This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\catchline

Examining the weak cosmic censorship conjecture by gedanken experiments for an Einstein-Maxwell-Dilaton-Axion black hole

Hai-Feng Ding Division of Mathematical and Theoretical Physics, Shanghai Normal University,
100 Guilin Road, Shanghai 200234, China
haifeng1116@qq.com
   Xiang-Hua Zhai Division of Mathematical and Theoretical Physics, Shanghai Normal University,
100 Guilin Road, Shanghai 200234, China
zhaixh@shnu.edu.cn
(Day Month Year; Day Month Year)
Abstract

In the framework of the new version of the gedanken experiments proposed by Sorce and Wald, we investigate the weak cosmic censorship conjecture (WCCC) for an Einstein-Maxwell-Dilaton-Axion (EMDA) black hole. Our result shows that no violations of WCCC can occur with the increase of the background solution parameters for this near-extremal EMDA black hole when the second order correction of the perturbations is taken into account. Namely, the near-extremal EMDA black hole cannot be over-charged or over-spun.

keywords:
weak cosmic censorship conjecture; Einstein-Maxwell-Dilaton-Axion black holes.
{history}
\ccode

PACS numbers:

1 Introduction

The weak cosmic censorship conjecture (WCCC), as one of the most important questions in classical gravitational theories, was proposed by Penrose [1] to ensure the causality and the predictability of classical general relativity. It states that all singularities arising from gravitational collapse must be hidden behind event horizons of black holes and cannot be seen by distant observers.

Several studies have been done to test the validity of WCCC [2], and WCCC also attracted a lot of interests in various theories and by diverse methods [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], for a recent review and progresses see for instance Ref. 18 and references therein. Among these methods, one possible way of violating the WCCC is to over-charge or over-spin a black hole by adding the charged or spinning matter, so that the event horizon might be destroyed and the naked singularity would appear. In 1974, Wald proposed a gedanken experiment to examine the WCCC for an extremal Kerr-Newman black hole [19]. It was shown that no violations of WCCC can occur by throwing particle matter into an extremal Kerr-Newman black hole. But in 1999, Hubeny proposed that violations of WCCC might still occur by over-charging a near-extremal charged black hole [20]. Recently, Sorce and Wald [21] suggested that the analysis of Hubeny’s experiment is insufficient at the linear order, so that the second order correction of the perturbation must be taken into account to check the WCCC, and a new version of the gedanken experiments has been proposed.

In the new version of the gedanken experiments [21], the detailed physical process of falling matter in Kerr-Newman spacetime has been analyzed based on the Iyer-Wald formalism [22]. After the null energy condition of the falling matter was taken into account, they derived the first order and second order inequalities relating energy, angular momentum and electric charge of the black hole. Importantly, the second order inequality of mass automatically takes all effects on energy into account, including self-force and finite-size effects, and it is valid not only for particle-like matter but also for general matter entering a Kerr-Newman black hole. They showed that the near-extremal Kerr-Newman black hole cannot be over-charged or over-spun when the second order correction of the perturbation was taken into account.

So far, there are no general procedures to prove the validity of WCCC for arbitrary black holes in any gravitational theories. Hence, its validity has to be demonstrated for black holes case by case. Most recently, by using the new version of the gedanken experiments, the WCCC has been tested for several stationary black hole solutions in Refs.  23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, and the results show that the WCCC is valid under the second order approximation. Usually, in the new version of the gedanken experiments, the background conserved charges include the mass, angular momentum and electric charge. It is worth further study whether the increase of the background solution parameters will affect the validity of WCCC. The Einstein-Maxwell-Dilaton-Axion (EMDA) black hole [36] with stationary and axial symmetries is equipped with six continuous free parameters and two discrete constants. In particular, it contains the generalized Sen black hole with mass, Newman-Unti-Tamburino parameter, charge, angular momentum, dilaton and axion parameters. So, to examine the WCCC for such a rich balck hole will be an important and interesting work. In this paper we will use the new version of the gedanken experiments to investigate the WCCC for this EMDA black hole.

The paper is organized as follows. In Sect. 2, we review the Iyer-wald formalism to derive the variational identities. In Sect. 3, we focus on the EMDA theory of gravity and calculate the relevant quantities for our further analysis. In the end of this section the EMDA black hole solution are introduced. In Sect. 4, we present the set-up for the new version of the gedanken experiments, and derive the first order and second order perturbation inequalities for EMDA black holes. Whereafter, we investigate the new version of the gedanken experiments to destroy a near-extremal EMDA black hole. We prove the WCCC is valid under the second order correction of the perturbation. The conclusions are presented in Sect. 5.

2 Iyer-Wald Formalism and Varational Identities

Firstly, we review the Iyer-Wald formalism to derive the variational identities [21]. We consider a general diffeomorphism covariant theory of gravity on a 4-dimensional spacetime \mathcal{M}, where the Lagrangian 4-form 𝐋=Lϵ\mathbf{L}=\mathrm{L}\bm{\epsilon} is constructed locally by the metric field gabg_{ab} and matter fields ψ\psi’s, with ϵ\bm{\epsilon} the volume element compatible with the metric gabg_{ab}. We denote the dynamic fields jointly as Φ=(gab,ψ)\Phi=(g_{ab},\psi). The variation of 𝐋\mathbf{L} leads to

δ𝐋(Φ)=𝐄ΦδΦ+d𝚯(Φ,δΦ),\delta\mathbf{L}(\Phi)=\mathbf{E}_{\Phi}\delta\Phi+\mathrm{d}\mathbf{\Theta}(\Phi,\delta\Phi), (1)

where 𝐄Φ=0\mathbf{E}_{\Phi}=0 gives the equations of motion (EOM), and 𝚯\mathbf{\Theta} is called the symplectic potential 3-form. The symplectic current 3-form is defined by

𝝎(Φ,δ1Φ,δ2Φ)=δ1𝚯(Φ,δ2Φ)δ2𝚯(Φ,δ1Φ).\bm{\omega}(\Phi,\delta_{1}{\Phi},\delta_{2}{\Phi})=\delta_{1}\mathbf{\Theta}(\Phi,\delta_{2}\Phi)-\delta_{2}\mathbf{\Theta}(\Phi,\delta_{1}\Phi). (2)

The Noether current 3-form 𝐉ζ\mathbf{J}_{\zeta} associated with a vector field ζ\zeta is defined as

𝐉ζ=𝚯(Φ,ζΦ)ζ𝐋,\mathbf{J}_{\zeta}=\mathbf{\Theta}(\Phi,\mathscr{L}_{\zeta}\Phi)-\zeta\cdot\mathbf{L}, (3)

where ζ\mathscr{L}_{\zeta} is the Lie derivative along the vector field ζ\zeta. A straightforward calculation gives

d𝐉ζ=𝐄ΦζΦ,\mathrm{d}\mathbf{J}_{\zeta}=-\mathbf{E}_{\Phi}\mathscr{L}_{\zeta}\Phi, (4)

which implies d𝐉ζ=0\mathrm{d}\mathbf{J}_{\zeta}=0 when the EOM are satisfied. From Ref. 37, the Noether current can also be expressed as

