This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Exact dynamics and thermalization of open quantum systems coupled to reservoir through particle exchanges

Fei-Lei Xiong Department of Physics and Center for Quantum Information Science, National Cheng Kung University, Tainan 70101, Taiwan    Wei-Min Zhang [email protected] Department of Physics and Center for Quantum Information Science, National Cheng Kung University, Tainan 70101, Taiwan
Abstract

In this paper, we study the exact dynamics of general open systems interacting with its environment through particle exchanges. The paper includes two main results. First, by taking advantage of the propagating function in the coherent state representation, we solve the exact master equation, whose solution is expressed in terms of the Keldysh nonequilibrium Green functions. Second, in the dynamical perspective, we provide a rigorous thermalization process of open quantum systems.

I Introduction

In the realistic world, physical systems are inevitably coupled to environments, which makes the theory of open quantum systems vastly used in many fields of physics, chemistry, biology, and engineering. The systematic study of open quantum systems has aroused the researchers’ interest since the 1960s Feynman and Vernon (1963); Schwinger (1961); Zwanzig (1960); Nakajima (1958); Breuer et al. (2002); Weiss (2012); Gardiner and Zoller (2004), and becomes more and more important for the prosperously developing field of quantum information processing Gardiner and Zoller (2004); Wiseman and Milburn (2009); Nielsen and Chuang (2002), quantum transport theory Haug and Jauho (2008); Yang and Zhang (2016), and rapidly improving time-resolved measurement technologies Wickenhauser et al. (2005); Kaldun et al. (2016). One of the most crucial problems in dealing with open quantum systems is how to determine explicitly the evolution of open quantum system states, through which all the information about the system dynamics can be obtained. However, due to the contamination of the huge environment, the system dynamics is non-unitary and always involves complicated fluctuation and dissipation. As a consequence, up to date, most open quantum systems can only be dealt with perturbative methods, such as Born-Markov approximation or cutting-off in Nakajima-Zwanzig operator projective technique Nakajima (1958); Zwanzig (1960); Breuer et al. (2002). Only a few classes of open quantum systems, e.g., the harmonic oscillator in quantum Brownian motion Caldeira and Leggett (1983); Hu et al. (1992) and the open systems interacting with particle-exchange coupling  Zhang et al. (2012), can an exact master equation be obtained, let alone the exact state evolution.

In a series of papers Tu and Zhang (2008); Jin et al. (2010); Lei and Zhang (2012); Zhang et al. (2012), we have obtained the general exact master equation for the open quantum systems whose interaction only involves particle exchanges. This large class of open systems is an extension of the famous Fano-Anderson model Anderson (1961); Fano (1961) and characterizes many physical phenomena in different systems, such as Fano resonance in atomic and condensed matter physics Miroshnichenko et al. (2010), Anderson localization in many-body systems Anderson (1958), photon-atom bound states in photonic crystal Yablonovitch (1987); John (1987); Kofman et al. (1994), quantum transport in quantum dot junctions Haug and Jauho (2008), impurity defects in solids Mahan (2013), etc. Although it has been studied for decades, the exact general master equation has not been derived until very recently Tu and Zhang (2008); Jin et al. (2010); Lei and Zhang (2012); Zhang et al. (2012). With the progress, various perspectives of the open systems can be studied, e.g., memory effects Yang et al. (2013), entanglement dynamics Tan et al. (2011); Lin et al. (2016); An and Zhang (2007), decoherence Tu and Zhang (2008); Liu et al. (2016); Yang and Wu (2014), the fluctuation-dissipation theorem Zhang et al. (2012), exact transient quantum transport Yang and Zhang (2018); Lo et al. (2015); Yang and Zhang (2016), etc.

In this paper, one main result we obtained is the solution of the exact master equation, i.e., the exact form of the reduced density matrix at an arbitrary later time. Note that the time-dependence of the reduced density matrix includes complete information about the system dynamics, it offers more perspectives in studying the memory effects Li et al. (2018); Breuer et al. (2016); Rivas et al. (2014), entanglement dynamics and dynamical phase transition Heyl (2018) of such class of open systems. Using the result of the reduced density matrix, we also study the general thermalization in this paper, which is another important and hot topic for both experimentalists Trotzky et al. (2012); Gring et al. (2012) and theorists Deutsch (1991); Kosloff (2013); Ali et al. (2018); Xiong et al. (2015); Srednicki (1994); Linden et al. (2009); Short and Farrelly (2012); Reimann (2008); Rigol (2009); Polkovnikov et al. (2011); Cazalilla and Rigol (2010); Hsiang et al. (2018) in recent years. In equilibrium statistic mechanics, the thermal distribution is based on the assumption of equal probability of all permissible microstates Callen (1998). However, the foundation of thermalization has always been a tough problem and a long-term goal of physicists Polkovnikov et al. (2011). In the past decade, by taking advantage of the eigenstate thermalization hypothesis, researchers study the thermalization of closed quantum systems and make interesting contributions in understanding the physics beneath it Deutsch (1991); Kosloff (2013); Ali et al. (2018); Srednicki (1994); Linden et al. (2009); Short and Farrelly (2012); Reimann (2008); Rigol (2009); Polkovnikov et al. (2011); Cazalilla and Rigol (2010). In contrast, in this paper, we discuss the thermalization of open systems from the dynamical perspective. With the exact evolution of the open quantum systems, such an aim is achieved.

The rest of the paper is organized as follows. In Sec. II, we introduce the system we concerned about and briefly review the previous results related to our present work. In Sec. III, we shall derive the exact solution of the reduced density matrix. In Sec. IV, we explain the physical consequences of the solution and discuss the general thermalization of the open systems. A brief summary will be given in Sec. V.

II Overview of the exact master equation

The system we are interested are characterized by the Hamiltonian HS=i,j=1dϵijaiajH_{{\mathrm{S}}}=\sum_{i,j=1}^{d}\epsilon_{ij}a^{\dagger}_{i}a_{j}, and interacts with bosonic (fermionic) environment described by HE=kϵkbkbkH_{\mathrm{E}}=\sum_{k}\epsilon_{k}b^{\dagger}_{k}b_{k}, via the interaction Hint=j,k(Vjkajbk+H.c.)H_{\mathrm{int}}=\sum_{j,k}(V_{jk}a^{\dagger}_{j}b_{k}+\mathrm{H.c.}), where aja_{j}^{\dagger} (aja_{j}) is the creation (annihilation) operator of the jjth level in the system; bkb_{k}^{\dagger} (bkb_{k}) is the creation (annihilation) operator of the kk-mode in the environment; ϵij\epsilon_{ij} and ϵk\epsilon_{k} characterize the energy levels of the system and the environment, and VjkV_{jk} is the interaction strength between them. If the creation and annihilation operators satisfy the commutation (anti-commutation) relations, the corresponding systems is bosonic (fermionic).

To make the notations more compact, we denote that 𝒂=(a1ad)\bm{a}^{\dagger}=(\!\begin{array}[]{ccc}a^{\dagger}_{1}&\cdots&a^{\dagger}_{d}\end{array}\!), 𝒂=(a1ad)T\bm{a}=(\!\begin{array}[]{ccc}a_{1}&\cdots&a_{d}\end{array}\!)^{{\mathrm{T}}}, and the matrix constituted of ϵij{\epsilon}_{ij} as ϵS\bm{\epsilon}_{\mathrm{S}}. The spectrum of the environment and the system-environment interaction can be specified with the spectral density function 𝑱(ϵ)\bm{J}(\epsilon), whose elements are defined through Jij(ω)=2πkVkiVkjδ(ϵϵk)J_{ij}(\omega)=2\pi\sum_{k}V_{ki}V^{*}_{kj}\delta(\epsilon-\epsilon_{k}). We assume that initially the system and the environment is decoupled Leggett et al. (1987), i.e., ρtot(0)=ρ(0)ρE(0)\rho_{{\mathrm{tot}}}(0)=\rho(0)\otimes\rho_{\mathrm{E}}(0), where ρ(0)\rho(0) is an arbitrary physical state of the system and ρE(0)=keβ(ϵkμ)bkbk/𝒵\rho_{\mathrm{E}}(0)=\otimes_{k}e^{-\beta(\epsilon_{k}-\mu)b_{k}^{\dagger}b_{k}}/{\cal Z} is the thermal state of the environment with inverse temperature β\beta and chemical potential μ\mu. Here, 𝒵=k|1eβ[ϵkμ]|1{\cal Z}=\prod_{k}|1\mp e^{-\beta[\epsilon_{k}-\mu]}|^{\mp 1} denotes the grand partition function of the environment with the upper and lower sign corresponding to the bosonic and fermionic case respectively. Hereafter, we also use this convention.

The reduced density matrix at latter time tt is connected to the initial state through the propagating function 𝒥(𝜼,𝜼,t;𝜻,𝜻,0){\cal{J}}(\bm{\eta}^{\ast},\bm{\eta},t;\bm{\zeta}^{\prime\ast},\bm{\zeta},0) in the coherent state representation, i.e.,

𝜼|ρ(t)|𝜼=dμ(𝜻)dμ(𝜻)𝜻|ρ(0)|𝜻𝒥(𝜼,𝜼,t;𝜻,𝜻,0),\displaystyle\langle\bm{\eta}^{\ast}|\rho(t)|\bm{\eta}\rangle=\int{\mathrm{d}}\mu(\bm{\zeta}){\mathrm{d}}\mu(\bm{\zeta}^{\prime})\langle{\bm{\zeta}}^{\ast}|\rho(0)|{\bm{\zeta}}^{\prime}\rangle{\cal{J}}(\bm{\eta}^{\ast},\bm{\eta},t;\bm{\zeta}^{\prime\ast},\bm{\zeta},0)\,, (1)

where 𝜻=(ζ1ζd)\bm{\zeta}^{\ast}=(\!\begin{array}[]{ccc}\zeta^{\ast}_{1}&\cdots&\zeta^{\ast}_{d}\end{array}\!) and 𝜻=(ζ1ζd)T\bm{\zeta}=(\!\begin{array}[]{ccc}\zeta_{1}&\cdots&\zeta_{d}\end{array}\!)^{{\mathrm{T}}}, with the components being complex (Grassmannian) for bosons (fermions); 𝜻|=0|e𝜻𝒂\bra{\bm{\zeta}^{*}}=\bra{0}e^{\bm{\zeta}^{*}\bm{a}} (|𝜻=e𝒂𝜻|0\ket{\bm{\zeta}}=e^{\bm{a}^{\dagger}\bm{\zeta}}\ket{0}) is the unnormalized coherent state with 0|\bra{0} (|0\ket{0}) standing for the vacuum state Zhang et al. (1990); dμ(𝜻){\mathrm{d}}\mu(\bm{\zeta}) is the integral measure, and dμ(𝜻)=j=1d(d2ζj/π)eζjζj{\mathrm{d}}\mu(\bm{\zeta})=\prod_{j=1}^{d}({{\mathrm{d}}^{2}\zeta_{j}}/{\pi})e^{-\zeta^{*}_{j}\zeta_{j}} for bosons and dμ(𝜻)=j=1ddζjdζjeζjζj{\mathrm{d}}\mu(\bm{\zeta})=\prod_{j=1}^{d}{{\mathrm{d}}\zeta^{*}_{j}{\mathrm{d}}\zeta_{j}}e^{-\zeta^{*}_{j}\zeta_{j}} for fermions. With coherent state path-integral approach, the propagating function can be derived as Jin et al. (2010); Lei and Zhang (2012)

𝒥(𝜼,𝜼,t;𝜻,𝜻,0)=e𝜼𝒗1±𝒗𝜼|1±𝒗|±1e±𝜻𝑨~𝜻+𝜻𝒖~𝜼+𝜼𝒖~𝜻,\displaystyle{\cal{J}}(\bm{\eta}^{\ast},\bm{\eta},t;\bm{\zeta}^{\prime\ast},\bm{\zeta},0)=\!\frac{e^{{\bm{\eta}}^{\ast}\frac{\bm{v}}{1\pm\bm{v}}{\bm{\eta}}}}{\!\left|1\pm\bm{v}\right|^{\pm 1}}e^{\pm{\bm{\zeta}}^{\prime\ast}{\widetilde{\bm{A}}}\bm{\zeta}+{\bm{\zeta}}^{\prime\ast}\widetilde{\bm{u}}^{\dagger}{\bm{\eta}}+{\bm{\eta}}^{\ast}\widetilde{\bm{u}}\bm{\zeta}}\,, (2)

where 𝑨~=1𝒖11±𝒗𝒖{\widetilde{\bm{A}}}=1-\bm{u}^{{\dagger}}\frac{1}{1\pm\bm{v}}\bm{u}, 𝒖~=11±𝒗𝒖\widetilde{\bm{u}}=\frac{1}{1\pm\bm{v}}\bm{u}, with the matrices 𝒖\bm{u} and 𝒗\bm{v} being respectively the abbreviations of the nonequilibrium Green functions 𝒖(t)\bm{u}(t) and 𝒗(t,t)\bm{v}(t,t). More specifically, 𝒖(t)\bm{u}(t) is the spectral Green function with elements defined as uij(t)=[ai(t),aj(0)]u_{ij}(t)=\langle[a_{i}(t),a_{j}^{\dagger}(0)]_{\mp}\rangle Kadanoff (2018), and 𝒗(t,t)\bm{v}(t,t) is related to the system’s particle number originated from the environment, reading Zhang et al. (2012)

𝒗(t,t)=0tdt10tdt2𝒖(tt1)𝒈~(t1,t2)𝒖(tt2).\displaystyle\bm{v}(t,t)=\int^{t}_{0}\!{\mathrm{d}}t_{1}\!\int^{t}_{0}\!{\mathrm{d}}t_{2}\,\bm{u}(t-t_{1})\,\widetilde{\bm{g}}(t_{1},t_{2})\,\bm{u}^{\dagger}(t-t_{2})\,. (3)

Here, 𝒈~(t1,t2)=dϵ2πf(ϵ)𝑱(ϵ)eiϵ(t1t2)\widetilde{\bm{g}}(t_{1},t_{2})=\int\frac{{\mathrm{d}}\epsilon}{2\pi}f(\epsilon)\bm{J}(\epsilon)e^{-i\epsilon(t_{1}-t_{2})} denotes a system-bath correction, with f(ϵ)=1eβ(ϵμ)1f(\epsilon)=\frac{1}{e^{\beta(\epsilon-\mu)}\mp 1} standing for the initial particle distribution of the environment.

