This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Examination of the ϕNN\phi-NN bound-state problem with lattice QCD NϕN-\phi potentials

Faisal Etminan [email protected] Department of Physics, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako 351-0198, Japan    Amanullah Aalimi [email protected] Department of Physics, Faculty of Sciences, University of Birjand, Birjand 97175-615, Iran
Abstract

The developed Faddeev three-body equations are solved to search for bound-state solutions of a phi-meson (ϕ)\left(\phi\right) and two nucleons (NN)\left(NN\right) system. The newly published spin 3/23/2 NϕN-\phi potential based on the (2+1)\left({2+1}\right)-flavor lattice QCD simulations near the physical point, and the realistic NNNN Malfliet-Tjon (MT) potential, are employed. Our numerical calculations for (I)Jπ=(0)2(I)J^{\pi}=(0)2^{-} ϕd\phi{-d} system in maximum spin lead to ground state binding energy of about 77 MeV and a matter radius of about 88 fm. Our results indicate the possibility of the formation of new nuclear clusters.

I Introduction

In strangeness nuclear physics, the possibility of the formation of ϕ\phi-mesic bound states with nucleons (N) [1, 2, 3, 4] is one the most exciting and important fields due to the quark content of the ϕ\phi-meson as being ss¯s\bar{s}. One of the simplest candidates for ϕ\phi-mesic nuclei can be the ϕNN\phi{-NN} system [5, 6, 7, 8]. Accordingly, the binding energy of ϕNN\phi{-NN} state has been calculated using the folding method [5], solving the Faddeev equations in the coordinate space  [6] and in two-variable integro-differential equations on the D=3(A1){D=}{3}\left({A-1}\right)-dimensional space [7], where mostly attractive phenomenological Nϕ{N-}\phi interaction [9] by central binding energy of 9.479.47 MeV and the semi-realistic Malfliet-Tjon (MT) NN{NN} potential[10], are employed. They concluded that the ϕNN\phi{-NN} system is bound with a binding energy of about 40(23)40\left(23\right) MeV for triplet(singlet) NN{NN} interaction [7].

On the other hand, from the experimental point of view, ALICE collaboration measured the correlation function of proton-ϕ\phi in heavy-ion collisions  [11], together by indicating a pϕp{-}\phi bound state using two-particle correlation functions [12] request the protonϕ{-}\phi bound state hypothesis. To go one step further, the femtoscopic analysis of hadron-deuteron (hdhd) correlation functions could play a crucial role in understanding the structure and dynamics of the atomic nuclei. Therefore the three-body calculations of the hdhd correlation function have special importance [13, 14]. Accordingly, the hdhd correlation functions are investigated for some hadron-deuteron systems like pdpd [13, 15], Kd{K}^{-}d [14, 15], Λd\Lambda d [16], Ξd\Xi d [17], and the production of ΩNN\Omega NN in ultra-relativistic heavy ion collisions are studied in [18, 19]. Hence, it is more desirable to study the properties of ϕd\phi{-d} system by using the state-of-the-art few-body computational method .

Very recently, the first lattice QCD simulations of the Nϕ{N-}\phi potential in S3/24{}^{4}S_{3/2} channel (by the notation LJ2s+1{}^{2s+1}L_{J} where s,Ls,L and JJ are the total spin, orbital angular momentum and total angular momentum, respectively) are published [20]. The simulation is performed by (2+1)\left(2+1\right)-flavor with quark masses near the physical point mπ146.4m_{\pi}\simeq 146.4 MeV and mK525m_{K}\simeq 525 MeV on a sufficient large lattice size of (8.1fm)3\simeq\left(8.1\>{fm}\right)^{3}. Here, we employ this Nϕ{N-}\phi potential to study ϕd\phi{-d} in the highest spin (I)Jp=(0)2\left(I\right)J^{p}=\left(0\right)2^{-}, this channel is selected because it cannot couple to the lower channels ΛKN\Lambda KN and ΣKN\Sigma KN with the ΛK\Lambda K and ΣK\Sigma K subsystem in DD waves. In addition, because of the small phase space, the decay to final states by four or more particles like ΣπKN,ΛπKN\Sigma\pi KN,\Lambda\pi KN and ΛππKN\Lambda\pi\pi KN are supposed to be suppressed [20].

We should emphasize that since, some coupling constants like ϕρπ\phi\rho\pi are known to be far from being OZI (Okubo-Zweig-Iizuka ) suppressed, the coupling to channels like ρN\rho N or πΔ\pi\Delta could be sizable and, this has been all ignored in the lattice simulations [20]. Such a coupling would change the scenario that will be studied here considerably.

