This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Estimation of the eigenvalues and the integral of the eigenfunctions of the Newtonian potential operator

Abdulaziz Alsenafi, Ahcene Ghandriche ∗∗ and Mourad Sini
Abstract.

We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain Ωd\Omega\subset\mathbb{R}^{d}, where d=2,3d=2,3, in terms of the maximum radius of Ω\Omega. We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds are quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in d\mathbb{R}^{d} in the presence of small scaled and highly heterogeneous particles.

Key words and phrases:
Logarithmic potential operator, asymptotic expansions, Bessel functions, min-max principle, spectral theory.
2010 Mathematics Subject Classification:
31B10, 35R30, 35C20
Department of Mathematics, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait. Email: [email protected]
Nanjing Center for Applied Mathematics, Nanjing 211135, People’s Republic of China. Email: [email protected].
RICAM, Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040, Linz, Austria. Email: [email protected].

1. Introduction and statement of the results

1.1. Introduction

The Newtonian potential integral operator, in d\mathbb{R}^{d}, d=2,3d=2,3, is of considerable interest in both scattering and potential theory, without being exhaustive we refer the readers to [6, 3, 1, 8, 7, 2].

Let Ω\Omega be a bounded and Lipschitz-regular domain of d\mathbb{R}^{d}, d=2,3d=2,3. The Newtonian operator correspond to any function ff the potential

(1.1) u(x)=NΩ(f)(x):=Ωϕ0(x,y)f(y)𝑑y,xΩ,u(x)=N_{\Omega}\left(f\right)(x):=\int_{\Omega}\phi_{0}(x,y)\,f(y)\,dy,\quad x\in\Omega,

where

(1.2) ϕ0(x,y):={12πlog|xy|in2,14π|xy|in3,\phi_{0}(x,y):=\left\{\begin{array}[]{rll}\dfrac{-1}{2\,\pi}\log\left|x-y\right|&\text{in}&\quad\mathbb{R}^{2},\\ &&\\ \dfrac{1}{4\,\pi\,\left|x-y\right|}&\text{in}&\quad\mathbb{R}^{3},\end{array}\right.

is the fundamental solution of the Laplacian operator, i.e.,

Δϕ0(x,y)=δ(x,y),indford=2,3,-\Delta\phi_{0}(x,y)=\delta(x,y),\quad\text{in}\quad\mathbb{R}^{d}\quad\text{for}\;d=2,3,

where δ(,)\delta(\cdot,\cdot) is the Dirac function. It is well known that NΩ()N_{\Omega}(\cdot), is a linear, compact, self-adjoint non-negative operator on 𝕃2(Ω)\mathbb{L}^{2}(\Omega) and it carries 𝕃2(Ω)\mathbb{L}^{2}(\Omega) to 2(Ω)\mathbb{H}^{2}(\Omega). For other useful properties of Newtonian potential operator we refer the readers to [4, 10, 13, 9]. Therefore, NΩ()N_{\Omega}(\cdot) has a countable decreasing sequence of eigenvalues, with possible multiplicities, that we denote in the sequel by {λn(Ω)}n0\left\{\lambda_{n}(\Omega)\right\}_{n\geq 0}, with the corresponding eigenfunctions as a basis of the space 𝕃2(Ω)\mathbb{L}^{2}(\Omega). Unfortunately, the literature on computing explicitly its eigenvalues and the corresponding eigenfunctions is not that rich and it has focused only on ’simple’ domains, e.g. symmetric domains, see [9, 4]. For the particular case of a ball, in 3\mathbb{R}^{3}, of radius aa, the authors of [9, Theorem 4.2] have given explicit expressions for the eigenvalues defined by

(1.3) λl,j=a2[μj(l+12)]2,l0andj1,\lambda_{l,j}=\frac{a^{2}}{\left[\mu_{j}^{(l+\frac{1}{2})}\right]^{2}},\quad l\geq 0\quad\text{and}\quad j\geq 1,

where μj(l+12)\mu_{j}^{(l+\frac{1}{2})} are the roots of the transcendental equation

