This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Exact solution of the two-axis two-spin Hamiltonian
Feng Pan1,3, Yao-Zhong Zhang2111The corresponding author.
E-mail address: [email protected]
, Xiaohan Qi1, Yue Liang1, Yuqing Zhang1, and Jerry P. Draayer3

Abstract

Bethe ansatz solution of the two-axis two-spin Hamiltonian is derived based on the Jordan-Schwinger boson realization of the SU(2) algebra. It is shown that the solution of the Bethe ansatz equations can be obtained as zeros of the related extended Heine-Stieltjes polynomials. Symmetry properties of excited levels of the system and zeros of the related extended Heine-Stieltjes polynomials are discussed. As an example of an application of the theory, the two equal spin case is studied in detail, which demonstrates that the levels in each band are symmetric with respect to the zero energy plane perpendicular to the level diagram and that excited states are always well entangled.

pacs:
42.50.Dv, 42.50.Lc, 32.60.+i

I INTRODUCTION

Quantum squeezing of both Bose and Fermi many-body systems 1 ; 11 ; 12 ; 13 ; 14 ; 15 ; 17 ; 18 ; 31 ; 32 ; 33 ; 34 is effective and useful in quantum metrology and its applications in quantum informatics 222 ; 333 . Two previous models for dynamical generation of spin-squeezed states are the one-axis twisting and two-axis countertwisting Hamiltonians, respectively 1 , of which the latter model gives rise to maximal squeezing with a squeezing angle independent of system size or evolution time. Very recently, two-axis one-spin (2A1S) countertwisting Hamiltonian 1 has been generalized to the two-axis two-spin (2A2S) case 2222 . As shown in 2222 , the 2A2S Hamiltonian produces the spin EPR states, the analog of the two-mode squeezed state for spins, which are able to violate the Bell-CHSH inequality when the quantum numbers of the two spins are finite.

It wss shown in our previous works pan-zhang1 ; pan-zhang2 that the 2A1S Hamiltonian is exactly solvable and its solution can be obtained by using the Bethe ansatz method. As noted in pan-zhang2 , the 2A1S Hamiltonian is equivalent to a special case of the Lipkin-Meshkov-Glick (LMG) model vi1 ; vi2 after an Euler rotation. Similar to other many-spin systems be ; gau ; ric1 ; ric2 , the LMG model can be solved analytically by using the algebraic Bethe ansatz pan ; mori . The same problem can also be solved by using the Dyson boson realization of the SU(2) algebra vi1 ; vi2 ; zhang1 ; zhang2 , of which the solution may be obtained from the Riccati differential equations vi1 ; vi2 . Recently, the Bethe ansatz method has also been applied to generate exact solution of mean-field plus orbit-dependent non-separable pairing model with two non-degenerate jj-orbits pan2019 and that of the dimer Bose-Hubbard model with multi-body interactions pan2020 . In these two models pan2019 ; pan2020 , there is an additional S2S_{2} symmetry with respect to the two species of bosons or quasi-spins, which is helpful in constructing operators involved in the corresponding Bethe ansatz states and the related operator algebra calculations.

The purpose of this work is to construct exact and complete solution of the 2A2S Hamiltonian. In Sec. II, the 2A2S Hamiltonian is written in terms of boson operators after the Jordan-Schwinger boson realization of the two related SU(2) algebras, which can then be expressed in terms of generators of two copies of SU(1,1) algebra. Since there are only two sets of SU(1,1) generators involved in the Hamiltonian, the technique used in pan2019 ; pan2020 is helpful in constructing the Bethe ansatz states and the related operator algebra calculations. The derivation of the related extended Heine-Stieltjes polynomials is presented, whose zeros are related to the exact solution of the 2A2S Hamiltonian. Symmetry properties of excited levels of the system and zeros of the related extended Heine-Stieltjes polynomials are also discussed. Some numerical examples of the two equal spin case are presented in Sec. III, which demonstrate the main features of the solution. A brief summary is provided in Sec. IV.

II The exact solution of the two-axis two-spin Hamiltonian

The two-axis two-spin (2A2S) Hamiltonian is given by 2222

H2A2S=χ(S1+S2++S1S2),{H}_{\rm 2A2S}={\chi}({S}^{+}_{1}S^{+}_{2}+S^{-}_{1}S^{-}_{2}), (1)

where χ\chi is a constant and {Si±,Si0}\{S^{\pm}_{i},S^{0}_{i}\} (i=1,2i=1,2) are generators of two copies of the SU(2) algebra satisfying the following commutation relations:

[Si0,Sj±]=±δijSi±,[Si+,Sj]=δij2Si0.\displaystyle[S^{0}_{i},~{}S^{\pm}_{j}]=\pm\delta_{ij}S^{\pm}_{i},~{}~{}[S^{+}_{i},~{}S^{-}_{j}]=\delta_{ij}2S^{0}_{i}. (2)

Though the Hamiltonian (1) is not commutative with SiνS^{\nu}_{i} (ν=+,, 0;i=1, 2\nu=+,\,-,\,0;\,i=1,\,2), it is commutative with the two SU(2) Casimir invariants C2(i)(SU(2))=(Si+Si+SiSi+)/2+(Si0)2C^{(i)}_{2}({\rm SU}(2))=(S^{+}_{i}S^{-}_{i}+S^{-}_{i}S^{+}_{i})/2+(S^{0}_{i})^{2} for i=1, 2i=1,\,2. Thus, the two spins are good quantum numbers of the system, while the total spin and its projection are not. The generators of the two copies of the SU(2) can be represented using the Jordan-Schwinger boson realization

S1+=a1a2,S1=a2a1,S10=12(a1a1a2a2),\displaystyle S^{+}_{1}=a^{{\dagger}}_{1}a_{2},~{}~{}S^{-}_{1}=a^{{\dagger}}_{2}a_{1},~{}S^{0}_{1}={1\over{2}}(a^{{\dagger}}_{1}a_{1}-a^{{\dagger}}_{2}a_{2}),
S2+=b1b2,S2=b2b1,S20=12(b1b1b2b2),\displaystyle S^{+}_{2}=b^{{\dagger}}_{1}b_{2},~{}~{}S^{-}_{2}=b^{{\dagger}}_{2}b_{1},~{}~{}S^{0}_{2}={1\over{2}}(b^{{\dagger}}_{1}b_{1}-b^{{\dagger}}_{2}b_{2}),~{} (3)

where aia_{i} and bib_{i} (aia^{{\dagger}}_{i} and bib^{{\dagger}}_{i}) are the boson annihilation (creation) operators satisfying

[ai,aj]=[bi,bj]=δij,[ai,aj]=[bi,bj]=[ai,bj]=0.\displaystyle[a_{i},\,a^{{\dagger}}_{j}]=[b_{i},\,b^{{\dagger}}_{j}]=\delta_{ij},~{}~{}[a_{i},\,a_{j}]=[b_{i},\,b_{j}]=[a_{i},\,b_{j}]=0. (4)

By substituting (II) into (1), the Hamiltoanian (1) can be expressed in terms of the generators of two copies of SU(1,1) algebra,

H2A2S=χ(Λ1+Λ2+Λ1Λ2+)\displaystyle{H}_{\rm 2A2S}={\chi}\left(\Lambda_{1}^{+}\Lambda_{2}^{-}+\Lambda_{1}^{-}\Lambda_{2}^{+}\right) (5)

with

Λ1+=a1b1,Λ1=a1b1,Λ10=12(a1a1+b1b1+1),\displaystyle\Lambda^{+}_{1}=a^{{\dagger}}_{1}b^{{\dagger}}_{1},~{}~{}\Lambda^{-}_{1}=a_{1}b_{1},~{}\Lambda^{0}_{1}={1\over{2}}(a^{{\dagger}}_{1}a_{1}+b^{{\dagger}}_{1}b_{1}+1),
Λ2+=a2b2,Λ2=a2b2,Λ20=12(a2a2+b2b2+1),\displaystyle\Lambda^{+}_{2}=a^{{\dagger}}_{2}b^{{\dagger}}_{2},~{}~{}\Lambda^{-}_{2}=a_{2}b_{2},~{}~{}\Lambda^{0}_{2}={1\over{2}}(a^{{\dagger}}_{2}a_{2}+b^{{\dagger}}_{2}b_{2}+1), (6)

which satisfy the commutation relations

[Λρ0,Λρ±]=±δρρΛρ±,[Λρ+,Λρ]=δρρ2Λρ0.[\Lambda^{0}_{\rho},~{}\Lambda^{\pm}_{\rho^{\prime}}]=\pm\delta_{\rho\rho^{\prime}}\Lambda^{\pm}_{\rho},~{}~{}~{}[\Lambda^{+}_{\rho},~{}\Lambda^{-}_{\rho^{\prime}}]=-\delta_{\rho\rho^{\prime}}2\Lambda^{0}_{\rho}. (7)

As shown in the following, the SU(1,1) type Bethe ansatz states for the Hamiltonian (5) can be written as

|η,k;λ1,λ2=i=1kΛ+(xi(η))|λ1,λ2,|\eta,k;\lambda_{1},\lambda_{2}\rangle=\prod^{k}_{i=1}\Lambda^{+}(x^{(\eta)}_{i})|\lambda_{1},\lambda_{2}\rangle, (8)

where η\eta is an additional label needed, |λ1,λ2|\lambda_{1},\lambda_{2}\rangle is one of the lowest weight states of SU1(1,1)SU2(1,1){\rm SU}_{1}(1,1)\otimes\rm{SU}_{2}(1,1) satisfying

(Λi0Λi)|λ1,λ2=(λi0)|λ1,λ2fori=1,2,\left(\begin{array}[]{c}\Lambda^{0}_{i}\\ ~{}\Lambda^{-}_{i}\\ \end{array}\right)|\lambda_{1},\lambda_{2}\rangle=\left(\begin{array}[]{c}\lambda_{i}\\ 0\\ \end{array}\right)|\lambda_{1},\lambda_{2}\rangle~{}~{}{\rm for}~{}~{}i=1,2, (9)

and

Λ+(x)=Λ1++xΛ2+\Lambda^{+}(x)=\Lambda^{+}_{1}+x\,\Lambda^{+}_{2} (10)

with variable xx to be determined. The allowed λ1\lambda_{1} and λ2\lambda_{2} values are provided in Table 1.