Motivated by the above discussion, the binding energies and matter radius of ϕd(0)2\phi{-d}\left(0\right)2^{-} state in cluster model based on expansion in hyperspherical harmonics (HH method) [21, 22, 19] are calculated in this paper. For NN{NN} interaction we have considered the semi-realistic Malfliet-Tjon NN{NN} potential.

The paper is organized as follows. In Section II a brief sketch of the three-body hyperspherical basis formalism is given. The input two-body potentials are described in Section  III. In Section IV, the numerical results are discussed. And the last Section V, is devoted to a summary and conclusion.

II Three-Body Bound State by Expansion on Hyperspherical Harmonics Method

The expansion on hyperspherical harmonics method is a developed version of the Faddeev equations in coordinate space to study weakly bound three-body systems. The method is well-described in [21, 23, 24], so we present an outline of it very briefly here.

The complete three-body wave function Ψ\Psi is sum of three components Ψ(i)\Psi^{(i)}, i.e, Ψ=i=13Ψ(i)\Psi=\sum_{i=1}^{3}\Psi^{\left(i\right)}. The components Ψ(i)\Psi^{\left(i\right)} are function of the three different sets of Jacobi coordinates (One of the three sets is shown in the Fig. 1), and they satisfy the three Faddeev coupled equations,

(TE)Ψ(i)+Vjk(Ψ(i)+Ψ(j)+Ψ(k))=0,\left(T-E\right)\Psi^{\left(i\right)}+V_{jk}\left(\Psi^{\left(i\right)}+\Psi^{\left(j\right)}+\Psi^{\left(k\right)}\right)=0, (1)

where TT is the kinetic energy, EE is the total energy, VjkV_{jk} is the two-body interactions between the corresponding pair and the indexes i,j,ki,j,k is a cyclic permutation of (1,2,3)\left(1,2,3\right).

The Jacobi coordinates {x,y}\left\{\vec{x},\vec{y}\right\}, as depicted in Fig. 1, are employed to define the framework of three-body systems. The Jacobi-T coordinate set is the most suitable one for the ϕNN\phi{-NN} system because the antisymmetrization of the wave function should be preserved under exchange of nucleons linked by the x\vec{x} coordinate. The variable x\vec{x} represents the relative coordinates between two of the particles and y\vec{y} is between their center of mass and the third particle, both with a scaling mass factor. From the Jacobi coordinates, we can define the hyperspherical coordinates {ρ,α,Ωx,Ωy}\{\rho,\alpha,\Omega_{x},\Omega_{y}\}, with hyperradius (generalized radial coordinate) ρ2=x2+y2\rho^{2}=x^{2}+y^{2} and the hyperangle (generalized angle) α=arctan(x/y)\alpha=\arctan(x/y). The Ωx\Omega_{x} and Ωy\Omega_{y} are the angles defining the direction of x\vec{x} and y\vec{y}, respectively. For the sake of simplicity, we describe all angular dependencies by ϕ=(α,Ωx,Ωy)\phi=(\alpha,\Omega_{x},\Omega_{y}).

Refer to caption
Figure 1: The Jacobi T-coordinate system used to describe the ϕNN\phi{-NN} system. It is noteworthy that there are three different Jacobi systems.

The Hamiltonian of a three-body system in hyperspherical coordinates is defined as follows:

H^=T^(ρ,ϕ)+V^(ρ,ϕ),\hat{H}=\hat{T}\left(\rho,\phi\right)+\hat{V}\left(\rho,\phi\right), (2)

the V^(ρ,ϕ)\hat{V}(\rho,\phi) is potential operator which is the summation of pair interactions and the T^(ρ,ϕ)\hat{T}(\rho,\phi) is the free Hamiltonian operator [25],

T^(ρ,ϕ)=22m(2ρ2+5ρρ1ρ2K^2(ϕ)),\hat{T}(\rho,\phi)=-\frac{\hbar^{2}}{2m}\left(\frac{\partial^{2}}{\partial\rho^{2}}+\frac{5}{\rho}\frac{\partial}{\partial\rho}-\frac{1}{\rho^{2}}\hat{K}^{2}(\phi)\right), (3)

where K^\hat{K} is hyperangular momentum (generalized angular momentum) operator and mm is a normalization mass for which we choose m=mNm=m_{N}.

