This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Evaluation of Experimental Constraints on the 44Ti(α\alpha,p)47V Reaction Cross Section Relevant for Supernovae

K.A. Chipps Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA    P. Adsley School of Physics, University of the Witwatersrand iThemba LABS, Somerset West 7129, South Africa    M. Couder Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA    W.R. Hix Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA    Z. Meisel Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA    Konrad Schmidt Institute of Nuclear and Particle Physics, TU Dresden, 01069 Dresden, Germany Current address: Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
Abstract

Due to its importance as an astronomical observable in core-collapse supernovae (CCSNe), the reactions producing and destroying 44Ti must be well constrained. Generally, statistical model calculations such as Hauser-Feshbach are employed when experimental cross sections are not available, but the variation in such adopted rates can be large. Here, data from the literature is compared with statistical model calculations of the 44Ti(α\alpha,p)47V reaction cross section and used to constrain the possible reaction rate variation over the temperatures relevant to CCSNe. Suggestions for targeted future measurements are given.

I Introduction

Observations of supernovae and supernova remnants reveal that core-collapse supernovae (CCSNe) enrich their local environment with a rich mix of newly-synthesized elements. Important among these products is the radioactive isotope 44Ti, with a half-life of \sim60 years, which has been observed in the 350-year-old remnant Cassiopeia A A.F. Iyudin et al (1994); A.F. Iyudin, V. Schonfelder, K. Bennett, H. Bloemen, R. Diehl, W. Hermsen, G.G. Lichti, R.D. Van Der Meulen, J. Ryan, C. Winkler (1998); J. Vink, J.M. Laming, J.S. Kaastra, J.A.M. Bleeker, H. Bloemen, U. Oberlack (2001); M. Renaud et al (2006); Grefenstette et al. (2014); Siegert et al. (2015); Grefenstette et al. (2017) and the remnant of Supernova 1987A Jerkstrand et al. (2011); S.A. Grebenev, A.A. Lutovinov, S.S. Tsygankov, C. Winkler (2012); Boggs et al. (2015). 44Ti is predominantly a product of α\alpha-rich freezeout, which occurs when high-entropy matter in nuclear statistical equilibrium (NSE) expands rapidly and cools too quickly for the large abundance of free nucleons and α\alpha particles, present at temperatures greater than 10 GK, to recombine into heavier elements (typically iron and neighboring species). As a result, the heavier elements are created in a bath of α\alpha particles, which alters the composition from that which would result from a slower expansion and the resulting normal freezeout Woosley et al. (1973). Because 44Ti results only from α\alpha-rich freezeout, whereas most of the other observable radionuclides, most notably 56Ni, can be produced by α\alpha-rich freezeout or by silicon burning at lower temperatures Wongwathanarat et al. (2017); Eichler et al. (2018); Harris et al. (2020), comparison of 44Ti production to that of 56Ni is an excellent probe of the supernova explosion mechanism. A relatively high abundance of 44Ti is indicative of a large contribution of high entropy (neutrino-heated) matter to the ejecta. The observed mass fraction of 44Ti is therefore a direct diagnostic of the CCSN explosion energy and timescale C.L. Fryer and P.A. Young (2007); Sawada and Maeda (2019).

The breakdown from nuclear statistical equilibrium does not occur uniformly across the nuclear landscape. Instead, at a temperature of \sim6 GK Meyer et al. (1998), equilibrium first breaks down across the triple-α\alpha reaction, separating the alphas and free nucleons from the remaining species, which remain in local “quasi-equilibrium” Bodansky et al. (1968). As the temperature continues to decline, this large quasi-equilibrium group fragments, first at \sim4 GK into two large quasi-equilibrium groups, one centered on silicon and one centered on iron Hix and Thielemann (1999), and then into a number of smaller groups or clusters before photodisintegrations cease and quasi-equilibrium breaks down completely. The existence of these quasi-equilibrium groups has a profound effect on the reaction rate sensitivities, with reactions far removed from a species capable of having significant impact on its abundance111The leading example of this is the triple-α\alpha reaction, which impacts all of the species produced in α\alpha-rich freezeout. The failure of equilibrium across the 3α\alpha reaction significantly alters the α\alpha-particle abundances The et al. (1998).. As early as two decades ago The et al. (1998), the rate of the 44Ti(α\alpha,p)47V reaction has been shown to play a crucial role in the destruction of 44Ti. The breakdown of the 44Ti(α\alpha,p)47V equilibrium conditions in quasi-equilibrium has been described as indicating a “phase transition” for 44Ti production in CCSNe G. Magkotsios, F.X. Timmes, A.L. Hungerford, C.L. Fryer, P.A. Young, M. Wiescher (2010). The reaction is the primary driver of the so-called “chasm” between normal and alpha-rich freezeout, as the reaction moves material from the 44Ti quasi-equilibrium group into higher mass clusters. Depending on the hydrodynamic trajectories of the ejecta, the prominence of the chasm region may be the cause of the limited 44Ti afterglow in CCSNe observations.

