This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Belle Collaboration

Evidence for 𝑿(𝟑𝟖𝟕𝟐)𝑱/𝝍𝝅+𝝅\bm{X(3872)\rightarrow J/\psi\pi^{+}\pi^{-}} produced in single-tag two-photon interactions

Y. Teramoto Osaka City University, Osaka 558-8585    S. Uehara High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    M. Masuda Earthquake Research Institute, University of Tokyo, Tokyo 113-0032 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047    I. Adachi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    H. Aihara Department of Physics, University of Tokyo, Tokyo 113-0033    S. Al Said Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589    D. M. Asner Brookhaven National Laboratory, Upton, New York 11973    H. Atmacan University of Cincinnati, Cincinnati, Ohio 45221    T. Aushev Higher School of Economics (HSE), Moscow 101000    R. Ayad Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451    V. Babu Deutsches Elektronen–Synchrotron, 22607 Hamburg    P. Behera Indian Institute of Technology Madras, Chennai 600036    C. Beleño II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen    J. Bennett University of Mississippi, University, Mississippi 38677    V. Bhardwaj Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    B. Bhuyan Indian Institute of Technology Guwahati, Assam 781039    T. Bilka Faculty of Mathematics and Physics, Charles University, 121 16 Prague    J. Biswal J. Stefan Institute, 1000 Ljubljana    G. Bonvicini Wayne State University, Detroit, Michigan 48202    A. Bozek H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    M. Bračko University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    T. E. Browder University of Hawaii, Honolulu, Hawaii 96822    M. Campajola INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    D. Červenkov Faculty of Mathematics and Physics, Charles University, 121 16 Prague    M.-C. Chang Department of Physics, Fu Jen Catholic University, Taipei 24205    P. Chang Department of Physics, National Taiwan University, Taipei 10617    V. Chekelian Max-Planck-Institut für Physik, 80805 München    A. Chen National Central University, Chung-li 32054    B. G. Cheon Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    K. Chilikin P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    K. Cho Korea Institute of Science and Technology Information, Daejeon 34141    S.-J. Cho Yonsei University, Seoul 03722    S.-K. Choi Gyeongsang National University, Jinju 52828    Y. Choi Sungkyunkwan University, Suwon 16419    S. Choudhury Indian Institute of Technology Hyderabad, Telangana 502285    D. Cinabro Wayne State University, Detroit, Michigan 48202    S. Cunliffe Deutsches Elektronen–Synchrotron, 22607 Hamburg    G. De Nardo INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    F. Di Capua INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    Z. Doležal Faculty of Mathematics and Physics, Charles University, 121 16 Prague    T. V. Dong Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    S. Eidelman Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    T. Ferber Deutsches Elektronen–Synchrotron, 22607 Hamburg    B. G. Fulsom Pacific Northwest National Laboratory, Richland, Washington 99352    R. Garg Panjab University, Chandigarh 160014    V. Gaur Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    N. Gabyshev Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Garmash Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Giri Indian Institute of Technology Hyderabad, Telangana 502285    P. Goldenzweig Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    D. Greenwald Department of Physics, Technische Universität München, 85748 Garching    C. Hadjivasiliou Pacific Northwest National Laboratory, Richland, Washington 99352    T. Hara High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    O. Hartbrich University of Hawaii, Honolulu, Hawaii 96822    K. Hayasaka Niigata University, Niigata 950-2181    H. Hayashii Nara Women’s University, Nara 630-8506    M. T. Hedges University of Hawaii, Honolulu, Hawaii 96822    M. Hernandez Villanueva University of Mississippi, University, Mississippi 38677    W.-S. Hou Department of Physics, National Taiwan University, Taipei 10617    C.-L. Hsu School of Physics, University of Sydney, New South Wales 2006    T. Iijima Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602 Graduate School of Science, Nagoya University, Nagoya 464-8602    K. Inami Graduate School of Science, Nagoya University, Nagoya 464-8602    G. Inguglia Institute of High Energy Physics, Vienna 1050    A. Ishikawa High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    R. Itoh High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    M. Iwasaki Osaka City University, Osaka 558-8585    Y. Iwasaki High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    W. W. Jacobs Indiana University, Bloomington, Indiana 47408    E.-J. Jang Gyeongsang National University, Jinju 52828    S. Jia Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    Y. Jin Department of Physics, University of Tokyo, Tokyo 113-0033    C. W. Joo Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583    K. K. Joo Chonnam National University, Gwangju 61186    J. Kahn Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    A. B. Kaliyar Tata Institute of Fundamental Research, Mumbai 400005    K. H. Kang Kyungpook National University, Daegu 41566    G. Karyan Deutsches Elektronen–Synchrotron, 22607 Hamburg    Y. Kato Graduate School of Science, Nagoya University, Nagoya 464-8602    T. Kawasaki Kitasato University, Sagamihara 252-0373    H. Kichimi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    C. Kiesling Max-Planck-Institut für Physik, 80805 München    B. H. Kim Seoul National University, Seoul 08826    D. Y. Kim Soongsil University, Seoul 06978    S. H. Kim Seoul National University, Seoul 08826    Y.-K. Kim Yonsei University, Seoul 03722    T. D. Kimmel Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    K. Kinoshita University of Cincinnati, Cincinnati, Ohio 45221    P. Kodyš Faculty of Mathematics and Physics, Charles University, 121 16 Prague    S. Korpar University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    D. Kotchetkov University of Hawaii, Honolulu, Hawaii 96822    P. Križan Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    R. Kroeger University of Mississippi, University, Mississippi 38677    P. Krokovny Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    T. Kuhr Ludwig Maximilians University, 80539 Munich    R. Kulasiri Kennesaw State University, Kennesaw, Georgia 30144    R. Kumar Punjab Agricultural University, Ludhiana 141004    K. Kumara Wayne State University, Detroit, Michigan 48202    A. Kuzmin Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    Y.