This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

η\eta-periodic motivic stable homotopy theory over Dedekind domains

Tom Bachmann Mathematisches Institut, LMU Munich, Munich, Germany [email protected]
Abstract.

We construct well-behaved extensions of the motivic spectra representing generalized motivic cohomology and connective Balmer–Witt KK-theory (among others) to mixed characteristic Dedekind schemes on which 22 is invertible. As a consequence we lift the fundamental fiber sequence of η\eta-periodic motivic stable homotopy theory established in [BH20] from fields to arbitrary base schemes, and use this to determine (among other things) the η\eta-periodized algebraic symplectic and SL\mathrm{SL}-cobordism groups of mixed characteristic Dedekind schemes containing 1/21/2.

1. Introduction

Let kk be a field. We have spectra

KO,KW,kw,HW,HW,H~𝒮(k)\mathrm{KO},\mathrm{KW},\mathrm{kw},\mathrm{HW},\mathrm{H}_{W}\mathbb{Z},\mathrm{H}\tilde{\mathbb{Z}}\in\mathcal{SH}(k)

representing interesting cohomology theories for smooth kk-varieties: KO\mathrm{KO} represents hermitian KK-theory, KW\mathrm{KW} represents Balmer–Witt KK-theory, HW\mathrm{HW} represents cohomology with coefficients in the sheaf of Witt groups, H~\mathrm{H}\tilde{\mathbb{Z}} represents higher Chow–Witt groups; kw,HW\mathrm{kw},\mathrm{H}_{W}\mathbb{Z} are more technical but have featured prominently in e.g. [BH20, Bac17]. The first aim of this article is to define extensions of these spectra to other bases. The utility of such extensions is manifold; e.g. they can be used in integrality arguments [BW21].

Thus let DD be the prime spectrum of a Dedekind domain, perhaps of mixed characteristic, or a field. Consider the motivic spectrum KOD𝒮(D)\mathrm{KO}_{D}\in\mathcal{SH}(D) (see e.g. [BH21, §§2.2, 4.1] for a definition of the motivic stable category 𝒮(D)\mathcal{SH}(D)), representing Hermitian KK-theory [Hor05]. From this we can build the following related spectra

KWD\displaystyle\mathrm{KW}_{D} =KOD[η1]\displaystyle=\mathrm{KO}_{D}[\eta^{-1}]
kwD\displaystyle\mathrm{kw}_{D} =τ0KWD\displaystyle=\tau_{\geq 0}\mathrm{KW}_{D}
HWD\displaystyle\mathrm{HW}_{D} =τ0kwD\displaystyle=\tau_{\leq 0}\mathrm{kw}_{D}
HWD\displaystyle\mathrm{H}_{W}\mathbb{Z}_{D} =f0(HWD)\displaystyle=f_{0}(\mathrm{HW}_{D})
K¯DW\displaystyle\underline{K}^{W}_{D} =τ0HWD\displaystyle=\tau_{\leq 0}\mathrm{H}_{W}\mathbb{Z}_{D}
H~D\displaystyle\mathrm{H}\tilde{\mathbb{Z}}_{D} =τ0eff(𝟙D).\displaystyle=\tau_{\leq 0}^{\text{eff}}(\mathbbm{1}_{D}).

Here by τ0,τ0\tau_{\leq 0},\tau_{\geq 0} we mean the truncation in the homotopy tt-structure on 𝒮(D)\mathcal{SH}(D), and by τ0eff\tau_{\leq 0}^{\text{eff}} we mean the truncation in 𝒮(D)eff\mathcal{SH}(D)^{\text{eff}} (see e.g. [BH21, §B]). If f:DDf:D^{\prime}\to D is any morphism there are natural induced base change maps f(kwD)kwDf^{*}(\mathrm{kw}_{D})\to\mathrm{kw}_{D^{\prime}}, and so on. It thus makes sense to ask if the spectra above are stable under base change, i.e., if the base change maps are equivalences. This is true for KO\mathrm{KO} (and KW\mathrm{KW}), since this spectrum can be built out of (orthogonal or symplectic) Grassmannians [ST15, PW10], which are stable under base change. Our main result is the following.

Theorem 1.1 (see Theorem 4.5).

All of the above spectra are stable under base change among Dedekind domains or fields, provided that they contain 1/21/2.

Over fields, the above definitions of spectra coincide with other definitions that can be found in the literature (see [Bac17, DF17, ARØ20, Mor12]; this is proved in Lemma 4.3). In other words, we construct well-behaved extensions to motivic stable homotopy theory over Dedekind domains of certain motivic spectra which so far have mainly been useful over fields. In fact, we show that all of the above spectra (which we have built above out of KO\mathrm{KO} by certain universal properties) admit more explicit (and so calculationally useful) descriptions. For example we show that

π¯0(K¯W)=I¯,π¯i(K¯W)=0 for i0;\underline{\pi}_{0}(\underline{K}^{W})_{*}=\underline{I}^{*},\quad\underline{\pi}_{i}(\underline{K}^{W})_{*}=0\text{ for }i\neq 0;

here I¯\underline{I} is the Nisnevich sheaf associated with the presheaf of fundamental ideals in the Witt rings.

Remark 1.2.

The above description of π¯K¯W\underline{\pi}_{*}\underline{K}^{W}_{*} asserts in particular that the sheaf W¯\underline{W} is strictly 𝔸1\mathbb{A}^{1}-invariant. In fact variants of this property form a starting point of our proofs, and are the reason for assuming that SS is Dedekind. Unwinding the arguments, one finds that we ultimately rely on the Gersten conjecture (for étale cohomology of essentially smooth schemes over discrete valuation rings) via [Gei04].

Remark 1.3.

Using recent results on Gersten resolutions [DKY22], our results may be extended to regular J2 schemes instead of just Dedekind schemes. Alternatively, using the cdh topology instead of the Nisnevich one, they may be extended to all schemes. These facts will be recorded elsewhere.

Our motivating application of these results is as follows. Using Theorem 1.1, together with the fact that equivalences (and connectivity) of motivic spectra over DD can be checked after pullback to the residue fields of DD [BH21, Proposition B.3], one obtains essentially for free the following extension of [BH20].

Corollary 1.4 (see Theorem 4.12).

For DD as above, there is a fiber sequence

𝟙[η1](2)kw(2)Σ4kw(2)𝒮(D).\mathbbm{1}[\eta^{-1}]_{(2)}\to\mathrm{kw}_{(2)}\to\Sigma^{4}\mathrm{kw}_{(2)}\in\mathcal{SH}(D).

Using this, we also extend many of the other results of [BH20] to Dedekind domains.

Overview

The main observation allowing us to prove the above results is the following. Recall that there is an equivalence 𝒮(D)𝒮fr(D)\mathcal{SH}(D)\simeq\mathcal{SH}^{\mathrm{fr}}(D), where the right hand side means the category of motivic spectra with framed transfers [EHK+21, Hoy21]. This supplies us with an auxiliary functor σfr:𝒮S1fr(D)𝒮fr(D)\sigma^{\infty}_{\mathrm{fr}}:\mathcal{SH}^{S^{1}\mathrm{fr}}(D)\to\mathcal{SH}^{\mathrm{fr}}(D). The Hopf map η:𝔾m𝟙\eta:{\mathbb{G}_{m}}\to\mathbbm{1} already exists in 𝒮S1fr(D)\mathcal{SH}^{S^{1}\mathrm{fr}}(D) (see §3.3). This readily implies that we can make sense of the category 𝒮S1fr(D)[η1]\mathcal{SH}^{S^{1}\mathrm{fr}}(D)[\eta^{-1}] of η\eta-periodic S1S^{1}-spectra with framed transfers, and that there is an equivalence

𝒮S1fr(D)[η1]𝒮fr(D)[η1].\mathcal{SH}^{S^{1}\mathrm{fr}}(D)[\eta^{-1}]\simeq\mathcal{SH}^{\mathrm{fr}}(D)[\eta^{-1}].

The significance of this is that the left hand side no longer involves 1\mathbb{P}^{1}-stabilization, and hence is much easier to control. In the end this allows us to relate all our spectra in the list above to a spectrum kofr\mathrm{ko}^{\mathrm{fr}} which is known to be stable under base change. To do so we employ (1) work of Jeremy Jacobson [Jac18] on the Gersten conjecture for Witt rings in mixed characteristic, and (2) work of Markus Spitzweck [Spi18] on stability under base change of H\mathrm{H}\mathbb{Z}.

Organization

In §2 we construct by hand a motivic spectrum K¯W\underline{K}^{W} with the expected homotopy sheaves. In §3 we study some truncations in 𝒮S1fr(D)[η1]\mathcal{SH}^{S^{1}\mathrm{fr}}(D)[\eta^{-1}], allowing us among other things to construct a spectrum kw\mathrm{kw} with the expected homotopy sheaves. We prove our main theorems in §4. We first give alternative, more explicit definitions of the spectra in our list and deduce stability under base change. Then we show that the spectra we constructed satisfy the expected universal properties. We establish the fundamental fiber sequence of η\eta-periodic motivic stable homotopy theory as an easy corollary. Finally in §5 we deduce some applications, mostly in parallel with [BH20, §8].

Notation and terminology

By a Dedekind scheme we mean a finite disjoint union of spectra of Dedekind domains or fields, that is, a regular noetherian scheme of Krull dimension 1\leq 1. Given a non-vanishing integer nn and a scheme XX, we write 1/nX1/n\in X to mean that n𝒪X(X)×n\in\mathcal{O}_{X}(X)^{\times}.

We denote by 𝒮pc(S)𝒫(SmS)\mathcal{S}\mathrm{pc}{}(S)\subset\mathcal{P}({\mathrm{S}\mathrm{m}}_{S}) the \infty-category of motivic spaces, that is, the subcategory of motivically local (i.e. 𝔸1\mathbb{A}^{1}-invariant and Nisnevich local) presheaves. We write LmotL_{\mathrm{mot}} for the left adjoint of the inclusion, i.e., the motivic localization functor. For a motivic spectrum E𝒮(S)E\in\mathcal{SH}(S) we denote by π¯i(E)j\underline{\pi}_{i}(E)_{j} the homotopy sheaves (see e.g. [BH20, §2.4.2]). Beware that unless the base is a field, these objects are only loosely related to the homotopy tt-structure.

We denote by aNis,ae´t,a_{\mathrm{Nis}},a_{\acute{e}t}, and are´ta_{r\acute{e}t} respectively the associated sheaves of sets in the Nisnevich, étale and real étale topologies. We write LNisL_{\mathrm{Nis}} for the Nisnevich localization of presheaves of spaces or spectra. Unless specified otherwise, all cohomology is with respect to the Nisnevich topology.

All schemes are assumed quasi-compact and quasi-separated.

We denote by 𝒮pc\mathcal{S}\mathrm{pc}{} the \infty-category of spaces, and by 𝒮\mathcal{SH} the \infty-category of spectra.

Acknowledgements

I would like to thank Shane Kelly for help with Lemma 2.10. To the best of my knowledge, the first person suggesting to study kofr\mathrm{ko}^{\mathrm{fr}} was Marc Hoyois.

2. The sheaves I¯n\underline{I}^{n}

2.1.

For a scheme XX (with 1/2X1/2\in X), denote by W¯\underline{W} the Nisnevich sheaf of commutative discrete rings obtained by sheafification from the presheaf of Witt rings [Kne77, §I.5]. The canonical map

W¯ae´tW¯/2¯\underline{W}\to a_{\acute{e}t}\underline{W}\simeq\underline{\mathbb{Z}/2}

is the rank map, and its kernel is the ideal sheaf I¯W¯\underline{I}\subset\underline{W}. We write I¯\underline{I}^{*} for the sheaf of commutative graded rings given by the powers of I¯\underline{I}. Somewhat anachronistically we put

k¯nM=aNisHe´tn(-,/2);\underline{k}_{n}^{M}=a_{\mathrm{Nis}}H^{n}_{\acute{e}t}(\mathord{-},\mathbb{Z}/2);

this is also a sheaf of commutative graded rings. Note that since 1/2X1/2\in X we have an exact sequence of étale sheaves 0/2𝒪×𝒪×10\to\mathbb{Z}/2\to\mathcal{O}^{\times}\to\mathcal{O}^{\times}\to 1, yielding a boundary map 𝒪×(X)He´t1(X,/2)\mathcal{O}^{\times}(X)\to H^{1}_{\acute{e}t}(X,\mathbb{Z}/2) which we denote by a(a)a\mapsto(a). The following results justifies our notation k¯M\underline{k}_{*}^{M} to an extent.

Theorem 2.1 (Jacobson [Jac18]).

Assume that 1/2X1/2\in X. Then there is a unique map of sheaves (of rings) I¯k¯M\underline{I}^{*}\to\underline{k}_{*}^{M} given in degree zero by the rank and in degree one locally by (a1)(a)(\langle a\rangle-1)\mapsto(a). This map annihilates I¯+1I¯\underline{I}^{*+1}\subset\underline{I}^{*} and induces an isomorphism of sheaves

I¯/I¯+1k¯M.\underline{I}^{*}/\underline{I}^{*+1}\simeq\underline{k}_{*}^{M}.
Proof.

For existence, see [Jac18, Remark 4.5]. The rest is [Jac18, Theorem 4.4]. ∎

Still assuming that 1/2X1/2\in X, the canonical map

σ:W¯are´tW¯are´t\sigma:\underline{W}\to a_{r\acute{e}t}\underline{W}\simeq a_{r\acute{e}t}\mathbb{Z}

is the global signature. One may show that σ(I¯)2are´t\sigma(\underline{I})\subset 2a_{r\acute{e}t}\mathbb{Z} (indeed locally I(-)\mathrm{I}(\mathord{-}) consists of diagonal forms of even rank [MH73, Corollary I.3.4], and the signature is thus a sum of an even number of terms ±1\pm 1) and hence σ(I¯n)2nare´t\sigma(\underline{I}^{n})\subset 2^{n}a_{r\acute{e}t}\mathbb{Z}. Since are´ta_{r\acute{e}t}\mathbb{Z} is torsion-free, there are thus induced maps

σ/2n:I¯nare´t.\sigma/2^{n}:\underline{I}^{n}\to a_{r\acute{e}t}\mathbb{Z}.