Because the (α\alpha,p) reaction has a small negative Q value, on the order of -400 keV, it is expected to dominate the competing (α\alpha,γ\gamma) reaction rate even at low astrophysical temperatures (the neutron emission channel is not open at these energies). The reaction rate must be known across temperatures of 210\sim 2-10GK G. Magkotsios, F.X. Timmes, A.L. Hungerford, C.L. Fryer, P.A. Young, M. Wiescher (2010); R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel (2010), with the most important range for CCSNe spanning a Gamow window of roughly 2.5 to 5 GK (\sim2-7 MeV) R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel (2010). Statistical models such as Hauser-Feshbach are generally used to calculate the cross sections and reaction rates in the energy range of interest, though realistic input parameters to these models can result in large variations. Without experimental data to constrain the cross sections, variations of a factor of 2-3 T. Rauscher, F.-K. Thielemann, K.-L. Kratz (1997) up to a factor of 100 G. Magkotsios, F.X. Timmes, A.L. Hungerford, C.L. Fryer, P.A. Young, M. Wiescher (2010) have been suggested.

To address the need for experimental constraint, two measurements have been undertaken to directly study the 44Ti(α\alpha,p)47V reaction cross section within the relevant energy range. The first utilized the Fragment Mass Analyzer (FMA) at Argonne National Laboratory’s ATLAS facility to separate A=47 reaction products from unreacted 44Ti beam impinged on a cryogenically-cooled helium gas cell, at several center of mass energies between 5.7 and 9 MeV Sonzogni et al. (2000). Instead of measuring the protons from the (α\alpha,p) reaction, the 47V recoils were separated and detected in the focal plane of the FMA. While the FMA has a large acceptance (±\pm41 mrad C.N. Davids et al (1992)), the opening angle of the (α\alpha,p) heavy recoil cone is quite similar, making the derived cross section sensitive to any changes in the beam optics. A charge-reset foil of gold and carbon was used after the helium gas cell target, as uncertainty in the charge state fractions would also lead to uncertainty in the FMA detection efficiency; a charge state distribution for stable 51V was measured independently as a check. Isobaric contamination in the beam (44Ca, 62%, Q(α,p) = -1.996 MeV) was measured separately, resulting in a 44Ti intensity on target of 5×105\sim 5\times 10^{5}pps. The technique was verified against the 40Ca(α\alpha,p)43Sc reaction cross section and found to be in good agreement with previous results A. J. Howard et al (1974). An excess of strength above the statistical calculations for the lower energy measurements was observed, which the authors state is potentially due to a limitation in the “standard parameters” used in the calculation at the time, but is consistent with an independent measurement of the 48Ti(α\alpha,n)51Cr reaction cross section H. Vonach, R.C. Haight, and G. Winkler (1983). A piecewise fit to the data was described and converted to a recommended rate; this rate was reassessed later by Hoffman et al R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel (2010) and adopted by REACLIB Cyburt et al. (2010).

The second measurement Margerin et al. (2014) was performed at REX-ISOLDE, utilizing a silicon detector telescope to detect protons from the reaction of interest, again with a helium-filled gas cell. In this case, the heavy recoil was not detected, but was instead stopped, as well as the unreacted beam, in the exit window of the gas cell. The measurement observed a considerable background of scattered protons thought to originate on the helium gas cell materials, but produced an upper limit in the region of interest around Ecm{}_{cm}\sim4 MeV. As the unreacted beam was not directly measured, the (α\alpha,p) reaction cross section was instead normalized to measured (α\alpha,α\alpha) on the assumption of Rutherford scattering. While the assumption is not unreasonable, it is possible that unknown isobaric beam contaminants from the electron beam ion source charge breeder may have been present but not separable by their elastic-scattering signatures. The authors state that there was no apparent isobaric contamination Margerin et al. (2014) but do not detail how this determination was made; a later review by Murphy A. St. J. Murphy (2017) indicated that gamma spectroscopy of the decay of 44Ti from the downstream gas cell window was used to independently verify the integrated beam flux. It is not specified what range of proton channels are included in the simulations performed by Margerin et al; assuming only the (α\alpha,p0) channel can introduce additional uncertainty, as the detection sensitivity is a function of proton channel as well as ejected proton energy. Protons from weaker but energetically-accessible levels up to several MeV would have appeared to the left of the shaded region of interest in Fig. 1 of Ref. Margerin et al. (2014).

The upper limit of Ref. Margerin et al. (2014) is not in good agreement with the Sonzogni et al Sonzogni et al. (2000) recommended rate at this energy, even with the updated uncertainties from the reanalysis of Ref. R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel (2010). Interpreting the data collectively within a systematic framework, however, can provide some additional constraint to our understanding of 44Ti production in CCSNe.

Additionally, a feasibility study was conducted to investigate the possibility of determining the 44Ti(α\alpha,p)47V reaction rate in forward kinematics with a radioactive 44Ti sample, with about 1 to 10  MBq, as the target Al-Abdullah et al. (2014). Unfortunately, the high number of stable Ti isotopes as well as contaminants in the sample was found to result in beam-induced background overlapping the signals of interest. The authors concluded that, while the technique looks promising, the level of impurities must be reduced, potentially by implanting purified 44Ti into a Ta backing.

II Cross Sections

In order to adopt more realistic rate variations for such CCSNe hydrodynamic models, multiple statistical model (Hauser-Feshbach, or HF) calculations of the cross section using TALYS 1.9 Koning and Rochman (2012) were undertaken. Each of the eight available alpha-nucleus optical models Koning and Rochman (2012); L. McFadden, G.R. Satchler (1966); P. Demetriou, C. Grama, and S. Goriely (2002); Nolte et al (1987); V. Avrigeanu et al (1994, 2014) were used to calculate the 44Ti(α\alpha,p)47V cross section, resulting in a range of possible theoretical values. The calculations employed a 100-keV bin size across the center-of-mass energy range of interest. Because the masses are known, the available mass models produced no effect on the calculated cross section. The level density and gamma strength function models also had no effect. Below about Ecm{}_{cm}\sim3.8 MeV, the TALYS calculations were observed to become unreliable.