Employing the hyperspherical coordinates, the solutions of the Schrödinger equation with the three-body Hamiltonian of Eq. (2) by total angular momentum jj can be expanded for each ρ\rho as

ψiβjμ(ρ,ϕ)=Riβ(ρ)𝒴βjμ(ϕ),\psi_{i\beta}^{j\mu}(\rho,\phi)=R_{i\beta}(\rho)\mathcal{Y}_{\beta}^{j\mu}(\phi), (4)

where the functions 𝒴βjμ(ϕ)\mathcal{Y}_{\beta}^{j\mu}(\phi) are a complete set of hyperangular functions that can be expanded in hyperspherical harmonics [21, 22, 23], and Riβ(ρ)R_{i\beta}\left(\rho\right) are the hyperradial wave functions, where the subscript ii denotes the hyperradial excitation (for the purpose of solving the coupled equations (6) the hyper-radial functions, βj(ρ)\mathcal{R}_{\beta}^{j}(\rho) are expanded in terms of orthonormal discrete basis up to imaxi_{max} [24]). Moreover, the β{K,lx,ly,l,Sx,jab}\beta\equiv\{K,l_{x},l_{y},l,S_{x},j_{ab}\} is a set of quantum numbers coupled to jj. lxl_{x} and lyl_{y} are the orbital angular momenta related to the Jacobi coordinates x\vec{x} and y\vec{y}, respectively. l=lx+lyl=l_{x}+l_{y} represents the total orbital angular momentum, SxS_{x} gives the total spin of pair particles related by x\vec{x}, and jab=l+Sxj_{ab}=l+S_{x}. The total angular momentum is j=jab+Ij=j_{ab}+I where II indicates the spin of the third particle.

Therefore wave function of the system is defined by

Ψjμ(ρ,ϕ)\displaystyle\Psi^{j\mu}(\rho,\phi) =\displaystyle= βi=0imaxCiβjψiβjμ(ρ,ϕ)\displaystyle\sum_{\beta}\sum_{i=0}^{i_{max}}C_{i\beta}^{j}\>\psi_{i\beta}^{j\mu}(\rho,\phi)
=\displaystyle= β(i=0imaxCiβjRiβ(ρ))𝒴βjμ(ϕ)=ββj(ρ)𝒴βjμ(ϕ),\displaystyle\sum_{\beta}\left(\sum_{i=0}^{i_{max}}C_{i\beta}^{j}R_{i\beta}(\rho)\right)\mathcal{Y}_{\beta}^{j\mu}(\phi)=\sum_{\beta}\mathcal{R}_{\beta}^{j}(\rho)\mathcal{Y}_{\beta}^{j\mu}(\phi),

where CiβjC_{i\beta}^{j} are the diagonalization coefficients that can be calculated by diagonalizing the three-body Hamiltonian for i=0,,imaxi=0,...,i_{max} basis functions. The hyperradial wave functions β(ρ)\mathcal{R}_{\beta}(\rho) are solutions to the coupled set of differential equations,

(22m(d2dρ2(K+3/2)(K+5/2)ρ2)E)βj(ρ)+βVββjμ(ρ)βj(ρ)=0,\left(-\frac{\hbar^{2}}{2m}\left(\frac{d^{2}}{d\rho^{2}}-\frac{(K+3/2)(K+5/2)}{\rho^{2}}\right)-E\right)\mathcal{R}_{\beta}^{j}(\rho)+\sum_{\beta^{\prime}}V_{\beta^{\prime}\beta}^{j\mu}(\rho)\mathcal{R}_{\beta^{\prime}}^{j}(\rho)=0, (6)

the term Vββjμ(ρ)V_{\beta^{\prime}\beta}^{j\mu}(\rho) is related to the two-body potentials between each pair of particles (VijV_{{ij}}), by

Vββjμ(ρ)=𝒴βjμ(ϕ)|V12+V13+V23|𝒴βjμ(ϕ).V_{\beta^{\prime}\beta}^{j\mu}(\rho)=\left\langle\mathcal{Y}_{\beta}^{j\mu}(\phi)\left|V_{12}+V_{13}+V_{23}\right|\mathcal{Y}_{\beta^{\prime}}^{j\mu}(\phi)\right\rangle. (7)

III Two-body potentials

In this section, we introduce the two-body interaction of NN{NN} and different analytical form of extracted lattice Nϕ{N-}\phi potential which we used in our calculations for ϕNN\phi{-NN} system.

III.1 NN{NN} potentials

For NN{NN} interactions, we use the Yukawa-type Malfliet-Tjon (MT) [10],

VNN(r)=i=12Cieμirr,V_{NN}\left(r\right)=\sum_{i=1}^{2}C_{i}\frac{e^{-\mu_{i}r}}{r}, (8)

the parameters CiC_{i} and μi\mu_{i} are given in Table 1. This potential supports a deuteron binding energy of 2.2307-2.2307 MeV.