For a scheme XX, denote by K(X)K(X) the product of the residue fields of its minimal points. Recall that for a field kk, vcdp(k)\mathrm{vcd}_{p}(k) denotes the minimum of cdp(l)\mathrm{cd}_{p}(l) for l/kl/k a finite extension, and cdp(k)\mathrm{cd}_{p}(k) denotes the pp-étale cohomological dimension (see e.g. [Ser13, §I.3.1]).

Lemma 2.2.

Let XX be a noetherian scheme with 1/pX1/p\in X. Then vcdp(X)dimX+vcdp(K(X))\mathrm{vcd}_{p}(X)\leq\dim{X}+\mathrm{vcd}_{p}(K(X)).

Proof.

If p=2p=2, replace XX by X[1]X[\sqrt{-1}]. We may thus assume that vcdp=cdp\mathrm{vcd}_{p}=\mathrm{cd}_{p}, and if p=2p=2 that all residue fields of XX are unorderable. By [ILO14, Lemma XVIII-A.2.2] we have cdp(X)dimX+supxX(dim𝒪X,x+cdp(k(x)))\mathrm{cd}_{p}(X)\leq\dim{X}+\sup_{x\in X}(\dim\mathcal{O}_{X,x}+\mathrm{cd}_{p}(k(x))). It hence suffices to show that cdp(k(x))+dim𝒪X,xcdp(K(X))\mathrm{cd}_{p}(k(x))+\dim\mathcal{O}_{X,x}\leq\mathrm{cd}_{p}(K(X)). Since cdp(K(X))cdp(K(𝒪X,x))\mathrm{cd}_{p}(K(X))\geq\mathrm{cd}_{p}(K(\mathcal{O}_{X,x})), this follows from [GAV72, Corollary X.2.4]. ∎

Proposition 2.3 (Jacobson).

Assume that XX is noetherian and 1/2X1/2\in X. Then for n>vcd2(K(X))+dimXn>\mathrm{vcd}_{2}(K(X))+\dim{X} the divided signature

σ/2n:I¯nare´t\sigma/2^{n}:\underline{I}^{n}\to a_{r\acute{e}t}\mathbb{Z}

is an isomorphism of sheaves on XNisX_{\mathrm{Nis}}.

Proof.

Let N=vcd2(K(X))+dimXN=\mathrm{vcd}_{2}(K(X))+\dim{X}. Note that for any Hensel local ring AA of XX we have vcd2(A)N\mathrm{vcd}_{2}(A)\leq N, by Lemma 2.2 and [GAV72, Theorem X.2.1]. Since AA is henselian and noetherian, by [Jac18, Lemma 6.2(III)] we have nIn(A)=0\cap_{n}I^{n}(A)=0. Hence by [Jac18, Corollary 4.8] for n>Nn>N the map In(A)2In+1(A)I^{n}(A)\xrightarrow{2}I^{n+1}(A) is an isomorphism. By [Jac17, Proposition 7.1], the divided signatures induce an isomorphism colimnIn(A)(are´t)(A)\operatorname*{colim}_{n}I^{n}(A)\simeq(a_{r\acute{e}t}\mathbb{Z})(A). These two results imply that σ/2n(A):In(A)(are´t)(A)\sigma/2^{n}(A):I^{n}(A)\to(a_{r\acute{e}t}\mathbb{Z})(A) is an isomorphism, for any n>Nn>N. Since AA was arbitrary, the map σ/2n:I¯nare´t\sigma/2^{n}:\underline{I}^{n}\to a_{r\acute{e}t}\mathbb{Z} induces an isomorphism on stalks, and hence is an isomorphism. ∎

Combining Theorem 2.1 and Proposition 2.3, we will be able to control the sheaves I¯n\underline{I}^{n} by controlling are´ta_{r\acute{e}t}\mathbb{Z} and k¯M\underline{k}_{*}^{M}.

2.2.

Fix a Dedekind scheme DD. A 𝔾m{\mathbb{G}_{m}}-prespectrum EE over DD means a sequence of objects (E1,E2,)(E_{1},E_{2},\dots) with EiFun(SmDop,𝒮)E_{i}\in\mathrm{Fun}({\mathrm{S}\mathrm{m}}_{D}^{\mathrm{op}},\mathcal{SH}), together with maps EiΩ𝔾mEi+1E_{i}\to\Omega_{\mathbb{G}_{m}}E_{i+1}. Such a prespectrum can in particular be exhibited by defining EiE_{i} as a presheaf of abelian groups. See e.g. [CD09, §6] for details as well as symmetric (monoidal) variants. A 𝔾m{\mathbb{G}_{m}}-prespectrum EE is called a motivic spectrum if each EiE_{i} is motivically local, and the structure maps EiΩ𝔾mEi+1E_{i}\to\Omega_{\mathbb{G}_{m}}E_{i+1} are equivalences.

Example 2.4 (Spitzweck [Spi18]).

There is a 𝔾m{\mathbb{G}_{m}}-prespectrum H/2\mathrm{H}\mathbb{Z}/2 with

(H/2)i=ΣiτiNisLe´t/2.(\mathrm{H}\mathbb{Z}/2)_{i}=\Sigma^{i}\tau_{\geq-i}^{\mathrm{Nis}}L_{\acute{e}t}\mathbb{Z}/2.

In particular

π¯(H/2)k¯M[τ],\underline{\pi}_{*}(\mathrm{H}\mathbb{Z}/2)_{*}\simeq\underline{k}_{*}^{M}[\tau],

where τπ¯1(H/2)1(D)\tau\in\underline{\pi}_{1}(\mathrm{H}\mathbb{Z}/2)_{1}(D) is the unique non-vanishing element. The prespectrum H/2\mathrm{H}\mathbb{Z}/2 is in fact a motivic spectrum.

Example 2.5.

Let RR_{*} be a Nisnevich sheaf of commutative graded (discrete) rings, and tR1(𝔸10)t\in R_{1}(\mathbb{A}^{1}\setminus 0). Then RR_{*} defines a commutative monoid R~\tilde{R}_{*} in symmetric sequences (of Nisnevich sheaves) with trivial symmetric group actions, and tt defines a class [t][t] in the summand R1(𝔾m)R_{1}({\mathbb{G}_{m}}), making R~\tilde{R}_{*} into a commutative monoid under the free commutative monoid on 𝔾m{\mathbb{G}_{m}}. In other words, R~\tilde{R}_{*} is a commutative monoid in symmetric 𝔾m{\mathbb{G}_{m}}-prespectra [CD09, second half of §6.6]. This construction is functorial in RR_{*}.

Definition 2.6.

Applying Example 2.5 to the sheaf of graded rings I¯\underline{I}^{*} and the class t1I(D×𝔾m)\langle t\rangle-1\in I(D\times{\mathbb{G}_{m}}), we obtain a 𝔾m{\mathbb{G}_{m}}-prespectrum K¯W\underline{K}^{W} over DD with K¯nW=I¯n\underline{K}^{W}_{n}=\underline{I}^{n}. Similarly we obtain a 𝔾m{\mathbb{G}_{m}}-prespectrum k¯M\underline{k}^{M}, and in fact a morphism of commutative monoids in symmetric 𝔾m{\mathbb{G}_{m}}-prespectra K¯Wk¯M\underline{K}^{W}\to\underline{k}^{M} (coming from the ring map I¯k¯M\underline{I}^{*}\to\underline{k}_{*}^{M} of Theorem 2.1).

From now on we view the category of Nisnevich sheaves of abelian groups as embedded into Nisnevich sheaves of spectra, and view all sheaves of abelian groups as sheaves of spectra, so that for XSmDX\in{\mathrm{S}\mathrm{m}}_{D} we have

(K¯W)i(X)=LNisI¯i,(\underline{K}^{W})_{i}(X)=L_{\mathrm{Nis}}\underline{I}^{i},

and similarly for k¯M\underline{k}^{M}.

Lemma 2.7.

There is a commutative ring map H/2k¯M\mathrm{H}\mathbb{Z}/2\to\underline{k}^{M} inducing an equivalence of 𝔾m{\mathbb{G}_{m}}-prespectra k¯M(H/2)/τ\underline{k}^{M}\simeq(\mathrm{H}\mathbb{Z}/2)/\tau. In particular k¯M\underline{k}^{M} is a motivic spectrum.

Proof.

Let E=(E1,E2,)E=(E_{1},E_{2},\dots) be a 𝔾m{\mathbb{G}_{m}}-prespectrum in Nisnevich sheaves of spectra. If each EiE_{i} is connective, we can form a prespectrum τ0Nis(E)\tau_{\leq 0}^{\mathrm{Nis}}(E) with τ0Nis(E)iτ0Nis(Ei)\tau_{\leq 0}^{\mathrm{Nis}}(E)_{i}\simeq\tau_{\leq 0}^{\mathrm{Nis}}(E_{i}) the truncation in the usual tt-structure, and bonding maps

𝔾mτ0Nis(Ei)τ0Nis(𝔾mτ0Nis(Ei))τ0Nis(𝔾mEi)τ0Nis(Ei+1).{\mathbb{G}_{m}}\wedge\tau_{\leq 0}^{\mathrm{Nis}}(E_{i})\to\tau_{\leq 0}^{\mathrm{Nis}}({\mathbb{G}_{m}}\wedge\tau_{\leq 0}^{\mathrm{Nis}}(E_{i}))\simeq\tau_{\leq 0}^{\mathrm{Nis}}({\mathbb{G}_{m}}\wedge E_{i})\to\tau_{\leq 0}^{\mathrm{Nis}}(E_{i+1}).

Even if EE is a motivic spectrum τ0Nis(E)\tau_{\leq 0}^{\mathrm{Nis}}(E) need not be; however if it is then it represents the truncation τ0(E)𝒮(D)\tau_{\leq 0}(E)\in\mathcal{SH}(D) in the homotopy tt-structure.

In [Spi18, §4.1.1] there is a construction of a specific 𝔾m{\mathbb{G}_{m}}-prespectrum HH such that (1) HH is a motivic spectrum representing H/2\mathrm{H}\mathbb{Z}/2 and (2) τ0Nis(H)k¯M\tau_{\leq 0}^{\mathrm{Nis}}(H)\simeq\underline{k}^{M}, the equivalence being as 𝔾m{\mathbb{G}_{m}}-prespectra. The map H/2(H/2)/τ𝒮(D)\mathrm{H}\mathbb{Z}/2\to(\mathrm{H}\mathbb{Z}/2)/\tau\in\mathcal{SH}(D) corresponds to a map HHH\to H^{\prime} of 𝔾m{\mathbb{G}_{m}}-spectra which is immediately seen to be a levelwise zero-truncation. It follows that Hτ0Nis(H)k¯MH^{\prime}\simeq\tau_{\leq 0}^{\mathrm{Nis}}(H)\simeq\underline{k}^{M} as 𝔾m{\mathbb{G}_{m}}-prespectra. In particular τ0Nis(H)k¯M\tau_{\leq 0}^{\mathrm{Nis}}(H)\simeq\underline{k}^{M} are motivic spectra, and in fact k¯Mτ0(H/2)𝒮(D)\underline{k}^{M}\simeq\tau_{\leq 0}(\mathrm{H}\mathbb{Z}/2)\in\mathcal{SH}(D). Since 𝒮(D)0\mathcal{SH}(D)_{\geq 0} is closed under smash products, truncation in the homotopy tt-structure is lax symmetric monoidal on 𝒮(D)0\mathcal{SH}(D)_{\geq 0} and so τ0(H/2)\tau_{\leq 0}(\mathrm{H}\mathbb{Z}/2) admits a canonical ring structure making H/2(H/2)0\mathrm{H}\mathbb{Z}/2\to(\mathrm{H}\mathbb{Z}/2)_{\leq 0} into a commutative ring map. It remains to show that τ0(H/2)k¯M\tau_{\leq 0}(\mathrm{H}\mathbb{Z}/2)\simeq\underline{k}^{M} is an equivalence of ring spectra. Both of them can be modeled by \mathcal{E}_{\infty}-monoids in the ordinary 11-category of symmetric 𝔾m{\mathbb{G}_{m}}-prespectra of sheaves of abelian groups on SmD{\mathrm{S}\mathrm{m}}_{D}; i.e. just commutative monoids in the usual sense. The isomorphism between them preserves the product structure by inspection. ∎

The following is the main result of this section.

Corollary 2.8.

Let DD be a Dedekind scheme with 1/2D1/2\in D. The 𝔾m{\mathbb{G}_{m}}-prespectrum K¯W\underline{K}^{W} is a motivic spectrum over DD.

Proof.

Since (K¯W)n=LNisI¯n(\underline{K}^{W})_{n}=L_{\mathrm{Nis}}\underline{I}^{n} is Nisnevich local by construction, to prove it is motivically local we need to establish 𝔸1\mathbb{A}^{1}-homotopy invariance, i.e. that Ω𝔸+1K¯nWK¯nW\Omega_{\mathbb{A}^{1}_{+}}\underline{K}^{W}_{n}\simeq\underline{K}^{W}_{n}. Similarly to prove that we have a spectrum we need to show that Ω𝔾mK¯n+1WK¯nW\Omega_{{\mathbb{G}_{m}}}\underline{K}^{W}_{n+1}\simeq\underline{K}^{W}_{n}. Here we are working in the category 𝒮hv𝒮Nis(SmD)\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}({\mathrm{S}\mathrm{m}}_{D}) of Nisnevich sheaves of spectra on SmD{\mathrm{S}\mathrm{m}}_{D}. For xDx\in D, denote by px:DxDp_{x}:D_{x}\to D the inclusion of the local scheme. By [Hoy15, Lemmas A.3 and A.4], the functor pxp_{x}^{*} commutes with Ω𝔾m\Omega_{{\mathbb{G}_{m}}} and Ω𝔸+1\Omega_{\mathbb{A}^{1}_{+}}, and by [BH21, Proposition A.3(1,3)] the family of functors px:𝒮hv𝒮Nis(SmD)𝒮hv𝒮Nis(SmDx)p_{x}^{*}:\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}({\mathrm{S}\mathrm{m}}_{D})\to\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}({\mathrm{S}\mathrm{m}}_{D_{x}}) is conservative. Finally by [Bac18b, Corollary 51] we have pxI¯nI¯np_{x}^{*}\underline{I}^{n}\simeq\underline{I}^{n}. It follows that we may assume (replacing DD by DxD_{x}) that DD is the spectrum of a discrete valuation ring or field.