In Figure 1, a subset of these calculations are plotted, along with the available literature data Sonzogni et al. (2000); Margerin et al. (2014). Alpha potentials from Refs. L. McFadden, G.R. Satchler (1966); P. Demetriou, C. Grama, and S. Goriely (2002); Nolte et al (1987); V. Avrigeanu et al (1994) are shown; the other optical models available in TALYS resulted in theoretical curves between those shown (clustered toward smaller cross section). Also shown is a calculated cross section derived from the description of the piecewise fit given by Sonzogni et al Sonzogni et al. (2000). It is clear that, while very few curves are consistent with the Ref. Sonzogni et al. (2000) data, several of the calculations are compatible with the Ref. Margerin et al. (2014) upper limit. It should be noted that neither Ref. Sonzogni et al. (2000) or Margerin et al. (2014) explored a large HF input parameter space when calculating theoretical HF curves to compare against the measured cross sections. The full range of calculated cross sections from built-in TALYS alpha potential models spans a factor of \sim1.5 at Ecm = 10 MeV, up to a factor of \sim18 at Ecm = 3 MeV.

The data of Ref. Sonzogni et al. (2000), being consistent with fewer theoretical curves, should provide the most stringent experimental limit on the realistic variation in the calculated cross sections. It should be cautioned, however, that a direct interpolation between the center-of-mass energies measured by Refs. Sonzogni et al. (2000) and Margerin et al. (2014) could turn out erronous; potential systematic discrepancies between the two published results could result from the different methods of measurement. One such issue is that the different center-of-mass energies are sampling different relative contributions from the ground state (p0) and higher-lying branches (pN), as demonstrated in Figure 2. If the p0 contribution falls off considerably faster or slower (relative to excited states) than the various Hauser-Feshbach models predict, an extrapolation from the higher-energy data of Ref. Sonzogni et al. (2000) could over- or under-estimate the total cross section and hence reaction rate at lower energies, or the low-energy data of Ref. Margerin et al. (2014) could similarly have an unknown sensitivity to channels above the ground state transition. As an example, preliminary comparisons between the experimentally-measured forward and time-inverse 34Ar(α\alpha,p)37K Schmidt et al. (2017) and 37K(p,α\alpha)34Ar Deibel et al. (2012) reaction cross sections indicate that the relative contributions from the ground state and excited state channels may be poorly reproduced by HF calculations; however, no direct data exist for the case of 44Ti(α\alpha,p)47V. In addition, the lowest center-of-mass energy Margerin et al. (2014) is near where HF models can begin to break down, and as-yet unquantified, non-statistical (resonant) processes may contribute. Despite this, statistical calculations are expected to reasonably reproduce the overall shape of the cross section curve at these masses and energies, and are hence used as the basis for determining the recommended cross section in the absence of additional experimental contraint.

Refer to caption
Figure 1: (Color online) CORRECTED: Plot of the 44Ti(α\alpha,p)47V cross section data from the literature (black circles Sonzogni et al. (2000) and black triangle Margerin et al. (2014)), compared against calculations (unscaled) using a subset of the available alpha optical model potentials in TALYS Koning and Rochman (2012). Eight alpha optical models are available in TALYS; those not shown here fall within the bands displayed. A piecewise fit constructed as described in Ref. Sonzogni et al. (2000) is also shown for comparison.
Refer to caption
Figure 2: (Color online) Top panel: Example partial cross sections from selected proton channels as calculated using OMP7Nolte et al (1987). Bottom panel: Comparison of the ratio of the p0 channel to the total (α\alpha,p) rate, and the contribution from the continuum (p<<40) to the total rate, for OMP7Nolte et al (1987) and OMP8V. Avrigeanu et al (1994). The kink above 5 MeV is an artifact of the binning within TALYS.

To determine a recommended cross section, each of the eight theoretical curves from TALYS Koning and Rochman (2012) were fit to the measured cross section data Sonzogni et al. (2000); Margerin et al. (2014) using standard χ2\chi^{2} fitting techniques. The measured data were fit as a single set. The reported cross section values for the data from Ref. Sonzogni et al. (2000) were used, and the cross section for the energy measured in Ref. Margerin et al. (2014) was taken as an asymmetric 40 μ\mub 1σ\sigma upper limit using the Feldman-Cousins approach Gary J. Feldman and Robert D. Cousins (1998). The one- and two-sigma variations around the best fit for each alpha optical model potential (OMP) were recorded. To determine overall 1σ\sigma and 2σ\sigma bands, the calculated upper and lower curves were compared against one another, and the absolute maximum (upper) and minimum (lower) taken at each 100-keV bin, thus describing the furthest extent of the fitted HF curves from the measured data. The recommended cross section was then taken to be the unweighted mean between the 1σ\sigma upper and lower bounds for each bin. These cross section curves are plotted in Figure 3.

Refer to caption
Figure 3: Plot of the data from the literature as described in the text (black circles Sonzogni et al. (2000) and black triangle Margerin et al. (2014)), along with the recommended cross section curve (black line) and the one- and two-sigma uncertainty bands (black and grey hashing, respectively), as derived in this work.

