[1]\fnmPaul \surCharbonneau
These authors contributed equally to this work.
[1]\orgdivPhysics Department, \orgnameUniversité de Montréal, \orgaddress\streetC.P. 6128 Centre-Ville, \cityMontréal, \postcodeH3C-3J7, \stateQc, \countryCanada
2]\orgdivPhysics Department, \orgnameMoscow State University, \orgaddress\streetLeninskiye Gory, \cityMoscow, \postcode119991, \countryRussia 3]\orgnameIZMIRAN, \orgaddress\street4 Kaluzhskoe Shosse, Troitsk, \cityMoscow, \postcode108840, \countryRussia 4]\orgnameMoscow Center of Fundamental and Applied Mathematics, \orgaddress\cityMoscow, \postcode119991, \countryRussia
Evolution of Solar and Stellar Dynamo Theory
Abstract
In this paper, written as a general historical and technical introduction to the various review papers collected in the special issue “Solar and Stellar Dynamo: A New Era”, we review the evolution and current state of dynamo theory and modelling, with emphasis on the solar dynamo. Starting with a historical survey, we then focus on a set of “tension points” that are still left unresolved despite the remarkable progress of the past century. In our discussion of these tension points we touch upon the physical well-posedness of mean-field electrodynamics; constraints imposed by magnetic helicity conservation; the troublesome role of differential rotation; meridional flows and flux transpost dynamos; competing inductive mechanisms and Babcock-Leighton dynamos; the ambiguous precursor properties of the solar dipole; cycle amplitude regulation and fluctuation through nonlinear backreaction and stochastic forcing, including Grand Minima; and the promises and puzzles offered by global magnethydrodynamical numerical simulations of convection and dynamo action. We close by considering the potential bridges to be constructed between solar dynamo theory and modelling, and observations of magnetic activity in late-type stars.
keywords:
Magnetohydrodynamics, dynamo, solar cycle, stellar cycles1 From first ideas to contemporary state
The history of solar dynamo studies can be said to begin with the famous talk delivered by J. Larmor L19 (the paper is also reprinted in RSS88 ). He attracted the attention of the astronomical community to the fact that the only visible way to obtain solar magnetic fields, as observed a few years before by G.E. Hale and his colleagues seems to be electromagnetic induction in moving electrically conducting solar media. The car engine was at that time the latest impressive achievement of human civilization, and the idea became known as dynamo theory, after a part of this engine.
Formally speaking, the solar dynamo is an example of a wide variety of various instabilities interesting for astrophysics. Naively speaking, a century may seem as providing sufficient time to investigate an instability in all important details. Dynamos give an interesting and instructive impression here. Initially Larmor’s idea proved to be very rich and to contain great potential for development. After various modifications, generalizations and improvements and being fruitfully combined with other scientific ideas, the dynamo still retains until now quite a lot of problems deserving clarification and development in the context of contemporary science. Our aim here is to describe some of these problems, and present the development of dynamo studies which lead to this new perspective. Of course, we can give here a number of instructive features only, and do not pretend to offer comprehensive review.
A quite obvious point is that Larmor spoke about the Sun rather than say about spiral galaxies just because the concept of galaxies was developed in the next decade only. Application of dynamo theory to the Earth, planets, stars, galaxies, clusters of galaxies, accretion discs, etc, has become an important part of astrophysics and has offered an attractive and important perspective for exoplanets studies (e.g. RH04 ; BrandenburgSubramanian05 ). These applications depart from solar dynamo studies in context of specific features of celestial bodies under consideration as well as contemporary observational abilities.
This extensive development of dynamo studies is very important for astronomy, however intensive investigation of the physical basis of solar dynamo looks instructive in a broader scientific context.
First of all, an attempt for straightforward realization of dynamo instability faces the fact that according to Lenz’s Law, electromagnetic induction suppresses rather enhances the seed magnetic field. This is why rather simple spherically symmetric or planar 2D flows can not support dynamo action. A number of corresponding antidynamo theorems, from the initial idea of T. G. Cowling Cowling33 up to sophisticated 2D antidynamo theorem of Ya. B. Zeldovich Z57 (see also a further discussion in ZR80 ) were suggested in following decades. Then Yu. B. Ponomarenko P73 demonstrated that dynamo action is possible in a swirling jet and this idea remains the basis of contemporary experimental dynamo studies (e.g. LF11 ; Setal14 ). This branch of dynamo studies was able to demonstrate, at the turn of the new millenium, that dynamo is far to be a purely theoretical speculation, but rather a real physical phenomenon which may have in a perspective even practical applications. Laboratory dynamo experiments are quite remote from direct astrophysical applications, however the very laboratory dynamo demonstration is important for solar physics. Contemporary authors do not need to demonstrate how a very weak solar magnetic field can be enhanced up to the kGs values and may admit, if desired, that solar matter was magnetized just in the very early Sun. The results obtained in these studies also contain an important impulse for theoretical mathematics as a fruitful example of problems for systems of parabolic differential equations with violation of the maximum principle.
Of course, we are interested here in dynamos in astrophysical context. The breakthrough here is associated with the famous migratory dynamo proposed by E.N. Parker Parker55 . Parker demonstrated how one can overcome the problem with Lenz law using the idea of two magnetic circuits where the first circuit enhances magnetic field in the second one while the second circuit enhances magnetic field in the first. Conventional dipole magnetic field is associated with the first circuit and is transformed in the magnetic field of the second circuit by solar differential rotation. Magnetic field of the second circuit can be considered as a toroidal magnetic field hidden somewhere in the solar interior. A very important point of the scenario is that the recovery of the poloidal magnetic field from the toroidal one requires mirror asymmetry of the flow.
The point that mirror asymmetry of hydrodynamic flows plays a key role in astrophysical dynamo was suggested at the same time as the idea of effects of P-noninvariance was developed in particle physics (e.g. LY56 ). The interplay between ideas of mirror-asymmetry effects in these two remote domains of physics emerged as a beautiful page of contemporary science.
Parker developed his idea based on his excellent physical intuition. A solid basis for the idea was suggested in a fully independent research ten year later by physicists from East Germany, namely M. Steenbeck, F. Krause and K.-H. Rädler Setal66 ; Helmbold17 (see also KrauseRaedler80 ) in the form of mean-field electrodynamics. The key effect of the scheme responsible for the mirror asymmetry became known as the -effect (see also Section 2 below). The idea published initially in an east-German journal and written in German became accessible to the international community practically immediately due to the translation performed by P. Roberts and M. Stix RS71 . Both are well-known experts in the field (e.g. S04 ; GR95 ) as well as Stix was a native German speaker.
An interplay with ideas and experts from the West and East provides a part of the story very suitable for a novel. In fact Steenbeck, who was a very impressive person, leaves an instructive testimonial in a book about his life S77 (see also Helmbold17 ), and some of its elements can be found in novels written later by H. Königsdorf in years of peaceful revolution in East Germany in the late 1980’s. Regarding the Russian side of the story, one of the authors of this chapter keeps in his memory how he passed on to Paul Roberts a proof of the book Zetal83 on a street just nearby the Kremlin, in what looked like a scene in a spy movie.
Parker Parker55 as well as Steenbeck et al. Setal66 considered the initially (almost) unmagnetized medium and associated the mirror asymmetry with Coriolis force action. The magnetic field creates the mirror asymmetry as well, and contemporary understanding of the solar situation is that this contribution is more important. One more point is the importance of meridional circulation as well as other physical effects which understandably were ignored in the early stages of scientific development (more on these in Sections 5 and 6 below). Combined with the ideas of H. W. Babcock and R. B. Leighton Babcock61 ; Leighton64 , this resulted in the contemporary flux-transport model of solar dynamo (e.g. C07 ; DikpatiGilman09 ).
The first solar dynamo models dealing with the amplification of a weak seed magnetic field considered the prescribed flow properties (so-called kinematic models). A natural further step was to include a nonlinear dynamo suppression based on some balance arguments and conservation of energy looked as a natural idea for the balance. The situation occurred to be however much more complicated and after the very intensive scientific battle it becomes clear that the magnetic helicity conservation is more important for the problem (viz. Section 3 herein). Conservation of magnetic helicity was discovered as early as in the nineteenth century, however nobody considered it as something practically important until K. Moffatt Moffatt78 reintroduced the idea in contemporary science. Mathematical aspects of the problem are that magnetic helicities (as well as various other helicities considered in dynamo studies) can be considered as instructive examples of topological invariants and its topological investigation belonged to activities of V. I. Arnol’d and his school (e.g. AK92 ).
An important point here is that some crucial dynamo drivers including -effect are associated with topological invariants and being inviscid integral of motions they redistribute in course of dynamo action between various layers in the solar convection shell. Presentation of this redistribution in various solar dynamo models still deserves investigation, however quite a rich bulk of ideas here is accumulated; we mention here as an early achievement the work of Ukrainian astronomer V. N. Krividubsky (e.g. K06 ).
Observational identification of dynamo drivers remains a part of astronomy which is still quite remote from its final stage. An important progress here was associated with the idea of N. Seehafer S90 who suggested a method to observe magnetic helicity inside sunspots. Due to long-term observations undertaken by Chinese astronomers Zetal10 time-longitude distribution of magnetic helicity over several solar cycles was observed and the idea propagates on other relevant helicities in further studies by various groups.
Modelling of dynamo action in rotating turbulent spherical shells demonstrated that apart of solar equatorward propagating dynamo waves with polarities which follow the Hale laws, various less convenient magnetic field configurations may be excited (e.g. JW91 ). This may be instructive to explain magnetic activity of some stars and exoplanets.
Helioseismological studies (e.g. Getal96 ) are another (more obvious) way to know more about solar dynamo drivers. Development of helioseismology was associated with one more basic transformation in solar dynamo models (see Section 4 herein).
One more point in dynamo studies to be mentioned here is that the geodynamo models were one of the first cases where direct numerical simulations were able to reproduce very complicated physical processes in various fine details GR95 . Contemporary solar dynamo models successfully follow this way (see Section 10). These achievements impressively demonstrated direct numerical simulations and physical explanations of a phenomenon in terms of traditional theoretical physics in two separate problems. The point is that contemporary numerics are so powerful that they can mimic processes which theoreticians still can not explain in traditional terms. It looks as a general challenge for contemporary science to be addressed in its further development.
It is undeniable that in the past century our understanding of astrophysical dynamos has progressed remarkably, if somewhat non-linearly (in the geometrical sense of the word). Nonetheless, this progress has raised a host of new questions and puzzles, many still outstanding. The remainder of this review focuses on “tension points” left behind by this meandering path from early ideas to the present state, with emphasis on the solar dynamo.
2 Tension: Why is mean-field electrodynamics working ?
As just discussed, in the mid-1950’s Parker argued that the cyclonicity imparted by the Coriolis force on convective updrafts and downdrafts could effectively break axisymmetry on small spatial scales, and in doing so bypass Cowling’s anti-dynamo theorem Parker55 . The basic idea is illustrated on Figure 1. Parker showed that this mechanism could regenerate a poloidal magnetic field from an initially purely toroidal magnetic component, and, operating in conjunction with rotational shearing of the poloidal component so induced (the so-called dynamo scenario), produce a working dynamo loop leading to regular polarity reversals.

This groundbreaking idea was soon thereafter formalized through the development of mean-field electrodynamics Steenbecketal66 ; SteenbeckKrause69 (see also Parker70 ; Moffatt78 ; KrauseRaedler80 ; MoffattDormy19 , and references therein). Separating the flow and magnetic field into large-scale, slowly varying “mean” component and small-scale rapidly varying “turbulent” components , substitution into the induction equation and averaging yields an evolution equation for the mean magnetic field:
(1) |
where the mean electromotive force is given by the average of the small-scale flow-field cross-correlation:
(2) |
Closure is achieved by expanding this turbulent electromotive force (emf) in terms of and its derivatives:
(3) |
This latter expression highlights the fact that mean-field electrodynamics is fundamentally a linear theory, in the sense that the tensors , etc, cannot themselves depend on , but only on the statistical properties of the turbulent flow.