Table 1: The parameters and low-energy scattering data of the local central MT NN{NN} potential given in Eq. (8) for the singlet S01{}^{1}S_{0} and triplet S13{}^{3}S_{1} channel.
(I,J)\left(I,J\right) a0(fm)a_{0}\left(\mathrm{fm}\right) reff(fm)\mathrm{{r_{\mathrm{eff}}}}\left(\mathrm{fm}\right) C1(MeVfm)C_{1}~{}(\mathrm{MeV\cdot fm}) μ1(fm1)\mu_{1}~{}(\mathrm{fm}^{-1}) C2(MeVfm)C_{2}~{}(\mathrm{MeV\cdot fm}) μ2(fm1)\mu_{2}(\mathrm{fm}^{-1})
(1,0)\left(1,0\right) 23.56-23.56 2.882.88 513.968-513.968 1.551.55 14.38.7214.38.72 3.113.11
(0,1)\left(0,1\right) 5.515.51 1.891.89 626.885-626.885 1.551.55 1438.721438.72 3.113.11

III.2 Nϕ(S3/24){N-}\phi\left({}^{4}S_{3/2}\right) potential

For the Nϕ{N-}\phi potential in the S3/24{}^{4}S_{3/2} channel, i.e., the concrete parameterizations, are taken straight from Ref. [20] which is published very recently by the HAL QCD collaboration. Where they performed the uncorrelated fit on the lattice QCD extracted potential to calculate physical observables using two different analytic functional forms composed of attractive Gaussian and long-range Yukawa squared attractions [26, 27],

VA(r)=i=12αie(r/βi)2+a3mπ4f(r;β3)(emπrr)2.V_{A}\left(r\right)=\sum_{i=1}^{2}\alpha_{i}e^{-\left(r/\beta_{i}\right)^{2}}+a_{3}m_{\pi}^{4}f\left(r;\beta_{3}\right)\left(\frac{e^{-m_{\pi}r}}{r}\right)^{2}. (9)

In Ref. [20], it is shown that the long-range part of the Nϕ{N-}\phi potential is clearly dominated by the two-pion exchange (TPE). This behavior suggests the VA(r)V_{A}\left(r\right) has a TPE tail at long range with a strength coefficient mπ4m_{\pi}^{4} [28]. Also, for comparison, a purely phenomenological Gaussian form is considered,

VB(r)=i=13αie(r/βi)2.V_{B}\left(r\right)=\sum_{i=1}^{3}\alpha_{i}e^{-\left(r/\beta_{i}\right)^{2}}. (10)

For the form factor f(r;b3)f\left(r;b_{3}\right) in Eq. (9) two different types commonly used in the NN{NN} potential, is applied a Nijmegen-type form factor [29],

ferfc(r;β3)=[erfc(mπΛΛr2)e2mπrerfc(mπΛ+Λr2)]2/4,\displaystyle f_{{erfc}}\left(r;\beta_{3}\right)=\left[{erfc}\left(\frac{m_{\pi}}{\Lambda}-\frac{\Lambda r}{2}\right)-{e}^{2m_{\pi}r}{erfc}\left(\frac{m_{\pi}}{\Lambda}+\frac{\Lambda r}{2}\right)\right]^{2}/4, (11)

and the Argonne-type form factor [30],

fexp(r;β3)=(1e(r/β3)2)2,\displaystyle f_{{exp}}\left(r;\beta_{3}\right)=\left(1-e^{-(r/\beta_{3})^{2}}\right)^{2}, (12)

where the lattice pion mass is mπ=146.4m_{\pi}=146.4 MeV, Λ=2/β3\Lambda=2/\beta_{3} and erfc(z)=2πzet2𝑑t{erfc}\left(z\right)=\frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}dt is the complementary error function. Hereafter, we refer to VA(r)V_{A}\left(r\right) with ferfc(fexp)f_{{erfc}}\left({f}_{{exp}}\right) form factor as Aerfc(Aexp){A}_{{erfc}}\left({A}_{{exp}}\right) model, and model B is applied to VB(r)V_{B}\left(r\right) in Eq. (10). The parameters of Eq. (9) and Eq. (10) those we employed in our calculations are given in Table 2. The central values of low-energy observables by Aerfc{A}_{{erfc}} potential are the scattering length a0Nϕ=1.43(23)a_{0}^{{N-}\phi}=-1.43(23) fm, and the effective range reffNϕ=2.36(10)r_{eff}^{{N-}\phi}=2.36(10) fm [20] and no binding energy is observed for this interaction. The number between parentheses is the statistical error.