Taking advantage of Eqs. (1)-(2), the master equation has been derived Tu and Zhang (2008); Jin et al. (2010); Lei and Zhang (2012); Zhang et al. (2012), reading

dρ(t)dt=\displaystyle\frac{d\rho(t)}{dt}= 1i[H~S(t),ρ(t)]+ij{γij(t)[2ajρ(t)ai\displaystyle\frac{1}{\mathrm{i}}\Big{[}\widetilde{H}_{\mathrm{S}}(t),\rho(t)\Big{]}+\sum_{ij}\Big{\{}\gamma_{ij}(t)\Big{[}2a_{j}\rho(t)a^{{\dagger}}_{i}
aiajρ(t)ρ(t)aiaj]+γ~ij(t)[aiρ(t)aj\displaystyle-a^{{\dagger}}_{i}a_{j}\rho(t)-\rho(t)a^{{\dagger}}_{i}a_{j}\Big{]}+\widetilde{\gamma}_{ij}(t)\Big{[}a^{\dagger}_{i}\rho(t)a_{j}
±ajρ(t)aiaiajρ(t)ρ(t)ajai]}.\displaystyle\pm a_{j}\rho(t)a^{{\dagger}}_{i}\mp a^{{\dagger}}_{i}a_{j}\rho(t)-\rho(t)a_{j}a^{{\dagger}}_{i}\Big{]}\Big{\}}\,. (4)

In this master equation, H~S(t)=ijϵ~ij(t)aiaj\widetilde{H}_{\mathrm{S}}(t)=\sum_{ij}\widetilde{\epsilon}_{ij}(t)a^{\dagger}_{i}a_{j} is the renormalized system Hamiltonian; γij(t)\gamma_{ij}(t) and γ~ij(t)\widetilde{\gamma}_{ij}(t) characterize the dissipation and fluctuation rate induced by the system’s coupling with the environment, respectively. The coefficients ϵ~ij(t)\widetilde{\epsilon}_{ij}(t), γij(t)\gamma_{ij}(t) and γ~ij(t)\widetilde{\gamma}_{ij}(t) are determined only by the non-equilibrium Green functions 𝒖(t)\bm{u}(t) and 𝒗(t,t)\bm{v}(t,t) Zhang et al. (2012).

Furthermore, the Green function 𝒖(t)\bm{u}(t) satisfies the Dyson equation and the solution can be expressed as Zhang et al. (2012)

𝒖(t)=l𝒁leiϵlt+dϵ2π𝑫(ϵ)eiϵt.\displaystyle\bm{u}(t)=\sum_{l}\bm{Z}_{l}e^{-\mathrm{i}\epsilon_{l}t}+\int\frac{{\mathrm{d}}\epsilon}{2\pi}\bm{D}(\epsilon)e^{-\mathrm{i}\epsilon t}\,. (5)

The quantities ϵl\epsilon_{l}, 𝒁l\bm{Z}_{l} and 𝑫(ϵ)\bm{D}(\epsilon) are all connected with the Green function in the energy domain

𝑼(z)=1z𝐈ϵS𝚺(z),\displaystyle\bm{U}(z)=\frac{1}{z{\bm{\mathrm{I}}}-\bm{\epsilon}_{\mathrm{S}}-\bm{\Sigma}(z)}\,, (6)

where 𝚺(z)=dϵ2π𝑱(ϵ)zϵ\bm{\Sigma}(z)=\int\frac{{\mathrm{d}}\epsilon}{2\pi}\frac{\bm{J}(\epsilon)}{z-\epsilon} is the self-energy correction. ϵl\epsilon_{l} is the energy of the llth localized mode and is determined by the singularities of 𝑼(z)\bm{U}(z), i.e., it satisfies the equation det(ϵlϵS𝚺(ϵl))=0\det(\epsilon_{l}-\bm{\epsilon}_{\mathrm{S}}-\bm{\Sigma}(\epsilon_{l}))=0. 𝒁l\bm{Z}_{l} is the Hermitian matrix characterizing the amplitude of the llth localized mode, reading 𝒁l=12πiCldz𝑼(z)\bm{Z}_{l}=\frac{1}{2\pi\mathrm{i}}\oint_{C_{l}}\!{\mathrm{d}}z\,\bm{U}(z) , where ClC_{l} is the positively-oriented curve in the neighbourhood of z=ϵlz=\epsilon_{l}. 𝑫(ϵ)\bm{D}(\epsilon) is the spectrum of the system broadened by the environment and reads 𝑫(ϵ)=𝑼(ϵ+i0+)𝑱(ϵ)𝑼(ϵi0+)\bm{D}(\epsilon)=\bm{U}(\epsilon+\mathrm{i}0^{+})\bm{J}(\epsilon)\bm{U}(\epsilon-\mathrm{i}0^{+}) 111The 𝒁l\bm{Z}_{l}’s and 𝑫(ϵ)\bm{D}(\epsilon) are the discrete and continuous components of the modified spectrum of the system 𝑫S(ϵ)\bm{D}_{\mathrm{S}}(\epsilon), respectively. They are connected through the relation 𝑫S(ϵ)=2πl𝒁lδ(ϵϵl)+𝑫(ϵ)\bm{D}_{\mathrm{S}}(\epsilon)=2\pi\sum_{l}\bm{Z}_{l}\delta(\epsilon-\epsilon_{l})+\bm{D}(\epsilon), where 𝑫S(ϵ)\bm{D}_{\mathrm{S}}(\epsilon) is defined through 𝑫S(ϵ):=2Im[𝑼(ϵ+i0+)]\bm{D}_{\mathrm{S}}(\epsilon):=-2\imaginary[\bm{U}(\epsilon+\mathrm{i}0^{+})] (See Ref. Zhang et al. (2012))..

III The exact system state evolution

With the initial system state ρ(0)\rho(0), and the Green functions 𝒖(t)\bm{u}(t) and 𝒗(t,t)\bm{v}(t,t), the reduced density matrix ρ(t)\rho(t) at arbitrary instant can be determined from Eq. (II) in principle. However, because the coefficients are all time-dependent, the problem is too complicated to solve directly. Luckily, one can solve it by taking advantage of the propagating function in Eqs. (1)-(2), as is shown in this section. First, in Sec. III.1, we shall introduce some conventions and derive ρ(0)\rho(0)’s elements in the coherent state representation. In Sec. III.2, we obtain ρ(t)\rho(t)’s elements at arbitrary later time. In Sec. III.3, the exact form of ρ(t)\rho(t) will be given.

III.1 Representation of the initial system state

To obtain the density matrix elements at arbitrary time, one needs to carry out the integrals of Eq. (1) with the explicit expression of 𝜻|ρ(0)|𝜻\langle{\bm{\zeta}}^{\ast}|\rho(0)|{\bm{\zeta}}^{\prime}\rangle. Define the Fock state

|I=𝒂Ii1!id!|0,I|=0|𝒂ITi1!id!.\displaystyle\ket{I}=\frac{\bm{a}_{I}^{{\dagger}}}{\sqrt{i_{1}!\cdots i_{d}!}}\ket{0},\quad\bra{I}=\bra{0}\frac{\bm{a}_{I^{\mathrm{T}}}}{\sqrt{i_{1}!\cdots i_{d}!}}\,. (7)

where 𝒂I:=(a1)i1(ad)id\bm{a}_{I}^{{\dagger}}:=(a_{1}^{{\dagger}})^{i_{1}}\cdots(a_{d}^{{\dagger}})^{i_{d}}, 𝒂IT:=(ad)id(a1)i1\bm{a}_{I^{\mathrm{T}}}:=(a_{d})^{i_{d}}\cdots(a_{1})^{i_{1}}, and ini_{n} denotes the particle number in the nnth level. For bosons, the ini_{n} takes the values 0,1,2,0,1,2,\cdots, while for fermionic systems, ini_{n} is either 0 or 11. Corresponding to the state |I\ket{I}, we define a class of sequences with the form

I=(1,,1i1,2,,2i2,,d,,did).\displaystyle I=(\underbrace{1,\cdots,1}_{i_{1}},\underbrace{2,\cdots,2}_{i_{2}},\cdots,\underbrace{d,\cdots,d}_{i_{d}})\,. (8)

Then the initial system density matrix can be generally expressed as

ρ(0)\displaystyle\rho(0) =IJρIJ(0)𝒂I|00|𝒂JTi1!id!j1!jd!,\displaystyle=\sum_{IJ}\rho_{IJ}(0)\frac{\bm{a}_{I}^{{\dagger}}\!\left|{0}\rangle\!\langle{0}\right|\bm{a}_{J^{\mathrm{T}}}}{\sqrt{i_{1}!\cdots i_{d}!j_{1}!\cdots j_{d}!}}\,, (9)

where the summation is over all the possible physical pairs of II and JJ. That is, except for the constraints over II and JJ individually, for fermions and massive bosons, the sequences II and JJ together satisfy the constraint i1++id=j1++jdi_{1}+\cdots+i_{d}=j_{1}+\cdots+j_{d}. With Eq. (9) and the definition of coherent states, it is easy to find

𝜻|ρ(0)|𝜻\displaystyle\langle{\bm{\zeta}}^{\ast}|\rho(0)|{\bm{\zeta}}^{\prime}\rangle =IJρIJ(0)𝜻I𝜻JTi1!id!j1!jd!,\displaystyle=\sum_{IJ}\rho_{IJ}(0)\frac{\bm{\zeta}^{*}_{I}\bm{\zeta}^{\prime}_{J^{{\mathrm{T}}}}}{\sqrt{i_{1}!\cdots i_{d}!j_{1}!\cdots j_{d}!}}\,, (10)

where 𝜻I=(ζ1)i1(ζd)id\bm{\zeta}^{*}_{I}=(\zeta_{1}^{\ast})^{i_{1}}\cdots(\zeta_{d}^{\ast})^{i_{d}} and 𝜻JT=(ζd)jd(ζ1)j1\bm{\zeta}^{\prime}_{J^{{\mathrm{T}}}}=(\zeta^{\prime}_{d})^{j_{d}}\cdots(\zeta^{\prime}_{1})^{j_{1}}.

III.2 Evolution of the density matrix elements in the coherent state representation

Following Eqs. (2) and  (10), Eq. (1) can be re-expressed as

𝜼|ρ\displaystyle\langle\bm{\eta}^{\ast}|\rho (t)|𝜼=e𝜼𝒗1±𝒗𝜼|1±𝒗|±1IJρIJ(0)i1!id!j1!jd!\displaystyle(t)|\bm{\eta}\rangle=\frac{e^{{\bm{\eta}}^{\ast}\frac{\bm{v}}{1\pm\bm{v}}{\bm{\eta}}}}{\!\left|1\pm\bm{v}\right|^{\pm 1}}\sum_{IJ}\frac{\rho_{IJ}(0)}{\sqrt{i_{1}!\cdots i_{d}!j_{1}!\cdots j_{d}!}}
dμ(𝜻)dμ(𝜻)𝜻I𝜻JTe±𝜻𝑨~𝜻+𝜻𝒖~𝜼+𝜼𝒖~𝜻.\displaystyle\int\!{\mathrm{d}}\mu(\bm{\zeta}){\mathrm{d}}\mu(\bm{\zeta}^{\prime}){\bm{\zeta}^{*}_{I}\bm{\zeta}^{\prime}_{J^{{\mathrm{T}}}}}e^{\pm{\bm{\zeta}}^{\prime\ast}{\widetilde{\bm{A}}}\bm{\zeta}+{\bm{\zeta}}^{\prime\ast}\widetilde{\bm{u}}^{\dagger}{\bm{\eta}}+{\bm{\eta}}^{\ast}\widetilde{\bm{u}}\bm{\zeta}}\,. (11)

In order to obtain the explicit form of 𝜼|ρ(t)|𝜼\langle\bm{\eta}^{\ast}|\rho(t)|\bm{\eta}\rangle, one needs to simplify the integral. The result is given in the following (See Appendix A for the details).