(1.4) (2l+1)Jl+12(μj(l+12))+μj(l+12)2(Jl12(μj(l+12))Jl+32(μj(l+12)))=0,\left(2\,l+1\right)\;\LARGE\textbf{J}_{l+\frac{1}{2}}\left(\mu_{j}^{(l+\frac{1}{2})}\right)+\frac{\mu_{j}^{(l+\frac{1}{2})}}{2}\;\left(\LARGE\textbf{J}_{l-\frac{1}{2}}\left(\mu_{j}^{(l+\frac{1}{2})}\right)-\LARGE\textbf{J}_{l+\frac{3}{2}}\left(\mu_{j}^{(l+\frac{1}{2})}\right)\right)=0,

where Jν()\LARGE\textbf{J}_{\nu}\left(\cdot\right),   for ν\nu\in\mathbb{R}, refers to the Bessel function of fractional order. We recall that Jν()\LARGE\textbf{J}_{\nu}\left(\cdot\right), admits the following representation

(1.5) Jν(x)=k=0(1)kΓ(k+1)Γ(k+1+ν)x2k+ν22k+ν,\LARGE\textbf{J}_{\nu}\left(x\right)=\sum_{k=0}^{\infty}\frac{(-1)^{k}}{\Gamma(k+1)\,\Gamma(k+1+\nu)}\;\frac{x^{2k+\nu}}{2^{2k+\nu}},

where Γ()\Gamma(\cdot) stands for the Gamma function. The eigenfunctions corresponding to each eigenvalue λl,j\lambda_{l,j} can be represented, in spherical coordinates, in the form

(1.6) ul,j,m(r,ϕ,θ)=Jl+12(λl,jr)𝕐lm(ϕ,θ),with|m|l,u_{l,j,m}(r,\phi,\theta)=\LARGE\textbf{J}_{l+\frac{1}{2}}\left(\sqrt{\lambda_{l,j}}\,r\right)\mathbb{Y}_{l}^{m}(\phi,\theta),\quad\text{with}\;\;\left|m\right|\leq l,

where

(1.7) 𝕐lm(ϕ,θ)={lm(cos(θ))cos(mϕ)form=0,,l,l|m|(cos(θ))sin(|m|ϕ)form=1,,l,\mathbb{Y}_{l}^{m}(\phi,\theta)=\left\{\begin{array}[]{rll}\mathbb{P}_{l}^{m}\left(\cos(\theta)\right)\;\cos(m\phi)&\text{for}&\quad m=0,\cdots,l,\\ &&\\ \mathbb{P}_{l}^{\left|m\right|}\left(\cos(\theta)\right)\;\sin(\left|m\right|\phi)&\text{for}&\quad m=-1,\cdots,-l,\end{array}\right.

where lm\mathbb{P}_{l}^{m} are the associated Legendre polynomials. It is clear, from (1.4)(\ref{muFractionalOrder}), that μj(l+12)1\mu_{j}^{(l+\frac{1}{2})}\sim 1, for l0l\geq 0 and j1j\geq 1. Hence, from (1.3)(\ref{EigValFractionalOrder}), we obtain

(1.8) λl,ja2,forl0andj1.\lambda_{l,j}\,\sim\,a^{2},\quad\text{for}\;l\geq 0\;\text{and}\;j\geq 1.

For the integral of the eigenfunctions, we have

Dul,j,m(x)𝑑x=(1.6)0aJl+12(λl,jr)r2𝑑r02π0π𝕐lm(ϕ,θ)cos(θ)𝑑θ𝑑ϕ.\int_{D}u_{l,j,m}(x)\,dx\overset{(\ref{EigFctFO})}{=}\int_{0}^{a}\,\LARGE\textbf{J}_{l+\frac{1}{2}}\left(\sqrt{\lambda_{l,j}}\,r\right)\,r^{2}\,dr\,\int_{0}^{2\,\pi}\,\int_{0}^{\pi}\mathbb{Y}_{l}^{m}(\phi,\theta)\,\cos(\theta)\,d\theta\,d\phi.

Observe, from (1.7)(\ref{SphericalHarmonics}), that for m0m\neq 0

02π0π𝕐lm(ϕ,θ)cos(θ)𝑑θ𝑑ϕ=0.\int_{0}^{2\,\pi}\,\int_{0}^{\pi}\mathbb{Y}_{l}^{m}(\phi,\theta)\,\cos(\theta)\,d\theta\,d\phi=0.