The symmetric part () of the tensor captures the Parker mechanism of magnetic field deformation by non-mirror-symmetric turbulence, and is now known as the -effect. The three components of its antisymmetric part can be recast in the form of a pseudo-velocity acting on the mean-magnetic field, called turbulent pumping. The antisymmetric part of the rank-3 tensor b can be recast as a rank-2 turbulent diffusivity tensor Schrinneretal07 .
The challenge is now to compute these tensorial quantities from known statistical properties of the turbulent flow, which turns out to be a tall order. There are three physical regimes under which this is tractable (see, e.g.,Section 6.3 in BrandenburgSubramanian05 ; also Section 3.4.1 in Ossendrijver03 , Rempel09 and chap. 7 in MoffattDormy19 ).
-
1.
The energy density of the mean magnetic field is larger than the energy density of the small-scale field;
-
2.
The magnetic Reynolds number is low;
-
3.
The turbulent cyclonic eddies have a lifetime shorter than their characteristic turnover time.
These three physical regimes all amount to the mean magnetic field suffering little deformation by the small-scale turbulent flow either because magnetic tension kicks in and prevents large deformation (Regime 1), field/flow slippage occurs and prevents large deformation (Regime 2), or not enough time is available to induce a large deformation (Regime 3). Pictorially, going back to Figure 1, the magnetic fieldline must be twisted out of the plane by an angle .
Regimes 1 and 2 are most certainly not applicable to solar interior conditions. Regime 3 is harder to assess, as it is notoriously difficult to predict the coherence time of a given turbulent flow, or even to extract it a posteriori from a numerical simulation. As we shall see presently, some circumstantial evidence exists suggesting that Regime 3 might be the key.
For turbulence that is isotropic and homogeneous, the and tensor reduce to diagonal forms , , with the identity tensor, and turbulent pumping vanishes. The second-order correlation approximation then leads to
(4) |
where is the coherence time of the small-scale turbulent flow. The -effect is now simply proportional to the mean kinetic helicity of turbulence, and the turbulent diffusivity to its energy density. As shown by F. Krause in his Habilitation thesis (as cited in SteenbeckKrause69 ), in the case of a solar/stellar stratified rotating convection zone:
(5) |
where , is the solar angular velocity vector, and with a sign flip in the Southern solar hemisphere (see, e.g., Section 6.2 in BrandenburgSubramanian05 ). Equation (5) implies that if the properties of turbulence are independent of latitude, then is positive in the Northern solar hemisphere and proportional to , where is the polar angle (if in doubt, work through footnote 5 in BrandenburgSubramanian05 ). Except for , the RHS of these expressions are readily extracted from numerical simulations upon suitable averaging. The and tensors can also be extracted using a variety of techniques BrandenburgSokoloff02 ; Racineetal11 ; Schrinneretal07 ; Augustsonetal15 ; Simardetal16 ; Warneckeetal18 ; Warneckeetal21 ; Shimadaetal22 . The turbulent mean-field coefficients so extracted can then be used as input to a classical mean-field solar dynamo dynamo model, to ascertain whether the resulting large-scale magnetic field evolution resembles —or not— that characterizing the parent MHD simulation. Such tests of internal consistency have been carried out succesfully Simardetal13 ; Simardetal16 ; Warneckeetal21 , with independent numerical simulations and extraction methods. This suggests that mean-field electrodynamics does properly capture the process of turbulent induction and resulting dynamo action, at least in these MHD numerical simulations, and by extension, hopefully, in the sun and stars as well.
Global MHD simulations of large-scale magnetic cycles can also be used to validate —or not— the analytical expressions (4). This exercise has been carried out by Simardetal16 (among others), estimating by the common recipe consisting in equating with the convective turnover time , where and are local measures of the density scale height and turbulent velocity. The spatial distributions they obtain for and reconstructed from Eq. (4) match tolerably well those directly extracted from their MHD simulation (cf. their Figs. 2 and 6), except for the global amplitude, which are larger by a factor of in the reconstructions based on Eq. (4). The amplitudes can be reconciled provided one assumes that the coherence time is one fifth of the convective turnover time, which is consistent with low coherence time turbulence (Regime 3 above). The generality of this intriguing result remains to be established.
To sum up: Although tractable only in specific parameter regimes of dubious validity in the solar/stellar context, mean-field electrodynamics adequately captures turbulent induction in MHD simulations of solar convection and dynamo action, and leads to internally consistent spatiotemporal evolution of large-scale magnetic fields. Why it actually works so well remains an open question.
3 Tension: the troublesome magnetic helicity
Magnetic helicity is a topological invariant measuring the linkage between magnetic flux systems Moffatt78 ; Berger99 ; MoffattDormy19 . With the magnetic field expressible as , the magnetic helicity content of a volume of magnetized fluid is given by:
(6) |
In the absence of a flux of helicity at the bounding surface of the volume , evolves according to:
(7) |
where is the current density and the magnetic permeability. Magnetic helicity is clearly a conserved quantity in the ideal (dissipationless) limit , expressing the (topological) fact that magnetic fieldlines cannot cross one another.
The solar large-scale magnetic field, associated with the magnetic cycle, is demonstrably helical. In the context of mean-field electrodynamics (Section 2), this helicity is imparted on the large-scale magnetic field by the -effect, and is of a sign opposite to the kinetic helicity of the small-scale turbulent flow (viz. Eq. 4). As the large-scale magnetic field is amplified, so must , in apparent violation of the above conservation argument. Note that polarity reversals of the large-scale magnetic field are irrelevant to the problem; reversing the magnetic polarity flips the sign of both and , leaving the sign of unchanged. How, then, can the solar large-scale magnetic field wax and wane in the course of the magnetic cycle ?
Here again mean-field electrodynamic offers some useful insight. Applying scale separation to the vector potential and current density , two evolution equation for the magnetic helicity associated with the large- and small-scale magnetic components can be obtained BrandenburgSubramanian05 ; Rempel09 ; in the ideal () limit:
(8) | |||||
(9) |
with the mean electromotive force given by Eq. (2). Observe that the action of the turbulent emf on the large-scale magnetic field, i.e., the terms on the RHS of Eqs. (8)–(9), produces magnetic helicity of opposite signs at large and small scales, so that the total magnetic helicity produced by acting on is thus nil. The large-scale field can now be amplified because magnetic helicity of opposite sign builds up at small scales. However, this turns out to oppose the -effect, as originally demonstrated by Pouquetetal76 (see also Section 9 in BrandenburgSubramanian05 ). The large-scale field is amplified, but at the cost of rapidly quenching the inductive part of the turbulent emf (see Kleeorinetal95, ; BlackmanBrandenburg02, ; Brandenburgetal09, ).
A way out of this quandary was identified in Brandenburg01 . It consists in invoking a direct turbulent cascade of helicity towards even smaller scales than that at which is operating, so that Ohmic dissipation sets in, as per Eq. (7), and dissipates the helicity produced at the inductive scale (RHS of Eq. (9)). At this dissipative scale, the magnetic Reynolds number is of order unity, but remains much larger at the inductive scale of , and even larger yet at the scale of , so that Eqs. (8)–(9) effectively hold. Now the -effect can operate, and a helical large-scale magnetic field can grow.
Another mechanism allowing to evade the constraint of magnetic helicity dissipation is to evacuate it through the volume boundaries. A star like the sun is not embedded in a true vaccum, and magnetic helicity can be evacuated through the corona. In particular, coronal mass ejections have been suggested to contribute significantly to the global magnetic helicity budget BieberRust95 ; Low01 ; Greenetal03 ; Lynchetal05 . Avoiding -quenching via helicity flux across domain boundaries and/or cancellation across the equatorial plane has also found support in MHD numerical simulations BrandenburgDobler01 ; Warneckeetal11 .
To sum up: Conservation of magnetic helicity in the high- regimes poses a strong constraint on magnetic field amplification by turbulent induction, and can potentially quench the growth of the solar large-scale magnetic field. This constraints can be bypassed by a double turbulent cascade or expulsion of helicity from the region of dynamo action. Which of these mechanisms (if any or either) is regulating the overall solar magnetic helicity budget, remains an open question.
4 Tension: The troublesome solar differential rotation
Already in the nineteenth century, R.C. Carrington and G. Spörer independently noted that sunspots emerge closer and closer to the solar equator as the sunspot cycle unfolds. The first convincing explanation for this striking spatiotemporal pattern was proposed almost a century later by Parker, in the form of dynamo waves Parker55 . In mean-field dynamos, these waves propagate in a direction given by
(10) |
a result now known as the Parker-Stix-Yoshimura sign rule. Extending the observed surface latitudinal differential rotation pattern inwards along cylindrical isosurfaces yields a positive radial shear component at low latitudes, which then requires a negative -effect in the Northern hemisphere111Or more precisely: a negative tensor component, the only component typically retained in classical mean-field models. to produce equatorward propagation Yoshimura75 ; Stix76 .
This neat picture was thrown into disarray by the first helioseismic inversions of the solar internal differential rotation Brownetal89 ; Dziembowskietal89 . Rather that cylindrical isocontours of angular velocity, these inversions revealed that the surface differential rotation remains constant along approximately radial segments, yielding a shear that is primarily latitudinal within the bulk of the convection zone, transiting beneath it to near-solid body rotation across a thin rotational shear layer since known as the tachocline SpiegelZahn92 ; Tomczyketal95 . As shown on Figure 2, this complex form of the solar internal differential rotation yields very complex patterns of dynamo waves, even if the -effect is artificially concentrated at the base of the convection zone, to suppress induction by the purely latitudinal shear above. The Figure shows Northern hemisphere time-latitude (“butterfly”) diagrams for the toroidal magnetic component at the base of the convection zone, using different latitudinal dependency and sign for the -effect in a classical mean-field model (for more on these dynamo solutions, see Section 4.2 in Charbonneau20 ).

Here, and even with the -effect concentrated towards low latitude via a dependency on polar angle (panels B and C), the strong positive radial shear in the high latitude regions of the tachocline dominate induction, leading to multiple branches and activity peaking at much higher latitudes than observed.
Within the standard dynamo modelling framework, the only way to achieve equatorward dynamo wave propagation is to strongly concentrate a (negative) effect not only radially at the base of the convection zone, but also latitudinally in its equatorial regions. Recall from Eq. (5) that the minimal latitudinal dependency expected from cyclonic convection leads to a positive -effect concentrated at high latitudes, with ; this does lead to equatorward propagating dynamo waves (viz. Fig. 2A), but again peaking at far higher latitudes than observed on the Sun.
Helioseismology has also revealed the presence of a thin subsurface radial shear layer extending from the equator to mid-latitudes; equatorward propagating dynamo waves concentrated at low latitudes can then be produced in conjunction with a positive Northern hemisphere -effect, but the small thickness of the layer sets the length scale of dynamo eigenmodes, typically leading to multiple overlapping magnetic flux systems even for weakly supercritical dynamos.
To sum up: in classical mean-field dynamo models built using the solar internal differential rotation profile as inferred from helioseismic inversions, it is very hard to produce a sunspot butterfly diagram-like dynamo wave propagation pattern without making some very ad hoc assumptions regarding the spatial distribution and/or sign of the turbulent -effect.
5 Tension: Flux transport by meridional flows
Equatorward propagation of activity belts in the course of the cycle can also be achieved through advection by a bulk meridional flow acting as a “conveyor belt” displacing the internal toroidal magnetic field equatorward as it is amplified by rotational shearing Wangetal91 ; Choudhurietal95 ; Kuekeretal01 ; Rempel06a ; PipinKosovichev11 . Dynamo models achieving a solar-like butterfly diagram in this manner are known as flux transport dynamos (see DikpatiGilman09 ; Karaketal14 for dedicated reviews). Adding a meridional flow to a classical dynamo model of the type considered in Section 4, one finds that bulk transport of the magnetic field overwhelms the dynamo wave provided advection by the meridional flow dominates over diffusive transport. The ratio of these two transport mechanisms is quantified via a magnetic Reynolds number:
(11) |
where is a typical speed for the meridional flow, is a turbulent magnetic diffusivity, and is a characteristic length scale for the meridional flow, usually taken as the solar radius. For magnetic flux transport to take place in the desired manner, this magnetic Reynolds number must be relatively high, i.e., or more. See Section 4.4 in Charbonneau20 for some representative dynamo solutions.