𝐉ζ=𝐂ζ+d𝐐ζ,\mathbf{J}_{\zeta}=\mathbf{C}_{\zeta}+\mathrm{d}\mathbf{Q}_{\zeta}, (5)

where 𝐐ζ\mathbf{Q}_{\zeta} is called the Noether charge and 𝐂ζ\mathbf{C}_{\zeta} are the constraints of the theory, i.e., 𝐂ζ=0\mathbf{C}_{\zeta}=0 when the EOM are satisfied. Comparing the variations of Eqs.(3) and (5) with ζ\zeta fixed, we obtain the first variational identity

d[δ𝐐ζζ𝚯(Φ,δΦ)]=𝝎(Φ,δΦ,ζΦ)ζ𝐄δΦδ𝐂ζ.\mathrm{d}\left[\delta\mathbf{Q}_{\zeta}-\zeta\cdot\mathbf{\Theta}(\Phi,\delta\Phi)\right]=\bm{\omega}(\Phi,\delta{\Phi},\mathscr{L}_{\zeta}\Phi)-\zeta\cdot\mathbf{E}\,\delta\Phi-\delta\mathbf{C}_{\zeta}. (6)

The variation of (6) further gives the second variational identity

d[δ2𝐐ζζδ𝚯(Φ,δΦ)]=𝝎(Φ,δΦ,ζδΦ)ζδ𝐄δΦδ2𝐂ζ.\mathrm{d}\left[\delta^{2}\mathbf{Q}_{\zeta}-\zeta\cdot\delta\mathbf{\Theta}(\Phi,\delta\Phi)\right]=\bm{\omega}(\Phi,\delta{\Phi},\mathscr{L}_{\zeta}\delta{\Phi})-\zeta\cdot\delta\mathbf{E}\,\delta\Phi-\delta^{2}\mathbf{C}_{\zeta}. (7)

In what follows, we are interested in stationary axial-symmetric EMDA black hole solutions with horizon killing field

ξa=ta+ΩHφa,\xi^{a}=t^{a}+\Omega_{\mathrm{H}}\varphi^{a}, (8)

where tat^{a}, φa\varphi^{a} and ΩH\Omega_{\mathrm{H}} are the timelike killing field, axial killing field and the angular velocity of the horizon, respectively. For asymptotically flat black hole solutions, the perturbation of mass and angular momentum are given by

δM=\displaystyle\delta M= [δ𝐐tt𝚯(Φ,δΦ)],\displaystyle\int_{\infty}\left[\delta\mathbf{Q}_{t}-t\cdot\mathbf{\Theta}(\Phi,\delta\Phi)\right],
δJ=\displaystyle\delta J= δ𝐐φ.\displaystyle\int_{\infty}\delta\mathbf{Q}_{\varphi}. (9)

We restrict consideration to the case where (a) Φ\Phi satisfies the EOM 𝐄Φ=0\mathbf{E}_{\Phi}=0, (b) ξa\xi^{a} is also a symmetry of the matter fields ψ\psi, so that ξΦ=0\mathscr{L}_{\xi}\Phi=0. Let Σ\Sigma be a hypersurface with a cross section BB on the horizon and with the spatial infinity as its boundaries. Using the Stokes theorem, we can obtain

δMΩHδJ=\displaystyle\delta M-\Omega_{\mathrm{H}}\delta J= B[δ𝐐ξξ𝚯(Φ,δΦ)]Σδ𝐂ξ,\displaystyle\int_{B}\left[\delta\mathbf{Q}_{\xi}-\xi\cdot\mathbf{\Theta}(\Phi,\delta\Phi)\right]-\int_{\Sigma}\delta\mathbf{C}_{\xi}, (10)
δ2MΩHδ2J=\displaystyle\delta^{2}M-\Omega_{\mathrm{H}}\delta^{2}J= B[δ2𝐐ξξδ𝚯(Φ,δΦ)]\displaystyle\int_{B}\left[\delta^{2}\mathbf{Q}_{\xi}-\xi\cdot\delta\mathbf{\Theta}(\Phi,\delta\Phi)\right]
Σξδ𝐄δΦΣδ2𝐂ξ+Σ(Φ,δΦ),\displaystyle-\int_{\Sigma}\xi\cdot\delta\mathbf{E}\,\delta\Phi-\int_{\Sigma}\delta^{2}\mathbf{C}_{\xi}+\mathscr{E}_{\Sigma}(\Phi,\delta\Phi), (11)

where the canonical energy is defined by

Σ(Φ,δΦ)=Σ𝝎(Φ,δΦ,ξδΦ).\mathscr{E}_{\Sigma}(\Phi,\delta\Phi)=\int_{\Sigma}\bm{\omega}(\Phi,\delta{\Phi},\mathscr{L}_{\xi}\delta{\Phi}). (12)

3 Einstein-Maxwell-Dilaton-Axion Theory and Black Hole Solutions

The EMDA black hole solution is given by the Lagrangian 4-form [36]

𝐋=116π[R2(ϕ)212e4ϕ(K)2e2ϕFabFabKFabFab]ϵ,\mathbf{L}=\frac{1}{16\pi}\left[R-2(\partial\phi)^{2}-\frac{1}{2}e^{4\phi}(\partial\mathrm{K})^{2}-e^{-2\phi}F_{ab}F^{ab}-\mathrm{K}\,F_{ab}\star F^{ab}\right]\bm{\epsilon}, (13)

which is obtained from a low-energy action of heterotic string theory, where Fab=12ϵabcdFcd\star F_{ab}=\frac{1}{2}\epsilon_{abcd}F^{cd} is the dual of the electromagnetic field FabF_{ab}, ϕ\phi is the massless dilaton field, and K\mathrm{K} is the axion field dual to the three-index antisymmetric tensor H=exp(4ϕ)dK/4\mathrm{H}=-\mathrm{exp}(4\phi)\star\mathrm{d}\mathrm{K}/4. In this paper we use the notation in Ref. 38 and the ϵ\epsilon-tensor is defined as gϵ0123=1\sqrt{-g}\epsilon^{0123}=-1.

The variation of the Lagrangian 4-form gives

𝐄ΦδΦ=ϵ[12Tabδgab+jaδAa+Eϕδϕ+EKδK],\mathbf{E}_{\Phi}\delta\Phi=-\bm{\epsilon}\left[\frac{1}{2}T^{ab}\delta g_{ab}+j^{a}\delta A_{a}+E_{\phi}\delta\phi+E_{\mathrm{K}}\delta\mathrm{K}\right], (14)

where

8πTab=\displaystyle 8\pi T^{ab}= Gab8πTEMab8πTDILab8πTAXab,\displaystyle G^{ab}-8\pi T^{ab}_{EM}-8\pi T^{ab}_{DIL}-8\pi T^{ab}_{AX},
ja=\displaystyle j^{a}= 14πbF~ab,\displaystyle\frac{1}{4\pi}\nabla_{b}\tilde{F}^{ab},
Eϕ=\displaystyle E_{\phi}= 116π[2e4ϕ(K)24aaϕ2e2ϕFabFab],\displaystyle\frac{1}{16\pi}\left[2e^{4\phi}(\partial\mathrm{K})^{2}-4\nabla_{a}\nabla^{a}\phi-2e^{-2\phi}F_{ab}F^{ab}\right],
EK=\displaystyle E_{\mathrm{K}}= 116π[FabFaba(e4ϕaK)],\displaystyle\frac{1}{16\pi}\left[F_{ab}\star F^{ab}-\nabla_{a}(e^{4\phi}\nabla^{a}\mathrm{K})\right], (15)

with

Gab=\displaystyle G^{ab}= Rab12Rgab,\displaystyle R^{ab}-\frac{1}{2}Rg^{ab},
TEMab=\displaystyle T^{ab}_{EM}= 14π[FacF~bc14gabFcdF~cd],\displaystyle\frac{1}{4\pi}\left[F^{ac}\tilde{F}^{b}{}_{c}-\frac{1}{4}g^{ab}F_{cd}\tilde{F}^{cd}\right],
TDILab=\displaystyle T^{ab}_{DIL}= 18π[2aϕbϕ(ϕ)2gab],\displaystyle\frac{1}{8\pi}\left[2\nabla^{a}\phi\nabla^{b}\phi-(\partial\phi)^{2}g^{ab}\right],
TAXab=\displaystyle T^{ab}_{AX}= e4ϕ32π[2aKbK(K)2gab],\displaystyle\frac{e^{4\phi}}{32\pi}\left[2\nabla^{a}\mathrm{K}\nabla^{b}\mathrm{K}-(\partial\mathrm{K})^{2}g^{ab}\right], (16)

in which

F~abe2ϕFab+KFab.\tilde{F}_{ab}\equiv e^{-2\phi}F_{ab}+\mathrm{K}\star F_{ab}. (17)

Here TabT^{ab} corresponds to the non-electromagnetic, -dilaton, and -axion (non-EDA) part of stress-energy tensor, and jaj^{a} corresponds to the electromagnetic charge current.