-J. Kwon Yonsei University, Seoul 03722    K. Lalwani Malaviya National Institute of Technology Jaipur, Jaipur 302017    J. S. Lange Justus-Liebig-Universität Gießen, 35392 Gießen    I. S. Lee Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    S. C. Lee Kyungpook National University, Daegu 41566    P. Lewis University of Bonn, 53115 Bonn    L. K. Li University of Cincinnati, Cincinnati, Ohio 45221    Y. B. Li Peking University, Beijing 100871    L. Li Gioi Max-Planck-Institut für Physik, 80805 München    J. Libby Indian Institute of Technology Madras, Chennai 600036    K. Lieret Ludwig Maximilians University, 80539 Munich    Z. Liptak Hiroshima University, Hiroshima 739-8511    D. Liventsev Wayne State University, Detroit, Michigan 48202 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    T. Luo Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    C. MacQueen School of Physics, University of Melbourne, Victoria 3010    T. Matsuda University of Miyazaki, Miyazaki 889-2192    D. Matvienko Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    M. Merola INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    K. Miyabayashi Nara Women’s University, Nara 630-8506    H. Miyata Niigata University, Niigata 950-2181    G. B. Mohanty Tata Institute of Fundamental Research, Mumbai 400005    S. Mohanty Tata Institute of Fundamental Research, Mumbai 400005 Utkal University, Bhubaneswar 751004    T. J. Moon Seoul National University, Seoul 08826    T. Mori Graduate School of Science, Nagoya University, Nagoya 464-8602    M. Mrvar Institute of High Energy Physics, Vienna 1050    R. Mussa INFN - Sezione di Torino, 10125 Torino    E. Nakano Osaka City University, Osaka 558-8585    M. Nakao High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    H. Nakazawa Department of Physics, National Taiwan University, Taipei 10617    Z. Natkaniec H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    A. Natochii University of Hawaii, Honolulu, Hawaii 96822    M. Nayak School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978    N. K. Nisar Brookhaven National Laboratory, Upton, New York 11973    S. Nishida High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. Ogawa Niigata University, Niigata 950-2181    S. Ogawa Toho University, Funabashi 274-8510    H. Ono Nippon Dental University, Niigata 951-8580 Niigata University, Niigata 950-2181    Y. Onuki Department of Physics, University of Tokyo, Tokyo 113-0033    P. Pakhlov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Physical Engineering Institute, Moscow 115409    G. Pakhlova Higher School of Economics (HSE), Moscow 101000 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    S. Pardi INFN - Sezione di Napoli, 80126 Napoli    H. Park Kyungpook National University, Daegu 41566    S.-H. Park Yonsei University, Seoul 03722    S. Patra Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    S. Paul Department of Physics, Technische Universität München, 85748 Garching Max-Planck-Institut für Physik, 80805 München    T. K. Pedlar Luther College, Decorah, Iowa 52101    R. Pestotnik J. Stefan Institute, 1000 Ljubljana    L. E. Piilonen Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    T. Podobnik Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    V. Popov Higher School of Economics (HSE), Moscow 101000    E. Prencipe Forschungszentrum Jülich, 52425 Jülich    M. T. Prim Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    M. Ritter Ludwig Maximilians University, 80539 Munich    A. Rostomyan Deutsches Elektronen–Synchrotron, 22607 Hamburg    N. Rout Indian Institute of Technology Madras, Chennai 600036    G. Russo Università di Napoli Federico II, 80126 Napoli    D. Sahoo Tata Institute of Fundamental Research, Mumbai 400005    Y. Sakai High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    S. Sandilya University of Cincinnati, Cincinnati, Ohio 45221    A. Sangal University of Cincinnati, Cincinnati, Ohio 45221    L. Santelj Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    T. Sanuki Department of Physics, Tohoku University, Sendai 980-8578    V. Savinov University of Pittsburgh, Pittsburgh, Pennsylvania 15260    G. Schnell University of the Basque Country UPV/EHU, 48080 Bilbao IKERBASQUE, Basque Foundation for Science, 48013 Bilbao    J. Schueler University of Hawaii, Honolulu, Hawaii 96822    C. Schwanda Institute of High Energy Physics, Vienna 1050    Y. Seino Niigata University, Niigata 950-2181    K. Senyo Yamagata University, Yamagata 990-8560    M. E. Sevior School of Physics, University of Melbourne, Victoria 3010    M. Shapkin Institute for High Energy Physics, Protvino 142281    V. Shebalin University of Hawaii, Honolulu, Hawaii 96822    J.-G. Shiu Department of Physics, National Taiwan University, Taipei 10617    J. B. Singh Panjab University, Chandigarh 160014    E. Solovieva P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    M. Starič J. Stefan Institute, 1000 Ljubljana    Z. S. Stottler Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    M. Sumihama Gifu University, Gifu 501-1193    K. Sumisawa High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    T. Sumiyoshi Tokyo Metropolitan University, Tokyo 192-0397    W. Sutcliffe University of Bonn, 53115 Bonn    M. Takizawa Showa Pharmaceutical University, Tokyo 194-8543 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    U. Tamponi INFN - Sezione di Torino, 10125 Torino    F. Tenchini Deutsches Elektronen–Synchrotron, 22607 Hamburg    M. Uchida Tokyo Institute of Technology, Tokyo 152-8550    T. Uglov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Higher School of Economics (HSE), Moscow 101000    Y. Unno Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    S. Uno High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    P. Urquijo School of Physics, University of Melbourne, Victoria 3010    Y. Usov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    R. Van Tonder University of Bonn, 53115 Bonn    G. Varner University of Hawaii, Honolulu, Hawaii 96822    A. Vinokurova Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    V. Vorobyev Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    E. Waheed High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    C. H. Wang National United University, Miao Li 36003    E. Wang University of Pittsburgh, Pittsburgh, Pennsylvania 15260    M.-Z. Wang Department of Physics, National Taiwan University, Taipei 10617    P. Wang Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    X. L. Wang Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    M. Watanabe Niigata University, Niigata 950-2181    E. Won Korea University, Seoul 02841    X. Xu Soochow University, Suzhou 215006    B. D. Yabsley School of Physics, University of Sydney, New South Wales 2006    S. B. Yang Korea University, Seoul 02841    H. Ye Deutsches Elektronen–Synchrotron, 22607 Hamburg    J. Yelton University of Florida, Gainesville, Florida 32611    J. H. Yin Korea University, Seoul 02841    Z. P. Zhang Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    V. Zhilich Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    V. Zhukova P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    V. Zhulanov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090
Abstract