Powered by Reynolds stresses and pole-equator temperature differences caused by rotational influence on convective energy transport, meridional flows are as unavoidable as differential rotation in a rotating, stratified turbulent convective envelope Kippenhahn63 ; Ruediger89 ; Kitchatinovetal94 ; MieschToomre09 ; Balbusetal12 ; FeatherstoneMiesch15 . This flow is observed at the solar surface, poleward-directed and with speeds peaking in the range 10–15 m s-1 at mid latitudes, with some variations in phase with the solar cycle Hathaway96 ; Ulrich10 ; CameronSchuessler10 . Mass conservation evidently requires an equatorward return flow somewhere within the convection zone. Helioseismic determinations of the internal meridional flow have yielded conflicting results, some inversions suggesting a very shallow equatorward return flow Jackiewiczetal15 , others a complex flow pattern characterized by multiple flow cells stacked in radius and/or latitude Schadetal13 ; Zhaoetal13 , while others yet are consistent with a single cell per meridional quadrant, with the equatorward return flow peaking near the base of the convection zone RajaguruAntia15 ; Gizonetal20 .
Global numerical simulations of stratified rotating convection do provide additional insight on the matter. Solar-like differential rotation, in the sense of the rotation rate decreasing monotonically from the equator towards the poles, materializes when the Rossby number is sufficiently small, , but in this regime the meridional flow is markedly multi-celled. A single meridional flow cell per meridional quadrant is achieved at higher Rossby number, but the differential rotation is no longer solar, with the equatorial regions rotating more slowly than the mid-latitudes222Note however that some mean-field turbulence models do produce a single-cell meridional flow in conjunction with a solar-like differential rotation profile; see, e.g., KitchatinovOlemskoy11 . (Gastineetal14 ; Brunetal22 . in particular their Fig. 10). Interestingly, given its rotation rate and luminosity, the sun appears to be characterized by a Rossby number near the tipping point between these two regimes, and some global MHD simulations indicate that magnetic stresses may turn an anti-solar differential rotation into a solar-like profile, while generating a solar-like single-cell meridional flow profile (see Karaketal15 ; HottaKusano21 ; Hottaetal22 , and references therein).
The implications of single vs multi-cell meridional flows for flux transport dynamos are profound. Multiple meridional flow cells can lead to a variety of time-latitude patterns departing significantly from the observed sunspot butterfly diagram JouveBrun07 ; PipinKosovichev13 ; Beluczetal15 . The dynamo simulations of Hazraetal14 do suggest that if the diffusivity is sufficiently high, an equatorward drift of the deep toroidal field can be achieved even in the presence multiple flow cells stacked in radius, provided the deeper cell has an equatorward return flow at the base of the convective envelope. The key parameter then becomes the magnetic Reynolds number (11), which is critically dependent on the assumed value for the (turbulent) magnetic diffusivity, a notoriously difficult quantity i to compute from first principles333 Alternate versions of flux transport dynamos can be constructed by relying on turbulent pumping (see ) to achieve, in part or in its entirety, downward transport of the surface field Jiangetal13 and equatorward drift of the deep toroidal field GuerreroDalPino08 ; HazraNandy16 . Measurements of turbulent pumping in some MHD numerical simulations of solar convection do yield strong subsurface downward pumping as well as equatorward latitudinal pumping at mid- to low latitudes within the convecting fluid layers, with speeds of a few meters per second Ossendrijveretal02 ; Racineetal11 ; Simardetal16 ; Warneckeetal18 ; Shimadaetal22 , similar to the deep meridional flow speed..
To sum up: flux transport dynamo can in principle produce solar-like “butterfly diagrams” even in cases where classical dynamo waves would do otherwise; however, their proper operation depends sensitively on the spatial form of the internal axisymmetric meridional flow, as well as on the value of turbulent magnetic diffusivity produced by solar convection.
6 Tension: Competing inductive mechanisms?
The turbulent -effect is by no means the only way to evade Cowling’s theorem. Originally proposed by Babcock Babcock61 and developed quantitatively by Leighton Leighton64 ; Leighton69 , but largely eclipsed by the rise of mean-field electrodynamics until its vigorous revival a quarter of a century later Wangetal91 ; Choudhurietal95 ; Durney95 ; DikpatiCharbonneau99 ; NandyChoudhuri01 , what is now known as the Babcock-Leighton mechanism is arguably its most convincing alternative.
A little over a century ago Hale and collaborators established a number of empirical Laws describing the cycle-to-cycle variations in the hemispheric pattern of magnetic polarity measured in sunspots Haleetal19 . They also established what is since known as Joy’s Law namely the systematic inclinations of the line segment joining the poles of bipolar sunspot groups with respect to the E-W line, this tilt angle () increasing with heliocentric latitude (). Leighton Leighton69 originally parametrized this variation as
(12) |
but other related forms fit the data equally well, in view of the large scatter of observed tilt angles about such mean relationships (see, e.g., McClintockNorton13 and references therein).
Bipolar magnetic regions (BMRs) are believed to originate from magnetic flux ropes buoyantly rising through the convection zone and piercing the photosphere as “-loops” Parker55b . Modelling of this process in the thin flux tube approximation has allowed to identify the physical underpinning of Joy’s Law, in the action of the Coriolis force on flows developing along the axis of buoyantly rising magnetic flux ropes DSilvaChoudhuri93 ; Fanetal93 ; Caligarietal95 , and/or via the asymmetric buffeting imparted by cyclonic convection Weberetal11 ; Weberetal13 (see Fan21 for a comprehensive review).
The global dipole contribution associated with a BMR carrying a magnetic flux with pole separation and emerging at latitude Petrovayetal20 is given by:
(13) |
As BMRs decay and “release” this dipole moment, preferential cross-equatorial dissipation of the leading magnetic polarity and transport of the trailing polarity towards the poles leads to polarity reversal and subsequent buildup of a new global dipole moment. This surface transport of magnetic flux is observed at the solar surface, and has been modelled in detail Wangetal89 ; Jiangetal14 ; UptonHathaway14 ; Lemerleetal15 ; Whitbreadetal17 , leaving little doubt to its role in reversing the surface dipole. Figure 3 illustrates schematically this sequence of events.

Note that the tilt embodied in Joy’s Law is crucial here; if BMRs emerge aligned with the E-W direction (), then ; both poles of the BMR then experience the same cross-equatorial diffusive cancellation, leaving behind and no net hemispheric flux.
From end-to-end, the sequence of flux tube formation, destabilization, emergence as BMRs, surface decay and transport, thus converts a positive (negative) internal toroidal field into a positive (negative) dipole moment, in a manner analogous to a positive -effect in mean-field electrodynamics444Note that in both cases, the Coriolis force ultimately provides the break of axisymmetry needed to evade Cowling’s theorem.. Rotational shearing of this large-scale dipole can then regenerate the toroidal component and close the dynamo loop.
As with mean-field dynamos based on the turbulent -effect, Babcock-Leighton dynamos must abide with helicity conservation. Magnetographic observations indicate that the magnetic flux ropes emerging as BMRs carry magnetic helicity in the form of internal twist about their axis (see, e.g., Seehafer90 ; LopezFuentesetal03 ), as expected if they form from a deep-seated dynamo-generated large-scale magnetic field that is itself helical. Ultimately, the large-scale twist of the flux rope itself (or writhe) associated with Joy’s Law, acts as the global source of magnetic helicity in this class of dynamos. For more on these matters, see Pevtsovetal14 and references therein.
Most contemporary versions of solar cycle models based on the Babcock-Leighton mechanism are formulated as flux transport dynamos, with the meridional flow carrying the surface dipole to the deep interior555Turbulent pumping has also been invoked as a flux transport mechanism in this context, in particular to ensure submergence of the surface magnetic field; see, e.g., Jiangetal13 ., where rotational shearing takes place, and driving the equatorward propagation of emerging BMRs in the course of the cycle (viz. Section 5). It must be emphasized that to operate properly, all such solar dynamo models must invoke a strongly enhanced magnetic diffusivity, presumably of turbulent origin, as provided by mean-field theory. For more on such models, see Sections 5.4 and 5.5 in Charbonneau20 .
The polar cap (latitudes degrees) magnetic flux amounts to Wb at times of peak surface dipole strength. The total unsigned magnetic flux emerging in the form of BMRs adds up to Wb in the course of a typical activity cycle. The toroidal-to-poloidal conversion efficiency of the Babcock-Leighton mechanism thus needs not be high, of order percent only. In fact it has been argued that the poloidal flux generated by the Babcock-Leighton mechanism is indeed sufficient, in conjunction with rotational shearing, to account for the emerging magnetic flux CameronSchuessler15 , although turbulent induction in the interior cannot be ruled out via this argument. Is the Babcock-Leighton mechanism then essential to the solar magnetic cycle ? Answering this question on the basis of observations would require a detailed magnetic flux budget of the solar polar caps, i.e., accounting for flux emergence, submergence, transport from lower latitudes, as well as local generation.
To sum up: The Babcock-Leighton mechanism is observed operating at the solar surface, and in itself can account for the reversal of the surface dipole. Whether the surface dipole so generated feeds back into the dynamo loop, or is a mere side-effect of a deep-seated turbulent dynamo operating independently in the solar interior, remains an open question.
7 Tension: The surface dipole as precursor
The surface dipole strength at activity minimum is long known to be a good precursor for the amplitude of the upcoming sunspot cycle Schattenetal78 ; Svalgaardetal05 . (for reviews of solar cycle prediction schemes, see Pesnell16 ; Petrovay20 ). The dipole-as-precursor is also implemented in some dynamo model-based cycle forecasting schemes Choudhurietal07 ; Jiangetal07 ; BhowmikNandy18 . In such cases the details of the underlying flux transport dynamo model (Section 5) are secondary, as long as shearing by differential rotation is linear, i.e., there is no significant dynamical backreaction of the magnetic field on differential rotation, and the associated inductive shearing is not subjected to significant forcing by random fluctuations.
The good precursor value of the solar surface dipole is often matter-of-factly invoked as empirical support for the Babcock-Leighton “‘picture” of the solar dynamo, i.e., the large-scale poloidal magnetic component being regenerated by the surface decay of bipolar magnetic regions (viz. Section 6). Figure 4, adapted from CharbonneauBarlet11 , offers a specific counterexample to this claim. Panel (A) and (B) show time series of volumetric magnetic energy (red) and surface dipole (green; more precisely: Northern hemisphere polar cap magnetic field) produced by two dynamo models differing only in their poloidal source; the solution of panel (A) is a conventional mean-field dynamo model, with the -effect concentrated at the base of the convection zone, but includes a meridional flow and operates in the flux transport regime (Section 5). The solution of panel B is a mean-field-like Babcock-Leighton dynamo model using a non-local surface poloidal source term, as described in DikpatiCharbonneau99 . Both models are axisymmetic, kinematic, use the same solar-like parametrization of the solar internal differential rotation, and the quadrupolar meridional flow pattern of vanBallegooijenChoudhuri88 , characterized by a single flow cell per meridional quadrant spanning the full convection zone. In both cases zero-mean stochastic fluctuations are imposed on the dynamo number multiplying the poloidal source term, of amplitude corresponding to 50% of the mean and with coherence time of one month.

As shown on panel C, in either model no correlation is observed between the dipole strength at minimum and the amplitude of the cycle just ending, consistent with the fact that imposed random fluctuations affect the production of the poloidal component from the toroidal component. However, both models show a strong correlation between dipole strength and the amplitude of the subsequent cycle (panel D), as measured here via volumetric magnetic energy. In the case of the mean-field model, this correlation vanishes altogether if the meridional flow is turned off and the model then operates as a classical model, with equatorward propagation of activity belts driven by a dynamo wave. The surface dipole then becomes a side-effect of a dynamo operating in the deep interior, and does not feed back into the dynamo loop. Nonetheless, in the flux transport mean-field model the surface dipole is as good a precursor of the next cycle as in the Babcock-Leighton model.