III.2.1 Bosonic case

In the bosonic case, the result is

IJperm(𝑨~J,I)(𝜼𝒖~)I¯(𝒖~𝜼)J¯T,\displaystyle\sum_{I^{\prime}J^{\prime}}\mathrm{perm}({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{{\mathrm{T}}}}\,, (12)

where we have used the following conventions:

  1. (i)

    I=(1,,1i1,,d,,did)I^{\prime}=(\underbrace{1,\cdots,1}_{i^{\prime}_{1}},\cdots,\underbrace{d,\cdots,d}_{i^{\prime}_{d}}) is a subsequence of II and I¯=(1,,1i1¯,,d,,did¯)\overline{I^{\prime}}=(\underbrace{1,\cdots,1}_{\overline{i^{\prime}_{1}}},\cdots,\underbrace{d,\cdots,d}_{\overline{i^{\prime}_{d}}}) is its complement, with in=in+in¯i_{n}=i^{\prime}_{n}+\overline{i^{\prime}_{n}} for each nn. By subsequence, we mean deleting some elements in a sequence and keeping the remaining elements in the original order. The summation is over all the possible ways of choosing II^{\prime} and JJ^{\prime} in II and JJ, respectively, with each pair satisfying the constraint i1++id=j1++jdi^{\prime}_{1}+\cdots+i^{\prime}_{d}=j^{\prime}_{1}+\cdots+j^{\prime}_{d};

  2. (ii)

    𝑨~J,I{\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}} is the matrix obtained by first taking jnj^{\prime}_{n} copies of the nnth column of 𝑨~{\widetilde{\bm{A}}} in Eq. (2) for each nn and then taking ini^{\prime}_{n} copies of the nnth row of the matrix obtained by the first step Tillmann et al. (2013);

  3. (iii)

    perm(𝑨~J,I)\mathrm{perm}({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}}) stands for the permanent of the matrix 𝑨~J,I{\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}} Tillmann et al. (2013);

  4. (iv)

    (𝜼𝒖~)I¯:=[(𝜼𝒖~)1]i1¯[(𝜼𝒖~)d]id¯(\bm{\eta}^{*}\widetilde{\bm{u}})_{\overline{I^{\prime}}}:=[(\bm{\eta}^{*}\widetilde{\bm{u}})_{1}]^{\overline{i^{\prime}_{1}}}\cdots[(\bm{\eta}^{*}\widetilde{\bm{u}})_{d}]^{\overline{i^{\prime}_{d}}}, (𝒖~𝜼)J¯T:=[(𝒖~𝜼)d]jd¯[(𝒖~𝜼)1]j1¯(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}:=[(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{d}]^{\overline{j^{\prime}_{d}}}\cdots[(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{1}]^{\overline{j^{\prime}_{1}}}.

III.2.2 Fermionic case

In the fermionic scenario, the integral can be simplified to

IJδII¯IδJJ¯Jdet(𝑨~J,I)(𝜼𝒖~)I¯(𝒖~𝜼)J¯T.\displaystyle\sum_{I^{\prime}J^{\prime}}\delta^{I}_{I^{\prime}\overline{I^{\prime}}}\delta^{J}_{J^{\prime}\overline{J^{\prime}}}\det({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{{\mathrm{T}}}}\,. (13)

Here, we have used the conventions:

  1. (i)

    II^{\prime}, I¯\overline{I^{\prime}}, JJ^{\prime}, J¯\overline{J^{\prime}} and the summation follow the same conventions as those in the bosonic case, except that all the elements in the sequences appear at most once;

  2. (ii)

    II¯I^{\prime}\overline{I^{\prime}} is the new sequence obtained by joining II^{\prime} and I¯\overline{I^{\prime}} end-to-end. δII¯I=±1\delta^{I}_{I^{\prime}\overline{I^{\prime}}}=\pm 1 when II¯I^{\prime}\overline{I^{\prime}} is an even/odd permutation of II;

  3. (iii)

    𝑨~J,I{\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}} follows the same convention as in the bosonic case. However, as all the elements 1,,d1,\cdots,d appear at most once in II^{\prime} and JJ^{\prime}, 𝑨~J,I{\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}} is in fact a submatrix of 𝑨~{\widetilde{\bm{A}}} Tillmann et al. (2013);

  4. (iv)

    det(𝑨~J,I)\det({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}}) stands for the determinant of the matrix 𝑨~J,I{\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}};

  5. (v)

    (𝜼𝒖~)I¯(\bm{\eta}^{*}\widetilde{\bm{u}})_{\overline{I^{\prime}}} and (𝒖~𝜼)J¯T(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}} follow the same convention as in the bosonic case.

III.2.3 Common expression

The results in the previous two cases can be expressed as a common expression. By denoting

s±={1(boson),δII¯IδJJ¯J(fermion),s_{\pm}=\left\{\begin{array}[]{lr}1&(\text{boson})\,,\\ \delta^{I}_{I^{\prime}\overline{I^{\prime}}}\delta^{J}_{J^{\prime}\overline{J^{\prime}}}&(\text{fermion})\,,\end{array}\right. (14)

and

|𝑨~J,I|±:={perm(𝑨~J,I)(boson),det(𝑨~J,Imissing)(fermion),|{\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}}|_{\pm}:=\left\{\begin{array}[]{lr}\mathrm{perm}({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})&(\text{boson})\,,\\ \det\big({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}}\big{missing})&(\text{fermion})\,,\end{array}\right. (15)

Eqs. (12) and (13) can be summarized as

IJs±|𝑨~J,I|±(𝜼𝒖~)I¯(𝒖~𝜼)J¯T.\displaystyle\sum_{I^{\prime}J^{\prime}}s_{\pm}|{\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}}|_{\pm}(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{{\mathrm{T}}}}\,. (16)

Thus, in the coherent state representation, the elements of ρ(t)\rho(t) can be given by

𝜼|ρ(t)|𝜼=\displaystyle\langle\bm{\eta}^{\ast}|\rho(t)|\bm{\eta}\rangle= IJρIJ(0)i1!id!j1!jd!\displaystyle\sum_{IJ}\frac{\rho_{IJ}(0)}{\sqrt{i_{1}!\cdots i_{d}!j_{1}!\cdots j_{d}!}}
IJs±\displaystyle\sum_{I^{\prime}J^{\prime}}s_{\pm} |𝑨~J,I|±(𝜼𝒖~)I¯e𝜼𝒗1±𝒗𝜼|1±𝒗|±1(𝒖~𝜼)J¯T.\displaystyle|{\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}}|_{\pm}(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}\frac{e^{{\bm{\eta}}^{\ast}\frac{\bm{v}}{1\pm\bm{v}}{\bm{\eta}}}}{\!\left|1\pm\bm{v}\right|^{\pm 1}}(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{{\mathrm{T}}}}\,. (17)

III.3 Exact form of the density matrix

The reduced density matrix ρ(t)\rho(t) satisfying Eq. (17) can be explicitly written as

ρ(t)=IJρIJ(0)IJs±|𝑨~J,I|±(𝒂𝒖~)I¯ρth(t)(𝒖~𝒂)J¯Ti1!id!j1!jd!,\displaystyle\rho(t)=\sum_{IJ}{\rho_{IJ}(0)}\sum_{I^{\prime}J^{\prime}}s_{\pm}\frac{|{\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}}|_{\pm}(\bm{a}^{{\dagger}}\widetilde{\bm{u}})_{\overline{I^{\prime}}}\rho^{{\mathrm{th}}}(t)(\widetilde{\bm{u}}^{\dagger}\bm{a})_{\overline{J^{\prime}}^{{\mathrm{T}}}}}{\sqrt{i_{1}!\cdots i_{d}!j_{1}!\cdots j_{d}!}}\,, (18)

where ρth(t)=e𝒂ln(𝒗1±𝒗)𝒂|1±𝒗|±1\rho^{{\mathrm{th}}}(t)=\!\frac{e^{\bm{a}^{{\dagger}}\ln(\frac{\bm{v}}{1\pm\bm{v}})\bm{a}}}{|1\pm\bm{v}|^{\pm 1}} is a thermal-like state Xiong et al. (2015); (𝒂𝒖~)I¯:=[(𝒂𝒖~)1]i1¯[(𝒂𝒖~)d]id¯(\bm{a}^{{\dagger}}\widetilde{\bm{u}})_{\overline{I^{\prime}}}:=[(\bm{a}^{{\dagger}}\widetilde{\bm{u}})_{1}]^{\overline{i^{\prime}_{1}}}\cdots[(\bm{a}^{{\dagger}}\widetilde{\bm{u}})_{d}]^{\overline{i^{\prime}_{d}}} and (𝒖~𝒂)J¯T:=[(𝒖~𝒂)d]jd¯[(𝒖~𝒂)1]j1¯(\widetilde{\bm{u}}^{\dagger}\bm{a})_{\overline{J^{\prime}}^{\mathrm{T}}}:=[(\widetilde{\bm{u}}^{\dagger}\bm{a})_{d}]^{\overline{j^{\prime}_{d}}}\cdots[(\widetilde{\bm{u}}^{\dagger}\bm{a})_{1}]^{\overline{j^{\prime}_{1}}}. Equation (18) is directly obtained from Eq. (17) with the identity

𝜼|(𝒂𝒖~)I¯e𝒂ln(𝒗1±𝒗)𝒂\displaystyle\langle\bm{\eta}^{\ast}|(\bm{a}^{{\dagger}}\widetilde{\bm{u}})_{\overline{I^{\prime}}}e^{\bm{a}^{{\dagger}}\ln(\frac{\bm{v}}{1\pm\bm{v}})\bm{a}} (𝒖~𝒂)J¯T|𝜼\displaystyle(\widetilde{\bm{u}}^{\dagger}\bm{a})_{\overline{J^{\prime}}^{{\mathrm{T}}}}|\bm{\eta}\rangle
=\displaystyle= (𝜼𝒖~)I¯e𝜼𝒗1±𝒗𝜼(𝒖~𝜼)J¯T,\displaystyle(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}e^{\bm{\eta}^{\ast}\frac{\bm{v}}{1\pm\bm{v}}\bm{\eta}}(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{{\mathrm{T}}}}\,, (19)

which can be easily derived with the properties of coherent states that

𝜼|(𝒂𝒖~)I¯=𝜼|(𝜼𝒖~)I¯,\displaystyle\langle\bm{\eta}^{\ast}|(\bm{a}^{{\dagger}}\widetilde{\bm{u}})_{\overline{I^{\prime}}}=\langle\bm{\eta}^{\ast}|(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}\,, (20a)
(𝒖~𝒂)J¯T|𝜼=(𝒖~𝜼)J¯T|𝜼,\displaystyle(\widetilde{\bm{u}}^{\dagger}\bm{a})_{\overline{J^{\prime}}^{{\mathrm{T}}}}|\bm{\eta}\rangle=(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{{\mathrm{T}}}}|\bm{\eta}\rangle\,, (20b)

and

𝜼|e𝒂ln(𝒗1±𝒗)𝒂|𝜼=e𝜼𝒗1±𝒗𝜼.\displaystyle\langle\bm{\eta}^{\ast}|e^{\bm{a}^{{\dagger}}\ln(\frac{\bm{v}}{1\pm\bm{v}})\bm{a}}|\bm{\eta}\rangle=e^{\bm{\eta}^{\ast}\frac{\bm{v}}{1\pm\bm{v}}\bm{\eta}}\,. (21)

IV Physical interpretation of the solution and the thermalization

In this section, we shall discuss the physics beneath the solution. The physical interpretation of the solution will be given in Sec. IV.1, and the thermalization problem will be discussed in Sec. IV.2.

IV.1 Physical interpretation of the solution

To explain the physical consequence contained in Eq. (18), we consider two limiting cases first. One is that there is no particle in the environment initially, and the other is no particle in the system initially. Finally, we shall consider the joint effect and the general solution.

IV.1.1 No particle in the environment initially

In this case, the environment is initially in a vacuum state, so that f(ϵ)=0f(\epsilon)=0 and 𝒗(t,t)=0\bm{v}(t,t)=0. Consequently, in Eq. (18), 𝑨~=1𝒖11±𝒗𝒖{\widetilde{\bm{A}}}=1-\bm{u}^{{\dagger}}\frac{1}{1\pm\bm{v}}\bm{u}, 𝒖~=11±𝒗𝒖\widetilde{\bm{u}}=\frac{1}{1\pm\bm{v}}\bm{u}, and ρth(t)=1|1±𝒗|±1e𝒂ln(𝒗1±𝒗)𝒂\rho^{{\mathrm{th}}}(t)=\frac{1}{|1\pm\bm{v}|^{\pm 1}}e^{\bm{a}^{{\dagger}}\ln(\frac{\bm{v}}{1\pm\bm{v}})\bm{a}} reduces to 𝑨=1𝒖𝒖\bm{A}=1-\bm{u}^{{\dagger}}\bm{u}, 𝒖\bm{u}, and ρth(t)=|00|\rho^{{\mathrm{th}}}(t)=|0\rangle\langle 0|, respectively. As a result, ρ(t)\rho(t) is simply reduced to

ρ(t)=IJρIJ(0)IJs±|AJ,I|±(𝒂𝒖)I¯|00|(𝒖𝒂)J¯Ti1!id!j1!jd!.\displaystyle\rho(t)=\sum_{IJ}{\rho_{IJ}(0)}\sum_{I^{\prime}J^{\prime}}s_{\pm}\frac{|A_{J^{\prime},I^{\prime}}|_{\pm}(\bm{a}^{{\dagger}}\bm{u})_{\overline{I^{\prime}}}\!\left|{0}\rangle\!\langle{0}\right|\!(\bm{u}^{\dagger}\bm{a})_{\overline{J^{\prime}}^{{\mathrm{T}}}}}{\sqrt{i_{1}!\cdots i_{d}!j_{1}!\cdots j_{d}!}}\,. (22)

Compared with the form of the initial state of Eq. (9), one can see that the factor 𝒂I|00|𝒂JT\bm{a}_{I}^{{\dagger}}\!\left|{0}\rangle\!\langle{0}\right|\bm{a}_{J^{\mathrm{T}}} evolves to IJs±|AJ,I|±(𝒂𝒖)I¯|00|(𝒖𝒂)J¯T\sum_{I^{\prime}J^{\prime}}s_{\pm}|A_{J^{\prime},I^{\prime}}|_{\pm}(\bm{a}^{{\dagger}}\bm{u})_{\overline{I^{\prime}}}\!\left|{0}\rangle\!\langle{0}\right|\!(\bm{u}^{\dagger}\bm{a})_{\overline{J^{\prime}}^{{\mathrm{T}}}}. Note that 𝒖\bm{u} quantifies the particles maintained in the system and 𝑨=1𝒖𝒖\bm{A}=1-\bm{u}^{\dagger}\bm{u} quantifies their loss into the environment. Therefore, the summation describes all the possibilities that part of the system particles maintains in the system while the others dissipate into the environment. That is, the solution in Eq. (22) precisely describes the pure dissipation process. The sign s±s_{\pm} and the quantity |AJ,I|±|A_{J^{\prime},I^{\prime}}|_{\pm} are the manifestations of the particle exchange symmetry, which is quite similar to the cases encountered in the boson and fermion sampling Aaronson and Arkhipov (2011).