It is apparent that the recommended cross section curve is unable to fully reproduce the literature data, while also requiring that it be a smoothly-varying curve consistent with the Hauser-Feshbach calculations. However, statistical scatter is to be expected, and without additional experimental data to further constrain the relative proton channel strengths or demonstrate discrete (resonant) behavior, the HF curves are taken to be a good approximation of the cross section as a function of energy.

III Recommended Rates

The reaction rate per particle pair NA<σv>N_{A}<\sigma v> as a function of temperature T9T_{9} was numerically integrated from the recommended cross section curve derived as described above, and is shown in Figure 4. The rate calculated in this work is shown in black, with the rate calculated from the one- and two-sigma bounds on the cross section displayed in black and grey hashing, respectively. The Hoffman et al R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel (2010) reassessment is shown for comparison. The ratio of the Hoffman et al rate to the current recommended rate is shown in the bottom panel. The differences between the current rate and the reassessment of Ref. R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel (2010) are due to the inclusion of the Margerin et al data and the additional HF parameter space provided by the current calculations with TALYS.

The calculated reaction rate was fit with the standard parameterization Cyburt et al. (2010) of the form:

NAσν=exp[A+B/T9+C/T91/3+DT91/3+ET9+FT95/3+Gln(T9)]N_{A}\langle\sigma\nu\rangle=exp[A+B/T_{9}+C/T^{1/3}_{9}+DT^{1/3}_{9}+ET_{9}+FT^{5/3}_{9}+Gln(T_{9})]

in order to provide a recommended rate. The deviations between the parameterized REACLIB fit and the numerically calculated rate did not exceed 10% inside the critical temperature range of 2.5-5 GK. The fit parameters for the recommended rate, based on the recommended cross section, are given in Table 1. Table 2 lists the recommended rate, the ±1σ\pm 1\sigma bounds, and the ±2σ\pm 2\sigma bounds, as a function of temperature. Also included for comparison is the reaction rate derived from the single best-fit calculated curve, which resulted from the Nolte et al alpha-nucleus optical model scaled to the data.

Table 1: REACLIB parameterization Cyburt et al. (2010) for the recommended 44Ti(α\alpha,p)47V reaction rate based on an assessment of the available literature data.
Fit Parameter: A B C D E F G
Recommended rate
Value: 65.0108 -5.46229 91.2537 -182.584 6.56676 -0.288218 107.242
Refer to caption
Figure 4: (Color online) Plot of the recommended reaction rate based upon χ2\chi^{2} fits of the theoretical cross section curves to the measured data from the literature Sonzogni et al. (2000); Margerin et al. (2014). The rate derived in this work is shown in solid black, with the recommended curve from the Hoffman reassessment R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel (2010) in red dash for comparison. The one sigma (black hashing) and two sigma (grey hashing) limits are shown as well. In the lower panel, the ratio of Hoffman et al R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel (2010) to the recommended rate is shown.

Though not exact, a reasonable approximation of the 1σ1\sigma error bands can be described by about ±\pm10% at higher temperatures (\sim10 GK), increasing to +40%/-85% at 2 GK. Very conservatively, then, the rate uncertainty band may be taken as factors of 1.4 (up) and 0.54 (down). While this represents a considerable improvement on the constraint of the 44Ti(α\alpha,p)47V reaction rate overall, it depends upon the validity of the HF models used to fit the experimental data in the astrophysically important energy range.