Then, by taking m=0m=0 we obtain

Dul,j,0(x)𝑑x=2π0aJl+12(λl,jr)r2𝑑r0πl0(cos(θ))cos(θ)𝑑θ.\int_{D}u_{l,j,0}(x)\,dx=2\,\pi\,\int_{0}^{a}\,\LARGE\textbf{J}_{l+\frac{1}{2}}\left(\sqrt{\lambda_{l,j}}\,r\right)\,r^{2}\,dr\,\,\int_{0}^{\pi}\mathbb{P}_{l}^{0}(\cos(\theta))\,\cos(\theta)\,d\theta.

We can check that111This can be proved using the series representation of 2l0()\mathbb{P}_{2l}^{0}(\cdot), given by 2l0(x)=14lm=0l(1)m(4l2m)!m!(2lm)!(2l2m)!x2l2m.\mathbb{P}_{2l}^{0}(x)=\frac{1}{4^{l}}\sum_{m=0}^{l}(-1)^{m}\frac{(4l-2m)!}{m!\,(2l-m)!\,(2l-2m)!}\,x^{2l-2m}. for ll even, we have

0πl0(cos(θ))cos(θ)𝑑θ=0.\int_{0}^{\pi}\mathbb{P}_{l}^{0}(\cos(\theta))\,\cos(\theta)\,d\theta=0.

Hence, by keeping only the odd index, we end up with

Du2l+1,j,0(x)𝑑x\displaystyle\int_{D}u_{2l+1,j,0}(x)\,dx =\displaystyle= 2π0aJ2l+32(λ2l+1,jr)r2𝑑r0π2l+10(cos(θ))cos(θ)𝑑θ\displaystyle 2\,\pi\,\int_{0}^{a}\,\LARGE\textbf{J}_{2l+\frac{3}{2}}\left(\sqrt{\lambda_{2l+1,j}}\,r\right)\,r^{2}\,dr\,\,\int_{0}^{\pi}\mathbb{P}_{2l+1}^{0}(\cos(\theta))\,\cos(\theta)\,d\theta
=(1.3)\displaystyle\overset{(\ref{EigValFractionalOrder})}{=} 2π(μj(2l+32)a)30a2μj(2l+32)J2l+32(r)r2𝑑r0π2l+10(cos(θ))cos(θ)𝑑θ.\displaystyle 2\,\pi\,\left(\dfrac{\mu_{j}^{(2l+\frac{3}{2})}}{a}\right)^{3}\,\int_{0}^{\dfrac{a^{2}}{\mu_{j}^{(2l+\frac{3}{2})}}}\,\LARGE\textbf{J}_{2l+\frac{3}{2}}\left(r\right)\,r^{2}\,dr\,\,\int_{0}^{\pi}\mathbb{P}_{2l+1}^{0}(\cos(\theta))\,\cos(\theta)\,d\theta.

Using the series representation of 2l+10()\mathbb{P}_{2l+1}^{0}(\cdot), we obtain:

0π2l+10(cos(θ))cos(θ)𝑑θ=m=0l(1)m(4l+22m)!π22(2l+1m)(lm)!(l+1m)! 1.\int_{0}^{\pi}\mathbb{P}_{2l+1}^{0}(\cos(\theta))\,\cos(\theta)\,d\theta=\sum_{m=0}^{l}(-1)^{m}\,\frac{\left(4l+2-2m\right)!\,\pi}{2^{2(2l+1-m)}\,(l-m)!\;(l+1-m)!}\;\sim\;1.

Then, knowing that μj(2l+32) 1\mu_{j}^{(2l+\frac{3}{2})}\,\sim\,1, we deduce

(1.9) Du2l+1,j,0(x)𝑑xa30a2J2l+32(r)r2𝑑r.\int_{D}u_{2l+1,j,0}(x)\,dx\sim a^{-3}\,\int_{0}^{a^{2}}\,\LARGE\textbf{J}_{2l+\frac{3}{2}}\left(r\right)\,r^{2}\,dr.