Table 1: The allowed λ1\lambda_{1} and λ2\lambda_{2} values of the SU1(1,1)SU2(1,1){\rm SU}_{1}(1,1)\otimes{\rm SU}_{2}(1,1) lowest weight states satisfying (7) and the corresponding boson and the two-spin intrinsic quantum numbers, where μ1\mu_{1} and μ2\mu_{2} can be taken as arbitrary positive integers or zero.
λ1\lambda_{1} λ2\lambda_{2}  na1n_{a_{1}}  na2n_{a_{2}}  nb1n_{b_{1}}  nb2n_{b_{2}} S1inS^{\rm in}_{1} M1inM^{\rm in}_{1} S2inS^{\rm in}_{2} M2inM^{\rm in}_{2}
μ1+12~{}{\mu_{1}+1\over{2}} μ2+12~{}~{}{\mu_{2}+1\over{2}}~{}~{} μ1\mu_{1} μ2\mu_{2} 0 0   12(μ1+μ2){1\over{2}}(\mu_{1}+\mu_{2})   12(μ1μ2){1\over{2}}(\mu_{1}-\mu_{2}) 0 0
0 0 μ1\mu_{1} μ2\mu_{2} 0 0   12(μ1+μ2){1\over{2}}(\mu_{1}+\mu_{2})   12(μ1μ2){1\over{2}}(\mu_{1}-\mu_{2})
μ1\mu_{1} 0 0 μ2\mu_{2} μ12{\mu_{1}\over{2}} μ12{\mu_{1}\over{2}} μ22{\mu_{2}\over{2}} μ22-{\mu_{2}\over{2}}
0 μ2\mu_{2} μ1\mu_{1}  0 μ22{\mu_{2}\over{2}} μ22-{\mu_{2}\over{2}} μ12{\mu_{1}\over{2}} μ12{\mu_{1}\over{2}}

The single- and double-commutators of the Hamiltonian (5) with the operator (10) can be expressed as

[H2A2S/χ,Λ+(x)]=2xΛ1+Λ20+2Λ2+Λ10,[{H}_{\rm 2A2S}/\chi,\Lambda^{+}(x)]=2x\Lambda^{+}_{1}\Lambda_{2}^{0}+2\Lambda_{2}^{+}\Lambda_{1}^{0}, (11)
[[H2A2S/χ,Λ+(x)],Λ+(y)]=2(xy+1)Λ1+Λ2+,[\,[{H}_{\rm 2A2S}/\chi,\Lambda^{+}(x)],\Lambda^{+}(y)]=2(x\,y+1)\Lambda^{+}_{1}\Lambda_{2}^{+}, (12)

while other higher order commutators of the Hamiltonian (5) with the operator (10) vanish. Once these commutators are obtained, the corresponding polynomials G1(x)G_{1}(x) and G2(x,y)G_{2}(x,y) in Λ1+\Lambda^{+}_{1} and Λ2+\Lambda^{+}_{2} on the lowest weight states of SU1(1,1)SU2(1,1){\rm SU}_{1}(1,1)\otimes{\rm SU}_{2}(1,1), defined as pan2020

G1(x)|λ1,λ2\displaystyle G_{1}(x)|\lambda_{1},\lambda_{2}\rangle =\displaystyle= [H2A2S/χ,Λ+(x)]|λ1,λ2,\displaystyle[{H}_{\rm 2A2S}/\chi,\Lambda^{+}(x)]|\lambda_{1},\lambda_{2}\rangle,
G2(x,y)|λ1,λ2\displaystyle G_{2}(x,y)|\lambda_{1},\lambda_{2}\rangle =\displaystyle= [[H2A2S/χ,Λ+(x)],Λ+(y)]|λ1,λ2,\displaystyle[\,[{H}_{\rm 2A2S}/\chi,\Lambda^{+}(x)],\Lambda^{+}(y)]|\lambda_{1},\lambda_{2}\rangle, (13)

can be expressed in the form

G1(x)\displaystyle G_{1}(x) =\displaystyle= α(x)Λ+(g)+β(x)Λ+(x),\displaystyle\alpha(x)\,\Lambda^{+}(g)+\beta(x)\,\Lambda^{+}(x), (14)
G2(x,y)\displaystyle G_{2}(x,y) =\displaystyle= a(x,y)Λ+(g)Λ+(x)+b(x,y)Λ+(g)Λ+(y)+c(x,y)Λ+(x)Λ+(y).\displaystyle a(x,y)\,\Lambda^{+}(g)\,\Lambda^{+}(x)+b(x,y)\,\Lambda^{+}(g)\,\Lambda^{+}(y)+c(x,y)\,\Lambda^{+}(x)\,\Lambda^{+}(y). (15)

Here gg is a free parameter whose allowed values will be determined later and

α(x)=2(λ2x2λ1)xg,β(x)=2(λ1λ2xg)xg,\alpha(x)={2\,(\lambda_{2}\,x^{2}-\lambda_{1})\over{x-g}},~{}~{}~{}~{}\beta(x)={2\,(\lambda_{1}-\lambda_{2}\,x\,g)\over{x-g}}, (16)
a(x,y)\displaystyle a(x,y) =\displaystyle= 2y(1+xy)(gy)(yx),b(x,y)=a(y,x)=2x(1+xy)(gx)(xy),\displaystyle{2y(1+xy)\over{(g-y)(y-x)}},~{}~{}~{}~{}b(x,y)=a(y,x)={2x(1+xy)\over{(g-x)(x-y)}},
c(x,y)\displaystyle c(x,y) =\displaystyle= c(y,x)=2g(1+xy)(gx)(gy),\displaystyle c(y,x)=-{2g(1+xy)\over{(g-x)(g-y)}}, (17)

It can be observed that the single- and double-commutators of the Hamiltonian (5) with the operator (10) are quite similar to the corresponding ones appearing in the Richardosn-Gaudin type models pan2019 ; pan2020 . Therefore, the SU(1,1) type Bethe ansatz (8) works for this case.

Similar to what is shown in pan2019 , using the commutation relations (11), (12), and the expressions shown in (14) and (15), we can directly check that

(H2A2S/χ)|η,k;λ1,λ2\displaystyle({H}_{\rm 2A2S}/\chi)|\eta,~{}k;\lambda_{1},\lambda_{2}\rangle =\displaystyle= i=1kα(xi(η))Λ+(g)ρ(i)kΛ+(xρ(η))|λ1,λ2\displaystyle\sum^{k}_{i=1}\alpha(x^{(\eta)}_{i})\,\Lambda^{+}(g)\prod_{\rho\,(\neq i)}^{k}\Lambda^{+}(x^{(\eta)}_{\rho})|\lambda_{1},\lambda_{2}\rangle (18)
+i=1kβ(xi(η))ρkΛ+(xρ(η))|λ1,λ2\displaystyle+\sum^{k}_{i=1}\beta(x^{(\eta)}_{i})\prod_{\rho}^{k}\Lambda^{+}(x^{(\eta)}_{\rho})|\lambda_{1},\lambda_{2}\rangle
+iki(i)ka(xi(η),xi(η))Λ+(g)ρ(i)kΛ+(xρ(η))|λ1,λ2\displaystyle+\sum_{i}^{k}\sum^{k}_{i^{\prime}\,(\neq i)}a(x_{i^{\prime}}^{(\eta)},x_{i}^{(\eta)})\,\Lambda^{+}(g)\prod_{\rho\,(\neq i)}^{k}\Lambda^{+}(x^{(\eta)}_{\rho})|\lambda_{1},\lambda_{2}\rangle
+iki=i+1kc(xi(η),xi(η))ρkΛ+(xρ(η))|λ1,λ2.\displaystyle+\sum^{k}_{i}\sum^{k}_{i^{\prime}=i+1}c(x_{i}^{(\eta)},x_{i^{\prime}}^{(\eta)})\prod_{\rho}^{k}\Lambda^{+}(x^{(\eta)}_{\rho})|\lambda_{1},\lambda_{2}\rangle.