Table 2: Reaction rate as a function of temperature, presented for the recommended rate, the ±\pm1σ\sigma and ±\pm2σ\sigma bounds on the recommended rate, and the rate derived from the single best fit calculated curve scaled from Nolte et al Nolte et al (1987), as described in the text. All rates are given in cm3 s-1 mol-1.
Temp. (GK) Recommended rate +1σ+1\sigma 1σ-1\sigma High rate (+2σ+2\sigma) Low rate (2σ-2\sigma) Single-curve best fit
2.00 2.15x10410^{-4} 3.17x10410^{-4} 1.72x10510^{-5} 2.79x10410^{-4} 1.39x10610^{-6} 3.35x10410^{-4}
2.09 4.74x10410^{-4} 6.80x10410^{-4} 7.47x10510^{-5} 6.13x10410^{-4} 1.42x10510^{-5} 7.20x10410^{-4}
2.17 9.97x10410^{-4} 1.41x10310^{-3} 2.00x10410^{-4} 1.29x10310^{-3} 4.42x10510^{-5} 1.49x10310^{-3}
2.25 2.02x10310^{-3} 2.83x10310^{-3} 4.62x10410^{-4} 2.60x10310^{-3} 1.12x10410^{-4} 3.00x10310^{-3}
2.34 3.97x10310^{-3} 5.51x10310^{-3} 9.95x10410^{-4} 5.10x10310^{-3} 2.58x10410^{-4} 5.84x10310^{-3}
2.42 7.59x10310^{-3} 1.05x10210^{-2} 2.05x10310^{-3} 9.73x10310^{-3} 5.66x10410^{-4} 1.11x10210^{-2}
2.51 1.41x10210^{-2} 1.94x10210^{-2} 4.07x10310^{-3} 1.81x10210^{-2} 1.19x10310^{-3} 2.05x10210^{-2}
2.60 2.57x10210^{-2} 3.50x10210^{-2} 7.87x10310^{-3} 3.28x10210^{-2} 2.44x10310^{-3} 3.70x10210^{-2}
2.68 4.58x10210^{-2} 6.18x10210^{-2} 1.48x10210^{-2} 5.82x10210^{-2} 4.85x10310^{-3} 6.55x10210^{-2}
2.77 7.98x10210^{-2} 1.07x10110^{-1} 2.72x10210^{-2} 1.01x10110^{-1} 9.40x10310^{-3} 1.13x10110^{-1}
2.86 1.36x10110^{-1} 1.82x10110^{-1} 4.89x10210^{-2} 1.73x10110^{-1} 1.78x10210^{-2} 1.93x10110^{-1}
2.95 2.29x10110^{-1} 3.03x10110^{-1} 8.62x10210^{-2} 2.89x10110^{-1} 3.28x10210^{-2} 3.21x10110^{-1}
3.04 3.78x10110^{-1} 4.97x10110^{-1} 1.49x10110^{-1} 4.75x10110^{-1} 5.92x10210^{-2} 5.26x10110^{-1}
3.14 6.14x10110^{-1} 8.01x10110^{-1} 2.52x10110^{-1} 7.69x10110^{-1} 1.05x10110^{-1} 8.48x10110^{-1}
3.23 9.81x10110^{-1} 1.27x10010^{0} 4.20x10110^{-1} 1.22x10010^{0} 1.82x10110^{-1} 1.35x10010^{0}
3.32 1.55x10010^{0} 2.00x10010^{0} 6.88x10110^{-1} 1.93x10010^{0} 3.08x10110^{-1} 2.11x10010^{0}
3.42 2.41x10010^{0} 3.09x10010^{0} 1.11x10010^{0} 2.99x10010^{0} 5.15x10110^{-1} 3.27x10010^{0}
3.51 3.70x10010^{0} 4.71x10010^{0} 1.76x10010^{0} 4.57x10010^{0} 8.46x10110^{-1} 4.99x10010^{0}
3.61 5.61x10010^{0} 7.09x10010^{0} 2.76x10010^{0} 6.90x10010^{0} 1.37x10010^{0} 7.51x10010^{0}
3.71 8.40x10010^{0} 1.05x10110^{1} 4.26x10010^{0} 1.03x10110^{1} 2.18x10010^{0} 1.12x10110^{1}
3.80 1.24x10110^{1} 1.55x10110^{1} 6.49x10010^{0} 1.52x10110^{1} 3.43x10010^{0} 1.64x10110^{1}
3.90 1.82x10110^{1} 2.25x10110^{1} 9.77x10010^{0} 2.21x10110^{1} 5.31x10010^{0} 2.38x10110^{1}
4.00 2.62x10110^{1} 3.23x10110^{1} 1.45x10110^{1} 3.18x10110^{1} 8.13x10010^{0} 3.42x10110^{1}
4.10 3.75x10110^{1} 4.59x10110^{1} 2.14x10110^{1} 4.52x10110^{1} 1.23x10110^{1} 4.86x10110^{1}
4.20 5.32x10110^{1} 6.46x10110^{1} 3.11x10110^{1} 6.38x10110^{1} 1.84x10110^{1} 6.84x10110^{1}
4.31 7.45x10110^{1} 9.00x10110^{1} 4.48x10110^{1} 8.90x10110^{1} 2.71x10110^{1} 9.53x10110^{1}
4.41 1.04x10210^{2} 1.24x10210^{2} 6.38x10110^{1} 1.23x10210^{2} 3.97x10110^{1} 1.31x10210^{2}
4.51 1.42x10210^{2} 1.69x10210^{2} 9.00x10110^{1} 1.68x10210^{2} 5.74x10110^{1} 1.80x10210^{2}
4.62 1.94x10210^{2} 2.29x10210^{2} 1.26x10210^{2} 2.28x10210^{2} 8.23x10110^{1} 2.43x10210^{2}
4.72 2.62x10210^{2} 3.08x10210^{2} 1.74x10210^{2} 3.07x10210^{2} 1.17x10210^{2} 3.26x10210^{2}
4.83 3.51x10210^{2} 4.09x10210^{2} 2.39x10210^{2} 4.08x10210^{2} 1.65x10210^{2} 4.33x10210^{2}
4.94 4.66x10210^{2} 5.39x10210^{2} 3.25x10210^{2} 5.38x10210^{2} 2.30x10210^{2} 5.71x10210^{2}
5.04 6.13x10210^{2} 7.03x10210^{2} 4.39x10210^{2} 7.04x10210^{2} 3.17x10210^{2} 7.45x10210^{2}
5.15 8.01x10210^{2} 9.11x10210^{2} 5.87x10210^{2} 9.12x10210^{2} 4.35x10210^{2} 9.65x10210^{2}
