This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Etale descent obstruction and anabelian geometry of curves over finite fields

Brendan Creutz School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand [email protected]  and  José Felipe Voloch School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand [email protected]
    • scAbstract. Let CC and DD be smooth, proper and geometrically integral curves over a finite field scFsc\mathbb F.Anymorphism.AnymorphismD →Cinducesamorphismofétalefundamentalgroupsinducesamorphismof\'{e}talefundamentalgroupsπ_1(D) →π_1(C).TheanabelianphilosophyproposedbyGrothendiecksuggeststhat,when.TheanabelianphilosophyproposedbyGrothendiecksuggeststhat,whenChasgenusatleasthasgenusatleast2,allopenhomomorphismsbetweentheétalefundamentalgroupsshouldariseinthiswayfromanonconstantmorphismofcurves.Werelatethisexpectationtothearithmeticofthecurve,allopenhomomorphismsbetweenthe\'{e}talefundamentalgroupsshouldariseinthiswayfromanonconstantmorphismofcurves.WerelatethisexpectationtothearithmeticofthecurveCconsideredasacurveovertheglobalfunctionfieldconsideredasacurveovertheglobalfunctionfieldK = scF(D).Specifically,weshowthatthereisabijectionbetweenthesetofconjugacyclassesofwellbehavedmorphismsoffundamentalgroupsandlocallyconstantadelicpointsof.Specifically,weshowthatthereisabijectionbetweenthesetofconjugacyclassesofwell-behavedmorphismsoffundamentalgroupsandlocallyconstantadelicpointsofCthatsurviveétaledescent.WeusethistoprovidefurtherevidencefortheanabelianconjectureandrelateittoanotherrecentconjecturebySutherlandandthesecondauthor.
      sc𝐊𝐞𝐲𝐰𝐨𝐫𝐝𝐬
      .
      thatsurvive\'{e}taledescent.WeusethistoprovidefurtherevidencefortheanabelianconjectureandrelateittoanotherrecentconjecturebySutherlandandthesecondauthor.\vskip 3.0pt plus 1.0pt minus 1.0pt\par\vskip 12.0pt plus 4.0pt minus 4.0pt\par\noindent sc\bf Keywords.
      Descent obstructions, anabelian geometry, constant curves, function fields

      sc2020 Mathematics Subject Classification. 11G20, 11G30, 14G05, 14G15

  •  
    cFebruary 2, 2024Received by the Editors on June 20, 2023.
    Accepted on February 16, 2024.


    School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

    sce-mail: [email protected]

    School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

    sce-mail: [email protected]

    The authors were supported by the Marsden Fund administered by the Royal Society of New Zealand.


    © by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/

1.  Introduction

For a smooth, proper and geometrically integral curve XX over a global field kk, it is well known that the Hasse principle can fail. That is, XX may contain points over every completion of kk, yet fail to have any kk-rational point. All known examples of this phenomenon can be explained by a finite descent obstruction. This means that there is a torsor f:YXf\colon Y\to X under a finite group scheme over kk such that no twist of YY contains points over every completion. Since any kk-rational point must lift to some twist of ff, this yields an obstruction to the existence of kk-rational points on XX. A central question in the arithmetic of curves over global fields is to determine whether this is the only obstruction to the existence of kk-rational points.

This problem is expected to be very hard in general. For curves of genus 11, it is equivalent to standard conjectures concerning the Tate–Shafarevich groups of elliptic curves. For curves of genus at least 22 over number fields, it is known to follow from Grothendieck’s section conjecture, but there are essentially no general results. For a discussion of the finite descent obstruction over number fields, we refer to [Stoll], which, despite being published over a decade ago, still conveys the state of the art.

The situation is much more promising when XX is defined over a global function field, i.e., when k=F(D)k={\mathbb F}(D) is the function field of a smooth, proper and geometrically connected curve DD over a finite field F{\mathbb F}. Building on work of Poonen–Voloch, see [PV], and Rössler, see [Rossler], [CVnonisotriv, Appendix], the authors have recently completed a proof that finite descent is the only obstruction for all nonisotrivial curves of genus at least 22; see [CVnonisotriv]. It thus remains to consider the situation for isotrivial curves. Recall that XX is called constant if it is isomorphic to the base change of a curve defined over F{\mathbb F}, and that XX is called isotrivial if it becomes constant after base change to a finite extension of kk.

We formulate a precise version of the conjecture that finite descent is the only obstruction to the existence of kk-rational points on a constant curve over a global function field (Conjecture 1.1) and prove the equivalence of this conjecture with an analogue of Grothendieck’s section conjecture for curves over finite fields (see Theorem 3.8). This enables us to use techniques from anabelian geometry which we combine with results of [CV] to establish new instances of these conjectures. We prove that finite descent is the only obstruction to the existence of kk-rational points for a constant curve XC×FkX\simeq C\times_{\mathbb F}k such that the Jacobian of CC is not an isogeny factor of the Jacobian of DD (see Theorem 1.3).

1.1.  Main results and conjectures

Let CC and DD be smooth, proper and geometrically integral curves over a finite field F{\mathbb F}. We consider the arithmetic of the curve C×FKC\times_{\mathbb F}K over the global function field K:=F(D)K:={\mathbb F}(D) (which we still denote by CC by abuse of notation). We denote by AK{\mathbb A}_{K} the ring of adèles of KK and consider the set C(AK)C({\mathbb A}_{K}) of adelic points of CC, which is also the product vC(Kv)\prodop\displaylimits_{v}C(K_{v}), where vv runs through the places of KK, with its natural product topology. Let C(K)¯\overline{C(K)} denote the topological closure of C(K)C(K) inside C(AK)C({\mathbb A}_{K}).

The definition of the set C(AK)étC({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}} of adelic points surviving descent by all torsors under finite étale group schemes over KK is recalled in Section 2.2. We also consider the set C(AK)ét-BrC({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}\text{-}\operatorname{Br}} of adelic points surviving the étale-Brauer obstruction; see [PoonenRatPoints, Section 8.5.2]. These are closed subsets of C(AK)C({\mathbb A}_{K}) containing C(K)¯\overline{C(K)}. A special case of [PV, Conjecture C] implies that C(K)¯=C(AK)ét-Br\overline{C(K)}=C({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}\text{-}\operatorname{Br}}. For any of the other containments in the sequence

C(K)C(K)¯=?C(AK)ét-BrC(AK)étC(AK),C(K)\subset\overline{C(K)}\stackrel{{\scriptstyle?}}{{=}}C({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}\text{-}\operatorname{Br}}\subset C({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}}\subset C({\mathbb A}_{K}),

there are examples showing that, in general, they can be proper. The first will be proper when C(K)C(K) is infinite, which occurs whenever there is a nonconstant morphism ϕMorF(D,C)=C(K)\phi\in\operatorname{Mor}_{\mathbb F}(D,C)=C(K), as it may be composed with the Frobenius endomorphism of CC. Examples where the third inclusion is proper are given in [CV, Proposition 4.5] and are accounted for by a descent obstruction coming from torsors under finite abelian group schemes that are not étale.

Despite this, it is still expected that the information obtained from C(AK)étC({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}} should determine the set of rational points, as we now describe. For a place vv, let Fv{\mathbb F}_{v} denote the residue field of the integer ring 𝒪vKv\mathcal{O}_{v}\subset K_{v}. We define C(AK,F):=vC(Fv)C({\mathbb A}_{K,{\mathbb F}}):=\prodop\displaylimits_{v}C({\mathbb F}_{v}), which is a closed subset of C(AK)=vC(Kv)C({\mathbb A}_{K})=\prodop\displaylimits_{v}C(K_{v}) admitting a continuous retraction r:C(AK)C(AK,F)r\colon C({\mathbb A}_{K})\to C({\mathbb A}_{K,{\mathbb F}}) (see Section 2.1). Define C(AK,F)ét=C(AK,F)C(AK)étC({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}=C({\mathbb A}_{K,{\mathbb F}})\cap C({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}}. Then r(C(K¯))r(\overline{C(K})) is a closed subset of C(AK,F)étC({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}. We conjecture the following.