It is clear that the second and the fourth terms in (18) are proportional to the Bethe ansatz state (8), which is assumed to be the eigenstate of the system. Therefore, the eigen-energy of the 2A2S Hamiltonian is given by

Ek,μ1,μ2(η)=χi=1k(β(xi(η))+i=i+1kc(xi(η),xi(η))),\displaystyle E^{(\eta)}_{k,\mu_{1},\mu_{2}}=\chi\sum_{i=1}^{k}\left(\beta(x^{(\eta)}_{i})+\sum^{k}_{i^{\prime}=i+1}c(x_{i}^{(\eta)},x_{i^{\prime}}^{(\eta)})\right), (19)

as long as the first and the third terms proportional to Λ+(g)ρ(i)kΛ+(xρ(η))|λ1,λ2\Lambda^{+}(g)\prod_{\rho\,(\neq i)}^{k}\Lambda^{+}(x^{(\eta)}_{\rho})|\lambda_{1},\lambda_{2}\rangle in (18) for given ii are cancelled out, which leads to the corresponding equations in determining the kk variables {x1(η),x2(η),,xk(η)}\{x_{1}^{(\eta)},\,x_{2}^{(\eta)},\cdots,\,x_{k}^{(\eta)}\}:

α(xi(η))+i(i)ka(xi(η),xi(η))=0fori=1,2,k.\alpha(x^{(\eta)}_{i})+\sum^{k}_{i^{\prime}\,(\neq i)}a(x_{i^{\prime}}^{(\eta)},x_{i}^{(\eta)})=0~{}~{}{\rm for}~{}~{}i=1,2,\cdots k. (20)

Using α(xi(η))\alpha(x^{(\eta)}_{i}), β(xi(η))\beta(x^{(\eta)}_{i}), a(xi(η),xi(η))a(x_{i^{\prime}}^{(\eta)},x_{i}^{(\eta)}) and c(xi(η),xi(η))c(x_{i}^{(\eta)},x_{i^{\prime}}^{(\eta)}) in (16) and (II), the eigen-energy can be simplified to

Ek,μ1,μ2(η)=2χ(i=1kλ2gxi(η)λ1gxi(η)gi=1ki=i+1k1+xi(η)xi(η)(gxi(η))(gxi(η))),\displaystyle E^{(\eta)}_{k,\mu_{1},\mu_{2}}=2\,\chi\left(\sum_{i=1}^{k}{\lambda_{2}\,g\,x^{(\eta)}_{i}-\lambda_{1}\over{g-x^{(\eta)}_{i}}}-g\sum_{i=1}^{k}\sum^{k}_{i^{\prime}=i+1}{1+x_{i}^{(\eta)}x_{i^{\prime}}^{(\eta)}\over{(g-x^{(\eta)}_{i})(g-x^{(\eta)}_{i^{\prime}})}}\right), (21)

where the kk variables {xi(η)}\{x_{i}^{(\eta)}\} should satisfy

λ1xi(η)λ2xi(η)+i(i)k1+xi(η)xi(η)xi(η)xi(η)=0fori=1,2,k,{\lambda_{1}\over{x^{(\eta)}_{i}}}-\lambda_{2}\,x^{(\eta)}_{i}+\sum^{k}_{i^{\prime}\,(\neq i)}{1+x_{i}^{(\eta)}x_{i^{\prime}}^{(\eta)}\over{x^{(\eta)}_{i}-x^{(\eta)}_{i^{\prime}}}}=0~{}~{}{\rm for}~{}~{}i=1,2,\cdots k, (22)

under the condition that gxi(η)η,ig\neq x^{(\eta)}_{i}~{}\forall~{}\eta,\,i. It is obvious that g=xi(η)g=x^{(\eta)}_{i} for any η\eta and ii is the singular point of (21) and should be avoided. It can be verified that root components {xi(η)}\{x^{(\eta)}_{i}\} of (22), which are always real and unequal one another, lie in the two open intervals (,0)(0,+)(-\infty,0)\bigcup(0,+\infty).

By using (22), (21) can be expressed as

Ek,μ1,μ2(η)=2χ(i=1kλ1xi(η)+12i=1ki(i)k1xi(η)xi(η)(1+xi(η)xi(η))(2gxi(η)xi(η))(gxi(η))(gxi(η))).\displaystyle E^{(\eta)}_{k,\mu_{1},\mu_{2}}=2\,\chi\left(\sum_{i=1}^{k}{\lambda_{1}\over{x^{(\eta)}_{i}}}+{1\over{2}}\sum_{i=1}^{k}\sum^{k}_{i^{\prime}(\neq~{}i)}{1\over{x^{(\eta)}_{i}-x^{(\eta)}_{i^{\prime}}}}{(1+x_{i}^{(\eta)}x_{i^{\prime}}^{(\eta)})(2g-x^{(\eta)}_{i}-x^{(\eta)}_{i^{\prime}})\over{(g-x^{(\eta)}_{i})(g-x^{(\eta)}_{i^{\prime}})}}\right). (23)

It is obvious that the first part 1/(xi(η)xi(η))1/(x^{(\eta)}_{i}-x^{(\eta)}_{i^{\prime}}) within the double sum over ii and ii^{\prime} in (23) is antisymmetric, while the last part is symmetric with respect to the permutation iii\rightleftharpoons i^{\prime}, which ensures that the second term in (23) is zero. Hence, the eigen-energies (21) are independent of gg as long as gxi(η)η,ig\neq x^{(\eta)}_{i}~{}\forall~{}\eta,\,i, and can be further simplified to the form

Ek,μ1,μ2(η)=2χi=1kλ1xi(η)=2χi=1kλ2xi(η).E^{(\eta)}_{k,\mu_{1},\mu_{2}}=2\,\chi\sum_{i=1}^{k}{\lambda_{1}\over{x^{(\eta)}_{i}}}=2\,\chi\sum_{i=1}^{k}{\lambda_{2}{x^{(\eta)}_{i}}}. (24)

It is now clear that η\eta labels the η\eta-th solution of (22). In addition, though the eigenstates provided in (8) are not normalized, they are always orthogonal with

η,k;λ1,λ2|η,k;λ1,λ2=(𝒩(η,k;λ1,λ2))2δηηδkkδλ1λ1δλ2λ2,\langle\eta^{\prime},k^{\prime};\lambda^{\prime}_{1},\lambda^{\prime}_{2}|\eta,k;\lambda_{1},\lambda_{2}\rangle=({\cal N}(\eta,k;\lambda_{1},\lambda_{2}))^{-2}\delta_{\eta\eta^{\prime}}\delta_{kk^{\prime}}\delta_{\lambda_{1}\lambda_{1}^{\prime}}\delta_{\lambda_{2}\lambda_{2}^{\prime}}, (25)

where 𝒩(η,k;λ1,λ2){\cal N}(\eta,k;\lambda_{1},\lambda_{2}) is the corresponding normalization constant.

It is obvious that the Hamiltonian (1) is invariant under the permutations of the two spin operators with S1νS2νS^{\nu}_{1}\leftrightarrow S^{\nu}_{2} for ν=0,+,\nu=0,\,+,\,-, which corresponds to the permutation of aa-bosons with bb-bosons. The SU(1,1){\rm SU}(1,1) operators Λ+(xi)\Lambda^{+}(x_{i}) used in (10) are invariant under the permutation of aa-bosons with bb-bosons. Therefore, the SU(1,1) lowest weight states |λ1,λ2|\lambda_{1},\lambda_{2}\rangle should be invariant under the permutation of aa-bosons with bb-bosons. As clearly shown in Table 1, the first two and the last two two-spin intrinsic states |S1inM1inS2inM2in\left|\begin{array}[]{l}~{}~{}S_{1}^{\rm in}\\ \ M_{1}^{\rm in}\end{array}\begin{array}[]{l}S_{2}^{\rm in}\\ M_{2}^{\rm in}\end{array}\right\rangle and |S2inM2inS1inM1in\left|\begin{array}[]{l}~{}~{}S_{2}^{\rm in}\\ \ M_{2}^{\rm in}\end{array}\begin{array}[]{l}S_{1}^{\rm in}\\ M_{1}^{\rm in}\end{array}\right\rangle are indeed the same SU(1,1) lowest weight state |λ1,λ2|\lambda_{1},\lambda_{2}\rangle when both μ1\mu_{1} and μ20\mu_{2}\neq 0. The two-spin intrinsic state is unique with |S1inM1inS2inM2in=|0000\left|\begin{array}[]{l}~{}~{}S_{1}^{\rm in}\\ \ M_{1}^{\rm in}\end{array}\begin{array}[]{l}S_{2}^{\rm in}\\ M_{2}^{\rm in}\end{array}\right\rangle=\left|\begin{array}[]{l}~{}0\\ \ 0\end{array}\begin{array}[]{l}0\\ 0\end{array}\right\rangle only when μ1=μ2=0\mu_{1}=\mu_{2}=0. It is also obvious that the two-spin intrinsic states with the same Min=M1in+M2inM^{\rm in}=M_{1}^{\rm in}+M_{2}^{\rm in} value are the same SU(1,1) lowest weight state |λ1,λ2|\lambda_{1},\lambda_{2}\rangle.

Once the Bethe ansatz equations (22) are solved, the eigenstates (8), up to the two-spin permutation and a normalization constant, can be expressed in terms of uncoupled two-spin states as

|η,k;λ1,λ2=ρ=0kSρ(k,η)(k+μ1ρ)!(μ2+ρ)!(kρ)!ρ!(|12(k+μ1+μ2)k212(k+μ1μ2)ρk2ρ|12(k+μ1)12(k+μ2)12(k+μ1)ρ12(kμ2)ρ),|\eta,k;\lambda_{1},\lambda_{2}\rangle=\sum_{\rho=0}^{k}S_{\rho}^{(k,\eta)}\sqrt{{(k+\mu_{1}-\rho)!(\mu_{2}+\rho)!(k-\rho)!\rho!}}\left(\begin{array}[]{l}\left|\begin{array}[]{l}~{}~{}~{}{1\over{2}}(k+\mu_{1}+\mu_{2})~{}~{}~{}~{}~{}~{}~{}{k\over{2}}\\ {1\over{2}}(k+\mu_{1}-\mu_{2})-\rho~{}~{}{k\over{2}}-\rho\end{array}\right\rangle\\ \\ \left|\begin{array}[]{l}~{}~{}~{}{1\over{2}}(k+\mu_{1})~{}~{}~{}~{}~{}~{}~{}~{}{1\over{2}}(k+\mu_{2})\\ {1\over{2}}(k+\mu_{1})-\rho~{}~{}~{}{1\over{2}}(k-\mu_{2})-\rho\end{array}\right\rangle\\ \end{array}\right), (26)

where

S0(k,η)=1,Sq1(k,η)=1μ1μqkxμ1(η)xμq(η)S^{(k,\eta)}_{0}=1,~{}~{}S^{(k,\eta)}_{q\geq 1}=\sum_{1\leq\mu_{1}\neq\cdots\neq\mu_{q}\leq k}x^{(\eta)}_{\mu_{1}}\cdots x^{(\eta)}_{\mu_{q}} (27)

are symmetric functions of {x1(η),,xk(η)}\{x^{(\eta)}_{1},\cdots,\,x^{(\eta)}_{k}\}.