To sum up: for the surface dipole moment to act as a good precursor of the upcoming cycle’s amplitude, two conditions must be met: (1) the primary source of fluctuation must reside in the regeneration of the large-scale poloidal magnetic component, and (2) the surface dipole must feed back into the dynamo loop. Many dynamo scenarios meet both constraints, and none can be favored over another only on the basis of the precursor value of the surface dipole.
8 Tension: cycle fluctuations: stochastic or nonlinear?
The sunspot numbers record reveals significant cycle-to-cycle variations in the amplitude, duration, shape, and hemispheric asymmetry of the solar cycle (see Hathaway15 , and references therein). Reconstructions of solar activity based on cosmosgenic radioisotopes also reveals modulation patterns unfolding on centennial to millennial timescales Usoskin17 . What is the physical origin of these variability patterns ?
Solar and stellar dynamos draws their energy from the kinetic energy of the participating inductive flows, through work done against Lorentz force associated with the dynamo-generated magnetic field. This is a nonlinear backreaction of the magnetic field on the flows, which most certainly is what prevents unbound growth of the cycle amplitude, and may also drive amplitude modulation on timescale longer than the cycle period.
Solar and stellar dynamos also operates in part or in toto in strongly turbulent convective envelopes. Turbulent convection acts as multiscale and spatiotemporally highly variable inductive component, which from the point of view of the large-scale magnetic field manifests itself as short coherence time stochastic “noise” superimposed on the mean electromotive force and induction by large-scale flows. Such stochastic noise can also cause significant cycle amplitude variability, Figure 4 herein being a case in point.
Is stochastic forcing or deterministic nonlinear backreaction driving observed cycle fluctuations ? This is a particularly complex question to answer because in the solar/stellar context, many flow components contribute to induction (and/or flux transport), and all are in principle impacted by the Lorentz force associated with the dynamo-generated large-scale magnetic field. Moreover, the magnetic field can also impact large-scale flows indirectly, via alterations of of Reynolds stresses powering them (the so-called -quenching; see Kitchatinovetal94 ; Kuekeretal96 ; Rempel06b ), or via global constraints such as magnetic helicity conservation, as discussed in Section 3. To further complicate matters, in general the response of the dynamo to stochastic forcing depends on the nature of the nonlinearity regulating the average cycle amplitude (see, e.g., Biswasetal22 ; Talafhaetal22 and references therein).
Assorted dynamo modelling work (see, e.g., Mossetal92 ; Hoyngetal94 ; Ossendrijveretal96 ; Usoskinetal09a ; ChoudhuriKarak12 ; Pipinetal12 ; OlemskoyKitchatinov13 ; HazraNandy19 for a representative subset) has amply demonstrated that in the presence of stochastic forcing, many solar-like behaviors, such as marked amplitude fluctuations, sustained mixed-parity modes, cross-equatorial activity, and intermittency, can materialize naturally in critical or very weakly supercritical dynamos. R. Cameron and M. Schüssler CameronSchuessler17 go further in arguing that a stochastically forced weakly supercritical dynamo is all that is needed to reproduce the observed spectral properties of solar activity, in a manner that is generic with respect to the amplitude-limiting nonlinearity. The key of their proposal is that the linear dynamo growth rate be much smaller than the cycle period —as one would indeed expect for very weakly supercritical dynamos. An ensemble average of their model runs yields a flat spectrum at low frequencies, but any single instance is characterized by spectral structure, of purely random origin (see their Fig. 3). Cosmogenic radioisotope reconstructions of solar activity on long timescale also show spectral structures at low frequencies, but also represent a single realization of a specific dynamo —the Sun! Can such reconstructions then actually prove or disprove the Cameron & Schüssler conjecture ? Notwithstanding circumstantial evidence related to rotational evolution KitchatinovNepomnyashchikh17 ; Metcalfeetal22 , there are no a priori reasons to believe that the solar dynamo is only weakly supercritical. Moreover, long timescale modulation of cyclic behavior, as well as parity modulation, intermittency, etc, are also readily produced purely deterministically through various nonlinearities, notably magnetic backreaction on differential rotation Tobiasetal95 ; Kuekeretal99 ; Pipin99 ; MossBrooke00 ; Bushby06 ; TobiasWeiss16 ; SimardCharbonneau20 (see also Section 4 in Charbonneau20 ). In a picture purely based on stochastic forcing, one would not expect any phase coherence in long term fluctuations. Cosmogenic reconstructions do suggest phase persistence and non-random clustering patterns for Grand Minima and Maxima (more on these further below), but even the most recent yr reconstructions Usoskinetal16 ; Wuetal18 remain too short to yield strong statistical significance to confidently support or refute either class of explanation.
To sum up: The exact nature of the magnetic nonlinear backreaction mechanism(s) stabilizing the amplitude of the solar dynamos is not yet identified with confidence; nor are the mechanisms, whether of a stochastic or purely deterministic nature, driving apparently random cycle-to-cycle fluctuations in cycle characteristics such as amplitude and duration, as well as variability on timescale longer than the cycle period. These are absolutely fundamental gaps in our (lack of) understanding of solar and stellar dynamos.
9 Tension: Explaining Grand Minima
The most extreme pattern of solar fluctuation is arguably the Grand Minima of solar activity, epochs during which activity falls to very low levels over a time period much longer than the magnetic cycle period. First noted in the sunspot record independently by G. Spörer and E. W. Maunder in the late nineteenth century, and much later rediscovered Eddy76 , the 1645–1715 Maunder Minimum has become the archetype of such events, which have been found to recur aperiodically in the cosmogenic radioisototope record spanning the Holocene (see Usoskinetal15 , and references therein). Relatively recent similar events include the Spörer Minimum (ca. 1416–1534) and the Wolf Minimum (ca. 1282–1342). Other periods of sustained higher-than-average activity, “Grand Maxima”, can also be identified Usoskin17 .
The Maunder Minimum remains unique in that it is the only Grand Minimum for which direct observations of sunspots are available. Extensive historical analyses have revealed that the Sun was not entirely devoid of sunspots during the Maunder Minimum, but that the few sunspots observed were almost all located in the Southern solar hemisphere RibesNesme-Ribes93 ; HoytSchatten96 ; Usoskinetal15 ; for a comprehensive review of historical sunspot observations, see ArltVaquero20 . Another intriguing pattern relates to a possible change in the surface latitudinal rotation, as revealed from analyses of sunspot drawings made before, during and after the Maunder Minimum Eddyetal77 ; Casasetal06 .
Dearth in production of sunspot does not necessarily mean a halt in cyclic regeneration of the solar large-scale magnetic field. The buoyant destabilization of magnetic flux rope formed in the deep solar interior (presumably), with subsequent rise through the convective envelope and emergence as bipolar magnetic regions, almost certainly involves a threshold in magnetic intensity Schuessleretal94 . Consequently, the magnetic cycle may well continue unabated through Grand Minima, without reaching a magnetic amplitude sufficiently high to produce sunspots. Under this view, Grand Minima simply represent the low point of a large amplitude modulation. It is noteworthy that determinisitc, nonlinearly-driven backreaction on large-scale inductive flows (Section 8) can be accompanied by modulation of both flow and magnetic equatorial parity unfolding on long timescales, thus offering an attractive explanation for the strong hemispheric asymmetry of sunspot locations during the Maunder Minimum SokoloffNesme-Ribes94 ; Beeretal98 , as well as any variation in differential rotation. For a sample of dynamo models exhibiting this type of nonlinear modulation, see Kuekeretal99 ; Bushby06 ; WeissTobias16
A distinct class of explanations for Grand Minima invokes intermittency Plattetal93 , namely a transition between two distinct dynamo modes, the weaker one non-cyclic and/or of very low magnetic amplitude. The switch between modes can be driven either stochastically or deterministically. For a sample of dynamo models generating Grand Minima-like episodes in this manner, see Ossendrijver00a ; Charbonneauetal04 ; Mossetal08 ; Usoskinetal09a ; ChoudhuriKarak12 ; OlemskoyKitchatinov13 ; Inceogluetal17 ; Albertetal21 . Explaining Grand Minima via intermittency does pose a problem for dynamo models which are not self-excited, in the sense of being subjected to a lower operating threshold, e.g., dynamos relying on the Babcock-Leighton mechanism (Section 6). Jump-starting the primary dynamo out of a Grand Minimum then requires either a secondary self-excited dynamo Passosetal14 ; Hazraetal14b ; Olceketal19 ; Sahaetal22 , or some other source of magnetic fields acting as “magnetic noise” (see, e.g., Schmittetal96 ; Ossendrijver00a ; Charbonneauetal04 ; Tripathietal21 ).
The observations of low amplitude cyclic activity in the 10Be isotope record has been presented as evidence that the solar cycle was still running throughout the Maunder Minimum Beeretal98 , the interplanetary magnetic field being a complex sampling of both active region magnetic fields as well as the global dipole. A turbulent dynamo may well continue to reverse polarity, while failing to reach a magnetic amplitude sufficient to generate large emerging BMRs and associated sunspots. This type of behavior does materialize more naturally in dynamos undergoing large amplitude modulation through nonlinear backreaction by the Lorentz force. However, in some flux transport models undergoing intermittency, cyclic variations of the surface field can also take place as the meridional flow entrains the residual magnetic field (see Charbonneauetal04 ; Sahaetal22 for specific examples). The persistence of cycle phase through Grand Minima is a potentially powerful discriminant, but quite challenging to harness in practice.
To sum up: A wide variety of potentially viable dynamo-based scenarios for Grand Minima have been proposed, but which (if any) actually applies to the Sun remains an open question.
10 Tension: Sensitive cycles in MHD simulations
For now more than a decade, many global magnetohydrodynamical simulations of solar convection have achieved the production of large-scale magnetic fields undergoing more or less regular polarity reversals, analogous to some extent to the solar magnetic cycle. For a representative sample of such simulations, see, e.g., Ghizaruetal10 ; Masadaetal13 ; Nelsonetal13 ; FanFang14 ; Mabuchietal15 ; Simitevetal15 ; Hottaetal16 ; Kapylaetal17 ; Strugareketal18 ; Guerreroetal19 ; Hottaetal22 . These simulations rely on markedly distinct computational approaches to the numerical solution of the MHD equations, in particular in the treatment of unresolved scales. While they often generate similar convective and large-scale flow patterns, the large-scale magnetic cycle they produce vary widely in their spatiotemporal evolution (see Section 3.2 in Charbonneau14 for a specific comparison). The origin of this “structural fragility” is multi-faceted and remains ill-understood.
Figure 5 summarizes cycle properties in a series of global MHD simulations from Strugareketal18 , collectively spanning a factor of 10 in rotation rate and 3 in convective luminosity. The ratio of kinetic energy contained in differential rotation (DRKE) to total kinetic energy (KE) is plotted against Rossby number, with symbols colored according to the character of the large-scale magnetic cycle materializing in each simulation.

The sensitivity on the Rossby number is extreme; starting at , increasing by a mere a factor of 10 takes one from rapid subsurface cycles, through deep-seated decadal cycles in the range , and on to steady large-scale magnetic field at . This extreme sensitivity turns out to be robust, in the sense that it materializes in MHD simulations using entirely distinct numerical implementations and overall modelling frameworks; consider the striking resemblance between Figure 13 in Brunetal22 , working with the ASH LES code Brunetal04 , with Figure 5 herein, from Strugareketal18 using the EULAG-MHD ILES code SmolarkiewiczCharbonneau13 .