5.26 1.04x10310^{3} 1.17x10310^{3} 7.79x10210^{2} 1.17x10310^{3} 5.92x10210^{2} 1.24x10310^{3}
5.37 1.33x10310^{3} 1.49x10310^{3} 1.03x10310^{3} 1.50x10310^{3} 7.98x10210^{2} 1.58x10310^{3}
5.48 1.70x10310^{3} 1.88x10310^{3} 1.34x10310^{3} 1.89x10310^{3} 1.07x10310^{3} 1.99x10310^{3}
5.60 2.15x10310^{3} 2.36x10310^{3} 1.73x10310^{3} 2.37x10310^{3} 1.41x10310^{3} 2.50x10310^{3}
5.71 2.70x10310^{3} 2.95x10310^{3} 2.23x10310^{3} 2.96x10310^{3} 1.86x10310^{3} 3.11x10310^{3}
5.82 3.37x10310^{3} 3.65x10310^{3} 2.84x10310^{3} 3.67x10310^{3} 2.42x10310^{3} 3.84x10310^{3}
5.94 4.18x10310^{3} 4.48x10310^{3} 3.59x10310^{3} 4.51x10310^{3} 3.12x10310^{3} 4.71x10310^{3}
6.05 5.14x10310^{3} 5.47x10310^{3} 4.50x10310^{3} 5.50x10310^{3} 3.99x10310^{3} 5.74x10310^{3}
6.17 6.29x10310^{3} 6.64x10310^{3} 5.61x10310^{3} 6.67x10310^{3} 5.07x10310^{3} 6.94x10310^{3}
6.29 7.64x10310^{3} 8.00x10310^{3} 6.94x10310^{3} 8.03x10310^{3} 6.38x10310^{3} 8.34x10310^{3}
6.40 9.22x10310^{3} 9.58x10310^{3} 8.52x10310^{3} 9.61x10310^{3} 7.97x10310^{3} 9.97x10310^{3}
6.52 1.10x10410^{4} 1.14x10410^{4} 1.04x10410^{4} 1.14x10410^{4} 9.87x10310^{3} 1.18x10410^{4}
6.64 1.32x10410^{4} 1.35x10410^{4} 1.26x10410^{4} 1.35x10410^{4} 1.21x10410^{4} 1.40x10410^{4}
6.76 1.56x10410^{4} 1.59x10410^{4} 1.51x10410^{4} 1.59x10410^{4} 1.48x10410^{4} 1.64x10410^{4}
6.89 1.84x10410^{4} 1.86x10410^{4} 1.80x10410^{4} 1.86x10410^{4} 1.79x10410^{4} 1.92x10410^{4}
7.01 2.16x10410^{4} 2.17x10410^{4} 2.14x10410^{4} 2.17x10410^{4} 2.13x10410^{4} 2.23x10410^{4}
7.13 2.52x10410^{4} 2.52x10410^{4} 2.51x10410^{4} 2.52x10410^{4} 2.51x10410^{4} 2.59x10410^{4}
7.25 2.93x10410^{4} 2.93x10410^{4} 2.93x10410^{4} 2.93x10410^{4} 2.93x10410^{4} 2.98x10410^{4}
7.38 3.39x10410^{4} 3.39x10410^{4} 3.39x10410^{4} 3.39x10410^{4} 3.40x10410^{4} 3.42x10410^{4}
7.50 3.91x10410^{4} 3.91x10410^{4} 3.91x10410^{4} 3.91x10410^{4} 3.91x10410^{4} 3.91x10410^{4}
7.63 4.50x10410^{4} 4.50x10410^{4} 4.49x10410^{4} 4.50x10410^{4} 4.48x10410^{4} 4.46x10410^{4}
7.76 5.15x10410^{4} 5.16x10410^{4} 5.13x10410^{4} 5.16x10410^{4} 5.10x10410^{4} 5.06x10410^{4}
7.89 5.87x10410^{4} 5.89x10410^{4} 5.83x10410^{4} 5.89x10410^{4} 5.78x10410^{4} 5.72x10410^{4}
8.01 6.67x10410^{4} 6.71x10410^{4} 6.60x10410^{4} 6.72x10410^{4} 6.51x10410^{4} 6.45x10410^{4}
8.14 7.56x10410^{4} 7.61x10410^{4} 7.45x10410^{4} 7.62x10410^{4} 7.31x10410^{4} 7.25x10410^{4}
8.27 8.53x10410^{4} 8.61x10410^{4} 8.37x10410^{4} 8.63x10410^{4} 8.17x10410^{4} 8.12x10410^{4}
8.41 9.59x10410^{4} 9.71x10410^{4} 9.37x10410^{4} 9.73x10410^{4} 9.11x10410^{4} 9.06x10410^{4}
8.54 1.08x10510^{5} 1.09x10510^{5} 1.05x10510^{5} 1.09x10510^{5} 1.01x10510^{5} 1.01x10510^{5}
8.67 1.20x10510^{5} 1.22x10510^{5} 1.16x10510^{5} 1.23x10510^{5} 1.12x10510^{5} 1.12x10510^{5}
8.81 1.34x10510^{5} 1.37x10510^{5} 1.29x10510^{5} 1.37x10510^{5} 1.24x10510^{5} 1.24x10510^{5}
8.94 1.49x10510^{5} 1.53x10510^{5} 1.43x10510^{5} 1.53x10510^{5} 1.36x10510^{5} 1.37x10510^{5}
9.08 1.65x10510^{5} 1.70x10510^{5} 1.57x10510^{5} 1.70x10510^{5} 1.49x10510^{5} 1.51x10510^{5}
9.21 1.83x10510^{5} 1.88x10510^{5} 1.73x10510^{5} 1.89x10510^{5} 1.64x10510^{5} 1.66x10510^{5}
9.35 2.02x10510^{5} 2.08x10510^{5} 1.90x10510^{5} 2.09x10510^{5} 1.79x10510^{5} 1.82x10510^{5}
9.49 2.22x10510^{5} 2.30x10510^{5} 2.08x10510^{5} 2.31x10510^{5} 1.95x10510^{5} 2.00x10510^{5}
9.63 2.44x10510^{5} 2.53x10510^{5} 2.28x10510^{5} 2.54x10510^{5} 2.12x10510^{5} 2.18x10510^{5}
9.77 2.68x10510^{5} 2.78x10510^{5} 2.48x10510^{5} 2.80x10510^{5} 2.30x10510^{5} 2.38x10510^{5}
9.91 2.93x10510^{5} 3.05x10510^{5} 2.70x10510^{5} 3.07x10510^{5} 2.50x10510^{5} 2.59x10510^{5}
10.05 3.20x10510^{5} 3.34x10510^{5} 2.94x10510^{5} 3.35x10510^{5} 2.70x10510^{5} 2.81x10510^{5}