IV.1.2 No particle in the system initially

In this case, the system initial state reads ρ(0)=|00|\rho(0)=\!\left|{0}\rangle\!\langle{0}\right|, i.e., all the ρIJ(0)\rho_{IJ}(0)’s are 0 except the one that II and JJ are both empty sequence. Following Eq. (18), one can easily find that

ρ(t)=ρth(t)=e𝒂ln(𝒗1±𝒗)𝒂|1±𝒗|±1.\displaystyle\rho(t)=\rho^{{\mathrm{th}}}(t)=\frac{e^{\bm{a}^{{\dagger}}\ln(\frac{\bm{v}}{1\pm\bm{v}})\bm{a}}}{|1\pm\bm{v}|^{\pm 1}}\,. (23)

For understanding the physical consequence of Eq. (23), one needs to consider the physical meaning of 𝒗(t,t)\bm{v}(t,t). We introduce the spectral Green function of the total system, i.e., 𝒖tot(t)=eiϵtott\bm{u}_{\mathrm{tot}}(t)=e^{-\mathrm{i}{\bm{\epsilon}_{\mathrm{tot}}}t}, where ϵtot\bm{\epsilon}_{\mathrm{tot}} is the energy matrix of the total system Hamiltonian. Formally, 𝒖tot(t)\bm{u}_{\mathrm{tot}}(t) can be written in matrix blocks, i.e.,

𝒖tot(t)=(𝒖SS(t)𝒖SE(t)𝒖ES(t)𝒖EE(t)),\displaystyle{\bm{u}}_{\mathrm{tot}}(t)=\!\left(\begin{array}[]{cc}{\bm{u}}_{{\mathrm{SS}}}(t)&{\bm{u}}_{{\mathrm{SE}}}(t)\\ {\bm{u}}_{{\mathrm{ES}}}(t)&{\bm{u}}_{{\mathrm{EE}}}(t)\end{array}\right)\,, (26)

where 𝒖XY(t)\bm{u}_{\mathrm{XY}}(t) is the spectral Green function between X and Y, with S (E) being the abbreviation of the system (environment). Equivalent to Eq. (3), 𝒗(t,t)\bm{v}(t,t) can be expressed as

𝒗(t,t)=𝒖SE(t)f(ϵE)𝒖ES(t),\displaystyle\bm{v}(t,t)={\bm{u}}_{{\mathrm{SE}}}(t)f(\bm{\epsilon}_{\mathrm{E}}){\bm{u}}_{{\mathrm{ES}}}^{{\dagger}}(t)\,, (27)

where f(ϵE)f(\bm{\epsilon}_{\mathrm{E}}) is the particle distribution of the environment. From the equation, it is obvious that 𝒗(t,t)\bm{v}(t,t) characterizes the average particle number transported from all the energy levels of the environment to the system. Therefore, ρth(t)\rho^{{\mathrm{th}}}(t) is a thermal-like state completely contributed by the environmental particles propagating to the system, with the average particle number characterized by 𝒗(t,t)\bm{v}(t,t). In other words, the solution (23) comes from the thermal fluctuation process.

IV.1.3 Joint effect between fluctuation and dissipation

Now we consider the general result of Eq. (18). From Sec. IV.1.1, we can conclude that particles initially in the system contribute to the terms s±s_{\pm}, |𝑨J,I|±|\bm{A}_{J^{\prime},I^{\prime}}|_{\pm}, (𝒂𝒖)I¯(\bm{a}^{{\dagger}}\bm{u})_{\overline{I^{\prime}}} and (𝒖𝒂)J¯T(\bm{u}^{\dagger}\bm{a})_{\overline{J^{\prime}}^{{\mathrm{T}}}}. From Sec. IV.1.2, we know that ρth(t)\rho^{\mathrm{th}}(t) originates from the particles initially in the environment. When initially particles coexist in both the system and environment, the dissipation property is modified due to the fluctuation. That is, 𝑨=1𝒖𝒖\bm{A}=1-\bm{u}^{\dagger}\bm{u} and 𝒖\bm{u} are modified as 𝑨~=1𝒖11±𝒗𝒖{\widetilde{\bm{A}}}=1-\bm{u}^{\dagger}\frac{1}{1\pm\bm{v}}\bm{u} and 𝒖~=11±𝒗𝒖\widetilde{\bm{u}}=\frac{1}{1\pm\bm{v}}\bm{u}, respectively. Due to the effect 𝑨𝑨~\bm{A}\rightarrow{\widetilde{\bm{A}}}, the probability of the system particles dissipating into the environment becomes larger for bosons, while it becomes less for fermions. Correspondingly, the modification 𝒖𝒖~\bm{u}\rightarrow\widetilde{\bm{u}} reveals that, for bosons, the amplitude of the system particles maintaining in the system becomes smaller; while for fermions, it becomes larger. These are due to the statistic properties of identical particles. For bosons, if an environmental level is occupied with some particles, the probability of the system particles hopping into that level becomes larger, as is described in Feynman lectures Feynman et al. (2011) and manifested in many phenomena such as superradience and Bose-Einstein condensation. While for fermions, due to the Pauli exclusion principle, if an environmental level is occupied, the transition onto it is forbidden.

IV.2 The thermalization

In this subsection, we shall study the asymptotic behavior of the state as the time approaches infinity. The absence or presence of localized modes determines whether the system can be finally thermalized, so we consider these two cases separately.

In the case that there are no localized modes (see Appendix B), 𝒖(t)\bm{u}(t) and 𝒗(t,t)\bm{v}(t,t) would finally evolve to

𝒖()=0,\displaystyle\bm{u}(\infty)=0\,, (28a)
𝒗(,)=dϵ2πf(ϵ)𝑫(ϵ):=𝒏¯.\displaystyle\bm{v}(\infty,\infty)=\int\frac{{\mathrm{d}}\epsilon}{2\pi}f(\epsilon)\bm{D}(\epsilon):=\overline{\bm{n}}\,. (28b)

In this case, the final state of the system would be (See Appendix C for the details)

ρ()=ρth()=e𝒂ln(𝒏¯1±𝒏¯)𝒂|1±𝒏¯|±1.\displaystyle\rho(\infty)=\rho^{{\mathrm{th}}}(\infty)=\frac{e^{\bm{a}^{{\dagger}}\ln(\frac{\overline{\bm{n}}}{1\pm\overline{\bm{n}}}){\bm{a}}}}{|1\pm\overline{\bm{n}}|^{\pm 1}}\,. (29)

Equation (29) implies that the final particle distribution in the system is completely characterized by the matrix 𝒏¯\overline{\bm{n}} Sharma and Rabani (2015), i.e.,

Tr[ρ()ajai]=𝒏¯ij.\displaystyle{\operatorname{Tr}}[\rho(\infty)a_{j}^{\dagger}a_{i}]=\overline{\bm{n}}_{ij}\,. (30)

With the expression of 𝒏¯\overline{\bm{n}} in Eq. (28b) and the properties of the spectral function 𝑫(ϵ)\bm{D}(\epsilon) (that it is positive-semidefinite and dϵ2π𝑫(ϵ)=𝐈\int\frac{{\mathrm{d}}\epsilon}{2\pi}\bm{D}(\epsilon)=\bm{\mathrm{I}}), the final particle distribution can be seen as a weighted sum of the Bose/Fermi distribution. That is, without localized modes, the system would finally reach a thermal-like state, instead of the conventional thermal state.

When the coupling strength between the system and the environment is very weak, then the spectral density 𝑱(ϵ)\bm{J}(\epsilon) and the Lamb shift 𝚫(ϵ)\bm{\Delta}(\epsilon) both tend to vanish, i.e.,

𝑱(ϵ)𝟎,𝚫(ϵ)𝟎.\displaystyle\bm{J}(\epsilon)\rightarrow\bm{0}\,,\qquad\bm{\Delta}(\epsilon)\rightarrow\bm{0}\,. (31)

Following

𝑫(ϵ)=1ϵϵS𝚫(ϵ)+i𝑱(ϵ)2𝑱(ϵ)1ϵϵS𝚫(ϵ)i𝑱(ϵ)2,\displaystyle\!\bm{D}(\epsilon)\!=\!\frac{1}{\epsilon\!-\!\bm{\epsilon}_{\mathrm{S}}\!-\!\bm{\Delta}(\epsilon)\!+\!\!\frac{\mathrm{i}\bm{J}(\epsilon)}{2}}\bm{J}(\epsilon)\frac{1}{\epsilon\!-\!\bm{\epsilon}_{\mathrm{S}}\!-\!\bm{\Delta}(\epsilon)\!-\!\frac{\mathrm{i}\bm{J}(\epsilon)}{2}}, (32)

and the careful analysis in Appendix D, one can find that under condition (31),

𝑫(ϵ)2πδ(ϵ𝐈ϵS).\displaystyle\bm{D}(\epsilon)\rightarrow 2\pi\delta(\epsilon\bm{\mathrm{I}}-\bm{\epsilon}_{\mathrm{S}})\,. (33)

That is, when the system-environment coupling becomes very weak, the broadening and Lamb shift of the system energy levels also vanishes, making the spectrum of the system converging to that of the isolated system. As a consequence of Eqs. (33) and (28b), 𝒏¯\overline{\bm{n}} approaches to the conventional Bose/Fermi distribution, i.e.,

𝒏¯f(ϵS)=1eβ(ϵSμ)1.\displaystyle\overline{\bm{n}}\rightarrow f(\bm{\epsilon}_{\mathrm{S}})=\frac{1}{e^{\beta(\bm{\epsilon}_{\mathrm{S}}-\mu)}\mp 1}\,. (34)

Thus, Eq. (29) converges to

ρ()=eβ𝒂(ϵSμ)𝒂/Tr[eβ𝒂(ϵSμ)𝒂],\displaystyle\rho(\infty)={e^{-\beta\bm{a}^{{\dagger}}(\bm{\epsilon}_{\mathrm{S}}-\mu){\bm{a}}}}/{\operatorname{Tr}}[e^{-\beta\bm{a}^{{\dagger}}(\bm{\epsilon}_{\mathrm{S}}-\mu){\bm{a}}}]\,, (35)

which is exactly the thermal state of the system HS=𝒂ϵS𝒂H_{{\mathrm{S}}}=\bm{a}^{\dagger}\bm{\epsilon}_{\mathrm{S}}\bm{a} in the grand canonical ensemble with inverse temperature β\beta and chemical potential μ\mu of the environment. This provides a rigorous proof that in the weak-coupling limit, the exact evolution of an open quantum system would reproduce in the steady state limit the thermal state in conventional statistic mechanics.

On the other hand, if there are localized modes, their contribution to the oscillations in 𝒖(t)\bm{u}(t) (See Eq. (5)) would survive as tt approaches infinity, i.e.,

𝒖(t)=l𝒁l\displaystyle{\bm{u}}(t\rightarrow\infty)=\sum_{l}{\bm{Z}}_{l} eiϵlt.\displaystyle e^{-\mathrm{i}\epsilon_{l}t}\,. (36)

Following the expression of the reduced density matrix in Eq. (18), the final state must be expressed in terms of the coefficients ρIJ(0)\rho_{IJ}(0), i.e., the system keeps the memory of its initial state. Therefore, the system cannot be thermalized.

V Summary

In this paper, we have investigated a general solution of open quantum systems interacting with the environment through particle exchanges. The exact evolution of the reduced density matrix is given in terms of the nonequilibrium Green functions. We explained the physical consequences of the solution. With the exact density matrix, we study the thermalization process. We obtain the result of equilibrium statistical mechanics from the dynamical perspective and go beyond it. That is, when there are no localized modes and the system-environment coupling is very weak, the final state would be as expected from the conventional statistical mechanics; for no localized modes but relatively strong coupling regime, the steady state would be thermal-like, which departures from the prediction of conventional statistical mechanics; when there are localized modes, the system keeps the memory of the initial state and can not be thermalized.

With the explicit expression of the reduced density matrix, one can obtain the complete information about the system dynamics, which is quite important for the rapidly developing quantum thermodynamics and quantum information, because their central physical quantity, entropy, is directly related to the state. It is also noteworthy that the model studied in our work involves non-Markovian nature. With the explicit form of the density matrix evolution, one can study the memory effects from more perspectives, e.g., quantum coherence, entanglement, and dynamical phase transition. Although we only consider the single-reservoir case, our result can be directly extended to the multi-reservoir case by just extending the corresponding expressions of the nonequilibrium Green functions 𝒖(t)\bm{u}(t) and 𝒗(t,t)\bm{v}(t,t) to multi-reservoirs (multi-leads in nano/quantum devices). Therefore, it is also easy to apply to quantum transport theory.

