔞ijjΦ)=0in Ω{x3>K},Φ𝐧=0onΩ{x3>K},\begin{cases}\partial_{i}(\mathfrak{a}_{ij}\partial_{j}\Phi)=0&\quad\text{in }\Omega\cap\{x_{3}>K\},\\ \frac{\partial\Phi}{\partial{\bf n}}=0&\quad\text{on}\ \partial\Omega\cap\{x_{3}>K\},\end{cases}

where

(59) 𝔞ij=01ρ(q^2)δij+2ρ(q^2)(sjϕ1+(1s)jϕ2)(siϕ1+(1s)iϕ2)ds\mathfrak{a}_{ij}=\int_{0}^{1}\rho(\hat{q}^{2})\delta_{ij}+2\rho^{\prime}(\hat{q}^{2})(s\partial_{j}\phi_{1}+(1-s)\partial_{j}\phi_{2})(s\partial_{i}\phi_{1}+(1-s)\partial_{i}\phi_{2})ds

with

(60) q^2=|sϕ1+(1s)ϕ2|2.\hat{q}^{2}=|s\nabla\phi_{1}+(1-s)\nabla\phi_{2}|^{2}.

The straightforward computations show that there exist two constants λ\lambda and Λ\Lambda such that

(61) λ|ξ|2𝔞ijξiξjΛ|ξ|2for ξ3.\lambda|\xi|^{2}\leq\mathfrak{a}_{ij}\xi_{i}\xi_{j}\leq\Lambda|\xi|^{2}\quad\text{for $\xi\in\mathbb{R}^{3}$}.

Moreover, one can increase Λ\Lambda so that the following Poincare´\acute{e} inequality holds on each cross section,

(62) 𝒵Σt𝒵𝑑sL2(Σt)Λ𝒵L2(Σt)for any 𝒵Hloc2(Ω(tϵ,t+ϵ)).\bigg{\|}\mathcal{Z}-\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{{\Sigma}_{t}}\mathcal{Z}ds\bigg{\|}_{L^{2}({\Sigma}_{t})}\leq\Lambda\|\nabla\mathcal{Z}\|_{L^{2}({\Sigma}_{t})}\quad\text{for any $\mathcal{Z}\in H^{2}_{loc}(\Omega(t-\epsilon,t+\epsilon))$.}

For any t1<t2t_{1}<t_{2}, hh and β\beta are constants to be determined later. Denote

(63) ζ(x3;t1,t2,,β,h)={1x3t1h,eβ(x3t1+h)t1h<x3t1,eβht1<x3t2,eβheβ(x3t2)t2<x3t2+h,1x3>t2+h.\zeta(x_{3};t_{1},t_{2},,\beta,h)=\begin{cases}1&x_{3}\leq t_{1}-h,\\ e^{\beta(x_{3}-t_{1}+h)}&t_{1}-h<x_{3}\leq t_{1},\\ e^{\beta h}&t_{1}<x_{3}\leq t_{2},\\ e^{\beta h}\cdot e^{-\beta(x_{3}-t_{2})}&t_{2}<x_{3}\leq t_{2}+h,\\ 1&x_{3}>t_{2}+h.\end{cases}

Multiplying Φ(ζ(x3,t1,t2,β,h)1)\Phi(\zeta(x_{3},t_{1},t_{2},\beta,h)-1) on both sides of (58) and taking integral on Ω(t1h,t2+h)\Omega(t_{1}-h,t_{2}+h) yield

(64) Ω(t1h,t2+h)𝔞ijiΦjΦ(ζ1)dx+Ω(t1h,t2+h)𝔞i3iΦΦ3ζdx=ΩΩ(t1h,t2+h)¯𝔞ijjΦΦ(ζ1)nids.\begin{split}&\quad\int_{\Omega(t_{1}-h,t_{2}+h)}\mathfrak{a}_{ij}\partial_{i}\Phi\partial_{j}\Phi(\zeta-1)dx+\int_{\Omega(t_{1}-h,t_{2}+h)}\mathfrak{a}_{i3}\partial_{i}\Phi\Phi\partial_{3}\zeta dx\\ &=\int_{\partial\Omega\cap\overline{\Omega(t_{1}-h,t_{2}+h)}}\mathfrak{a}_{ij}\partial_{j}\Phi\Phi(\zeta-1)n_{i}ds.\end{split}

For the boundary term, one has

(65) 𝔞ijjΦni=(ρ(|ϕ1|2)iϕ1ρ(|ϕ2|2)iϕ2)ni=0.\mathfrak{a}_{ij}\partial_{j}\Phi n_{i}=\big{(}\rho(|\nabla\phi_{1}|^{2})\partial_{i}\phi_{1}-\rho(|\nabla\phi_{2}|^{2})\partial_{i}\phi_{2}\big{)}\cdot n_{i}=0.

Moreover, the conserved mass flux on each cross section implies

(66) Σt𝔞i3iΦdx=Σtρ(|ϕ1|2)3ϕ1ρ(|ϕ2|2)3ϕ2dx=0.\int_{\Sigma_{t}}\mathfrak{a}_{i3}\partial_{i}\Phi dx^{\prime}=\int_{\Sigma_{t}}\rho(|\nabla\phi_{1}|^{2})\partial_{3}\phi_{1}-\rho(|\nabla\phi_{2}|^{2})\partial_{3}\phi_{2}dx^{\prime}=0.

Set η~(t)=ΣtΦ𝑑x\tilde{\eta}(t)=\int_{\Sigma_{t}}\Phi dx^{\prime}. Combining (65) and (66) yields that

(67) λΩ(t1h,t2+h)|Φ|2(ζ1)𝑑x[t1h,t1][t2,t2+h](η~(x3)|Σx3|3ζΣx3𝔞i3iΦdx)𝑑x3Ω(t1h,t1)Ω(t2,t2+h)𝔞i3iΦ(Φη~(x3)|Σx3|)3ζdx(Ω(t1h,t1)Ω(t2,t2+h)(Φη~(x3)|Σx3|)2(3ζ)2ζ1𝑑x)12(Ω(t1h,t1)Ω(t2,t2+h)(𝔞i3iΦ)2ζ𝑑x)12.\begin{split}&\quad\lambda\int_{\Omega(t_{1}-h,t_{2}+h)}|\nabla\Phi|^{2}(\zeta-1)dx\\ &\leq-\int\limits_{[t_{1}-h,t_{1}]\cup[t_{2},t_{2}+h]}\bigg{(}\frac{\tilde{\eta}(x_{3})}{|\Sigma_{x_{3}}|}\partial_{3}\zeta\int_{\Sigma_{x_{3}}}\mathfrak{a}_{i3}\partial_{i}\Phi dx^{\prime}\bigg{)}dx_{3}-\int_{\Omega(t_{1}-h,t_{1})\cup\Omega(t_{2},t_{2}+h)}\mathfrak{a}_{i3}\partial_{i}\Phi\bigg{(}\Phi-\frac{\tilde{\eta}(x_{3})}{|\Sigma_{x_{3}}|}\bigg{)}\partial_{3}\zeta dx\\ &\leq\bigg{(}\int_{\Omega(t_{1}-h,t_{1})\cup\Omega(t_{2},t_{2}+h)}\bigg{(}\Phi-\frac{\tilde{\eta}(x_{3})}{|\Sigma_{x_{3}}|}\bigg{)}^{2}(\partial_{3}\zeta)^{2}\zeta^{-1}dx\bigg{)}^{\frac{1}{2}}\bigg{(}\int_{\Omega(t_{1}-h,t_{1})\cup\Omega(t_{2},t_{2}+h)}(\mathfrak{a}_{i3}\partial_{i}\Phi)^{2}\zeta dx\bigg{)}^{\frac{1}{2}}.\end{split}

It follows from (62) that

(68) (Ω(t1h,t1)Ω(t2,t2+h)(Φη~(x3)|Σx3|)2(3ζ)2ζ1𝑑x)12={t1ht1+t2t2+h(3ζ)2ζ1[Σx3(Φη~(x3)|Σx3|)2𝑑x]𝑑x3}12[t1ht1+t2t2+hΛ2(3ζ)2ζ1(Σx3|Φ|2𝑑x)𝑑x3]12(Ω(t1h,t1)Ω(t2,t2+h)Λ2(3ζ)2ζ1|Φ|2𝑑x)12.\begin{split}&\quad\bigg{(}\int_{\Omega(t_{1}-h,t_{1})\cup\Omega(t_{2},t_{2}+h)}\bigg{(}\Phi-\frac{\tilde{\eta}(x_{3})}{|\Sigma_{x_{3}}|}\bigg{)}^{2}(\partial_{3}\zeta)^{2}\zeta^{-1}dx\bigg{)}^{\frac{1}{2}}\\ &=\bigg{\{}\int_{t_{1}-h}^{t_{1}}+\int_{t_{2}}^{t_{2}+h}(\partial_{3}\zeta)^{2}\zeta^{-1}\bigg{[}\int_{\Sigma_{x_{3}}}\bigg{(}\Phi-\frac{\tilde{\eta}(x_{3})}{|\Sigma_{x_{3}}|}\bigg{)}^{2}dx^{\prime}\bigg{]}dx_{3}\bigg{\}}^{\frac{1}{2}}\\ &\leq\bigg{[}\int_{t_{1}-h}^{t_{1}}+\int_{t_{2}}^{t_{2}+h}\Lambda^{2}(\partial_{3}\zeta)^{2}\zeta^{-1}\bigg{(}\int_{\Sigma_{x_{3}}}|\nabla\Phi|^{2}dx^{\prime}\bigg{)}dx_{3}\bigg{]}^{\frac{1}{2}}\\ &\leq\bigg{(}\int_{\Omega(t_{1}-h,t_{1})\cup\Omega(t_{2},t_{2}+h)}\Lambda^{2}(\partial_{3}\zeta)^{2}\zeta^{-1}|\nabla\Phi|^{2}dx\bigg{)}^{\frac{1}{2}}.\end{split}

Note that 3ζ=βζ\partial_{3}\zeta=\beta\zeta for x3[t1h,t1][t2,t2+h]x_{3}\in[t_{1}-h,t_{1}]\cup[t_{2},t_{2}+h], then

(69) λΩ(t1h,t2+h)|Φ|2(ζ1)𝑑xΛ2βΩ(t1h,t1)Ω(t2,t2+h)|Φ|2ζ𝑑x.\lambda\int_{\Omega(t_{1}-h,t_{2}+h)}|\nabla\Phi|^{2}(\zeta-1)dx\leq\Lambda^{2}\beta\int_{\Omega(t_{1}-h,t_{1})\cup\Omega(t_{2},t_{2}+h)}|\nabla\Phi|^{2}\zeta dx.

Set β=λΛ2\beta=\frac{\lambda}{\Lambda^{2}}, then we have the following estimate

(70) eβhΩ(t1,t2)|Φ|2𝑑xΩ(t1h,t2+h)|Φ|2𝑑x.e^{\beta h}\int_{\Omega(t_{1},t_{2})}|\nabla\Phi|^{2}dx\leq\int_{\Omega(t_{1}-h,t_{2}+h)}|\nabla\Phi|^{2}dx.

Taking t1=Tt_{1}=T, t2=T+1t_{2}=T+1 and h=T2h=\frac{T}{2} yields

(71) eβTΩ(T,T+1)|Φ|2𝑑xΩ(T2,3T2+1)|Φ|2𝑑xC(T+1).e^{\beta T}\int_{\Omega(T,T+1)}|\nabla\Phi|^{2}dx\leq\int_{\Omega(\frac{T}{2},\frac{3T}{2}+1)}|\nabla\Phi|^{2}dx\leq C(T+1).

Thus, there must be a positive constant α¯\bar{\alpha} such that

(72) Ω(T,T+1)|Ψ|2𝑑x1eα¯T.\int_{\Omega(T,T+1)}|\nabla\Psi|^{2}dx\leq\frac{1}{e^{\bar{\alpha}T}}.

3.2. Energy estimates for the boundary has the algebraic convergence

When the boundary satisfies (16), the unit outer normal direction of the boundary can be written as

𝐧=(n1,n2,n3)=1G(cosθ+f1θsinθr,sinθf1θcosθr,f1x3),{\bf{n}}=(n_{1},n_{2},n_{3})=\frac{1}{\sqrt{G}}\bigg{(}\cos\theta+\frac{\partial f_{1}}{\partial\theta}\frac{\sin\theta}{r},\sin\theta-\frac{\partial f_{1}}{\partial\theta}\frac{\cos\theta}{r},-\frac{\partial f_{1}}{\partial x_{3}}\bigg{)},

where

G=1+(f1θ)21r2+(f1x3)2.G=1+\bigg{(}\frac{\partial f_{1}}{\partial\theta}\bigg{)}^{2}\frac{1}{r^{2}}+\bigg{(}\frac{\partial f_{1}}{\partial x_{3}}\bigg{)}^{2}.