By Lemma 2.10 below, we have DlimαDαD\simeq\operatorname*{lim}_{\alpha}D_{\alpha}, where each DαD_{\alpha} is the spectrum of a discrete valuation ring or field and vcd2(K(Dα))<\mathrm{vcd}_{2}(K(D_{\alpha}))<\infty. By [Gro67, Theorem 8.8.2(ii), Proposition 17.7.8(ii)] for XSmDX\in{\mathrm{S}\mathrm{m}}_{D} there exists (possibly after shrinking the indexing system) a presentation XlimαXαX\simeq\operatorname*{lim}_{\alpha}X_{\alpha}, with XαSmDαX_{\alpha}\in{\mathrm{S}\mathrm{m}}_{D_{\alpha}} and the transition maps being affine. We have a fibered topos [GAV72, §Vbis.7] XNisX_{\bullet\mathrm{Nis}} with limXNisXNis\operatorname*{lim}X_{\bullet\mathrm{Nis}}\simeq X_{\mathrm{Nis}}. The sheaves (I¯n|XαNis)α(\underline{I}^{n}|_{X_{\alpha\mathrm{Nis}}})_{\alpha} define a section of the fibered topos XNisX_{\bullet\mathrm{Nis}}. It follows from [Bac18b, Lemma 49] and [GAV72, Proposition Vbis.8.5.2] that (in the notation of the latter reference) Q(I¯n|XNis)I¯n|XNisQ^{*}(\underline{I}^{n}|_{X_{\bullet\mathrm{Nis}}})\simeq\underline{I}^{n}|_{X_{\mathrm{Nis}}}. Hence by [GAV72, Theorem Vbis.8.7.3] we get

Hi(X,I¯n)colimαHi(Xα,I¯n).H^{i}(X,\underline{I}^{n})\simeq\operatorname*{colim}_{\alpha}H^{i}(X_{\alpha},\underline{I}^{n}).

The same holds for cohomology on X×𝔸1X\times\mathbb{A}^{1} and X+𝔾mX_{+}\wedge{\mathbb{G}_{m}}. We may thus assume (replacing DD by DαD_{\alpha}) that vcd2(K(D))<\mathrm{vcd}_{2}(K(D))<\infty.

Let XSmDX\in{\mathrm{S}\mathrm{m}}_{D}. We need to prove that ()(*)

H(X,I¯n)H(X×𝔸1,I¯n)H(X+𝔾m,I¯n).H^{*}(X,\underline{I}^{n})\simeq H^{*}(X\times\mathbb{A}^{1},\underline{I}^{n})\simeq H^{*}(X_{+}\wedge{\mathbb{G}_{m}},\underline{I}^{n}).

Since k¯nM\underline{k}^{M}_{n} satisfies the analog of ()(*) by Lemma 2.7, the exact sequence I¯n+1I¯nk¯nM\underline{I}^{n+1}\to\underline{I}^{n}\to\underline{k}_{n}^{M} from Theorem 2.1 shows that ()(*) holds for I¯n\underline{I}^{n} if and only if it holds for I¯n+1\underline{I}^{n+1}. By Proposition 2.3 (and [GAV72, Theorem X.2.1]), for nn sufficiently large we get I¯n|XNisare´t|XNis\underline{I}^{n}|_{X_{\mathrm{Nis}}}\simeq a_{r\acute{e}t}\mathbb{Z}|_{X_{\mathrm{Nis}}}. It thus suffices to show that LNisare´tL_{\mathrm{Nis}}a_{r\acute{e}t}\mathbb{Z} satisfies the analog of ()(*). This follows from the fact that there exists a motivic spectrum E=H𝔸1[ρ1]E=H_{\mathbb{A}^{1}}\mathbb{Z}[\rho^{-1}] with Ei=LNisare´tE_{i}=L_{\mathrm{Nis}}a_{r\acute{e}t}\mathbb{Z} for all ii [Bac18a, Proposition 41]. ∎

Remark 2.9.

Theorem 2.1 shows that Ω𝔾mLNisI¯Ω𝔾mLNisW¯\Omega_{\mathbb{G}_{m}}L_{\mathrm{Nis}}\underline{I}\xrightarrow{\simeq}\Omega_{\mathbb{G}_{m}}L_{\mathrm{Nis}}\underline{W}; indeed the cofiber of this map is given by Ω𝔾m/2¯0\Omega_{\mathbb{G}_{m}}\underline{\mathbb{Z}/2}\simeq 0 (the vanishing holds e.g. since motivic cohomology vanishes in negative weights). It follows that π¯0(K¯W)I¯\underline{\pi}_{0}(\underline{K}^{W})_{*}\simeq\underline{I}^{*} and π¯i=0\underline{\pi}_{i}=0 for i0i\neq 0; here I¯n=W¯\underline{I}^{n}=\underline{W} for n<0n<0. It also follows that Ω𝔾mLNisW¯LNisW¯\Omega_{\mathbb{G}_{m}}L_{\mathrm{Nis}}\underline{W}\simeq L_{\mathrm{Nis}}\underline{W}, and that this spectral sheaf is homotopy invariant.

Recall that a noetherian valuation ring is a ring which is either a discrete valuation ring or a field [Sta18, Tag 00II].

Lemma 2.10.

Let RR be a noetherian valuation ring. Then there is a filtered system RαR_{\alpha} of noetherian valuation rings with vcd(K(Rα))<\mathrm{vcd}(K(R_{\alpha}))<\infty (i.e. there exists NN with vcdp<N\mathrm{vcd}_{p}<N for all pp) and colimαRαR\operatorname*{colim}_{\alpha}R_{\alpha}\simeq R.

Proof.

Let K=K(R)K=K(R). Then K=colimαKαK=\operatorname*{colim}_{\alpha}K_{\alpha}, where the colimit is over finitely generated subfields KαKK_{\alpha}\subset K; this colimit is filtered. Let Rα=RKαR_{\alpha}=R\cap K_{\alpha}. We shall show that RαR_{\alpha} is a noetherian valuation ring, and K(Rα)=KαK(R_{\alpha})=K_{\alpha}. This will imply the result since vcdp(Kα)<\mathrm{vcd}_{p}(K_{\alpha})<\infty uniformly in pp by [GAV72, Theorem X.2.1, Proposition X.6.1, Theorem X.5.1]. It is clear that RαR_{\alpha} is a valuation ring and K(Rα)=KαK(R_{\alpha})=K_{\alpha}: if xKα×x\in K_{\alpha}^{\times} then one of x,x1Rx,x^{-1}\in R [Sta18, Tag 00IB], and hence one of x,x1Rαx,x^{-1}\in R_{\alpha}; thus we conclude by [Sta18, Tag 052K]. To show that RαR_{\alpha} is noetherian we must show that Kα×/Rα×K_{\alpha}^{\times}/R_{\alpha}^{\times}\simeq\mathbb{Z} or 0\simeq 0 [Sta18, Tags 00IE and 00II]. This is clear since there is an injection Kα×/Rα×K×/R×K_{\alpha}^{\times}/R_{\alpha}^{\times}\hookrightarrow K^{\times}/R^{\times} and the latter group is \simeq\mathbb{Z} or 0\simeq 0. ∎

3. η\eta-periodic framed spectra

3.1.

Recall from [EHK+21, §3.2.2] the symmetric monoidal \infty-category Corfr(S)\mathrm{Cor}^{\mathrm{fr}}(S) under SmS{\mathrm{S}\mathrm{m}}_{S}. We denote by 𝒮pc(S)fr\mathcal{S}\mathrm{pc}{}^{\mathrm{fr}}(S) and 𝒮S1fr(S)\mathcal{SH}^{S^{1}\mathrm{fr}}(S) the motivic localizations of respectively Fun(Corfr(S)op,𝒮pc)\mathrm{Fun}(\mathrm{Cor}^{\mathrm{fr}}(S)^{\mathrm{op}},\mathcal{S}\mathrm{pc}{}) and Fun(Corfr(S)op,𝒮)\mathrm{Fun}(\mathrm{Cor}^{\mathrm{fr}}(S)^{\mathrm{op}},\mathcal{SH}), and we put 𝒮fr(S)=𝒮S1fr(S)[𝔾m1]𝒮pc(S)fr[(1)1]\mathcal{SH}^{\mathrm{fr}}(S)=\mathcal{SH}^{S^{1}\mathrm{fr}}(S)[{\mathbb{G}_{m}^{\wedge-1}}]\simeq\mathcal{S}\mathrm{pc}{}^{\mathrm{fr}}(S)[(\mathbb{P}^{1})^{-1}]. The free-forgetful adjunction

𝒮(S)𝒮fr(S)\mathcal{SH}(S)\leftrightarrows\mathcal{SH}^{\mathrm{fr}}(S)

is an adjoint equivalence [Hoy21, Theorem 18]. We obtain the diagram

𝒮pc(S)fr{\mathcal{S}\mathrm{pc}{}^{\mathrm{fr}}(S)}𝒮S1fr(S){\mathcal{SH}^{S^{1}\mathrm{fr}}(S)}𝒮(S).{\mathcal{SH}(S).}ΣS1\scriptstyle{\Sigma^{\infty}_{S^{1}}}Σfr\scriptstyle{\Sigma^{\infty}_{\mathrm{fr}}}σfr\scriptstyle{\sigma^{\infty}_{\mathrm{fr}}}ΩS1\scriptstyle{\Omega^{\infty}_{S^{1}}}ωfr\scriptstyle{\omega^{\infty}_{\mathrm{fr}}}Ωfr\scriptstyle{\Omega^{\infty}_{\mathrm{fr}}}

3.2.

Put

𝒮hv𝒮Nis(SmS)=LNisFun(SmSop,𝒮)and𝒮hv𝒮Nis(Corfr(S))=LNisFun(Corfr(S)op,𝒮).\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}({\mathrm{S}\mathrm{m}}_{S})=L_{\mathrm{Nis}}\mathrm{Fun}({\mathrm{S}\mathrm{m}}_{S}^{\mathrm{op}},\mathcal{SH})\quad\text{and}\quad\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}(\mathrm{Cor}^{\mathrm{fr}}(S))=L_{\mathrm{Nis}}\mathrm{Fun}(\mathrm{Cor}^{\mathrm{fr}}(S)^{\mathrm{op}},\mathcal{SH}).

On either category we consider the tt-structure with non-negative part generated [Lur16, Proposition 1.4.4.11] by the smooth schemes.

Lemma 3.1.
  1. (1)

    EFun(Corfr(S)op,𝒮)E\in\mathrm{Fun}(\mathrm{Cor}^{\mathrm{fr}}(S)^{\mathrm{op}},\mathcal{SH}) is Nisnevich local (or homotopy invariant, or motivically local) if and only if the underlying spectral presheaf UEFun(SmSop,𝒮)UE\in\mathrm{Fun}({\mathrm{S}\mathrm{m}}_{S}^{\mathrm{op}},\mathcal{SH}) is.

  2. (2)

    The forgetful functor U:𝒮hv𝒮Nis(Corfr(S))𝒮hv𝒮Nis(SmS)U:\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}(\mathrm{Cor}^{\mathrm{fr}}(S))\to\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}({\mathrm{S}\mathrm{m}}_{S}) is tt-exact.

Proof.

(1) holds by definition. (2) The functor UΣ:𝒫Σ(Corfr(S))𝒫Σ(SmS)U_{\Sigma}:\mathcal{P}_{\Sigma}(\mathrm{Cor}^{\mathrm{fr}}(S))\to\mathcal{P}_{\Sigma}({\mathrm{S}\mathrm{m}}_{S})_{*} preserves filtered (in fact sifted) colimits and commutes with LNisL_{\mathrm{Nis}} [EHK+21, Proposition 3.2.14]. Consequently UNis:𝒮hvNis(Corfr(S))𝒮hvNis(SmS)U_{\mathrm{Nis}}:\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}(\mathrm{Cor}^{\mathrm{fr}}(S))\to\mathcal{S}\mathrm{hv}_{\mathrm{Nis}}({\mathrm{S}\mathrm{m}}_{S})_{*} also preserves filtered colimits. Being a right adjoint it also preserves limits, and hence commutes with spectrification. Consequently it suffices to prove the following: given F𝒫Σ(Corfr(S))F\in\mathcal{P}_{\Sigma}(\mathrm{Cor}^{\mathrm{fr}}(S)) and n0n\geq 0, we have UΣ(ΣnF)𝒫Σ(SmS)nU_{\Sigma}(\Sigma^{n}F)\in\mathcal{P}_{\Sigma}({\mathrm{S}\mathrm{m}}_{S})_{\geq n}; indeed then

U(ΣF)colimnΣnUΣ(ΣnF)𝒮hv𝒮Nis(SmS)0U(\Sigma^{\infty}F)\simeq\operatorname*{colim}_{n}\Sigma^{\infty-n}U_{\Sigma}(\Sigma^{n}F)\in\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}({\mathrm{S}\mathrm{m}}_{S})_{\geq 0}

by what we have already said. Writing ΣnF\Sigma^{n}F as an iterated sifted colimit, using semi-additivity of 𝒫Σ(Corfr(S))\mathcal{P}_{\Sigma}(\mathrm{Cor}^{\mathrm{fr}}(S)) [EHK+21, sentence after Lemma 3.2.5] and the fact that UΣU_{\Sigma} commutes with sifted colimits, we find that UΣ(ΣnF)U_{\Sigma}(\Sigma^{n}F) is given by BnUΣ(F)B^{n}U_{\Sigma}(F), i.e. the iterated bar construction applied sectionwise. The required connectivity is well-known; see e.g. [Seg74, Proposition 1.5]. ∎

We denote by τiNis\tau_{\geq i}^{\mathrm{Nis}}, τiNis\tau_{\leq i}^{\mathrm{Nis}} and τ=iNis\tau_{=i}^{\mathrm{Nis}} the truncation functors corresponding to the above tt-structures. Note that the tt-structure we have constructed on 𝒮hv𝒮Nis(SmS)\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}({\mathrm{S}\mathrm{m}}_{S}) coincides with the usual one [Lur18, Definition 1.3.2.5], and in particular 𝒮hv𝒮Nis(SmS)\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}({\mathrm{S}\mathrm{m}}_{S})^{\heartsuit} is just the category of Nisnevich sheaves of abelian groups on SmS{\mathrm{S}\mathrm{m}}_{S} [Lur18, Proposition 1.3.2.7(4)].