Moreover, it can be verified directly that (22) and the corresponding eigen-energy (21) are invariant under the simultaneous interchanges λ1λ2\lambda_{1}\leftrightarrow\lambda_{2} and xi(η)1/xi(η)x^{(\eta)}_{i}\leftrightarrow 1/x^{(\eta)}_{i}, which corresponds to the permutation of the two copies of the SU(1,1) generators, Λ1μΛ2μ\Lambda^{\mu}_{1}\leftrightarrow\Lambda^{\mu}_{2} for μ=+,,0\mu=+,-,0. It is obvious that the 2A2S Hamiltonian (5) is also invariant under the permutation Λ1μΛ2μ\Lambda^{\mu}_{1}\leftrightarrow\Lambda^{\mu}_{2}. Therefore, when λ1λ2\lambda_{1}\neq\lambda_{2}, the eigenvalue of the 2A2S Hamiltonian with {xi(η)}\{x_{i}^{(\eta)}\} built on the SU(1,1) lowest weight state |λ1,λ2|\lambda_{1},\lambda_{2}\rangle and that with {(xi(η))1}\{(x_{i}^{(\eta)})^{-1}\} built on the |λ2,λ1|\lambda_{2},\lambda_{1}\rangle are the same. Thus, when λ1=λ2\lambda_{1}=\lambda_{2}, if {xi(η)}\{x_{i}^{(\eta)}\} is a solution, {(xi(η))1}\{(x_{i}^{(\eta)})^{-1}\} gives the same solution. Namely, for fixed ii, if xi(η)x_{i}^{(\eta)} is one of the root component, xi(η)=(xi(η))1x^{(\eta)}_{i^{\prime}}=(x_{i}^{(\eta)})^{-1} is also a root component of the same root. We can also verify that the roots of (22) have the mirror symmetry. Namely, if {xi(η)}\{x_{i}^{(\eta)}\} is a solution, {xi(η)}\{-x_{i}^{(\eta)}\} is also a solution. Thus, if the eigen-energy is nonzero, the sign of the eigen-energy with {xi(η)}\{x_{i}^{(\eta)}\} is opposite to that with {xi(η)}\{-x_{i}^{(\eta)}\}.

According to the Heine-Stieltjes correspondence pan2019 ; 3 ; 4 ; 5 , the second-order Fuchsian equation of the extended Heine-Stieltjes polynomials whose zeros are the roots of (22) can be established. By using the identity

i(i)xi(η)xi(η)xi(η)=xi(η)ii1xi(η)xi(η)k+1,\sum_{i^{\prime}(\neq i)}{x_{i^{\prime}}^{(\eta)}\over{x_{i}^{(\eta)}-x_{i^{\prime}}^{(\eta)}}}=x_{i}^{(\eta)}\sum_{i^{\prime}\neq i}{1\over{x_{i}^{(\eta)}-x_{i^{\prime}}^{(\eta)}}}-k+1, (28)

it can be verified that the related extended Heine-Stieltjes polynomials yk(η)(x)y^{{(\eta)}}_{k}(x) of degree kk should satisfy

(x+x3)d2yk(η)(x)dx2+(2λ12(λ2+k1)x2)dyk(η)(x)dx+V(η)(x)yk(η)(x)=0,(x+x^{3})\,{d^{2}y_{k}^{{(\eta)}}(x)\over{dx^{2}}}+\left({2\lambda_{1}}-2({\lambda_{2}+k-{1}})\,x^{2}\right){dy^{{(\eta)}}_{k}(x)\over{dx}}+{V^{{(\eta)}}(x)}\,y^{{(\eta)}}_{k}(x)=0, (29)

where the Van Vleck polynomial V(η)(x)V^{{(\eta)}}(x) is simply a binomial to be determined by (29). Write yk(η)(x)=n=0kfn(η)xny^{(\eta)}_{k}(x)=\sum_{n=0}^{k}f^{(\eta)}_{n}x^{n} and V(η)(x)=v0(η)+v1(η)xV^{{(\eta)}}(x)=v^{(\eta)}_{0}+v^{(\eta)}_{1}x, where η\eta labels the η\eta-th polynomial. It can be verified directly that the expansion coefficients fn(η)f^{(\eta)}_{n} (n=0,,kn=0,\cdots,k) should satisfy the following three-term recurrence relations:

(n+1)(2λ1+n)fn+1(η)+v0(η)fn(η)+((n1)(n2λ22k)+v1(η))fn1(η)=0(n+1)(2\lambda_{1}+n)f^{(\eta)}_{n+1}+v^{(\eta)}_{0}\,f^{(\eta)}_{n}+\left((n-1)(n-2\lambda_{2}-2k)+v^{(\eta)}_{1}\right)f^{(\eta)}_{n-1}=0 (30)

with

v1(η)=k(2λ2+k1),v^{(\eta)}_{1}=k(2\lambda_{2}+k-1), (31)

which is independent of η\eta. Instead of solving the three-term recurrence relations (30) for the expansion coefficients fn(η)f^{(\eta)}_{n} (n=0,,kn=0,\cdots,k) and v0(η)v^{(\eta)}_{0}, we can construct the corresponding (k+1)×(k+1)(k+1)\times(k+1) bidiagonal matrix AA with entries

An,n=((n1)(n2λ22k)+k(2λ2+k1))δn,n1+(n+1)(2λ1+n)δn,n+1.A_{n,n^{\prime}}=\left((n-1)(n-2\lambda_{2}-2k)+k(2\lambda_{2}+k-1)\right)\delta_{n^{\prime},n-1}+(n+1)(2\lambda_{1}+n)\delta_{n^{\prime},n+1}. (32)

Let 𝐅(η)=(f0(η),f1(η),,fk(η))𝐓{\bf F}^{(\eta)}=(f^{(\eta)}_{0},\,f^{(\eta)}_{1},\,\cdots,\,f^{(\eta)}_{k})^{\bf T}, where 𝐓{\bf T} stands for the transpose operation. The k+1k+1 dimensional vector 𝐅(η){\bf F}^{(\eta)} is the η\eta-th eigenvector of the bidiagonal matrix AA with

A𝐅(η)=(v0(η))𝐅(η),A{\bf F}^{(\eta)}=(-v^{(\eta)}_{0}){\bf F}^{(\eta)}, (33)

where v0(η)-v^{(\eta)}_{0} is the corresponding eigenvalue, which clearly shows that there are k+1k+1 sets of solutions of (22) for the eigen-energies (24) and the corresponding eigenstates (26) with η=1, 2,,k+1\eta=1,\,2,\,\cdots,\,k+1. It is also obvious that not only the construction of the matrix AA, but also its diagonalization is easier with smaller size of the matrix and thus more efficient than the direct diagonalization of the 2A2S Hamiltonian (1) in the original uncoupled two-spin basis, especially when kk is large. Once the η\eta-th set of the expansion coefficients fn(η)f^{(\eta)}_{n} (n=0,,kn=0,\cdots,k) are known from the eigen-equation (33), the kk zeros {xi(η)}\{x_{i}^{(\eta)}\} (i=0,,ki=0,\cdots,k) of the polynomial yk(η)(x)/fk(η)=n=0kf¯n(η)xny^{(\eta)}_{k}(x)/{f}^{(\eta)}_{k}=\sum_{n=0}^{k}\bar{f}^{(\eta)}_{n}x^{n}, where, up to an overall factor, f¯n(η)=fn(η)/fk(η)\bar{f}^{(\eta)}_{n}={f}^{(\eta)}_{n}/{f}^{(\eta)}_{k} (n=1,,kn=1,\cdots,k), can easily be calculated due to the fact that yk(η)(x)y^{(\eta)}_{k}(x) is one-variable polynomial and fk(η){f}^{(\eta)}_{k} is always nonzero. In addition, yk(η)(x)/fk(η)y^{(\eta)}_{k}(x)/{f}^{(\eta)}_{k} can also be expressed in terms of the zeros {xj(η)}\{x^{(\eta)}_{j}\} (j=1,,kj=1,\cdots,k) as

yk(η)(x)/fk(η)=j=1k(xxj(η))=q=0k(1)qSq(k,η)xkq,y^{(\eta)}_{k}(x)/{f}^{(\eta)}_{k}=\prod_{j=1}^{k}(x-x^{(\eta)}_{j})=\sum_{q=0}^{k}(-1)^{q}{S}_{q}^{(k,\eta)}x^{k-q}, (34)

where Sq(k,η){S}_{q}^{(k,\eta)} is the symmetric function defined in (27). Comparing (34) with yk(η)(x)/fk(η)=n=0kf¯n(η)xny^{(\eta)}_{k}(x)/{f}^{(\eta)}_{k}=\sum_{n=0}^{k}\bar{f}^{(\eta)}_{n}x^{n}, we get

Sq(k,η)=(1)qf¯kq(η).{S}^{(k,\eta)}_{q}=(-1)^{q}\bar{f}^{(\eta)}_{k-q}. (35)

which can be used to avoid unnecessary computation of Sq(k,η)S^{(k,\eta)}_{q} from {x1(η),,xk(η)}\{x^{(\eta)}_{1},\cdots,~{}x^{(\eta)}_{k}\} needed in the eigenstates (26). Furthermore, using the three-term recurrence relations (30), we have

v0(η)=2λ1f¯1(η)/f¯0(η)=2λ1Sk1(k,η)/Sk(k,η)=Ek,μ1,μ2(η)/χ,v_{0}^{(\eta)}=-2\lambda_{1}{\bar{f}^{(\eta)}_{1}/{\bar{f}^{(\eta)}_{0}}}=2\lambda_{1}S^{(k,\eta)}_{k-1}/S^{(k,\eta)}_{k}=E^{(\eta)}_{k,\mu_{1},\mu_{2}}/\chi, (36)

where the relation (35) is used for the second equality, which shows that the constant term v0(η)v_{0}^{(\eta)} in the Van Vleck polynomial equals exactly to the corresponding eigen-energy Ek,μ1,μ2(η)/χE^{(\eta)}_{k,\mu_{1},\mu_{2}}/\chi of the 2A2S Hamiltonian.