Let ϕ1\phi_{1} be the solution of (55) and ϕ2=q¯x3\phi_{2}=\bar{q}x_{3}. Obviously, ϕ2\phi_{2} satisfies

(73) {div(ρ(|ϕ2|2)ϕ2)=0in Ω{x3>K},ϕ2𝐧=q¯n3onΩ{x3>K}.\begin{cases}{\rm div}(\rho(|\nabla\phi_{2}|^{2})\nabla\phi_{2})=0&\text{in }\Omega\cap\{x_{3}>K\},\\ \frac{\partial\phi_{2}}{\partial\mathbf{n}}=\bar{q}n_{3}&\text{on}\ \partial\Omega\cap\{x_{3}>K\}.\end{cases}

Denote Ψ=ϕ1ϕ2\Psi=\phi_{1}-\phi_{2}. It is easy to check that Ψ\Psi satisfies

(74) {i(aijjΨ)=0inΩ{x3>K},Ψ𝐧=q¯n3onΩ{x3>K},\begin{cases}\partial_{i}(a_{ij}\partial_{j}\Psi)=0&\text{in}\ \Omega\cap\{x_{3}>K\},\\ \frac{\partial\Psi}{\partial\mathbf{n}}=-\bar{q}n_{3}&\text{on}\ \partial\Omega\cap\{x_{3}>K\},\end{cases}

where aija_{ij} is same as in 𝔞ij\mathfrak{a}_{ij} and satisfies (61). In fact, Ψ\Psi also satisfies

(75) aijjΨni=ρ(q¯2)q¯n3onΩ{x3>K}.a_{ij}\partial_{j}\Psi n_{i}=-\rho(\bar{q}^{2})\bar{q}n_{3}\quad\text{on}\ \partial\Omega\cap\{x_{3}>K\}.

On the boundary Ω{x3>K}\partial\Omega\cap\{x_{3}>K\}, it is easy to check that

(76) |aijjΨni|=|(ρ(|ϕ1|2)iϕ1ρ(|ϕ2|2)iϕ2)ni|=|ρ(q¯2)q¯n3|Cx3l+1.|a_{ij}\partial_{j}\Psi n_{i}|=\big{|}(\rho(|\nabla\phi_{1}|^{2})\partial_{i}\phi_{1}-\rho(|\nabla\phi_{2}|^{2})\partial_{i}\phi_{2})n_{i}\big{|}=\big{|}\rho(\bar{q}^{2})\bar{q}n_{3}\big{|}\leq\frac{C}{x_{3}^{l+1}}.

On the cross section Σx3\Sigma_{x_{3}}, one has

(77) |Σx3ai3iΨdx|=|Σx3ρ(|ϕ1|2)3ϕ1ρ(|ϕ2|2)3ϕ2dx|=|m0ρ(q¯2)q¯|Σx3||=|ρ(q¯2)q¯(|Σ¯||Σx3|)|=|ρ(q¯2)q¯π(f12f¯2)|Cx3l.\begin{split}&\quad\bigg{|}\int_{\Sigma_{x_{3}}}a_{i3}\partial_{i}\Psi dx^{\prime}\bigg{|}=\bigg{|}\int_{\Sigma_{x_{3}}}\rho(|\nabla\phi_{1}|^{2})\partial_{3}\phi_{1}-\rho(|\nabla\phi_{2}|^{2})\partial_{3}\phi_{2}dx^{\prime}\bigg{|}\\ &=\bigg{|}m_{0}-\rho(\bar{q}^{2})\bar{q}|\Sigma_{x_{3}}|\bigg{|}=\bigg{|}\rho(\bar{q}^{2})\bar{q}(|\overline{\Sigma}|-|\Sigma_{x_{3}}|)\bigg{|}\\ &=\bigg{|}\rho(\bar{q}^{2})\bar{q}\pi(f_{1}^{2}-\bar{f}^{2})\bigg{|}\leq\frac{C}{x_{3}^{l}}.\end{split}

Let K¯\bar{K} be a positive integer to be determined later. Choose t1=Tt_{1}=T and t2=t1+K¯t_{2}=t_{1}+\bar{K}. Denote

s1=Ω(t11,t1)Ψ𝑑xands2=Ω(t2,t2+1)Ψ𝑑x.s_{1}=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\Omega(t_{1}-1,t_{1})}\Psi dx\quad\text{and}\quad s_{2}=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\Omega(t_{2},t_{2}+1)}\Psi dx.

Define

Ψ^(x;t1,t2,s1,s2)={Ψ(x)s1,x3<t1,Ψ(x)s1s2s1t2t1(x3t1),t1x3t2,Ψ(x)s2,x3>t2.\hat{\Psi}(x;t_{1},t_{2},s_{1},s_{2})=\left\{\begin{array}[]{llr}\Psi(x)-s_{1},&{x_{3}<t_{1},}\\ \Psi(x)-s_{1}-\frac{s_{2}-s_{1}}{t_{2}-t_{1}}(x_{3}-t_{1}),&{t_{1}\leq x_{3}\leq t_{2},}\\ \Psi(x)-s_{2},&{x_{3}>t_{2}}.\end{array}\right.

Let ζ\zeta be defined in (63) and h=1h=1. Multiplying Ψ^(ζ(x3;t1,t2,β^,1)1)\hat{\Psi}\big{(}\zeta(x_{3};t_{1},t_{2},\hat{\beta},1)-1\big{)} on both sides of the equation (74) and integrating on Ω(t11,t2+1)\Omega(t_{1}-1,t_{2}+1) yield

(78) Ω(t11,t2+1)aijiΨjΨ(ζ1)dx+Ω(t1,t2)ai3iΨs1s2t2t1(ζ1)dx=Ω(t11,t2+1)ai3iΨΨ^ζx3dx+ΩΩ(t11,t2+1)¯Ψ^(ζ1)aijjΨnids,\begin{split}&\quad\int_{\Omega(t_{1}-1,t_{2}+1)}a_{ij}\partial_{i}\Psi\partial_{j}\Psi(\zeta-1)dx+\int_{\Omega(t_{1},t_{2})}a_{i3}\partial_{i}\Psi\frac{s_{1}-s_{2}}{t_{2}-t_{1}}(\zeta-1)dx\\ &=-\int_{\Omega(t_{1}-1,t_{2}+1)}a_{i3}\partial_{i}\Psi\hat{\Psi}\zeta_{x_{3}}dx+\int_{\partial\Omega\cap\overline{\Omega(t_{1}-1,t_{2}+1)}}\hat{\Psi}(\zeta-1)a_{ij}\partial_{j}\Psi n_{i}ds,\end{split}

where ζ1=0\zeta-1=0 at x3=t1hx_{3}=t_{1}-h and x3=t2+hx_{3}=t_{2}+h is used. Thus

λΩ(t11,t2+1)(ζ1)|Ψ|2𝑑x|s2s1t2t1Ω(t1,t2)ai3iΨ(ζ1)dx|Ω(t11,t1)Ω(t2,t2+1)ai3iΨΨ^ζx3dx+ΩΩ(t11,t2+1)¯Ψ^(ζ1)aijjΨnids.\begin{split}&\lambda\int_{\Omega(t_{1}-1,t_{2}+1)}(\zeta-1)|\nabla\Psi|^{2}dx\leq\bigg{|}\frac{s_{2}-s_{1}}{t_{2}-t_{1}}\int_{\Omega(t_{1},t_{2})}a_{i3}\partial_{i}\Psi(\zeta-1)dx\bigg{|}\\[5.69054pt] \quad&-\int_{\Omega(t_{1}-1,t_{1})\cup\Omega(t_{2},t_{2}+1)}a_{i3}\partial_{i}\Psi\hat{\Psi}\zeta_{x_{3}}dx+\int_{\partial\Omega\cap\overline{\Omega(t_{1}-1,t_{2}+1)}}\hat{\Psi}(\zeta-1)a_{ij}\partial_{j}\Psi n_{i}ds.\end{split}

Set

η1(x3)=Σx3(Ψs1)𝑑xandη2(x3)=Σx3(Ψs2)𝑑x.\eta_{1}(x_{3})=\int_{\Sigma_{x_{3}}}(\Psi-s_{1})dx^{\prime}\quad\text{and}\quad\eta_{2}(x_{3})=\int_{\Sigma_{x_{3}}}(\Psi-s_{2})dx^{\prime}.

One has

(79) λΩ(t11,t2+1)(ζ1)|Ψ|2𝑑xΩ(t11,t1)ai3iΨ(Ψ^η1(x3)|Σx3|)ζx3dxΩ(t2,t2+1)ai3iΨ(Ψ^η2(x3)|Σx3|)ζx3dx+|s2s1t2t1Ω(t1,t2)ai3iΨ(ζ1)dx|Ω(t11,t1)ai3iΨη1(x3)|Σx3|ζx3dxΩ(t2,t2+1)ai3iΨη2(x3)|Σx3|ζx3dx+ΩΩ(t11,t2+1)¯Ψ^(ζ1)aijjΨnids=i=16Ii.\begin{split}&\quad\lambda\int_{\Omega(t_{1}-1,t_{2}+1)}(\zeta-1)|\nabla\Psi|^{2}dx\\ &\leq-\int_{\Omega(t_{1}-1,t_{1})}a_{i3}\partial_{i}\Psi\bigg{(}\hat{\Psi}-\frac{\eta_{1}(x_{3})}{|\Sigma_{x_{3}}|}\bigg{)}\zeta_{x_{3}}dx-\int_{\Omega(t_{2},t_{2}+1)}a_{i3}\partial_{i}\Psi\bigg{(}\hat{\Psi}-\frac{\eta_{2}(x_{3})}{|\Sigma_{x_{3}}|}\bigg{)}\zeta_{x_{3}}dx\\[5.69054pt] &\quad+\bigg{|}\frac{s_{2}-s_{1}}{t_{2}-t_{1}}\int_{\Omega(t_{1},t_{2})}a_{i3}\partial_{i}\Psi(\zeta-1)dx\bigg{|}-\int_{\Omega(t_{1}-1,t_{1})}a_{i3}\partial_{i}\Psi\frac{\eta_{1}(x_{3})}{|\Sigma_{x_{3}}|}\zeta_{x_{3}}dx\\[5.69054pt] &\quad-\int_{\Omega(t_{2},t_{2}+1)}a_{i3}\partial_{i}\Psi\frac{\eta_{2}(x_{3})}{|\Sigma_{x_{3}}|}\zeta_{x_{3}}dx+\int_{\partial\Omega\cap\overline{\Omega(t_{1}-1,t_{2}+1)}}\hat{\Psi}(\zeta-1)a_{ij}\partial_{j}\Psi n_{i}ds=\sum\limits_{i=1}^{6}I_{i}.\end{split}

We estimate Ii(i=1,,6)I_{i}\ (i=1,\cdots,6) one by one. Applying Ho¨\ddot{\text{o}}lder inequality to I1I_{1} gives

(80) |I1|[Ω(t11,t1)(ai3iΨ)2ζ𝑑x]12[Ω(t11,t1)(Ψ^η1(x3)|Σx3|)2ζx32ζ1𝑑x]12[Ω(t11,t1)(ai3iΨ)2ζ𝑑x]12[t11t1Σx3(Ψ^η1(x3)|Σx3|)2𝑑xζx32ζ1𝑑x3]12[Ω(t11,t1)Λ2|Ψ|2ζ𝑑x]12[Ω(t11,t1)Λ2ζx32ζ1|Ψ^|2𝑑x]12Λ2β^Ω(t11,t1)|Ψ|2ζ𝑑x,\begin{split}|I_{1}|&\leq\bigg{[}\int_{\Omega(t_{1}-1,t_{1})}(a_{i3}\partial_{i}\Psi)^{2}\zeta dx\bigg{]}^{\frac{1}{2}}\bigg{[}\int_{\Omega(t_{1}-1,t_{1})}\bigg{(}\hat{\Psi}-\frac{\eta_{1}(x_{3})}{|\Sigma_{x_{3}}|}\bigg{)}^{2}\zeta_{x_{3}}^{2}\zeta^{-1}dx\bigg{]}^{\frac{1}{2}}\\ &\leq\bigg{[}\int_{\Omega(t_{1}-1,t_{1})}(a_{i3}\partial_{i}\Psi)^{2}\zeta dx\bigg{]}^{\frac{1}{2}}\bigg{[}\int_{t_{1}-1}^{t_{1}}\int_{\Sigma_{x_{3}}}\bigg{(}\hat{\Psi}-\frac{\eta_{1}(x_{3})}{|\Sigma_{x_{3}}|}\bigg{)}^{2}dx^{\prime}\zeta_{x_{3}}^{2}\zeta^{-1}dx_{3}\bigg{]}^{\frac{1}{2}}\\ &\leq\bigg{[}\int_{\Omega(t_{1}-1,t_{1})}\Lambda^{2}|\nabla\Psi|^{2}\zeta dx\bigg{]}^{\frac{1}{2}}\bigg{[}\int_{\Omega(t_{1}-1,t_{1})}\Lambda^{2}\zeta_{x_{3}}^{2}\zeta^{-1}|\nabla\hat{\Psi}|^{2}dx\bigg{]}^{\frac{1}{2}}\\ &\leq\Lambda^{2}\hat{\beta}\int_{\Omega(t_{1}-1,t_{1})}|\nabla\Psi|^{2}\zeta dx,\end{split}

where the third inequality follows from the Poincare´\acute{e} inequality (62). Similarly, one has

(81) |I2|Λ2β^Ω(t2,t2+1)|Ψ|2ζ𝑑x.|I_{2}|\leq\Lambda^{2}\hat{\beta}\int_{\Omega(t_{2},t_{2}+1)}|\nabla\Psi|^{2}\zeta dx.