Remark 3.2.

The proof of Lemma 3.1 also shows the following: if F𝒮hvNis(Corfr(S))F\in\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}(\mathrm{Cor}^{\mathrm{fr}}(S)) and XSmSX\in{\mathrm{S}\mathrm{m}}_{S}, then F(X)𝒮pcF(X)\in\mathcal{S}\mathrm{pc}{} is a commutative monoid (Corfr(S)\mathrm{Cor}^{\mathrm{fr}}(S) being semiadditive) and ΣF𝒮hv𝒮Nis(Corfr(S))\Sigma^{\infty}F\in\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}(\mathrm{Cor}^{\mathrm{fr}}(S)) has underlying sheaf of spectra corresponding to the group completion of FF.

Remark 3.3.

If SS has finite Krull dimension, then the above tt-structure is non-degenerate [BH21, Proposition A.3].

3.3.

The unit t𝒪(𝔸10)×t\in\mathcal{O}(\mathbb{A}^{1}\setminus 0)^{\times} defines a framing of the identity on 𝔸10\mathbb{A}^{1}\setminus 0 and hence a framed correspondence 𝔸10\mathbb{A}^{1}\setminus 0\rightsquigarrow*. We denote by

η:𝔾m𝟙𝒮S1fr(S)\eta:{\mathbb{G}_{m}}\to\mathbbm{1}\in\mathcal{SH}^{S^{1}\mathrm{fr}}(S)

the corresponding map (obtain by precomposition with 𝔾m𝔾m𝟙𝔸10{\mathbb{G}_{m}}\hookrightarrow{\mathbb{G}_{m}}\vee\mathbbm{1}\simeq\mathbb{A}^{1}\setminus 0).

The following is a key result. It shows that the Hopf map η\eta is already accessible in framed S1S^{1}-spectra, which enables all our further results.

Lemma 3.4.

There is a homotopy σfr(η)η\sigma_{\mathrm{fr}}^{\infty}(\eta)\simeq\eta, where on the right hand side we mean the usual motivic stable Hopf map.

Proof.

Write t:(𝔸10)+(𝔸10)+𝒮(S)\langle t\rangle:(\mathbb{A}^{1}\setminus 0)_{+}\to(\mathbb{A}^{1}\setminus 0)_{+}\in\mathcal{SH}(S) for the map induced by the framing tt of the identity, and η~\tilde{\eta} for the induced map Σ+𝔾m𝟙\Sigma^{\infty}_{+}{\mathbb{G}_{m}}\to\mathbbm{1}. By [EHK+20, Example 3.1.6], the map t\langle t\rangle is given by Σ2,1\Sigma^{\infty-2,1} of the map of pointed motivic spaces

(𝔸10)+𝔸1/(𝔸10)(𝔸10)+𝔸1/(𝔸10),(t,x)(t,tx),(\mathbb{A}^{1}\setminus 0)_{+}\wedge\mathbb{A}^{1}/(\mathbb{A}^{1}\setminus 0)\to(\mathbb{A}^{1}\setminus 0)_{+}\wedge\mathbb{A}^{1}/(\mathbb{A}^{1}\setminus 0),\quad(t,x)\mapsto(t,tx),

and hence η~\tilde{\eta} is given by Σ2,1\Sigma^{\infty-2,1} of the map

η:(𝔸10)+𝔸1/(𝔸10)𝔸1/𝔸10,(t,x)tx.\eta^{\prime}:(\mathbb{A}^{1}\setminus 0)_{+}\wedge\mathbb{A}^{1}/(\mathbb{A}^{1}\setminus 0)\to\mathbb{A}^{1}/\mathbb{A}^{1}\setminus 0,\quad(t,x)\mapsto tx.

Consider the commutative diagram of pointed motivic spaces (with 𝔸1\mathbb{A}^{1} pointed at 11)

𝔾m×𝔾m𝔾m×𝔸1(𝔾m×𝔸1)/(𝔾m×𝔾m)(𝔸10)+𝔸1/(𝔸10)η𝔾m𝔸1𝔸1/𝔾m.\begin{CD}{\mathbb{G}_{m}}\times{\mathbb{G}_{m}}@>{}>{}>{\mathbb{G}_{m}}\times\mathbb{A}^{1}@>{}>{}>({\mathbb{G}_{m}}\times\mathbb{A}^{1})/({\mathbb{G}_{m}}\times{\mathbb{G}_{m}})\simeq(\mathbb{A}^{1}\setminus 0)_{+}\wedge\mathbb{A}^{1}/(\mathbb{A}^{1}\setminus 0)\\ @V{}V{}V@V{}V{}V@V{\eta^{\prime}}V{}V\\ {\mathbb{G}_{m}}@>{}>{}>\mathbb{A}^{1}@>{}>{}>\mathbb{A}^{1}/{\mathbb{G}_{m}}.\end{CD}

All the vertical maps are induced by (t,x)tx(t,x)\mapsto tx and the horizontal maps are induced by the canonical inclusions and projections. Stably this splits as [Mor04a, Lemma 6.1.1]

𝔾m𝔾m𝔾m2(id,0,0)𝔾mS2,1Σ2,1𝔾m(id,id,Σ1,1η)Σ2,1η~𝔾m0S2,1.\begin{CD}{\mathbb{G}_{m}}\vee{\mathbb{G}_{m}}\vee{\mathbb{G}_{m}^{\wedge 2}}@>{(\operatorname{id},0,0)}>{}>{\mathbb{G}_{m}}@>{}>{}>S^{2,1}\vee\Sigma^{2,1}{\mathbb{G}_{m}}\\ @V{(\operatorname{id},\operatorname{id},\Sigma^{1,1}\eta)}V{}V@V{}V{}V@V{\Sigma^{2,1}\tilde{\eta}}V{}V\\ {\mathbb{G}_{m}}@>{}>{}>0@>{}>{}>S^{2,1}.\end{CD}

Since the rows are cofibration sequences, it follows that η~(id,η)\tilde{\eta}\simeq(\operatorname{id},\eta), which implies the desired result. ∎

We call E𝒮S1fr(S)E\in\mathcal{SH}^{S^{1}\mathrm{fr}}(S) η\eta-periodic if the canonical map η:EΩ𝔾mE\eta^{*}:E\to\Omega_{\mathbb{G}_{m}}E is an equivalence. Write

𝒮S1fr(S)[η1]𝒮S1fr(S)\mathcal{SH}^{S^{1}\mathrm{fr}}(S)[\eta^{-1}]\subset\mathcal{SH}^{S^{1}\mathrm{fr}}(S)

for the full subcategory on η\eta-periodic spectra. These are the local objects of a symmetric monoidal localization of 𝒮S1fr(S)\mathcal{SH}^{S^{1}\mathrm{fr}}(S).

Lemma 3.5.

There is a canonical equivalence 𝒮S1fr(S)[η1]𝒮(S)[η1]\mathcal{SH}^{S^{1}\mathrm{fr}}(S)[\eta^{-1}]\simeq\mathcal{SH}(S)[\eta^{-1}].

Proof.

In light of Lemma 3.4, this is a special case of [Hoy16, Proposition 3.2]. ∎

3.4.

From now on we fix a Dedekind scheme DD with 1/2D1/2\in D. Consider ωfr(KW)𝒮S1fr(D)𝒮hv𝒮Nis(Corfr(D))\omega^{\infty}_{\mathrm{fr}}(\mathrm{KW})\in\mathcal{SH}^{S^{1}\mathrm{fr}}(D)\subset\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}(\mathrm{Cor}^{\mathrm{fr}}(D)). This object is η\eta-periodic by construction.

Definition 3.6.

We put

HW=τ=0Nisωfr(KW)𝒮hv𝒮Nis(Corfr(D)).\mathrm{HW}=\tau_{=0}^{\mathrm{Nis}}\omega^{\infty}_{\mathrm{fr}}(\mathrm{KW})\in\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}(\mathrm{Cor}^{\mathrm{fr}}(D)).
Remark 3.7.

Multiplication by βi\beta^{i} induces τ=4iNisωfr(KW)HW\tau_{=4i}^{\mathrm{Nis}}\omega^{\infty}_{\mathrm{fr}}(\mathrm{KW})\simeq\mathrm{HW}, and the other homotopy sheaves vanish [Sch17, Proposition 6.3] [Bal05, Theorem 1.5.22].

Lemma 3.8.

HW\mathrm{HW} is motivically local and η\eta-periodic.

Proof.

The framed construction of KO\mathrm{KO} as in [BW21, §A] together with Lemma 3.4 shows that the map η:HWΩ𝔾mHW\eta^{*}:\mathrm{HW}\to\Omega_{\mathbb{G}_{m}}\mathrm{HW} is on the level of spectral sheaves (i.e. sheaves of abelian groups) induced by multiplication by t1\langle t\rangle-1. The result now follows from Remark 2.9. ∎

Thus HW\mathrm{HW} defines an object of 𝒮(D)[η1]\mathcal{SH}(D)[\eta^{-1}].

3.5.

By construction, the forgetful functor 𝒮S1fr(D)[η1]𝒮(D)[η1]𝒮(D)\mathcal{SH}^{S^{1}\mathrm{fr}}(D)[\eta^{-1}]\to\mathcal{SH}(D)[\eta^{-1}]\subset\mathcal{SH}(D) sends HW\mathrm{HW} to the spectrum (W¯,W¯,)(\underline{W},\underline{W},\dots), with the canonical structure maps. It follows that there is a canonical morphism (of ring spectra) K¯WHW\underline{K}^{W}\to\mathrm{HW}, given in degree nn by the inclusion I¯nW¯\underline{I}^{n}\hookrightarrow\underline{W}. The main point of the following result is to determine the action of η\eta on K¯W\underline{K}^{W}.

Lemma 3.9.

The canonical maps K¯WHW\underline{K}^{W}\to\mathrm{HW} and K¯Wk¯M\underline{K}^{W}\to\underline{k}^{M} induce equivalences K¯W[η1]HW\underline{K}^{W}[\eta^{-1}]\simeq\mathrm{HW} and K¯W/ηk¯M\underline{K}^{W}/\eta\simeq\underline{k}^{M}.

Proof.

The equivalence 𝒮fr(D)𝒮(D)\mathcal{SH}^{\mathrm{fr}}(D)\simeq\mathcal{SH}(D) restricts to the subcategories of those objects such that π¯i(-)j=0\underline{\pi}_{i}(\mathord{-})_{j}=0 for i0i\neq 0. These are exactly the objects representable by prespectra valued in sheaves of abelian groups that are motivic spectra when viewed as valued in spectral sheaves. The construction of HW\mathrm{HW} supplies the sheaf W¯\underline{W} with a structure of framed transfers. Then the subsheaf I¯n\underline{I}^{n} admits at most one compatible structure of framed transfers; the existence of the map K¯WHW\underline{K}^{W}\to\mathrm{HW} together with the above discussion shows that this structure exists. This supplies a description of the (unique) lift of K¯W\underline{K}^{W} to 𝒮fr(D)\mathcal{SH}^{\mathrm{fr}}(D). From this and Lemma 3.4 it follows that the action by η\eta on K¯W\underline{K}^{W} induces the inclusion I¯+1I¯\underline{I}^{*+1}\to\underline{I}^{*} on homotopy sheaves. This implies immediately that K¯W[η1]HW\underline{K}^{W}[\eta^{-1}]\to\mathrm{HW} induces an isomorphism on homotopy sheaves and hence is an equivalence (see Remark 3.3). For K¯W/η\underline{K}^{W}/\eta the same argument works using Theorem 2.1. ∎

3.6.

Definition 3.10.

We put kw=τ0NisωfrKW𝒮hv𝒮Nis(Corfr(D))\mathrm{kw}=\tau_{\geq 0}^{\mathrm{Nis}}\omega_{\mathrm{fr}}^{\infty}\mathrm{KW}\in\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}(\mathrm{Cor}^{\mathrm{fr}}(D))

The canonical map KOKW𝒮(D)\mathrm{KO}\to\mathrm{KW}\in\mathcal{SH}(D) induces

τ0NisωfrKOkw.\tau_{\geq 0}^{\mathrm{Nis}}\omega_{\mathrm{fr}}^{\infty}\mathrm{KO}\to\mathrm{kw}.

The following is one of the main results of this section.

Lemma 3.11.
  1. (1)

    The objects τ0NisωfrKO,kw𝒮hv𝒮Nis(Corfr(D))\tau_{\geq 0}^{\mathrm{Nis}}\omega^{\infty}_{\mathrm{fr}}\mathrm{KO},\mathrm{kw}\in\mathcal{S}\mathrm{hv}^{\mathrm{Nis}}_{\mathcal{SH}}(\mathrm{Cor}^{\mathrm{fr}}(D)) are motivically local.