We report the first evidence for X(3872)X(3872) production in two-photon interactions by tagging either the electron or the positron in the final state, exploring the highly virtual photon region. The search is performed in e+ee+eJ/ψπ+πe^{+}e^{-}\rightarrow e^{+}e^{-}J/\psi\pi^{+}\pi^{-}, using 825 fb-1 of data collected by the Belle detector operated at the KEKB e+ee^{+}e^{-} collider. We observe three X(3872)X(3872) candidates, where the expected background is 0.11±0.100.11\pm 0.10 events, with a significance of 3.2σ\sigma. We obtain an estimated value for Γ~γγ(X(3872)J/ψπ+π)\tilde{\Gamma}_{\gamma\gamma}{\cal B}(X(3872)\rightarrow J/\psi\pi^{+}\pi^{-}) assuming the Q2Q^{2} dependence predicted by a cc¯c\bar{c} meson model, where Q2-Q^{2} is the invariant mass-squared of the virtual photon. No X(3915)J/ψπ+πX(3915)\rightarrow J/\psi\pi^{+}\pi^{-} candidates are found.

pacs:
14.40.Gx, 13.25.Gv, 13.66.Bc

The charmonium-like state XX(3872) has been observed in various interactions since its first observation in BKJ/ψπ+πB\rightarrow KJ/\psi\pi^{+}\pi^{-} decays [1]. Its spin, parity, and charge conjugation are determined to be 1++1^{++} [2], but its internal structure is still a puzzle [3, 4]. Subsequent to the spin-parity determination, the X(3872)X(3872) has not been searched for in two-photon interactions because axial-vector particles are forbidden to decay to two real photons 111 The X(3872)X(3872) was searched for in two-photon interactions before its spin-parity determination: S. Dobbs et al. (CLEO Collaboration), Phys. Rev. Lett. 94, 032004 (2005).. However, mesons with JPC=1++J^{PC}=1^{++} can be produced if one or both photons are highly virtual [6]—denoted as γ\gamma^{*}.

We perform the first search for a 1++1^{++} charmonium state in two-photon interactions using e+ee+eX(3872)e^{+}e^{-}\rightarrow e^{+}e^{-}X(3872), where one of the final-state electrons, referred to as a tagging electron, is observed, and the other scatters at an extremely forward (backward) angle and is not detected 222We use “electron” to denote both electron and positron.. Such events are called single-tag events. The XX(3872) is reconstructed via its decay to J/ψπ+πJ/\psi\pi^{+}\pi^{-} (J/ψ+J/\psi\rightarrow\ell^{+}\ell^{-}). By measuring the momentum of the tagging electron, we measure the Q2Q^{2} dependence of X(3872)X(3872) production, where Q2-Q^{2} is the invariant mass-squared of the virtual photon. If the X(3872)X(3872) has a molecular component in its structure, it must have a steeper Q2Q^{2} dependence than the regular cc¯c\bar{c} state. Hence, the single-tag two-photon interactions provide information on the structure of this state. The value of the two-photon decay width, obtained from this measurement, is sensitive to the internal structure of the X(3872)X(3872). Early attempts to calculate such decay widths for charmonium-like exotic states have been reported in Ref. [8]. We also search for the X(3915)X(3915) in the same final state through the GG-parity-violating J/ψρ0J/\psi\rho^{0} (ρ0π+π\rho^{0}\rightarrow\pi^{+}\pi^{-}) channel, as well as J/ψωJ/\psi\omega (ωπ+π\omega\rightarrow\pi^{+}\pi^{-}) decay[9].

We use 825 fb-1 of data collected by the Belle detector operated at the KEKB e+ee^{+}e^{-} asymmetric collider [10, 11]. The data were taken at the Υ(nS)\Upsilon(nS) resonances (n5n\leq 5) and nearby energies, 9.43 GeV<s<<\sqrt{s}< 11.03 GeV.

The Belle detector is a general-purpose magnetic spectrometer [12, 13]. Charged-particle momenta are measured by a silicon vertex detector and a cylindrical drift chamber. Electron and charged-pion identification relies on a combination of the drift chamber, time-of-flight scintillation counters, aerogel Cherenkov counters, and an electromagnetic calorimeter made of CsI(Tl) crystals. Muon identification relies on resistive plate chambers in the iron return yoke.

For Monte Carlo (MC) simulations, used to set selection criteria and derive the reconstruction efficiency, we use TREPSBSS [14, 15] to generate single-tag e+ee+eX(3872)e^{+}e^{-}\rightarrow e^{+}e^{-}X(3872) events in which the X(3872)X(3872) decays to J/ψπ+πJ/\psi\pi^{+}\pi^{-} and J/ψJ/\psi decays leptonically. For simulating radiative J/ψJ/\psi decays, we use PHOTOS [16, 17]. A GEANT3-based program simulates the detector response [18].

Since one final-state electron is undetected, we select events with exactly five charged tracks, each coming from the interaction point (IP) and having pT>0.1p_{\rm T}>0.1 GeV/cc, with two or more having pT>0.4p_{\rm T}>0.4 GeV/cc, where pTp_{\rm T} is the transverse momentum with respect to the e+e^{+} direction.

J/ψJ/\psi candidates are reconstructed by their decays to e+ee^{+}e^{-} or μ+μ\mu^{+}\mu^{-}. A charged track is identified as an electron if its electron likelihood ratio, e/(e+π){\cal L}_{e}/({\cal L}_{e}+{\cal L}_{\pi}), is greater than 0.66 and as a muon if it is not selected as an electron and if its muon likelihood ratio, μ/(μ+π+K){\cal L}_{\mu}/({\cal L}_{\mu}+{\cal L}_{\pi}+{\cal L}_{K}), is greater than 0.66; x{\cal L}_{x} is the likelihood for a particle to be of species xx [19, 20]. We require the mass of the lepton pair to be in the range 3.047–3.147 GeV/c2c^{2}. In the calculation of the invariant mass of an e+ee^{+}e^{-} pair, we include the four-momenta of radiated photons, having energy less than 0.2 GeV and angle relative to an electron direction of less than 0.04 rad.

The tagging electron must have an electron likelihood ratio greater than 0.95 or E/pE/p greater than 0.87, where EE is the energy measured by the electromagnetic calorimeter and pp is the momentum of the particle. We require that the tagging electron have momentum above 1 GeV/cc and pT>0.4p_{\rm T}>0.4 GeV/cc. The electron momentum includes the momenta of radiated photons, using the same requirements as for the electrons from J/ψJ/\psi decays.

We identify a charged track as a pion if it satisfies the likelihood ratio criteria of π/(π+K)>0.2{\cal L}_{\pi}/({\cal L}_{\pi}+{\cal L}_{K})>0.2, μ/(μ+π+K)<0.9{\cal L}_{\mu}/({\cal L}_{\mu}+{\cal L}_{\pi}+{\cal L}_{K})<0.9, e/(e+π)<0.6{\cal L}_{e}/({\cal L}_{e}+{\cal L}_{\pi})<0.6, and its E/pE/p is less than 0.8 [21]. Events should have no photons with energy above 0.4 GeV or π0\pi^{0} candidates with χ2\chi^{2} from the mass-constrained fit less than 4.0.