The symplectic potential 3-form is given by

𝚯(Φ,δΦ)=𝚯GR(Φ,δΦ)+𝚯EM(Φ,δΦ)+𝚯DIL(Φ,δΦ)+𝚯AX(Φ,δΦ),\mathbf{\Theta}(\Phi,\delta\Phi)=\mathbf{\Theta}^{GR}(\Phi,\delta\Phi)+\mathbf{\Theta}^{EM}(\Phi,\delta\Phi)+\mathbf{\Theta}^{DIL}(\Phi,\delta\Phi)+\mathbf{\Theta}^{AX}(\Phi,\delta\Phi), (18)

where

𝚯abcGR(Φ,δΦ)=\displaystyle\mathbf{\Theta}_{abc}^{GR}(\Phi,\delta\Phi)= 116πϵdabcgdegfg(gδgefeδgfg),\displaystyle\frac{1}{16\pi}\epsilon_{dabc}g^{de}g^{fg}(\nabla_{g}\delta g_{ef}-\nabla_{e}\delta g_{fg}),
𝚯abcEM(Φ,δΦ)=\displaystyle\mathbf{\Theta}_{abc}^{EM}(\Phi,\delta\Phi)= 14πϵdabcF~deδAe,\displaystyle-\frac{1}{4\pi}\epsilon_{dabc}\tilde{F}^{de}\delta A_{e},
𝚯abcDIL(Φ,δΦ)=\displaystyle\mathbf{\Theta}_{abc}^{DIL}(\Phi,\delta\Phi)= 14πϵdabc(dϕ)δϕ,\displaystyle-\frac{1}{4\pi}\epsilon_{dabc}(\nabla^{d}\phi)\delta\phi,
𝚯abcAX(Φ,δΦ)=\displaystyle\mathbf{\Theta}_{abc}^{AX}(\Phi,\delta\Phi)= 116πϵdabc(e4ϕdK)δK.\displaystyle-\frac{1}{16\pi}\epsilon_{dabc}(e^{4\phi}\nabla^{d}\mathrm{K})\delta\mathrm{K}. (19)

From Eq.(2) we can obtain the symplectic current

𝝎abc(Φ,δ1Φ,δ2Φ)=\displaystyle\bm{\omega}_{abc}(\Phi,\delta_{1}{\Phi},\delta_{2}{\Phi})= 𝝎abcGR+𝝎abcEM+𝝎abcDIL+𝝎abcAX,\displaystyle\bm{\omega}_{abc}^{GR}+\bm{\omega}_{abc}^{EM}+\bm{\omega}_{abc}^{DIL}+\bm{\omega}_{abc}^{AX}, (20)

where

𝝎abcGR=\displaystyle\bm{\omega}_{abc}^{GR}= 116πϵdabcwd,\displaystyle\frac{1}{16\pi}\epsilon_{dabc}w^{d},
𝝎abcEM=\displaystyle\bm{\omega}_{abc}^{EM}= 14π[δ2(ϵdabcF~de)δ1Aeδ1(ϵdabcF~de)δ2Ae],\displaystyle\frac{1}{4\pi}\left[\delta_{2}(\epsilon_{dabc}\tilde{F}^{de})\delta_{1}A_{e}-\delta_{1}(\epsilon_{dabc}\tilde{F}^{de})\delta_{2}A_{e}\right],
𝝎abcDIL=\displaystyle\bm{\omega}_{abc}^{DIL}= 14π[δ2(ϵdabcdϕ)δ1ϕδ1(ϵdabcdϕ)δ2ϕ],\displaystyle\frac{1}{4\pi}\left[\delta_{2}(\epsilon_{dabc}\nabla^{d}\phi)\delta_{1}\phi-\delta_{1}(\epsilon_{dabc}\nabla^{d}\phi)\delta_{2}\phi\right],
𝝎abcAX=\displaystyle\bm{\omega}_{abc}^{AX}= 116π[δ2(ϵdabce4ϕdK)δ1Kδ1(ϵdabce4ϕdK)δ2K],\displaystyle\frac{1}{16\pi}\left[\delta_{2}(\epsilon_{dabc}e^{4\phi}\nabla^{d}\mathrm{K})\delta_{1}\mathrm{K}-\delta_{1}(\epsilon_{dabc}e^{4\phi}\nabla^{d}\mathrm{K})\delta_{2}\mathrm{K}\right], (21)

with

wa=Pabcdef[δ2gbcdδ1gefδ1gbcdδ2gef],\displaystyle w^{a}=P^{abcdef}\left[\delta_{2}g_{bc}\nabla_{d}\delta_{1}g_{ef}-\delta_{1}g_{bc}\nabla_{d}\delta_{2}g_{ef}\right],
Pabcdef=gaegfbgcd12gadgbegfc12gabgcdgef12gbcgaegfd+12gbcgadgef.\displaystyle P^{abcdef}=g^{ae}g^{fb}g^{cd}-\frac{1}{2}g^{ad}g^{be}g^{fc}-\frac{1}{2}g^{ab}g^{cd}g^{ef}-\frac{1}{2}g^{bc}g^{ae}g^{fd}+\frac{1}{2}g^{bc}g^{ad}g^{ef}. (22)

By using ξgab=2(aξb)\mathscr{L}_{\xi}g_{ab}=2\nabla_{(a}\xi_{b)}, ξAa=ξbFba+a(ξcAc)\mathscr{L}_{\xi}A_{a}=\xi^{b}F_{ba}+\nabla_{a}(\xi^{c}A_{c}) and doing a straightforward calculation in Eq.(3), we get the Noether current 3-form

Jabc=18πϵdabce[[eξd]+2F~edAfξf]+ϵdabc[Td+fAfjd]ξf.\mathrm{J}_{abc}=\frac{1}{8\pi}\epsilon_{dabc}\nabla_{e}\left[\nabla^{[e}\xi^{d]}+2\tilde{F}^{ed}A_{f}\xi^{f}\right]+\epsilon_{dabc}\left[T^{d}{}_{f}+A_{f}j^{d}\right]\xi^{f}. (23)

Comparing it with Eq.(5), we obtain the Noether charge

(Qξ)ab=(QξGR)ab+(QξEM)ab,(Q_{\xi})_{ab}=(Q_{\xi}^{GR})_{ab}+(Q_{\xi}^{EM})_{ab}, (24)

with

(QξGR)ab=\displaystyle(Q_{\xi}^{GR})_{ab}= 116πϵabcd[cξd],\displaystyle-\frac{1}{16\pi}\epsilon_{abcd}\nabla^{[c}\xi^{d]},
(QξEM)ab=\displaystyle(Q_{\xi}^{EM})_{ab}= 18πϵabcdF~cdAeξe,\displaystyle-\frac{1}{8\pi}\epsilon_{abcd}\tilde{F}^{cd}A_{e}\xi^{e}, (25)

and the constraint term

(Cf)abc=ϵdabc[Td+fAfjd].(C_{f})_{abc}=\epsilon_{dabc}\left[T^{d}{}_{f}+A_{f}j^{d}\right]. (26)