Now, using (1.5)(\ref{BFFOS}),

0a2J2l+32(r)r2𝑑r=a9+4lk=0(1)kΓ(k+1)Γ(k+2l+52)122k+2l+32a4k92+2k+2la9+4l.\int_{0}^{a^{2}}\,\LARGE\textbf{J}_{2l+\frac{3}{2}}\left(r\right)\,r^{2}\,dr=a^{9+4l}\sum_{k=0}^{\infty}\frac{(-1)^{k}}{\Gamma(k+1)\,\Gamma\left(k+2l+\frac{5}{2}\right)}\;\frac{1}{2^{2k+2l+\frac{3}{2}}}\;\frac{a^{4k}}{\frac{9}{2}+2k+2l}\;\sim\;a^{9+4l}.

Hence,

(1.10) Du2l+1,j,0(x)𝑑xa6+4l.\int_{D}u_{2l+1,j,0}(x)\,dx\,\sim\,a^{6+4l}.

For the 𝕃2(D)\mathbb{L}^{2}(D) norm of u2l+1,j,0()u_{2l+1,j,0}(\cdot), similarly to (1.9)(\ref{ApprInt}), we can derive

(1.11) u2l+1,j,0𝕃2(D)2a30a2|J2l+32(r)|2r2𝑑r(1.5)a9+8l.\left\|u_{2l+1,j,0}\right\|^{2}_{\mathbb{L}^{2}(D)}\;\sim\;a^{-3}\,\,\int_{0}^{a^{2}}\left|\LARGE\textbf{J}_{2l+\frac{3}{2}}\left(r\right)\right|^{2}\,r^{2}\,dr\;\overset{(\ref{BFFOS})}{\sim}\;a^{9+8l}.

By setting v2l+1,j,0:=u2l+1,j,0u2l+1,j,0𝕃2(D)v_{2l+1,j,0}:=\dfrac{u_{2l+1,j,0}}{\left\|u_{2l+1,j,0}\right\|_{\mathbb{L}^{2}(D)}} to be the normalized eigenfunctions and combining (1.10)(\ref{NU}) with (1.11)(\ref{DU}), we end up with the following estimation

(1.12) Dv2l+1,j,0(x)𝑑xa32.\int_{D}v_{2l+1,j,0}(x)\,dx\;\sim\;a^{\frac{3}{2}}.

Finally, in the case of ball of radius aa, we deduce from (1.8)(\ref{EVNB}) and (1.12)(\ref{EFNB}), the following behaviour

(1.13) λl,ja2andDv2l+1,j,0(x)𝑑xa32for l0andj1.\lambda_{l,j}\,\sim\,a^{2}\quad\text{and}\quad\int_{D}v_{2l+1,j,0}(x)\,dx\;\sim\;a^{\frac{3}{2}}\quad\text{for }l\geq 0\;\,\text{and}\;\,j\geq 1.

Deriving analogous formula for (1.13)(\ref{3DEigS}), in the case of two dimension space is more complicated. The reason for this is the additive logarithmic term appearing after scaling the fundamental solution in two dimension. More precisely, from (1.2)(\ref{FundamentalSolution}), we see that

(1.14) ϕ0(x,y)=a1ϕ0(x~,y~),in 3D,andϕ0(x,y)=12πlog(a)+ϕ0(x~,y~),in 2D,\phi_{0}(x,y)=a^{-1}\,\phi_{0}\left(\tilde{x},\tilde{y}\right),\;\;\text{in 3D},\;\;\text{and}\;\;\phi_{0}(x,y)=\frac{-1}{2\,\pi}\log(a)+\phi_{0}\left(\tilde{x},\tilde{y}\right),\;\;\text{in 2D},

where x=z+ax~x=z+a\,\tilde{x} and y=z+ay~y=z+a\,\tilde{y}. The goal of this work is to analyse in detail, for an arbitrary domain Ω\Omega the scale of the eigenvalues and the integral of their corresponding eigenfunctions for the two dimensional Newtonian potential operator, that is also called in the literature the Logarithmic potential operator. As done previously, we start with the simplest case of a disc. For the case of a disc of radius aa, we recall from [9, Theorem 4.1] the explicit expressions of the eigenvalues