  2. (2)

    kw\mathrm{kw} is η\eta-periodic.

  3. (3)

    The canonical map ΣS1ΩfrKOτ0NisωfrKO\Sigma^{\infty}_{S^{1}}\Omega^{\infty}_{\mathrm{fr}}\mathrm{KO}\to\tau_{\geq 0}^{\mathrm{Nis}}\omega^{\infty}_{\mathrm{fr}}\mathrm{KO} is an equivalence.

  4. (4)

    The canonical map ΣS1ΩfrKOkw\Sigma^{\infty}_{S^{1}}\Omega^{\infty}_{\mathrm{fr}}\mathrm{KO}\to\mathrm{kw} is an η\eta-periodization.

Proof.

(1, 2) Since the negative homotopy sheaves (in weight 0) of KO\mathrm{KO} and KW\mathrm{KW} coincide [Sch17, Proposition 6.3], we have

τ<0NisωfrKOτ<0NisωfrKW=:E.\tau_{<0}^{\mathrm{Nis}}\omega^{\infty}_{\mathrm{fr}}\mathrm{KO}\simeq\tau_{<0}^{\mathrm{Nis}}\omega^{\infty}_{\mathrm{fr}}\mathrm{KW}=:E.

Since ωKO\omega^{\infty}\mathrm{KO} and ωfrKW\omega^{\infty}_{\mathrm{fr}}\mathrm{KW} are motivically local, and ωfrKW\omega^{\infty}_{\mathrm{fr}}\mathrm{KW} is η\eta-periodic, it thus suffices to show that EE is motivically local and η\eta-periodic. Since motivically local, η\eta-periodic spectral presheaves are closed under limits and colimits, by Remark 3.7 it thus suffices to show that τ=0NisωfrKWHW\tau^{\mathrm{Nis}}_{=0}\omega^{\infty}_{\mathrm{fr}}\mathrm{KW}\simeq\mathrm{HW} is motivically local and η\eta-periodic. This is Lemma 3.8.

(3) It follows from Remark 3.2 that the functor ΣS1ΩS1\Sigma^{\infty}_{S^{1}}\Omega^{\infty}_{S^{1}} sends the spectral sheaf EE on Corfr(D)\mathrm{Cor}^{\mathrm{fr}}(D) to LmotEL_{\mathrm{mot}}E^{\prime}, where E(X)E(X)0E^{\prime}(X)\simeq E(X)_{\geq 0}. We thus obtain ΣS1ΩS1Lmotτ0Nis\Sigma^{\infty}_{S^{1}}\Omega^{\infty}_{S^{1}}\simeq L_{\mathrm{mot}}\tau_{\geq 0}^{\mathrm{Nis}}. Since ΩfrΩS1ωfr\Omega^{\infty}_{\mathrm{fr}}\simeq\Omega^{\infty}_{S^{1}}\circ\omega^{\infty}_{\mathrm{fr}}, the result follows.

(4) KOKW𝒮(S)\mathrm{KO}\to\mathrm{KW}\in\mathcal{SH}(S) is an η\eta-periodization. It follows from [Hoy16, Lemma 3.3] and [BH21, Lemma 12.1] that ωfr\omega^{\infty}_{\mathrm{fr}} preserves η\eta-periodizations. Hence ωfrKOωfrKW\omega^{\infty}_{\mathrm{fr}}\mathrm{KO}\to\omega^{\infty}_{\mathrm{fr}}\mathrm{KW} is an η\eta-periodization. Thus it suffices to show that

τ<0NisωfrKOτ<0NisωfrKW\tau^{\mathrm{Nis}}_{<0}\omega^{\infty}_{\mathrm{fr}}\mathrm{KO}\to\tau^{\mathrm{Nis}}_{<0}\omega^{\infty}_{\mathrm{fr}}\mathrm{KW}

is an η\eta-periodization. Since this is an equivalence of η\eta-periodic objects (see the proof of (1,2)), this is clear. ∎

Thus in particular kw\mathrm{kw} defines an object of 𝒮(D)[η1]\mathcal{SH}(D)[\eta^{-1}].

4. Main results

4.1.

Fix a Dedekind scheme DD with 1/2D1/2\in D. In the previous two sections we have defined ring spectra K¯W,k¯M\underline{K}^{W},\underline{k}^{M} and HW\mathrm{HW} (and kw\mathrm{kw}) in 𝒮(D)\mathcal{SH}(D).

Definition 4.1.

Define commutative ring spectra HW\mathrm{H}_{W}\mathbb{Z} and H~\mathrm{H}\tilde{\mathbb{Z}} in 𝒮(D)\mathcal{SH}(D) as pullbacks in the following diagram with cartesian squares

H~HWK¯WHH/2k¯M.\begin{CD}\mathrm{H}\tilde{\mathbb{Z}}@>{}>{}>\mathrm{H}_{W}\mathbb{Z}@>{}>{}>\underline{K}^{W}\\ @V{}V{}V@V{}V{}V@V{}V{}V\\ \mathrm{H}\mathbb{Z}@>{}>{}>\mathrm{H}\mathbb{Z}/2@>{}>{}>\underline{k}^{M}.\end{CD}
Definition 4.2.

Put kofr:=ΣfrΩfrKO\mathrm{ko}^{\mathrm{fr}}:=\Sigma^{\infty}_{\mathrm{fr}}\Omega^{\infty}_{\mathrm{fr}}\mathrm{KO}.

Lemma 4.3.

If DD is the spectrum of a field, then K¯W,k¯M,HW,HW,H~\underline{K}^{W},\underline{k}^{M},\mathrm{HW},\mathrm{H}_{W}\mathbb{Z},\mathrm{H}\tilde{\mathbb{Z}} and kw\mathrm{kw} coincide with their usual definitions, and kofrko\mathrm{ko}^{\mathrm{fr}}\simeq\mathrm{ko}.

Over a field, the spectra K¯W,k¯M\underline{K}^{W},\underline{k}^{M} are defined in [Mor12, Example 3.33], the spectra HW,H~\mathrm{H}_{W}\mathbb{Z},\mathrm{H}\tilde{\mathbb{Z}} are defined in [Bac17, Notation p. 12] (another definition of H~\mathrm{H}\tilde{\mathbb{Z}} was given in [DF17], the two definitions are shown to coincide in [BF17]), the spectrum ko\mathrm{ko} is defined in [ARØ20], and the spectra HW,kw\mathrm{HW},\mathrm{kw} are defined in [BH20, §6.3.2].

Proof.

We first treat ko\mathrm{ko}. Since very effective covers are stable under pro-smooth base change [BH21, Lemma B.1], and kofr\mathrm{ko}^{\mathrm{fr}} is stable under arbitrary base change (see the proof of Theorem 4.5 below), we may assume that the base field is perfect. In this case 𝒮pc(k)gpfr𝒮(k)veff\mathcal{S}\mathrm{pc}{}^{\mathrm{fr}}(k)^{\mathrm{gp}}\simeq\mathcal{SH}(k)^{\text{veff}} [EHK+21, Theorem 3.5.14(i)] and hence ΣfrΩfr\Sigma^{\infty}_{\mathrm{fr}}\Omega^{\infty}_{\mathrm{fr}} coincides with the very effective cover functor. Thus kokofr\mathrm{ko}\simeq\mathrm{ko}^{\mathrm{fr}} as needed.

The claim for kw\mathrm{kw} follows via [BH20, Lemma 6.9] and Lemma 3.11(4).

For K¯W,k¯M\underline{K}^{W},\underline{k}^{M}, the claim is true essentially by construction. This implies the claim for HW\mathrm{HW} via Lemma 3.9.

The claim for HW\mathrm{H}_{W}\mathbb{Z} now follows from [Bac17, Theorem 17] (see also [BH20, (6.5)]). For H~\mathrm{H}\tilde{\mathbb{Z}} consider the commutative diagram

EK¯MWK¯WHK¯Mk¯M.\begin{CD}E@>{}>{}>\underline{K}^{MW}@>{}>{}>\underline{K}^{W}\\ @V{}V{}V@V{}V{}V@V{}V{}V\\ \mathrm{H}\mathbb{Z}@>{}>{}>\underline{K}^{M}@>{}>{}>\underline{k}^{M}.\end{CD}

The left hand square is defined to be cartesian, so that by [Bac17, Theorem 17], EE coincides with the usual definition of H~\mathrm{H}\tilde{\mathbb{Z}}. The right hand square is cartesian by [Mor04b, Theorem 5.3]. Hence the outer rectangle is cartesian and EH~E\simeq\mathrm{H}\tilde{\mathbb{Z}} as defined above. This concludes the proof. ∎

Lemma 4.4.

Over a Dedekind scheme containing 1/21/2 we have π¯(kw)W¯[β]\underline{\pi}_{*}(\mathrm{kw})\simeq\underline{W}[\beta] and kw/βHW\mathrm{kw}/\beta\simeq\mathrm{HW}.

Proof.

Immediate from Remarks 3.7 and 3.3. ∎

The following is one of our main results.

Theorem 4.5.

The spectra K¯W,k¯M,HW,HW,H~,kofr\underline{K}^{W},\underline{k}^{M},\mathrm{HW},\mathrm{H}_{W}\mathbb{Z},\mathrm{H}\tilde{\mathbb{Z}},\mathrm{ko}^{\mathrm{fr}} and kw\mathrm{kw} are stable under base change among Dedekind schemes containing 1/21/2.

Proof.

For kofr\mathrm{ko}^{\mathrm{fr}} this follows from the facts that (1) ΩKO𝒮pc(D)\Omega^{\infty}\mathrm{KO}\in\mathcal{S}\mathrm{pc}{}(D) is motivically equivalent to the orthogonal Grassmannian [ST15, Theorem 1.1], which is stable under under base change, and that (2) the forgetful functor 𝒮pc(D)fr𝒮pc(D)\mathcal{S}\mathrm{pc}{}^{\mathrm{fr}}(D)\to\mathcal{S}\mathrm{pc}{}(D) commutes with base change [Hoy21, Lemma 16]. The case of kw\mathrm{kw} follows from this and Lemma 3.11, which shows that kwkofr[η1]\mathrm{kw}\simeq\mathrm{ko}^{\mathrm{fr}}[\eta^{-1}]. The case of HW\mathrm{HW} now follows from Lemma 4.4.

The spectra H\mathrm{H}\mathbb{Z} and H/2\mathrm{H}\mathbb{Z}/2 are stable under base change [Spi18], and hence so is k¯M(H/2)/τ\underline{k}^{M}\simeq(\mathrm{H}\mathbb{Z}/2)/\tau (see Lemma 2.7). To show that K¯W\underline{K}^{W} is stable under base change it suffices to show the same about K¯W[η1]\underline{K}^{W}[\eta^{-1}] and K¯W/η\underline{K}^{W}/\eta (see e.g. [BH20, Lemma 2.16]). In light of Lemma 3.9, this thus follows from the cases of HW\mathrm{HW} and k¯M\underline{k}^{M}, which we have already established.

Finally the stability under base change of HW\mathrm{H}_{W}\mathbb{Z} and H~\mathrm{H}\tilde{\mathbb{Z}} reduces by definition to the same claim about H,H/2,k¯M\mathrm{H}\mathbb{Z},\mathrm{H}\mathbb{Z}/2,\underline{k}^{M} and K¯W\underline{K}^{W}, which we have aready dealt with.

This concludes the proof. ∎

Definition 4.6.

Let SS be a scheme with 1/2S1/2\in S. Define spectra K¯W,k¯M,HW,HW,H~,kofr,kw𝒮(S)\underline{K}^{W},\underline{k}^{M},\mathrm{HW},\mathrm{H}_{W}\mathbb{Z},\mathrm{H}\tilde{\mathbb{Z}},\mathrm{ko}^{\mathrm{fr}},\mathrm{kw}\in\mathcal{SH}(S) by pullback along the unique map SSpec([1/2])S\to\mathrm{Spec}(\mathbb{Z}[1/2]).

Remark 4.7.
  1. (1)

    By Theorem 4.5, if SS is a Dedekind scheme, the new and old definitions agree.

  2. (2)

    The proof of Theorem 4.5 shows that for SS regular we have koSfrΣfrΩfrKOS\mathrm{ko}^{\mathrm{fr}}_{S}\simeq\Sigma^{\infty}_{\mathrm{fr}}\Omega^{\infty}_{\mathrm{fr}}\mathrm{KO}_{S} and hence kwS(ΣfrΩfrKOS)[η1]\mathrm{kw}_{S}\simeq(\Sigma^{\infty}_{\mathrm{fr}}\Omega^{\infty}_{\mathrm{fr}}\mathrm{KO}_{S})[\eta^{-1}].

  3. (3)

    Since formation of homotopy sheaves is compatible with essentially smooth base change, and so is W¯\underline{W} (see e.g. [Bac18b, Corollary 51]), we find that if SDS\to D is essentially smooth then π¯(kwS)W¯[β]\underline{\pi}_{*}(\mathrm{kw}_{S})\simeq\underline{W}[\beta], and similarly for the homotopy sheaves of the other spectra.

Lemma 4.8.

Suppose that SS has finite dimension. Let E𝒮(S)E\in\mathcal{SH}(S) (respectively E𝒮(S)effE\in\mathcal{SH}(S)^{\text{eff}}). Then E𝒮(S)0E\in\mathcal{SH}(S)_{\leq 0} (respectively E𝒮(S)0effE\in\mathcal{SH}(S)^{\text{eff}}_{\leq 0}) if and only if π¯i(E)=0\underline{\pi}_{i}(E)_{*}=0 for i>0i>0 and *\in\mathbb{Z} (respectively i>0i>0 and =0*=0).

Proof.