Table 2: The parameters of Nϕ{N-}\phi (S3/24)\left({}^{4}S_{3/2}\right) potential given in Eqs. (9) and  (10) from Ref. [20] at lattice Euclidean time 1414. The numbers in parentheses indicate statistical errors.
α1(MeV)\alpha_{1}~{}(\mathrm{MeV}) β1(fm)\beta_{1}~{}(\mathrm{fm}) α2(MeV)\alpha_{2}~{}(\mathrm{MeV}) β2(fm)\beta_{2}~{}(\mathrm{fm}) α3mπ4n(MeVfm2n)\alpha_{3}m_{\pi}^{4n}~{}(\mathrm{MeV\cdot fm^{2n}}) β3(fm)\beta_{3}(\mathrm{fm})
Aerfc{A}_{{erfc}} 376(20)-376(20) 0.14(1)0.14(1) 306(122)306(122) 0.46(4)0.46(4) 95(13)-95(13) 0.41(7)0.41(7)
Aexp{A}_{{exp}} 371(27-371(27) 0.13(1)0.13(1) 119(39)-119(39) 0.30(5)0.30(5) 97(14)-97(14) 0.63(4)0.63(4)
B3G{B-3G} 371(19-371(19) 0.15(3)0.15(3) 50(35)-50(35) 0.66(61)0.66(61) 31(53)-31(53) 1.09(41)1.09(41)

In Fig. 2 we show all three Nϕ{N-}\phi potential models in the S3/24{}^{4}S_{3/2} channel using the parameters given in Table 2, for better comparison.

Refer to caption
Figure 2: The Nϕ{N-}\phi potential in the S3/24{}^{4}S_{3/2} channel as a function of separation rr at lattice Euclidean time 1414 from Ref. [20], for three model, i.e. Aerfc{A}_{{erfc}} (blue solid line), Aexp{A}_{{exp}} (red dashed lines), and B3G{B-3G} (purple dot line) using the parameters given in Table 2.

IV Numerical Results

Here, we present and discuss our numerical results for the ground state binding energy B3B_{3} and nuclear matter radius rmatr_{mat} for three-body ϕNN\phi{-NN} state systems. For this purpose, the coupled equations (6) are solved by applying the FaCE computational toolkit [24] employing the two-body interactions described in Sec. III.

In the HH method, the final results depend on a maximum value of hypermomentum KmaxK_{max} due to the expansion of the total three-body wave function in hypermomentum components, which are truncated by KmaxK_{max}, therefore, it is necessary to investigate the convergence of results as a function of KmaxK_{max} and the maximum number of hyperradial excitations imaxi_{max} (see Eq. (II)). The results converged quite well with the Kmax=70K_{max}=70 and imax=25i_{max}=25 for (I)Jπ=(0)2(I)J^{\pi}=(0)2^{-} ϕd\phi{-d} state.

The Nϕ{N-}\phi two-body system in S3/24{}^{4}S_{3/2} channel( Fig. 2) by parametrizations of all three model Aerfc{A}_{{erfc}}, Aexp{A}_{{exp}}, and B3G{B-3G} does not form a bound state as previously predicted in [31, 32] by using the hidden gauge theory with unitary coupled-channel calculations within SU(3){SU}(3) symmetry, whereas within chiral SU(3){SU}(3) quark model [33] and unitary coupled-channel approach [34] the existence of a bound state is reported. In older studies, as mentioned in the introduction, in Refs. [5, 6, 7] by using the attractive Nϕ{N-}\phi interaction [9], it is predicted that the binding energy of ϕNN\phi{-NN} state could be about 40(23)40\left(23\right) MeV for triplet(singlet) NN{NN} interaction.

Nevertheless, in this case, as expected no bound state found for (I)Jπ=(1)1(I)J^{\pi}=(1)1^{-} ϕNN\phi{-NN} state, i.e. ϕnn\phi{-nn} and ϕpp\phi{-pp}. While the (I)Jπ=(0)2(I)J^{\pi}=(0)2^{-} ϕd\phi{-d} state in the maximal spin channel is bound for all parametrizations of the Nϕ{N-}\phi potentials, i.e. Aerfc{A}_{{erfc}}, Aexp{A}_{{exp}}, and B3G{B-3G}. The ground state binding energy and nuclear matter radius of ϕd\phi{-d} state are given in Table 3. To calculate the r.m.s. matter radius of the ϕd\phi{-d} system, the strong interaction radius of proton, neutron and ϕ\phi-meson by the values 0.82,0.800.82,0.80 fm and 0.460.46 fm [8, 35], respectively, are have been used as input.