Conjecture 1.1.

We have r(C(K)¯)=C(AK,F)étr(\overline{C(K)})=C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}. In particular, C(AK,F)ét=C(F)C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}=C({\mathbb F}) if and only if the set C(K)=MorF(D,C)C(K)=\operatorname{Mor}_{\mathbb F}(D,C) contains no nonconstant morphisms.

Conjecture 1.1 is a nonabelian analogue of a conjecture in the number field case by Poonen, see [Poonen], in a setup first studied in [Scharaschkin]. It is equivalent, by [CV, Theorem 1.2], to the conjecture that C(K)¯=C(AK)ét-Br\overline{C(K)}=C({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}\text{-}\operatorname{Br}}. When CC has genus 11, Conjecture 1.1 follows from the Tate conjecture for abelian varieties over finite fields. It is also known when the genera of CC and DD satisfy g(D)<g(C)g(D)<g(C) by [CV, Theorem 1.5], and in some other cases where C(K)=C(F)C(K)=C({\mathbb F}); see [CVV, Theorem 2.14]. The goal of this paper is to provide further evidence for this conjecture, by relating it to anabelian geometry.

Fix geometric points x¯C(F¯)\overline{x}\in C({\overline{{\mathbb F}}}) and y¯D(F¯)\overline{y}\in D({\overline{{\mathbb F}}}), where F¯{\overline{{\mathbb F}}} denotes an algebraic closure of F{\mathbb F}, and let π1(C):=π1(C,x¯)\pi_{1}(C):=\pi_{1}(C,{\overline{x}}) and π1(D):=π1(D,y¯)\pi_{1}(D):=\pi_{1}(D,{\overline{y}}) be the étale fundamental groups of CC and DD with these base points. Any morphism of curves DCD\to C induces a morphism of étale fundamental groups π1(D)π1(C)\pi_{1}(D)\to\pi_{1}(C) up to conjugation by an element of the geometric fundamental group π1(C¯):=π1(C×FF¯,x¯)\pi_{1}({\overline{C}}):=\pi_{1}(C\times_{\mathbb F}{\overline{{\mathbb F}}},{\overline{x}}). Grothendieck’s anabelian philosophy suggests that, when CC has genus at least 22, all open homomorphisms between the étale fundamental groups should arise in this way from a nonconstant morphism of schemes; see [ST2009, ST2011]. In Section 3 we define a notion of well-behaved morphisms between fundamental groups of curves (see Definition 3.1). We expect all open homomorphisms are well behaved, but we have not been able to prove this.

Our main result is the following theorem, which relates the set C(AK,F)étC({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}} appearing in Conjecture 1.1 to an object of interest in anabelian geometry.

Theorem 1.2 (cf. Theorem 3.8).

There is a bijection (explicitly constructed in the proof ) between the set Homπ1(C¯)wb(π1(D),π1(C))\operatorname{Hom}_{\pi_{1}({\overline{C}})}^{wb}(\pi_{1}(D),\pi_{1}(C)) of well-behaved morphisms of fundamental groups up to π1(C¯)\pi_{1}({\overline{C}})-conjugation and the set C(AK,F)étC({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}} of locally constant adelic points surviving étale descent.

This theorem is a strengthening of an analogous result for curves over number fields, which shows that an adelic point surviving étale descent gives rise to a section of the fundamental exact sequence; see [Harari-Stix, Stoll]. Combining Theorem 1.2 with the results in [CV], we prove the following.

Theorem 1.3.

If the Jacobian JCJ_{C} of  CC is not an isogeny factor of  JDJ_{D}, then Conjecture 1.1 holds for CC and DD.

In addition to establishing new instances of the conjecture, this result allows us to relate it in the case g(D)=g(C)g(D)=g(C) to a recent conjecture of Sutherland and the second author, see [SV], which we now recall. We embed CC into its Jacobian JCJ_{C} by a choice of divisor of degree 11 (which always exists by the Lang–Weil estimates since CC is defined over a finite field). The Hilbert class field is defined as follows. Let :JCJC\Phi\colon J_{C}\to J_{C} denote the F{\mathbb F}-Frobenius map. Define H(C):=(I)(C)JCH(C):=(I-\Phi)^{*}(C)\subset J_{C}, where II denotes the identity map on JJ. Then H(C)H(C) is an unramified abelian cover of CC with Galois group JC(F)J_{C}({\mathbb F}), well defined up to a twist that corresponds to a choice of divisor of degree 11 embedding CC into JCJ_{C}. Define H0(C):=CH_{0}(C):=C, H1(C):=H(C)H_{1}(C):=H(C), and successively define Hn+1(C):=Hn(H(C))H_{n+1}(C):=H_{n}(H(C)) for integers n1n\geq 1.

Conjecture 1.4 (cf. [SV, Conjecture 2.2]).

Let C,DC,D be smooth projective curves of equal genus at least 22 over a finite field F{\mathbb F}. If, for each nn, there are choices of twists such that the LL-function of  Hn(C)H_{n}(C) is equal to the LL-function of  Hn(D)H_{n}(D) for all n0n\geq 0, then CC is isomorphic to a conjugate of  DD.

Theorem 1.5.

Suppose g(C)=g(D)2g(C)=g(D)\geq 2 and assume Conjecture 1.4. Then C(AK,F)étC(F)C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}\neq C({\mathbb F}) if and only if there is a nonconstant morphism DCD\to C.

Acknowledgements

The authors thank Jakob Stix for suggestions leading to the proof of Proposition 3.9 and for a correction to Remark 3.2.

2.  Notation and preliminaries

2.1.  Notation

The set of places of the global field K=F(D)K={\mathbb F}(D) is in bijection with the set D1D^{1} of closed points of DD. Given vD1v\in D^{1}, we use KvK_{v}, 𝒪v\mathcal{O}_{v} and Fv{\mathbb F}_{v} to denote the corresponding completion, ring of integers and residue field, respectively. Fix a separable closure KsK^{\operatorname{s}} of KK, and let F¯{\overline{{\mathbb F}}} denote the algebraic closure of F{\mathbb F} inside KsK^{\operatorname{s}}. For each vD1v\in D^{1}, fix a separable closure KvsK_{v}^{\operatorname{s}} of KvK_{v} and an embedding KsKvsK^{\operatorname{s}}\hookrightarrow K_{v}^{\operatorname{s}}. This determines an embedding FvF¯{\mathbb F}_{v}\subset{\overline{{\mathbb F}}} and an inclusion θv:Gal(Kv)Gal(K)\theta_{v}\colon\operatorname{Gal}(K_{v})\to\operatorname{Gal}(K). The embedding FvF¯{\mathbb F}_{v}\subset{\overline{{\mathbb F}}} fixes a geometric point v¯D(F¯)\overline{v}\in D({\overline{{\mathbb F}}}) in the support of the closed point vDv\in D. The inclusions FFv𝒪vKv{\mathbb F}\subset{\mathbb F}_{v}\subset\mathcal{O}_{v}\subset K_{v} endow 𝒪v,Kv\mathcal{O}_{v},K_{v} and the adele ring AK{\mathbb A}_{K} with the structure of an F{\mathbb F}-algebra. We define the locally constant adele ring AK,F:=vD1Fv{\mathbb A}_{K,{\mathbb F}}:=\prodop\displaylimits_{v\in D^{1}}{\mathbb F}_{v}. This is an F{\mathbb F}-subalgebra of the adele ring AK{\mathbb A}_{K}.