We give the proof for 𝒮(S)\mathcal{SH}(S), the one for 𝒮(S)eff\mathcal{SH}(S)^{\text{eff}} is analogous. Since by definition ΣiΣ+X𝔾mj𝒮(S)>0\Sigma^{i}\Sigma^{\infty}_{+}X\wedge{\mathbb{G}_{m}^{\wedge j}}\in\mathcal{SH}(S)_{>0} for i>0,ji>0,j\in\mathbb{Z}, necessity is straightforward. We now show sufficiency. Let 𝒞𝒮(S)\mathcal{C}\subset\mathcal{SH}(S) denote the subcategory on those spectra FF with Map(ΣF,E)=\mathrm{Map}(\Sigma F,E)=*. We need to show that 𝒮(S)0𝒞\mathcal{SH}(S)_{\geq 0}\subset\mathcal{C}. By definition, for this it is enough to show that (a) 𝒞\mathcal{C} is closed under colimits, (b) 𝒞\mathcal{C} is closed under extensions, and (c) Σ+X𝔾mi𝒞\Sigma^{\infty}_{+}X\wedge{\mathbb{G}_{m}^{\wedge i}}\in\mathcal{C} for every XSmSX\in{\mathrm{S}\mathrm{m}}_{S} and ii\in\mathbb{Z}. (a) is clear, and (b) follows from the fact that given any fiber sequence of spaces S*\to S\to* we must have SS\simeq*. To prove (c), it is enough to show that Ω(𝔾miE)𝒮hv𝒮pcNis(SmS)\Omega^{\infty}({\mathbb{G}_{m}^{\wedge i}}\wedge E)\simeq*\in\mathcal{S}\mathrm{hv}_{\mathcal{S}\mathrm{pc}{}}^{\mathrm{Nis}}({\mathrm{S}\mathrm{m}}_{S}). By [BH21, Proposition A.3], this can be checked on homotopy sheaves. ∎

Remark 4.9.

In contrast with the case of fields, if SS has positive dimension, then homotopy sheaves do not characterize 𝒮(S)0\mathcal{SH}(S)_{\geq 0}. That is, given E𝒮(S)0E\in\mathcal{SH}(S)_{\geq 0}, it need not be the case that π¯i(E)=0\underline{\pi}_{i}(E)_{*}=0 for i<0i<0.111This was previously known as Morel’s stable connectivity conjecture.

We denote by τ0,τ0\tau_{\geq 0},\tau_{\leq 0} (respectively τ0eff,τ0eff\tau_{\geq 0}^{\text{eff}},\tau_{\leq 0}^{\text{eff}}) the truncation functors for the homotopy tt-structure on 𝒮(S)\mathcal{SH}(S) (respectively 𝒮(S)eff\mathcal{SH}(S)^{\text{eff}}) and f0f_{0} for the effective cover functor; see e.g. [BH21, §B] for a uniform treatment.

Remark 4.10.

We will repeatedly use [BH21, Proposition B.3], which states the following: if E𝒮(S)E\in\mathcal{SH}(S), where SS is finite dimensional, then E𝒮(S)0E\in\mathcal{SH}(S)_{\geq 0} (respectively 𝒮(S)eff,𝒮(S)0eff\mathcal{SH}(S)^{\text{eff}},\mathcal{SH}(S)^{\text{eff}}_{\geq 0}, respectively {0}\{0\}) if and only if for every point sSs\in S with inclusion is:sSi_{s}:s\hookrightarrow S we have is(E)𝒮(s)0i_{s}^{*}(E)\in\mathcal{SH}(s)_{\geq 0} (respectively is(E)𝒮(s)eff,is(E)𝒮(s)0effi_{s}^{*}(E)\in\mathcal{SH}(s)^{\text{eff}},i_{s}^{*}(E)\in\mathcal{SH}(s)^{\text{eff}}_{\geq 0}, is(E)0i_{s}^{*}(E)\simeq 0).

Corollary 4.11.

Let DD be a Dedekind scheme containing 1/21/2, and SDS\to D pro-smooth (e.g. essentially smooth). The canonical maps exhibit equivalences in 𝒮(S)\mathcal{SH}(S)

kwτ0KW\displaystyle\mathrm{kw}\simeq\tau_{\geq 0}\mathrm{KW}
HWτ0𝟙[η1]τ0kw\displaystyle\mathrm{HW}\simeq\tau_{\leq 0}\mathbbm{1}[\eta^{-1}]\simeq\tau_{\leq 0}\mathrm{kw}
HWf0HWf0K¯W\displaystyle\mathrm{H}_{W}\mathbb{Z}\simeq f_{0}\mathrm{HW}\simeq f_{0}\underline{K}^{W}
H~τ0eff𝟙τ0effkofr\displaystyle\mathrm{H}\tilde{\mathbb{Z}}\simeq\tau_{\leq 0}^{\text{eff}}\mathbbm{1}\simeq\tau_{\leq 0}^{\text{eff}}\mathrm{ko}^{\mathrm{fr}}
K¯Wτ0HW.\displaystyle\underline{K}^{W}\simeq\tau_{\leq 0}\mathrm{H}_{W}\mathbb{Z}.
Proof.

By [BH21, Lemma B.1], pro-smooth base change commutes with truncation in the homotopy tt-structure, in the effective homotopy tt-structure, and also with effective covers. We may thus assume that S=DS=D.

Consider the cofiber sequence kwKWE\mathrm{kw}\to\mathrm{KW}\to E. To prove that kwτ0KW\mathrm{kw}\simeq\tau_{\geq 0}\mathrm{KW}, it is enough to show that kw𝒮(D)0\mathrm{kw}\in\mathcal{SH}(D)_{\geq 0} and E𝒮(D)<0E\in\mathcal{SH}(D)_{<0}. By Remark 4.10 we may check the first claim after base change to fields, and hence by Theorem 4.5 for this part we may assume that DD is the spectrum of a field, where the claim holds by definition. The second claim follows via Lemma 4.8 from our definition of kw\mathrm{kw} as a connective cover in the Nisnevich topology (see Definition 3.10).

Consider the fiber sequence F𝟙[η1]HWF\to\mathbbm{1}[\eta^{-1}]\to\mathrm{HW}. To prove that τ0𝟙[η1]HW\tau_{\leq 0}\mathbbm{1}[\eta^{-1}]\simeq\mathrm{HW} it suffices to show that F𝒮(D)>0F\in\mathcal{SH}(D)_{>0} and HW𝒮(D)0\mathrm{HW}\in\mathcal{SH}(D)_{\leq 0}. As before the first claim can be checked over fields where it holds by definition, and the second one follows from Lemma 4.8 and the definition of HW\mathrm{HW} (see Definition 3.6). The argument for τ0kwHW\tau_{\leq 0}\mathrm{kw}\simeq\mathrm{HW} is similar.

Since the map K¯WHW\underline{K}^{W}\to\mathrm{HW} of §3.5 induces an isomorphism on π¯(-)0\underline{\pi}_{*}(\mathord{-})_{0} (by construction), we have f0HWf0K¯Wf_{0}\mathrm{HW}\simeq f_{0}\underline{K}^{W}. We have HW𝒮(D)eff\mathrm{H}_{W}\mathbb{Z}\in\mathcal{SH}(D)^{\text{eff}} by checking over fields; it thus remains to show that f0HWf0K¯Wf_{0}\mathrm{H}_{W}\mathbb{Z}\simeq f_{0}\underline{K}^{W}. By the defining fiber square, for this it is enough to show that f0H/2f0k¯Mf_{0}\mathrm{H}\mathbb{Z}/2\simeq f_{0}\underline{k}^{M}. This follows from the cofibration sequence

Σ0,1H/2𝜏H/2k¯M\Sigma^{0,-1}\mathrm{H}\mathbb{Z}/2\xrightarrow{\tau}\mathrm{H}\mathbb{Z}/2\to\underline{k}^{M}

together with the fact that f1H/20f_{1}\mathrm{H}\mathbb{Z}/2\simeq 0 (see e.g. [BH21, Theorem B.4]).

We have H~𝒮(D)veff\mathrm{H}\tilde{\mathbb{Z}}\in\mathcal{SH}(D)^{\text{veff}} by checking over fields. Knowledge of π¯(H)0\underline{\pi}_{*}(\mathrm{H}\mathbb{Z})_{0}\simeq\mathbb{Z}, π¯(k¯M)0=/2\underline{\pi}_{*}(\underline{k}^{M})_{0}=\mathbb{Z}/2 and π¯(K¯W)0W¯\underline{\pi}_{*}(\underline{K}^{W})_{0}\simeq\underline{W} implies via Lemma 4.8 that H~𝒮(D)0eff\mathrm{H}\tilde{\mathbb{Z}}\in\mathcal{SH}(D)^{\text{eff}}_{\leq 0}. It hence remains to show that the fibers of 𝟙H~\mathbbm{1}\to\mathrm{H}\tilde{\mathbb{Z}} and kofrH~\mathrm{ko}^{\mathrm{fr}}\to\mathrm{H}\tilde{\mathbb{Z}} are in 𝒮(D)>0eff\mathcal{SH}(D)^{\text{eff}}_{>0}, which may again be checked over fields.

Consider the fiber sequence FHWK¯WF\to\mathrm{H}_{W}\mathbb{Z}\to\underline{K}^{W}. We need to show that F𝒮(D)1F\in\mathcal{SH}(D)_{\geq 1} and K¯W𝒮(D)0\underline{K}^{W}\in\mathcal{SH}(D)_{\leq 0}. As before the first claim can be checked over fields where it holds by [Bac17, Lemma 18], and the second claim follows from Lemma 4.8 and the knowledge of the homotopy sheaves of K¯W\underline{K}^{W}, i.e. Remark 2.9.

This concludes the proof. ∎

4.2.

Recall from [BH20, §3] the stable Adams operation ψ3:KO[1/3]KO[1/3]𝒮(D)\psi^{3}:\mathrm{KO}[1/3]\to\mathrm{KO}[1/3]\in\mathcal{SH}(D). Via Corollary 4.11 this induces ψ3:kw(2)kw(2)𝒮(D)\psi^{3}:\mathrm{kw}_{(2)}\to\mathrm{kw}_{(2)}\in\mathcal{SH}(D).

Theorem 4.12.

Let DD be a Dedekind scheme with 1/2D1/2\in D.

  1. (1)

    The map ψ3id:kw(2)kw(2)\psi^{3}-\operatorname{id}:\mathrm{kw}_{(2)}\to\mathrm{kw}_{(2)} factors uniquely (up to homotopy) through β:Σ4kw(2)kw(2)\beta:\Sigma^{4}\mathrm{kw}_{(2)}\to\mathrm{kw}_{(2)}, yielding

    φ:kw(2)Σ4kw(2)𝒮(D).\varphi:\mathrm{kw}_{(2)}\to\Sigma^{4}\mathrm{kw}_{(2)}\in\mathcal{SH}(D).
  2. (2)

    The unit map 𝟙kw(2)\mathbbm{1}\to\mathrm{kw}_{(2)} factors uniquely (up to homotopy) through the fiber of φ\varphi.

  3. (3)

    The resulting sequence

    𝟙[η1](2)kw𝜑Σ4kw(2)𝒮(D)\mathbbm{1}[\eta^{-1}]_{(2)}\to\mathrm{kw}\xrightarrow{\varphi}\Sigma^{4}\mathrm{kw}_{(2)}\in\mathcal{SH}(D)

    is a fiber sequence.

In particular for any scheme SS with 1/2S1/2\in S there is a canonical fiber sequence

1[η1](2)kw(2)𝜑Σ4kw(2)𝒮(S).1[\eta^{-1}]_{(2)}\to\mathrm{kw}_{(2)}\xrightarrow{\varphi}\Sigma^{4}\mathrm{kw}_{(2)}\in\mathcal{SH}(S).
Proof.

(1,2) We can repeat the arguments from [BH20, Corollary 7.2]. It suffices to show that (a) 𝟙[η1]kw\mathbbm{1}[\eta^{-1}]\to\mathrm{kw} is 11-connected, (b) kw/β𝒮(D)0\mathrm{kw}/\beta\in\mathcal{SH}(D)_{\leq 0}, and (c) [𝟙,Σnkw]𝒮(D)=0[\mathbbm{1},\Sigma^{n}\mathrm{kw}]_{\mathcal{SH}(D)}=0 for n{3,4}n\in\{3,4\}. (a) can be checked over fields, hence holds by [BH20, Lemma 7.1]. (b) follows from Lemma 4.4 (showing that kw/βHW\mathrm{kw}/\beta\simeq\mathrm{HW}) and Corollary 4.11 (showing that HW𝒮(D)0\mathrm{HW}\in\mathcal{SH}(D)_{\leq 0}). (c) follows from knowledge of the homotopy sheaves of kw\mathrm{kw} together with the descent spectral sequence, using that dimD1\dim D\leq 1.

(3) We need to show that the (unique) map 𝟙[η1]fib(φ)\mathbbm{1}[\eta^{-1}]\to\mathrm{fib}(\varphi) is an equivalence. This can be checked over fields, where it is [BH20, Theorem 7.8].

The last claim follows by pullback along SSpec([1/2])S\to\mathrm{Spec}(\mathbb{Z}[1/2]). ∎

5. Applications

Throughout we assume that 22 is invertible on all schemes. We shall employ the special linear and symplectic cobordism spectra MSL\mathrm{MSL} and MSp\mathrm{MSp}; see e.g. [BH21, Example 16.22] for a definition.

5.1.

Recall that kwMSLkw[e2,e4,]\mathrm{kw}_{*}\mathrm{MSL}\simeq\mathrm{kw}_{*}[e_{2},e_{4},\dots] with |e2i|=4i|e_{2i}|=4i [BH20, Theorem 4.1]. The canonical orientation MSLkw\mathrm{MSL}\to\mathrm{kw} induces MSLkwτ0kwHW\mathrm{MSL}\to\mathrm{kw}\to\tau_{\leq 0}\mathrm{kw}\simeq\mathrm{HW} and hence

kwMSLkwkwkwHW.\mathrm{kw}_{*}\mathrm{MSL}\to\mathrm{kw}_{*}\mathrm{kw}\to\mathrm{kw}_{*}\mathrm{HW}.
Proposition 5.1.