Taking β^=λΛ2\hat{\beta}=\frac{\lambda}{\Lambda^{2}} yields

(82) Ω(t11,t2+1)|Ψ|2(ζ1)𝑑xΩ(t11,t1)Ω(t2,t2+1)|Ψ|2ζ𝑑x+1λ(I3+I4+I5+I6).\begin{split}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}(\zeta-1)dx&\leq\int_{\Omega(t_{1}-1,t_{1})\cup\Omega(t_{2},t_{2}+1)}|\nabla\Psi|^{2}\zeta dx+\frac{1}{\lambda}(I_{3}+I_{4}+I_{5}+I_{6}).\end{split}

It follows from the definition of ζ\zeta that

(83) eβ^Ω(t1,t2)|Ψ|2𝑑xΩ(t11,t2+1)|Ψ|2𝑑x+1λ(I3+I4+I5+I6).\begin{split}e^{\hat{\beta}}\int_{\Omega(t_{1},t_{2})}|\nabla\Psi|^{2}dx\leq\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx+\frac{1}{\lambda}(I_{3}+I_{4}+I_{5}+I_{6}).\end{split}

As same as the proof for (46), we can also prove

(84) |s2s1|CΩ(t11,t2+1)|Ψ|𝑑x.|s_{2}-s_{1}|\leq C\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|dx.

Using (77) and (84) gives

(85) 1λ|I3||s2s1|(eβ^1)λ(t2t1)t1t2|Σx3ai3iΨdx|𝑑x3|s2s1|(eβ^1)λ(t2t1)t1t2Cx3l𝑑x3C(eβ^1)|s2s1|λ(t1)lC(eβ^1)(t1)lΩ(t11,t2+1)|Ψ|𝑑xC(eβ^1)(t1)l|Ω(t11,t2+1)|12(Ω(t11,t2+1)|Ψ|2𝑑x)12C(eβ^1)2(t2t1+2)(t1)2lϵ+ϵΩ(t11,t2+1)|Ψ|2𝑑x.\begin{split}\quad\frac{1}{\lambda}|I_{3}|&\leq\frac{|s_{2}-s_{1}|(e^{\hat{\beta}}-1)}{\lambda(t_{2}-t_{1})}\int_{t_{1}}^{t_{2}}\bigg{|}\int_{\Sigma_{x_{3}}}a_{i3}\partial_{i}\Psi dx^{\prime}\bigg{|}dx_{3}\\ &\leq\frac{|s_{2}-s_{1}|(e^{\hat{\beta}}-1)}{\lambda(t_{2}-t_{1})}\int_{t_{1}}^{t_{2}}\frac{C}{x_{3}^{l}}dx_{3}\\ &\leq\frac{C(e^{\hat{\beta}}-1)|s_{2}-s_{1}|}{\lambda(t_{1})^{l}}\leq\frac{C(e^{\hat{\beta}}-1)}{(t_{1})^{l}}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|dx\quad\\[5.69054pt] &\leq\frac{C(e^{\hat{\beta}}-1)}{(t_{1})^{l}}|\Omega(t_{1}-1,t_{2}+1)|^{\frac{1}{2}}\bigg{(}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx\bigg{)}^{\frac{1}{2}}\\[5.69054pt] &\leq\frac{C(e^{\hat{\beta}}-1)^{2}(t_{2}-t_{1}+2)}{(t_{1})^{2l}\epsilon}+\epsilon\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx.\end{split}

Now, we estimate I4I_{4} as follows

(86) 1λ|I4||1λΩ(t11,t1)ai3iΨη1(x3)|Σx3|ζx3dx||1λt11t1[(Σx3ai3iΨdx1dx2)η1(x3)|Σx3|ζx3]𝑑x3|1λ[t11t1(Σx3ai3iΨdx1dx2ζx3|Σx3|)2𝑑x3]12[t11t1(η1(x3))2𝑑x3]121λC(t11)l[t11t1ζx32𝑑x3]12[t11t1(Σx3(Ψ(x)s1)𝑑x)2𝑑x3]121λC(t11)l(t11t1β^2e2β^(x3t1+1)𝑑x3)12[t11t1(Σx3(Ψ(x)s1)𝑑x)2𝑑x3]12C(t11)l(β^2(e2β^1))12[t11t1(Σx3(Ψ(x)s1)2𝑑xΣx31𝑑x)𝑑x3]12C(t11)l(β^2(e2β^1))12(Ω(t11,t1)|Ψ|2𝑑x)12Cβ^(e2β^1)4ϵ(t11)2l+ϵ2Ω(t11,t1)|Ψ|2𝑑x,\begin{split}\quad\frac{1}{\lambda}|I_{4}|&\leq\bigg{|}\frac{1}{\lambda}\int_{\Omega(t_{1}-1,t_{1})}a_{i3}\partial_{i}\Psi\frac{\eta_{1}(x_{3})}{|\Sigma_{x_{3}}|}\zeta_{x_{3}}dx\bigg{|}\\[5.69054pt] &\leq\bigg{|}\frac{1}{\lambda}\int_{t_{1}-1}^{t_{1}}\bigg{[}\bigg{(}\int_{\Sigma_{x_{3}}}a_{i3}\partial_{i}\Psi dx_{1}dx_{2}\bigg{)}\frac{\eta_{1}(x_{3})}{|\Sigma_{x_{3}}|}\zeta_{x_{3}}\bigg{]}dx_{3}\bigg{|}\\[5.69054pt] &\leq\frac{1}{\lambda}\bigg{[}\int_{t_{1}-1}^{t_{1}}\bigg{(}\int_{\Sigma_{x_{3}}}a_{i3}\partial_{i}\Psi dx_{1}dx_{2}\frac{\zeta_{x_{3}}}{|\Sigma_{x_{3}}|}\bigg{)}^{2}dx_{3}\bigg{]}^{\frac{1}{2}}\bigg{[}\int_{t_{1}-1}^{t_{1}}\big{(}\eta_{1}(x_{3})\big{)}^{2}dx_{3}\bigg{]}^{\frac{1}{2}}\\[5.69054pt] &\leq\frac{1}{\lambda}\frac{C}{(t_{1}-1)^{l}}\bigg{[}\int_{t_{1}-1}^{t_{1}}\zeta^{2}_{x_{3}}dx_{3}\bigg{]}^{\frac{1}{2}}\bigg{[}\int_{t_{1}-1}^{t_{1}}\bigg{(}\int_{\Sigma_{x_{3}}}\big{(}\Psi(x)-s_{1}\big{)}dx^{\prime}\bigg{)}^{2}dx_{3}\bigg{]}^{\frac{1}{2}}\\[5.69054pt] &\leq\frac{1}{\lambda}\frac{C}{(t_{1}-1)^{l}}\bigg{(}\int_{t_{1}-1}^{t_{1}}\hat{\beta}^{2}e^{2\hat{\beta}(x_{3}-t_{1}+1)}dx_{3}\bigg{)}^{\frac{1}{2}}\bigg{[}\int_{t_{1}-1}^{t_{1}}\bigg{(}\int_{\Sigma_{x_{3}}}\big{(}\Psi(x)-s_{1}\big{)}dx^{\prime}\bigg{)}^{2}dx_{3}\bigg{]}^{\frac{1}{2}}\\ &\leq\frac{C}{(t_{1}-1)^{l}}\bigg{(}\frac{\hat{\beta}}{2}\big{(}e^{2\hat{\beta}}-1\big{)}\bigg{)}^{\frac{1}{2}}\bigg{[}\int_{t_{1}-1}^{t_{1}}\bigg{(}\int_{\Sigma_{x_{3}}}\big{(}\Psi(x)-s_{1}\big{)}^{2}dx^{\prime}\int_{\Sigma_{x_{3}}}1dx^{\prime}\bigg{)}dx_{3}\bigg{]}^{\frac{1}{2}}\\[5.69054pt] &\leq\frac{C}{(t_{1}-1)^{l}}\bigg{(}\frac{\hat{\beta}}{2}\big{(}e^{2\hat{\beta}}-1\big{)}\bigg{)}^{\frac{1}{2}}\bigg{(}\int_{\Omega(t_{1}-1,t_{1})}|\nabla\Psi|^{2}dx\bigg{)}^{\frac{1}{2}}\\[5.69054pt] &\leq\frac{C\hat{\beta}(e^{2\hat{\beta}}-1)}{4\epsilon(t_{1}-1)^{2l}}+\frac{\epsilon}{2}\int_{\Omega(t_{1}-1,t_{1})}|\nabla\Psi|^{2}dx,\end{split}

where the estimate (77) was used. Similarly, one has

(87) 1λ|I5|Cβ^(e2β^1)4ϵ(t2)2l+ϵ2Ω(t2,t2+1)|Ψ|2𝑑x.\frac{1}{\lambda}|I_{5}|\leq\frac{C\hat{\beta}(e^{2\hat{\beta}}-1)}{4\epsilon(t_{2})^{2l}}+\frac{\epsilon}{2}\int_{\Omega(t_{2},t_{2}+1)}|\nabla\Psi|^{2}dx.

For the boundary term I6I_{6}, it follows from (76) that

(88) 1λ|I6|Ceβ^(t11)l+1ΩΩ(t11,t2+1)¯|Ψ^|𝑑sCeβ^(t11)l+1i=0K¯+1ΩΩ(t11+i,t1+i)¯|Ψ^|𝑑sCeβ^(t11)l+1i=0K¯+1(Ω(t11+i,t1+i)|Ψ^|𝑑x+Ω(t11+i,t1+i)|Ψ^|𝑑x)Ceβ^(t11)l+1(Ω(t11,t2+1)|Ψ|𝑑x+|s2s1|+Ω(t11,t2+1)|Ψ^|𝑑x)Ceβ^(t11)l+1(Ω(t11,t2+1)|Ψ|𝑑x+Ω(t11,t2+1)|Ψ^|𝑑x).\begin{split}\frac{1}{\lambda}|I_{6}|&\leq\frac{Ce^{\hat{\beta}}}{(t_{1}-1)^{l+1}}\int_{\partial\Omega\cap\overline{\Omega(t_{1}-1,t_{2}+1)}}|\hat{\Psi}|ds\\ &\leq\frac{Ce^{\hat{\beta}}}{(t_{1}-1)^{l+1}}\sum\limits_{i=0}^{\bar{K}+1}\int_{\partial\Omega\cap\overline{\Omega(t_{1}-1+i,t_{1}+i)}}|\hat{\Psi}|ds\\ &\leq\frac{Ce^{\hat{\beta}}}{(t_{1}-1)^{l+1}}\sum\limits_{i=0}^{\bar{K}+1}\bigg{(}\int_{\Omega(t_{1}-1+i,t_{1}+i)}|\nabla\hat{\Psi}|dx+\int_{\Omega(t_{1}-1+i,t_{1}+i)}|\hat{\Psi}|dx\bigg{)}\\ &\leq\frac{Ce^{\hat{\beta}}}{(t_{1}-1)^{l+1}}\bigg{(}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|dx+|s_{2}-s_{1}|+\int_{\Omega(t_{1}-1,t_{2}+1)}|\hat{\Psi}|dx\bigg{)}\\ &\leq\frac{Ce^{\hat{\beta}}}{(t_{1}-1)^{l+1}}\bigg{(}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|dx+\int_{\Omega(t_{1}-1,t_{2}+1)}|\hat{\Psi}|dx\bigg{)}.\end{split}

Now the key issue is to estimate the second term on the right hand side of (88). Define

j=Ω(t1+j,t1+j+1)Ψ𝑑x,j=0,1,,K¯1.\mathcal{B}_{j}=\mathchoice{{\vbox{\hbox{$\textstyle-$ }}\kern-7.83337pt}}{{\vbox{\hbox{$\scriptstyle-$ }}\kern-5.90005pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.75003pt}}{{\vbox{\hbox{$\scriptscriptstyle-$ }}\kern-4.25003pt}}\!\int_{\Omega(t_{1}+j,t_{1}+j+1)}\Psi dx,\quad j=0,1,\cdots,\bar{K}-1.