Finally, we prove that the solutions of the Bethe ansatz equations (22) are complete. When the two spins are unequal with S1>S2S_{1}>S_{2}, there are three sets of uncoupled two-spin states used in the eigenstates (26): Case 1 with S1=12(k+μ1+μ2)S_{1}={1\over{2}}(k+\mu_{1}+\mu_{2}) and S2=12kS_{2}={1\over{2}}k corresponding to the upper one in (26); Case 2 with S1=12(k+μ1)S_{1}={1\over{2}}(k+\mu_{1}) and S2=12(k+μ2)S_{2}={1\over{2}}(k+\mu_{2}) corresponding to the lower one in (26); and Case 3 with S1=12(k+μ2)S_{1}={1\over{2}}(k+\mu_{2}) and S2=12(k+μ1)S_{2}={1\over{2}}(k+\mu_{1}) corresponding to the two-spin permutation S1S2S_{1}\rightleftharpoons S_{2} of the lower one in (26). For Case 1, S1=12(k+μ1+μ2)>S2=12kS_{1}={1\over{2}}(k+\mu_{1}+\mu_{2})>S_{2}={1\over{2}}k with μ1=2S12S2μ20\mu_{1}=2S_{1}-2S_{2}-\mu_{2}\geq 0, where μ2\mu_{2} can be taken as 0,1,2,2S12S20,1,2\cdots,2S_{1}-2S_{2}. The number of solutions provided by (22) for a fixed μ2\mu_{2} is k+1=2S2+1k+1=2S_{2}+1. Thus, the total number of solutions for S1=12(k+μ1+μ2)S_{1}={1\over{2}}(k+\mu_{1}+\mu_{2}) and S2=12kS_{2}={1\over{2}}k case shown by (26) with the upper uncoupled two-spin states is (2S2+1)(2S12S2+1)(2S_{2}+1)(2S_{1}-2S_{2}+1), which includes μ2=0\mu_{2}=0 case. For Case 2, S1=12(k+μ1)>S2=12(k+μ2)S_{1}={1\over{2}}(k+\mu_{1})>S_{2}={1\over{2}}(k+\mu_{2}) with μ1=μ2+2S12S2\mu_{1}=\mu_{2}+2S_{1}-2S_{2} and μ2>0\mu_{2}>0 because μ2=0\mu_{2}=0 case is already considered in Case 1, the number of solutions provided by (22) is k+1=2S2μ2+1k+1=2S_{2}-\mu_{2}+1 for a fixed μ2\mu_{2}, where μ2\mu_{2} can be taken as 1,2,,2S21,2,\cdots,2S_{2}. Hence, the total number of solutions for this case shown by (26) with the lower uncoupled two-spin states is μ2=12S2(2S2μ2+1)=(2S2+1)S2\sum_{\mu_{2}=1}^{2S_{2}}(2S_{2}-\mu_{2}+1)=(2S_{2}+1)S_{2}, which excludes the μ2=0\mu_{2}=0 case. For Case 3, S1=12(k+μ2)>S2=12(k+μ1)S_{1}={1\over{2}}(k+\mu_{2})>S_{2}={1\over{2}}(k+\mu_{1}) corresponding to the two-spin permutation S1S2S_{1}\rightleftharpoons S_{2} of the lower one in (26), where μ1=μ22S1+2S20\mu_{1}=\mu_{2}-2S_{1}+2S_{2}\geq 0 and 2S1μ22S12S22S_{1}\geq\mu_{2}\geq 2S_{1}-2S_{2}, the number of solutions provided by (22) is k+1=2S1μ2+1k+1=2S_{1}-\mu_{2}+1 for a fixed μ2\mu_{2}. Since μ2=2S12S2\mu_{2}=2S_{1}-2S_{2} with μ1=0\mu_{1}=0 case is already considered in Case 2, the total number of solutions for this case is μ2=2S12S2+12S1(2S1μ2+1)=(2S2+1)S2\sum_{\mu_{2}=2S_{1}-2S_{2}+1}^{2S_{1}}(2S_{1}-\mu_{2}+1)=(2S_{2}+1)S_{2}, which excludes the μ2=2S12S2\mu_{2}=2S_{1}-2S_{2} case. It is now obvious that the total number of the solutions provided by the three cases equals exactly to (2S1+1)(2S2+1)(2S_{1}+1)(2S_{2}+1), which is the dimension of the uncoupled two-spin states for S1>S2S_{1}>S_{2}. This conclusion also applies to S1<S2S_{1}<S_{2} case by the permutation S1S2S_{1}\rightleftharpoons S_{2}.

For the two equal spin case with S1=S2=k/2S_{1}=S_{2}=k/2, which is exemplified in the next section, the upper and lower uncoupled two-spin states shown in (26) are the same. According to (26), the two-spin symmetric or anti-symmetric eigenstates of the 2A2S Hamiltonian in this case can be written uniformly as

|η,kμ;(μ+1)/2,(μ+1)/2S,A\displaystyle|\eta,k-\mu;(\mu+1)/2,(\mu+1)/2\rangle_{\rm S,A}
=ρ=0kμSρ(kμ,η)(kρ)!(μ+ρ)!(kμρ)!ρ!|k2k2k2ρk2μρS,A\displaystyle\qquad\qquad=\sum_{\rho=0}^{k-\mu}S_{\rho}^{(k-\mu,\eta)}\sqrt{(k-\rho)!(\mu+\rho)!(k-\mu-\rho)!\rho!}\begin{array}[]{l}\left|\begin{array}[]{l}~{}~{}~{}{k\over{2}}~{}~{}~{}~{}~{}~{}~{}~{}~{}{k\over{2}}\\ {k\over{2}}-\rho~{}~{}{k\over{2}}-\mu-\rho\end{array}\right\rangle_{\rm S,A}\\ \end{array} (40)

for μ=0, 1,,k\mu=0,\,1,\,\cdots,\,k, where

|k2k2k2ρk2μρS=12(1+δμ0)(|k2k2k2ρk2μρ+|k2k2k2μρk2ρ),\displaystyle\begin{array}[]{l}\left|\begin{array}[]{l}~{}~{}~{}{k\over{2}}~{}~{}~{}~{}~{}~{}~{}~{}~{}{k\over{2}}\\ {k\over{2}}-\rho~{}~{}{k\over{2}}-\mu-\rho\end{array}\right\rangle_{\rm S}=\sqrt{1\over{2(1+\delta_{\mu 0})}}\left(\left|\begin{array}[]{l}~{}~{}~{}{k\over{2}}~{}~{}~{}~{}~{}~{}~{}~{}~{}{k\over{2}}\\ {k\over{2}}-\rho~{}~{}{k\over{2}}-\mu-\rho\end{array}\right\rangle+\left|\begin{array}[]{l}~{}~{}~{}~{}~{}{k\over{2}}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}{k\over{2}}\\ {k\over{2}}-\mu-\rho~{}~{}{k\over{2}}-\rho\end{array}\right\rangle\right),\end{array} (48)
|k2k2k2ρk2μρA=12(|k2k2k2ρk2μρ|k2k2k2μρk2ρ)\displaystyle\begin{array}[]{l}\left|\begin{array}[]{l}~{}~{}~{}{k\over{2}}~{}~{}~{}~{}~{}~{}~{}~{}~{}{k\over{2}}\\ {k\over{2}}-\rho~{}~{}{k\over{2}}-\mu-\rho\end{array}\right\rangle_{\rm A}=\sqrt{1\over{2}}\left(\left|\begin{array}[]{l}~{}~{}~{}{k\over{2}}~{}~{}~{}~{}~{}~{}~{}~{}~{}{k\over{2}}\\ {k\over{2}}-\rho~{}~{}{k\over{2}}-\mu-\rho\end{array}\right\rangle-\left|\begin{array}[]{l}~{}~{}~{}~{}~{}{k\over{2}}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}{k\over{2}}\\ {k\over{2}}-\mu-\rho~{}~{}{k\over{2}}-\rho\end{array}\right\rangle\right)\end{array} (56)

are the symmetric and anti-symmetric two-spin states, respectively. The number of solutions of (22) with the replacement: kkμk\rightarrow k-\mu with a fixed μ\mu for (II) is kμ+1k-\mu+1. Due to the two-fold degeneracy of the μ0\mu\neq 0 states, the total number of solutions provided by (II) is 2μ=1k(kμ+1)+k+1=(k+1)22\sum_{\mu=1}^{k}(k-\mu+1)+k+1=(k+1)^{2}.