Acknowledgements.
We thank Yu-Wei Huang, Matisse Wei-Yuan Tu and Li Li for helpful discussions. This work is supported by the Ministry of Science and Technology of the Republic of China under the Contracts No. MOST 107-2811-M-006-534 and No. MOST 108-2811-M-006-518.

Appendix A Simplification of the integral

A.1 Bosonic case

From Eq. (11), for bosons,

dμ(𝜻)dμ(𝜻)𝜻I𝜻JTe𝜻𝑨~𝜻+𝜻𝒖~𝜼+𝜼𝒖~𝜻\displaystyle\int{\mathrm{d}}\mu(\bm{\zeta}){\mathrm{d}}\mu(\bm{\zeta}^{\prime})\bm{\zeta}^{*}_{I}\bm{\zeta}^{\prime}_{J^{{\mathrm{T}}}}\!e^{{\bm{\zeta}}^{\prime\ast}{\widetilde{\bm{A}}}\bm{\zeta}+{\bm{\zeta}}^{\prime\ast}\widetilde{\bm{u}}^{\dagger}{\bm{\eta}}+{\bm{\eta}}^{\ast}\widetilde{\bm{u}}\bm{\zeta}}
=\displaystyle= n=1dd2ζnd2ζnπ2𝜻I𝜻JTexp{(𝜻𝜻)(10𝑨~1)(𝜻𝜻)+(𝜻𝜻)(𝟎𝒖~𝜼)+(𝜼𝒖~𝟎)(𝜻𝜻)}\displaystyle\int\prod_{n=1}^{d}\frac{{\mathrm{d}}^{2}\zeta_{n}{\mathrm{d}}^{2}\zeta^{\prime}_{n}}{\pi^{2}}\bm{\zeta}^{*}_{I}\bm{\zeta}^{\prime}_{J^{{\mathrm{T}}}}{\exp\left\{-\!\left(\!\begin{array}[]{cc}\bm{\zeta}^{\ast}&\bm{\zeta}^{\prime\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{cc}1&0\\ -{\widetilde{\bm{A}}}&1\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\zeta}\\ \bm{\zeta}^{\prime}\end{array}\!\right)+\!\left(\!\begin{array}[]{cc}\bm{\zeta}^{\ast}&\bm{\zeta}^{\prime\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{0}\\ \widetilde{\bm{u}}^{\dagger}\bm{\eta}\end{array}\!\right)+\!\left(\!\begin{array}[]{cc}\bm{\eta}^{\ast}\widetilde{\bm{u}}&\bm{0}\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\zeta}\\ \bm{\zeta}^{\prime}\end{array}\!\right)\right\}} (48)
=\displaystyle= 𝜶JT𝜶In=1dd2ζnd2ζnπ2exp{(𝜻𝜻)(10𝑨~1)(𝜻𝜻)+(𝜻𝜻)(𝜶𝒖~𝜼)+(𝜼𝒖~𝜶)(𝜻𝜻)}|𝜶,𝜶=0\displaystyle\evaluated{\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{\ast}\bm{\alpha}_{I}}\int\prod_{n=1}^{d}\frac{{\mathrm{d}}^{2}\zeta_{n}{\mathrm{d}}^{2}\zeta^{\prime}_{n}}{\pi^{2}}\exp\left\{-\!\left(\!\begin{array}[]{cc}\bm{\zeta}^{\ast}&\bm{\zeta}^{\prime\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{cc}1&0\\ -{\widetilde{\bm{A}}}&1\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\zeta}\\ \bm{\zeta}^{\prime}\end{array}\!\right)+\!\left(\!\begin{array}[]{cc}\bm{\zeta}^{\ast}&\bm{\zeta}^{\prime\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\alpha}\\ \widetilde{\bm{u}}^{\dagger}\bm{\eta}\end{array}\!\right)+\!\left(\!\begin{array}[]{cc}\bm{\eta}^{\ast}\widetilde{\bm{u}}&\bm{\alpha}^{\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\zeta}\\ \bm{\zeta}^{\prime}\end{array}\!\right)\right\}}_{\bm{\alpha},\bm{\alpha}^{\ast}=0} (60)
=\displaystyle= 𝜶JT𝜶Ie𝜶𝑨~𝜶+𝜼𝒖~𝜶+𝜶𝒖~𝜼|𝜶,𝜶=0,\displaystyle\evaluated{\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{\ast}\bm{\alpha}_{I}}e^{\bm{\alpha}^{\ast}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}}}_{\bm{\alpha},\bm{\alpha}^{\ast}=0}\,, (61)

where we have used the convention 𝜶JT𝜶I:=(𝜶d)jd(𝜶1)j1(𝜶1)i1(𝜶d)id\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{\ast}\bm{\alpha}_{I}}:=(\partial_{\bm{\alpha}_{d}^{\ast}})^{j_{d}}\cdots(\partial_{\bm{\alpha}_{1}^{\ast}})^{j_{1}}(\partial_{\bm{\alpha}_{1}})^{i_{1}}\cdots(\partial_{\bm{\alpha}_{d}})^{i_{d}} and the formula of Gaussian integral Kamenev and Levchenko (2009).

𝜶JT𝜶Ie𝜶𝑨~𝜶+𝜶𝒖~𝜼+𝜼𝒖~𝜶|𝜶=𝜶=0\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{*}\bm{\alpha}_{I}}e^{\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}}|_{\bm{\alpha}=\bm{\alpha}^{\ast}=0} is only related to the coefficient of αdidα1i1α1j1αdjd\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}} in the polynomial expansion of e𝜶𝑨~𝜶+𝜶𝒖~𝜼+𝜼𝒖~𝜶e^{\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}}. Note

e𝜶𝑨~𝜶+𝜶𝒖~𝜼+𝜼𝒖~𝜶=k1,k2,k3=0(𝜶𝑨~𝜶)k1k1!(𝜼𝒖~𝜶)k2k2!(𝜶𝒖~𝜼)k3k3!.\displaystyle e^{\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}}=\sum_{k_{1},k_{2},k_{3}=0}^{\infty}\frac{(\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha})^{k_{1}}}{k_{1}!}\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha})^{k_{2}}}{k_{2}!}\frac{(\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta})^{k_{3}}}{k_{3}!}\,. (62)

The terms with factor αdidα1i1α1j1αdjd\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}} can be obtained through that

  1. (i)

    (𝜶𝑨~𝜶)i1++id(i1++id)!\frac{(\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha})^{i_{1}^{\prime}+\cdots+i_{d}^{\prime}}}{(i_{1}^{\prime}+\cdots+i_{d}^{\prime})!} contributes to αdidα1i1α1j1αdjd\alpha_{d}^{i^{\prime}_{d}}\cdots\alpha_{1}^{i^{\prime}_{1}}\alpha_{1}^{\ast j^{\prime}_{1}}\cdots\alpha_{d}^{*j^{\prime}_{d}},

  2. (ii)

    (𝜼𝒖~𝜶)i1¯++id¯(i1¯++id¯)!\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha})^{\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}}}}{(\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}})!} contributes to αdid¯α1i1¯\alpha_{d}^{\overline{i_{d}^{\prime}}}\cdots\alpha_{1}^{\overline{i_{1}^{\prime}}},

  3. (iii)

    (𝜶𝒖~𝜼)j1¯++jd¯(j1¯++jd¯)!\frac{(\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta})^{\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}}}}{(\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}})!} contributes to α1j1¯αdjd¯\alpha_{1}^{*\overline{j_{1}^{\prime}}}\cdots\alpha_{d}^{*\overline{j_{d}^{\prime}}},

where i1,,id,j1,,jd,i1¯,,id¯,j1¯,,jd¯i^{\prime}_{1},\cdots,i^{\prime}_{d},j^{\prime}_{1},\cdots,j^{\prime}_{d},\overline{i^{\prime}_{1}},\cdots,\overline{i^{\prime}_{d}},\overline{j^{\prime}_{1}},\cdots,\overline{j^{\prime}_{d}} satisfy the constraint

i1,,id,j1,,jd,i1¯,,id¯,j1¯,,jd¯{0,1,2,};\displaystyle i^{\prime}_{1},\cdots,i^{\prime}_{d},j^{\prime}_{1},\cdots,j^{\prime}_{d},\overline{i^{\prime}_{1}},\cdots,\overline{i^{\prime}_{d}},\overline{j^{\prime}_{1}},\cdots,\overline{j^{\prime}_{d}}\in\{0,1,2,\cdots\}\,; (63a)
i1¯=i1i1,,id¯=idid;\displaystyle\overline{i_{1}^{\prime}}=i_{1}-i_{1}^{\prime},\quad\cdots,\quad\overline{i_{d}^{\prime}}=i_{d}-i_{d}^{\prime}\,; (63b)
j1¯=j1j1,,jd¯=jdjd;\displaystyle\overline{j_{1}^{\prime}}=j_{1}-j_{1}^{\prime},\quad\cdots,\quad\overline{j_{d}^{\prime}}=j_{d}-j_{d}^{\prime}\,; (63c)
i1++id=j1++jd.\displaystyle i_{1}^{\prime}+\cdots+i_{d}^{\prime}=j_{1}^{\prime}+\cdots+j_{d}^{\prime}\,. (63d)

Note,

  1. (i)

    the coefficient of αdidα1i1α1j1αdjd\alpha_{d}^{i^{\prime}_{d}}\cdots\alpha_{1}^{i^{\prime}_{1}}\alpha_{1}^{\ast j^{\prime}_{1}}\cdots\alpha_{d}^{*j^{\prime}_{d}} in (𝜶𝑨~𝜶)i1++id(i1++id)!\frac{(\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha})^{i_{1}^{\prime}+\cdots+i_{d}^{\prime}}}{(i_{1}^{\prime}+\cdots+i_{d}^{\prime})!} is perm(𝑨~J,I)i1!id!j1!jd!\frac{\mathrm{perm}({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})}{i_{1}^{\prime}!\cdots i_{d}^{\prime}!j_{1}^{\prime}!\cdots j_{d}^{\prime}!};

  2. (ii)

    the coefficient of αdid¯α1i1¯\alpha_{d}^{\overline{i_{d}^{\prime}}}\cdots\alpha_{1}^{\overline{i_{1}^{\prime}}} in (𝜼𝒖~𝜶)i1¯++id¯(i1¯++id¯)!\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha})^{\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}}}}{(\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}})!} is [(𝜼𝒖~)1]i1¯[(𝜼𝒖~)d]id¯i1¯!id¯!=(𝜼𝒖~)I¯i1¯!id¯!\frac{[(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{1}]^{\overline{i_{1}^{\prime}}}\cdots[(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{d}]^{\overline{i_{d}^{\prime}}}}{\overline{{i_{1}^{\prime}}}!\cdots\overline{{i_{d}^{\prime}}}!}=\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}}{\overline{{i_{1}^{\prime}}}!\cdots\overline{{i_{d}^{\prime}}}!};

  3. (iii)

    the coefficient of α1j1¯αdjd¯\alpha_{1}^{*\overline{j_{1}^{\prime}}}\cdots\alpha_{d}^{*\overline{j_{d}^{\prime}}}

    in (𝜶𝒖~𝜼)j1¯++jd¯(j1¯++jd¯)!\frac{(\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta})^{\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}}}}{(\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}})!} is [(𝒖~𝜼)d]jd¯[(𝒖~𝜼)1]j1¯j1¯!jd¯!=(𝒖~𝜼)J¯Tj1¯!jd¯!\frac{[(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{d}]^{\overline{j_{d}^{\prime}}}\cdots[(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{1}]^{\overline{j_{1}^{\prime}}}}{\overline{{j_{1}^{\prime}}}!\cdots\overline{{j_{d}^{\prime}}}!}=\frac{(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}}{\overline{{j_{1}^{\prime}}}!\cdots\overline{{j_{d}^{\prime}}}!}.