As same as the estimate (46), one has

(89) |js1|CΩ(t11,t1+j+1)|Ψ|𝑑x.\mathcal{|}\mathcal{B}_{j}-s_{1}|\leq C\int_{\Omega(t_{1}-1,t_{1}+j+1)}|\nabla\Psi|dx.

It follows from (89) that

(90) Ω(t1,t2)|Ψs1|𝑑xj=0K¯1Ω(t1+j,t1+j+1)|Ψj|+|js1|dxCj=0K¯1Ω(t1+j,t1+j+1)|Ψ|𝑑x+Cj=0K¯1|js1|CΩ(t1,t2)|Ψ|𝑑x+j=0K¯1Ω(t11,t2+1)|Ψ|𝑑xC(t2t1+2)Ω(t11,t2+1)|Ψ|𝑑x.\begin{split}&\quad\int_{\Omega(t_{1},t_{2})}|\Psi-s_{1}|dx\leq\sum\limits_{j=0}^{\bar{K}-1}\int_{\Omega(t_{1}+j,t_{1}+j+1)}|\Psi-\mathcal{B}_{j}|+|\mathcal{B}_{j}-s_{1}|dx\\ &\leq C\sum\limits_{j=0}^{\bar{K}-1}\int_{\Omega(t_{1}+j,t_{1}+j+1)}|\nabla\Psi|dx+C\sum\limits_{j=0}^{\bar{K}-1}|\mathcal{B}_{j}-s_{1}|\\ &\leq C\int_{\Omega(t_{1},t_{2})}|\nabla\Psi|dx+\sum\limits_{j=0}^{\bar{K}-1}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|dx\\ &\leq C(t_{2}-t_{1}+2)\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|dx.\end{split}

Hence,

(91) Ω(t11,t2+1)|Ψ^|𝑑x=Ω(t11,t1)|Ψ^|𝑑x+Ω(t2,t2+1)|Ψ^|𝑑x+Ω(t1,t2)|Ψ^|𝑑xC(Ω(t11,t1)Ω(t2,t2+1)|Ψ|𝑑x)+Ω(t1,t2)|Ψs1s2s1t2t1(x3t1)|𝑑xC(Ω(t11,t1)Ω(t2,t2+1)|Ψ|𝑑x)+|s2s1|t1t2Σx3x3t1t2t1𝑑x𝑑x3+Ω(t1,t2)|Ψs1|𝑑xC(Ω(t11,t1)Ω(t2,t2+1)|Ψ|𝑑x)+C(t2t1)|s2s1|+C(t2t1+2)Ω(t11,t2+1)|Ψ|𝑑xC(t2t1+2)Ω(t11,t2+1)|Ψ|𝑑x.\begin{split}&\quad\int_{\Omega(t_{1}-1,t_{2}+1)}|\hat{\Psi}|dx=\int_{\Omega(t_{1}-1,t_{1})}|\hat{\Psi}|dx+\int_{\Omega(t_{2},t_{2}+1)}|\hat{\Psi}|dx+\int_{\Omega(t_{1},t_{2})}|\hat{\Psi}|dx\\[5.69054pt] &\leq C\bigg{(}\int_{\Omega(t_{1}-1,t_{1})\cup\Omega(t_{2},t_{2}+1)}|\nabla\Psi|dx\bigg{)}+\int_{\Omega(t_{1},t_{2})}\bigg{|}\Psi-s_{1}-\frac{s_{2}-s_{1}}{t_{2}-t_{1}}(x_{3}-t_{1})\bigg{|}dx\\ &\leq C\bigg{(}\int_{\Omega(t_{1}-1,t_{1})\cup\Omega(t_{2},t_{2}+1)}|\nabla\Psi|dx\bigg{)}+|s_{2}-s_{1}|\int_{t_{1}}^{t_{2}}\int_{\Sigma_{x_{3}}}\frac{x_{3}-t_{1}}{t_{2}-t_{1}}dx^{\prime}dx_{3}+\int_{\Omega(t_{1},t_{2})}|\Psi-s_{1}|dx\\ &\leq C\bigg{(}\int_{\Omega(t_{1}-1,t_{1})\cup\Omega(t_{2},t_{2}+1)}|\nabla\Psi|dx\bigg{)}+C(t_{2}-t_{1})|s_{2}-s_{1}|+C(t_{2}-t_{1}+2)\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|dx\\ &\leq C(t_{2}-t_{1}+2)\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|dx.\end{split}

Therefore, it follows from (88) and (91) that

(92) 1λ|I6|Ceβ^(t2t1+2)(t11)l+1Ω(t11,t2+1)|Ψ|𝑑xCeβ^(t2t1+2)32(t11)l+1(Ω(t11,t2+1)|Ψ|2𝑑x)12Ce2β^(t2t1+2)3(t11)2l+2ϵ+ϵΩ(t11,t2+1)|Ψ|2𝑑x.\begin{split}\frac{1}{\lambda}|I_{6}|&\leq\frac{Ce^{\hat{\beta}}(t_{2}-t_{1}+2)}{(t_{1}-1)^{l+1}}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|dx\\ &\leq\frac{Ce^{\hat{\beta}}(t_{2}-t_{1}+2)^{\frac{3}{2}}}{(t_{1}-1)^{l+1}}\bigg{(}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx\bigg{)}^{\frac{1}{2}}\\ &\leq\frac{Ce^{2\hat{\beta}}(t_{2}-t_{1}+2)^{3}}{(t_{1}-1)^{2l+2}\epsilon}+\epsilon\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx.\end{split}

Collecting (85), (86), (87) and (92) together gives

(93) eβ^Ω(t1,t2)|Ψ|2𝑑xC(eβ^1)2(t2t1+2)(t1)2lϵ+ϵΩ(t11,t2+1)|Ψ|2𝑑x+Cβ^(e2β^1)4ϵ(t11)2l+ϵ2Ω(t11,t1)|Ψ|2𝑑x+Cβ^(e2β^1)4ϵ(t2)2l+ϵ2Ω(t2,t2+1)|Ψ|2𝑑x+Ce2β^(t2t1+2)3(t11)2l+2ϵ+ϵΩ(t11,t2+1)|Ψ|2𝑑x+Ω(t11,t2+1)|Ψ|2𝑑x.\begin{split}&e^{\hat{\beta}}\int_{\Omega(t_{1},t_{2})}|\nabla\Psi|^{2}dx\leq\frac{C(e^{\hat{\beta}}-1)^{2}(t_{2}-t_{1}+2)}{(t_{1})^{2l}\epsilon}+\epsilon\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx+\frac{C\hat{\beta}(e^{2\hat{\beta}}-1)}{4\epsilon(t_{1}-1)^{2l}}\\[5.69054pt] &\quad+\frac{\epsilon}{2}\int_{\Omega(t_{1}-1,t_{1})}|\nabla\Psi|^{2}dx+\frac{C\hat{\beta}(e^{2\hat{\beta}}-1)}{4\epsilon(t_{2})^{2l}}+\frac{\epsilon}{2}\int_{\Omega(t_{2},t_{2}+1)}|\nabla\Psi|^{2}dx+\frac{Ce^{2\hat{\beta}}(t_{2}-t_{1}+2)^{3}}{(t_{1}-1)^{2l+2}\epsilon}\\ &\quad+\epsilon\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx+\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx.\end{split}

Therefore, one has

(94) eβ^Ω(t1,t2)|Ψ|2𝑑xC(eβ^1)2(t2t1+2)ϵ(t1)2l+Cβ^(e2β^1)ϵ(t11)2l+Ce2β^(t2t1+2)3(t11)2l+2ϵ+Cβ^(e2β^1)ϵ(t2)2l+(ϵ+1)Ω(t11,t2+1)|Ψ|2𝑑x.\begin{split}e^{\hat{\beta}}\int_{\Omega(t_{1},t_{2})}|\nabla\Psi|^{2}dx&\leq\frac{C(e^{\hat{\beta}}-1)^{2}(t_{2}-t_{1}+2)}{\epsilon(t_{1})^{2l}}+\frac{C\hat{\beta}(e^{2\hat{\beta}}-1)}{\epsilon(t_{1}-1)^{2l}}+\frac{Ce^{2\hat{\beta}}(t_{2}-t_{1}+2)^{3}}{(t_{1}-1)^{2l+2}\epsilon}+\frac{C\hat{\beta}(e^{2\hat{\beta}}-1)}{\epsilon(t_{2})^{2l}}\\ &\quad+(\epsilon+1)\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx.\end{split}

Choosing ϵ\epsilon small enough such that ϵ+1eβ^𝔟0<1\frac{\epsilon+1}{e^{\hat{\beta}}}\leq\mathfrak{b}_{0}<1, then

(95) Ω(t1,t2)|Ψ|2𝑑x𝔟0Ω(t11,t2+1)|Ψ|2𝑑x+C(t2t1+2)(t11)2l+C(t2t1+2)3(t11)2l+2,\int_{\Omega(t_{1},t_{2})}|\nabla\Psi|^{2}dx\leq\mathfrak{b}_{0}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx+\frac{C(t_{2}-t_{1}+2)}{(t_{1}-1)^{2l}}+\frac{C(t_{2}-t_{1}+2)^{3}}{(t_{1}-1)^{2l+2}},

where CC is a constant depending on β^\hat{\beta}. Thus,

(96) 1t2t1Ω(t1,t2)|Ψ|2𝑑x𝔟0t2t1+2t2t11t2t1+2Ω(t11,t2+1)|Ψ|2𝑑x+C(t2t1+2)(t11)2l(t2t1)+C(t2t1+2)3(t11)2l+2(t2t1).\begin{split}&\quad\frac{1}{t_{2}-t_{1}}\int_{\Omega(t_{1},t_{2})}|\nabla\Psi|^{2}dx\\ &\leq\mathfrak{b}_{0}\frac{t_{2}-t_{1}+2}{t_{2}-t_{1}}\frac{1}{t_{2}-t_{1}+2}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx+\frac{C(t_{2}-t_{1}+2)}{(t_{1}-1)^{2l}(t_{2}-t_{1})}+\frac{C(t_{2}-t_{1}+2)^{3}}{(t_{1}-1)^{2l+2}(t_{2}-t_{1})}.\end{split}

Choose K¯\bar{K} large such that 𝔟0t2t1+2t2t1<𝔟<1\mathfrak{b}_{0}\frac{t_{2}-t_{1}+2}{t_{2}-t_{1}}<\mathfrak{b}<1. Therefore, we have

(97) 1t2t1Ω(t1,t2)|Ψ|2𝑑x𝔟1t2t1+2Ω(t11,t2+1)|Ψ|2𝑑x+C(t11)2l+C(t2t1+2)2(t11)2l+2.\frac{1}{t_{2}-t_{1}}\int_{\Omega(t_{1},t_{2})}|\nabla\Psi|^{2}dx\leq\mathfrak{b}\frac{1}{t_{2}-t_{1}+2}\int_{\Omega(t_{1}-1,t_{2}+1)}|\nabla\Psi|^{2}dx+\frac{C}{(t_{1}-1)^{2l}}+\frac{C(t_{2}-t_{1}+2)^{2}}{(t_{1}-1)^{2l+2}}.