III Some numerical examples of the solution

To demonstrate the method and results presented above, in this section, we consider the two equal spin case with S1=S2=k/2S_{1}=S_{2}=k/2 as studied in 2222 . The two-spin symmetric or anti-symmetric eigenstates of the 2A2S Hamiltonian are given by (II). It is obvious that the μ=0\mu=0 eigenstates of the 2A2S Hamiltonian are always symmetric, while both symmetric and anti-symmetric states are possible for μ0\mu\neq 0. Moreover, the corresponding eigen-energies Ekμ,μ,μ(η)/χE^{(\eta)}_{k-\mu,\mu,\mu}/\chi (η=1,2,,kμ+1\eta=1,2,\cdots,k-\mu+1) of both two-spin symmetric and anti-symmetric cases are symmetric with respect to the the sign change. Namely, if the kμ+1k-\mu+1 level energies are arranged as Ekμ,μ,μ(1)/χ<Ekμ,μ,μ(2)/χ<<Ekμ,μ,μ(kμ+1)/χE^{(1)}_{k-\mu,\mu,\mu}/\chi<E^{(2)}_{k-\mu,\mu,\mu}/\chi<\cdots<E^{(k-\mu+1)}_{k-\mu,\mu,\mu}/\chi, then

Ekμ,μ,μ(kμ+2q)/χ=Ekμ,μ,μ(q)/χ\displaystyle E^{(k-\mu+2-q)}_{k-\mu,\mu,\mu}/\chi=-E^{(q)}_{k-\mu,\mu,\mu}/\chi (57)

for

q={1,2,,(kμ+1)/2whenkμ+1iseven,1,2,,(kμ+2)/2whenkμ+1isodd,\displaystyle q=\left\{\begin{array}[]{l}1,2,\cdots,(k-\mu+1)/2~{}~{}\rm{when}~{}~{}k-\mu+1~{}\rm{is~{}even},\\ 1,2,\cdots,(k-\mu+2)/2~{}~{}\rm{when}~{}~{}k-\mu+1~{}\rm{is~{}odd},\end{array}\right. (60)

which shows that the middle level energy Ekμ,μ,μ((kμ+2)/2)=0E^{((k-\mu+2)/2)}_{k-\mu,\mu,\mu}=0 when kμ+1k-\mu+1 is odd. As the consequence, for given kk, the degeneracy of the zero eigen-energy level is k+1k+1.

Table 2: The Heine-Stieltjes Polynomials ykμ(ζ)(x)y^{(\zeta)}_{k-\mu}(x), v0(η)v^{(\eta)}_{0} of the corresponding Van Vleck Polynomial V(ζ)(x)V^{(\zeta)}(x), and the corresponding eigen-energy Ekμ,μ,μ(η)/χE^{(\eta)}_{k-\mu,\mu,\mu}/\chi of the 2A2S Hamiltonian (1) for S1=S2=k/2S_{1}=S_{2}=k/2 and k4k\leq 4, where the ordering of η\eta is arranged according to the value of the eigen-energy of (1) for a given set of {k,μ}\{k,\mu\}.
k,μk,\mu η\eta ykμ(η)(x)y^{(\eta)}_{k-\mu}(x) v0(η)v^{(\eta)}_{0}=Ekμ,μ,μ(η)/χE^{(\eta)}_{k-\mu,\mu,\mu}/\chi
1, 0 11 x+1x+1 1-1
22 x1x-1 1~{}~{}1
   1 11 11 0~{}~{}0
2, 0 11 (x+0.4142)(x+2.4142)(x+0.4142)(x+2.4142) 2.8284-2.8284
22 (x+1)(x1)(x+1)(x-1) 0~{}~{}0
33 (x2.4142)(x0.4142)(x-2.4142)(x-0.4142)   2.82842.8284
   1 11 x+1x+1 2-2
22 x1x-1 2~{}~{}2
   2 11 11 0~{}~{}0
3, 0 11 (x+0.2285)(x+1)(x+4.3771)(x+0.2285)(x+1)(x+4.3771) 5.6056-5.6056
22 (x1)(x+0.4678)(x+2.1378)(x-1)(x+0.4678)(x+2.1378) 1.6056-1.6056
33 (x2.1378)(x0.4678)(x+1)(x-2.1378)(x-0.4678)(x+1) 1.6056~{}~{}1.6056
44 (x4.3771)(x1)(x0.2285)(x-4.3771)(x-1)(x-0.2285) 5.6056~{}~{}5.6056
   1 11 (x+0.5176)(x+1.9319)(x+0.5176)(x+1.9319) 4.8989-4.8989
22 (x1)(x+1)(x-1)(x+1) 0~{}~{}~{}0
33 (x1.9319)(x0.5176)(x-1.9319)(x-0.5176)   4.89894.8989
  2 11 x+1x+1 3-3
22 x1x-1 3~{}~{}3
  3 11 11 0~{}~{}0
4, 0 11 (x+0.1429)(x+0.6151)(x+1.6259)(x+6.9970)(x+0.1429)(x+0.6151)(x+1.6259)(x+6.9970) 9.3808-9.3808
22 (x1)(x+0.2679)(x+1)(x+3.7321)(x-1)(x+0.2679)(x+1)(x+3.7321) 4-4
33 (x1.9319)(x0.5176)(x+0.5176)(x+1.9319)(x-1.9319)(x-0.5176)(x+0.5176)(x+1.9319) 0~{}~{}0
44 (x3.7321)(x1)(x0.2679)(x+1)(x-3.7321)(x-1)(x-0.2679)(x+1) 4~{}~{}4
55 (x6.9970)(x1.6259)(x0.6151)(x0.1429)(x-6.9970)(x-1.6259)(x-0.6151)(x-0.1429)   9.38089.3808
  1 11 (x+0.3285)(x+1)(x+3.0437)(x+0.3285)(x+1)(x+3.0437) 8.7444-8.7444
22 (x1)(x+0.5482)(x+1.8241)(x-1)(x+0.5482)(x+1.8241) 2.7446-2.7446
33 (x1.8241)(x0.5482)(x+1)(x-1.8241)(x-0.5482)(x+1)   2.74462.7446
44 (x3.0437)(x1)(x0.3285)(x-3.0437)(x-1)(x-0.3285)   8.74448.7444
  2 11 (x+0.5774)(x+1.7321)(x+0.5774)(x+1.7321) 6.9282-6.9282
22 (x1)(x+1)(x-1)(x+1) 0
33 (x1.7321)(x0.5774)(x-1.7321)(x-0.5774)   6.92826.9282
  3 11 x+1x+1 4-4
22 x1x-1   44
  4 11 11   0
Table 3: The same as Table 2, but for k=16k=16 and μ=0\mu=0.
η\eta y16(η)(x)y^{(\eta)}_{16}(x) v0(η)v^{(\eta)}_{0}=E16,0,0(η)/χE^{(\eta)}_{16,0,0}/\chi
11 (x+0.0108)(x+0.0553)(x+0.1298)(x+0.2288)(x+0.3497)(x+0.4933)(x+0.6648)(x+0.8749)(x+0.0108)(x+0.0553)(x+0.1298)(x+0.2288)(x+0.3497)(x+0.4933)(x+0.6648)(x+0.8749)
(x+1.1430)(x+1.5042)(x+2.0272)(x+2.8598)(x+4.3702)(x+7.7057)(x+18.0792)(x+92.3648)(x+1.1430)(x+1.5042)(x+2.0272)(x+2.8598)(x+4.3702)(x+7.7057)(x+18.0792)(x+92.3648) -132.862
22 (x1)(x+0.0130)(x+0.0656)(x+0.1515)(x+0.2635)(x+0.3988)(x+0.5600)(x+0.7550)(x-1)(x+0.0130)(x+0.0656)(x+0.1515)(x+0.2635)(x+0.3988)(x+0.5600)(x+0.7550)
(x+1)(x+1.3245)(x+1.7858)(x+2.5073)(x+3.7948)(x+6.5992)(x+15.2406)(x+76.8867)(x+1)(x+1.3245)(x+1.7858)(x+2.5073)(x+3.7948)(x+6.5992)(x+15.2406)(x+76.8867) -110.346
33 (x1.3550)(x0.7380)(x+0.0160)(x+0.0791)(x+0.1787)(x+0.3055)(x+0.4574)(x+0.6396)(x-1.3550)(x-0.7380)(x+0.0160)(x+0.0791)(x+0.1787)(x+0.3055)(x+0.4574)(x+0.6396)
(x+0.8645)(x+1.15671)(x+1.5636)(x+2.1861)(x+3.2735)(x+5.5949)(x+12.6385)(x+62.5073)(x+0.8645)(x+1.15671)(x+1.5636)(x+2.1861)(x+3.2735)(x+5.5949)(x+12.6385)(x+62.5073) -89.3684
44 (x1.7302)(x1)(x0.5780)(x+0.0203)(x+0.09718)(x+0.2129)(x+0.3563)(x+0.5276)(x-1.7302)(x-1)(x-0.5780)(x+0.0203)(x+0.09718)(x+0.2129)(x+0.3563)(x+0.5276)
(x+0.7356)(x+1)(x+1.3595)(x+1.8955)(x+2.806)(x+4.6972)(x+10.2903)(x+49.2734)(x+0.7356)(x+1)(x+1.3595)(x+1.8955)(x+2.806)(x+4.6972)(x+10.2903)(x+49.2734) -69.9638
55 (x2.1755)(x1.2622)(x0.7922)(x0.4597)(x+0.0268)(x+0.1217)(x+0.2558)(x+0.4180)(x-2.1755)(x-1.2622)(x-0.7922)(x-0.4597)(x+0.0268)(x+0.1217)(x+0.2558)(x+0.4180)
(x+0.6121)(x+0.8531)(x+1.1721)(x+1.6338)(x+2.3924)(x+3.9092)(x+8.2178)(x+37.2658)(x+0.6121)(x+0.8531)(x+1.1721)(x+1.6338)(x+2.3924)(x+3.9092)(x+8.2178)(x+37.2658) -52.189
66 (x2.7484)(x1.5548)(x1)(x0.6432)(x0.3639)(x+0.0375)(x+0.1552)(x+0.3095)(x-2.7484)(x-1.5548)(x-1)(x-0.6432)(x-0.3639)(x+0.0375)(x+0.1552)(x+0.3095)
(x+0.4928)(x+0.7148)(x+1)(x+1.3989)(x+2.0293)(x+3.2309)(x+6.4441)(x+26.642)(x+0.4928)(x+0.7148)(x+1)(x+1.3989)(x+2.0293)(x+3.2309)(x+6.4441)(x+26.642) -36.145
77 (x3.5500)(x1.9054)(x1.2235)(x0.8173)(x0.5248)(x0.2817)(x+0.0564)(x+0.2007)(x-3.5500)(x-1.9054)(x-1.2235)(x-0.8173)(x-0.5248)(x-0.2817)(x+0.0564)(x+0.2007)
(x+0.3763)(x+0.5837)(x+0.8414)(x+1.1885)(x+1.7132)(x+2.6578)(x+4.9833)(x+17.7332)(x+0.3763)(x+0.5837)(x+0.8414)(x+1.1885)(x+1.7132)(x+2.6578)(x+4.9833)(x+17.7332) -22.032
88 (x4.8049)(x2.3557)(x1.4807)(x1)(x0.6753)(x0.4245)(x0.2081)(x+0.0900)(x-4.8049)(x-2.3557)(x-1.4807)(x-1)(x-0.6753)(x-0.4245)(x-0.2081)(x+0.0900)
(x+0.2609)(x+0.4584)(x+0.6947)(x+1)(x+1.4395)(x+2.1814)(x+3.8322)(x+11.1066)(x+0.2609)(x+0.4584)(x+0.6947)(x+1)(x+1.4395)(x+2.1814)(x+3.8322)(x+11.1066) -10.114
99 (x7.0260)(x2.9726)(x1.7931)(x1.2039)(x0.8307)(x0.5577)(x0.3364)(x0.1423)(x-7.0260)(x-2.9726)(x-1.7931)(x-1.2039)(x-0.8307)(x-0.5577)(x-0.3364)(x-0.1423)
(x+0.1423)(x+0.3364)(x+0.5577)(x+0.8307)(x+1.2039)(x+1.7931)(x+2.9726)(x+7.0260)(x+0.1423)(x+0.3364)(x+0.5577)(x+0.8307)(x+1.2039)(x+1.7931)(x+2.9726)(x+7.0260)   0
1010 (x11.1066)(x3.8322)(x2.1814)(x1.4395)(x1)(x0.6947)(x0.4584)(x0.2609)(x-11.1066)(x-3.8322)(x-2.1814)(x-1.4395)(x-1)(x-0.6947)(x-0.4584)(x-0.2609)
(x0.0900)(x+0.2081)(x+0.4245)(x+0.6753)(x+1)(x+1.4807)(x+2.3557)(x+4.8049)(x-0.0900)(x+0.2081)(x+0.4245)(x+0.6753)(x+1)(x+1.4807)(x+2.3557)(x+4.8049)   10.114
1111 (x17.7332)(x4.9833)(x2.6578)(x1.7132)(x1.1885)(x0.8414)(x0.5837)(x0.3763)(x-17.7332)(x-4.9833)(x-2.6578)(x-1.7132)(x-1.1885)(x-0.8414)(x-0.5837)(x-0.3763)
(x0.2007)(x0.0564)(x+0.2817)(x+0.5248)(x+0.8173)(x+1.2235)(x+1.9054)(x+3.5500)(x-0.2007)(x-0.0564)(x+0.2817)(x+0.5248)(x+0.8173)(x+1.2235)(x+1.9054)(x+3.5500)   22.032
1212 (x26.642)(x6.4441)(x3.2309)(x2.0293)(x1.3989)(x1)(x0.7148)(x0.4928)(x-26.642)(x-6.4441)(x-3.2309)(x-2.0293)(x-1.3989)(x-1)(x-0.7148)(x-0.4928)
(x0.3095)(x0.1552)(x0.0375)(x+0.3639)(x+0.6432)(x+1)(x+1.5548)(x+2.7484)(x-0.3095)(x-0.1552)(x-0.0375)(x+0.3639)(x+0.6432)(x+1)(x+1.5548)(x+2.7484)   36.145
1313 (x37.2658)(x8.2178)(x3.9092)(x2.3924)(x1.6338)(x1.1721)(x0.8531)(x0.6121)(x-37.2658)(x-8.2178)(x-3.9092)(x-2.3924)(x-1.6338)(x-1.1721)(x-0.8531)(x-0.6121)
(x0.4180)(x0.2558)(x0.1217)(x0.0268)(x+0.4597)(x+0.7922)(x+1.2622)(x+2.1755)(x-0.4180)(x-0.2558)(x-0.1217)(x-0.0268)(x+0.4597)(x+0.7922)(x+1.2622)(x+2.1755)   52.189
1414 (x49.2734)(x10.2903)(x4.6972)(x2.806)(x1.8955)(x1.3595)(x1)(x0.7356)(x-49.2734)(x-10.2903)(x-4.6972)(x-2.806)(x-1.8955)(x-1.3595)(x-1)(x-0.7356)
(x0.5276)(x0.3563)(x0.2129)(x0.09718)(x0.0203)(x+0.5780)(x+1)(x+1.7302)(x-0.5276)(x-0.3563)(x-0.2129)(x-0.09718)(x-0.0203)(x+0.5780)(x+1)(x+1.7302)   69.9638
1515 (x62.5073)(x12.6385)(x5.5949)(x3.2735)(x2.1861)(x1.5636)(x1.15671)(x0.8645)(x-62.5073)(x-12.6385)(x-5.5949)(x-3.2735)(x-2.1861)(x-1.5636)(x-1.15671)(x-0.8645)
(x0.6396)(x0.4574)(x0.3055)(x0.1787)(x0.0791)(x0.0160)(x+0.7380)(x+1.3550)(x-0.6396)(x-0.4574)(x-0.3055)(x-0.1787)(x-0.0791)(x-0.0160)(x+0.7380)(x+1.3550)   89.3684
1616 (x76.8867)(x15.2406)(x6.5992)(x3.7948)(x2.5073)(x1.7858)(x1.3245)(x1)(x-76.8867)(x-15.2406)(x-6.5992)(x-3.7948)(x-2.5073)(x-1.7858)(x-1.3245)(x-1)
(x0.3988)(x0.7550)(x0.5600)(x0.2635)(x0.1515)(x0.0656)(x0.0130)(x+1)(x-0.3988)(x-0.7550)(x-0.5600)(x-0.2635)(x-0.1515)(x-0.0656)(x-0.0130)(x+1)   110.346
1717 (x92.3648)(x18.0792)(x7.7057)(x4.3702)(x2.8598)(x2.0272)(x1.5042)(x1.1430)(x-92.3648)(x-18.0792)(x-7.7057)(x-4.3702)(x-2.8598)(x-2.0272)(x-1.5042)(x-1.1430)
(x0.8749)(x0.6648)(x0.4933)(x0.3497)(x0.2288)(x0.1298)(x0.0553)(x0.0108)(x-0.8749)(x-0.6648)(x-0.4933)(x-0.3497)(x-0.2288)(x-0.1298)(x-0.0553)(x-0.0108)   132.862