λk,j=a2(μj(k))2,k=0,1,2,andj=1,2,\lambda_{k,j}=a^{2}\,\left(\mu_{j}^{(k)}\right)^{-2},\qquad k=0,1,2,\cdots\quad\text{and}\quad j=1,2,\cdots

and the corresponding eigenfunctions are given by

uk,j(r,ϕ)=Jk(μj(k)ra)eikϕ,r[0,a]andϕ[0,2π],u_{k,j}(r,\phi)=\LARGE\textbf{J}_{k}\left(\mu_{j}^{(k)}\,\frac{r}{a}\right)\,e^{ik\phi},\qquad r\in[0,a]\quad\text{and}\quad\phi\in[0,2\pi],

where Jk\LARGE\textbf{J}_{k} is the Bessel function of the first kind of order kk and μj(k)\mu_{j}^{(k)} are the roots of the following transcendental equation

kJk(μj(k))+μj(k)2(Jk1(μj(k))Jk+1(μj(k)))=0,k=1,2,,k\,\LARGE\textbf{J}_{k}\left(\mu_{j}^{(k)}\right)+\frac{\mu_{j}^{(k)}}{2}\,\left(\LARGE\textbf{J}_{k-1}\left(\mu_{j}^{(k)}\right)-\LARGE\textbf{J}_{k+1}\left(\mu_{j}^{(k)}\right)\right)=0,\qquad k=1,2,\cdots,

and, for k=0k=0,

J0(μj(0))+2log(a)μj(0)J1(μj(0))=0.\LARGE\textbf{J}_{0}\left(\mu_{j}^{(0)}\right)+2\,\log(a)\,\mu_{j}^{(0)}\,\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)=0.

Writing such explicit formulas for the eigenvalues and the eigenfunctions for an arbitrary domain Ω\Omega is out of reach. To overcome this difficulty, we propose a two-steps method allowing us to get the scale of the eigenvalues and the integral of eigenfunctions of the Newtonian potential operator defined over an arbitrary domain Ω\Omega. First, we estimate the scale of the eigenvalues and the integral of eigenfunctions of Newtonian operator defined over a disc of radius aa. Afterwards, the idea is to encircle the domain Ω\Omega, from inside and outside, between two discs, that we denote in the sequel by D1D_{1} and D2D_{2}, with radius of each of them proportional to aa and then we make use of the property domain monotonicity of the eigenvalues of the Newtonian potential operator that we prove in Section 2, to derive the scale of the eigenvalues and eigenfunctions of the Newtonian potential operator. To accomplish this, the coming assumption, regarding the shape domain Ω\Omega, is needed to derive the property of domain monotonicity for the Newtonian potential operator.

Hypotheses 1.

The domains Ω\Omega are taken to be Lipschitz-regular domain of 2\mathbb{R}^{2} and satisfy the following property

(1.15) D(z1;ρ1):=D1ΩD2:=D(z2;ρ2),D(z_{1};\rho_{1}):=D_{1}\subset\Omega\subset D_{2}:=D(z_{2};\rho_{2}),

where, for j=1,2j=1,2, we have

(1.16) zjΩandρja,z_{j}\in\Omega\;\;\text{and}\;\;\rho_{j}\;\sim\;a,

and DjD_{j} is a disc.

The previous hypotheses suggest that

|Ω|πρj2a2.\left|\Omega\right|\;\;\sim\;\;\pi\,\rho_{j}^{2}\;\;\sim\;\;a^{2}.

1.2. Statement of the results

In the following theorem, we state the scales of the eigenvalues and the integral of eigenfunctions of the Newtonian potential operator, defined by (1.1)(\ref{defN}), for an arbitrary domain Ω\Omega satisfying Hypotheses 1.

Theorem 1.1.

Assume that Ω2\Omega\subset\mathbb{R}^{2} satisfies Hypotheses 1. Let222To write short formula we omit to mark the dependency of the eigenfunctions with respect to the domain Ω\Omega. (λn(Ω);en)n0\left(\lambda_{n}(\Omega);e_{n}\right)_{n\geq 0} be the eigen-system associated to the 2D-Newtonian potential operator NΩ()N_{\Omega}(\cdot), defined by (1.1)(\ref{defN}), then we have the following behavior

  1. (1)

    For n=0n=0, we have

    (1.17) λ0(Ω)a2|log(a)|andΩe0(x)𝑑xa.\lambda_{0}\left(\Omega\right)\sim a^{2}\,\left|\log(a)\right|\quad\text{and}\quad\int_{\Omega}e_{0}(x)\,dx\sim a.
  2. (2)

    For n1n\geq 1, we have

    λn(Ω)a2and|Ωen(x)𝑑x|a|log(a)|1.\lambda_{n}\left(\Omega\right)\sim a^{2}\quad\text{and}\quad|\int_{\Omega}e_{n}(x)\,dx|\lesssim a\,\left|\log(a)\right|^{-1}.