Now, we focus on the EMDA black hole solution given in Refs. 36, 39. The line element can be read off

ds2=\displaystyle ds^{2}= Ξa2sin2θΔdt22asin2θΔ[(r22Dr+a2)Ξ]dtdφ\displaystyle-\frac{\Xi-a^{2}\,\mathrm{sin}^{2}\theta}{\Delta}dt^{2}-\frac{2a\,\mathrm{sin}^{2}\theta}{\Delta}\left[(r^{2}-2Dr+a^{2})-\Xi\right]dt\,d\varphi
+ΔΞdr2+Δdθ2+sin2θΔ[(r22Dr+a2)2Ξa2sin2θ]dφ2,\displaystyle+\frac{\Delta}{\Xi}dr^{2}+\Delta d\theta^{2}+\frac{\mathrm{sin}^{2}\theta}{\Delta}\left[(r^{2}-2Dr+a^{2})^{2}-\Xi a^{2}\,\mathrm{sin}^{2}\theta\right]d\varphi^{2}, (27)

where

Δ=\displaystyle\Delta= r22Dr+a2cos2θ,\displaystyle r^{2}-2Dr+a^{2}\,\mathrm{cos}^{2}\theta, Ξ\displaystyle\Xi =r22mr+a2,\displaystyle=r^{2}-2mr+a^{2},
e2ϕ=\displaystyle e^{2\phi}= WΔ=ωΔ(r2+a2cos2θ),\displaystyle\frac{\mathrm{W}}{\Delta}=\frac{\omega}{\Delta}(r^{2}+a^{2}\,\mathrm{cos}^{2}\theta), ω\displaystyle\omega =e2ϕ0,\displaystyle=e^{2\phi_{0}},
K=\displaystyle\mathrm{K}= K0+2aDcosθW,\displaystyle\mathrm{K}_{0}+\frac{2aD\,\mathrm{cos}\theta}{\mathrm{W}}, At\displaystyle A_{t} =1Δ(Qrgacosθ),\displaystyle=\frac{1}{\Delta}(Qr-ga\,\mathrm{cos}\theta),
Ar=\displaystyle A_{r}= Aθ=0,\displaystyle A_{\theta}=0, Aφ\displaystyle A_{\varphi} =1aΔ(Qra2sin2θ+g(r2+a2)acosθ).\displaystyle=\frac{1}{a\Delta}(-Qra^{2}\,\mathrm{sin}^{2}\theta+g(r^{2}+a^{2})a\,\mathrm{cos}\theta).

The ADM mass MM, angular momentum JJ, and dilaton charge DD are given by

M=mD,J=a(mD),D=Q22ωM,M=m-D,\,\,\,\,\,\,\,\,J=a(m-D),\,\,\,\,\,\,\,\,D=-\frac{Q^{2}}{2\omega M}, (28)

respectively. The two horizons are

r±=M+D±(M+D)2a2,r_{\pm}=M+D\pm\sqrt{(M+D)^{2}-a^{2}}, (29)

in which r+r_{+} is the event horizon. The surface gravity, area, angular velocity and electric potential of the horizon are given by

κ=\displaystyle\kappa= r+MDr+22Dr++a2,\displaystyle\frac{r_{+}-M-D}{r_{+}^{2}-2Dr_{+}+a^{2}}, ΩH\displaystyle\Omega_{\mathrm{H}} =ar+22Dr++a2,\displaystyle=\frac{a}{r_{+}^{2}-2Dr_{+}+a^{2}},
ΦH=\displaystyle\Phi_{\mathrm{H}}= 2DMQ(r+22Dr++a2),\displaystyle\frac{-2DM}{Q(r_{+}^{2}-2Dr_{+}+a^{2})}, AH\displaystyle A_{\mathrm{H}} =4π(r+22Dr++a2).\displaystyle=4\pi(r_{+}^{2}-2Dr_{+}+a^{2}). (30)

The EMDA black hole becomes extremal when (2ωM2Q2)24ω2J2=0(2\omega M^{2}-Q^{2})^{2}-4\omega^{2}J^{2}=0. If

(2ωM2Q2)24ω2J20,(2\omega M^{2}-Q^{2})^{2}-4\omega^{2}J^{2}\geq 0, (31)

the metric describes a black hole solution, whereas the metric describes a naked singularity for the violation of the inequality.

4 Gedanken Experiments to Destroy a Near-Extremal EMDA Black Hole

4.1 Perturbation Inequalities of Gedanken Experiments

In this section, we use the new version of the gedanken experiment to obtain the first order and second order perturbation inequalities for the above EMDA black holes. We consider that the EMDA black holes are perturbed by a one-parameter family of the matter sources. The corresponding EOM can be expressed as

Gab(λ)=\displaystyle G^{ab}(\lambda)= 8π[TEMab(λ)+TDILab(λ)+TAXab(λ)+Tab(λ)],\displaystyle 8\pi\left[T^{ab}_{EM}(\lambda)+T^{ab}_{DIL}(\lambda)+T^{ab}_{AX}(\lambda)+T^{ab}(\lambda)\right],
ja(λ)=\displaystyle j^{a}(\lambda)= 14πbF~ab(λ),\displaystyle\frac{1}{4\pi}\nabla_{b}\tilde{F}^{ab}(\lambda),
Eϕ(λ)=\displaystyle E_{\phi}(\lambda)= 0,EK(λ)=0,\displaystyle 0,\,\,\,\,\,\,\,\,E_{\mathrm{K}}(\lambda)=0, (32)

with Tab(0)=0T^{ab}(0)=0 and ja(0)=0j^{a}(0)=0 for background spacetime. In this paper we consider the perturbation matter contains only the electromagnetic matter source, i.e., the sources of dilaton field ϕ\phi and axion field K\mathrm{K} vanish, implied by Eϕ(λ)=0E_{\phi}(\lambda)=0 and EK(λ)=0E_{\mathrm{K}}(\lambda)=0.

As in Ref. 21, we also assume the gedanken experiment admits the following assumptions.

(a) All the perturbation matter goes into the black hole through a finite portion of the future horizon, i.e., the matter source δTab\delta T^{ab} and δja\delta j^{a} are non-vanishing only in a compact region of future horizon.

(b) Linear stability assumption. The non-extremal, unperturbed EMDA black hole is linearly stable to perturbation, i.e., any source free solution to the linearized EOM approaches a perturbation towards another EMDA black hole at sufficiently late times.

(c) We choose a hypersurface Σ=HΣ1\Sigma=\mathrm{H}\cup\Sigma_{1} to perform our analysis. It starts from the bifurcate surface BB of the unperturbed horizon H\mathrm{H}, continues up the future horizon through the matter source region of H\mathrm{H} till the very late cross section B1B_{1} where the matter source vanishes, then becomes the spacelike hypersurface Σ1\Sigma_{1} and continues out towards infinity. The boundaries of Σ\Sigma are located at the bifurcate surface and the spatial infinity.

The linear stability assumption implies that the dynamic fields satisfy the source-free EOM, 𝐄[Φ(λ)]=0\mathbf{E}[\Phi(\lambda)]=0 on Σ1\Sigma_{1}, and the solutions are described by Eq.(3).