The images of the e2ie_{2i} induce equivalences of right modules

kwkw(2)i0kw(2){e2i}andkwHW(2)i0HW(2){e2i}.\mathrm{kw}\wedge\mathrm{kw}_{(2)}\simeq\bigvee_{i\geq 0}\mathrm{kw}_{(2)}\{e_{2i}\}\quad\text{and}\quad\mathrm{kw}\wedge\mathrm{HW}_{(2)}\simeq\bigvee_{i\geq 0}\mathrm{HW}_{(2)}\{e_{2i}\}.
Proof.

We may assume that S=Spec([1/2])S=\mathrm{Spec}(\mathbb{Z}[1/2]) and thus we may check that the induced map is an equivalence after base change to fields [BH21, Proposition B.3]. Hence this follows from [BH20, Proposition 7.7]. ∎

5.2.

Proposition 5.2.

Let SS be essentially smooth over a Dedekind scheme. We have

π¯(𝟙S[η1]){W¯=0W¯[1/2]πscoker(8n:W¯(2)W¯(2))=4n1>0W¯[1/2]πsker(8n:W¯(2)W¯(2))=4n>0W¯[1/2]πselse.\underline{\pi}_{*}(\mathbbm{1}_{S}[\eta^{-1}])\simeq\begin{cases}\underline{W}&*=0\\ \underline{W}[1/2]\otimes\pi_{*}^{s}\oplus\mathrm{coker}(8n:\underline{W}_{(2)}\to\underline{W}_{(2)})&*=4n-1>0\\ \underline{W}[1/2]\otimes\pi_{*}^{s}\oplus\ker(8n:\underline{W}_{(2)}\to\underline{W}_{(2)})&*=4n>0\\ \underline{W}[1/2]\otimes\pi_{*}^{s}&\text{else}\end{cases}.

Here πs\pi_{*}^{s} denotes the classical stable stems.

Proof.

We first show that π¯0(𝟙[η1])π¯0(HW)W¯\underline{\pi}_{0}(\mathbbm{1}[\eta^{-1}])\to\underline{\pi}_{0}(\mathrm{HW})\simeq\underline{W} is an isomorphism. We may do so after (2)\otimes\mathbb{Z}_{(2)} and [1/2]\otimes\mathbb{Z}[1/2]; the former case is immediate from the fundamental fiber sequence (using Remark 4.7(3)) and the latter case follows from real realization (since W¯[1/2]are´t[1/2]\underline{W}[1/2]\simeq a_{r\acute{e}t}\mathbb{Z}[1/2] [Jac17, Corollary 7.1]). In particular it follows that φ\varphi is W¯\underline{W}-linear (see [BH20, Example 3.7]). The proof of [BH20, Theorem 8.1] now goes through unchanged. ∎

5.3.

Lemma 5.3.

Suppose that DD is a localization of \mathbb{Z}. Then H(D,W¯)=0H^{*}(D,\underline{W})=0 for >0*>0.

Proof.

[MH73, Corollary IV.3.3] shows that for any Dedekind scheme DD there is a natural exact sequence of abelian groups ()(*)

0W(D)xD(0)W(x)xD(1)W(x,ωx/D).0\to W(D)\to\bigoplus_{x\in D^{(0)}}W(x)\to\bigoplus_{x\in D^{(1)}}W(x,\omega_{x/D}).

The last map is surjective if DD has only one point, and hence these sequences constitute a resolution of the presheaf WW on DNisD_{\mathrm{Nis}}. The terms of this resolution are acyclic [Mor12, Lemma 5.42]222The proof of this result does not use the stated assumption that XX is smooth over a field., and hence this resolution can be used to compute cohomology. In order to show that H(D,W¯)=0H^{*}(D,\underline{W})=0 for >0*>0 it suffices to show that the right most map of ()(*) is surjective. Clearly if this is true for DD then it also holds for any localization of DD. It hence suffices to prove surjectivity for \mathbb{Z}; this is [MH73, Theorem IV.2.1]. ∎

Example 5.4.

Lemma 5.3 shows that the descent spectral sequence for πkw\pi_{*}\mathrm{kw} (or πKW\pi_{*}\mathrm{KW}) collapses over [1/2]\mathbb{Z}[1/2] (and localizations of this base). Thus

πkw[1/2]W([1/2])[β].\pi_{*}\mathrm{kw}_{\mathbb{Z}[1/2]}\simeq\mathrm{W}(\mathbb{Z}[1/2])[\beta].

From this we can read off as in the proof of Proposition 5.2 that (using that W([1/2])[1/2][1/2]\mathrm{W}(\mathbb{Z}[1/2])[1/2]\simeq\mathbb{Z}[1/2])

π(𝟙[1/2][η1]){W([1/2])=0πs[1/2]coker(8n:W([1/2])(2)W([1/2])(2))=4n1>0πs[1/2]ker(8n:W([1/2])(2)W([1/2])(2))=4n>0πs[1/2]else.\pi_{*}(\mathbbm{1}_{\mathbb{Z}[1/2]}[\eta^{-1}])\simeq\begin{cases}\mathrm{W}(\mathbb{Z}[1/2])&*=0\\ \pi_{*}^{s}[1/2]\oplus\mathrm{coker}(8n:\mathrm{W}(\mathbb{Z}[1/2])_{(2)}\to\mathrm{W}(\mathbb{Z}[1/2])_{(2)})&*=4n-1>0\\ \pi_{*}^{s}[1/2]\oplus\ker(8n:\mathrm{W}(\mathbb{Z}[1/2])_{(2)}\to\mathrm{W}(\mathbb{Z}[1/2])_{(2)})&*=4n>0\\ \pi_{*}^{s}[1/2]&\text{else}\end{cases}.
Remark 5.5.

We often use the above result in conjunction with the isomorphism (see e.g. [BW21, proof of Theorem 5.11])

W([1/2])[g]/(g2,2g).\mathrm{W}(\mathbb{Z}[1/2])\simeq\mathbb{Z}[g]/(g^{2},2g).

(Here g=21g=\langle 2\rangle-1.) Note in particular that W([1/2])red\mathrm{W}(\mathbb{Z}[1/2])_{\mathrm{red}}\simeq\mathbb{Z}, W([1/2])(2)\mathrm{W}(\mathbb{Z}[1/2])_{(2)} is a local ring, and W([1/2])W()\mathrm{W}(\mathbb{Z}[1/2])\hookrightarrow\mathrm{W}(\mathbb{Q}).

5.4.

Proposition 5.6.
  1. (1)

    We have

    πMSp[1/2][η1]W([1/2])[y1,y2,].\pi_{*}\mathrm{MSp}_{\mathbb{Z}[1/2]}[\eta^{-1}]\simeq\mathrm{W}(\mathbb{Z}[1/2])[y_{1},y_{2},\dots].
  2. (2)

    The generators from (1) induce for a scheme SS essentially smooth over a Dedekind scheme DD with 1/2D1/2\in D

    π¯MSpS[η1]W¯[y1,y2,]\underline{\pi}_{*}\mathrm{MSp}_{S}[\eta^{-1}]\simeq\underline{W}[y_{1},y_{2},\dots]

    and

    π¯MSLS[η1]W¯[y2,y4,].\underline{\pi}_{*}\mathrm{MSL}_{S}[\eta^{-1}]\simeq\underline{W}[y_{2},y_{4},\dots].
  3. (3)

    Over any SS we have MSp/(y1,y3,)MSL\mathrm{MSp}/(y_{1},y_{3},\dots)\simeq\mathrm{MSL}.

  4. (4)

    There exist generators y2,y4,y_{2},y_{4},\dots such that MSL/(y4,y6,)kw.\mathrm{MSL}/(y_{4},y_{6},\dots)\simeq\mathrm{kw}.

Proof.

We implicitly invert η\eta throughout.

We first prove (1) and the part of (2) about MSp\mathrm{MSp}, localized at 22. Note that kwMSp(2)W([1/2])(2)[e1,e2,]\mathrm{kw}_{*}\mathrm{MSp}_{(2)}\simeq\mathrm{W}(\mathbb{Z}[1/2])_{(2)}[e_{1},e_{2},\dots] is degreewise finitely generated over the local ring W([1/2])(2)\mathrm{W}(\mathbb{Z}[1/2])_{(2)} (see Remark 5.5). Moreover base change along Spec()Spec([1/2])\mathrm{Spec}(\mathbb{C})\to\mathrm{Spec}(\mathbb{Z}[1/2]) implements the map W([1/2])(2)W()\mathrm{W}(\mathbb{Z}[1/2])_{(2)}\to\mathrm{W}(\mathbb{C}) of passing to the residue field. Consider the morphism

φ:kwMSp(2)kw4MSp(2).\varphi:\mathrm{kw}_{*}\mathrm{MSp}_{(2)}\to\mathrm{kw}_{*-4}\mathrm{MSp}_{(2)}.

We deduce from the above discussion and [BH20, Lemma 8.4] that φW([1/2])(2)𝔽2\varphi\otimes_{\mathrm{W}(\mathbb{Z}[1/2])_{(2)}}\mathbb{F}_{2} is surjective, and hence φ\varphi is split surjective. Then ker(φ)W([1/2])(2)𝔽2ker(φW([1/2])(2)𝔽2)\ker(\varphi)\otimes_{\mathrm{W}(\mathbb{Z}[1/2])_{(2)}}\mathbb{F}_{2}\simeq\ker(\varphi\otimes_{\mathrm{W}(\mathbb{Z}[1/2])_{(2)}}\mathbb{F}_{2}) is a polynomial ring on generators y¯i\bar{y}_{i}. Write y~iπMSp(2)\tilde{y}_{i}\in\pi_{*}\mathrm{MSp}_{(2)} for arbitrary lifts of these generators. The proof of [BH20, Corollary 8.6] shows that if Spec(k)Spec([1/2])\mathrm{Spec}(k)\to\mathrm{Spec}(\mathbb{Z}[1/2]) is an arbitrary field, then π(MSp(2))(k)W(k)(2)[y~1,y~2,]\pi_{*}(\mathrm{MSp}_{(2)})(k)\simeq\mathrm{W}(k)_{(2)}[\tilde{y}_{1},\tilde{y}_{2},\dots]. We shall show that if SS is henselian local and essentially smooth over DD then π(MSp(2))(S)π(MSp(2))(s)\pi_{*}(\mathrm{MSp}_{(2)})(S)\simeq\pi_{*}(\mathrm{MSp}_{(2)})(s), where ss is the closed point; this will imply our claims. Using the fundamental fiber sequence, for this it is enough to show that W(S)W(s)\mathrm{W}(S)\simeq\mathrm{W}(s), which holds by [Jac18, Lemma 4.1].

Note that by real realization, π(MSp[1/2])([1/2])π(MSp[1/2])()[y1,y2,]\pi_{*}(\mathrm{MSp}[1/2])(\mathbb{Z}[1/2])\simeq\pi_{*}(\mathrm{MSp}[1/2])(\mathbb{R})\simeq\mathbb{Z}[y_{1}^{\prime},y_{2}^{\prime},\dots]. Let J=ker(π(MSp)([1/2])π(HW)([1/2]))J=\ker(\pi_{*}(\mathrm{MSp})(\mathbb{Z}[1/2])\to\pi_{*}(\mathrm{HW})(\mathbb{Z}[1/2])) and M=(J/J2)2nM=(J/J^{2})_{2n}. We shall prove that MW([1/2])M\simeq\mathrm{W}(\mathbb{Z}[1/2]). The argument is the same as in [BH20, Theorem 8.7]: such isomorphisms exist for M(2)M_{(2)} and M[1/2]M[1/2] by what we have already done, which implies that MM is an invertible W([1/2])\mathrm{W}(\mathbb{Z}[1/2])-module, but W([1/2])red\mathrm{W}(\mathbb{Z}[1/2])_{\mathrm{red}}\simeq\mathbb{Z} (see Remark 5.5) and hence all such invertible modules are trivial. Write ynπ2n(MSp)([1/2])y_{n}\in\pi_{2n}(\mathrm{MSp})(\mathbb{Z}[1/2]) for any lift of a generator of MM. We shall prove that the proposition holds with these choices of yiy_{i}.

Let SS be as in (2). To show that π¯(MSpS)W¯[y1,y2,]\underline{\pi}_{*}(\mathrm{MSp}_{S})\simeq\underline{W}[y_{1},y_{2},\dots], it is enough that the map is an isomorphism after (2)\otimes\mathbb{Z}_{(2)} and after [1/2]\otimes\mathbb{Z}[1/2]. The former case was already dealt with. For the latter, we use the equivalence 𝒮(S)[1/2,1/η]𝒮(Sre´t)[1/2]\mathcal{SH}(S)[1/2,1/\eta]\simeq\mathcal{SH}(S_{r\acute{e}t})[1/2]. We are this way reduced to proving that if E𝒮([1/2]re´t)[1/2]E\in\mathcal{SH}(\mathbb{Z}[1/2]_{r\acute{e}t})[1/2] with πE[1/2,y1,y2,]\pi_{*}E\simeq\mathbb{Z}[1/2,y_{1},y_{2},\dots], then for any morphism f:S[1/2]f:S\to\mathbb{Z}[1/2] we have π¯(fE)W¯[1/2,y1,y2,]\underline{\pi}_{*}(f^{*}E)\simeq\underline{W}[1/2,y_{1},y_{2},\dots]. This follows from the facts that (a) Sper([1/2])\mathrm{Sper}(\mathbb{Z}[1/2])\simeq*, so our assumption implies that π¯Eare´t[1/2,y1,y2,]\underline{\pi}_{*}E\simeq a_{r\acute{e}t}\mathbb{Z}[1/2,y_{1},y_{2},\dots], (b) ff^{*} is (in this setting) tt-exact, and (c) W¯[1/2]are´t[1/2]\underline{W}[1/2]\simeq a_{r\acute{e}t}\mathbb{Z}[1/2].