In the particular case when Ω\Omega is a disc of radius aa, i.e. Ω=D\Omega=D, we have the following behavior

  1. (1)

    For n=0n=0, we have333Because the eigenvalues of the Newtonian operator are decreasing and as we see that λ0,1\lambda_{0,1} is the highest one, we refer to λ0,1\lambda_{0,1} to be the first eigenvalue.

    (1.18) λ0,1(D)a2|log(a)|andDe0,1(x)𝑑xa.\lambda_{0,1}\left(D\right)\sim a^{2}\,\left|\log(a)\right|\quad\text{and}\quad\int_{D}e_{0,1}(x)\,dx\sim a.
    λ0,j(D)a2andDe0,j(x)𝑑xa|log(a)|1,j2.\qquad\qquad\quad\lambda_{0,j}\left(D\right)\sim a^{2}\,\quad\text{and}\quad\int_{D}e_{0,j}(x)\,dx\sim\;a\;\left|\log(a)\right|^{-1},\quad j\geq 2.
  2. (2)

    For n1n\geq 1, we have

    (1.19) λn,j(D)a2andDen,j(x)𝑑x=0,j1.\lambda_{n,j}\left(D\right)\sim a^{2}\quad\text{and}\quad\int_{D}e_{n,j}(x)\,dx=0,\quad j\geq 1.

We have seen in Subsection 1.1, how the eigenvalues and the integral of their corresponding eigenfunctions scales with respect to the radius of the used ball, that we have denoted by a{}^{\prime}a^{\prime}, see for instance (1.13)(\ref{3DEigS}). Based on the previous theorem, the goal of the coming proposition is to generalize the obtained scales, i.e. (1.13)(\ref{3DEigS}), when the 3D-Newtonian potential operator is defined over an arbitrary shape domain Ω3\Omega\subset\mathbb{R}^{3}.

Proposition 1.2.

Assume that Ω3\Omega\subset\mathbb{R}^{3} such that |Ω|a3\left|\Omega\right|\sim a^{3}. Let (λn(Ω);en)n0\left(\lambda_{n}(\Omega);e_{n}\right)_{n\geq 0} the eigen-system associated to the 3D-Newtonian potential operator NΩ()N_{\Omega}(\cdot), defined by (1.1)(\ref{defN}). Then, for n0n\geq 0, we have the following behaviour

λn(Ω)a2and|Ωen(x)𝑑x|a32.\lambda_{n}(\Omega)\,\sim\,a^{2}\;\;\text{and}\;\;\left|\int_{\Omega}e_{n}(x)\,dx\right|\,\lesssim\,a^{\frac{3}{2}}.
Proof.

of Proposition 1.2
By definition we have

(1.20) NΩ(en)=λn(Ω)en,N_{\Omega}\left(e_{n}\right)=\lambda_{n}(\Omega)\;e_{n},

and, thanks to (1.14)(\ref{KernelScale}), we get after scaling from Ω\Omega to Ω\Omega^{\star},

a2NΩ(e~n)=λn(Ω)e~n,a^{2}\;N_{\Omega^{\star}}\left(\tilde{e}_{n}\right)=\lambda_{n}(\Omega)\;\tilde{e}_{n},

where Ω\Omega^{\star} is such that |Ω| 1\left|\Omega^{\star}\right|\,\sim\,1 and Ω=z+aΩ\Omega=z+a\,\Omega^{\star}. We see that e~n\tilde{e}_{n} are eigenfunctions of NΩ()N_{\Omega^{\star}}(\cdot), in the domain Ω\Omega^{\star}, related to the eigenvalues λn(Ω)=a2λn(Ω)\lambda_{n}(\Omega^{\star})=a^{-2}\,\lambda_{n}(\Omega), where obviously λn(Ω) 1\lambda_{n}(\Omega^{\star})\,\sim\,1, with respect to the parameter aa. This indicate,

(1.21) λn(Ω)a2,n0.\lambda_{n}(\Omega)\,\sim\,a^{2},\qquad\forall\,n\geq 0.