As the X(3872)X(3872) should be back-to-back with the tagging electron projected in the plane perpendicular to the beam axis, we require the difference between their azimuthal angles be in the range (π±0.1\pi\pm 0.1) rad.

The total visible transverse momentum of the event, pTp^{*}_{\rm T} 333 The e+ee^{+}e^{-} center-of-mass quantities are indicated by asterisks., should be less than 0.2 GeV/cc. We also require that the measured energy of the J/ψπ+πJ/\psi\pi^{+}\pi^{-} system, EobsE^{*}_{\rm obs}, be consistent with the expectation, EexpE^{*}_{\rm exp}, calculated from the momentum of the tagging electron and the direction and invariant mass of the J/ψπ+πJ/\psi\pi^{+}\pi^{-} system, imposing energy-momentum conservation. Since the energy and total transverse momentum are correlated, we impose a two-dimensional criterion

(pT+40MeV/c)(|EobsEexp|Eexp+0.003)<3MeV/c.{\displaystyle(p^{*}_{\rm T}+40~{}{\rm MeV/}c)\left(\frac{|E^{*}_{\rm obs}-E^{*}_{\rm exp}|}{E^{*}_{\rm exp}}+0.003\right)<3~{}{\rm MeV/}c.} (1)

Figure 1 shows the distribution of events and these selection criteria in the pTp^{*}_{\rm T} vs. Eobs/EexpE^{*}_{\rm obs}/E^{*}_{\rm exp} plane.

Refer to caption
Figure 1: pTp^{*}_{\rm T} vs. Eobs/EexpE^{*}_{\rm obs}/E^{*}_{\rm exp} distribution from data. The (red) line shows the selection criteria applied to pTp^{*}_{\rm T} and Eobs/EexpE^{*}_{\rm obs}/E^{*}_{\rm exp}; events below the line are accepted.

Finally, we place a requirement on the missing momentum of the event, equal to the momentum of the unmeasured electron that goes down the beam pipe. We require the missing-momentum projection in the ee^{-} beam direction in the center-of-mass frame be less than 0.4-0.4 GeV/cc for ee^{-}-tagging events and greater than 0.4 GeV/cc for e+e^{+}-tagging events.

We search for X(3872)X(3872) and X(3915)X(3915) by looking for events in the J/ψπ+πJ/\psi\pi^{+}\pi^{-} mass distribution, M(J/ψπ+π)M(J/\psi\pi^{+}\pi^{-}). The reconstructed mass resolution is expected to be 2.5 MeV/c2c^{2} from the MC simulation. We define two signal regions: 3.867–3.877 GeV/c2c^{2} for the X(3872)X(3872) and 3.895–3.935 GeV/c2c^{2} for the X(3915)X(3915). The former accommodates the X(3872)X(3872) with a known mass of 3871.69±0.173871.69\pm 0.17 MeV/c2c^{2} and a decay width less than 1.21.2 MeV 444 Recent measurements of the decay width show ΓX(3872)BW=0.960.18+0.19±0.21\Gamma^{\rm BW}_{X(3872)}=0.96^{+0.19}_{-0.18}\pm 0.21 MeV [3] and ΓX(3872)BW=1.39±0.24±0.10\Gamma^{\rm BW}_{X(3872)}=1.39\pm 0.24\pm 0.10 MeV [4].; the latter accommodates the X(3915)X(3915) with a known mass of 3918.4±1.93918.4\pm 1.9 MeV/c2c^{2} and a decay width of 20±520\pm 5 MeV. We constrain the J/ψJ/\psi mass to 3.09690 GeV/c2c^{2} when we calculate M(J/ψπ+π)M(J/\psi\pi^{+}\pi^{-}) [24].

Refer to caption
Figure 2: M(J/ψπ+π)M(J/\psi\pi^{+}\pi^{-}) distribution shown with the ψ(2S)\psi(2S) veto (shaded gray region).

The dominant background, centered at 3.686 GeV/c2c^{2}, arises from radiatively produced ψ(2S)\psi(2S), e+ee+eψ(2S)e^{+}e^{-}\rightarrow e^{+}e^{-}\psi(2S), with ψ(2S)J/ψπ+π\psi(2S)\rightarrow J/\psi\pi^{+}\pi^{-}. Figure 2 shows the M(J/ψπ+π)M(J/\psi\pi^{+}\pi^{-}) distribution in data in the vicinity of ψ(2S)\psi(2S). Although the width of the ψ(2S)\psi(2S) peak is 2.7 MeV/c2c^{2}, it has a tail on the higher mass side. This feature was also seen in previous studies of J/ψπ+πJ/\psi\pi^{+}\pi^{-} produced by initial-state radiation (ISR) [25]. To remove ψ(2S)\psi(2S) events, we veto events within 0.03 GeV/c2c^{2} of the ψ(2S)\psi(2S) mass, 3.686 GeV/c2c^{2}. Figure 3 shows the Q2Q^{2} distribution after removing those events, where Q2=2(pinpoutme2c2)Q^{2}=2(p_{\rm in}\cdot p_{\rm out}-m_{e}^{2}c^{2}) and pinp_{\rm in} and poutp_{\rm out} are the four-momenta of the incoming (beam) and outgoing (tagging) electrons and mem_{e} is the electron mass. In Fig. 3, data are dominated by background events while MC is pure X(3872)X(3872). Since two-photon processes are strongly suppressed at high Q2Q^{2}, we require Q2<25Q^{2}<25 GeV2/c2c^{2} to reduce non-two-photon background. Our measurement is insensitive for Q2<1.5Q^{2}<1.5 GeV2/c2c^{2} due to low reconstruction efficiency.

Refer to caption
Figure 3: Q2Q^{2} distribution for data (blue dots) and MC (red histogram). The area of MC distribution is normalized to that of data. The vertical (magenta) line indicates the selection requirement.