With the above set-up, we now derive the first order perturbation inequality at λ=0\lambda=0. Similar to the analysis in Ref. 21, for a non-extremal black hole the horizon will be of bifurcate type, the second term of the first integral in Eq.(10) vanishes since ξa=0\xi^{a}=0 on the bifurcate surface BB. Therefore

B[δ𝐐ξξ𝚯(Φ,δΦ)]=Bδ𝐐ξ.\int_{B}\left[\delta\mathbf{Q}_{\xi}-\xi\cdot\mathbf{\Theta}(\Phi,\delta\Phi)\right]=\int_{B}\delta\mathbf{Q}_{\xi}. (33)

For the gravitational part, from the first expression of (3) we have

Bδ𝐐ξGR=κ8πδAB,\int_{B}\delta\mathbf{Q}^{GR}_{\xi}=\frac{\kappa}{8\pi}\delta A_{B}, (34)

Where ABA_{B} is the area of BB and κ\kappa is the surface gravity of the event horizon. For the electromagnetic part, from the second expresson of (3) we obtain

Bδ𝐐ξEM=18πB[ξeAeδ(ϵabcdF~cd)+ξe(δAe)ϵabcdF~cd],\int_{B}\delta\mathbf{Q}^{EM}_{\xi}=-\frac{1}{8\pi}\int_{B}\left[\xi^{e}A_{e}\delta(\epsilon_{abcd}\tilde{F}^{cd})+\xi^{e}(\delta A_{e})\epsilon_{abcd}\tilde{F}^{cd}\right], (35)

where the second term vanishes at BB by ξa|B=0\xi^{a}|_{B}=0, but ξeAe\xi^{e}A_{e} does not vanish since ΦHξeAe(λ)\Phi_{\mathrm{H}}\equiv-\xi^{e}A_{e}(\lambda) must be constant on the horizon at λ=0\lambda=0. So,

Bδ𝐐ξEM=18πΦHBδ(ϵabcdF~cd)=ΦHδQB,\int_{B}\delta\mathbf{Q}^{EM}_{\xi}=\frac{1}{8\pi}\Phi_{\mathrm{H}}\int_{B}\delta(\epsilon_{abcd}\tilde{F}^{cd})=\Phi_{\mathrm{H}}\delta Q_{B}, (36)

Where QBQ_{B} is the electric charge flux integral over BB. The assumption that the perturbation vanishes on the bifurcate surface BB leads to δAB=δQB=0\delta A_{B}=\delta Q_{B}=0. This also holds for extremal black holes. Therefore, the first integral vanishes in Eq.(10). By using the fact that Tab=ja=0T^{ab}=j^{a}=0 in the background spacetime (since 𝐄[Φ(0)]=0\mathbf{E}[\Phi(0)]=0), then the Eq.(10) can be written as

δMΩHδJ=\displaystyle\delta M-\Omega_{\mathrm{H}}\delta J= Σδ𝐂ξ\displaystyle-\int_{\Sigma}\delta\mathbf{C}_{\xi}
=\displaystyle= HϵdabcδTdξeeHAeξeϵdabcδjd\displaystyle-\int_{\mathrm{H}}\epsilon_{dabc}\delta T^{d}{}_{e}\xi^{e}-\int_{\mathrm{H}}A_{e}\xi^{e}\epsilon_{dabc}\delta j^{d}
=\displaystyle= Hϵ~abcδTdekdξe+ΦHδQ\displaystyle\int_{\mathrm{H}}\tilde{\epsilon}_{abc}\delta T_{de}k^{d}\xi^{e}+\Phi_{\mathrm{H}}\delta Q
\displaystyle\geq ΦHδQ,\displaystyle\Phi_{\mathrm{H}}\delta Q, (37)

where ϵ~abc\tilde{\epsilon}_{abc} is the volume element on H\mathrm{H}, which is defined by ϵdabc=4k[dϵ~abc]\epsilon_{dabc}=-4k_{[d}\tilde{\epsilon}_{abc]} with the future-directed normal vector kaξak^{a}\propto\xi^{a}, and Hϵdabcδjd=δQflux=δQ\int_{\mathrm{H}}\epsilon_{dabc}\delta j^{d}=\delta Q_{flux}=\delta Q is the total flux of charge through the horizon. In the last line we used the null energy condition δTabkakb|H0\delta T_{ab}k^{a}k^{b}|_{\mathrm{H}}\geq 0 for the non-EDA stress-energy tensor. Thus, we obtain the first order perturbation inequality

δMΩHδJΦHδQ0.\delta M-\Omega_{\mathrm{H}}\delta J-\Phi_{\mathrm{H}}\delta Q\geq 0. (38)

Under the first order perturbation, if we want to violate (2ωM2Q2)24ω2J20(2\omega M^{2}-Q^{2})^{2}-4\omega^{2}J^{2}\geq 0, the optimal choice is to saturate (38) by requiring δTabkakb|H=0\delta T_{ab}k^{a}k^{b}|_{\mathrm{H}}=0, i.e., the energy flux through the horizon vanishes for the first order non-EDA perturbation. Then, (4.1) reduces to

δMΩHδJΦHδQ=0.\delta M-\Omega_{\mathrm{H}}\delta J-\Phi_{\mathrm{H}}\delta Q=0. (39)

Next, we derive the second order perturbation inequality. In exact parallel to the derivation of the first order inequality (4.1), Eq.(11) becomes

δ2MΩHδ2J=Hξδ𝐄δΦHδ2𝐂ξ+Σ(Φ,δΦ),\delta^{2}M-\Omega_{\mathrm{H}}\delta^{2}J=-\int_{\mathrm{H}}\xi\cdot\delta\mathbf{E}\,\delta\Phi-\int_{\mathrm{H}}\delta^{2}\mathbf{C}_{\xi}+\mathscr{E}_{\Sigma}(\Phi,\delta\Phi), (40)

with

(ξδ𝐄δΦ)abc=\displaystyle(\xi\cdot\delta\mathbf{E}\,\delta\Phi)_{abc}= ξdϵdabc[12δTefδgef+δjeδAe],\displaystyle-\xi^{d}\epsilon_{dabc}\left[\frac{1}{2}\delta T^{ef}\delta g_{ef}+\delta j^{e}\delta A_{e}\right],
(δ2𝐂ξ)abc=\displaystyle(\delta^{2}\mathbf{C}_{\xi})_{abc}= δ2(ϵdabcTdξee)+δ2(ϵdabcAeξejd).\displaystyle\delta^{2}(\epsilon_{dabc}T^{d}{}_{e}\xi^{e})+\delta^{2}(\epsilon_{dabc}A_{e}\xi^{e}j^{d}). (41)

In Eq.(40), the integrals in the first two terms only depend on the surface H\mathrm{H} since δ𝐄=δ2𝐂ξ=0\delta\mathbf{E}=\delta^{2}\mathbf{C}_{\xi}=0 on Σ1\Sigma_{1} by the assumption that there are no sources outside the black hole at late times. In addition, since ξa\xi^{a} is tangent to the horizon, the first term of the right side of (40) vanishes. By using the condition ξaδAa=0\xi^{a}\delta A_{a}=0 on H\mathrm{H} from a gauge transformation, Eq.(40) becomes