There is much more to the sensitivity issue than the Rossby number, however. The large-scale flow and magnetic field emerging in MHD numerical simulations of solar convection are strongly influenced by the turbulent regime attained. At high Reynolds number, stresses associated with the turbulent magnetic field can have a strong impact on large-scale flows FanFang14 ; HottaKusano21 ; Brunetal22 ; Hottaetal22 , thus indirectly affecting global dynamo action. Likewise, the relative importance of the many dissipation channels available to the system, as measured by the viscous and magnetic Prandtl numbers, also influences significantly the large-scale flows and dynamo action Kapylaetal17 ; Tobias21 .
Not surprisingly, the numerical treatment of small scales also impacts turbulent induction. Mean-field analyses of large-scale magnetic cycles in MHD simulations typically yield -tensors that are full, with turbulent induction often contributing on par with large-scale shearing Augustsonetal15 ; Simardetal16 ; Warneckeetal18 ; Vivianietal19 . In mean-field parlance, these simulations operate as dynamos, or even dynamos, if turbulent induction dominates over shearing by differential rotation. Detailed analyses of various simulations also reveal that small-scale and large-scale inductive contribution sometimes counteract each other Racineetal11 ; Nelsonetal13 ; Brunetal22 ; Shimadaetal22 , which results in the total induction having a magnitude significantly smaller than its individual contributions. Relatively small changes in one contribution, for example in small-scale induction versus dissipation when distinct subgrid models are used or when the magnetic Prandtl number is varied, can have a much larger impact on total induction, and thus on the unfolding of the large-scale magnetic cycle.
Another complication arises in MHD simulations reaching very high Reynolds numbers Hottaetal16 , namely small-scale dynamo action. Producing a strong small-scale magnetic field in this manner turns out to suppress the small-scale turbulent flow otherwise responsible for the turbulent diffusion of the large-scale magnetic component Shimadaetal22 . Somewhat counterintuitively, more strongly turbulent simulations end up sustaining large-scale magnetic fields better than less turbulent —and presumably less diffusive— simulations. Here again the computational treatment of subgrid effects can have a large impact, and the key to stable global magnetic cycles appears to be the minimization of dissipation at the larger scales Strugareketal16 ; Strugareketal18 .
Finally, the combination of multiple turbulent inductive contributions and relatively complex internal differential rotation profiles with distinct shearing regions can lead to the co-existence of multiple dynamo modes, spatially segregated but nonetheless interfering with one another, generating variability and modulation of magnetic cycle unfolding in MHD simulations Beaudoinetal16 ; Kapylaetal16 ; Strugareketal18 ; Vivianietal19 . Interference between distinct dynamo modes can also yield occasional episodes of strongly reduced cyclic activity Augustsonetal15 ; Kapylaetal16 , somewhat reminiscent of Grand Minima (viz. ).
To sum up: Global MHD numerical simulations of solar convection can generate large-scale magnetic fields undergoing more or less regular polarity reversals. The unfolding of these magnetic cycles seems however far more sensitive to modelling details and physical parameter regimes that suggested by observations of magnetism and cycles in solar-type stars. The physical origin of this sensitivity remains an open question.
11 Tension(s): From solar to stellar dynamos
The sun is but a star, yet its ease of observation makes it an essential springboard towards interpreting magnetic activity and cycles observed in other stars as resulting from the operation of dynamos. This is an immense topic, and we will close this review by only highlighting a few key points.
As revealed by the epoch-making Mt Wilson Ca HK survey Baliunasetal95 , all solar-type stars show evidence of magnetic activity, and a subset shows fairly well-defined cyclic variability on decadal timescales, presumably reflecting the presence of a dynamo-powered large-scale magnetic cycle analogous to the solar cycle. Observation of X-Ray emission, a tracer of coronal activity powered by magnetism, show a well-defined variation with the Rossby number inferred from the observed luminosity via mixing length theory. Particularly noteworthy is the fact that this trend is the same for solar-type stars (meaning, G and K dwarfs having a radiative core and overlying convective envelope), fully convective M dwarfs Wrightetal18 , and even evolved subgiants and giants Lehtinenetal20 . This suggests —without strictly proving— convective turbulence-related universality in the dynamo mechanism underlying stellar magnetic activity at large.
Again in late-type main-sequence stars, measurements of surface magnetism also show a fairly well-defined trend with Rossby number, also largely independent of spectral type Reinersetal22 . This points again to a certain level of universality in stellar dynamo, which is not obvious to reconcile with the many detailed dynamo scenarios designed specifically to match solar observations (but do see Shulyaketal15 ).
Even if complete knowledge of the solar dynamo were at hand —and it is not, as pointed out throughout this review,— going to the stars (even “only” to late-type main-sequence stars) demands answers to a number of crucial questions, including minimally:
-
1.
Which is the primary polarity reversal mechanism: -effect, or Babcock-Leighton,… or something else ?
-
2.
How do differential rotation and meridional circulation vary with rotation rate, luminosity, and internal structure ?
-
3.
How do turbulent coefficients (-effect, turbulent pumping, turbulent diffusion) vary with rotation rate, luminosity, and internal structure ?
-
4.
How do sunspots and BMRs form and decay in stars of varying structure (in particularly, depth of convective envelope), rotation rate and luminosity ?
Harnessing knowledge acquired via solar dynamo modelling and MHD numerical simulations can in principle adress many of these questions; for a thorough review see BrunBrowning17 . The variation of differential rotation and meridional circulation is accessible via both semi-analytical turbulence models (e.g., KitchatinovRuediger93 ) and numerical simulations (Brunetal22 , and references therein), and there is now general agreement that (latitudinal) differential rotation does not vary much with rotation rate once in the solar-like (rapidly rotating equator) regime.
The behavior of large-scale magnetic cycles, on the other hand, shows greater disagreement between observations and theory; as a single example, consider the variation of the cycle period with Rossby number: the original dynamo analysis of Mt Wilson data by Noyesetal84 suggested , while the distinct numerical simulations of Strugareketal18 and Warnecke18 indicate and , respectively. Reliably estimating the Rossby number is far from trivial, either from stellar data or from numerical simulations (see, e.g., Brunetal22 ), but the fact that these two trends run in opposite direction is worth reflecting upon, to say the least.
To sum up: The rapidly growing body of high-quality observations of stellar activity and magnetism begs for the design of a unifying dynamo framework applicable to both the sun and solar type stars of varying spectral type, luminosity, and rotation rate. Which are the key elements on which to build such a framework remains an open question.
Acknowledgments
This review was written following the workshop “Solar and Stellar Dynamos: A New Era”, hosted and supported by the International Space Science Institute (ISSI) in Bern, Switzerland. The author wish to express their thanks to ISSI for their financial and logistical support.
Declarations
The authors have no relevant financial or non-financial interests to disclose.
References
- [1] Carlo Albert, Antonio Ferriz-Mas, Filippo Gaia, and Simone Ulzega. Can Stochastic Resonance Explain Recurrence of Grand Minima? Astrophys. J. Lett., 916(2):L9, August 2021.
- [2] Rainer Arlt and José M. Vaquero. Historical sunspot records. Living Reviews in Solar Physics, 17(1):1, February 2020.
- [3] V. I. Arnol’d and B. A. Khesin. Topological methods in hydrodynamics. Annual Review of Fluid Mechanics, 24:145–166, January 1992.
- [4] K. Augustson, A. S. Brun, M. Miesch, and J. Toomre. Grand Minima and Equatorward Propagation in a Cycling Stellar Convective Dynamo. Astrophys. J., 809:149, August 2015.
- [5] H.W. Babcock. The topology of the sun’s magnetic field and the 22-year cycle. Astrophys. J., 133:572–589, 1961.
- [6] Steven A. Balbus, Henrik Latter, and Nigel Weiss. Global model of differential rotation in the Sun. Month. Not. Astron. Soc., 420(3):2457–2466, March 2012.
- [7] S. L. Baliunas, R. A. Donahue, W. H. Soon, J. H. Horne, J. Frazer, L. Woodard-Eklund, M. Bradford, L. M. Rao, O. C. Wilson, Q. Zhang, W. Bennett, J. Briggs, S. M. Carroll, D. K. Duncan, D. Figueroa, H. H. Lanning, T. Misch, J. Mueller, R. W. Noyes, D. Poppe, A. C. Porter, C. R. Robinson, J. Russell, J. C. Shelton, T. Soyumer, A. H. Vaughan, and J. H. Whitney. Chromospheric Variations in Main-Sequence Stars. II. Astrophys. J., 438:269, January 1995.
- [8] P. Beaudoin, C. Simard, J.-F. Cossette, and P. Charbonneau. Double Dynamo Signatures in a Global MHD Simulation and Mean-field Dynamos. Astrophys. J., 826:138, August 2016.
- [9] J. Beer, S. Tobias, and N. Weiss. An Active Sun Throughout the Maunder Minimum. Solar Phys., 181:237–249, July 1998.
- [10] Bernadett Belucz, Mausumi Dikpati, and Emese Forgács-Dajka. A Babcock-Leighton Solar Dynamo Model with Multi-cellular Meridional Circulation in Advection- and Diffusion-dominated Regimes. Astrophys. J., 806(2):169, June 2015.
- [11] Mitchell A. Berger. Introduction to magnetic helicity. Plasma Physics and Controlled Fusion, 41(12B):B167–B175, Dec 1999.
- [12] Prantika Bhowmik and Dibyendu Nandy. Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nature Communications, 9:5209, December 2018.
- [13] J. W. Bieber and D. M. Rust. The Escape of Magnetic Flux from the Sun. Astrophys. J., 453:911, November 1995.
- [14] Akash Biswas, Bidya Binay Karak, and Robert Cameron. Toroidal Flux Loss due to Flux Emergence Explains why Solar Cycles Rise Differently but Decay in a Similar Way. Phys.. Rev. Lett., 129(24):241102, December 2022.
- [15] Eric G. Blackman and Axel Brandenburg. Dynamic Nonlinearity in Large-Scale Dynamos with Shear. Astrophys. J., 579(1):359–373, November 2002.
- [16] A. Brandenburg, S. Candelaresi, and P. Chatterjee. Small-scale magnetic helicity losses from a mean-field dynamo. Month. Not. Astron. Soc., 398:1414–1422, September 2009.
- [17] A. Brandenburg and W. Dobler. Large scale dynamos with helicity loss through boundaries. Astron. Astrophys., 369:329–338, 2001.
- [18] A. Brandenburg and K. Subramanian. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep., 417:1–209, 2005.
- [19] Axel Brandenburg. The Inverse Cascade and Nonlinear Alpha-Effect in Simulations of Isotropic Helical Hydromagnetic Turbulence. Astrophys. J., 550(2):824–840, April 2001.
- [20] Axel Brandenburg and Dmitry Sokoloff. Local and Nonlocal Magnetic Diffusion and Alpha-Effect Tensors in Shear Flow Turbulence. Geophysical and Astrophysical Fluid Dynamics, 96(4):319–344, April 2002.
- [21] T. M. Brown, J. Christensen-Dalsgaard, W. A. Dziembowski, P. Goode, D. O. Gough, and C. A. Morrow. Inferring the sun’s internal angular velocity from observed p-mode frequency splittings. Astrophys. J., 343:526–546, August 1989.
- [22] A. S. Brun, M. S. Miesch, and J. Toomre. Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope. Astrophys. J., 614:1073–1098, October 2004.
- [23] Allan Sacha Brun and Matthew K. Browning. Magnetism, dynamo action and the solar-stellar connection. Living Reviews in Solar Physics, 14(1):4, September 2017.
- [24] Allan Sacha Brun, Antoine Strugarek, Quentin Noraz, Barbara Perri, Jacobo Varela, Kyle Augustson, Paul Charbonneau, and Juri Toomre. Powering Stellar Magnetism: Energy Transfers in Cyclic Dynamos of Sun-like Stars. Astrophys. J., 926(1):21, February 2022.
- [25] P.J. Bushby. Zonal flows and grand minima in a solar dynamo model. Mon. Not. R. Astron. Soc., 371:772–780, 2006.
- [26] P. Caligari, F. Moreno-Insertis, and M. Schüssler. Emerging flux tubes in the solar convection zone. i. asymmetry, tilt, and emergence latitudes. Astrophys. J., 441:886–902, 1995.