Figure 4 shows the observed events in the Q2Q^{2} vs. M(J/ψπ+π)M(J/\psi\pi^{+}\pi^{-}) plane. Three events are in the X(3872)X(3872) signal region; no events are in the X(3915)X(3915) region. The masses of the events in the X(3872)X(3872) signal region are 3.8726, 3.8701 and 3.8742 GeV/c2c^{2}, averaging to 3.8723±\pm0.0012 GeV/c2c^{2}, where the uncertainty is statistical. At masses below the X(3872)X(3872) region, 3.716-3.867 GeV/c2c^{2}, there are six events, presumably from ψ(2S)\psi(2S) events; at masses above the X(3872)X(3872), there are no events below 4.266 GeV/c2c^{2}, in region of the Y(4260)Y(4260) mass. A similar distribution was seen in the Belle ISR study [25]. The J/ψπ+πJ/\psi\pi^{+}\pi^{-} events can also originate from tt-channel photon exchange with the emission of a virtual photon, which we call internal bremsstrahlung (IB) [26]. Both processes produce CC-odd J/ψπ+πJ/\psi\pi^{+}\pi^{-}, like ψ(2S)\psi(2S), while the CC-even X(3872)X(3872) peak can only be produced from the two-photon process. The absence of a prominent Y(4260)Y(4260) enhancement in our data argues against non-negligible contribution from the CC-odd process through the decay γY(4260)γX(3872)\gamma^{*}\rightarrow Y(4260)\rightarrow\gamma X(3872) [27]. To estimate the background from IB, which has the same final-state particle configuration as our process and is hence difficult to separate, we use the ISR data [25]. By fitting the ISR data to our data in the region 3.5 GeV/c2c^{2} <M<<M< 4.5 GeV/c2c^{2}, corrected for the differences in the diagrams of ss- and tt-channels, we estimate the number of background events to be (3-5)×102\times 10^{-2}/(10 MeV/c2c^{2}) in the region between 3.8 GeV/c2c^{2} and 4.2 GeV/c2c^{2}. This explains the absence of events between the X(3872)X(3872) and 4.26 GeV/c2c^{2}.

Refer to caption
Figure 4: Observed events (red dots) in the Q2Q^{2} vs. M(J/ψπ+π)M(J/\psi\pi^{+}\pi^{-}) plane. Three events are seen in the X(3872)X(3872) signal region (red lines with shade). The blue lines with shade show the X(3915)X(3915) signal region. The vetoed regions are shaded gray with dash lines.

To estimate the background level in the X(3872)X(3872) signal region, we fit a linear function

max(0,a(M(J/ψπ+π)3.872GeV/c2)+b){\rm max}(0,a(M(J/\psi\pi^{+}\pi^{-})-3.872~{}{\rm GeV}/c^{2})+b) (2)

to the data in the region ±0.156\pm 0.156 GeV/c2c^{2} centered at the X(3872)X(3872) mass, excluding the signal region; aa and bb are free in the fit. The width of 0.1560.156 GeV/c2c^{2} is determined by the distance between the X(3872)X(3872) and the upper boundary, 3.7163.716 GeV/c2c^{2}, of the ψ(2S)\psi(2S) vetoed region. Using an unbinned extended maximum-likelihood fit, we obtain a=345±195a=-345\pm 195 /(GeV/c2c^{2})2 and b=10.5±10.1b=10.5\pm 10.1 /(GeV/c2c^{2}). This yields nb=0.11±0.10n_{\rm b}=0.11\pm 0.10 background events in the X(3872)X(3872) signal window, where the uncertainty is statistical only.

To derive the systematic uncertainty due to background modeling, we test two modified fitting functions. One is a power function, a/(M(J/ψπ+π)b)ca^{\prime}/(M(J/\psi\pi^{+}\pi^{-})-b^{\prime})^{c^{\prime}} with bb^{\prime} set to 2.4 GeV/c2c^{2}; the fit is insensitive to the value of bb^{\prime}. This gives nb=0.096±0.068n_{\rm b}=0.096\pm 0.068. The other is a linear function with a break at 3.800 GeV/c2c^{2}, a′′(M(Jψπ+π)3.800GeV/c2)+b′′a^{\prime\prime}(M(J\psi\pi^{+}\pi^{-})-3.800~{}{\rm GeV}/c^{2})+b^{\prime\prime} for M(Jψπ+π)<M(J\psi\pi^{+}\pi^{-})<3.800 GeV/c2c^{2} and b′′b^{\prime\prime} for M(Jψπ+π)M(J\psi\pi^{+}\pi^{-})\geq3.800 GeV/c2c^{2}, based on the shapes of the M(J/ψπ+π)M(J/\psi\pi^{+}\pi^{-}) distributions in the ISR [25, 28] and the e+ee^{+}e^{-} annihilation studies [29, 30]. This gives nb=0.122±0.095n_{\rm b}=0.122\pm 0.095. From the variations of nbn_{\rm b} in the three forms, we derive ±0.013\pm 0.013 for the systematic uncertainty. This is negligible compared to the statistical uncertainty. The estimated number of background events is 0.11±0.100.11\pm 0.10, including statistical and systematic uncertainties.

With this background, the significance of three events is 3.2σ\sigma. For the X(3872)X(3872) signal, with three observed and 0.11 expected background events, we calculate the number of signal events, Nsig=2.9+2.22.0(stat.)±0.1(syst.)N_{\rm sig}=2.9{+2.2\atop-2.0}(\text{stat.})\pm 0.1(\text{syst.}), at 68% confidence level (C.L.). For the X(3915)X(3915) signal, with zero observed and 0.3 expected background events, we obtain Nsig<2.14N_{\rm sig}<2.14 at 90% C.L. The Feldman-Cousins method is used in both cases [31].

The differential cross section for the production of a resonance (XX) in a single-tag two-photon interaction is expressed as [32]

dσee(X)dQ2\displaystyle{\displaystyle\frac{{\rm d}\sigma_{ee}(X)}{{\rm d}Q^{2}}} =\displaystyle= 4π2(1+Q2M2)2J+1M2Γγγ(Q2)\displaystyle{\displaystyle 4\pi^{2}\left(1+\frac{Q^{2}}{M^{2}}\right)\frac{2J+1}{M^{2}}\Gamma_{\gamma^{*}\gamma}(Q^{2})} (3)
×2d2LγγdWdQ2|W=M,\displaystyle{\displaystyle\times 2\left.{\frac{{\rm d}^{2}L_{\gamma^{*}\gamma}}{{\rm d}W{\rm d}Q^{2}}}\right|_{W=M},}

where LγγL_{\gamma^{*}\gamma} is the single-tag luminosity function, MM is the resonance mass, Q2-Q^{2} is the invariant mass squared of the virtual photon, Γγγ(Q2)\Gamma_{\gamma^{*}\gamma}(Q^{2}) is the γγ\gamma^{*}\gamma decay width, WW is the invariant mass of the γγ\gamma^{*}\gamma system, and JJ is the resonance spin. The factor of two comes from the existence of two production modes: eγe^{-}\gamma^{*} and e+γe^{+}\gamma^{*} scattering.