Therefore, the coefficient of αdidα1i1α1j1αdjd\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}} in (𝜶𝑨~𝜶)i1++id(i1++id)!(𝜶𝒖~𝜼)j1¯++jd¯(j1¯++jd¯)!(𝜼𝒖~𝜶)i1¯++id¯(i1¯++id¯)!\frac{(\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha})^{i_{1}^{\prime}+\cdots+i_{d}^{\prime}}}{(i_{1}^{\prime}+\cdots+i_{d}^{\prime})!}\frac{(\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta})^{\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}}}}{(\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}})!}\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha})^{\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}}}}{(\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}})!} is perm(𝑨~J,I)i1!id!j1!jd!(𝜼𝒖~)I¯i1¯!id¯!(𝒖~𝜼)J¯Tj1¯!jd¯!\frac{\mathrm{perm}({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})}{i_{1}^{\prime}!\cdots i_{d}^{\prime}!j_{1}^{\prime}!\cdots j_{d}^{\prime}!}\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}}{\overline{{i_{1}^{\prime}}}!\cdots\overline{{i_{d}^{\prime}}}!}\frac{(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}}{\overline{{j_{1}^{\prime}}}!\cdots\overline{{j_{d}^{\prime}}}!}, and the total coefficient of αdidα1i1α1j1αdjd\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}} in Eq. (62) is the summation of all these terms with i()i_{(\cdot)}^{\prime}’s j()j_{(\cdot)}^{\prime}’s satisfying Eq. (63), i.e.,

i1,,id,j1,,jdperm(𝑨~J,I)i1!id!j1!jd!(𝜼𝒖~)I¯i1¯!id¯!(𝒖~𝜼)J¯Tj1¯!jd¯!.\displaystyle\sum_{i_{1}^{\prime},\cdots,i_{d}^{\prime},j_{1}^{\prime},\cdots,j_{d}^{\prime}}\frac{\mathrm{perm}({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})}{i_{1}^{\prime}!\cdots i_{d}^{\prime}!j_{1}^{\prime}!\cdots j_{d}^{\prime}!}\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}}{\overline{{i_{1}^{\prime}}}!\cdots\overline{{i_{d}^{\prime}}}!}\frac{(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}}{\overline{{j_{1}^{\prime}}}!\cdots\overline{{j_{d}^{\prime}}}!}\,. (64)

Also note that

𝜶JT𝜶I(αdidα1i1α1j1αdjd)=i1!id!j1!jd!,\displaystyle\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{*}\bm{\alpha}_{I}}(\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}})=i_{1}!\cdots i_{d}!j_{1}!\cdots j_{d}!\,, (65)

therefore

𝜶JT𝜶Ie𝜶𝑨~𝜶+𝜶𝒖~𝜼+𝜼𝒖~𝜶|𝜶=𝜶=0=i1,,id,j1,,jdCi1i1CididCj1j1Cjdjdperm(𝑨~J,I)(𝜼𝒖~)I¯(𝒖~𝜼)J¯T,\displaystyle\evaluated{\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{*}\bm{\alpha}_{I}}e^{\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}}}_{\bm{\alpha}=\bm{\alpha}^{*}=0}=\sum_{i_{1}^{\prime},\cdots,i_{d}^{\prime},j_{1}^{\prime},\cdots,j_{d}^{\prime}}C_{i_{1}^{\prime}}^{i_{1}}\cdots C_{i_{d}^{\prime}}^{i_{d}}C_{j_{1}^{\prime}}^{j_{1}}\cdots C_{j_{d}^{\prime}}^{j_{d}}\mathrm{perm}({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}\,, (66)

where Ckn=n!k!(nk)!C_{k}^{n}=\frac{n!}{k!(n-k)!} stands for the binomial coefficient. The factor Ci1i1CididCj1j1CjdjdC_{i_{1}^{\prime}}^{i_{1}}\cdots C_{i_{d}^{\prime}}^{i_{d}}C_{j_{1}^{\prime}}^{j_{1}}\cdots C_{j_{d}^{\prime}}^{j_{d}} is the number of ways of obtaining II^{\prime} from II as well as obtaining JJ^{\prime} from JJ. So we can transform the summation over all the possible II^{\prime}’s and JJ^{\prime}’s to the summation of all the possible ways of obtaining subsequences II^{\prime}’s and JJ^{\prime}’s from II and JJ, respectively. Therefore, the factor Ci1i1CididCj1j1CjdjdC_{i_{1}^{\prime}}^{i_{1}}\cdots C_{i_{d}^{\prime}}^{i_{d}}C_{j_{1}^{\prime}}^{j_{1}}\cdots C_{j_{d}^{\prime}}^{j_{d}} is absorbed in the sum and the result can be reexpressed as

dμ(𝜻)dμ(𝜻)𝜻I𝜻JTe𝜻𝑨~𝜻+𝜻𝒖~𝜼+𝜼𝒖~𝜻=I,Jperm(𝑨~J,I)(𝜼𝒖~)I¯(𝒖~𝜼)J¯T.\displaystyle\int{\mathrm{d}}\mu(\bm{\zeta}){\mathrm{d}}\mu(\bm{\zeta}^{\prime})\bm{\zeta}^{*}_{I}\bm{\zeta}^{\prime}_{J^{{\mathrm{T}}}}\!e^{{\bm{\zeta}}^{\prime\ast}{\widetilde{\bm{A}}}\bm{\zeta}+{\bm{\zeta}}^{\prime\ast}\widetilde{\bm{u}}^{\dagger}{\bm{\eta}}+{\bm{\eta}}^{\ast}\widetilde{\bm{u}}\bm{\zeta}}=\sum_{I^{\prime},J^{\prime}}\mathrm{perm}({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}\,. (67)

A.2 Fermionic case

From Eq. (11), for fermions, we have

dμ(𝜻)dμ(𝜻)𝜻I𝜻JTe𝜻𝑨~𝜻+𝜻𝒖~𝜼+𝜼𝒖~𝜻\displaystyle\int{\mathrm{d}}\mu(\bm{\zeta}){\mathrm{d}}\mu(\bm{\zeta}^{\prime})\bm{\zeta}^{*}_{I}\bm{\zeta}^{\prime}_{J^{{\mathrm{T}}}}e^{-{\bm{\zeta}}^{\prime\ast}{\widetilde{\bm{A}}}\bm{\zeta}+{\bm{\zeta}}^{\prime\ast}\widetilde{\bm{u}}^{\dagger}{\bm{\eta}}+{\bm{\eta}}^{\ast}\widetilde{\bm{u}}\bm{\zeta}}
=\displaystyle= n=1d(dζndζndζndζn)𝜻I𝜻JTexp{(𝜻𝜻)(10𝑨~1)(𝜻𝜻)+(𝜻𝜻)(𝟎𝒖~𝜼)+(𝜼𝒖~𝟎)(𝜻𝜻)}\displaystyle\int\prod_{n=1}^{d}{({\mathrm{d}}\zeta_{n}^{*}{\mathrm{d}}\zeta_{n}{\mathrm{d}}\zeta^{\prime*}_{n}{\mathrm{d}}\zeta^{\prime}_{n})}\bm{\zeta}^{*}_{I}\bm{\zeta}^{\prime}_{J^{{\mathrm{T}}}}\!\exp\left\{-\!\left(\!\begin{array}[]{cc}\bm{\zeta}^{\ast}&\bm{\zeta}^{\prime\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{cc}1&0\\ {\widetilde{\bm{A}}}&1\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\zeta}\\ \bm{\zeta}^{\prime}\end{array}\!\right)+\!\left(\!\begin{array}[]{cc}\bm{\zeta}^{\ast}&\bm{\zeta}^{\prime\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{0}\\ \widetilde{\bm{u}}^{\dagger}\bm{\eta}\end{array}\!\right)+\!\left(\!\begin{array}[]{cc}\bm{\eta}^{\ast}\widetilde{\bm{u}}&\bm{0}\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\zeta}\\ \bm{\zeta}^{\prime}\end{array}\!\right)\right\} (79)
=\displaystyle= 𝜶JT𝜶In=1d(dζndζndζndζn)exp{(𝜻𝜻)(10𝑨~1)(𝜻𝜻)+(𝜻𝜻)(𝜶𝒖~𝜼)+(𝜼𝒖~𝜶)(𝜻𝜻)}|𝜶,𝜶=0\displaystyle\evaluated{\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{\ast}\bm{\alpha}_{I}}\int{\prod_{n=1}^{d}{({\mathrm{d}}\zeta_{n}^{*}{\mathrm{d}}\zeta_{n}{\mathrm{d}}\zeta^{\prime*}_{n}{\mathrm{d}}\zeta^{\prime}_{n})}}\exp\left\{-\!\left(\!\begin{array}[]{cc}\bm{\zeta}^{\ast}&\bm{\zeta}^{\prime\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{cc}1&0\\ {\widetilde{\bm{A}}}&1\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\zeta}\\ \bm{\zeta}^{\prime}\end{array}\!\right)+\!\left(\!\begin{array}[]{cc}\bm{\zeta}^{\ast}&\bm{\zeta}^{\prime\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\alpha}\\ \widetilde{\bm{u}}^{\dagger}\bm{\eta}\end{array}\!\right)+\!\left(\!\begin{array}[]{cc}\bm{\eta}^{\ast}\widetilde{\bm{u}}&\bm{\alpha}^{\ast}\end{array}\!\right)\!\left(\!\begin{array}[]{c}\bm{\zeta}\\ \bm{\zeta}^{\prime}\end{array}\!\right)\right\}}_{\bm{\alpha},\bm{\alpha}^{\ast}=0} (91)
=\displaystyle= 𝜶JT𝜶Ie𝜶𝑨~𝜶+𝜼𝒖~𝜶+𝜶𝒖~𝜼|𝜶,𝜶=0,\displaystyle\evaluated{\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{\ast}\bm{\alpha}_{I}}e^{-\bm{\alpha}^{\ast}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}}}_{\bm{\alpha},\bm{\alpha}^{\ast}=0}\,, (92)

where we have used the convention 𝜶JT𝜶I:=(αd)jd(α1)j1(α1)i1(αd)id\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{\ast}\bm{\alpha}_{I}}:=(\partial_{\alpha_{d}^{\ast}})^{j_{d}}\cdots(\partial_{\alpha_{1}^{\ast}})^{j_{1}}(\partial_{\alpha_{1}})^{i_{1}}\cdots(\partial_{\alpha_{d}})^{i_{d}} and the formula of Grassmannian Gaussian integral Kamenev and Levchenko (2009).

𝜶JT𝜶Ie𝜶𝑨~𝜶+𝜶𝒖~𝜼+𝜼𝒖~𝜶|𝜶=𝜶=0\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{*}\bm{\alpha}_{I}}e^{-\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}}|_{\bm{\alpha}=\bm{\alpha}^{\ast}=0} is only related to the coefficient of αdidα1i1α1j1αdjd\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{*j_{1}}\cdots\alpha_{d}^{*j_{d}} in the polynomial expansion of e𝜶𝑨~𝜶+𝜶𝒖~𝜼+𝜼𝒖~𝜶e^{-\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}}. Note

e𝜶𝑨~𝜶+𝜶𝒖~𝜼+𝜼𝒖~𝜶=k1,k2,k3=0(𝜶𝑨~𝜶)k1k1!(𝜼𝒖~𝜶)k2k2!(𝜶𝒖~𝜼)k3k3!,\displaystyle e^{-\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}}=\sum_{k_{1},k_{2},k_{3}=0}^{\infty}\frac{(-\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha})^{k_{1}}}{k_{1}!}\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha})^{k_{2}}}{k_{2}!}\frac{(\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta})^{k_{3}}}{k_{3}!}\,, (93)

the terms with factor αdidα1i1α1j1αdjd\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}} can be obtained through that

  1. (i)

    (𝜶𝑨~𝜶)i1++id(i1++id)!\frac{(-\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha})^{i_{1}^{\prime}+\cdots+i_{d}^{\prime}}}{(i_{1}^{\prime}+\cdots+i_{d}^{\prime})!} contributes to αdidα1i1α1j1αdjd\alpha_{d}^{i^{\prime}_{d}}\cdots\alpha_{1}^{i^{\prime}_{1}}\alpha_{1}^{\ast j^{\prime}_{1}}\cdots\alpha_{d}^{*j^{\prime}_{d}},

  2. (ii)

    (𝜼𝒖~𝜶)i1¯++id¯(i1¯++id¯)!\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha})^{\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}}}}{(\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}})!} contributes to αdid¯α1i1¯\alpha_{d}^{\overline{i_{d}^{\prime}}}\cdots\alpha_{1}^{\overline{i_{1}^{\prime}}},

  3. (iii)

    (𝜶𝒖~𝜼)j1¯++jd¯(j1¯++jd¯)!\frac{(\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta})^{\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}}}}{(\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}})!} contributes to α1j1¯αdjd¯\alpha_{1}^{*\overline{j_{1}^{\prime}}}\cdots\alpha_{d}^{*\overline{j_{d}^{\prime}}},

where i1,,id,j1,,jd,i1¯,,id¯,j1¯,,jd¯i^{\prime}_{1},\cdots,i^{\prime}_{d},j^{\prime}_{1},\cdots,j^{\prime}_{d},\overline{i^{\prime}_{1}},\cdots,\overline{i^{\prime}_{d}},\overline{j^{\prime}_{1}},\cdots,\overline{j^{\prime}_{d}} satisfy the constraint

i1,,id,j1,,jd,i1¯,,id¯,j1¯,,jd¯{0,1};\displaystyle i^{\prime}_{1},\cdots,i^{\prime}_{d},j^{\prime}_{1},\cdots,j^{\prime}_{d},\overline{i^{\prime}_{1}},\cdots,\overline{i^{\prime}_{d}},\overline{j^{\prime}_{1}},\cdots,\overline{j^{\prime}_{d}}\in\{0,1\}\,; (94a)
i1¯=i1i1,,id¯=idid;\displaystyle\overline{i_{1}^{\prime}}=i_{1}-i_{1}^{\prime},\quad\cdots,\quad\overline{i_{d}^{\prime}}=i_{d}-i_{d}^{\prime}\,; (94b)
j1¯=j1j1,,jd¯=jdjd;\displaystyle\overline{j_{1}^{\prime}}=j_{1}-j_{1}^{\prime},\quad\cdots,\quad\overline{j_{d}^{\prime}}=j_{d}-j_{d}^{\prime}\,; (94c)
i1++id=j1++jd.\displaystyle i_{1}^{\prime}+\cdots+i_{d}^{\prime}=j_{1}^{\prime}+\cdots+j_{d}^{\prime}\,. (94d)