Let JJ be an integer satisfying T21J<T2\frac{T}{2}-1\leq J<\frac{T}{2}, t1,i=Tit_{1,i}=T-i and t2,i=T+K¯+i(i=0,1,2,J)t_{2,i}=T+\bar{K}+i\ (i=0,1,2\cdots,J). It is easy to see that

(98) (t2,it1,i+2)2(t1,i1)2Cfor all i=0,1,2,J\frac{(t_{2,i}-t_{1,i}+2)^{2}}{(t_{1,i}-1)^{2}}\leq C\quad\text{for all $i=0,1,2\cdots,J$}

provided that TT is large. Substituting t1,it_{1,i} and t2,it_{2,i} into (97) yields

(99) 1t2,it1,iΩ(t1,i,t2,i)|Ψ|2𝑑x𝔟1t2,i+1t1,i+1Ω(t1,i+1,t2,i+1)|Ψ|2𝑑x+C(t1,i+1)2l.\frac{1}{t_{2,i}-t_{1,i}}\int_{\Omega(t_{1,i},t_{2,i})}|\nabla\Psi|^{2}dx\leq\mathfrak{b}\frac{1}{t_{2,i+1}-t_{1,i+1}}\int_{\Omega(t_{1,i+1},t_{2,i+1})}|\nabla\Psi|^{2}dx+\frac{C}{(t_{1,i+1})^{2l}}.

Iterating the estimate (99) yields

(100) 1t2,0t1,0Ω(t1,0,t2,0)|Ψ|2𝑑x𝔟J1t2,Jt1,JΩ(t1,J,t2,J)|Ψ|2𝑑x+j=0J𝔟jC(t1,j)2l.\frac{1}{t_{2,0}-t_{1,0}}\int_{\Omega(t_{1,0},t_{2,0})}|\nabla\Psi|^{2}dx\leq{\mathfrak{b}}^{J}\frac{1}{t_{2,J}-t_{1,J}}\int_{\Omega(t_{1,J},t_{2,J})}|\nabla\Psi|^{2}dx+\sum\limits_{j=0}^{J}\mathfrak{b}^{j}\frac{C}{(t_{1,j})^{2l}}.

Since |Ψ||\nabla\Psi| is bounded and t1,j>t1,J=t1J=TJ>T2t_{1,j}>t_{1,J}=t_{1}-J=T-J>\frac{T}{2}, one has

(101) 1K¯Ω(T,T+K¯)|Ψ|2𝑑xC𝔟J+CT2l.\frac{1}{\bar{K}}\int_{\Omega(T,T+\bar{K})}|\nabla\Psi|^{2}dx\leq C\mathfrak{b}^{J}+\frac{C}{T^{2l}}.

When TT is large, by the definition of JJ, 𝔟JCT2l\mathfrak{b}^{J}\leq\frac{C}{T^{2l}} always holds. Hence

(102) 1K¯Ω(T,T+K¯)|Ψ|2𝑑xCT2l.\frac{1}{\bar{K}}\int_{\Omega(T,T+\bar{K})}|\nabla\Psi|^{2}dx\leq\frac{C}{T^{2l}}.

Therefore, we have

(103) Ω(T,T+1)|Ψ|2𝑑xΩ(T,T+K¯)|Ψ|2𝑑xCK¯T2lCT2l.\int_{\Omega(T,T+1)}|\nabla\Psi|^{2}dx\leq\int_{\Omega(T,T+\bar{K})}|\nabla\Psi|^{2}dx\leq\frac{C\bar{K}}{T^{2l}}\leq\frac{C}{T^{2l}}.

3.3. Pointwise convergence

In this section, we use Nash-Moser iteration to estimate ΨL(Ω(T,T+1))\|\nabla\Psi\|_{L^{\infty}(\Omega(T,T+1))} in terms of the local energy L2L^{2}-estimate obtained in Sections 3.1 and 3.2. This basic idea for oblique derivative boundary value problem for elliptic equation was used in [31, 18]. The key issue is the estimate near the boundary.

For any point x¯=(x¯1,x¯2,x¯3)Ω\bar{x}=(\bar{x}_{1},\bar{x}_{2},\bar{x}_{3})\in\partial{\Omega} with x¯3>0\bar{x}_{3}>0 sufficiently large, let xi=xi(y1,y2)C2,αx_{i}=x_{i}(y_{1},y_{2})\in C^{2,\alpha} (i=1,2,3)(i=1,2,3) be the standard parametrization of Ω\partial\Omega in a small neighborhood of x¯\bar{x}. Suppose that 𝐧\bf{n} is the unit outer normal vector satisfying

(104) cos(𝐧,𝐱𝐢)=ni(y1,y2)C1,αfor i=1,2,3.\cos({\bf{n},x_{i}})=n_{i}(y_{1},y_{2})\in C^{1,\alpha}\quad\text{for $i=1,2,3$}.

Define the map y:yx\mathcal{M}_{y}:y\rightarrow x as follows

(105) xi=xi(y1,y2)+y31y1y1+y3y2y2+y3ni(α1,α2)𝑑α1𝑑α2,for i=1,2,3.x_{i}=x_{i}(y_{1},y_{2})+y_{3}^{-1}\int_{y_{1}}^{y_{1}+y_{3}}\int_{y_{2}}^{y_{2}+y_{3}}n_{i}(\alpha_{1},\alpha_{2})d\alpha_{1}d\alpha_{2},\quad\text{for $i=1,2,3$}.

Then the map, 𝒯x¯=y1:xy\mathscr{T}_{\bar{x}}=\mathcal{M}_{y}^{-1}:x\rightarrow y to make the boundary flat and satisfies

𝒯x¯(UδΩ)BR+and𝒯x¯(UδΩ)BR+{y3=0},\mathscr{T}_{\bar{x}}(U_{\delta}\cap{\Omega})\rightarrow B^{+}_{R}\quad\text{and}\quad\mathscr{T}_{\bar{x}}(\partial U_{\delta}\cap{\Omega})\rightarrow\partial B^{+}_{R}\cap\{y_{3}=0\},

where UδU_{\delta} is a neightborhood of x¯\bar{x}, BR+={y12+y22+y32<R,y3>0}B_{R}^{+}=\{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}<R,\ y_{3}>0\}, δ\delta and RR are uniform constants along the boundary of Ω\partial\Omega. Denote the Jacobian (yixj)=D(x)\big{(}\frac{\partial y_{i}}{\partial x_{j}}\big{)}=D(x), then for any ξ3\xi\in\mathbb{R}^{3}, there exists a constant CC such that

(106) C1|ξ||D(x)ξ|C|ξ|andC1|ξ||D1(x)ξ|C|ξ|.C^{-1}|\xi|\leq|D(x)\xi|\leq C|\xi|\quad\text{and}\quad C^{-1}|\xi|\leq|D^{-1}(x)\xi|\leq C|\xi|.

Moreover, on the boundary UδΩ\partial U_{\delta}\cap\partial\Omega the map 𝒯x¯\mathscr{T}_{\bar{x}} also satisfies

(107) yjxiy3xi=0 for j=1,2;and(y3x1,y3x2,y3x3)×n=0.\frac{\partial y_{j}}{\partial x_{i}}\frac{\partial y_{3}}{\partial x_{i}}=0\text{ for }j=1,2;\quad\text{and}\quad\big{(}\frac{\partial y_{3}}{\partial x_{1}},\frac{\partial y_{3}}{\partial x_{2}},\frac{\partial y_{3}}{\partial x_{3}}\big{)}\times{\textbf{n}}=0.

After changing variables, the problem (74) becomes

(108) {ys(a~ij(y)Ψylylxj)ysxi=0 inBR+,Ψysysxiy3xi=q¯𝒲n~3 on BR+{y3=0},\begin{cases}\frac{\partial}{\partial y_{s}}\bigg{(}\tilde{a}_{ij}(y)\frac{\partial\Psi}{\partial y_{l}}\frac{\partial y_{l}}{\partial x_{j}}\bigg{)}\frac{\partial y_{s}}{\partial x_{i}}=0&\quad\text{ in}B_{R}^{+},\\[8.53581pt] \frac{\partial\Psi}{\partial y_{s}}\frac{\partial y_{s}}{\partial x_{i}}\frac{\partial y_{3}}{\partial x_{i}}=-\bar{q}\mathcal{W}\tilde{n}_{3}&\quad\text{ on }B_{R}^{+}\cap\{y_{3}=0\},\end{cases}

where 𝒲=(i=13|y3xi|2)12\mathcal{W}=\bigg{(}\sum\limits_{i=1}^{3}|\frac{\partial y_{3}}{\partial x_{i}}|^{2}\bigg{)}^{\frac{1}{2}}, a~ij\tilde{a}_{ij} and n~3\tilde{n}_{3} are the functions aija_{ij} and n3n_{3} in yy-coordinates, respectively. In fact, one also has

(109) a~ijΨylylxjy3xi=ρ(q¯2)q¯n~3𝒲 on BR+{y3=0}.\tilde{a}_{ij}\frac{\partial\Psi}{\partial y_{l}}\frac{\partial y_{l}}{\partial x_{j}}\frac{\partial y_{3}}{\partial x_{i}}=-\rho(\bar{q}^{2})\bar{q}\tilde{n}_{3}\mathcal{W}\quad\text{ on }B_{R}^{+}\cap\{y_{3}=0\}.

For any φC03(BR+)\varphi\in C_{0}^{3}(B^{+}_{R}), multiplying φ\varphi on both sides of (108) and integrating by parts yield

(110) BR+a~ijΨylylxjysxiφys𝑑y+BR+a~ijΨylylxj2ysysxiφ𝑑y=BR+{y3=0}a~ijΨylylxjy3xiφ𝑑y1𝑑y2.\int_{B_{R}^{+}}\tilde{a}_{ij}\frac{\partial\Psi}{\partial y_{l}}\frac{\partial y_{l}}{\partial x_{j}}\frac{\partial y_{s}}{\partial x_{i}}\frac{\partial\varphi}{\partial y_{s}}dy+\int_{B_{R}^{+}}\tilde{a}_{ij}\frac{\partial\Psi}{\partial y_{l}}\frac{\partial y_{l}}{\partial x_{j}}\frac{\partial^{2}y_{s}}{\partial y_{s}\partial x_{i}}\varphi dy=\int_{B_{R}^{+}\cap\{y_{3}=0\}}\tilde{a}_{ij}\frac{\partial\Psi}{\partial y_{l}}\frac{\partial y_{l}}{\partial x_{j}}\frac{\partial y_{3}}{\partial x_{i}}\varphi dy_{1}dy_{2}.

Denote Asl=a~ijysxjylxiA_{sl}=\tilde{a}_{ij}\frac{\partial y_{s}}{\partial x_{j}}\frac{\partial y_{l}}{\partial x_{i}}. Obviously, one has

(111) λ|ξ|2AslξsξlΛ|ξ|2and|Alsyr|C.\lambda|\xi|^{2}\leq A_{sl}\xi_{s}\xi_{l}\leq\Lambda|\xi|^{2}\quad\text{and}\quad\bigg{|}\frac{\partial A_{ls}}{\partial y_{r}}\bigg{|}\leq C.

It follows from (109) and (110) that

(112) BR+AlsΨylφys𝑑y=BR+{y3=0}Al3Ψylφ𝑑y1𝑑y2=BR+{y3=0}φρ(q¯2)q¯n~3𝒲𝑑y1𝑑y2.\int_{B^{+}_{R}}A_{ls}\frac{\partial\Psi}{\partial y_{l}}\frac{\partial\varphi}{\partial y_{s}}dy=\int_{B_{R}^{+}\cap\{y_{3}=0\}}A_{l3}\frac{\partial\Psi}{\partial y_{l}}\varphi dy_{1}dy_{2}=-\int_{B_{R}^{+}\cap\{y_{3}=0\}}\varphi\rho(\bar{q}^{2})\bar{q}\tilde{n}_{3}\mathcal{W}dy_{1}dy_{2}.

Denote g=ρ(q2)qn~3𝒲A33g=\frac{-\rho(q^{2})q\tilde{n}_{3}\mathcal{W}}{A_{33}}. The definition of A33A_{33} shows

(113) λ𝒲2a~ijy3xiy3xj=A33Λ𝒲2.\lambda\mathcal{W}^{2}\leq\tilde{a}_{ij}\frac{\partial y_{3}}{\partial x_{i}}\frac{\partial y_{3}}{\partial x_{j}}=A_{33}\leq\Lambda\mathcal{W}^{2}.