Moreover, the results with the mNm_{N} and mϕm_{\phi} masses derived from (2+1)\left(2+1\right)-flavor lattice QCD simulations [20], presented in Table 3. The values of these masses are slightly bigger than the experimental value. As it can be seen from the Table 3, B3B_{3} by lattice masses are a bit larger than B3B_{3} by the experimental masses. This is because by increasing the masses, repulsive kinetic energy contribution will decrease which in turn leads to an increment in binding energies [36].

Table 3: Three-body ground state binding energy (B3)\left(B_{3}\right) and the nuclear matter radius (rmat)\left(r_{{mat}}\right) of the (I)Jπ=(0)2(I)J^{\pi}=(0)2^{-} ϕd\phi{-d} state for three type Nϕ{N-}\phi potentials, i.e. Aerfc{A}_{{erfc}}, Aexp{A}_{{exp}}, and B3G{B-3G}. The results were calculated using experimental values of masses, mN=938.9m_{N}=938.9 MeV/c2{MeV}/{c}^{2} and mϕ=1019.5m_{\phi}=1019.5 MeV/c2{MeV}/{c}^{2}, and with the masses obtained from (2+1)\left(2+1\right)-flavor lattice QCD simulations, mN=954.0m_{N}=954.0 MeV/c2{MeV}/{c}^{2} and mϕ=1048.0m_{\phi}=1048.0 MeV/c2{MeV}/{c}^{2} [20].
Aerfc{A}_{{erfc}} Aexp{A}_{{exp}} B3G{B-3G}
B3B_{3} (MeV) rmatr_{mat} (fm) B3B_{3} (MeV) rmatr_{mat} (fm) B3B_{3} (MeV) rmatr_{mat} (fm)
Expt. 6.96.9 8.338.33 6.86.8 8.248.24 6.76.7 8.088.08
Lattice 7.37.3 8.358.35 7.27.2 8.258.25 7.17.1 8.058.05

V Summary and conclusions

In this work, the binding energy of the three-body system ϕNN\phi-NN is examined using the first lattice QCD NϕN-\phi potential in the S3/24{}^{4}S_{3/2} channel and semi-realistic Malfliet-Tjon NN{NN} interactions. The NϕN-\phi potential is obtained from QCD on a sufficiently large lattice at almost physical quark masses (mπ146.4m_{\pi}\simeq 146.4 MeV and mK525m_{K}\simeq 525 MeV) and parametrized in three different analytical forms, i.e. Aerfc{A}_{{erfc}}, Aexp{A}_{{exp}} and B3G{B-3G}, where the concrete parameterizations of these models, are taken straight from Ref. [20].

Then, by having a two-body potential between each pair of particles, the coupled Faddeev equations in the coordinate space are solved within the hyperspherical harmonics expansion method.

We have tried to find bound states or resonances that can be observed in future experiments. The numerical results suggest that no bound state or resonances found for (I)Jπ=(1)1(I)J^{\pi}=(1)1^{-} ϕnn\phi{-nn} and ϕpp\phi{-pp} systems. The (I)Jπ=(0)2(I)J^{\pi}=(0)2^{-} ϕd\phi{-d} system in the maximal spin presents a bound state with a binding energy of about 77 MeV and a nuclear matter radius of about 88 fm. The ϕd\phi{-d} system in the maximal spin channel cannot couple to the lower three-body open channels ΛKN\Lambda KN and ΣKN\Sigma KN because DD wave subsystems ΛK\Lambda K and ΣK\Sigma K are kinematically suppressed at low energies. In addition, because of the small phase space, the decay to final states by four or more particles e.g. ΣπKN,ΛπKN\Sigma\pi KN,\Lambda\pi KN, and ΛππKN\Lambda\pi\pi KN are supposed to be suppressed [20]. Last but not least, in Ref. [20] they have not consider the OZI violating ss¯s\bar{s} annihilation in their simulations. Nevertheless, considering the coupling to channels like ρN\rho N or πΔ\pi\Delta could change the results obtained here significantly.

In conclusion, adding a ϕ\phi-meson to the deuteron could enhance its binding energy. These bound states or resonances could be explored in hadron beam experiments. Recently, for the first time, ALICE collaboration measured the correlation function of proton-ϕ\phi in heavy-ion collisions [11], and the existence of pϕp{-}\phi bound state has been discussed and explored in [12]. And very recently, the K+dK^{+}{-d} and pdp{-d} femtoscopic correlations measured by the ALICE Collaboration in proton-proton (pp) collisions [14, 15], analogously, as the next step, these measurements could be done for ϕd\phi{-d} system. We desire that our numerical results could help to plan experiments in the future.