For a J=1J{=}1 resonance, spin-parity conservation forbids production at Q2=0Q^{2}=0. To remove the Q2Q^{2}-dependence from Γγγ(Q2)\Gamma_{\gamma^{*}\gamma}(Q^{2}), we use the reduced γγ\gamma\gamma decay width Γ~γγ\tilde{\Gamma}_{\gamma\gamma} defined as [6, 33]

Γ~γγlimQ20M2Q2ΓγγLT(Q2),{\displaystyle\tilde{\Gamma}_{\gamma\gamma}\equiv\lim_{Q^{2}\rightarrow 0}\frac{M^{2}}{Q^{2}}\Gamma_{\gamma^{*}\gamma}^{\rm LT}(Q^{2}),} (4)

using its Q2Q^{2} dependence near zero; ΓγγLT\Gamma_{\gamma^{*}\gamma}^{\rm LT} is the γγ\gamma^{*}\gamma decay width corresponding to a formation of the resonance from a longitudinal (virtual) photon and a transverse (real) photon. Substituting this expression into Eq. (3), we obtain

dσee(X)dQ2=4π23M22Q2M2ϵΓ~γγ2d2LγγdWdQ2|W=M{\displaystyle\frac{{\rm d}\sigma_{ee}(X)}{{\rm d}Q^{2}}=4\pi^{2}\frac{3}{M^{2}}2\frac{Q^{2}}{M^{2}}\epsilon\tilde{\Gamma}_{\gamma\gamma}2\left.{\frac{{\rm d}^{2}L_{\gamma^{*}\gamma}}{{\rm d}W{\rm d}Q^{2}}}\right|_{W=M}} (5)

for Q2M2Q^{2}\ll M^{2}, where an extra factor of two comes from the difference in the number of spin degrees of freedom: the longitudinal component has one degree of freedom and the transverse component has two with unpolarized incident photons. In Eq. (5), ϵ\epsilon is the ratio LLT/LTTL^{\rm LT}/L^{\rm TT}, where LLTL^{\rm LT} is the luminosity function for the production of one longitudinally polarized photon and one transversely polarized photon and LTTL^{\rm TT} is that for two transversely polarized photons. Using the Schuler-Berends-Gulik (SBG) model [6]555 As a validation of the SBG model at higher Q2Q^{2}, Ref. [32] provides measurements of single-tag to no-tag ratios for the γγ\gamma\gamma decay widths for χc0\chi_{c0} and χc2\chi_{c2}, which agree with the predictions of this model. for qq¯q\bar{q}-type axial-vector mesons, this can be extended to higher Q2Q^{2} [33]:

dσee(X)dQ2=Γ~γγF(M,Q2,ϵ)d2LγγdWdQ2|W=M,{\displaystyle\frac{{\rm d}\sigma_{ee}(X)}{{\rm d}Q^{2}}=\tilde{\Gamma}_{\gamma\gamma}F(M,Q^{2},\epsilon)\left.{\frac{{\rm d}^{2}L_{\gamma^{*}\gamma}}{{\rm d}W{\rm d}Q^{2}}}\right|_{W=M},} (6)

where

F(M,Q2,ϵ)=48π2M2Q22M2+ϵ(1+Q2M2)3Q2M2,{\displaystyle F(M,Q^{2},\epsilon)=\frac{48\pi^{2}}{M^{2}}\frac{\frac{Q^{2}}{2M^{2}}+\epsilon}{\left(1+\frac{Q^{2}}{M^{2}}\right)^{3}}\frac{Q^{2}}{M^{2}},} (7)

accounting for contributions from helicity 0 and 1. The SBG model, based on cc¯c\bar{c}, is the only model available at present that can reliably extend Eq. (5) to the higher Q2Q^{2} region: Eq. (7).

To relate the number of signal events and the decay width, Γ~γγ\tilde{\Gamma}_{\gamma\gamma}, we use Eqs. (6) and (7) assuming the X(3872)X(3872) is a pure cc¯c\bar{c} state [6],

Nsig=Lint(XJ/ψπ+π)(J/ψ+)×Γ~γγQmin2Qmax2dQ2F(M,Q2,ϵ)εeff(Q2)d2LγγdWdQ2|W=M,\begin{array}[]{l}{\displaystyle N_{\rm sig}}={\displaystyle L_{\rm int}{\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-}){\cal B}(J/\psi\rightarrow\ell^{+}\ell^{-})}\\ \times{\displaystyle\tilde{\Gamma}_{\gamma\gamma}\int_{Q_{\rm min}^{2}}^{Q_{\rm max}^{2}}{\rm d}Q^{2}F(M,Q^{2},\epsilon)\varepsilon_{\rm eff}(Q^{2})\left.{\frac{{\rm d}^{2}L_{\gamma^{*}\gamma}}{{\rm d}W{\rm d}Q^{2}}}\right|_{W=M},}\end{array} (8)

where εeff(Q2)\varepsilon_{\rm eff}(Q^{2}) is the Q2Q^{2}-dependent reconstruction efficiency, LintL_{\rm int} is the integrated luminosity, (XJ/ψπ+π){\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-}) is the branching fraction of the X(3872)X(3872) to J/ψπ+πJ/\psi\pi^{+}\pi^{-}, and (J/ψ+)=0.1193{\cal B}(J/\psi\rightarrow\ell^{+}\ell^{-})=0.1193 is the branching fraction of J/ψJ/\psi to lepton pairs [24]. We estimate the reconstruction efficiency from MC, in which we model the X(3872)X(3872) decay as X(3872)J/ψρ0X(3872)\rightarrow J/\psi\rho^{0} with J/ψ+J/\psi\rightarrow\ell^{+}\ell^{-} and ρ0π+π\rho^{0}\rightarrow\pi^{+}\pi^{-} and with all daughter particles isotropically distributed in the rest frames of their parents. The decay model via ρ\rho is motivated by the measured mass distributions [1, 35, 36]. It has a reconstruction efficiency 12% higher than that for non-resonant π+π\pi^{+}\pi^{-}; we include a 6% systematic uncertainty to account for this. The angular distribution of the decay products of the X(3872)X(3872) negligibly affects the reconstruction, as confirmed by simulating with an alternative model with decay angles of daughters from a JP=1+J^{P}=1^{+} resonance with helicities 0 and 1.

Detection efficiencies range from 4% to 8% for Q2Q^{2} between 3 GeV/2c2{}^{2}/c^{2} and 25 GeV/2c2{}^{2}/c^{2} and have smaller values for Q2<3Q^{2}<3 GeV/2c2{}^{2}/c^{2}. They are estimated for our three center-of-mass energies on the Υ(2S)\Upsilon(2S), Υ(4S)\Upsilon(4S), and Υ(5S)\Upsilon(5S) resonances and average the values weighted by their corresponding integrated luminosities. We also average over the four detection modes given the two tagging charges (e+e^{+} and ee^{-}) and the two J/ψJ/\psi decay modes (e+ee^{+}e^{-} and μ+μ\mu^{+}\mu^{-}).