The constant curve C×Spec(F)Spec(K)C\times_{\operatorname{Spec}({\mathbb F})}\operatorname{Spec}(K) spreads out to a smooth proper model C×Spec(F)DC\times_{\operatorname{Spec}({\mathbb F})}D over DD. For any vD1v\in D^{1}, this gives a reduction map rv:C(Kv)C(Fv)r_{v}\colon C(K_{v})\to C({\mathbb F}_{v}). Since CC is proper, C(AK)=C(Kv)C({\mathbb A}_{K})=\prodop\displaylimits C(K_{v}) and the reduction maps give rise to a continuous projection r:C(AK)C(AK,F)r\colon C({\mathbb A}_{K})\to C({\mathbb A}_{K,{\mathbb F}}) sending (xv)(x_{v}) to (rv(xv))(r_{v}(x_{v})).

Any locally constant adelic point (xv)C(AK,F)(x_{v})\in C({\mathbb A}_{K,{\mathbb F}}) determines a unique Galois equivariant map of sets ψ:D(F¯)C(F¯)\psi\colon D({\overline{{\mathbb F}}})\to C({\overline{{\mathbb F}}}) with the property that ϕ(v¯)=xv\phi(\overline{v})=x_{v}. This induces a bijection C(AK,F)MapGF(D(F¯),C(F¯))C({\mathbb A}_{K,{\mathbb F}})\leftrightarrow\operatorname{Map}_{G_{\mathbb F}}(D({\overline{{\mathbb F}}}),C({\overline{{\mathbb F}}})). Moreover, a locally constant adelic point on CC determines, and is uniquely determined by, a map f:D1C1f\colon D^{1}\to C^{1} together with an embedding Ff(v)Fv{\mathbb F}_{f(v)}\subset{\mathbb F}_{v} for each vD1v\in D^{1} (see [CV, Lemma 2.1]).

Lemma 2.1.

The composition C(K)C(AK)rC(AK,F)C(K)\to C({\mathbb A}_{K})\stackrel{{\scriptstyle r}}{{\to}}C({\mathbb A}_{K,{\mathbb F}}) is injective. Composing this with the map C(AK,F)Map(D1,C1)C({\mathbb A}_{K,{\mathbb F}})\to\operatorname{Map}(D^{1},C^{1}) induces an injective map C(K)/FMap(D1,C1)C(K)/F\to\operatorname{Map}(D^{1},C^{1}), where C(K)/FC(K)/F denotes the set of KK-rational points up to Frobenius twist; i.e., PQP\sim Q if and only if there are m,n0m,n\geq 0 such that FmP=FnQF^{m}P=F^{n}Q.

Proof.

The first statement follow from the fact (e.g., [AGI, Exercise 5.17]) that a morphism defined on a geometrically reduced variety is determined by what it does to geometric points. For the second statement, see [Stix02, Proposition 2.3]. ∎

The set C(K)/FC(K)/F is finite by the theorem of de Franchis [Lang, Chapter 8, pp. 223-224]. Over a finite field F{\mathbb F}, there is a simpler proof. The degree of a separable map DCD\to C is bounded by Riemann–Hurwitz. Looking at coordinates of an embedding of CC, it now suffices to show that there are only finitely many functions on D/FD/{\mathbb F} of degree bounded by some mm. The zeros and poles of such a function have degree at most mm over F{\mathbb F}, so there are only finitely choices for the divisor of such a function. Finally, the function itself is determined up to a scalar in F{\mathbb F}^{*} by its divisor, but F{\mathbb F}^{*} is finite by hypothesis.

2.2.  Etale descent obstruction

Let f:CCf\colon C^{\prime}\to C be a torsor under a finite étale group scheme G/KG/K. We use H1(K,G)\operatorname{H}^{1}(K,G) to denote the étale cohomology set parameterizing isomorphism classes of GG-torsors over KK (and similarly with KK replaced by Kv,𝒪v,FvK_{v},{\mathcal{O}}_{v},{\mathbb F}_{v}, etc.). The distinguished element of this pointed set is represented by the trivial torsor.

Following the terminology in [Stoll], we say an adelic point (xv)C(AK)(x_{v})\in C({\mathbb A}_{K}) survives ff if the element of vH1(Kv,G)\prodop\displaylimits_{v}\operatorname{H}^{1}(K_{v},G) given by evaluating ff at (xv)(x_{v}) lies in the image of the diagonal map

H1(K,G)θvvD1H1(Kv,G).\operatorname{H}^{1}(K,G)\stackrel{{\scriptstyle\prodop\displaylimits{\theta_{v}^{*}}}}{{\longrightarrow}}\prodop\displaylimits_{v\in D^{1}}\operatorname{H}^{1}(K_{v},G).

Equivalently, (xv)(x_{v}) survives ff if and only if (xv)(x_{v}) lifts to an adelic point on some twist of ff by a cocycle representing a class in H1(K,G)\operatorname{H}^{1}(K,G). We use C(AK)étC({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}} to denote the set of adelic points surviving all CC-torsors under étale group schemes over KK. Then C(AK)étC({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}} is a closed subset of C(AK)C({\mathbb A}_{K}) containing C(K)C(K). We define C(AK,F)ét=C(AK)étC(AK,F)C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}=C({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}}\cap C({\mathbb A}_{K,{\mathbb F}}). By [CV, Proposition 4.6], an adelic point lies in C(AK)étC({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}} if and only if its image under the reduction map r:C(AK)C(AK,F)r\colon C({\mathbb A}_{K})\to C({\mathbb A}_{K,{\mathbb F}}) lies in C(AK,F)étC({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}.

The following lemma is a special case of a well-known statement in étale cohomology over a henselian ring (cf. [Milne, Remark 3.11(a) on p. 116]).

Lemma 2.2.

For an étale group scheme GG over F{\mathbb F}, we have H1(𝒪v,G)=H1(Fv,G)\operatorname{H}^{1}(\mathcal{O}_{v},G)=\operatorname{H}^{1}({\mathbb F}_{v},G).

Proof.

The canonical surjection q:𝒪vFvq\colon\mathcal{O}_{v}\to{\mathbb F}_{v} induces a map q:H1(𝒪v,G)H1(Fv,G)q_{*}\colon\operatorname{H}^{1}(\mathcal{O}_{v},G)\to\operatorname{H}^{1}({\mathbb F}_{v},G). This map is injective by Hensel’s lemma. On the other hand, the inclusion i:Fv𝒪vi\colon{\mathbb F}_{v}\to\mathcal{O}_{v} satisfies qi=idq\circ i=\textup{id}. It follows that qq_{*} must also be surjective. ∎

An element of H1(Kv,G)\operatorname{H}^{1}(K_{v},G) is called unramified if it lies in the image of the map H1(𝒪v,G)H1(Kv,G)\operatorname{H}^{1}(\mathcal{O}_{v},G)\to\operatorname{H}^{1}(K_{v},G) induced by the inclusion 𝒪vKv\mathcal{O}_{v}\subset K_{v}. Thus, the lemma identifies H1(Fv,G)\operatorname{H}^{1}({\mathbb F}_{v},G) with the set of unramified elements in H1(Kv,G)\operatorname{H}^{1}(K_{v},G).