The Heine-Stieltjes polynomials ykμ(η)(x)y_{k-\mu}^{(\eta)}(x) and the corresponding coefficient v0(η)v_{0}^{(\eta)} in the Van Vleck polynomials (19) up to k=4k=4 are shown in Table 2, while the k=16k=16 and μ=0\mu=0 case is provided in Table 3. It should be noted that the degeneracy of the corresponding level energy of the 2A2S Hamiltonian shown in the last column of Tables 2 and 3 is 11 for μ=0\mu=0 case and 22 for μ0\mu\neq 0 case due to the two-spin permutation symmetry. For any case, it can be verified that any zero of ykμ(η)(x)y_{{k-\mu}}^{(\eta)}(x) is always real and lies in one of the intervals (,0)(-\infty,0) and (0,)(0,\infty), which ensures that eigenvalues (24) are always real. Fig. 1 provides the level pattern of the 2A2S Hamiltonian for k=4k=4 with the level band labelled by μ\mu, where the number on the right of each level is the degeneracy due to the two-spin permutation symmetry, which clearly shows that the mirror symmetry of the kμ+1k-\mu+1 levels in each band with respect to the E=0E=0 plane perpendicular to the level diagram and that the total number of levels for given kk equals exactly to (k+1)2(k+1)^{2}, which is the total dimension of the two-spin basis. In addition, when quantum numbers of the two spins of the system are small, the 2A2S Hamiltonian can easily be diagonalized within the two-spin basis, with which one can check that the eigen-energies shown in Tables 2 and 3 are exactly the same as those obtained from the direct diagonalization, which validates the Bethe ansatz solution presented in Sec. II.