- [27] R. Cameron and M. Schüssler. The crucial role of surface magnetic fields for the solar dynamo. Science, 347:1333–1335, March 2015.
- [28] R. H. Cameron and M. Schüssler. Changes of the Solar Meridional Velocity Profile During Cycle 23 Explained by Flows Toward the Activity Belts. Astrophys. J., 720:1030–1032, September 2010.
- [29] R. H. Cameron and M. Schüssler. Understanding Solar Cycle Variability. Astrophys. J., 843:111, July 2017.
- [30] R. Casas, J. M. Vaquero, and M. Vazquez. Solar Rotation in the 17th century. Solar Phys., 234(2):379–392, April 2006.
- [31] P. Charbonneau. Solar Dynamo Theory. Ann. Rev. Astron. Ap., 52:251–290, August 2014.
- [32] P. Charbonneau and G. Barlet. The dynamo basis of solar cycle precursor schemes. Journal of Atmospheric and Solar-Terrestrial Physics, 73:198–206, February 2011.
- [33] P. Charbonneau, G. Blais-Laurier, and C. St-Jean. Intermittency and Phase Persistence in a Babcock-Leighton Model of the Solar Cycle. Astrophys. J. Lett., 616:L183–L186, December 2004.
- [34] Paul Charbonneau. Babcock Leighton models of the solar cycle: Questions and issues. Advances in Space Research, 39(11):1661–1669, January 2007.
- [35] Paul Charbonneau. Dynamo models of the solar cycle. Living Reviews in Solar Physics, 17(1):4, June 2020.
- [36] A. R. Choudhuri, M. Schüssler, and M. Dikpati. The solar dynamo with meridional circulation. Astron. Ap., 303:L29, November 1995.
- [37] A.R. Choudhuri, P. Chatterjee, and J. Jiang. Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett., 98(13), 2007.
- [38] Arnab Rai Choudhuri and Bidya Binay Karak. Origin of Grand Minima in Sunspot Cycles. Phys.. Rev. Lett., 109(17):171103, October 2012.
- [39] T. G. Cowling. The magnetic field of sunspots. Month. Not. Astron. Soc., 94:39–48, November 1933.
- [40] M. Dikpati and P. Charbonneau. A Babcock-Leighton Flux Transport Dynamo with Solar-like Differential Rotation. Astrophys. J., 518:508–520, June 1999.
- [41] Mausumi Dikpati and Peter A. Gilman. Flux-Transport Solar Dynamos. Sp. Sci. Rev., 144(1-4):67–75, April 2009.
- [42] S. D’Silva and A.R. Choudhuri. A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys., 272:621–633, 1993.
- [43] B. R. Durney. On a Babcock-Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Solar Phys., 160:213–235, September 1995.
- [44] W. A. Dziembowski, Philip R. Goode, and K. G. Libbrecht. The Radial Gradient in the Sun’s Rotation. Astrophys. J. Lett., 337:L53, February 1989.
- [45] J. A. Eddy, P. A. Gilman, and D. E. Trotter. Anomalous Solar Rotation in the Early 17th Century. Science, 198(4319):824–829, November 1977.
- [46] John A. Eddy. The Maunder Minimum. Science, 192(4245):1189–1202, June 1976.
- [47] Y. Fan and F. Fang. A Simulation of Convective Dynamo in the Solar Convective Envelope: Maintenance of the Solar-like Differential Rotation and Emerging Flux. Astrophys. J., 789:35, July 2014.
- [48] Y. Fan, G.H. Fisher, and E.E. Deluca. The origin of morphological asymmetries in bipolar active regions. Astrophys. J., 405:390–401, 1993.
- [49] Yuhong Fan. Magnetic fields in the solar convection zone. Living Reviews in Solar Physics, 18(1):5, December 2021.
- [50] N. A. Featherstone and M. S. Miesch. Meridional Circulation in Solar and Stellar Convection Zones. Astrophys. J., 804:67, May 2015.
- [51] T. Gastine, R. K. Yadav, J. Morin, A. Reiners, and J. Wicht. From solar-like to antisolar differential rotation in cool stars. Month. Not. Astron. Soc., 438:L76–L80, February 2014.
- [52] M. Ghizaru, P. Charbonneau, and P.K. Smolarkiewicz. Magnetic cycles in global large eddy simulations of solar convection. Astrophys. J. Lett., page in press, 2010.
- [53] Laurent Gizon, Robert H. Cameron, Majid Pourabdian, Zhi-Chao Liang, Damien Fournier, Aaron C. Birch, and Chris S. Hanson. Meridional flow in the Sun’s convection zone is a single cell in each hemisphere. Science, 368(6498):1469–1472, June 2020.
- [54] Gary A. Glatzmaier and Paul H. Roberts. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Physics of the Earth and Planetary Interiors, 91(1):63–75, January 1995.
- [55] D. O. Gough, A. G. Kosovichev, J. Toomre, E. Anderson, H. M. Antia, S. Basu, B. Chaboyer, S. M. Chitre, J. Christensen-Dalsgaard, W. A. Dziembowski, A. Eff-Darwich, J. R. Elliott, P. M. Giles, P. R. Goode, J. A. Guzik, J. W. Harvey, F. Hill, J. W. Leibacher, M. J. P. F. G. Monteiro, O. Richard, T. Sekii, H. Shibahashi, M. Takata, M. J. Thompson, S. Vauclair, and S. V. Vorontsov. The Seismic Structure of the Sun. Science, 272(5266):1296–1300, May 1996.
- [56] L. M. Green, M. C. López Fuentes, C. H. Mandrini, L. van Driel-Gesztelyi, and P. Démoulin. Active region helicity evolution and related coronal mass ejection activity. Advances in Space Research, 32(10):1959–1964, January 2003.
- [57] G. Guerrero and E. M. de Gouveia Dal Pino. Turbulent magnetic pumping in a Babcock-Leighton solar dynamo model. Astron. Ap., 485(1):267–273, July 2008.
- [58] G. Guerrero, B. Zaire, P. K. Smolarkiewicz, E. M. de Gouveia Dal Pino, A. G. Kosovichev, and N. N. Mansour. What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars? Astrophys. J., 880(1):6, Jul 2019.
- [59] G. E. Hale, F. Ellerman, S. B. Nicholson, and A. H. Joy. The Magnetic Polarity of Sun-Spots. Astrophys. J., 49:153, April 1919.
- [60] David H. Hathaway. The Solar Cycle. Living Reviews in Solar Physics, 12(1):4, September 2015.
- [61] D.H. Hathaway. Doppler measurements of the sun’s meridional flow. Astrophys. J., 460:1027–1033, 1996.
- [62] G. Hazra, B. B. Karak, and A. R. Choudhuri. Is a Deep One-cell Meridional Circulation Essential for the Flux Transport Solar Dynamo? Astrophys. J., 782:93, February 2014.
- [63] S. Hazra, D. Passos, and D. Nandy. A Stochastically Forced Time Delay Solar Dynamo Model: Self-consistent Recovery from a Maunder-like Grand Minimum Necessitates a Mean-field Alpha Effect. Astrophys. J., 789:5, July 2014.
- [64] Soumitra Hazra and Dibyendu Nandy. A Proposed Paradigm for Solar Cycle Dynamics Mediated via Turbulent Pumping of Magnetic Flux in Babcock-Leighton-type Solar Dynamos. Astrophys. J., 832(1):9, November 2016.
- [65] Soumitra Hazra and Dibyendu Nandy. The origin of parity changes in the solar cycle. Month. Not. Astron. Soc., 489(3):4329–4337, November 2019.
- [66] Bernd Helmbold. Wissenschaft und Politik im Leben von Max Steenbeck (1904-1981). Springer, Berlin, 2017.
- [67] H. Hotta and K. Kusano. Solar differential rotation reproduced with high-resolution simulation. Nature Astronomy, 5:1100–1102, September 2021.
- [68] H. Hotta, K. Kusano, and R. Shimada. Generation of Solar-like Differential Rotation. Astrophys. J., 933(2):199, July 2022.
- [69] H. Hotta, M. Rempel, and T. Yokoyama. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science, 351:1427–1430, March 2016.
- [70] P. Hoyng, D. Schmitt, and L. J. W. Teuben. The effect of random alpha-fluctuations and the global properties of the solar magnetic field. Astron. Ap., 289:265–278, September 1994.
- [71] D.V. Hoyt and K.H. Schatten. How well was the sun observed during the maunder minimum? Solar Phys., 165:181–192, 1996.
- [72] Fadil Inceoglu, Rainer Arlt, and Matthias Rempel. The Nature of Grand Minima and Maxima from Fully Nonlinear Flux Transport Dynamos. Astrophys. J., 848(2):93, October 2017.
- [73] J. Jackiewicz, A. Serebryanskiy, and S. Kholikov. Meridional Flow in the Solar Convection Zone. II. Helioseismic Inversions of GONG Data. Astrophys. J., 805:133, June 2015.
- [74] R. L. Jennings and N. O. Weiss. Symmetry breaking in stellar dynamos. Month. Not. Astron. Soc., 252:249–260, September 1991.
- [75] J. Jiang, R. H. Cameron, D. Schmitt, and E. Işık. Modeling solar cycles 15 to 21 using a flux transport dynamo. Astron. Ap., 553:A128, May 2013.
- [76] J. Jiang, P. Chatterjee, and A.R. Choudhuri. Solar activity forecast with a dynamo model. Mon. Not. R. Astron. Soc., 381:1527–1542, 2007.
- [77] J. Jiang, D. H. Hathaway, R. H. Cameron, S. K. Solanki, L. Gizon, and L. Upton. Magnetic Flux Transport at the Solar Surface. Space Sci. Rev., 186:491–523, December 2014.
- [78] L. Jouve and A.S. Brun. On the role of meridional flows in flux transport dynamo models. Astron. Astrophys., 474:239–250, 2007.
- [79] M. J. Käpylä, P. J. Käpylä, N. Olspert, A. Brandenburg, J. Warnecke, B. B. Karak, and J. Pelt. Multiple dynamo modes as a mechanism for long-term solar activity variations. Astron. Ap., 589:A56, May 2016.
- [80] P. J. Käpylä, M. J. Käpylä, N. Olspert, J. Warnecke, and A. Brandenburg. Convection-driven spherical shell dynamos at varying Prandtl numbers. Astron. Ap., 599:A4, March 2017.
- [81] B. B. Karak, P. J. Käpylä, M. J. Käpylä, A. Brandenburg, N. Olspert, and J. Pelt. Magnetically controlled stellar differential rotation near the transition from solar to anti-solar profiles. Astron. Ap., 576:A26, April 2015.
- [82] Bidya Binay Karak, Jie Jiang, Mark S. Miesch, Paul Charbonneau, and Arnab Rai Choudhuri. Flux Transport Dynamos: From Kinematics to Dynamics. Sp. Sci. Rev., 186(1-4):561–602, December 2014.
- [83] Rudolf Kippenhahn. Differential Rotation in Stars with Convective Envelopes. Astrophys. J., 137:664, February 1963.
- [84] L. L. Kitchatinov and S. V. Olemskoy. Differential rotation of main-sequence dwarfs and its dynamo efficiency. Month. Not. Astron. Soc., 411(2):1059–1066, February 2011.
- [85] Leonid Kitchatinov and Alexander Nepomnyashchikh. How supercritical are stellar dynamos, or why do old main-sequence dwarfs not obey gyrochronology? Month. Not. Astron. Soc., 470(3):3124–3130, September 2017.
- [86] L.L. Kitchatinov and G. Rüdiger. -effect and differential rotation in stellar convection zones. Astron. Astrophys., 276:96–102, 1993.
- [87] L.L. Kitchatinov, G. Rüdiger, and M. Küker. -quenching as the nonlinearity in stellar-turbulence dynamos. Astron. Astrophys., 292:125–132, 1994.
- [88] N. Kleeorin, I. Rogachevskii, and A. Ruzmaikin. Magnitude of the dynamo-generated magnetic field in solar-type convective zones. Astron. Astrophys., 297:159–167, 1995.