It follows from the assumption (16) that

(114) g(y)C2(BR+{y3=0})Cx¯3l+1,\|g(y^{\prime})\|_{C^{2}(B_{R}^{+}\cap\{y_{3}=0\})}\leq\frac{C}{\bar{x}^{l+1}_{3}},

where y=(y1,y2).y^{\prime}=(y_{1},y_{2}). Given ς(z)C02(2)\varsigma(z^{\prime})\in C^{2}_{0}(\mathbb{R}^{2}) satisfying 2ς(z)𝑑z=1\int_{\mathbb{R}^{2}}\varsigma(z^{\prime})dz^{\prime}=1, define

(115) ϑ(y)=y32g(yy3z)ς(z)𝑑z.\vartheta(y)=y_{3}\int_{\mathbb{R}^{2}}g(y^{\prime}-y_{3}z^{\prime})\varsigma(z^{\prime})dz^{\prime}.

Then

(116) ϑ(y,0)=ϑy1(y,0)=ϑy2(y,0)=0andϑy3(y,0)=g(y).\vartheta(y^{\prime},0)=\frac{\partial\vartheta}{\partial y_{1}}(y^{\prime},0)=\frac{\partial\vartheta}{\partial y_{2}}(y^{\prime},0)=0\quad\text{and}\quad\frac{\partial\vartheta}{\partial y_{3}}(y^{\prime},0)=g(y^{\prime}).

The straightforward computations yield

(117) ϑC2(BR+)Cx¯3l+1.\|\vartheta\|_{C^{2}{(B_{R}^{+})}}\leq\frac{C}{\bar{x}_{3}^{l+1}}.

Define κ=s(Asllϑ)\kappa=\partial_{s}(A_{sl}\partial_{l}\vartheta). It follows from (117) and the definition of AslA_{sl} that

(118) κL(BR+)Cx¯3l+1\|\kappa\|_{L^{\infty}(B_{R}^{+})}\leq\frac{C}{\bar{x}_{3}^{l+1}}

and

(119) BR+Alslϑsφ+BR+{y3=0}Al3lϑφdx=BR+κφ𝑑xfor any φC03(BR+).-\int_{B_{R}^{+}}A_{ls}\partial_{l}\vartheta\partial_{s}\varphi+\int_{B_{R}^{+}\cap\{y_{3}=0\}}A_{l3}\partial_{l}\vartheta\varphi dx=\int_{B_{R}^{+}}\kappa\varphi dx\quad\text{for any }\varphi\in C_{0}^{3}(B^{+}_{R}).

Combining (112) and (119) yields

(120) BR+Als(Ψϑ)ylφys𝑑y=BR+κφ𝑑y,\int_{B^{+}_{R}}A_{ls}\frac{\partial(\Psi-\vartheta)}{\partial y_{l}}\frac{\partial\varphi}{\partial y_{s}}dy=\int_{B_{R}^{+}}\kappa\varphi dy,

where the boundary term is eliminated because of (116). Denote v=Ψϑv=\Psi-\vartheta. Replacing φ\varphi by each φyi(i=1,2,3)\frac{\partial\varphi}{\partial y_{i}}\ (i=1,2,3) in (120) and integrating by parts yield

(121) BR+κφyi𝑑y=BR+Alsyl(vyi)φys𝑑yBR+Alsyivylφys𝑑y+δi3BR+{y3=0}Alsvylφys𝑑s,for i=1,2,3.\begin{split}\quad&\int_{B_{R}^{+}}\kappa\frac{\partial\varphi}{\partial y_{i}}dy=-\int_{B_{R}^{+}}A_{ls}\frac{\partial}{\partial y_{l}}\bigg{(}\frac{\partial v}{\partial y_{i}}\bigg{)}\frac{\partial\varphi}{\partial y_{s}}dy\\ &-\int_{B_{R}^{+}}\frac{\partial A_{ls}}{\partial y_{i}}\frac{\partial v}{\partial y_{l}}\frac{\partial\varphi}{\partial y_{s}}dy+\delta_{i3}\int_{B_{R}^{+}\cap\{y_{3}=0\}}A_{ls}\frac{\partial v}{\partial y_{l}}\frac{\partial\varphi}{\partial y_{s}}ds,\quad\text{for $i=1,2,3$}.\end{split}

Define

Θ=maxBR+{y3=0}|vy3|,w1=vy1,w2=vy2,w3=vy3Θ.\Theta=\max\limits_{B_{R}^{+}\cap\{y_{3}=0\}}\bigg{|}\frac{\partial v}{\partial y_{3}}\bigg{|},\quad w_{1}=\frac{\partial v}{\partial y_{1}},\quad w_{2}=\frac{\partial v}{\partial y_{2}},\quad w_{3}=\frac{\partial v}{\partial y_{3}}-\Theta.

It follows from (117) that

(122) ΘmaxBR+{y3=0}|Ψy3|+maxBR+{y3=0}|ϑy3|Cx¯3l+1.\Theta\leq\max\limits_{B_{R}^{+}\cap\{y_{3}=0\}}\bigg{|}\frac{\partial\Psi}{\partial y_{3}}\bigg{|}+\max\limits_{B_{R}^{+}\cap\{y_{3}=0\}}\bigg{|}\frac{\partial\vartheta}{\partial y_{3}}\bigg{|}\leq\frac{C}{\bar{x}_{3}^{l+1}}.

Moreover, the equality (121) can be written as

(123) BR+Alswiylφys𝑑y+BR+wlAlsyiφys𝑑y=δi3BR+{y3=0}Alsvylφys𝑑sBR+κφyi𝑑yδl3ΘBR+Alsyiφys𝑑y,(i=1,2,3).\begin{split}&\quad\int_{B_{R}^{+}}A_{ls}\frac{\partial w_{i}}{\partial y_{l}}\frac{\partial\varphi}{\partial y_{s}}dy+\int_{B_{R}^{+}}w_{l}\frac{\partial A_{ls}}{\partial y_{i}}\frac{\partial\varphi}{\partial y_{s}}dy\\[8.53581pt] &=\delta_{i3}\int_{B_{R}^{+}\cap\{y_{3}=0\}}A_{ls}\frac{\partial v}{\partial y_{l}}\frac{\partial\varphi}{\partial y_{s}}ds-\int_{B_{R}^{+}}\kappa\frac{\partial\varphi}{\partial y_{i}}dy-\delta_{l3}\Theta\int_{B_{R}^{+}}\frac{\partial A_{ls}}{\partial y_{i}}\frac{\partial\varphi}{\partial y_{s}}dy,\quad(i=1,2,3).\end{split}

Now we use Nash-Moser iteration to get the LL^{\infty}-norm of wiw_{i}. We consider only the case wi0w_{i}\geq 0. If wi0w_{i}\geq 0 does not hold, one can repeat the following proof for wi+w_{i}^{+} and wiw_{i}^{-}, respectively. It is easy to see that

(124) w3=0on BR+{y3=0}.w_{3}=0\quad\text{on $B_{R}^{+}\cap\{y_{3}=0\}$}.

For i=1,2,3i=1,2,3, denote φi=η2wiμ+1\varphi_{i}=\eta^{2}{w}_{i}^{\mu+1} with some μ0\mu\geq 0 and some nonnegative function ηC02(BR+)\eta\in C^{2}_{0}({B^{+}_{R}}). Direct calculations give

φiyr=2ηηyrwiμ+1+η2(μ+1)wiyrwiμ,for i=1,2,3.\frac{\partial\varphi_{i}}{\partial y_{r}}=2\eta\frac{\partial\eta}{\partial y_{r}}{w}_{i}^{\mu+1}+\eta^{2}(\mu+1)\frac{\partial w_{i}}{\partial y_{r}}{w_{i}}^{\mu},\quad\text{for $i=1,2,3$}.

Replacing φ\varphi by φi\varphi_{i} for (i=1,2,3)(i=1,2,3) in (123) yields

(125) BR+Alswiylφiys𝑑y+BR+wlAlsyiφiys𝑑y=BR+κφiyi𝑑yΘBR+A3syiφiys𝑑y=BR+(δisκ+ΘA3syi)φiys𝑑y,for i=1,2,3,\begin{split}&\quad\int_{B_{R}^{+}}A_{ls}\frac{\partial w_{i}}{\partial y_{l}}\frac{\partial\varphi_{i}}{\partial y_{s}}dy+\int_{B_{R}^{+}}w_{l}\frac{\partial A_{ls}}{\partial y_{i}}\frac{\partial\varphi_{i}}{\partial y_{s}}dy\\ &=-\int_{B_{R}^{+}}\kappa\frac{\partial\varphi_{i}}{\partial y_{i}}dy-\Theta\int_{B_{R}^{+}}\frac{\partial A_{3s}}{\partial y_{i}}\frac{\partial\varphi_{i}}{\partial y_{s}}dy\\[5.69054pt] &=-\int_{B_{R}^{+}}(\delta_{is}\kappa+\Theta\frac{\partial A_{3s}}{\partial y_{i}})\frac{\partial\varphi_{i}}{\partial y_{s}}dy,\quad\text{for $i=1,2,3$},\end{split}

where the boundary term vanishes due to (124). The straightforward computations give

(126) BR+Alswiyl(2ηηyswiμ+1+η2(μ+1)wiyswiμ)𝑑yλ(μ+1)BR+η2wiμ|Dwi|2𝑑y2ΛBR+ηwiμ+1|Dη||Dwi|𝑑yλ(μ+1)BR+η2wiμ|Dwi|2𝑑yϵBR+η2wiμ|Dwi|21ϵBR+|Dη|2wiμ+2𝑑y\begin{split}&\quad\int_{B_{R}^{+}}A_{ls}\frac{\partial w_{i}}{\partial y_{l}}\bigg{(}2\eta\frac{\partial\eta}{\partial y_{s}}{w}_{i}^{\mu+1}+\eta^{2}(\mu+1)\frac{\partial w_{i}}{\partial y_{s}}{w_{i}}^{\mu}\bigg{)}dy\\[5.69054pt] &\geq\lambda(\mu+1)\int_{B_{R}^{+}}\eta^{2}w_{i}^{\mu}|Dw_{i}|^{2}dy-2\Lambda\int_{B_{R}^{+}}\eta w_{i}^{\mu+1}|D\eta||Dw_{i}|dy\\[5.69054pt] &\geq\lambda(\mu+1)\int_{B_{R}^{+}}\eta^{2}w_{i}^{\mu}|Dw_{i}|^{2}dy-\epsilon\int_{B_{R}^{+}}\eta^{2}w_{i}^{\mu}|Dw_{i}|^{2}-\frac{1}{\epsilon}\int_{B_{R}^{+}}|D\eta|^{2}w_{i}^{\mu+2}dy\end{split}

and

(127) BR+wlAlsyiφiys𝑑yCBR+η|Dη|wiμ+1|Alsyiwl|+|Alsyiwl|η2(μ+1)wiμ|Dwi|dyCBR+|Dη|2wiμ+2+η2|Alsyiwl|2wiμ+ϵη2(μ+1)2wiμ|Dwi|2+1ϵ|Alsyiwl|2η2wiμdyCBR+|Dη|2wiμ+2+η2|w¯|2wiμ+ϵη2(μ+1)2wiμ|Dwi|2+1ϵ|w¯|2η2wiμdy,\begin{split}&\quad\int_{B_{R}^{+}}w_{l}\frac{\partial A_{ls}}{\partial y_{i}}\frac{\partial\varphi_{i}}{\partial y_{s}}dy\\ &\leq C\int_{B_{R}^{+}}\eta|D\eta|w_{i}^{\mu+1}\bigg{|}\frac{\partial A_{ls}}{\partial y_{i}}w_{l}\bigg{|}+\bigg{|}\frac{\partial A_{ls}}{\partial y_{i}}w_{l}\bigg{|}\eta^{2}(\mu+1)w_{i}^{\mu}|Dw_{i}|dy\\ &\leq C\int_{B_{R}^{+}}|D\eta|^{2}w_{i}^{\mu+2}+\eta^{2}\bigg{|}\frac{\partial A_{ls}}{\partial y_{i}}w_{l}\bigg{|}^{2}w_{i}^{\mu}+\epsilon\eta^{2}(\mu+1)^{2}w_{i}^{\mu}|Dw_{i}|^{2}+\frac{1}{\epsilon}\bigg{|}\frac{\partial A_{ls}}{\partial y_{i}}w_{l}\bigg{|}^{2}\eta^{2}w_{i}^{\mu}dy\\ &\leq C\int_{B_{R}^{+}}|D\eta|^{2}w_{i}^{\mu+2}+\eta^{2}|\bar{w}|^{2}w_{i}^{\mu}+\epsilon\eta^{2}(\mu+1)^{2}w_{i}^{\mu}|Dw_{i}|^{2}+\frac{1}{\epsilon}|\bar{w}|^{2}\eta^{2}w_{i}^{\mu}dy,\end{split}

where |w¯|2=w12+w22+w32|\bar{w}|^{2}=w_{1}^{2}+w_{2}^{2}+w_{3}^{2}. Denote

is=δisκ+ΘA3syiand𝒦=max|is|.\mathcal{F}_{is}=\delta_{is}\kappa+\Theta\frac{\partial A_{3s}}{\partial y_{i}}\quad\text{and}\quad\mathcal{K}=\max|\mathcal{F}_{is}|.