References

  • Gao et al. [2017] H. Gao, H. Huang, T. Liu, J. Ping, F. Wang, and Z. Zhao, Search for a hidden strange baryon-meson bound state from ϕ\phi production in a nuclear medium, Phys. Rev. C 95, 055202 (2017).
  • Hirenzaki and Yamagata-Sekihara [2010] S. Hirenzaki and J. Yamagata-Sekihara, Formation of Slow Heavy Mesons in Nuclei, Nucl. Phys. A 835, 406 (2010), proceedings of the 10th International Conference on Hypernuclear and Strange Particle Physics.
  • Yamagata-Sekihara et al. [2010] J. Yamagata-Sekihara, D. Cabrera, M. J. Vicente Vacas, and S. Hirenzaki, Formation of φ\varphi Mesic Nuclei, Prog. Theor. Phys. 124, 147 (2010)https://academic.oup.com/ptp/article-pdf/124/1/147/9681103/124-1-147.pdf .
  • Cobos-Martínez et al. [2017] J. J. Cobos-Martínez, K. Tsushima, G. Krein, and A. W. Thomas, Φ\mathrm{\Phi}-meson–nucleus bound states, Phys. Rev. C 96, 035201 (2017).
  • Belyaev et al. [2008] V. B. Belyaev, W. Sandhas, and I. I. Shlyk, New nuclear three-body clusters ϕNN\phi NNFew-Body Syst. 44, 347 (2008).
  • Belyaev et al. [2009] V. B. Belyaev, W. Sandhas, and I. I. Shlyk, 3- and 4- body meson- nuclear clusters (2009), arXiv:0903.1703v1 [nucl-th] .
  • Sofianos et al. [2010] S. A. Sofianos, G. J. Rampho, M. Braun, and R. M. Adam, The ϕNN\phi-NN and ϕϕNN\phi\phi-NN mesic nuclear systems, J. Phys. G Nucl. Part. Phys. 37, 085109 (2010).
  • Wang et al. [2023] X.-Y. Wang, C. Dong, and Q. Wang, First characterization of the scattering length distribution of the vector meson interaction with the deuteron, Phys. Rev. C 108, 034614 (2023).
  • Gao et al. [2001] H. Gao, T.-S. H. Lee, and V. Marinov, φ\varphi-n bound state, Phys. Rev. C 63, 022201(R) (2001).
  • Malfliet and Tjon [1969] R. Malfliet and J. Tjon, Solution of the Faddeev\mathrm{Faddeev} equations for the triton problem using local two-particle interactions, Nucl. Phys. A 127, 161 (1969).
  • Acharya et al. [2021] S. Acharya et al. (ALICE Collaboration), Experimental Evidence for an Attractive pϕp\text{$-$}\phi Interaction, Phys. Rev. Lett. 127, 172301 (2021).
  • Chizzali et al. [2024] E. Chizzali, Y. Kamiya, R. Del Grande, T. Doi, L. Fabbietti, T. Hatsuda, and Y. Lyu, Indication of a pϕp\text{$-$}\phi bound state from a correlation function analysis, Phys. Lett. B 848, 138358 (2024).
  • Viviani et al. [2023] M. Viviani, S. König, A. Kievsky, L. E. Marcucci, B. Singh, and O. V. Doce, Role of three-body dynamics in nucleon-deuteron correlation functions, Phys. Rev. C 108, 064002 (2023).
  • Collaboration [2023] A. Collaboration, Exploring the strong interaction of three-body systems at the LHC (2023), arXiv:2308.16120 [nucl-ex] .
  • Mrówczyński and Słoń [2020] S. Mrówczyński and P. Słoń, Hadron-deuteron correlations and production of light nuclei in relativistic heavy-ion collisions, Acta Phys. Pol. B 51, 1739 (2020).
  • Haidenbauer [2020] J. Haidenbauer, Exploring the Λ\mathrm{\Lambda}-deuteron interaction via correlations in heavy-ion collisions, Phys. Rev. C 102, 034001 (2020).
  • Ogata et al. [2021] K. Ogata, T. Fukui, Y. Kamiya, and A. Ohnishi, Effect of deuteron breakup on the deuteron-Ξ\mathrm{\Xi} correlation function, Phys. Rev. C 103, 065205 (2021).
  • Zhang et al. [2022] L. Zhang, S. Zhang, and Y.-G. Ma, Production of ΩNN\mathrm{\Omega}NN and ΩΩN\mathrm{\Omega\Omega}N in ultra-relativistic heavy-ion collisions, Eur. Phys. J. C 82, 1 (2022).