δ2MΩHδ2J=\displaystyle\delta^{2}M-\Omega_{\mathrm{H}}\delta^{2}J= Σ(Φ,δΦ)+Hϵ~abcξekdδ2Tde+ΦHδ2Q\displaystyle\mathscr{E}_{\Sigma}(\Phi,\delta\Phi)+\int_{\mathrm{H}}\tilde{\epsilon}_{abc}\xi^{e}k^{d}\delta^{2}T_{de}+\Phi_{\mathrm{H}}\delta^{2}Q
\displaystyle\geq Σ1(Φ,δΦ)+H(Φ,δΦ)+ΦHδ2Q,\displaystyle\mathscr{E}_{\Sigma_{1}}(\Phi,\delta\Phi)+\mathscr{E}_{\mathrm{H}}(\Phi,\delta\Phi)+\Phi_{\mathrm{H}}\delta^{2}Q, (42)

where we have used the optimal choice δTabkakb|H=0\delta T_{ab}k^{a}k^{b}|_{\mathrm{H}}=0 and the null energy condition δ2Tabkakb|H0\delta^{2}T_{ab}k^{a}k^{b}|_{\mathrm{H}}\geq 0 for the second order perturbed non-EDA stress-energy tensor. To obtain H(Φ,δΦ)\mathscr{E}_{\mathrm{H}}(\Phi,\delta\Phi), we split it into

H(Φ,δΦ)=H𝝎GR+H𝝎EM+H𝝎DIL+H𝝎AX.\mathscr{E}_{\mathrm{H}}(\Phi,\delta\Phi)=\int_{\mathrm{H}}\bm{\omega}^{GR}+\int_{\mathrm{H}}\bm{\omega}^{EM}+\int_{\mathrm{H}}\bm{\omega}^{DIL}+\int_{\mathrm{H}}\bm{\omega}^{AX}. (43)

The contribution of the gravitational part has already been calculated in Ref. 21

H𝝎GR=14πHϵ~(ξaau)δσbcδσbc0.\int_{\mathrm{H}}\bm{\omega}^{GR}=\frac{1}{4\pi}\int_{\mathrm{H}}\tilde{\bm{\epsilon}}\,(\xi^{a}\nabla_{a}u)\delta\sigma_{bc}\delta\sigma^{bc}\geq 0. (44)

For the electromagnetic, dilaton and axion parts, according to (3), the symplectic currents 𝝎(Φ,δΦ,ξδΦ)\bm{\omega}(\Phi,\delta{\Phi},\mathscr{L}_{\xi}\delta{\Phi}) are given as

𝝎abcEM=\displaystyle\bm{\omega}_{abc}^{EM}= 14πϵdabc[ξδF~deδAeδF~deξδAe]\displaystyle\frac{1}{4\pi}\epsilon_{dabc}\left[\mathscr{L}_{\xi}\delta\tilde{F}^{de}\delta A_{e}-\delta\tilde{F}^{de}\mathscr{L}_{\xi}\delta A_{e}\right]
+14π[(ξδϵdabc)F~deδAeδϵdabcF~deξδAe],\displaystyle+\frac{1}{4\pi}\left[(\mathscr{L}_{\xi}\delta\epsilon_{dabc})\tilde{F}^{de}\delta A_{e}-\delta\epsilon_{dabc}\tilde{F}^{de}\mathscr{L}_{\xi}\delta A_{e}\right],
𝝎abcDIL=\displaystyle\bm{\omega}_{abc}^{DIL}= 14πϵdabc[ξδ(dϕ)δϕδ(dϕ)ξδϕ]\displaystyle\frac{1}{4\pi}\epsilon_{dabc}\left[\mathscr{L}_{\xi}\delta(\nabla^{d}\phi)\delta\phi-\delta(\nabla^{d}\phi)\mathscr{L}_{\xi}\delta\phi\right]
+14π[ξδϵdabc(dϕ)δϕδϵdabc(dϕ)ξδϕ],\displaystyle+\frac{1}{4\pi}\left[\mathscr{L}_{\xi}\delta\epsilon_{dabc}(\nabla^{d}\phi)\delta\phi-\delta\epsilon_{dabc}(\nabla^{d}\phi)\mathscr{L}_{\xi}\delta\phi\right],
𝝎abcAX=\displaystyle\bm{\omega}_{abc}^{AX}= 116πϵdabc[ξδ(e4ϕdK)δKδ(e4ϕdK)ξδK]\displaystyle\frac{1}{16\pi}\epsilon_{dabc}\left[\mathscr{L}_{\xi}\delta(e^{4\phi}\nabla^{d}\mathrm{K})\delta\mathrm{K}-\delta(e^{4\phi}\nabla^{d}\mathrm{K})\mathscr{L}_{\xi}\delta\mathrm{K}\right]
+116π[ξδϵdabc(e4ϕdK)δKδϵdabc(e4ϕdK)ξδK].\displaystyle+\frac{1}{16\pi}\left[\mathscr{L}_{\xi}\delta\epsilon_{dabc}(e^{4\phi}\nabla^{d}\mathrm{K})\delta\mathrm{K}-\delta\epsilon_{dabc}(e^{4\phi}\nabla^{d}\mathrm{K})\mathscr{L}_{\xi}\delta\mathrm{K}\right]. (45)

Through the similar calculations to those in Refs. 21 and 26, the corresponding contributions to the canonical energy give the following inequalities

H𝝎DIL=\displaystyle\int_{\mathrm{H}}\bm{\omega}^{DIL}= Hϵ~ξakbδ2TabDIL0,\displaystyle\int_{\mathrm{H}}\tilde{\bm{\epsilon}}\,\xi^{a}k^{b}\delta^{2}T_{ab}^{DIL}\geq 0,
H𝝎AX=\displaystyle\int_{\mathrm{H}}\bm{\omega}^{AX}= Hϵ~ξakbδ2TabAX0,\displaystyle\int_{\mathrm{H}}\tilde{\bm{\epsilon}}\,\xi^{a}k^{b}\delta^{2}T_{ab}^{AX}\geq 0,
H𝝎EM=\displaystyle\int_{\mathrm{H}}\bm{\omega}^{EM}= 12πHϵ~kdξfδF~deδFef=Hϵ~ξakbδ2TabEM0.\displaystyle\frac{1}{2\pi}\int_{\mathrm{H}}\tilde{\bm{\epsilon}}\,k_{d}\xi^{f}\delta\tilde{F}^{de}\delta F_{ef}=\int_{\mathrm{H}}\tilde{\bm{\epsilon}}\,\xi^{a}k^{b}\delta^{2}T_{ab}^{EM}\geq 0. (46)

Again the null energy conditions for the second order perturbed matter fields stress-energy tensors have been used in (4.1). Then, (4.1) reduces to

δ2MΩHδ2JΦHδ2QΣ1(Φ,δΦ).\delta^{2}M-\Omega_{\mathrm{H}}\delta^{2}J-\Phi_{\mathrm{H}}\delta^{2}Q\geq\mathscr{E}_{\Sigma_{1}}(\Phi,\delta\Phi). (47)

What remains now is to calculate Σ1(Φ,δΦ)\mathscr{E}_{\Sigma_{1}}(\Phi,\delta\Phi). We adopt the trick in Ref. 21, and write Σ1(Φ,δΦ)=Σ1(Φ,δΦF)\mathscr{E}_{\Sigma_{1}}(\Phi,\delta\Phi)=\mathscr{E}_{\Sigma_{1}}(\Phi,\delta\Phi^{F}), where ΦF(α)\Phi^{F}(\alpha) denotes a field configuration of another one-parameter family of EMDA black hole solutions with parameters given by

MF(α)=\displaystyle M^{F}(\alpha)= M+αδM,\displaystyle M+\alpha\delta M,
JF(α)=\displaystyle J^{F}(\alpha)= J+αδJ,\displaystyle J+\alpha\delta J,
QF(α)=\displaystyle Q^{F}(\alpha)= Q+αδQ,\displaystyle Q+\alpha\delta Q, (48)

where δM\delta M, δJ\delta J and δQ\delta Q are chosen to agree with the corresponding values for our first order perturbation of Φ(λ)\Phi(\lambda). Then, for this family we have δ2M=δ2J=δ2QB=δ𝐄=δ2𝐂ξ=H(Φ,δΦF)=0\delta^{2}M=\delta^{2}J=\delta^{2}Q_{B}=\delta\mathbf{E}=\delta^{2}\mathbf{C}_{\xi}=\mathscr{E}_{\mathrm{H}}(\Phi,\delta\Phi^{F})=0. According to Eq.(11) we have