The luminosity functions for our beam energies are calculated as functions of Q2Q^{2} using TREPSBSS. We set ϵ=1\epsilon=1 as a convention for the present application of Eq. (7)[6]. After performing the Q2Q^{2} integration in Eq. (8), from Qmin2=1.5Q_{\rm min}^{2}=1.5 GeV2/c2c^{2} to Qmax2=25Q_{\rm max}^{2}=25 GeV2/c2c^{2}, we obtain

Γ~γγ(X(3872)J/ψπ+π)=(1.88±0.24)eV×Nsig,{\displaystyle\tilde{\Gamma}_{\gamma\gamma}{\cal B}(X(3872)\rightarrow J/\psi\pi^{+}\pi^{-})=(1.88\pm 0.24)~{}{\rm eV}\times N_{\rm sig},} (9)

including the total systematic uncertainty from the integration.

The dominant systematic uncertainty on Γ~γγ(XJ/ψπ+π)\tilde{\Gamma}_{\gamma\gamma}{\cal B(}X\rightarrow J/\psi\pi^{+}\pi^{-}) is from the reconstruction efficiency, primarily due to differences between MC and data. The largest uncertainty, 7%, is in the J/ψJ/\psi selection from the uncertainty of the e+ee^{+}e^{-} background level. We estimate the total systematic uncertainty to be 13%.

From NsigN_{\rm sig}, we determine

Γ~γγ(XJ/ψπ+π)=5.53.8+4.1(stat.)±0.7(syst.)eV.\tilde{\Gamma}_{\gamma\gamma}{\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-})=5.5^{+4.1}_{-3.8}~{}(\text{stat.})\pm 0.7~{}(\text{syst.})~{}{\rm eV}. (10)

To set a limit on Γ~γγ\tilde{\Gamma}_{\gamma\gamma}, we need (XJ/ψπ+π){\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-}). We derive an upper limit, using the measured products of BB-meson decay branching fractions and the X(3872)X(3872) decay branching fractions, (B+K+X)(XJ/ψπ+πandotherspecificfinalstates){\cal B}(B^{+}\rightarrow K^{+}X){\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-}~{}{\rm and~{}other~{}specific~{}final~{}states}) 666 From (B+K+X)(XJ/ψπ+π)=(8.6±0.6)×106{\cal B}(B^{+}\rightarrow K^{+}X){\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-})=(8.6\pm 0.6)\times 10^{-6} and the sum over the measured products of the branching fractions, (B+K+X)(XJ/ψπ+π,J/ψγ,ψ(2S)γ,D0D0¯π0,D0¯D0)=(1.4±0.4)×104{\cal B}(B^{+}\rightarrow K^{+}X){\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-},J/\psi\gamma,\psi(2S)\gamma,D^{0}\bar{D^{0}}\pi^{0},\bar{D^{*0}}D^{0})=(1.4\pm 0.4)\times 10^{-4}, where we exclude D¯0D¯0π0\bar{D}^{*0}\rightarrow\bar{D}^{0}\pi^{0}, we obtain that (XJ/ψπ+π)<0.061{\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-})<0.061 using the Bayesian method at 90% C.L. This limit is consistent with C. Li and C.-Z. Yuan, Phys. Rev. D 100, 094003 (2019).. With the measured lower limit [35, 38, 24], this gives 0.032<(XJ/ψπ+π)<0.0610.032<{\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-})<0.061 at 90% C.L. Using the Feldman-Cousins method for three observed events and 0.11 background, we obtain 0.995<Nsig<7.3150.995<N_{\rm sig}<7.315 at 90% C.L. This, with Eq. (9), divided by (XJ/ψπ+π){\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-}), gives the Γ~γγ\tilde{\Gamma}_{\gamma\gamma} range: 20-500 eV. This is consistent with values predicted for the cc¯c\bar{c} model [6, 8]. For a comparison of experimental results with non-cc¯c\bar{c} models, we must wait for improved calculations in the future.

No events consistent with X(3915)J/ψπ+πX(3915)\rightarrow J/\psi\pi^{+}\pi^{-} are observed. This, combined with past measurements [9, 39], indicates no excess of GG-parity-violating decays of X(3915)X(3915).

In summary, we find the first evidence for X(3872)X(3872) production in two-photon, γγ\gamma^{*}\gamma, interactions. We observe three X(3872)X(3872) candidates with a significance of 3.2σ\sigma and an estimated yield of 2.9+2.22.0(stat.)±0.1(syst.)2.9{+2.2\atop-2.0}~{}(\text{stat.})~{}\pm 0.1~{}(\text{syst.}). From this, we obtain Γ~γγ(X(3872)J/ψπ+π)=5.5+4.13.8(stat.)±0.7(syst.)\tilde{\Gamma}_{\gamma\gamma}{\cal B}(X(3872)\rightarrow J/\psi\pi^{+}\pi^{-})=5.5{+4.1\atop-3.8}(\text{stat.})\pm 0.7(\text{syst.}) eV, assuming the Q2Q^{2} dependence of a cc¯c\bar{c} meson model. With future advances in calculations of Γ~γγ\tilde{\Gamma}_{\gamma\gamma} for non-cc¯c\bar{c} states and higher luminosities accumulated by Belle II, we expect this method will clarify our understanding of the X(3872)X(3872).

Acknowledgements.
We are grateful to M. Karliner for useful discussions. We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET5 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC (Australia); FWF (Austria); NSFC and CCEPP (China); MSMT (Czechia); CZF, DFG, EXC153, and VS (Germany); DST (India); INFN (Italy); MOE, MSIP, NRF, RSRI, FLRFAS project, GSDC of KISTI and KREONET/GLORIAD (Korea); MNiSW and NCN (Poland); MSHE, Agreement 14.W03.31.0026 (Russia); University of Tabuk (Saudi Arabia); ARRS (Slovenia); IKERBASQUE (Spain); SNSF (Switzerland); MOE and MOST (Taiwan); and DOE and NSF (USA).