We have now proved (2) for MSp\mathrm{MSp}. Claim (1) follows from the descent spectral sequence and Lemma 5.3. Next we claim that over [1/2]\mathbb{Z}[1/2] (and hence in general), MSpMSL\mathrm{MSp}\to\mathrm{MSL} annihilates yiy_{i} for ii odd. Indeed we can check this after (2)\otimes\mathbb{Z}_{(2)} and [1/2]\otimes\mathbb{Z}[1/2]; the latter cases reduces via real realization to the base field \mathbb{R} where we already know it. For the former case, we first verify as above that φ:kwMSL(2)kw4MSL(2)\varphi:\mathrm{kw}_{*}\mathrm{MSL}_{(2)}\to\mathrm{kw}_{*-4}\mathrm{MSL}_{(2)} is surjective, and hence πMSL(2)kwMSL(2)\pi_{*}\mathrm{MSL}_{(2)}\to\mathrm{kw}_{*}\mathrm{MSL}_{(2)} is injective; the claim follows easily from this. It follows that we may form MSp/(y1,y3,)MSL\mathrm{MSp}/(y_{1},y_{3},\dots)\to\mathrm{MSL}. To check that this is an equivalence we may pull back to fields, and so we are reduced to [BH20, Corollary 8.9]. We have now proved (3), which implies the missing half of (2).

It remains to establish (4). We claim that π4MSL[1/2]π4kw[1/2]\pi_{4}\mathrm{MSL}_{\mathbb{Z}[1/2]}\to\pi_{4}\mathrm{kw}_{\mathbb{Z}[1/2]} is surjective, and hence an isomorphism since both groups are free W([1/2])\mathrm{W}(\mathbb{Z}[1/2])-modules of rank 11. This we may check after (2)\otimes\mathbb{Z}_{(2)} and [1/2]\otimes\mathbb{Z}[1/2]. In the former case, we have a morphism of finitely generated modules over a local ring, so may check W([1/2])(2)𝔽2\otimes_{\mathrm{W}(\mathbb{Z}[1/2])_{(2)}}\mathbb{F}_{2}, i.e. over \mathbb{C}, in which case the claim holds by [BH20, Lemma 8.10]. In the latter case, via real realization we reduce to \mathbb{R}, and so again the claim holds by [BH20, Lemma 8.10]. The upshot is that we may choose y2y_{2} in such a way that its image in π4kw\pi_{4}\mathrm{kw} is the generator β\beta. Then as in the proof of [BH20, Corollary 8.11] we modify the other generators to be annihilated in kw\mathrm{kw} to obtain a map MSL/(y4,y6,)kw\mathrm{MSL}/(y_{4},y_{6},\dots)\to\mathrm{kw}. This map is an equivalence since it is so after pullback to fields, by [BH20, Corollary 8.11]. ∎

5.5.

Proposition 5.7.

Let 𝒮\mathcal{S} be the set of primes not invertible on SS. The spectra kw,HW,H~[𝒮1],HW,K¯W𝒮(S)\mathrm{kw},\mathrm{HW},\mathrm{H}\tilde{\mathbb{Z}}[\mathcal{S}^{-1}],\mathrm{H}_{W}\mathbb{Z},\underline{K}^{W}\in\mathcal{SH}(S) are cellular.

Proof.

We can argue as in [BH20, Proposition 8.12]:

For kw\mathrm{kw} this follows from Proposition 5.6(3, 4) and cellularity of MSp\mathrm{MSp}. Hence HWkw/β\mathrm{HW}\simeq\mathrm{kw}/\beta is cellular. H[𝒮1]\mathrm{H}\mathbb{Z}[\mathcal{S}^{-1}] is cellular by [Spi18, Corollary 11.4]; in particular H/2\mathrm{H}\mathbb{Z}/2 and k¯M(H/2)/τ\underline{k}^{M}\simeq(\mathrm{H}\mathbb{Z}/2)/\tau are cellular. Thus K¯W/ηk¯M\underline{K}^{W}/\eta\simeq\underline{k}^{M} and K¯W[η1]HW\underline{K}^{W}[\eta^{-1}]\simeq\mathrm{HW} are cellular and thus so is K¯W\underline{K}^{W}. Cellularity of H~[𝒮1]\mathrm{H}\tilde{\mathbb{Z}}[\mathcal{S}^{-1}] and HW\mathrm{H}_{W}\mathbb{Z} now follows from the defining fiber squares (in which all the other objects are cellular by what we have already proved). ∎

5.6.

Proposition 5.8.

For arbitrary SS we have

kw(2)kwkw(2)φ,\mathrm{kw}^{*}_{(2)}\mathrm{kw}\simeq\mathrm{kw}^{*}_{(2)}\llbracket^{\prime}\varphi\rrbracket,

in the sense that φ\varphi need not be central and so the multiplicative structure is more complicated than a power series ring. We have φβ=9βφ+8\varphi\beta=9\beta\varphi+8.

Proof.

Stability under base change implies that [BH20, Lemma 8.14] holds over any base; hence the additive structure of kw(2)kw\mathrm{kw}^{*}_{(2)}\mathrm{kw} can be determined as in [BH20, proof of Corollary 8.15]. The interaction of β\beta and φ\varphi may be determined over [1/2]\mathbb{Z}[1/2]. Since W([1/2])W()\mathrm{W}(\mathbb{Z}[1/2])\hookrightarrow\mathrm{W}(\mathbb{Q}) we are reduced to S=Spec()S=\mathrm{Spec}(\mathbb{Q}), which was already dealt with in [BH20, Corollary 8.19]. ∎

Example 5.9.

Suppose that SS is essentially smooth over a Dedekind scheme, H(S,W¯)=0H^{*}(S,\underline{W})=0 for >0*>0, and W(S)\mathrm{W}(S) is generated by 11-dimensional forms (e.g. SS local or a localization of \mathbb{Z}). Then kwW(S)[β]\mathrm{kw}^{*}\simeq\mathrm{W}(S)[\beta] and π0(𝟙)π0(kw)\pi_{0}(\mathbbm{1})\to\pi_{0}(\mathrm{kw}) is surjective, whence φ\varphi commutes with W(S)\mathrm{W}(S). It follows that Proposition 5.8 yields a complete description of kw(2)kw\mathrm{kw}^{*}_{(2)}\mathrm{kw}.

5.7.

Proposition 5.10.
  1. (1)

    There exist generators xiπ4i(kwHW(2))x_{i}\in\pi_{4i}(\mathrm{kw}\wedge\mathrm{HW}_{(2)}) such that

    xmxn=(m+nn)xm+n.x_{m}x_{n}={m+n\choose n}x_{m+n}.
  2. (2)

    We have

    HWHW(2)n0Σ4nHW/8n.\mathrm{HW}\wedge\mathrm{HW}_{(2)}\simeq\bigvee_{n\geq 0}\Sigma^{4n}\mathrm{HW}/8n.
Proof.

(1) The proofs of [BH20, Propositions 8.16 and 8.18] can be repeated unchanged.

(2) The image of β\beta in π4(kwHW(2))\pi_{4}(\mathrm{kw}\wedge\mathrm{HW}_{(2)}) is given by ax1ax_{1} for some aW([1/2])a\in\mathrm{W}(\mathbb{Z}[1/2]). The argument of [BH20, Lemma 8.14] shows that a=8ua=8u for some unit uu. The result now follows from (1), as in the proof of [BH20, Corollary 8.16]. ∎

References

  • [ARØ20] Alexey Ananyevskiy, Oliver Röndigs, and Paul Arne Østvær, On very effective hermitian K-theory, Mathematische Zeitschrift 294 (2020), no. 3, 1021–1034.
  • [Bac17] Tom Bachmann, The generalized slices of Hermitian K-theory, Journal of Topology 10 (2017), no. 4, 1124–1144, arXiv:1610.01346.
  • [Bac18a] by same author, Motivic and real étale stable homotopy theory, Compositio Mathematica 154 (2018), no. 5, 883–917, arXiv:1608.08855.
  • [Bac18b] Tom Bachmann, Some remarks on units in Grothendieck–Witt rings, Journal of Algebra 499 (2018), 229 – 271, arXiv:1707.08087.
  • [Bal05] P Balmer, Witt groups. Handbook of K-theory, 539-576, 2005.
  • [BF17] Tom Bachmann and Jean Fasel, On the effectivity of spectra representing motivic cohomology theories, arXiv:1710.00594.
  • [BH20] Tom Bachmann and Michael J. Hopkins, η\eta-periodic motivic stable homotopy theory over fields, arXiv:2005.06778, 2020.
  • [BH21] Tom Bachmann and Marc Hoyois, Norms in Motivic Homotopy Theory, Astérisque 425 (2021), arXiv:1711.03061.
  • [BW21] Tom Bachmann and Kirsten Wickelgren, 𝔸1\mathbb{A}^{1}-Euler classes: six functors formalisms, dualities, integrality and linear subspaces of complete intersections, Journal of the Institute of Mathematics of Jussieu (2021), arXiv:2002.01848.
  • [CD09] Denis-Charles Cisinski and Frédéric Déglise, Local and stable homological algebra in Grothendieck abelian categories, Homology, Homotopy and Applications 11 (2009), no. 1, 219–260.
  • [DF17] F. Déglise and J. Fasel, MW-motivic complexes, arxiv:1708.06095.
  • [DKY22] Neeraj Deshmukh, Girish Kulkarni, and Suraj Yadav, A Nisnevich local Bloch-Ogus theorem over a general base, Journal of Pure and Applied Algebra 226 (2022), no. 6, 106978.
  • [EHK+20] Elden Elmanto, Marc Hoyois, Adeel A Khan, Vladimir Sosnilo, and Maria Yakerson, Framed transfers and motivic fundamental classes, Journal of Topology 13 (2020), no. 2, 460–500.
  • [EHK+21] Elden Elmanto, Marc Hoyois, Adeel A. Khan, Vladimir Sosnilo, and Maria Yakerson, Motivic infinite loop spaces, Cambridge Journal of Mathematics 9 (2021), no. 2, 431–549.
  • [GAV72] Alexander Grothendieck, M Artin, and JL Verdier, Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Mathematics 269 (1972).
  • [Gei04] Thomas Geisser, Motivic cohomology over Dedekind rings, Mathematische Zeitschrift 248 (2004), no. 4, 773–794.
  • [Gro67] A. Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. Rédigé avec la colloboration de Jean Dieudonné., Publ. Math., Inst. Hautes Étud. Sci. 32 (1967), 1–361 (French).
  • [Hor05] Jens Hornbostel, A1A^{1}-representability of Hermitian K-theory and Witt groups, Topology 44 (2005), no. 3, 661–687.
  • [Hoy15] Marc Hoyois, From algebraic cobordism to motivic cohomology, Journal für die reine und angewandte Mathematik (Crelles Journal) 2015 (2015), no. 702, 173–226.
  • [Hoy16] by same author, Cdh descent in equivariant homotopy KK-theory, arXiv preprint arXiv:1604.06410 (2016).
  • [Hoy21] by same author, The localization theorem for framed motivic spaces, Compositio Mathematica 157 (2021), no. 1, 1–11.
  • [ILO14] Luc Illusie, Yves Laszlo, and Fabrice Orgogozo, Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. Séminaire à l’École polytechnique 2006–2008, 2014.
  • [Jac17] Jeremy Jacobson, Real cohomology and the powers of the fundamental ideal in the Witt ring, Annals of K-Theory 2 (2017), no. 3, 357–385.
  • [Jac18] Jeremy Allen Jacobson, Cohomological invariants for quadratic forms over local rings, Mathematische Annalen 370 (2018), no. 1-2, 309–329.
  • [Kne77] Manfred Knebusch, Symmetric bilinear forms over algebraic varieties, Conference on quadratic forms (G. Orzech, ed.), Queen’s papers in pure and applied mathematics, vol. 46, Queens University, Kingston, Ontario, 1977, pp. 103–283.
  • [Lur16] Jacob Lurie, Higher Algebra, May 2016.
  • [Lur18] by same author, Spectral Algebraic Geometry, February 2018.
  • [MH73] John Willard Milnor and Dale Husemoller, Symmetric bilinear forms, vol. 60, Springer, 1973.
  • [Mor04a] Fabien Morel, On the motivic π0\pi_{0} of the sphere spectrum, Axiomatic, enriched and motivic homotopy theory, Springer, 2004, pp. 219–260.
  • [Mor04b] by same author, Sur les puissances de l’idéal fondamental de l’anneau de Witt, Commentarii Mathematici Helvetici 79 (2004), no. 4, 689–703.
  • [Mor12] by same author, 𝔸1\mathbb{A}^{1}-Algebraic Topology over a Field, Lecture Notes in Mathematics, Springer Berlin Heidelberg, 2012.
  • [PW10] Ivan Panin and Charles Walter, On the motivic commutative ring spectrum BO, arXiv preprint arXiv:1011.0650 (2010).
  • [Sch17] Marco Schlichting, Hermitian K-theory, derived equivalences and Karoubi’s fundamental theorem, Journal of Pure and Applied Algebra 221 (2017), no. 7, 1729–1844.
  • [Seg74] Graeme Segal, Categories and cohomology theories, Topology 13 (1974), no. 3, 293–312.
  • [Ser13] Jean-Pierre Serre, Galois cohomology, Springer Science & Business Media, 2013.
  • [Spi18] Markus Spitzweck, A commutative 1\mathbb{P}^{1}-spectrum representing motivic cohomology over Dedekind domains, Mém. Soc. Math. Fr. 157 (2018).
  • [ST15] Marco Schlichting and Girja S Tripathi, Geometric models for higher Grothendieck–Witt groups in 𝔸1\mathbb{A}^{1}-homotopy theory, Mathematische Annalen 362 (2015), no. 3-4, 1143–1167.
  • [Sta18] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2018.