Furthermore, by integrating both sides of (1.20)(\ref{OmegaEigSys}) and taking the modulus in both sides, we obtain

λn(Ω)|Ωen(x)𝑑x|=|ΩNΩ(en)(x)𝑑x|1𝕃2(Ω)NΩ()(𝕃2(Ω);𝕃2(Ω))en𝕃2(Ω).\lambda_{n}(\Omega)\;\left|\int_{\Omega}e_{n}(x)\,dx\right|=\left|\int_{\Omega}N_{\Omega}\left(e_{n}\right)(x)\,dx\right|\leq\left\|1\right\|_{\mathbb{L}^{2}(\Omega)}\;\left\|N_{\Omega}(\cdot)\right\|_{\mathcal{L}\left(\mathbb{L}^{2}(\Omega);\mathbb{L}^{2}(\Omega)\right)}\;\left\|e_{n}\right\|_{\mathbb{L}^{2}(\Omega)}.

It is know from the spectral theory that NΩ()(𝕃2(Ω);𝕃2(Ω))Sup𝑛(λn(Ω))=λ0(Ω)\left\|N_{\Omega}(\cdot)\right\|_{\mathcal{L}\left(\mathbb{L}^{2}(\Omega);\mathbb{L}^{2}(\Omega)\right)}\leq\underset{n}{Sup}\left(\lambda_{n}(\Omega)\right)=\lambda_{0}(\Omega), where the last equality is a consequence of the fact that the sequence of eigenvalues is decreasing. In addition, we know that the sequence {en()}n0\left\{e_{n}(\cdot)\right\}_{n\geq 0} is orthonormalized in 𝕃2(Ω)\mathbb{L}^{2}(\Omega). Then,

|Ωen(x)𝑑x||Ω|12λ0(Ω)λn(Ω)(1.21)|Ω|12a32.\left|\int_{\Omega}e_{n}(x)\,dx\right|\leq\left|\Omega\right|^{\frac{1}{2}}\;\frac{\lambda_{0}(\Omega)}{\lambda_{n}(\Omega)}\;\overset{(\ref{EstEigOmega3D})}{\sim}\;\left|\Omega\right|^{\frac{1}{2}}\;\sim\;a^{\frac{3}{2}}.

This concludes the proof of Proposition 1.2. ∎

Remark 1.3.

As we can see in the proof of Proposition 1.2, the property of domain monotonicity for the Newtonian potential operator is no longer used. Consequently, for the 3D-Newtonian potential operator, the Hypotheses 1 is no longer needed.


2. Proof of Theorem 1.1

We split the proof into two steps, in the first one we justify the result in the case of a disc and in the second step we prove the result for a general shape satisfying Hypotheses 1.

  1. (1)

    The case of a disc DD of radius aa.
    We recall, from [9, Theorem 4.1], that the eigenvalues of the logarithmic potential operator for a disc are given by:

    (2.1) λk,j=a2(μj(k))2,k=0,1,2,andj=1,2,\lambda_{k,j}=a^{2}\,\left(\mu_{j}^{(k)}\right)^{-2},\qquad k=0,1,2,\cdots\quad\text{and}\quad j=1,2,\cdots

    and the corresponding eigenfunctions given by

    (2.2) uk,j(r,ϕ)=Jk(μj(k)ra)eikϕ,r[0,a]andϕ[0,2π],u_{k,j}(r,\phi)=\LARGE\textbf{J}_{k}\left(\mu_{j}^{(k)}\,\frac{r}{a}\right)\,e^{ik\phi},\qquad r\in[0,a]\quad\text{and}\quad\phi\in[0,2\pi],

    where Jk\LARGE\textbf{J}_{k} is the Bessel function of the first kind of order kk and μj(k)\mu_{j}^{(k)} are the roots of the following transcendental equation