References

  • S.-K. Choi et al. [2003] S.-K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).
  • R. Aaij et al. [2013] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110, 222001 (2013).
  • R. Aaij et al. [2020a] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 102, 092005 (2020a).
  • R. Aaij et al. [2020b] R. Aaij et al. (LHCb Collaboration), JHEP 08, 123 (2020).
  • Note [1] The X(3872)X(3872) was searched for in two-photon interactions before its spin-parity determination: S. Dobbs et al. (CLEO Collaboration), Phys. Rev. Lett. 94, 032004 (2005).
  • G. A. Schuler, F. A. Berends, and R. van Gulik [1998] G. A. Schuler, F. A. Berends, and R. van Gulik, Nucl. Phys. B 523, 423 (1998).
  • Note [2] We use “electron” to denote both electron and positron.
  • T. Branz, R. Molina and E. Oset [2011] T. Branz, R. Molina and E. Oset, Phys. Rev. D 83, 114015 (2011).
  • S. Uehara et al. [2010] S. Uehara et al. (Belle Collaboration), Phys. Rev. Lett. 104, 092001 (2010).
  • S. Kurokawa and E. Kikutani [2003] S. Kurokawa and E. Kikutani, Nucl. Instrum. and Methods Phys. Res., Sect. A 499, 1 (2003).
  • T. Abe et al. [2013] T. Abe et al. (KEKB), Prog. Theor. Exp. Phys. 2013, 03A001 (2013).
  • A. Abashian et al. [2002a] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. and Methods Phys. Res., Sect. A 479, 117 (2002a).
  • J. Brodzicka et al. [2012] J. Brodzicka et al. (Belle Collaboration), Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
  • M. Masuda et al. [2016] M. Masuda et al. (Belle Collaboration), Phys. Rev. D 93, 032003 (2016).
  • [15] S. Uehara, KEK Report 96-11 (1996), arXiv: 1310.0157 [hep-ph].
  • E. Barberio, B. van Eijk and Z. Was [1991] E. Barberio, B. van Eijk and Z. Was, Compt. Phys. Commun. 66, 115 (1991).
  • E. Barberio and Z. Was [1994] E. Barberio and Z. Was, Compt. Phys. Commun. 79, 291 (1994).
  • R. Brun et al. [1987] R. Brun et al., CERN DD/EE/ 84-1 (1987).
  • K. Hanagaki et al. [2002] K. Hanagaki et al., Nucl. Instrum. and Methods Phys. Res., Sect. A 485, 490 (2002).
  • A. Abashian et al. [2002b] A. Abashian et al., Nucl. Instrum. and Methods Phys. Res., Sect. A 491, 69 (2002b).
  • E. Nakano [2002] E. Nakano, Nucl. Instrum. and Methods Phys. Res., Sect. A 494, 402 (2002).
  • Note [3] The e+ee^{+}e^{-} center-of-mass quantities are indicated by asterisks.
  • Note [4] Recent measurements of the decay width show ΓX(3872)BW=0.960.18+0.19±0.21\Gamma^{\rm BW}_{X(3872)}=0.96^{+0.19}_{-0.18}\pm 0.21 MeV [3] and ΓX(3872)BW=1.39±0.24±0.10\Gamma^{\rm BW}_{X(3872)}=1.39\pm 0.24\pm 0.10 MeV [4].
  • N. Tanabashi et al. [2018] N. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018), and 2019 update.
  • C. Z. Yuan et al. [2007] C. Z. Yuan et al. (Belle Collaboration), Phys. Rev. Lett. 99, 182004 (2007), Figure 1 shows M(+π+π)M(\ell^{+}\ell^{-}\pi^{+}\pi^{-}).
  • V. Bytev, E. Kuraev, E. Tomasi-Gustafsson and Ping Wang [2010] V. Bytev, E. Kuraev, E. Tomasi-Gustafsson and Ping Wang, Phys. Rev. D 81, 117501 (2010).
  • M. Ablikim et al. [2014] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 112, 092001 (2014).
  • Z. Q. Liu et al. [2013] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013), Figure 1(a) inset shows M(+π+π)M(\ell^{+}\ell^{-}\pi^{+}\pi^{-}).
  • M. Ablikim et al. [2017] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 118, 092001 (2017), Figure 1 shows M(+π+π)M(\ell^{+}\ell^{-}\pi^{+}\pi^{-}).
  • N. E. Adam et al. [2006] N. E. Adam et al. (CLEO Collaboration), Phys. Rev. Lett. 96, 082004 (2006), Figure 1 shows M(+π+π)M(\ell^{+}\ell^{-}\pi^{+}\pi^{-}).
  • G. J. Feldman and R. D. Cousins [1998] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
  • M. Masuda et al. [2018] M. Masuda et al. (Belle Collaboration), Phys. Rev. D 97, 052003 (2018).
  • H. Aihara et al. [1988] H. Aihara et al. (TPC/2γ2\gamma Collaboration), Phys. Rev. D 38, 1 (1988).
  • Note [5] As a validation of the SBG model at higher Q2Q^{2}, Ref. [32] provides measurements of single-tag to no-tag ratios for the γγ\gamma\gamma decay widths for χc0\chi_{c0} and χc2\chi_{c2}, which agree with the predictions of this model.
  • S.-K. Choi et al. [2011] S.-K. Choi et al. (Belle Collaboration), Phys. Rev. D 84, 052004 (2011).
  • A. Abulencia et al. [2006] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 102002 (2006).
  • Note [6] From (B+K+X)(XJ/ψπ+π)=(8.6±0.6)×106{\cal B}(B^{+}\rightarrow K^{+}X){\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-})=(8.6\pm 0.6)\times 10^{-6} and the sum over the measured products of the branching fractions, (B+K+X)(XJ/ψπ+π,J/ψγ,ψ(2S)γ,D0\mathaccentVbar016D0π0,\mathaccentVbar016D0D0)=(1.4±0.4)×104{\cal B}(B^{+}\rightarrow K^{+}X){\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-},J/\psi\gamma,\psi(2S)\gamma,D^{0}\mathaccentV{bar}016{D^{0}}\pi^{0},\mathaccentV{bar}016{D^{*0}}D^{0})=(1.4\pm 0.4)\times 10^{-4}, where we exclude \mathaccentVbar016D0\mathaccentVbar016D0π0\mathaccentV{bar}016{D}^{*0}\rightarrow\mathaccentV{bar}016{D}^{0}\pi^{0}, we obtain that (XJ/ψπ+π)<0.061{\cal B}(X\rightarrow J/\psi\pi^{+}\pi^{-})<0.061 using the Bayesian method at 90% C.L. This limit is consistent with C. Li and C.-Z. Yuan, Phys. Rev. D 100, 094003 (2019).
  • B. Aubert et al. [2008] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 77, 111101 (2008).
  • J. P. Lees et al. [2012] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 86, 072002 (2012).