3.  Connection to anabelian geometry

Fix a base point x¯:SpecF¯D¯:=D×Spec(F)Spec(F¯){\overline{x}}\colon\operatorname{Spec}{\overline{{\mathbb F}}}\to{\overline{D}}:=D\times_{\operatorname{Spec}({\mathbb F})}\operatorname{Spec}({\overline{{\mathbb F}}}). Composing with the canonical maps D¯D{\overline{D}}\to D and DSpec(F)D\to\operatorname{Spec}({\mathbb F}), this serves as well to fix base points of DD and Spec(F)\operatorname{Spec}({\mathbb F}). The base point of Spec(F)\operatorname{Spec}({\mathbb F}) agrees with that determined by the algebraic closure FF¯{\mathbb F}\subset{\overline{{\mathbb F}}} fixed above. This leads to the fundamental exact sequence

(3.1) 1π1(D¯)π1(D)Gal(F)1,1\longrightarrow\pi_{1}({\overline{D}})\longrightarrow\pi_{1}(D)\longrightarrow\operatorname{Gal}({\mathbb F})\longrightarrow 1,

where π1()\pi_{1}(-) denotes the étale fundamental group with base point as chosen above. A choice of base point SpecF¯C¯\operatorname{Spec}{\overline{{\mathbb F}}}\to{\overline{C}} determines a similar sequence for CC.

The choice of separable closure of KK identifies π1(D)\pi_{1}(D) with the Galois group of the maximal extension KunrK^{\operatorname{unr}} of KK which is everywhere unramified. For each closed point vD1v\in D^{1}, the embedding θv:Gal(Kv)Gal(Ks)\theta_{v}\colon\operatorname{Gal}(K_{v})\to\operatorname{Gal}(K^{\operatorname{s}}) induces a section map tv:Gal(Fv)Gal(Kvunr|Kv)π1(D)t_{v}\colon\operatorname{Gal}({\mathbb F}_{v})\simeq\operatorname{Gal}(K_{v}^{\operatorname{unr}}|K_{v})\to\pi_{1}(D) whose image is a decomposition group Tvπ1(D)T_{v}\subset\pi_{1}(D) above vv.

Definition 3.1.

A continuous morphism π1(D)π1(C)\pi_{1}(D)\to\pi_{1}(C) is well behaved if every decomposition group of π1(D)\pi_{1}(D) is mapped to an open subgroup of a decomposition group of π1(C)\pi_{1}(C). Let Homwb(π1(D),π1(C))\operatorname{Hom}^{\textup{wb}}(\pi_{1}(D),\pi_{1}(C)) denote the set of well-behaved homomorphisms of profinite groups, and for a subgroup H<π1(C)H<\pi_{1}(C), let HomHwb(π1(D),π1(C))\operatorname{Hom}^{\textup{wb}}_{H}(\pi_{1}(D),\pi_{1}(C)) denote the quotient of Homwb(π1(D),π1(C))\operatorname{Hom}^{\textup{wb}}(\pi_{1}(D),\pi_{1}(C)) by the action given by composition with an inner automorphism of π1(C)\pi_{1}(C) coming from an element of HH.

Remark 3.2.

Here is an example of a poorly behaved homomorphism. Suppose the genus of CC is at least 22. By [StixBook, Theorem 226], there are uncountably many sections Gal(F)π1(C)\operatorname{Gal}({\mathbb F})\to\pi_{1}(C) that are not conjugate to any section coming from a point in C(F)C({\mathbb F}). Composing such a section with the canonical surjection π1(D)Gal(F)\pi_{1}(D)\to\operatorname{Gal}({\mathbb F}) gives a continuous morphism π1(D)π1(C)\pi_{1}(D)\to\pi_{1}(C) that is not well behaved.

Proposition 3.3.

Suppose (xv)C(AK,F)ét(x_{v})\in C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}. For each vD1v\in D^{1}, let Svπ1(CFv)π1(C)S_{v}\subset\pi_{1}(C_{{\mathbb F}_{v}})\subset\pi_{1}(C) be a decomposition group above the closed point xvCFvx_{v}\in C_{{\mathbb F}_{v}}. Then there exists a well-behaved homomorphism ϕ:π1(D)π1(C)\phi\colon\pi_{1}(D)\to\pi_{1}(C) inducing a morphism of exact sequences

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1(D¯)\textstyle{\pi_{1}({\overline{D}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}π1(D)\textstyle{\pi_{1}(D)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}Gal(F)\textstyle{\operatorname{Gal}({\mathbb F})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1(C¯)\textstyle{\pi_{1}({\overline{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1(C)\textstyle{\pi_{1}(C)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gal(F)\textstyle{\operatorname{Gal}({\mathbb F})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}

such that, for each vD1v\in D^{1}, there exists a γvπ1(C¯)\gamma_{v}\in\pi_{1}({\overline{C}}) such that ϕ(Tv)=γv(Sv)γv1\phi(T_{v})=\gamma_{v}(S_{v})\gamma^{-1}_{v}.

Proof.

For each vD1v\in D^{1}, the choice of decomposition group Svπ1(CFv)S_{v}\subset\pi_{1}(C_{{\mathbb F}_{v}}) above xvx_{v} determines a section map sv:Gal(Fv)π1(CFv)π1(C)s_{v}\colon\operatorname{Gal}({\mathbb F}_{v})\to\pi_{1}(C_{{\mathbb F}_{v}})\subset\pi_{1}(C) with image SvS_{v}. For any finite continuous quotient ρG:π1(C)G\rho_{G}\colon\pi_{1}(C)\to G, the composition ρGsv:Gal(Fv)G\rho_{G}\circ s_{v}\colon\operatorname{Gal}({\mathbb F}_{v})\to G determines a class in H1(Fv,G)=HomG(Gal(Fv),G)\operatorname{H}^{1}({\mathbb F}_{v},G)=\operatorname{Hom}_{G}(\operatorname{Gal}({\mathbb F}_{v}),G), the group of homomorphisms up to GG-conjugation. Here we view GG as a constant group scheme over F{\mathbb F}. By Lemma 2.2, we may view H1(Fv,G)\operatorname{H}^{1}({\mathbb F}_{v},G) as a subgroup of H1(Kv,G)\operatorname{H}^{1}(K_{v},G). In terms of descent, ρG\rho_{G} corresponds to a torsor in H1(C,G)=H1(π1(C),G)=HomG(π1(C),G)\operatorname{H}^{1}(C,G)=\operatorname{H}^{1}(\pi_{1}(C),G)=\operatorname{Hom}_{G}(\pi_{1}(C),G), and ρGsv\rho_{G}\circ s_{v} is the evaluation of this torsor at xvC(Fv)x_{v}\in C({\mathbb F}_{v}). So the fact that (xv)(x_{v}) survives étale descent implies that there is a global class sH1(K,G)s\in\operatorname{H}^{1}(K,G) such that for all vD1v\in D^{1}, θv(s)=ρGsv\theta_{v}^{*}(s)=\rho_{G}\circ s_{v} in H1(Fv,G)H1(Kv,G)\operatorname{H}^{1}({\mathbb F}_{v},G)\subset\operatorname{H}^{1}(K_{v},G). Note that such an ss must lie in (the image under inflation of) the group H1(π1(D),G)=HomG(π1(D),G)\operatorname{H}^{1}(\pi_{1}(D),G)=\operatorname{Hom}_{G}(\pi_{1}(D),G) since the svs_{v} are all unramified.