- [89] F. Krause and K.-H. Rädler. Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon Press, Oxford; New York, 1980.
- [90] V. N. Krivodubskij. Dynamo-parameters of the convection zone of the Sun. Kinematics and Physics of Celestial Bodies, 22:1–20, January 2006.
- [91] M. Kueker, G. Ruediger, and V. V. Pipin. Solar torsional oscillations due to the magnetic quenching of the Reynolds stress. Astron. Ap., 312:615–623, August 1996.
- [92] M. Küker, R. Arlt, and R. Rüdiger. The maunder minimum as due to magnetic -quenching. Astron. Astrophys., 343:977–982, 1999.
- [93] M. Küker, G. Rüdiger, and M. Schulz. Circulation-dominated solar shell dynamo models with positive alpha effect. Astron. Astrophys., 374:301–308, 2001.
- [94] J. Larmor. How could a rotating body such as the Sun become magnetic. Rep. Brit. Assoc. Adv. Sci., pages 159–160, 1919.
- [95] Daniel P. Lathrop and Cary B. Forest. Magnetic dynamos in the lab. Physics Today, 64(7):40, January 2011.
- [96] T. D. Lee and C. N. Yang. Question of Parity Conservation in Weak Interactions. Physical Review, 104(1):254–258, October 1956.
- [97] Jyri J. Lehtinen, Federico Spada, Maarit J. Käpylä, Nigul Olspert, and Petri J. Käpylä. Common dynamo scaling in slowly rotating young and evolved stars. Nature Astronomy, 4:658–662, March 2020.
- [98] R.B. Leighton. Transport of magnetic fields on the sun. Astrophys. J., 140:1547–1562, 1964.
- [99] R.B. Leighton. A magneto-kinematic model of the solar cycle. Astrophys. J., 156:1–26, 1969.
- [100] A. Lemerle, P. Charbonneau, and A. Carignan-Dugas. A Coupled D Babcock-Leighton Solar Dynamo Model. I. Surface Magnetic Flux Evolution. Astrophys. J., 810:78, September 2015.
- [101] M. C. López Fuentes, P. Démoulin, C. H. Mandrini, A. A. Pevtsov, and L. van Driel-Gesztelyi. Magnetic twist and writhe of active regions. On the origin of deformed flux tubes. Astron. Ap., 397:305–318, January 2003.
- [102] B. C. Low. Coronal mass ejections, magnetic flux ropes, and solar magnetism. J. Geophys. Res., 106(A11):25141–25164, November 2001.
- [103] B. J. Lynch, J. R. Gruesbeck, T. H. Zurbuchen, and S. K. Antiochos. Solar cycle-dependent helicity transport by magnetic clouds. Journal of Geophysical Research (Space Physics), 110(A8):A08107, August 2005.
- [104] J. Mabuchi, Y. Masada, and A. Kageyama. Differential Rotation in Magnetized and Non-magnetized Stars. Astrophys. J., 806:10, June 2015.
- [105] Y. Masada, K. Yamada, and A. Kageyama. Effects of Penetrative Convection on Solar Dynamo. Astrophys. J., 778:11, November 2013.
- [106] B. H. McClintock and A. A. Norton. Recovering Joy’s Law as a Function of Solar Cycle, Hemisphere, and Longitude. Solar Phys., 287:215–227, October 2013.
- [107] Travis S. Metcalfe, Adam J. Finley, Oleg Kochukhov, Victor See, Thomas R. Ayres, Keivan G. Stassun, Jennifer L. van Saders, Catherine A. Clark, Diego Godoy-Rivera, Ilya V. Ilyin, Marc H. Pinsonneault, Klaus G. Strassmeier, and Pascal Petit. The Origin of Weakened Magnetic Braking in Old Solar Analogs. Astrophys. J. Lett., 933(1):L17, July 2022.
- [108] M.S. Miesch and J. Toomre. Turbulence, magnetism, and shear in stellar interiors. Annual Review of Fluid Mechanics, 41:317–345, 2009.
- [109] H.K. Moffatt. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge; New York, 1978.
- [110] K.H. Moffatt and E. Dormy. Self-Exciting Fluid Dynamos. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge; New York, 2019.
- [111] D. Moss, A. Brandenburg, R. Tavakol, and I. Tuominen. Stochastic effects in mean-field dynamos. Astron. Ap., 265:843–849, November 1992.
- [112] D. Moss and J.M. Brooke. Towards a model of the solar dynamo. Mon. Not. R. Astron. Soc., 315:521–533, 2000.
- [113] D. Moss, D. Sokoloff, I. Usoskin, and V. Tutubalin. Solar grand minima and random fluctuations in dynamo parameters. Solar Phys., 250:221–234, 2008.
- [114] D. Nandy and A.R. Choudhuri. Toward a mean-field formulation of the babcock–leighton type solar dynamo. i. -coefficient versus durney’s double-ring approach. Astrophys. J., 551:576–585, 2001.
- [115] N. J. Nelson, B. P. Brown, A. S. Brun, M. S. Miesch, and J. Toomre. Magnetic Wreaths and Cycles in Convective Dynamos. Astrophys. J., 762:73, January 2013.
- [116] R. W. Noyes, N. O. Weiss, and A. H. Vaughan. The relation between stellar rotation rate and activity cycle periods. Astrophys. J., 287:769–773, December 1984.
- [117] Deniz Ölçek, Paul Charbonneau, Alexand re Lemerle, Gabriel Longpré, and Florence Boileau. Grand Activity Minima and Maxima via Dual Dynamos. Solar Phys., 294(7):99, July 2019.
- [118] S. V. Olemskoy and L. L. Kitchatinov. Grand Minima and North-South Asymmetry of Solar Activity. Astrophys. J., 777:71, November 2013.
- [119] A.J.H. Ossendrijver, P. Hoyng, and D. Schmitt. Stochastic excitation and memory of the solar dynamo. Astron. Astrophys., 313:938–948, 1996.
- [120] M. Ossendrijver. The solar dynamo. Astron. Astrophys. Rev., 11:287–367, 2003.
- [121] M.A.J.H. Ossendrijver. Grand minima in a buoyancy-driven solar dynamo. Astron. Astrophys., 359:364–372, 2000.
- [122] M.A.J.H. Ossendrijver, M. Stix, A. Brandenburg, and G. Rüdiger. Magnetoconvection and dynamo coefficients. ii. field-direction dependent pumping of magnetic field. Astron. Astrophys., 394:735–745, 2002.
- [123] E. N. Parker. The Generation of Magnetic Fields in Astrophysical Bodies. I. The Dynamo Equations. Astrophys. J., 162:665, November 1970.
- [124] E.N. Parker. Hydromagnetic dynamo models. Astrophys. J., 122:293–314, 1955.
- [125] Eugene N. Parker. The Formation of Sunspots from the Solar Toroidal Field. Astrophys. J., 121:491, March 1955.
- [126] D. Passos, D. Nandy, S. Hazra, and I. Lopes. A solar dynamo model driven by mean-field alpha and Babcock-Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astron. Ap., 563:A18, March 2014.
- [127] William Dean Pesnell. Predictions of Solar Cycle 24: How are we doing? Space Weather, 14(1):10–21, January 2016.
- [128] Kristóf Petrovay. Solar cycle prediction. Living Reviews in Solar Physics, 17(1):2, March 2020.
- [129] Kristóf Petrovay, Melinda Nagy, and Anthony R. Yeates. Towards an algebraic method of solar cycle prediction. I. Calculating the ultimate dipole contributions of individual active regions. Journal of Space Weather and Space Climate, 10:50, August 2020.
- [130] A. A. Pevtsov, M. A. Berger, A. Nindos, A. A. Norton, and L. van Driel-Gesztelyi. Magnetic Helicity, Tilt, and Twist. Sp. Sci. Rev., 186:285–324, December 2014.
- [131] V. V. Pipin and A. G. Kosovichev. Mean-field Solar Dynamo Models with a Strong Meridional Flow at the Bottom of the Convection Zone. Astrophys. J., 738:104, September 2011.
- [132] V. V. Pipin and A. G. Kosovichev. The Mean-field Solar Dynamo with a Double Cell Meridional Circulation Pattern. Astrophys. J., 776(1):36, October 2013.
- [133] V. V. Pipin, D. D. Sokoloff, and I. G. Usoskin. Variations of the solar cycle profile in a solar dynamo with fluctuating dynamo governing parameters. Astron. Ap., 542:A26, June 2012.
- [134] V.V. Pipin. The gleissberg cycle by a nonlinear dynamo. Astron. Astrophys., 346:295–302, 1999.
- [135] N. Platt, E.A. Spiegel, and C. Tresser. On-off intermittency: A mechanism for bursting. Phys. Rev. Lett., 70:279–282, 1993.
- [136] Yu. B. Ponomarenko. Theory of the hydromagnetic generator. Journal of Applied Mechanics and Technical Physics, 14(6):775–778, November 1973.
- [137] A. Pouquet, U. Frish, and J. Leorat. Strong mhd helical turbulence and the nonlinear dynamo effect. J. Fluid Mech., 77:321–354, 1976.
- [138] É. Racine, P. Charbonneau, M. Ghizaru, A. Bouchat, and P. K. Smolarkiewicz. On the Mode of Dynamo Action in a Global Large-eddy Simulation of Solar Convection. Astrophys. J., 735:46, July 2011.
- [139] S. P. Rajaguru and H. M. Antia. Meridional Circulation in the Solar Convection Zone: Time-Distance Helioseismic Inferences from Four Years of HMI/SDO Observations. Astrophys. J., 813:114, November 2015.
- [140] A. Reiners, D. Shulyak, P. J. Käpylä, I. Ribas, E. Nagel, M. Zechmeister, J. A. Caballero, Y. Shan, B. Fuhrmeister, A. Quirrenbach, P. J. Amado, D. Montes, S. V. Jeffers, M. Azzaro, V. J. S. Béjar, P. Chaturvedi, Th. Henning, M. Kürster, and E. Pallé. Magnetism, rotation, and nonthermal emission in cool stars. Average magnetic field measurements in 292 M dwarfs. Astron. Ap., 662:A41, June 2022.
- [141] M. Rempel. Flux-transport dynamos with lorentz force feedback on differential rotation and meridional flow: Saturation mechanism and torsional oscillations. Astrophys. J., 647:662–675, 2006.
- [142] M. Rempel. Transport of toroidal magnetic field by the meridional flow at the base of the solar convection zone. Astrophys. J., 637:1135–1142, 2006.
- [143] Matthias Rempel. Creation and destruction of magnetic field. In Carolus J. Schrijver and George L. Siscoe, editors, Heliophysics: Plasma Physics of the Local Cosmos, pages 42–76. 2009.
- [144] J.C. Ribes and E. Nesme-Ribes. The solar sunspot cycle in the maunder minimum ad1645 to ad1715. Astron. Astrophys., 276:549–563, 1993.
- [145] P. Roberts and M. Stix. The Turbulent Dynamo: A Translation of a Series of Papers by F. Krause, K.-H Radler, and M. Steenbeck (No. NCAR/TN-60+IA). 1971.
- [146] Günther Rüdiger and Rainer Hollerbach. The magnetic universe : geophysical and astrophysical dynamo theory. 2004.
- [147] Guenther Ruediger. Differential rotation and stellar convection. Sun and the solar stars. 1989.
- [148] Aleksandr A. Ruzmaikin, Dmitrii D. Sokolov, and Anvar M. Shukurov. Magnetic Fields of Galaxies, volume 133. Kluwer, Dordrecht, 1988.
- [149] Chitradeep Saha, Sanghita Chandra, and Dibyendu Nandy. Evidence of persistence of weak magnetic cycles driven by meridional plasma flows during solar grand minima phases. Month. Not. Astron. Soc., 517(1):L36–L40, November 2022.