  • Etminan et al. [2023] F. Etminan, Z. Sanchuli, and M. M. Firoozabadi, Geometrical properties of ΩNN\Omega NN three-body states by realistic NNNN and first principles Lattice QCD ΩN\Omega N potentials, Nucl. Phys. A 1033, 122639 (2023).
  • Lyu et al. [2022] Y. Lyu, T. Doi, T. Hatsuda, Y. Ikeda, J. Meng, K. Sasaki, and T. Sugiura, Attractive NϕN\text{$-$}\phi interaction and two-pion tail from lattice QCD near physical point, Phys. Rev. D 106, 074507 (2022).
  • Zhukov et al. [1993] M. Zhukov et al., Bound state properties of Borromean halo nuclei: He6{}^{6}\mathrm{He} and Li11{}^{11}\mathrm{Li}Phys. Rep. 231, 151 (1993).
  • Casal et al. [2020] J. Casal, J. Singh, L. Fortunato, W. Horiuchi, and A. Vitturi, Electric dipole response of low-lying excitations in the two-neutron halo nucleus F29{}^{29}\mathrm{F}Phys. Rev. C 102, 064627 (2020).
  • Raynal and Revai [1970] J. Raynal and J. Revai, Transformation coefficients in the hyperspherical approach to the three-body problem, Il Nuovo Cimento A (1965-1970) 68, 612 (1970).
  • Thompson et al. [2004] I. Thompson, F. Nunes, and B. Danilin, FaCE\mathrm{FaCE}: a tool for three body Faddeev\mathrm{Faddeev} calculations with core excitation, Comput. Phys. Commun 161, 87 (2004).
  • Lay et al. [2012] J. A. Lay, A. M. Moro, J. M. Arias, and J. Gómez-Camacho, Particle motion in a deformed potential using a transformed oscillator basis, Phys. Rev. C 85, 054618 (2012).
  • Etminan et al. [2014] F. Etminan et al., Spin-2 NΩ\mathrm{N}\mathrm{\Omega} dibaryon from lattice QCD\mathrm{QCD}Nucl. Phys. A 928, 89 (2014), special Issue Dedicated to the Memory of Gerald E Brown (1926-2013).
  • Iritani et al. [2019] T. Iritani et al.NΩ\mathrm{N}\mathrm{\Omega} dibaryon from lattice QCD\mathrm{QCD} near the physical point, Phys. Lett. B 792, 284 (2019).
  • Tarrús Castellà and Krein [2018] J. Tarrús Castellà and G. a. Krein, Effective field theory for the nucleon-quarkonium interaction, Phys. Rev. D 98, 014029 (2018).
  • Stoks et al. [1994] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Construction of high-quality nn potential models, Phys. Rev. C 49, 2950 (1994).
  • Wiringa et al. [1995] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Accurate nucleon-nucleon potential with charge-independence breaking, Phys. Rev. C 51, 38 (1995).
  • Gamermann et al. [2011] D. Gamermann, C. García-Recio, J. Nieves, and L. L. Salcedo, Odd-parity light baryon resonances, Phys. Rev. D 84, 056017 (2011).
  • Ramos and Oset [2013] A. Ramos and E. Oset, The role of vector-baryon channels and resonances in the γpK0Σ+\gamma p\rightarrow K^{0}\Sigma^{+} and γnK0Σ0\gamma n\rightarrow K^{0}\Sigma^{0} reactions near the KΛK^{*}\Lambda threshold, Phys. Lett. B 727, 287 (2013).
  • Huang et al. [2006] F. Huang, Z. Y. Zhang, and Y. W. Yu, NϕN\phi states in a chiral quark model, Phys. Rev. C 73, 025207 (2006).
  • Bao-Xi Sun and Ying-Ying Fan and Qin-Qin Cao [2023] Bao-Xi Sun and Ying-Ying Fan and Qin-Qin Cao, The ϕp\phi p bound state in the unitary coupled-channel approximation, Commun. Theor. Phys. 75, 055301 (2023).
  • Povh and Hüfner [1990] B. Povh and J. Hüfner, Systematics of strong interaction radii for hadrons, Phys. Lett. B 245, 653 (1990).
  • Garcilazo and Valcarce [2019] H. Garcilazo and A. Valcarce, Ω𝑁𝑁\mathrm{\Omega}\mathit{NN} and ΩΩN\mathrm{\Omega}\mathrm{\Omega}\mathrm{N} states, Phys. Rev. C 99, 014001 (2019).