Σ1(Φ,δΦF)=B[δ2𝐐ξξδ𝚯(Φ,δΦF)]=κ8πδ2ABF,\mathscr{E}_{\Sigma_{1}}(\Phi,\delta\Phi^{F})=-\int_{B}\left[\delta^{2}\mathbf{Q}_{\xi}-\xi\cdot\delta\mathbf{\Theta}(\Phi,\delta\Phi^{F})\right]=-\frac{\kappa}{8\pi}\delta^{2}A_{B}^{F}, (49)

thus we obtain the second order perturbation inequality

δ2MΩHδ2JΦHδ2Qκ8πδ2ABF.\delta^{2}M-\Omega_{\mathrm{H}}\delta^{2}J-\Phi_{\mathrm{H}}\delta^{2}Q\geq-\frac{\kappa}{8\pi}\delta^{2}A_{B}^{F}. (50)

Taking two variations of the area formula AB=4π(r+22Dr++a2)A_{B}=4\pi(r_{+}^{2}-2Dr_{+}+a^{2}), we obtain

δ2ABF=\displaystyle\delta^{2}A_{B}^{F}= πω4M6ϵ3[2ω(Q62ωM2Q4(3+ϵ)4ω2Q2(J2M4(3+2ϵ))\displaystyle-\frac{\pi}{\omega^{4}M^{6}\epsilon^{3}}\big{[}2\omega\big{(}Q^{6}-2\omega M^{2}Q^{4}(3+\epsilon)-4\omega^{2}Q^{2}(J^{2}-M^{4}(3+2\epsilon))
8ω3M2(M4(1+ϵ)J2(3+ϵ)))(δM)2(Q62ωM2Q4(3+ϵ)\displaystyle-8\omega^{3}M^{2}(M^{4}(1+\epsilon)-J^{2}(3+\epsilon))\big{)}(\delta M)^{2}-\big{(}Q^{6}-2\omega M^{2}Q^{4}(3+\epsilon)
+4ω2Q2(3J2+M4(3+2ϵ))+8ω3M2(J2M4)(1+ϵ))(δQ)2\displaystyle+4\omega^{2}Q^{2}(-3J^{2}+M^{4}(3+2\epsilon))+8\omega^{3}M^{2}(J^{2}-M^{4})(1+\epsilon)\big{)}(\delta Q)^{2}
+2ω2(2ωM2Q2)2(δJ)2+8ω2JQ(2ωM2Q2)δQδJ\displaystyle+2\omega^{2}(2\omega M^{2}-Q^{2})^{2}(\delta J)^{2}+8\omega^{2}JQ(2\omega M^{2}-Q^{2})\delta Q\delta J
32ω3MQJ2δMδQ+16ω3MJ(2ωM2Q2)δMδJ],\displaystyle-32\omega^{3}MQJ^{2}\delta M\delta Q+16\omega^{3}MJ(2\omega M^{2}-Q^{2})\delta M\delta J\big{]}, (51)

in which

ϵ=(2ωM2Q2)24ω2J22ωM2.\epsilon=\frac{\sqrt{(2\omega M^{2}-Q^{2})^{2}-4\omega^{2}J^{2}}}{2\omega M^{2}}. (52)

For the near-extremal black hole, ϵ\epsilon is a small parameter, then the surface gravity of EMDA black hole can be expressed as

κ=ωMϵ2ωM2(1+ϵ)Q2.\kappa=\frac{\omega M\epsilon}{2\omega M^{2}(1+\epsilon)-Q^{2}}. (53)

Expanding the right side of (50) to lowest order in ϵ\epsilon, we obtain

δ2MΩHδ2JΦHδ2QQ2(δQ)24ω3M5ϵ2(Q2+2ωM2ωM2)2,\delta^{2}M-\Omega_{\mathrm{H}}\delta^{2}J-\Phi_{\mathrm{H}}\delta^{2}Q\geq-\frac{Q^{2}(\delta Q)^{2}}{4\omega^{3}M^{5}\epsilon^{2}}\big{(}Q^{2}+2\omega M-2\omega M^{2}\big{)}^{2}, (54)

where we have used the Eq.(39) to eliminate δM\delta M from the expression.

4.2 Near-Extremal EMDA Black Hole Cannot be Over-Charged or Over-Spun

With the above preparation, we now investigate the new version of the gedanken experiments to over-charge or over-spin a near-extremal EMDA black hole. We consider a one-parameter family Φ(λ)\Phi(\lambda), and the background spacetime Φ(0)\Phi(0) is a near-extremal EMDA black hole, ϵ1\epsilon\ll 1. Define a function of λ\lambda as

h(λ)=[2ωM(λ)2Q(λ)2]24ω2J(λ)2.h(\lambda)=\left[2\omega M(\lambda)^{2}-Q(\lambda)^{2}\right]^{2}-4\omega^{2}J(\lambda)^{2}. (55)

The WCCC is violated if there exists a solution Φ(λ)\Phi(\lambda) such that h(λ)<0h(\lambda)<0. Expanding h(λ)h(\lambda) to second order in λ\lambda, we have

h(λ)\displaystyle h(\lambda) =(2ωM2Q2)24ω2J2\displaystyle=(2\omega M^{2}-Q^{2})^{2}-4\omega^{2}J^{2}
+λ[8ωM(2ωM2Q2)δM4Q(2ωM2Q2)δQ8ω2JδJ]\displaystyle+\lambda\big{[}8\omega M(2\omega M^{2}-Q^{2})\delta M-4Q(2\omega M^{2}-Q^{2})\delta Q-8\omega^{2}J\delta J\big{]}
+12λ2[(8ω(2ωM2Q2)+32ω2M2)(δM)2+8ωM(2ωM2Q2)δ2M\displaystyle+\frac{1}{2}\lambda^{2}\big{[}(8\omega(2\omega M^{2}-Q^{2})+32\omega^{2}M^{2})(\delta M)^{2}+8\omega M(2\omega M^{2}-Q^{2})\delta^{2}M
8ω2(δJ)28ω2Jδ2J32ωMQδMδQ4Q(2ωM2Q2)δ2Q\displaystyle-8\omega^{2}(\delta J)^{2}-8\omega^{2}J\delta^{2}J-32\omega MQ\delta M\delta Q-4Q(2\omega M^{2}-Q^{2})\delta^{2}Q
+(8Q24(2ωM2Q2))(δQ)2]+O(λ3).\displaystyle+(8Q^{2}-4(2\omega M^{2}-Q^{2}))(\delta Q)^{2}\big{]}+O(\lambda^{3}). (56)

If we consider only the linear term of λ\lambda in (4.2), then by using the inequality (38), h(λ)h(\lambda) is constrained by

h(λ)4ω2M4ϵ2+4(Q2+2ωM2ωM2)QδQλ+O(λ2),h(\lambda)\geq 4\omega^{2}M^{4}\epsilon^{2}+4(Q^{2}+2\omega M-2\omega M^{2})Q\delta Q\lambda+O(\lambda^{2}), (57)

which implies that it is possible to make h(λ)<0h(\lambda)<0, i.e., the black hole could be over-charged or over-spun.