Note that

  1. (i)

    the coefficient of αdidα1i1α1j1αdjd\alpha_{d}^{i^{\prime}_{d}}\cdots\alpha_{1}^{i^{\prime}_{1}}\alpha_{1}^{\ast j^{\prime}_{1}}\cdots\alpha_{d}^{*j^{\prime}_{d}} in (𝜶𝑨~𝜶)i1++id(i1++id)!\frac{(-\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha})^{i_{1}^{\prime}+\cdots+i_{d}^{\prime}}}{(i_{1}^{\prime}+\cdots+i_{d}^{\prime})!} is det(𝑨~J,I)\det({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}});

  2. (ii)

    the coefficient of αdid¯α1i1¯\alpha_{d}^{\overline{i_{d}^{\prime}}}\cdots\alpha_{1}^{\overline{i_{1}^{\prime}}} in (𝜼𝒖~𝜶)i1¯++id¯(i1¯++id¯)!\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha})^{\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}}}}{(\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}})!} is (𝜼𝒖~)I¯{(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}};

  3. (iii)

    the coefficient of α1j1¯αdjd¯\alpha_{1}^{*\overline{j_{1}^{\prime}}}\cdots\alpha_{d}^{*\overline{j_{d}^{\prime}}} in (𝜶𝒖~𝜼)j1¯++jd¯(j1¯++jd¯)!\frac{(\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta})^{\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}}}}{(\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}})!} is (𝒖~𝜼)J¯T{(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}};

and

αdidα1i1α1j1αdjd=\displaystyle\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}}= δII¯IδJJ¯Jαdidα1i1α1j1αdjdαdid¯α1i1¯α1j1¯αdjd¯,\displaystyle\delta^{I}_{I^{\prime}\overline{I^{\prime}}}\delta^{J}_{J^{\prime}\overline{J^{\prime}}}\alpha_{d}^{i^{\prime}_{d}}\cdots\alpha_{1}^{i^{\prime}_{1}}\alpha_{1}^{\ast j^{\prime}_{1}}\cdots\alpha_{d}^{*j^{\prime}_{d}}\alpha_{d}^{\overline{i_{d}^{\prime}}}\cdots\alpha_{1}^{\overline{i_{1}^{\prime}}}\alpha_{1}^{*\overline{j_{1}^{\prime}}}\cdots\alpha_{d}^{*\overline{j_{d}^{\prime}}}\,, (95)

therefore, the coefficient of αdidα1i1α1j1αdjd\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}} in (𝜶𝑨~𝜶)i1++id(i1++id)!(𝜶𝒖~𝜼)j1¯++jd¯(j1¯++jd¯)!(𝜼𝒖~𝜶)i1¯++id¯(i1¯++id¯)!\frac{(-\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha})^{i_{1}^{\prime}+\cdots+i_{d}^{\prime}}}{(i_{1}^{\prime}+\cdots+i_{d}^{\prime})!}\frac{(\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta})^{\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}}}}{(\overline{j_{1}^{\prime}}+\cdots+\overline{j_{d}^{\prime}})!}\frac{(\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha})^{\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}}}}{(\overline{i_{1}^{\prime}}+\cdots+\overline{i_{d}^{\prime}})!} is δII¯IδJJ¯Jdet(𝑨~J,I)(𝜼𝒖~)I¯(𝒖~𝜼)J¯T\delta^{I}_{I^{\prime}\overline{I^{\prime}}}\delta^{J}_{J^{\prime}\overline{J^{\prime}}}\det({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}}){(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}}{(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}}. The total coefficient of αdidα1i1α1j1αdjd\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}} in Eq. (93) is the summation of all the possible terms with i()i_{(\cdot)}^{\prime}’s j()j_{(\cdot)}^{\prime}’s satisfying Eq. (94), which is denoted as

i1,,id,j1,,jdδII¯IδJJ¯Jdet(𝑨~J,I)(𝜼𝒖~)I¯(𝒖~𝜼)J¯T.\displaystyle\sum_{i_{1}^{\prime},\cdots,i_{d}^{\prime},j_{1}^{\prime},\cdots,j_{d}^{\prime}}\delta^{I}_{I^{\prime}\overline{I^{\prime}}}\delta^{J}_{J^{\prime}\overline{J^{\prime}}}\det({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}}){(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}}{(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}}\,. (96)

Also note that for Grassmannian variables

𝜶JT𝜶I(αdidα1i1α1j1αdjd)=1,\displaystyle\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{*}\bm{\alpha}_{I}}(\alpha_{d}^{i_{d}}\cdots\alpha_{1}^{i_{1}}\alpha_{1}^{\ast j_{1}}\cdots\alpha_{d}^{*j_{d}})=1\,, (97)

therefore

𝜶JT𝜶Ie𝜶𝑨~𝜶+𝜶𝒖~𝜼+𝜼𝒖~𝜶|𝜶=𝜶=0=i1,,id,j1,,jdδII¯IδJJ¯Jdet(𝑨~J,I)(𝜼𝒖~)I¯(𝒖~𝜼)J¯T.\displaystyle\evaluated{\partial_{\bm{\alpha}_{J^{{\mathrm{T}}}}^{*}\bm{\alpha}_{I}}e^{-\bm{\alpha}^{*}{\widetilde{\bm{A}}}\bm{\alpha}+\bm{\alpha}^{\ast}\widetilde{\bm{u}}^{\dagger}\bm{\eta}+\bm{\eta}^{\ast}\widetilde{\bm{u}}\bm{\alpha}}}_{\bm{\alpha}=\bm{\alpha}^{*}=0}=\sum_{i_{1}^{\prime},\cdots,i_{d}^{\prime},j_{1}^{\prime},\cdots,j_{d}^{\prime}}\delta^{I}_{I^{\prime}\overline{I^{\prime}}}\delta^{J}_{J^{\prime}\overline{J^{\prime}}}\det({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}\,. (98)

We can express the result in a new way, i.e., as the summation over all the possible ways of obtaining II^{\prime}’s and JJ^{\prime}’s from II and JJ, respectively. Because the way obtaining II^{\prime} and JJ^{\prime} from II and JJ in the fermionic case is unique, i1,,id,j1,,jd\sum_{i_{1}^{\prime},\cdots,i_{d}^{\prime},j_{1}^{\prime},\cdots,j_{d}^{\prime}} can be directly replaced by I,J\sum_{I^{\prime},J^{\prime}}. Therefore, the final result can be formulated as

dμ(𝜻)dμ(𝜻)𝜻I𝜻JTe𝜻𝑨~𝜻+𝜻𝒖~𝜼+𝜼𝒖~𝜻=I,JδII¯IδJJ¯Jdet(𝑨~J,I)(𝜼𝒖~)I¯(𝒖~𝜼)J¯T.\displaystyle\int{\mathrm{d}}\mu(\bm{\zeta}){\mathrm{d}}\mu(\bm{\zeta}^{\prime})\bm{\zeta}^{*}_{I}\bm{\zeta}^{\prime}_{J^{{\mathrm{T}}}}e^{-{\bm{\zeta}}^{\prime\ast}{\widetilde{\bm{A}}}\bm{\zeta}+{\bm{\zeta}}^{\prime\ast}\widetilde{\bm{u}}^{\dagger}{\bm{\eta}}+{\bm{\eta}}^{\ast}\widetilde{\bm{u}}\bm{\zeta}}=\sum_{I^{\prime},J^{\prime}}\delta^{I}_{I^{\prime}\overline{I^{\prime}}}\delta^{J}_{J^{\prime}\overline{J^{\prime}}}\det({\widetilde{\bm{A}}}_{J^{\prime},I^{\prime}})(\bm{\eta}^{\ast}\widetilde{\bm{u}})_{\overline{I^{\prime}}}(\widetilde{\bm{u}}^{\dagger}\bm{\eta})_{\overline{J^{\prime}}^{\mathrm{T}}}\,. (99)

Appendix B Asymptotic form of 𝒗(t,t)\bm{v}(t,t) as tt approaches infinity

Except for the formula in Ref. Zhang et al. (2012), the elements of 𝒗(t,t)\bm{v}(t,t) can also be expressed in terms of the system-environment Green function, reading

vii(t,t)=kuik(t)f(ϵk)uki(t),\displaystyle v_{ii^{\prime}}(t,t)=\sum_{k}u_{ik}(t)f(\epsilon_{k})u^{\dagger}_{ki^{\prime}}(t)\,, (100)

where uik(t)=[ai(t),bk(0)]u_{ik}(t)=\langle[a_{i}(t),b_{k}^{\dagger}(0)]_{\mp}\rangle and uki(t)=[uik(t)]u^{\dagger}_{ki^{\prime}}(t)=[u_{i^{\prime}k}(t)]^{*}. In order to obtain 𝒗(t,t)\bm{v}(t,t) in the long-time limit, we need to find the asymptotic behavior of uik(t)u_{ik}(t).

Note that

uik(t)\displaystyle u_{ik}(t) =j0tdτuij(tτ)Vjkeiϵkτ=ijdϵ2πUij(ϵ+i0+)Vjkeiϵt0tdτei(ϵϵk)τ,\displaystyle=\sum_{j}\int_{0}^{t}{\mathrm{d}}\tau u_{ij}(t-\tau){V}_{jk}e^{-\mathrm{i}{\epsilon}_{k}\tau}=\mathrm{i}\sum_{j}\int_{-\infty}^{\infty}\frac{{\mathrm{d}}\epsilon}{2\pi}U_{ij}(\epsilon+\mathrm{i}0^{+}){V}_{jk}e^{-\mathrm{i}\epsilon t}\int_{0}^{t}{\mathrm{d}}\tau e^{\mathrm{i}(\epsilon-{\epsilon}_{k})\tau}\,, (101)

and

0dτei(ϵϵk)τ=iϵϵk+i0+,\displaystyle\int_{0}^{\infty}{\mathrm{d}}\tau e^{\mathrm{i}(\epsilon-{\epsilon}_{k})\tau}=\frac{\mathrm{i}}{\epsilon-{\epsilon}_{k}+\mathrm{i}0^{+}}\,, (102)

limtuik(t)\lim_{t\rightarrow\infty}u_{ik}(t) can be simplified to

limtuik(t)\displaystyle\lim_{t\rightarrow\infty}u_{ik}(t) =jdϵ2πUij(ϵ+i0+)Vjkϵϵk+i0+eiϵt.\displaystyle=-\sum_{j}\int_{-\infty}^{\infty}\frac{{\mathrm{d}}\epsilon}{2\pi}\frac{U_{ij}(\epsilon+\mathrm{i}0^{+}){V}_{jk}}{\epsilon-{\epsilon}_{k}+\mathrm{i}0^{+}}e^{-\mathrm{i}\epsilon t}\,. (103)

When there are no localized modes in the total system, there is no singularity in Uij(ϵ+i0+)U_{ij}(\epsilon+\mathrm{i}0^{+}) and there is only a pole located at ϵki0\epsilon_{k}-\mathrm{i}0 in the integrated function of Eq. (103). Using the contour integral, one obtains

limtuik(t)\displaystyle\lim_{t\rightarrow\infty}u_{ik}(t) =jUij(ϵk+i0+)Vjkeiϵkt.\displaystyle=-\sum_{j}U_{ij}({\epsilon}_{k}+\mathrm{i}0^{+}){V}_{jk}e^{-\mathrm{i}\epsilon_{k}t}\,. (104)

vii(t,t)v_{ii^{\prime}}(t,t) in the long-time limit therefore reads

vii(t,t)\displaystyle v_{ii^{\prime}}(t,t) =dϵ2πf(ϵ)j,jUij(ϵ+i0+)eiϵtJjj(ϵ)Uji(ϵ+i0+)eiϵt.\displaystyle=\int\frac{{\mathrm{d}}\epsilon}{2\pi}f(\epsilon)\sum_{j,j^{\prime}}U_{ij}(\epsilon+\mathrm{i}0^{+})e^{-\mathrm{i}\epsilon t}J_{jj^{\prime}}(\epsilon)U^{\dagger}_{j^{\prime}i^{\prime}}(\epsilon+\mathrm{i}0^{+})e^{\mathrm{i}\epsilon t}\,. (105)

In terms of the matrix representation, it can be expressed as

limt𝒗(t,t)=dϵ2πf(ϵ)𝑼(ϵ+i0+)𝑱(ϵ)𝑼(ϵ+i0+).\displaystyle\lim_{t\rightarrow\infty}\bm{v}(t,t)=\int\frac{{\mathrm{d}}\epsilon}{2\pi}f(\epsilon)\bm{U}(\epsilon+\mathrm{i}0^{+})\bm{J}(\epsilon)\bm{U}^{\dagger}(\epsilon+\mathrm{i}0^{+})\,. (106)

Following Eq. (114), it can be further simplified to

limt𝒗(t,t)=dϵ2πf(ϵ)𝑫(ϵ).\displaystyle\lim_{t\rightarrow\infty}\bm{v}(t,t)=\int\frac{{\mathrm{d}}\epsilon}{2\pi}f(\epsilon)\bm{D}(\epsilon)\,. (107)

This is the standard equilibrium fluctuation-dissipation theorem.