For each vD1v\in D^{1}, the condition θv(s)=ρGsvH1(Kv,G)\theta_{v}^{*}(s)=\rho_{G}\circ s_{v}\in\operatorname{H}^{1}(K_{v},G) is equivalent to stv=ρGsvs\circ t_{v}=\rho_{G}\circ s_{v} in H1(Fv,G)=HomG(Gal(Fv),G)\operatorname{H}^{1}({\mathbb F}_{v},G)=\operatorname{Hom}_{G}(\operatorname{Gal}({\mathbb F}_{v}),G). Let Gv=ρG(π1(CFv))GG_{v}=\rho_{G}(\pi_{1}(C_{{\mathbb F}_{v}}))\subset G be the image of ρG\rho_{G} restricted to the normal subgroup π1(CFv)\pi_{1}(C_{{\mathbb F}_{v}}). Then GvG_{v} is normal in GG and contains the image of ρGsv\rho_{G}\circ s_{v}, so it must also contain the image of stvs\circ t_{v}. Since GG is constant, the map H1(Fv,Gv)H1(Fv,G)\operatorname{H}^{1}({\mathbb F}_{v},G_{v})\to\operatorname{H}^{1}({\mathbb F}_{v},G) induced by the inclusion GvGG_{v}\subset G is injective. It follows that ρGsv\rho_{G}\circ s_{v} and stvs\circ t_{v} are equal as elements of H1(Fv,Gv)\operatorname{H}^{1}({\mathbb F}_{v},G_{v}).

By the Borel–Serre theorem (see [PoonenRatPoints, Theorem 5.12.29]), the fibers of the map H1(K,G)vD1H1(Kv,G)\operatorname{H}^{1}(K,G)\to\prodop\displaylimits_{v\in D^{1}}\operatorname{H}^{1}(K_{v},G) are finite. It follows that the set

SG:={s:π1(D)G|vD1,stv=ρGsv in H1(Fv,Gv)}S_{G}:=\left\{s^{\prime}:\pi_{1}(D)\to G\;|\;\forall\,v\in D^{1},\,s^{\prime}\circ t_{v}=\rho_{G}\circ s_{v}\text{ in $\operatorname{H}^{1}({\mathbb F}_{v},G_{v})$}\right\}

is finite, and it is nonempty by the discussion above. As in the proof of [Harari-Stix, Proposition 1.2], it follows that the inverse limit over GG of these sets is nonempty. An element of limSG\varprojlim S_{G} is a homomorphism ϕ:π1(D)limG=π1(C)\phi\colon\pi_{1}(D)\to\varprojlim G=\pi_{1}(C) with the property that for all vD1v\in D^{1}, the maps ϕtv\phi\circ t_{v} and svs_{v} are conjugate by an element of π1(CFv)=limGv\pi_{1}(C_{{\mathbb F}_{v}})=\varprojlim G_{v}. We claim that ϕtv\phi\circ t_{v} and svs_{v} are in fact π1(C¯)\pi_{1}({\overline{C}})-conjugate. To see this, let p:π1(C)Gal(F)p\colon\pi_{1}(C)\to\operatorname{Gal}({\mathbb F}) be the canonical surjection. Suppose γvπ1(CFv)\gamma_{v}\in\pi_{1}(C_{{\mathbb F}_{v}}) conjugates svs_{v} to ϕtv\phi\circ t_{v}. We claim γv:=γvsv(p(γv1))\gamma_{v}^{\prime}:=\gamma_{v}\cdot s_{v}(p(\gamma_{v}^{-1})) is an element of π1(C¯)\pi_{1}({\overline{C}}) and conjugates svs_{v} to ϕtv\phi\circ t_{v}. (Note that sv(p(γv1))s_{v}(p(\gamma_{v}^{-1})) makes sense as p(γv)Gal(Fv)p(\gamma_{v})\in\operatorname{Gal}({\mathbb F}_{v}).) To see that γvπ1(C¯)\gamma_{v}^{\prime}\in\pi_{1}({\overline{C}}), we use that psvp\circ s_{v} is the identity map on Gal(Fv)\operatorname{Gal}({\mathbb F}_{v}) to compute

p(γv)=p(γvsv(p(γv1)))=p(γv)(psv)(p(γ1))=p(γ)p(γ1)=1.p(\gamma_{v}^{\prime})=p\left(\gamma_{v}\cdot s_{v}\left(p(\gamma_{v}^{-1})\right)\right)=p(\gamma_{v})\cdot(p\circ s_{v})\left(p(\gamma^{-1})\right)=p(\gamma)p(\gamma^{-1})=1.

To see that γv\gamma_{v}^{\prime} conjugates svs_{v} to ϕtv\phi\circ t_{v}, we compute, for arbitrary σGal(Fv)\sigma\in\operatorname{Gal}({\mathbb F}_{v}),

γvsv(σ)γv1\displaystyle\gamma_{v}^{\prime}\cdot s_{v}(\sigma)\cdot\gamma_{v}^{\prime-1} =[γvsv(p(γv1))]sv(σ)[γvsv(p(γv1))]1\displaystyle=\left[\gamma_{v}\cdot s_{v}\left(p(\gamma_{v}^{-1})\right)\right]\cdot s_{v}(\sigma)\cdot\left[\gamma_{v}\cdot s_{v}\left(p(\gamma_{v}^{-1})\right)\right]^{-1}
=γvsv(p(γ1)σp(γ))γv1\displaystyle=\gamma_{v}\cdot s_{v}\left(p(\gamma^{-1})\,\sigma p(\gamma)\right)\cdot\gamma_{v}^{-1}
=γvsv(σ)γv1,\displaystyle=\gamma_{v}\cdot s_{v}(\sigma)\cdot\gamma_{v}^{-1},

where the final equality uses that Gal(Fv)\operatorname{Gal}({\mathbb F}_{v}) is abelian.

Finally, let us show that ϕ\phi induces a morphism of exact sequences as in the statement. Write pD:π1(D)Gal(F)p_{D}\colon\pi_{1}(D)\to\operatorname{Gal}({\mathbb F}) for the canonical map, and use pCp_{C} similarly. Since pCsvp_{C}\circ s_{v} is the identity on the abelian group Gal(Fv)\operatorname{Gal}({\mathbb F}_{v}), for any σGal(Fv)\sigma\in\operatorname{Gal}({\mathbb F}_{v}), we have

pC(ϕ(tv(σ)))=pC(γvsv(σ)γv1)=pC(sv(σ))=σ.p_{C}(\phi(t_{v}(\sigma)))=p_{C}\left(\gamma_{v}\cdot s_{v}(\sigma)\cdot\gamma_{v}^{-1}\right)=p_{C}(s_{v}(\sigma))=\sigma.

So for any xπ1(D)x\in\pi_{1}(D) whose image under pDp_{D} lies in Gal(Fv)\operatorname{Gal}({\mathbb F}_{v}), we have pD(x)=pC(ϕ(x))p_{D}(x)=p_{C}(\phi(x)). As this holds for all vD1v\in D^{1}, we must have pD=pCϕp_{D}=p_{C}\circ\phi. So ϕ\phi induces a morphism of exact sequences as stated. ∎

Remark 3.4.

The construction of the morphism ϕ\phi in the preceding proof is similar to the proof of [Harari-Stix, Proposition 1.1]. However, the verification that it interpolates the svs_{v} up to conjugation in π1(C¯)\pi_{1}({\overline{C}}) rather than just in π1(C)\pi_{1}(C) is necessarily different from the approach in the proof of [Harari-Stix, Proposition 1.2].

Construction 3.5.