Next, we include the O(λ2)O(\lambda^{2}) term in (4.2). By using inequality (54) and for optimal choice (39), we have

h(λ)\displaystyle h(\lambda)\geq 4ω2M4ϵ2+4(Q2+2ωM2ωM2)QδQλ\displaystyle 4\omega^{2}M^{4}\epsilon^{2}+4(Q^{2}+2\omega M-2\omega M^{2})Q\delta Q\lambda
+(Q2+2ωM2ωM2)2Q2(δQ)2ω2M4ϵ2λ2+O(λ3)\displaystyle+\frac{(Q^{2}+2\omega M-2\omega M^{2})^{2}Q^{2}(\delta Q)^{2}}{\omega^{2}M^{4}\epsilon^{2}}\lambda^{2}+O(\lambda^{3})
=\displaystyle= [2ωM2ϵ+(Q2+2ωM2ωM2)QδQωM2ϵλ]2+O(λ3).\displaystyle\left[2\omega M^{2}\epsilon+\frac{(Q^{2}+2\omega M-2\omega M^{2})Q\delta Q}{\omega M^{2}\epsilon}\lambda\right]^{2}+O(\lambda^{3}). (58)

Thus, no violation of (2ωM2Q2)24ω2J20(2\omega M^{2}-Q^{2})^{2}-4\omega^{2}J^{2}\geq 0 can occur when the second order correction of the perturbation is taken into account, i.e., this near-extremal EMDA black hole cannot be over-charged or over-spun. In our case the parameter ω\omega can be any nonzero number, which characterizes the black hole hairs (Dilaton, Axion, etc.). So, it is implied that the validity of WCCC is not relevant to the black hole hairs.

Note that, the EMDA solutions contain the Kerr-Sen black hole [40] as a special case, which can be seen from the metric (3) when ω=1\omega=1 and D=msinh2(α/2)D=-m\,sinh^{2}(\alpha/2). In this case, our result reduced to that obtained in Ref. 27 that the near-extremal Kerr-Sen black hole cannot be over-charged or over-spun on the level of the second order approximation.

5 Conclusions and remarks

In this paper, we have used the new version of the gedanken experiments to examine the WCCC for an EMDA black hole. We derived the first order and second order inequalities relating the mass, angular momentum and electric charge in this framework. We show that no violations of WCCC can occur with the increase of the background solution parameters for a near-extremal EMDA black hole when the second order correction of the perturbation was taken into account. The result implies that once an EMDA black hole is formed, it will never be destroyed by being over-charged or over-spun. When the parameters ω=1\omega=1 and D=msinh2(α/2)D=-m\,sinh^{2}(\alpha/2) are taken, the EMDA metric becomes the Kerr-Sen one, and our conclusion reduces to that in Ref. 27 that the WCCC is preserved for a Kerr-Sen black hole.

For EMDA black hole we have shown that the validity of WCCC is not affected by the increase of the background solution parameters when the perturbation matter contains only the electromagnetic matter source. In Ref. 31, it is shown that the WCCC is restored in the Einstein-Maxwell gravity with scalar hairs when the scalar perturbation is considered but the background conserved scalar charge [41] is not included in the perturbation inequalities. It is accessible that a complete analysis of WCCC in the new version of the gedanken experiments may contain both the background conserved scalar charge in the perturbation inequalities and the perturbation matter with scalar field when the black holes have some scalar hairs. This will be an important issue to study the WCCC in the future work.

References

  • [1] R. Penrose, Riv. Nuovo Cim.  1 (1969) 252
  • [2] R. M. Wald, [gr-qc/9710068].
  • [3] S. Hod, Phys. Rev. D 66 (2002) 024016
  • [4] T. Jacobson and T. P. Sotiriou, Phys. Rev. Lett.  103 (2009) 141101
  • [5] A. Saa and R. Santarelli, Phys. Rev. D 84 (2011) 027501
  • [6] T. Jacobson and T. P. Sotiriou, J. Phys. Conf. Ser.  222 (2010) 012041
  • [7] G. E. A. Matsas and A. R. R. da Silva, Phys. Rev. Lett.  99 (2007) 181301
  • [8] S. Gao and Y. Zhang, Phys. Rev. D 87 (2013) no.4, 044028
  • [9] Z. Li and C. Bambi, Phys. Rev. D 87 (2013) no.12, 124022
  • [10] K. Düztaş and İ. Semiz, Phys. Rev. D 88 (2013) no.6, 064043
  • [11] K. Düztaş, Gen. Rel. Grav.  46 (2014) 1709
  • [12] G. Z. Tóth, Class. Quant. Grav.  33 (2016) no.11, 115012
  • [13] B. Gwak and B. H. Lee, JCAP 1602 (2016) 015
  • [14] B. Gwak and B. H. Lee, Phys. Lett. B 755 (2016) 324
  • [15] K. S. Revelar and I. Vega, Phys. Rev. D 96 (2017) no.6, 064010
  • [16] B. Liang, S. W. Wei and Y. X. Liu, Mod. Phys. Lett. A 34 (2019) no.05, 1950037
  • [17] B. Gwak, JCAP 2003 (2020) 058
  • [18] Y. C. Ong, Int. J. Mod. Phys. A 35 (2020) no.14, 2030007
  • [19] R. M. Wald, Ann. Phys. 82, 548 (1974).
  • [20] V. E. Hubeny, Phys. Rev. D 59 (1999) 064013
  • [21] J. Sorce and R. M. Wald, Phys. Rev. D 96 (2017) no.10, 104014
  • [22] V. Iyer and R. M. Wald, Phys. Rev. D 50 (1994) 846
  • [23] J. An, J. Shan, H. Zhang and S. Zhao, Phys. Rev. D 97 (2018) no.10, 104007
  • [24] B. Ge, Y. Mo, S. Zhao and J. Zheng, Phys. Lett. B 783 (2018) 440
  • [25] B. Ning, B. Chen and F. L. Lin, Phys. Rev. D 100 (2019) no.4, 044043
  • [26] J. Jiang, B. Deng and Z. Chen, Phys. Rev. D 100 (2019) no.6, 066024
  • [27] J. Jiang, X. Liu and M. Zhang, Phys. Rev. D 100 (2019) no.8, 084059
  • [28] X. Y. Wang and J. Jiang, arXiv:1911.03938 [hep-th].
  • [29] J. Jiang, Phys. Lett. B 804 (2020) 135365
  • [30] Y. L. He and J. Jiang, Phys. Rev. D 100 (2019) no.12, 124060
  • [31] J. Jiang and M. Zhang, Eur. Phys. J. C 80 (2020) no.3, 196.
  • [32] J. Jiang and Y. Gao, Phys. Rev. D 101 (2020) no.8, 084005
  • [33] X. Y. Wang and J. Jiang, JHEP 2005 (2020) 161
  • [34] S. Shaymatov, N. Dadhich, B. Ahmedov and M. Jamil, Eur. Phys. J. C 80 (2020) no.5, 481
  • [35] S. Shaymatov, B. Ahmedov and M. Jamil, arXiv:2006.01390 [gr-qc].
  • [36] A. Garcia, D. Galtsov and O. Kechkin, Phys. Rev. Lett.  74 (1995) 1276.
  • [37] V. Iyer and R. M. Wald, Phys. Rev. D 52 (1995) 4430
  • [38] E. Lozano-Tellechea and T. Ortin, Nucl. Phys. B 569 (2000), 435-450
  • [39] M. Jamil, M. Akbar and M. R. Setare, Int. J. Theor. Phys.  50 (2011) 2899
  • [40] A. Sen, Phys. Rev. Lett.  69 (1992) 1006
  • [41] C. Pacilio, Phys. Rev. D 98 (2018) no.6, 064055