Appendix C Equilibrium state of the system

If the total system possesses no localized modes, the open system would finally reach an equilibrium state. Following the expression of the reduced density matrix in Eq. (18) and the asymptotic expression of 𝒖(t)\bm{u}(t) and 𝒗(t,t)\bm{v}(t,t) in Eq. (28), when tt approaches infinity, only the terms with I¯=J¯=0\overline{I^{\prime}}=\overline{J^{\prime}}=0 would survive, i.e.,

ρ()=IJρIJ(0)|𝑨~J,I|±ρth()i1!id!j1!jd!.\displaystyle\rho(\infty)=\sum_{IJ}{\rho_{IJ}(0)}\frac{|{\widetilde{\bm{A}}}_{J,I}|_{\pm}\rho^{{\mathrm{th}}}(\infty)}{\sqrt{i_{1}!\cdots i_{d}!j_{1}!\cdots j_{d}!}}\,. (108)

Because 𝑨~{\widetilde{\bm{A}}} reduces to the identity matrix 𝐈\bm{\mathrm{I}} as 𝒖\bm{u} vanishes, the matrix 𝑨~J,I{\widetilde{\bm{A}}}_{J,I} would approach to a block-diagonal matrix in the form

𝑨~J,I=((𝑨~J,I)1(𝑨~J,I)2(𝑨~J,I)d){\widetilde{\bm{A}}}_{J,I}=\matrixquantity(({\widetilde{\bm{A}}}_{J,I})_{1}&&&\\ &({\widetilde{\bm{A}}}_{J,I})_{2}&&\\ &&\ddots&\\ &&&({\widetilde{\bm{A}}}_{J,I})_{d}) (109)

where

(𝑨~J,I)n=(1111)jn×in.({\widetilde{\bm{A}}}_{J,I})_{n}=\begin{pmatrix}1&\cdots&1\\ \vdots&\ddots&\vdots\\ 1&\cdots&1\end{pmatrix}_{j_{n}\times i_{n}}\,. (110)

The permanent and determinant of 𝑨~J,I{\widetilde{\bm{A}}}_{J,I} then share a common expression, reading

|𝑨~J,I|±={0(IJ),i1!id!(I=J).|{\widetilde{\bm{A}}}_{J,I}|_{\pm}=\left\{\begin{array}[]{lr}0&\quad(I\neq J)\,,\\ i_{1}!\cdots i_{d}!&\quad(I=J)\,.\end{array}\right. (111)

Following Eq. (108), ρ()\rho(\infty) can be simplified to

ρ()=I=JρIJ(0)ρth().\displaystyle\rho(\infty)=\sum_{I=J}{\rho_{IJ}(0)}\rho^{{\mathrm{th}}}(\infty)\,. (112)

With the normalization condition that I=JρIJ(0)=1\sum_{I=J}{\rho_{IJ}(0)}=1, it can be finally written as

ρ()=ρth()=e𝒂ln(𝒗(,)1±𝒗(,))𝒂|1±𝒗(,)|±1=e𝒂ln(𝒏¯1±𝒏¯)𝒂|1±𝒏¯|±1.\displaystyle\rho(\infty)=\rho^{{\mathrm{th}}}(\infty)=\frac{e^{\bm{a}^{{\dagger}}\ln(\frac{\bm{v}(\infty,\infty)}{1\pm\bm{v}(\infty,\infty)}){\bm{a}}}}{|1\pm\bm{v}(\infty,\infty)|^{\pm 1}}=\frac{e^{\bm{a}^{{\dagger}}\ln(\frac{\overline{\bm{n}}}{1\pm\overline{\bm{n}}}){\bm{a}}}}{|1\pm\overline{\bm{n}}|^{\pm 1}}\,. (113)

Appendix D Asymptotic form of 𝑫(ϵ)\bm{D}(\epsilon) as the coupling strength vanishes

When 𝑱(ϵ)𝟎\bm{J}(\epsilon)\rightarrow\bm{0} and 𝚫(ϵ)𝟎\bm{\Delta}(\epsilon)\rightarrow\bm{0}, the spectrum

𝑫(ϵ)=1ϵϵS𝚫(ϵ)+i𝑱(ϵ)2𝑱(ϵ)1ϵϵS𝚫(ϵ)i𝑱(ϵ)2,\displaystyle\bm{D}(\epsilon)=\frac{1}{\epsilon-\bm{\epsilon}_{\mathrm{S}}-\bm{\Delta}(\epsilon)+\mathrm{i}\frac{\bm{J}(\epsilon)}{2}}\bm{J}(\epsilon)\frac{1}{\epsilon-\bm{\epsilon}_{\mathrm{S}}-\bm{\Delta}(\epsilon)-\mathrm{i}\frac{\bm{J}(\epsilon)}{2}}\,, (114)

is vanishing for the values of ϵ\epsilon that the matrices ϵϵS𝚫(ϵ)±i𝑱(ϵ)2\epsilon-\bm{\epsilon}_{\mathrm{S}}-\bm{\Delta}(\epsilon)\pm\mathrm{i}\frac{\bm{J}(\epsilon)}{2} are invertible. Because 𝑱(ϵ)𝟎\bm{J}(\epsilon)\rightarrow\bm{0} and 𝚫(ϵ)𝟎\bm{\Delta}(\epsilon)\rightarrow\bm{0}, the condition can be simplified as that ϵϵS\epsilon-\bm{\epsilon}_{\mathrm{S}} is invertible. Therefore, 𝑫(ϵ)\bm{D}(\epsilon) is nonvanishing only for ϵ\epsilon equaling an eigenvalue ϵλ\epsilon_{\lambda} of ϵS\bm{\epsilon}_{\mathrm{S}}. So in order to grasp the asymptotic behavior of 𝑫(ϵ)\bm{D}(\epsilon), one only needs to analyze the behavior of 𝑫(ϵ)\bm{D}(\epsilon) around ϵ=ϵλ\epsilon=\epsilon_{\lambda}.

Consider the behavior of 1ϵϵS𝚫(ϵ)±i𝑱(ϵ)2\frac{1}{\epsilon-\bm{\epsilon}_{\mathrm{S}}-\bm{\Delta}(\epsilon)\pm\mathrm{i}\frac{\bm{J}(\epsilon)}{2}} for ϵϵλ\epsilon\approx\epsilon_{\lambda}. Denote the eigenspace of ϵS\bm{\epsilon}_{\mathrm{S}} corresponding to the eigenvalue ϵλ\epsilon_{\lambda} as λ\mathbb{H}_{\lambda}, then the matrix ϵϵS𝚫(ϵ)±i𝑱(ϵ)2{\epsilon-\bm{\epsilon}_{\mathrm{S}}-\bm{\Delta}(\epsilon)\pm\mathrm{i}\frac{\bm{J}(\epsilon)}{2}} can be written in blocks, reading

ϵϵS𝚫(ϵ)±i2𝑱(ϵ)=((ϵϵλ)𝕀λ𝚫λλ(ϵ)±i2𝑱λλ(ϵ)[𝚫(ϵ)±i2𝑱(ϵ)]λλ[𝚫(ϵ)±i2𝑱(ϵ)]λλ[ϵϵS𝚫(ϵ)±i2𝑱(ϵ)]λλ),\displaystyle\epsilon-\bm{\epsilon}_{\mathrm{S}}-\bm{\Delta}(\epsilon)\pm\frac{\mathrm{i}}{2}\bm{J}(\epsilon)=\begin{pmatrix}(\epsilon-\epsilon_{\lambda})\mathbb{I}_{\lambda}-\bm{\Delta}_{\lambda\lambda}(\epsilon)\pm\frac{\mathrm{i}}{2}\bm{J}_{\lambda\lambda}(\epsilon)&\!\left[-\bm{\Delta}(\epsilon)\pm\frac{\mathrm{i}}{2}\bm{J}(\epsilon)\right]_{\lambda\lambda^{\perp}}\\ \!\left[-\bm{\Delta}(\epsilon)\pm\frac{\mathrm{i}}{2}\bm{J}(\epsilon)\right]_{\lambda^{\perp}\lambda}&\!\left[\epsilon-\bm{\epsilon}_{\mathrm{S}}-\bm{\Delta}(\epsilon)\pm\frac{\mathrm{i}}{2}\bm{J}(\epsilon)\right]_{\lambda^{\perp}\lambda^{\perp}}\end{pmatrix}\,, (115)

where the subscripts λ\lambda and λ\lambda^{\perp} are corresponding to the space λ\mathbb{H}_{\lambda} and its orthogonal complement, respectively. Because 𝑱(ϵ)𝟎\bm{J}(\epsilon)\approx\bm{0} and 𝚫(ϵ)𝟎\bm{\Delta}(\epsilon)\approx\bm{0}, the inverse of ϵϵS𝚫(ϵ)±i2𝑱(ϵ)\epsilon-\bm{\epsilon}_{\mathrm{S}}-\bm{\Delta}(\epsilon)\pm\frac{\mathrm{i}}{2}\bm{J}(\epsilon) is approximately

1ϵϵS𝚫(ϵ)±i2𝑱(ϵ)(1(ϵϵλ)𝕀λ𝚫λλ(ϵ)±i2𝑱λλ(ϵ)𝟎𝟎1ϵ(ϵS)λλ),\displaystyle\frac{1}{\epsilon-\bm{\epsilon}_{\mathrm{S}}-\bm{\Delta}(\epsilon)\pm\frac{\mathrm{i}}{2}\bm{J}(\epsilon)}\approx\begin{pmatrix}\frac{1}{(\epsilon-\epsilon_{\lambda})\mathbb{I}_{\lambda}-\bm{\Delta}_{\lambda\lambda}(\epsilon)\pm\frac{\mathrm{i}}{2}\bm{J}_{\lambda\lambda}(\epsilon)}&\bm{0}\\ \bm{0}&\frac{1}{\epsilon-(\bm{\epsilon}_{\mathrm{S}})_{\lambda^{\perp}\lambda^{\perp}}}\end{pmatrix}\,, (116)

where 𝕀λ\mathbb{I}_{\lambda} is the identity in λ\mathbb{H}_{\lambda}. (In this equation, we have kept the term (ϵϵλ)𝕀λ(\epsilon-\epsilon_{\lambda})\mathbb{I}_{\lambda} for ϵϵλ\epsilon-\epsilon_{\lambda} could also be small.) Following Eqs. (114) and (116), and using the properties that 𝑱(ϵ)𝟎\bm{J}(\epsilon)\approx\bm{0} and 𝚫(ϵ)𝟎\bm{\Delta}(\epsilon)\approx\bm{0}, the expression of 𝑫(ϵ)\bm{D}(\epsilon) around ϵϵλ\epsilon\approx\epsilon_{\lambda} can be approximately written as

𝑫(ϵ)1(ϵϵλ)𝕀λ𝚫λλ(ϵ)+i2𝑱λλ(ϵ)𝑱λλ(ϵ)1(ϵϵλ)𝕀λ𝚫λλ(ϵ)i2𝑱λλ(ϵ).\displaystyle\bm{D}(\epsilon)\approx\frac{1}{(\epsilon-\epsilon_{\lambda})\mathbb{I}_{\lambda}-\bm{\Delta}_{\lambda\lambda}(\epsilon)+\frac{\mathrm{i}}{2}\bm{J}_{\lambda\lambda}(\epsilon)}\bm{J}_{\lambda\lambda}(\epsilon)\frac{1}{(\epsilon-\epsilon_{\lambda})\mathbb{I}_{\lambda}-\bm{\Delta}_{\lambda\lambda}(\epsilon)-\frac{\mathrm{i}}{2}\bm{J}_{\lambda\lambda}(\epsilon)}\,. (117)

When 𝑱(ϵ)\bm{J}(\epsilon) and 𝚫(ϵ)\bm{\Delta}(\epsilon) approach to 𝟎\bm{0}, the real part of (ϵϵλ)𝕀λ𝚫λλ(ϵ)±i2𝑱λλ(ϵ)(\epsilon-\epsilon_{\lambda})\mathbb{I}_{\lambda}-\bm{\Delta}_{\lambda\lambda}(\epsilon)\pm\frac{\mathrm{i}}{2}\bm{J}_{\lambda\lambda}(\epsilon) is dominant by (ϵϵλ)𝕀λ(\epsilon-\epsilon_{\lambda})\mathbb{I}_{\lambda}, so the above equation can be further simplified to

𝑫(ϵ)𝑱λλ(ϵ)(ϵϵλ)2𝕀λ+[𝑱λλ(ϵ)]2/4.\displaystyle\bm{D}(\epsilon)\approx\frac{\bm{J}_{\lambda\lambda}(\epsilon)}{(\epsilon-\epsilon_{\lambda})^{2}\mathbb{I}_{\lambda}+[\bm{J}_{\lambda\lambda}(\epsilon)]^{2}/4}\,. (118)

After expressing the right hand side of the equation in the eigenbasis of 𝑱λλ(ϵ)\bm{J}_{\lambda\lambda}(\epsilon), one can easily find that the diagonal elements all approach to 2πδ(ϵϵλ)2\pi\delta(\epsilon-\epsilon_{\lambda}) as 𝑱(ϵ)\bm{J}(\epsilon) vanishes. Consequently, for ϵ\epsilon near ϵλ\epsilon_{\lambda},

𝑫(ϵ)2πδ(ϵϵλ)𝕀λ.\displaystyle\bm{D}(\epsilon)\rightarrow 2\pi\delta(\epsilon-\epsilon_{\lambda})\mathbb{I}_{\lambda}\,. (119)

For every λ\lambda, such conclusion is always true. Therefore, for all ϵ\epsilon,

𝑫(ϵ)2πλδ(ϵϵλ)𝕀λ=2πδ(ϵ𝐈ϵS).\displaystyle\bm{D}(\epsilon)\rightarrow 2\pi\sum_{\lambda}\delta(\epsilon-\epsilon_{\lambda})\mathbb{I}_{\lambda}=2\pi\delta(\epsilon\mathrm{\bm{I}}-\bm{\epsilon}_{\mathrm{S}})\,. (120)

References