Let ϕ:π1(D)π1(C)\phi\colon\pi_{1}(D)\to\pi_{1}(C) be a well-behaved homomorphism. From this we construct a locally constant adelic point (xv)C(AK,F)(x_{v})\in C({\mathbb A}_{K,{\mathbb F}}) as follows. Let D~\tilde{D} and C~\tilde{C} denote the universal covers of DD and CC. The decomposition groups of π1(D)\pi_{1}(D) and π1(C)\pi_{1}(C) correspond to closed points on D~\tilde{D} and C~\tilde{C}. As we have assumed CC to be hyperbolic, the intersection of any two distinct decomposition groups of π1(C)\pi_{1}(C) is open in neither (see for example [ST2011, Proposition 1.5]). So the well-behaved map ϕ\phi determines a map ϕ~:D~1C~1\tilde{\phi}\colon\tilde{D}^{1}\to\tilde{C}^{1} by declaring ϕ~(v~)\tilde{\phi}(\tilde{v}) to be the point of C~\tilde{C} whose corresponding decomposition group contains ϕ(𝒟v~)\phi(\mathcal{D}_{\tilde{v}}). Given a closed point vD1v\in D^{1}, the embedding θv:Gal(Kv)Gal(K)\theta_{v}\colon\operatorname{Gal}(K_{v})\to\operatorname{Gal}(K) determines a decomposition group TvT_{v} above vv and consequently a pro-point v~D~\tilde{v}\in\tilde{D}. Define xvC(Fv)=CFv(Fv)x_{v}\in C({\mathbb F}_{v})=C_{{\mathbb F}_{v}}({\mathbb F}_{v}) to be the image of ϕ~(v~)\tilde{\phi}(\tilde{v}) on CFvC_{{\mathbb F}_{v}}. Ranging over the closed points of DD, this determines a locally constant adelic point (xv)vD1C(Fv)=C(AK,F)(x_{v})\in\prodop\displaylimits_{v\in D^{1}}C({\mathbb F}_{v})=C({\mathbb A}_{K,{\mathbb F}}).

Remark 3.6.

Note that π1(C)\pi_{1}(C) acts on the set of pro-points w~\tilde{w} above a given wC1w\in C^{1} and that any two pro-points above wC1w\in C^{1} in the same π1(C¯)\pi_{1}({\overline{C}})-orbit have the same image on CFwC_{{\mathbb F}_{w}}. It follows that the adelic point (xv)(x_{v}) from Construction 3.5 depends on ϕ\phi only up to π1(C¯)\pi_{1}({\overline{C}})-conjugacy. Similarly, the image of (xv)(x_{v}) in Map(D1,C1)\operatorname{Map}(D^{1},C^{1}) under the map in Lemma 2.1 depends on ϕ\phi only up to π1(C)\pi_{1}(C)-conjugacy.

Lemma 3.7.

Suppose ϕHomπ1(C¯)wb(π1(D),π1(C))\phi\in\operatorname{Hom}_{\pi_{1}({\overline{C}})}^{\textup{wb}}(\pi_{1}(D),\pi_{1}(C)), and let (xv)C(AK,F)(x_{v})\in C({\mathbb A}_{K,{\mathbb F}}) be the locally constant adelic point given by Construction 3.5. Then (xv)C(AK,F)ét(x_{v})\in C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}.

Proof.

For vD1v\in D^{1}, let tv:Gal(Fv)π1(D)t_{v}\colon\operatorname{Gal}({\mathbb F}_{v})\to\pi_{1}(D) be the section map as defined at the beginning of this section. Define sv=ϕtv:GFvπ1(C)s_{v}=\phi\circ t_{v}\colon G_{{\mathbb F}_{v}}\to\pi_{1}(C). By construction, the image of svs_{v} is a decomposition group of π1(C)\pi_{1}(C) above xvC(Fv)x_{v}\in C({\mathbb F}_{v}). Let α:CC\alpha\colon C^{\prime}\to C be a torsor under a finite group scheme G/FG/{\mathbb F}. Then α\alpha represents a class in H1(C,G)=H1(π1(C),G(F¯))\operatorname{H}^{1}(C,G)=\operatorname{H}^{1}(\pi_{1}(C),G({\overline{{\mathbb F}}})), where the action of π1(C)\pi_{1}(C) on G(F¯)G({\overline{{\mathbb F}}}) is induced by the projection π1(C)Gal(F)\pi_{1}(C)\to\operatorname{Gal}({\mathbb F}). The evaluation of α\alpha at xvx_{v} is the class of αsv\alpha\circ s_{v} in H1(Fv,G)\operatorname{H}^{1}({\mathbb F}_{v},G). Since αsv=αϕtv=tv(αϕ)\alpha\circ s_{v}=\alpha\circ\phi\circ t_{v}=t_{v}^{*}(\alpha\circ\phi), we see that αϕ\alpha\circ\phi lies in the images of the horizontal maps in the following commutative diagram whose vertical maps come from inflation:

H1(K,G)\textstyle{\operatorname{H}^{1}(K,G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}θv\scriptstyle{\theta_{v}^{*}}H1(Kv,G)\textstyle{\operatorname{H}^{1}(K_{v},G)}H1(π1(D),G)\textstyle{\operatorname{H}^{1}(\pi_{1}(D),G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}tv\scriptstyle{t_{v}^{*}}H1(Fv,G).\textstyle{\operatorname{H}^{1}({\mathbb F}_{v},G)\hbox to0.0pt{.\hss}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

As this holds for all vD1v\in D^{1}, we see that the evaluation of α\alpha at the adelic point (xv)(x_{v}) lies in the diagonal image of H1(K,G)\operatorname{H}^{1}(K,G). ∎

Theorem 3.8.

Construction 3.5 induces bijections

C(AK,F)ét\textstyle{C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Homπ1(C¯)wb(π1(D),π1(C))\textstyle{\operatorname{Hom}^{\textup{wb}}_{\pi_{1}({\overline{C}})}(\pi_{1}(D),\pi_{1}(C))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Map(D1,C1)ét\textstyle{\operatorname{Map}(D^{1},C^{1})^{\operatorname{\textup{\'{e}t}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Homπ1(C)wb(π1(D),π1(C)),\textstyle{\operatorname{Hom}^{\textup{wb}}_{\pi_{1}(C)}(\pi_{1}(D),\pi_{1}(C))\hbox to0.0pt{,\hss}}

where Map(D1,C1)ét\operatorname{Map}(D^{1},C^{1})^{\operatorname{\textup{\'{e}t}}} denotes the image of  C(AK,F)étC({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}} in Map(D1,C1)\operatorname{Map}(D^{1},C^{1}) under the map in Lemma 2.1.

Proof.

Proposition 3.3 gives a map of sets

C(AK,F)étHomπ1(C¯)wb(π1(D),π1(C)),C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}\longrightarrow\operatorname{Hom}_{\pi_{1}({\overline{C}})}^{\textup{wb}}(\pi_{1}(D),\pi_{1}(C)),

while Construction 3.5 and Lemma 3.7 give an injective map

Homπ1(C¯)wb(π1(D),π1(C))C(AK,F)ét.\operatorname{Hom}^{\textup{wb}}_{\pi_{1}({\overline{C}})}(\pi_{1}(D),\pi_{1}(C))\xhookrightarrow{\hphantom{aaa}}C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}.

One easily checks that these maps are inverse to one another, so they are inverse bijections.

The surjectivity of the first vertical map is given in Lemma 2.1, and the surjectivity of the other is immediate from the definition. One deduces the bijection in the bottom row from that in the top row using Remark 3.6. ∎

Proposition 3.9.

Let ϕ:π1(D)π1(C)\phi\colon\pi_{1}(D)\to\pi_{1}(C) be a well-behaved morphism corresponding to a locally constant adelic point surviving étale descent (xv)C(AK,F)ét(x_{v})\in C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}} as given by Proposition 3.3. If (xv)C(F)(x_{v})\notin C({\mathbb F}), then ϕ\phi has open image and the map ψ:D(F¯)C(F¯)\psi\colon D({\overline{{\mathbb F}}})\to C({\overline{{\mathbb F}}}) induced by (xv)(x_{v}) is surjective.

Corollary 3.10.

Let ϕ:π1(D)π1(C)\phi\colon\pi_{1}(D)\to\pi_{1}(C) be a well-behaved homomorphism. The image of ϕ\phi either is open or is a decomposition group above a point vC(F)v\in C({\mathbb F}).