Figure 1: The level patten of the 2A2S Hamiltonian for S1=S2=k/2S_{1}=S_{2}=k/2 with k=4k=4, where the number on the right of each level is the degeneracy due to the two-spin permutation symmetry, and the dashed line indicates the E=0E=0 plane perpendicular to the level diagram as a mirror, with which the levels in each band labelled by μ\mu are mirror symmetric.
Refer to caption

As an application of the solution, the entanglement measure of all possible 2A2S pure states (II) with k=40k=40 is calculated, which, for given μ\mu and η\eta, is quantified by the von Neumann entropy

Ent(μ,η)=Tr(ρ1(μ,η)LogNρ1(μ,η))=Tr(ρ2(μ,η)LogNρ2(μ,η)),{\rm Ent}(\mu,\eta)=-{\rm Tr}(\rho^{(\mu,\eta)}_{1}\,{\rm Log}_{N}\rho^{(\mu,\eta)}_{1})=-{\rm Tr}(\rho^{(\mu,\eta)}_{2}\,{\rm Log}_{N}\rho^{(\mu,\eta)}_{2}), (61)

where ρ1(μ,η)\rho^{(\mu,\eta)}_{1} or ρ2(μ,η)\rho^{(\mu,\eta)}_{2} is the reduced density matrix of the two-spin symmetric (S) or anti-symmetric (A) eigenstate (II) obtained by taking the partial trace over the subsystem of spin 22 or 11, and the logarithm to the base N=2(kμ+1)N=2(k-\mu+1) for both the two-spin symmetric (S) and anti-symmetric (A) eigenstates with μ0\mu\neq 0 or N=k+1N=k+1 for the two-spin symmetric (S) eigenstates with μ=0\mu=0, which is the total number of modes involved, is used to ensure that the maximum measure is normalized to 11.

Figure 2: (Color online) The entanglement measure Ent(μ,η){\rm Ent}(\mu,\eta) of all excited states of the 2A2S system with k=40k=40, where the green and red colors are used to distinguish the measures of the excited states from the adjacent bands.
Refer to caption

Fig. 2 shows entanglement measure of all excited states of the system with k=40k=40. It is observed that the excited states are all well entangled with measure Ent(μ,η)0.6476{\rm Ent}(\mu,\eta)\geq 0.6476 in the k=40k=40 case. The entanglement measure for both the two eigenstates in the (k1)(k-1)-th band and the single eigenstate in the kk-th band reaches to the maximum value, i.e. Ent(k1,η)=1{\rm Ent}(k-1,\eta)=1 for η=1, 2\eta=1,\,2 and Ent(k,1)=1{\rm Ent}(k,1)=1, respectively, and the excited states in other bands with μk2\mu\leq k-2 are also well entangled with 0.9671Ent(μ,η)0.64760.9671\geq{\rm Ent}(\mu,\eta)\geq 0.6476. Moreover, the entanglement measure of the band-head states gradually increases with the increasing of its excitation energy or μ\mu from Ent(0,1)=0.6476{\rm Ent}(0,1)=0.6476 to Ent(40,1)=1{\rm Ent}(40,1)=1 in the k=40k=40 case. Additionally, except the last two bands with μ=k1\mu=k-1 or kk, the entanglement measure of the excited states in other bands varies almost randomly with the value Ent(μ,η)Ent(μ,1){\rm Ent}(\mu,\eta)\geq{\rm Ent}(\mu,1) for 1ηkμ+11\leq\eta\leq k-\mu+1 as shown in Fig. 2. Therefore, the eigenstates of the 2A2S system are always well entangled.

IV SUMMARY

In this work, a systematic procedure for calculating exact solution of the 2A2S Hamiltonian is presented by using the Bethe ansatz method. It is shown that the 2A2S Hamiltonian can be expressed in terms of the generators of two copies of SU(1,1) algebra after the Jordan-Schwinger boson realization of the two related SU(2) algebras. Thus, eigenstates of the 2A2S Hamiltonian can be expressed as SU(1,1) type Bethe ansatz states, by which eigen-energies and the corresponding eigenstates are derived. To avoid solving a set of non-linear Bethe ansatz equations involved, the related extended Heine-Stieltjes polynomials are constructed, whose zeros are just components of a root of the Bethe ansatz equations. Symmetry properties of excited levels of the 2A2S system and those of zeros of the related extended Heine-Stieltjes polynomials are also discussed. As an example, the two equal spin case is analysed in detail. It is shown that the (2S+1)2(2S+1)^{2} dimensional energy matrix in the uncoupled two-spin basis, where S=S1=S2S=S_{1}=S_{2} is the quantum number of the two spins, can be decomposed into 2Sμ+12S-\mu+1 dimensional bi-diagonal sub-matrices for μ=0,1,,2S\mu=0,1,\cdots,2S with two-fold degeneracy for μ0\mu\neq 0, which clearly demonstrates the advantages of the Bethe ansatz method over the direct diagonalization in the original uncoupled two-spin basis. Furthermore, in the two equal spin case, it is shown that the levels in each band labelled by μ\mu are symmetric with respect to the zero energy plane perpendicular to the level diagram and that the excited states are always well entangled.

In comparison to the direct diagonalization of the 2A2S Hamiltonian in the uncoupled two-spin basis with S1=S2=k/2S_{1}=S_{2}=k/2, the size of the energy matrix increases with kk quadratically, while the size of the energy sub-matrices constructed by the Bethe ansatz method shown in this paper increases with kk linearly, which makes the diagonalization more efficient and doable for large spin cases. For example, when the two spins are large with k1010k\sim 10^{10}, the diagonalization of the bidiagonal matrices with 101010^{10} in size can be carried out on a current day computer, while the direct diagonalization of the energy matrix in the original two-spin basis with 102010^{20} in size becomes a formidable task. Therefore, the results shown in this paper should be useful for large spin cases in Bose-Einstein condensates bec .

Further analysis of the model using the Bethe ansatz solution, such as computing the overlaps of the eigenstates with the two-spin squeezed state as suggested in 2222 and other physical quantities of the system, especially in the thermodynamic limit by using a similar procedure in cr , is beyond the scope of this paper and will be part of our future work to be presented elsewhere.


Acknowledgements.
This work was supported by National Natural Science Foundation of China (Grants No. 11675071 and No. 11775177), Australian Research Council Discovery Project DP190101529, U. S. National Science Foundation (OIA-1738287 and PHY-1913728), and LSU-LNNU joint research program with modest but important collaboration-maintaining support from the Southeastern Universities Research Association.

References

  • (1) M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
  • (2) D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992).
  • (3) D. J. Wineland, J. J. Bollinger, W. M. Itano and D. J. Heinzen, Phys. Rev. A 50, R67 (1994).
  • (4) A. Sørensen and K. Mømer, Phys. Rev. Lett. 86, 4431 (2001).
  • (5) J. Hald, J. L. Sørensen, C. Schori and E. S. Polzik, Phys. Rev. Lett. 83, 1319 (1999).
  • (6) I. D. Leroux, M. H. Schleier-Smith and V. Vuletć, Phys. Rev. Lett. 104, 073602 (2010).
  • (7) C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans and M. S. Chapman, Nature Phys. 8, 305 (2012).
  • (8) H. Strobel, W. Muessel, D. Linnemann and T. Zibold, Science 345, 424 (2014).
  • (9) V. Meyer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M. Itano, C. Monroe and D. J. Wineland, Phys. Rev. Lett. 86, 5870 (2001).
  • (10) J. Estéve, C. Gross, A. Weller, S. Giovanazzi and M. K. Oberthaler, Nature 455, 1216 (2008).
  • (11) J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjægaard and E. S. Polzik, PNAS 106, 10960 (2009).
  • (12) M. H. Schleier-Smith, I. D. Leroux and V. Vuletć, Phys. Rev. Lett. 104, 073604 (2010).
  • (13) M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, 1999).
  • (14) M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, 10th ed. (Cambridge University Press, New York, 2011).
  • (15) J. Kitzinger, M. Chaudhary, M. Kondappan, V. Ivannikov, and T. Byrnes, Phys. Rev. Res. 2, 033504 (2020).
  • (16) F. Pan, Y.-Z. Zhang, and J. P. Draayer, Ann. Phys. (N. Y.) 376, 182 (2017).
  • (17) F. Pan, Y.-Z. Zhang, and J. P. Draayer, J. Stat. Mech., 023104 (2017).
  • (18) P. Ribeiro, J. Vidal and R. Mosseri, Phys. Rev. Lett. 99, 050402 (2007).
  • (19) P. Ribeiro, J. Vidal and R. Mosseri, Phys. Rev. E 78, 021106 (2008).
  • (20) H. Bethe, Z. Phys. 71, 205 (1931).
  • (21) M. Gaudin, J. Phys. (Paris) 37, 1087 (1976).
  • (22) R. W. Richardson, Phys. Lett. 3, 277 (1963); J. Math. Phys. 6, 1034 (1965).
  • (23) R. W. Richardson and N. Sherman, Nucl. Phys. 52, 221 (1964).
  • (24) F. Pan and J. P. Draayer, Phys. Lett. B 451, 1 (1999).
  • (25) H. Morita, H. Ohnishi, J. da Providêcia and S. Nishiyama, Nucl. Phys. B 737, 337 (2006).
  • (26) Y.-H. Lee, W.-L. Yang and Y.-Z. Zhang, J. Phys. A 43, 185204 (2010).
  • (27) Y.-H Lee, J. Links and Y.-Z. Zhang, Nonlinearity 24, 1975 (2011).
  • (28) F. Pan, S. Yuan, Y. He, Y. Zhang, S. Yang, J. P. Draayer, Nucl. Phys. A 984, 68 (2019).
  • (29) F. Pan, D. Li, S. Cui, Y. Zhang, Z. Feng, and J. P. Draayer, J. Stat. Mech., 043102 (2020).
  • (30) F. Pan, L. Bao, L. Zhai, X. Cui and J. P. Draayer, J. Phys. A 44, 395305 (2011).
  • (31) X. Guan, K. D. Launey, M. Xie, L. Bao, F. Pan and J. P. Draayer, Phys. Rev. C 86, 024313 (2012).
  • (32) F. Pan, B. Li, Y.-Z. Zhang and J. P. Draayer, Phys. Rev. C 88, 034305 (2013).
  • (33) L. Pezzé, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Rev. Mod. Phys. 90, 035005 (2018).
  • (34) N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov and V. Terras, J. Stat. Mech., P04003 (2009).