It follows from (118) and (122) that

(128) |𝒦|Cx¯3l+1.|\mathcal{K}|\leq\frac{C}{\bar{x}_{3}^{l+1}}.

If |wi|𝒦|w_{i}|\leq\mathcal{K}, then we prove the pointwise bounds claimed in Theorem 2 . Hence we assume

(129) |wi|𝒦,(i=1,2,3).|w_{i}|\geq\mathcal{K},\quad(i=1,2,3).

Therefore, one has

(130) BR+isφiys𝑑yBR+𝒦η|Dη|wiμ+1+𝒦η2(μ+1)wiμ|Dwi|dyBR+η|Dη|wiμ+2+ϵη2(μ+1)2wiμ|Dwi|2+1ϵη2𝒦2wiμdyBR+η|Dη|wiμ+2+ϵη2(μ+1)2wiμ|Dwi|2+1ϵη2wiμ+2dy.\begin{split}&\quad\int_{B_{R}^{+}}\mathcal{F}_{is}\frac{\partial\varphi_{i}}{\partial y_{s}}dy\\ &\leq\int_{B_{R}^{+}}\mathcal{K}\eta|D\eta|w_{i}^{\mu+1}+\mathcal{K}\eta^{2}(\mu+1)w_{i}^{\mu}|Dw_{i}|dy\\ &\leq\int_{B_{R}^{+}}\eta|D\eta|w_{i}^{\mu+2}+\epsilon\eta^{2}(\mu+1)^{2}w_{i}^{\mu}|Dw_{i}|^{2}+\frac{1}{\epsilon}\eta^{2}\mathcal{K}^{2}w_{i}^{\mu}dy\\ &\leq\int_{B_{R}^{+}}\eta|D\eta|w_{i}^{\mu+2}+\epsilon\eta^{2}(\mu+1)^{2}w_{i}^{\mu}|Dw_{i}|^{2}+\frac{1}{\epsilon}\eta^{2}w_{i}^{\mu+2}dy.\end{split}

Combining (126), (127), and (130) yields

(131) λ(μ+1)BR+η2wiμ|Dwi|2𝑑y(ϵ+2ϵ(μ+1)2)BR+η2wiμ|Dwi|2𝑑y(C+Cϵ)BR+η2|w¯|2wiμ𝑑y+(C+Cϵ)BR+(η2+|Dη|2)wiμ+2𝑑y.\begin{split}&\quad\lambda(\mu+1)\int_{B_{R}^{+}}\eta^{2}w_{i}^{\mu}|Dw_{i}|^{2}dy-\big{(}\epsilon+2\epsilon(\mu+1)^{2}\big{)}\int_{B_{R}^{+}}\eta^{2}w_{i}^{\mu}|Dw_{i}|^{2}dy\\ &\leq(C+\frac{C}{\epsilon})\int_{B_{R}^{+}}\eta^{2}|\bar{w}|^{2}w_{i}^{\mu}dy+(C+\frac{C}{\epsilon})\int_{B_{R}^{+}}(\eta^{2}+|D\eta|^{2})w_{i}^{\mu+2}dy.\end{split}

If we choose ϵ=λ8(μ+1)\epsilon=\frac{\lambda}{8(\mu+1)}, then one has

(132) BR+η2wi2|Dwi|2𝑑yCBR+|Dη|2|wi|μ+2+η2|wi|μ+2+η2|w¯|2|wi|μdy.\int_{B_{R}^{+}}\eta^{2}w_{i}^{2}|Dw_{i}|^{2}dy\leq C\int_{B_{R}^{+}}|D\eta|^{2}|w_{i}|^{\mu+2}+\eta^{2}|w_{i}|^{\mu+2}+\eta^{2}|\bar{w}|^{2}|w_{i}|^{\mu}dy.

Therefore,

(133) BR+|D(ηwiμ+22)|2𝑑yC(μ+2)2BR+|Dη|2|wi|μ+2+η2|wi|μ+2+η2|w¯|2|wi|μdy.\int_{B_{R}^{+}}\bigg{|}D(\eta w_{i}^{\frac{\mu+2}{2}})\bigg{|}^{2}dy\leq C(\mu+2)^{2}\int_{B_{R}^{+}}|D\eta|^{2}|w_{i}|^{\mu+2}+\eta^{2}|w_{i}|^{\mu+2}+\eta^{2}|\bar{w}|^{2}|w_{i}|^{\mu}dy.

Applying Sobolev inequality yields

(134) (BR+(ηwiμ+22)6𝑑y)13C(μ+2)2BR+|Dη|2|wi|μ+2+η2|wi|μ+2+η2|w¯|2|wi|μdy.\bigg{(}\int_{B_{R}^{+}}(\eta w_{i}^{\frac{\mu+2}{2}})^{6}dy\bigg{)}^{\frac{1}{3}}\leq C(\mu+2)^{2}\int_{B_{R}^{+}}|D\eta|^{2}|w_{i}|^{\mu+2}+\eta^{2}|w_{i}|^{\mu+2}+\eta^{2}|\bar{w}|^{2}|w_{i}|^{\mu}dy.

Set

Rj=(12+12j+1)Randγj=23j.R_{j}=(\frac{1}{2}+\frac{1}{2^{j+1}})R\quad\text{and}\quad\gamma_{j}=2\cdot 3^{j}.

Let ηjC0(BRj+)\eta_{j}\in C_{0}^{\infty}(B_{R_{j}}^{+}) satisfy

ηj=1 in BRj+1+and|Dηj|4RjRj+1.\quad\eta_{j}=1\text{ in }B_{R_{j+1}}^{+}\quad\text{and}\quad|D\eta_{j}|\leq\frac{4}{R_{j}-R_{j+1}}.

Choosing μ=γj2\mu=\gamma_{j}-2 yields

(BRj+1+wiγj+1𝑑y)13Cγj2BRj+(2j+1R)2wiγj+wiγj+|w¯|2wiγj2dy.\bigg{(}\int_{B_{R_{j+1}}^{+}}w_{i}^{\gamma_{j+1}}dy\bigg{)}^{\frac{1}{3}}\leq C\gamma_{j}^{2}\int_{B_{R_{j}}^{+}}\big{(}2^{j+1}R\big{)}^{2}w_{i}^{\gamma_{j}}+w_{i}^{\gamma_{j}}+|\bar{w}|^{2}w_{i}^{\gamma_{j}-2}dy.

Thus, one has

(135) (BRj+1+wiγj+1𝑑y)1γj+1(BRj+Ajwiγj+Bjwiγj+Bj|w¯|2wiγj2dy)1γj,\bigg{(}\int_{B_{R_{j+1}}^{+}}w_{i}^{\gamma_{j+1}}dy\bigg{)}^{\frac{1}{\gamma_{j+1}}}\leq\bigg{(}\int_{B_{R_{j}}^{+}}A_{j}w_{i}^{\gamma_{j}}+B_{j}w_{i}^{\gamma_{j}}+B_{j}|\bar{w}|^{2}w_{i}^{\gamma_{j}-2}dy\bigg{)}^{\frac{1}{\gamma_{j}}},

where Aj=Cγj2(2j+1/R)2A_{j}=C\gamma_{j}^{2}\big{(}2^{j+1}/R\big{)}^{2} and Bj=Cγj2B_{j}=C\gamma_{j}^{2}. Note that

(136) BRj+|w¯|2wiγj2𝑑y(BRj+wiγj)γj2γj(BRj+|w¯|γj)2γj.\int_{B_{R_{j}}^{+}}|\bar{w}|^{2}w_{i}^{\gamma_{j}-2}dy\leq\bigg{(}\int_{B_{R_{j}}^{+}}w_{i}^{\gamma_{j}}\bigg{)}^{\frac{\gamma_{j}-2}{\gamma_{j}}}\bigg{(}\int_{B_{R_{j}}^{+}}|\bar{w}|^{\gamma_{j}}\bigg{)}^{\frac{2}{\gamma_{j}}}.

Therefore, one has

(137) (BRj+1+wiγj+1𝑑y)1γj+1[AjBRj+wiγj+BjBRj+wiγj+Bj(BRj+wiγj)γj2γj(BRj+|w¯|γj)2γj]1γjwiLγj(BRj+)γj2γj[(Aj+Bj)wiLγj(BRj+)2+Bjw¯Lγj(BRj+)2]1γjwiLγj(BRj+)γj2γj(Aj+2Bj)1γjw¯Lγj(BRj+)2γj.\begin{split}&\quad\bigg{(}\int_{B_{R_{j+1}}^{+}}w_{i}^{\gamma_{j+1}}dy\bigg{)}^{\frac{1}{\gamma_{j+1}}}\\ &\leq\bigg{[}A_{j}\int_{B_{R_{j}}^{+}}w_{i}^{\gamma_{j}}+B_{j}\int_{B_{R_{j}}^{+}}w_{i}^{\gamma_{j}}+B_{j}\bigg{(}\int_{B_{R_{j}}^{+}}w_{i}^{\gamma_{j}}\bigg{)}^{\frac{\gamma_{j}-2}{\gamma_{j}}}\bigg{(}\int_{B_{R_{j}}^{+}}|\bar{w}|^{\gamma_{j}}\bigg{)}^{\frac{2}{\gamma_{j}}}\bigg{]}^{\frac{1}{\gamma_{j}}}\\[5.69054pt] &\leq\|w_{i}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}^{\frac{\gamma_{j}-2}{\gamma_{j}}}\bigg{[}(A_{j}+B_{j})\|w_{i}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}^{2}+B_{j}\|\bar{w}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}^{2}\bigg{]}^{\frac{1}{\gamma_{j}}}\\[5.69054pt] &\leq\|w_{i}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}^{\frac{\gamma_{j}-2}{\gamma_{j}}}(A_{j}+2B_{j})^{\frac{1}{\gamma_{j}}}\|\bar{w}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}^{\frac{2}{\gamma_{j}}}.\end{split}

This implies that

(138) i=13wiLγj+1(BRj+1+)i=13wiLγj(BRj+)γj2γj(Aj+2Bj)1γjw¯Lγj(BRj+)2γj[i=13(wiLγj(BRj+)γj2γj(Aj+2Bj)1γjw¯Lγj(BRj+)2γj)γjγj2]γj2γj32γj(9Aj+18Bj)1γj(i=13wiLγj(BRj+))2γj(i=13wiLγj(BRj+))γj2γj(9Aj+18Bj)1γji=13wiLγj(BRj+).\begin{split}&\quad\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{\gamma_{j+1}}(B_{R_{j+1}}^{+})}\\ &\leq\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}^{\frac{\gamma_{j}-2}{\gamma_{j}}}(A_{j}+2B_{j})^{\frac{1}{\gamma_{j}}}\|\bar{w}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}^{\frac{2}{\gamma_{j}}}\\ &\leq\bigg{[}\sum\limits_{i=1}^{3}\bigg{(}\|w_{i}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}^{\frac{\gamma_{j}-2}{\gamma_{j}}}(A_{j}+2B_{j})^{\frac{1}{\gamma_{j}}}\|\bar{w}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}^{\frac{2}{\gamma_{j}}}\bigg{)}^{\frac{\gamma_{j}}{\gamma_{j}-2}}\bigg{]}^{\frac{\gamma_{j}-2}{\gamma_{j}}}3^{\frac{2}{\gamma_{j}}}\\ &\leq(9A_{j}+18B_{j})^{\frac{1}{\gamma_{j}}}\bigg{(}\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}\bigg{)}^{\frac{2}{\gamma_{j}}}\bigg{(}\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}\bigg{)}^{\frac{\gamma_{j}-2}{\gamma_{j}}}\\ &\leq(9A_{j}+18B_{j})^{\frac{1}{\gamma_{j}}}\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{\gamma_{j}}(B_{R_{j}}^{+})}.\end{split}

Set

𝒬j+1=i=13wiLγj+1(BRj+1+)andSj=(9Aj+18Bj)1γj.\mathcal{Q}_{j+1}=\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{\gamma_{j+1}}(B_{R_{j+1}}^{+})}\quad\text{and}\quad S_{j}=(9A_{j}+18B_{j})^{\frac{1}{\gamma_{j}}}.