Proof.

Suppose the image of ϕ\phi is not open. Then we find a sequence of open subgroups Uiπ1(C)U_{i}\subset\pi_{1}(C) of index approaching infinity all of which contain the image of ϕ\phi. By Proposition 3.3, the image of ϕ\phi maps surjectively onto Gal(F)\operatorname{Gal}({\mathbb F}) under the canonical map π1(C)Gal(F)\pi_{1}(C)\to\operatorname{Gal}({\mathbb F}). Hence, the induced maps UiGal(F)U_{i}\to\operatorname{Gal}({\mathbb F}) are surjective, so that the UiU_{i} correspond to geometrically connected étale coverings CiCC_{i}\to C of genus approaching infinity. For each we have a well-behaved homomorphism π1(D)Ui=π1(Ci)\pi_{1}(D)\to U_{i}=\pi_{1}(C_{i}). By Theorem 3.8, these correspond to unobstructed adelic points (xv(i))Ci(AK,F)ét(x_{v}^{(i)})\in C_{i}({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}} which lift (xv)C(AK,F)(x_{v})\in C({\mathbb A}_{K,{\mathbb F}}). Eventually g(Ci)>g(D)g(C_{i})>g(D), in which case [CV, Theorems 1.2, 1.3 and 1.5] imply that Ci(AK,F)ét=Ci(F)C_{i}({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}=C_{i}({\mathbb F}). But then (xv)C(F)(x_{v})\in C({\mathbb F}). Therefore, if (xv)(x_{v}) is nonconstant, then ϕ\phi must have open image. In this case, the image of ϕ\phi contains a finite-index subgroup of each decomposition group. This implies that ψ:D(F¯)C(F¯)\psi\colon D({\overline{{\mathbb F}}})\to C({\overline{{\mathbb F}}}) is surjective. ∎

4.  Proofs of the theorems in the introduction

4.1.  Proof of Theorem 1.3

Suppose (xv)C(AK,F)étC(F)(x_{v})\in C({\mathbb A}_{K,{\mathbb F}})^{\operatorname{\textup{\'{e}t}}}\setminus C({\mathbb F}). By Proposition 3.9, the Galois equivariant map ψ:D(F¯)C(F¯)\psi\colon D({\overline{{\mathbb F}}})\to C({\overline{{\mathbb F}}}) induced by (xv)(x_{v}) is surjective. By [CV, Corollary 5.3], this induces a surjective GFG_{\mathbb F}-equivariant homomorphism ϕ:JD(F¯)JC(F¯)\phi_{*}\colon J_{D}({\overline{{\mathbb F}}})\to J_{C}({\overline{{\mathbb F}}}). For any p\ell\neq p, this yields a surjective homomorphism of the \ell-adic Tate modules of T(JD)T(JC)T_{\ell}(J_{D})\to T_{\ell}(J_{C}), so JCJ_{C} is an isogeny factor of JDJ_{D} by the Tate conjecture for abelian varieties over finite fields; see [Tate].

4.2.  Proof of Theorem 1.5

Let x=(xv)C(AK)étC(F)x=(x_{v})\in C({\mathbb A}_{K})^{\operatorname{\textup{\'{e}t}}}\setminus C({\mathbb F}). Since H(C)CH(C)\to C is an étale cover, xx lifts to a twist of H(C)H(C) by an element ξH1(K,JC(F))=Hom(GK,JC(F))\xi\in\operatorname{H}^{1}(K,J_{C}({\mathbb F}))=\operatorname{Hom}(G_{K},J_{C}({\mathbb F})). Let L/KL/K be the fixed field of ker(ξ)\ker(\xi). Then L/KL/K is unramified since, locally, it is given as the extension generated by the roots of (I)(y)=xv(I-\Phi)(y)=x_{v}, and L/KL/K is abelian since Gal(L/K)\operatorname{Gal}(L/K) is a subgroup of JC(F)J_{C}({\mathbb F}). Thus LL is a subfield of the function field KK^{\prime} of H(D)H(D) (for a suitable embedding DJDD\to J_{D}). Viewing xx as an adelic point on CC over KK^{\prime}, we have xC(AK)étx\in C({\mathbb A}_{K^{\prime}})^{\operatorname{\textup{\'{e}t}}} by [Stoll, Proposition 5.15]. By the above, this adelic point lifts to H(C)(AK)étH(C)({\mathbb A}_{K^{\prime}})^{\operatorname{\textup{\'{e}t}}}.

From Theorem 1.3, we get that H(C)H(C) and H(D)H(D) have the same LL-function. Now we are in the same situation as before with H(C)H(C), H(D)H(D) in place of CC, DD. Iterating this process, we obtain towers such that Hn(D)H_{n}(D) and Hn(C)H_{n}(C) have the same LL-functions. Assuming Conjecture 1.4, this implies C(K)C(F)C(K)\neq C({\mathbb F}).

Remark 4.1.

The paper [BoV] proves a theorem very close in spirit to Conjecture 1.4 using LL-functions with characters. It would be very desirable to have a proof of Conjecture 1.1 in the equigenus case from the main theorem of [BoV] along the lines of the above proof, but we have not succeeded in producing it.