IV Conclusion and Recommendations

The 44Ti(α\alpha,p)47V reaction rate is critical to our understanding of observational 44Ti afterglow in core collapse supernovae. The available data from the literature have been assessed here, compared against statistical model calculations using a range of standard optical model parameters, and used to constrain the astrophysical reaction rate across a wide temperature range. However, uncertainties remain, due mainly to the experimentally unmeasured contributions from the various excited levels (pN) and the lack of high-statistics measurements at the lowest energies. Precision measurements at additional center of mass energies between those covered by Refs. Sonzogni et al. (2000); Margerin et al. (2014) would provide more stringent constraint on the shape of the cross section across the range of astrophysical temperatures important for CCSNe, allowing a direct comparison to Hauser-Feshbach statistical models. Spectroscopic measurements sensitive to the channels above p0 would additionally constrain the statistical models, and provide information on the relative strengths of the various (α\alpha,p) channels. Further targeted measurements of the 44Ti(α\alpha,p)47V cross section across the energies of astrophysical interest are hence encouraged.

Acknowledgements.
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-AC05-00OR22725 (ORNL), and grant numbers DE-FG02-88ER40387, DE-NA0003909, and DE-SC0019042, and by the National Science Foundation under grant numbers PHY-1430152 (JINA Center for the Evolution of the Elements), PHY-1913531, and PHY-1713857. Author PA acknowledges the support of a Claude Leon Foundation Postdoctoral Fellowship.