Hence the estimate (138) can be written as

(139) 𝒬j+1Sj𝒬j.\mathcal{Q}_{j+1}\leq S_{j}\mathcal{Q}_{j}.

Obviously,

(140) Sj=(9Aj+18Bj)1γj(Cγj2(2j+1/R)2)1γjC1γj18jγj.S_{j}=(9A_{j}+18B_{j})^{\frac{1}{\gamma_{j}}}\leq\bigg{(}C\gamma_{j}^{2}\big{(}2^{j+1}/R\big{)}^{2}\bigg{)}^{\frac{1}{\gamma_{j}}}\leq C^{\frac{1}{\gamma_{j}}}18^{\frac{j}{\gamma_{j}}}.

Therefore, one has

(141) 𝒬j+1Ci=1j1γi18i=1jiγi𝒬0.\mathcal{Q}_{j+1}\leq C^{\sum\limits_{i=1}^{j}\frac{1}{\gamma_{i}}}18^{\sum\limits_{i=1}^{j}\frac{i}{\gamma_{i}}}\mathcal{Q}_{0}.

Note that

i=1j1γiCandi=1jiγiC.\sum\limits_{i=1}^{j}\frac{1}{\gamma_{i}}\leq C\quad\text{and}\quad\sum\limits_{i=1}^{j}\frac{i}{\gamma_{i}}\leq C.

Taking jj\rightarrow\infty in (141) yields

(142) i=13wiL(B12R+)Ci=13wiL2(BR+),\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{\infty}(B_{\frac{1}{2}R}^{+})}\leq C\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{2}(B_{R}^{+})},

provided that (129) holds. Hence, we have

(143) i=13wiL(B12R+)Ci=13wiL2(BR+)+𝒦.\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{\infty}(B_{\frac{1}{2}R}^{+})}\leq C\sum\limits_{i=1}^{3}\|w_{i}\|_{L^{2}(B_{R}^{+})}+\mathcal{K}.

It follows from the definition of wiw_{i}, (117), (118) and (122), one has

(144) ΨL(Uδ)C(ΨL2(Uδ)+𝒦+Θ+ϑC2(BR+)).\|\nabla\Psi\|_{L^{\infty}(U_{\delta})}\leq C\big{(}\|\nabla\Psi\|_{L^{2}(U_{\delta})}+\mathcal{K}+\Theta+\|\vartheta\|_{C^{2}{(B_{R}^{+})}}\big{)}.

For the interior estimate, as same as the estimate for (144) with ϑ=0\vartheta=0, Θ=0\Theta=0 and 𝒦=0\mathcal{K}=0 to obtain for any BRΩB_{R}\in\Omega, one has

(145) ΨL(BR2)CΨL2(BR).\|\nabla\Psi\|_{L^{\infty}(B_{\frac{R}{2}})}\leq C\|\nabla\Psi\|_{L^{2}(B_{R})}.

In a word, when the boundary satisfies (16) and x3x_{3} is sufficiently large, combining (144) and (145) yields

(146) |ϕ1(x1,x2,x3)(0,0,q¯)|Cx3l.|\nabla\phi_{1}(x_{1},x_{2},x_{3})-(0,0,\bar{q})|\leq Cx_{3}^{-{l}}.

For the case of the nozzle is a perfect cylinder for x3x_{3} sufficient large, obviously the third component of the normal direction at the boundary is zero, i.e. n3=0n_{3}=0. Applying the estimate (144) with ϑ=0\vartheta=0, Θ=0\Theta=0 and 𝒦=0\mathcal{K}=0 yields that there is a positive constant 𝔡\mathfrak{d} such that

(147) ΦL(Ω(T,T+1))Ce𝔡T.\|\nabla\Phi\|_{L^{\infty}(\Omega(T,T+1))}\leq\frac{C}{e^{\mathfrak{d}T}}.

Hence, the proof of Theorem 2 is finished.

Acknowledgement. The authors were supported partially by NSFC grants 11971307 and 11631008. Xie is also supported by Young Changjiang Scholar of Ministry of Education in China.

References

  • [1] H. W. Alt, L. A. Caffarelli, and A. Friedman. A free boundary problem for quasi-linear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11(1):1–44, 1984.
  • [2] L. Bers. Existence and uniqueness of a subsonic flow past a given profile. Comm. Pure Appl. Math., 7:441–504, 1954.
  • [3] L. Bers. Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Surveys in Applied Mathematics 3, John Wiley & Sons, NewYork, 1958.
  • [4] C. Chen, L. L. Du, C. J. Xie, and Z. P. Xin. Two dimensional subsonic Euler flows past a wall or a symmetric body. Arch. Ration. Mech. Anal., 221(2):559–602, 2016.
  • [5] C. Chen and C. Xie. Three dimensional steady subsonic Euler flows in bounded nozzles. J. Differential Equations, 256(11):3684–3708, 2014.
  • [6] C. Chen and C. J. Xie. Existence of steady subsonic Euler flows through infinitely long periodic nozzles. J. Differential Equations., 252(7):4315–4331, 2012.
  • [7] G. Q. Chen, C. M. Dafermos, M. Slemrod, and D. H. Wang. On two-dimensional sonic-subsonic flow. Comm. Math. Phys., 271(3):635–647, 2007.
  • [8] G. Q. Chen and M. Feldman. Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. Amer. Math. Soc., 16(3):461–494, 2003.
  • [9] G. Q. Chen and H. Frid. Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal., 147(2):89–118, 1999.
  • [10] G. Q. Chen, F. M. Huang, and T. Y. Wang. Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations. Arch. Ration. Mech. Anal., 219(2):719–740, 2016.
  • [11] G. Q. Chen, F. M. Huang, T. Y. Wang, and W. Xiang. Steady Euler flows with large vorticity and characteristic discontinuities in arbitrary infinitely long nozzles. Adv. Math., 346:946–1008, 2019.
  • [12] M. Chipot and S. Mardare. The Neumann problem in cylinders becoming unbounded in one direction. J. Math. Pures Appl., 104(5):921–941, 2015.
  • [13] R. Courant and K. O. Friedrichs. Supersonic flow and shock waves. Interscience, NewYork, 1948.
  • [14] G. C. Dong. Nonlinear Partial Differential Equations of Second Order, volume 95. Translations of Mathematical Monograghs, Amercian Mathematical Society, 1991.
  • [15] G. C. Dong and B. Ou. Subsonic flows around a body in space. Comm. Partial Differential. Equations., 18(1-2):355–379, 1993.
  • [16] L. L. Du, S. K. Weng, and Z. P. Xin. Subsonic irrotational flows in a finitely long nozzle with variable end pressure. Comm. Partial Differential Equations., 39(4):666–695, 2014.
  • [17] L. L. Du, C. J. Xie, and Z. P. Xin. Steady subsonic ideal flows through an infinitely long nozzle with large vorticity. Comm. Math. Phys., 328(1):327–354, 2014.
  • [18] L. L. Du, Z. P. Xin, and W. Yan. Subsonic flows in a multi-dimensional nozzle. Arch. Ration. Mech. Anal, 201(3):965–1012, 2011.
  • [19] L. C. Evans. Partial Differential Equations. Amercian Mathematical Society, Second edition, 2010.
  • [20] R. Finn and D. Gilbarg. Asymptotic behavior and uniqueness of plane subsonic flows. Comm. Pure Appl. Math., 10(1):23–63, 1957.
  • [21] R. Finn and D. Gilbarg. Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations. Acta Math., 98(1-4):265–296, 1957.
  • [22] J. N. Flavin, R. J. Knops, and L. E. Payne. Asymptotic and other estimates for a semilinear elliptic equation in a cylinder. Quart. J. Mech. Appl. Math., 45(4):617–627, 1992.
  • [23] F. I. Frankl and M. V. Keldysh. Dieäussere neumann’she aufgabe für nichtlineare elliptische differentialgleichungen mit anwendung auf die theorie der flügel im kompressiblen gas. Izvestiya Akademii Nauk SSSR, 12:561–607, 1934.
  • [24] D. Gilbarg and M. Shiffman. On bodies achieving extreme values of the critical mach number, I. J. Rational Mech. Anal., 3:209–230, 1954.
  • [25] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer, Berlin. classics in Mathematics. Springer, Berlin, 2001.
  • [26] Q. Han and F. H. Lin. Elliptic partial differential equations, volume 1. American Mathematical Society., 2011.
  • [27] F. M. Huang, T. Y. Wang, and Y. Wang. On multi-dimensional sonic-subsonic flow. Acta Math. Sci. Ser. B (Engl. Ed.), 31(6):2131–2140, 2011.
  • [28] S. Klainerman and A. Majda. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math., 34(4):481–524, 1981.
  • [29] S. Klainerman and A. Majda. Compressible and incompressible fluids. Comm. Pure Appl. Math., 35(5):629–651, 1982.
  • [30] P. D. Lax. A Phragmén-Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations. Comm. Pure Appl. Math., 10(3):361–389, 1957.
  • [31] G. M. Lieberman. The conormal derivative problem for elliptic equations of variational type. J. Differential Equations., 49(2):218–257, 1983.
  • [32] C. S. Morawetz. On the non-existence of continuous transonic flows past profiles I. Comm. Pure Appl. Math., 9(1):45–68, 1956.
  • [33] C. S. Morawetz. On the non-existence of continuous transonic flows past profiles II. Comm. Pure Appl. Math., 10(1):107–131, 1957.
  • [34] C. S. Morawetz. On the non-existence of continuous transonic flows past profiles III. Comm. Pure Appl. Math., 11(1):129–144, 1958.
  • [35] C. S. Morawetz. Non-existence of transonic flow past a profile. Comm. Pure Appl. Math., 17(3):357–367, 1964.
  • [36] C. S. Morawetz. On a weak solution for a transonic flow problem. Comm. Pure Appl. Math., 38(6):797–817, 1985.
  • [37] C. S. Morawetz. On steady transonic flow by compensated compactness. Methods Appl. Anal., 2(3):257–268, 1995.
  • [38] O. A. Oleǐnik and G. A. Iosif’yan. The behavior at infinity of the solutions of second-order elliptic equations in domains with a noncompact boundary. Mat. Sb. (N.S.), 112(154)(4(8)):588–610, 1980.
  • [39] M. Shiffman. On the existence of subsonic flows of a compressible fluid. Proc. Nat. Acad. Sci. U. S. A.., 38(5):434–438, 1952.
  • [40] C. P. Wang and Z. P. Xin. On a degenerate free boundary problem and continuous subsonic–sonic flows in a convergent nozzle. Arch. Ration. Mech. Anal., 208(3):911–975, 2013.
  • [41] C. P. Wang and Z. P. Xin. On sonic curves of smooth subsonic-sonic and transonic flows. SIAM J. Math. Anal., 48(4):2414–2453, 2016.
  • [42] C. J. Xie and Z. P. Xin. Global subsonic and subsonic-sonic flows through infinitely long nozzles. Indiana Univ. Math. J., 56(6):2991–3023, 2007.
  • [43] C. J. Xie and Z. P. Xin. Existence of global steady subsonic Euler flows through infinitely long nozzles. SIAM J. Math. Anal., 42(2):751–784, 2010.
  • [44] C. J. Xie and Z. P. Xin. Global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles. J. Differential Equations., 248(11):2657–2683, 2010.
  • [45] Z. P. Xin and H. C. Yin. Transonic shock in a nozzle I: 2d case. Comm. Pure Appl. Math., 58(8):999–1050, 2005.
  • [46] Z. P. Xin and H. C. Yin. Three-dimensional transonic shocks in a nozzle. Pacific J. Math., 236(1):139–193, 2008.