References

  • [\resetbiblistCVV18+++]
  • BooherJeremyVolochJ. F.Recovering algebraic curves from l-functions of hilbert class fieldsRes. Number Theory620204Paper No. 43ISSN 2522-0160@article{BoV, author = {Booher, Jeremy}, author = {Voloch, {J.\,F.}}, title = {Recovering algebraic curves from L-functions of Hilbert class fields}, journal = {Res.\ Number Theory}, volume = {6}, date = {2020}, number = {4}, pages = {Paper No.~43}, issn = {2522-0160}} CreutzBrendanVirayBiancaVolochJ. F.The dd-primary brauer–manin obstruction for curvesRes. Number Theory420182Paper No. 26ISSN 2522-0160@article{CVV, author = {Creutz, Brendan}, author = {Viray, Bianca}, author = {Voloch, {J.\,F.}}, title = {The $d$-primary Brauer–Manin obstruction for curves}, journal = {Res.\ Number Theory}, volume = {4}, date = {2018}, number = {2}, pages = {Paper No.~26}, issn = {2522-0160}} CreutzBrendanVolochJ. F.The brauer-manin obstruction for constant curves over global function fieldsAnn. Inst. Fourier (Grenoble)722022143–58ISSN 0373-0956@article{CV, author = {Creutz, Brendan}, author = {Voloch, {J.\,F.}}, title = {The Brauer-Manin obstruction for constant curves over global function fields}, journal = {Ann.\ Inst.\ Fourier (Grenoble)}, volume = {72}, date = {2022}, number = {1}, pages = {43–58}, issn = {0373-0956}} CreutzBrendanVolochJ. F.The brauer-manin obstruction for nonisotrivial curves over global function fields2023preprint arXiv:2308.13075@arXiv{CVnonisotriv, author = {Creutz, Brendan}, author = {Voloch, {J.\,F.}}, title = {The Brauer-Manin obstruction for nonisotrivial curves over global function fields}, date = {2023}, eprint = {preprint \arXiv{2308.13075}}} GörtzUlrichWedhornTorstenAlgebraic geometry i. schemes with examples and exercisesAdv. Lect. Math.Vieweg + Teubner, Wiesbaden2010viii+615ISBN 978-3-8348-0676-5@book{AGI, author = {G\"{o}rtz, Ulrich}, author = {Wedhorn, Torsten}, title = {Algebraic geometry I. Schemes with examples and exercises}, series = {Adv.\ Lect.\ Math.}, publisher = {Vieweg + Teubner, Wiesbaden}, date = {2010}, pages = {viii+615}, isbn = {978-3-8348-0676-5}} HarariDavidStixJakobDescent obstruction and fundamental exact sequencetitle={in: \emph{The arithmetic of fundamental groups–PIA 2010}, pp.\ 147–166}, series={Contrib.\ Math.\ Comput.\ Sci.}, volume={2}, publisher={Springer, Heidelberg}, 2012@article{Harari-Stix, author = {Harari, David}, author = {Stix, Jakob}, title = {Descent obstruction and fundamental exact sequence}, conference = {title={in: \emph{The arithmetic of fundamental groups–PIA 2010}, pp.\ 147–166}, }, book = {series={Contrib.\ Math.\ Comput.\ Sci.}, volume={2}, publisher={Springer, Heidelberg}, }, date = {2012}} LangSergeFundamentals of Diophantine geometrySpringer-Verlag, New York1983xviii+370@book{Lang, author = {Lang, Serge}, title = {Fundamentals of {D}iophantine Geometry}, publisher = {Springer-Verlag, New York}, year = {1983}, pages = {xviii+370}} MilneJames S.Étale cohomologyPrinceton Math. Ser.33Princeton Univ. Press, Princeton, NJ1980xiii+323ISBN 0-691-08238-3@book{Milne, author = {Milne, James S.}, title = {\'{E}tale Cohomology}, series = {Princeton Math.\ Ser.}, volume = {33}, publisher = {Princeton Univ.\ Press, Princeton, NJ}, date = {1980}, pages = {xiii+323}, isbn = {0-691-08238-3}} PoonenBjornHeuristics for the brauer-manin obstruction for curvesExperiment. Math.1520064415–420ISSN 1058-6458@article{Poonen, author = {Poonen, Bjorn}, title = {Heuristics for the Brauer-Manin obstruction for curves}, journal = {Experiment.\ Math.}, volume = {15}, date = {2006}, number = {4}, pages = {415–420}, issn = {1058-6458}} PoonenBjornRational points on varietiesGrad. Stud. Math.186Amer. Math. Soc., Providence, RI2017xv+337ISBN 978-1-4704-3773-2@book{PoonenRatPoints, author = {Poonen, Bjorn}, title = {Rational points on varieties}, series = {Grad.\ Stud.\ Math.}, volume = {186}, publisher = {Amer.\ Math.\ Soc., Providence, RI}, date = {2017}, pages = {xv+337}, isbn = {978-1-4704-3773-2}} PoonenBjornVolochJosé FelipeThe brauer-manin obstruction for subvarieties of abelian varieties over function fieldsAnn. of Math. (2)17120101511–532ISSN 0003-486X@article{PV, author = {Poonen, Bjorn}, author = {Voloch, Jos\'e Felipe}, title = {The Brauer-Manin obstruction for subvarieties of abelian varieties over function fields}, journal = {Ann.\ of Math.~(2)}, volume = {171}, date = {2010}, number = {1}, pages = {511–532}, issn = {0003-486X}} RösslerDamianInfinitely pp-divisible points on abelian varieties defined over function fields of characteristic p>0p>0Notre Dame J. Form. Log.5420133-4579–589ISSN 0029-4527@article{Rossler, author = {R\"{o}ssler, Damian}, title = {Infinitely $p$-divisible points on abelian varieties defined over function fields of characteristic $p>0$}, journal = {Notre Dame J.~Form.\ Log.}, volume = {54}, date = {2013}, number = {3-4}, pages = {579–589}, issn = {0029-4527}} SaïdiMohamedTamagawaAkioOn the anabelian geometry of hyperbolic curves over finite fieldstitle={in: \emph{Algebraic number theory and related topics 2007}, pp.~67–89}, series={RIMS K\^{o}ky\^{u}roku Bessatsu, B12}, publisher={Res.\ Inst.\ Math.\ Sci.\ (RIMS), Kyoto}, 2009@article{ST2009, author = {Sa\"{\i}di, Mohamed}, author = {Tamagawa, Akio}, title = {On the anabelian geometry of hyperbolic curves over finite fields}, conference = {title={in: \emph{Algebraic number theory and related topics 2007}, pp.~67–89}, }, book = {series={RIMS K\^{o}ky\^{u}roku Bessatsu, B12}, publisher={Res.\ Inst.\ Math.\ Sci.\ (RIMS), Kyoto}, }, date = {2009}} SaïdiMohamedTamagawaAkioOn the hom-form of grothendieck’s birational anabelian conjecture in positive characteristicAlgebra Number Theory520112131–184ISSN 1937-0652@article{ST2011, author = {Sa\"{\i}di, Mohamed}, author = {Tamagawa, Akio}, title = {On the Hom-form of Grothendieck's birational anabelian conjecture in positive characteristic}, journal = {Algebra Number Theory}, volume = {5}, date = {2011}, number = {2}, pages = {131–184}, issn = {1937-0652}} ScharaschkinVictorLocal-global problems and the brauer-manin obstruction, Ph.D. thesis, Univ. of Michigan1999ProQuest LLC, Ann Arbor, MI@book{Scharaschkin, author = {Scharaschkin, Victor}, title = {Local-global problems and the Brauer-Manin obstruction, {\rm Ph.D.\ thesis, Univ.\ of Michigan}}, date = {1999}, publisher = {ProQuest LLC, Ann Arbor, MI}} StixJakobAffine anabelian curves in positive characteristicCompos. Math.1342002175–85ISSN 0010-437X@article{Stix02, author = {Stix, Jakob}, title = {Affine anabelian curves in positive characteristic}, journal = {Compos.\ Math.}, volume = {134}, date = {2002}, number = {1}, pages = {75–85}, issn = {0010-437X}} StixJakobRational points and arithmetic of fundamental groups. evidence for the section conjectureLecture Notes in Math.2054Springer, Heidelberg2013xx+249ISBN 978-3-642-30673-0ISBN 978-3-642-30674-7@book{StixBook, author = {Stix, Jakob}, title = {Rational points and arithmetic of fundamental groups. Evidence for the section conjecture}, series = {Lecture Notes in Math.}, volume = {2054}, publisher = {Springer, Heidelberg}, date = {2013}, pages = {xx+249}, isbn = {978-3-642-30673-0}, isbn = {978-3-642-30674-7}} StollMichaelFinite descent obstructions and rational points on curvesAlgebra Number Theory120074349–391ISSN 1937-0652@article{Stoll, author = {Stoll, Michael}, title = {Finite descent obstructions and rational points on curves}, journal = {Algebra Number Theory}, volume = {1}, date = {2007}, number = {4}, pages = {349–391}, issn = {1937-0652}} SutherlandA. V.VolochJ. F.Maps between curves and arithmetic obstructionstitle={in: \emph{Arithmetic geometry: computation and applications}, pp.~167–175}, series={Contemp.\ Math.}, volume={722}, publisher={Amer.\ Math.\ Soc., [Providence], RI}, 2019@article{SV, author = {Sutherland, {A.\,V.}}, author = {Voloch, {J.\,F.}}, title = {Maps between curves and arithmetic obstructions}, conference = {title={in: \emph{Arithmetic geometry: computation and applications}, pp.~167–175}, }, book = {series={Contemp.\ Math.}, volume={722}, publisher={Amer.\ Math.\ Soc., [Providence], RI}, }, date = {2019}} TateJohnEndomorphisms of abelian varieties over finite fieldsInvent. Math.21966134–144ISSN 0020-9910@article{Tate, author = {Tate, John}, title = {Endomorphisms of abelian varieties over finite fields}, journal = {Invent.\ Math.}, volume = {2}, date = {1966}, pages = {134–144}, issn = {0020-9910}}