References

  • A.F. Iyudin et al (1994) A.F. Iyudin et al, Astron. and Astrophys. 284, L1 (1994).
  • A.F. Iyudin, V. Schonfelder, K. Bennett, H. Bloemen, R. Diehl, W. Hermsen, G.G. Lichti, R.D. Van Der Meulen, J. Ryan, C. Winkler (1998) A.F. Iyudin, V. Schonfelder, K. Bennett, H. Bloemen, R. Diehl, W. Hermsen, G.G. Lichti, R.D. Van Der Meulen, J. Ryan, C. Winkler, Nature 396, 142 (1998).
  • J. Vink, J.M. Laming, J.S. Kaastra, J.A.M. Bleeker, H. Bloemen, U. Oberlack (2001) J. Vink, J.M. Laming, J.S. Kaastra, J.A.M. Bleeker, H. Bloemen, U. Oberlack, Astrophys. J. 560, L79 (2001).
  • M. Renaud et al (2006) M. Renaud et al, Astrophys. J. 647, L41 (2006).
  • Grefenstette et al. (2014) B. W. Grefenstette, F. A. Harrison, S. E. Boggs, S. P. Reynolds, C. L. Fryer, K. K. Madsen, D. R. Wik, A. Zoglauer, C. I. Ellinger, D. M. Alexander, et al., Nature 506, 339 (2014).
  • Siegert et al. (2015) T. Siegert, R. Diehl, M. G. H. Krause, and J. Greiner, Astron. and Astro. J. 579, A124 (2015), eprint 1505.05999.
  • Grefenstette et al. (2017) B. W. Grefenstette, C. L. Fryer, F. A. Harrison, S. E. Boggs, T. DeLaney, J. M. Laming, S. P. Reynolds, D. M. Alexander, D. Barret, F. E. Christensen, et al., Astrophys. J. 834, 19 (2017), eprint 1612.02774.
  • Jerkstrand et al. (2011) A. Jerkstrand, C. Fransson, and C. Kozma, Astron. and Astro. J. 530, A45 (2011), eprint 1103.3653.
  • S.A. Grebenev, A.A. Lutovinov, S.S. Tsygankov, C. Winkler (2012) S.A. Grebenev, A.A. Lutovinov, S.S. Tsygankov, C. Winkler, Nature 490, 373 (2012).
  • Boggs et al. (2015) S. E. Boggs, F. A. Harrison, H. Miyasaka, B. W. Grefenstette, A. Zoglauer, C. L. Fryer, S. P. Reynolds, D. M. Alexander, H. An, D. Barret, et al., Science 348, 670 (2015).
  • Woosley et al. (1973) S. E. Woosley, W. D. Arnett, and D. D. Clayton, Astrophys. J. Suppl. Series 26, 231 (1973).
  • Wongwathanarat et al. (2017) A. Wongwathanarat, H.-T. Janka, E. Müller, E. Pllumbi, and S. Wanajo, Astrophys. J. 842, 13 (2017), eprint 1610.05643.
  • Eichler et al. (2018) M. Eichler, K. Nakamura, T. Takiwaki, T. Kuroda, K. Kotake, M. Hempel, R. Cabezón, M. Liebendörfer, and F.-K. Thielemann, J. Phys. G 45, 014001 (2018), eprint 1708.08393.
  • Harris et al. (2020) J. A. Harris, W. R. Hix, M. A. Chertkow, S. W. Bruenn, E. J. Lentz, O. E. B. Messer, A. Mezzacappa, J. M. Blondin, E. Endeve, E. J. Lingerfelt, et al., Astrophys. J. p. in prep. (2020).
  • C.L. Fryer and P.A. Young (2007) C.L. Fryer and P.A. Young, Astrophys. J. 659, 1438 (2007).
  • Sawada and Maeda (2019) R. Sawada and K. Maeda, The Astrophysical Journal 886, 47 (2019).
  • Meyer et al. (1998) B. S. Meyer, T. D. Krishnan, and D. D. Clayton, Astrophys. J. 498, 808 (1998).
  • Bodansky et al. (1968) D. Bodansky, D. D. Clayton, and W. A. Fowler, Astrophys. J. Suppl. Series 16, 299 (1968).
  • Hix and Thielemann (1999) W. R. Hix and F.-K. Thielemann, Astrophys. J. 511, 862 (1999).
  • The et al. (1998) L.-S. The, D. D. Clayton, L. Jin, and B. S. Meyer, Astrophys. J. 504, 500 (1998).
  • G. Magkotsios, F.X. Timmes, A.L. Hungerford, C.L. Fryer, P.A. Young, M. Wiescher (2010) G. Magkotsios, F.X. Timmes, A.L. Hungerford, C.L. Fryer, P.A. Young, M. Wiescher, Astrophys. J 191, 66 (2010).
  • R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel (2010) R.D. Hoffman, S.A. Sheets, J.T. Burke, N.D. Scielzo, T. Rauscher, E.B. Norman, S. Tumey, T.A. Brown, P.G. Grant, A.M. Hurst, L. Phair, M.A. Stoyer, T. Woddy, J.L Fisker, D. Bleuel, Astrophys. J 715, 1383 (2010).
  • T. Rauscher, F.-K. Thielemann, K.-L. Kratz (1997) T. Rauscher, F.-K. Thielemann, K.-L. Kratz, Phys. Rev. C 56, 1613 (1997).
  • Sonzogni et al. (2000) A. A. Sonzogni, K. E. Rehm, I. Ahmad, F. Borasi, D. L. Bowers, F. Brumwell, J. Caggiano, C. N. Davids, J. P. Greene, B. Harss, et al., Phys. Rev. Lett. 84, 1651 (2000).
  • C.N. Davids et al (1992) C.N. Davids et al, Nucl. Instr. and Methods B 70, 358 (1992).
  • A. J. Howard et al (1974) A. J. Howard et al, Astrophys. J. 188, 131 (1974).
  • H. Vonach, R.C. Haight, and G. Winkler (1983) H. Vonach, R.C. Haight, and G. Winkler, Phys. Rev. C 28, 2278 (1983).
  • Cyburt et al. (2010) R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R. D. Hoffman, T. Rauscher, A. Sakharuk, et al., The Astrophysical Journal Supplement Series 189, 240 (2010).
  • Margerin et al. (2014) V. Margerin, A. Murphy, T. Davinson, R. Dressler, J. Fallis, A. Kankainen, A. Laird, G. Lotay, D. Mountford, C. Murphy, et al., Physics Letters B 731, 358 (2014).
  • A. St. J. Murphy (2017) A. St. J. Murphy, J. Phys. G: Nucl. Part. Phys 44, 054005 (2017).
  • Al-Abdullah et al. (2014) T. Al-Abdullah, S. Akhmadaliev, M. Ayranov, D. Bemmerer, R. Dressler, Z. Elekes, N. Kivel, K. Schmidt, D. Schumann, M. Sobiella, et al., The European Physical Journal A 50, 140 (2014), ISSN 1434-601X, URL https://doi.org/10.1140/epja/i2014-14140-8.
  • Koning and Rochman (2012) A. Koning and D. Rochman, Nuclear Data Sheets 113, 2841 (2012).
  • L. McFadden, G.R. Satchler (1966) L. McFadden, G.R. Satchler, Nuclear Physics 84, 177 (1966).
  • P. Demetriou, C. Grama, and S. Goriely (2002) P. Demetriou, C. Grama, and S. Goriely, Nucl. Phys. A 707, 253 (2002).
  • Nolte et al (1987) Nolte et al, Phys. Rev. C 36, 1312 (1987).
  • V. Avrigeanu et al (1994) V. Avrigeanu et al, Phys. Rev. C 49, 2136 (1994).
  • V. Avrigeanu et al (2014) V. Avrigeanu et al, Phys. Rev. C 89, 065808 (2014).
  • Schmidt et al. (2017) K. Schmidt, K. A. Chipps, S. Ahn, J. M. Allen, D. W. Bardayan, J. C. Blackmon, D. Blankstein, J. Browne, K. Y. Chae, J. Cizewski, et al., X-ray Burst Studies with the JENSA Gas Jet Target (JPS Conference Proceedings, 2017), chap. 14, p. 021107.
  • Deibel et al. (2012) C. M. Deibel, L. Afanasieva, M. Albers, M. Alcorta, S. Almarez-Calderon, S. Bedoor, P. F. Bertone, P. Carnelli, A. A. Chen, J. Chen, et al., Journal of Physics: Conference Series 403, 012033 (2012).
  • Gary J. Feldman and Robert D. Cousins (1998) Gary J. Feldman and Robert D. Cousins, Phys. Rev. D 57, 3873 (1998).