- [150] A. Schad, J. Timmer, and M. Roth. Global Helioseismic Evidence for a Deeply Penetrating Solar Meridional Flow Consisting of Multiple Flow Cells. Astrophys. J. Lett., 778:L38, December 2013.
- [151] K.H. Schatten, P.H. Scherrer, L. Svalgaard, and J.M. Wilcox. Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett., 5:411–414, 1978.
- [152] D. Schmitt, M. Schuessler, and A. Ferriz-Mas. Intermittent solar activity by an on-off dynamo. Astron. Ap., 311:L1–L4, July 1996.
- [153] M. Schrinner, K.-H. Rädler, D. Schmitt, M. Rheinhardt, and U. R. Christensen. Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo. Geophysical and Astrophysical Fluid Dynamics, 101:81–116, April 2007.
- [154] M. Schussler, P. Caligari, A. Ferriz-Mas, and F. Moreno-Insertis. Instability and eruption of magnetic flux tubes in the solar convection zone. Astron. Ap., 281:L69–L72, January 1994.
- [155] N. Seehafer. Electric Current Helicity in the Solar Atmosphere. Solar Phys., 125(2):219–232, September 1990.
- [156] N. Seehafer. Electric Current Helicity in the Solar Atmosphere. Solar Phys., 125(2):219–232, September 1990.
- [157] Ryota Shimada, Hideyuki Hotta, and Takaaki Yokoyama. Mean-field Analysis on Large-scale Magnetic Fields at High Reynolds Numbers. Astrophys. J., 935(1):55, August 2022.
- [158] D. Shulyak, D. Sokoloff, L. Kitchatinov, and D. Moss. Towards understanding dynamo action in M dwarfs. Month. Not. Astron. Soc., 449(4):3471–3478, June 2015.
- [159] C. Simard, P. Charbonneau, and C. Dubé. Characterisation of the turbulent electromotive force and its magnetically-mediated quenching in a global EULAG-MHD simulation of solar convection. Advances in Space Research, 58:1522–1537, October 2016.
- [160] Corinne Simard and Paul Charbonneau. Grand Minima in a spherical non-kinematic 2 mean-field dynamo model. Journal of Space Weather and Space Climate, 10:9, January 2020.
- [161] Corinne Simard, Paul Charbonneau, and Amélie Bouchat. Magnetohydrodynamic Simulation-driven Kinematic Mean Field Model of the Solar Cycle. Astrophys. J., 768(1):16, May 2013.
- [162] R. D. Simitev, A. G. Kosovichev, and F. H. Busse. Dynamo Effects Near the Transition from Solar to Anti-Solar Differential Rotation. Astrophys. J., 810:80, September 2015.
- [163] Piotr K. Smolarkiewicz and Paul Charbonneau. EULAG, a computational model for multiscale flows: An MHD extension. Journal of Computational Physics, 236:608–623, March 2013.
- [164] D. Sokoloff and E. Nesme-Ribes. The Maunder minimum: a mixed-parity dynamo mode? Astron. Ap., 288:293–298, August 1994.
- [165] D. D. Sokoloff, R. A. Stepanov, and P. G. Frick. Dynamos: from an astrophysical model to laboratory experiments. Physics Uspekhi, 57(3):292–311, March 2014.
- [166] E.A. Spiegel and J.-P. Zahn. The solar tachocline. Astron. Astrophys., 265:106–114, 1992.
- [167] M. Steenbeck. Impulse und Impulse und Wirkungen. Schritte auf meinem Lebensweg. Verlag der Nation, Berlin, 1971.
- [168] M. Steenbeck and F. Krause. On the Dynamo Theory of Stellar and Planetary Magnetic Fields. I. AC Dynamos of Solar Type. Astronomische Nachrichten, 291:49–84, January 1969.
- [169] M. Steenbeck, F. Krause, and K. H. Rädler. Berechnung der mittleren LORENTZ-Feldstärke v X B für ein elektrisch leitendes Medium in turbulenter, durch CORIOLIS-Kräfte beeinflußter Bewegung. Zeitschrift Naturforschung Teil A, 21:369, April 1966.
- [170] M. Steenbeck, F. Krause, and K. H. Rädler. Berechnung der mittleren LORENTZ-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch CORIOLIS-Kräfte beeinflußter Bewegung. Zeitschrift Naturforschung Teil A, 21:369, April 1966.
- [171] M. Stix. Differential rotation and the solar dynamo. Astron. Astrophys., 47:243–254, 1976.
- [172] Michael Stix. The Sun : an introduction. Springer, Berlin, 2004.
- [173] A. Strugarek, P. Beaudoin, A. S. Brun, P. Charbonneau, S. Mathis, and P. K. Smolarkiewicz. Modeling turbulent stellar convection zones: Sub-grid scales effects. Advances in Space Research, 58(8):1538–1553, October 2016.
- [174] A. Strugarek, P. Beaudoin, P. Charbonneau, and A. S. Brun. On the Sensitivity of Magnetic Cycles in Global Simulations of Solar-like Stars. Astrophys. J., 863(1):35, Aug 2018.
- [175] L. Svalgaard, E. W. Cliver, and Y. Kamide. Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett., 32:L01104, January 2005.
- [176] M. Talafha, M. Nagy, A. Lemerle, and K. Petrovay. Role of observable nonlinearities in solar cycle modulation. Astron. Ap., 660:A92, April 2022.
- [177] S. M. Tobias. The turbulent dynamo. Journal of Fluid Mechanics, 912:P1, April 2021.
- [178] S. M. Tobias, N. O. Weiss, and V. Kirk. Chaotically modulated stellar dynamos. Month. Not. Astron. Soc., 273:1150–1166, April 1995.
- [179] S. Tomczyk, J. Schou, and M.J. Thompson. Measurement of the rotation rate in the deep solar interior. Astrophys. J. Lett., 448:L57–L60, 1995.
- [180] Bindesh Tripathi, Dibyendu Nandy, and Soumitro Banerjee. Stellar mid-life crisis: subcritical magnetic dynamos of solar-like stars and the breakdown of gyrochronology. Month. Not. Astron. Soc., 506(1):L50–L54, September 2021.
- [181] R. K. Ulrich. Solar Meridional Circulation from Doppler Shifts of the Fe I Line at 5250 Å as Measured by the 150-foot Solar Tower Telescope at the Mt. Wilson Observatory. Astrophys. J., 725:658–669, December 2010.
- [182] L. Upton and D. H. Hathaway. Predicting the Sun’s Polar Magnetic Fields with a Surface Flux Transport Model. Astrophys. J., 780:5, January 2014.
- [183] I. G. Usoskin, Y. Gallet, F. Lopes, G. A. Kovaltsov, and G. Hulot. Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima. Astron. Ap., 587:A150, March 2016.
- [184] I.G. Usoskin, D. Sokoloff, and D. Moss. Grand minima of solar activity and the mean-field dynamo. Solar Phys., 254:345–355, 2009.
- [185] Ilya G. Usoskin. A history of solar activity over millennia. Living Reviews in Solar Physics, 14(1):3, March 2017.
- [186] Ilya G. Usoskin, Rainer Arlt, Eleanna Asvestari, Ed Hawkins, Maarit Käpylä, Gennady A. Kovaltsov, Natalie Krivova, Michael Lockwood, Kalevi Mursula, Jezebel O’Reilly, Matthew Owens, Chris J. Scott, Dmitry D. Sokoloff, Sami K. Solanki, Willie Soon, and José M. Vaquero. The Maunder minimum (1645-1715) was indeed a grand minimum: A reassessment of multiple datasets. Astron. Ap., 581:A95, September 2015.
- [187] A.A. van Ballegooijen and A.R. Choudhuri. The possible role of meridional circulation in suppressing magnetic buoyancy. Astrophys. J., 333:965–977, 1988.
- [188] M. Viviani, M. J. Käpylä, J. Warnecke, P. J. Käpylä, and M. Rheinhardt. Stellar Dynamos in the Transition Regime: Multiple Dynamo Modes and Antisolar Differential Rotation. Astrophys. J., 886(1):21, November 2019.
- [189] Y.-M. Wang, A.G. Nash, and N.R. Sheeley Jr. Magnetic flux transport on the sun. Science, 245:712–718, 1989.
- [190] Y.-M. Wang, N.R. Sheeley Jr, and A.G. Nash. A new cycle model including meridional circulation. Astrophys. J., 383:431–442, 1991.
- [191] J. Warnecke. Dynamo cycles in global convection simulations of solar-like stars. Astron. Ap., 616:A72, August 2018.
- [192] J. Warnecke, A. Brandenburg, and D. Mitra. Dynamo-driven plasmoid ejections above a spherical surface. Astron. Ap., 534:A11, October 2011.
- [193] J. Warnecke, M. Rheinhardt, S. Tuomisto, P. J. Käpylä, M. J. Käpylä, and A. Brand enburg. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars. Astron. Astrophys., 609:A51, Jan 2018.
- [194] Jörn Warnecke, Matthias Rheinhardt, Mariangela Viviani, Frederick A. Gent, Simo Tuomisto, and Maarit J. Käpylä. Investigating Global Convective Dynamos with Mean-field Models: Full Spectrum of Turbulent Effects Required. Astrophys. J. Lett., 919(2):L13, October 2021.
- [195] M. A. Weber, Y. Fan, and M. S. Miesch. Comparing Simulations of Rising Flux Tubes Through the Solar Convection Zone with Observations of Solar Active Regions: Constraining the Dynamo Field Strength. Solar Phys., 287:239–263, October 2013.
- [196] Maria A. Weber, Yuhong Fan, and Mark S. Miesch. The Rise of Active Region Flux Tubes in the Turbulent Solar Convective Envelope. Astrophys. J., 741(1):11, November 2011.
- [197] N. O. Weiss and S. M. Tobias. Supermodulation of the Sun’s magnetic activity: the effects of symmetry changes. Month. Not. Astron. Soc., 456(3):2654–2661, March 2016.
- [198] N. O. Weiss and S. M. Tobias. Supermodulation of the Sun’s magnetic activity: the effects of symmetry changes. Month. Not. Astron. Soc., 456:2654–2661, March 2016.
- [199] T. Whitbread, A. R. Yeates, A. Muñoz-Jaramillo, and G. J. D. Petrie. Parameter optimization for surface flux transport models. Astron. Ap., 607:A76, November 2017.
- [200] Nicholas J. Wright, Elisabeth R. Newton, Peter K. G. Williams, Jeremy J. Drake, and Rakesh K. Yadav. The stellar rotation-activity relationship in fully convective M dwarfs. Month. Not. Astron. Soc., 479(2):2351–2360, September 2018.
- [201] C. J. Wu, I. G. Usoskin, N. Krivova, G. A. Kovaltsov, M. Baroni, E. Bard, and S. K. Solanki. Solar activity over nine millennia: A consistent multi-proxy reconstruction. Astron. Ap., 615:A93, July 2018.
- [202] H. Yoshimura. Solar-cycle dynamo wave propagation. Astrophys. J., 201:740–748, 1975.
- [203] Ya. Zeldovich, A. Ruzmaikin, and D. Sokoloff. Magnetic fields in astrophysics, volume 3. Gordon & Breach, NY, 1983.
- [204] Ya. B. Zeldovich. The magnetic field in the two-dimensional motion of a conducting turbulent liquid. Sov. Phys. JETP, 4:460–462, 1957.
- [205] Ya. B. Zeldovich and A. A. Ruzmaikin. Magnetic field of a conducting fluid in two-dimensional motion. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 78:980–986, 1980.
- [206] Hongqi Zhang, T. Sakurai, A. Pevtsov, Yu Gao, Haiqing Xu, D. D. Sokoloff, and K. Kuzanyan. A new dynamo pattern revealed by solar helical magnetic fields. Month. Not. Astron. Soc., 402(1):L30–L33, February 2010.
- [207] J. Zhao, R. S. Bogart, A. G. Kosovichev, T. L. Duvall, Jr., and T. Hartlep. Detection of Equatorward Meridional Flow and Evidence of Double-cell Meridional Circulation inside the Sun. Astrophys. J. Lett., 774:L29, September 2013.