    (2.3) kJk(μj(k))+μj(k)2(Jk1(μj(k))Jk+1(μj(k)))=0,k=1,2,,k\,\LARGE\textbf{J}_{k}\left(\mu_{j}^{(k)}\right)+\frac{\mu_{j}^{(k)}}{2}\,\left(\LARGE\textbf{J}_{k-1}\left(\mu_{j}^{(k)}\right)-\LARGE\textbf{J}_{k+1}\left(\mu_{j}^{(k)}\right)\right)=0,\qquad k=1,2,\cdots,

    and, for k=0k=0,

    (2.4) J0(μj(0))+2log(a)μj(0)J1(μj(0))=0.\LARGE\textbf{J}_{0}\left(\mu_{j}^{(0)}\right)+2\,\log(a)\,\mu_{j}^{(0)}\,\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)=0.

    In [5, Appendix IV, Table III], for some specific values of the parameter aa, the authors computed the first six roots of the transcendental equation (2.4)(\ref{EquaBessel}). It is clear, from (2.4)(\ref{EquaBessel}), that the solution {μj(0)}j1\left\{\mu_{j}^{(0)}\right\}_{j\geq 1} will be dependent on the parameter aa. To see closely how the solutions depends on aa, we start by plotting the graph444These graphs were produced with Mathematica. associated to the function, with parameter aa, defined by

    (2.5) Ψa(x):=J0(x)+2log(a)xJ1(x).\Psi_{a}(x):=\LARGE\textbf{J}_{0}\left(x\right)+2\,\log(a)\,x\,\LARGE\textbf{J}_{1}\left(x\right).
    Refer to caption
    Figure 1. A schematic representation of the function Ψa()\Psi_{a}(\cdot), defined by (2.5)(\ref{DefPsi}). The red graph is associated to xJ0(x)40xJ1(x)x\rightarrow\LARGE\textbf{J}_{0}\left(x\right)-40\,x\,\LARGE\textbf{J}_{1}\left(x\right). The magenta graph is associated to xJ0(x)35xJ1(x)x\rightarrow\LARGE\textbf{J}_{0}\left(x\right)-35\,x\,\LARGE\textbf{J}_{1}\left(x\right). The orange graph is associated to xJ0(x)30xJ1(x)x\rightarrow\LARGE\textbf{J}_{0}\left(x\right)-30\,x\,\LARGE\textbf{J}_{1}\left(x\right).

    From the graphs, we can see clearly that the first root, i.e μ1(0)\mu_{1}^{(0)}, is small and the other roots μj(0)\mu_{j}^{(0)}, for j1j\geq 1, are moderate. To determine the order of smallness of μ1(0)\mu_{1}^{(0)}, we use the asymptotic behavior of J0\LARGE\textbf{J}_{0} and J1\LARGE\textbf{J}_{1} for small argument. More precisely, for 0<xn+10<x\ll\sqrt{n+1}, see [11, Equation 25], we have

    (2.6) Jn(x)1n!(x2)n.\LARGE\textbf{J}_{n}\left(x\right)\sim\frac{1}{n!}\,\left(\frac{x}{2}\right)^{n}.

    Now, using (2.6)(\ref{BesselNearZero}) we approximate (2.4)(\ref{EquaBessel}) as

    1+log(a)(μ1(0))2=0,1+\log(a)\,\left(\mu_{1}^{(0)}\right)^{2}=0,

    and this implies that

    μ1(0)1|log(a)|.\mu_{1}^{(0)}\;\sim\;\frac{1}{\sqrt{\left|\log(a)\right|}}.

    Consequently,

    λ0,1a2|log(a)|.\lambda_{0,1}\;\sim\;a^{2}\,\left|\log(a)\right|.

    To study the other roots, we start by setting αk,j\alpha_{k,j}, for k=0,1k=0,1 and jj\in\mathbb{N}, to be the root of order jj associated to the Bessel function Jk\LARGE\textbf{J}_{k}. Then, thanks to Dixon’s theorem, see [15], we know that μj(0)\mu_{j}^{(0)} will be interlaced between the roots of J0\LARGE\textbf{J}_{0} and the roots of J1\LARGE\textbf{J}_{1}. More precisely,

    (2.7) μ1(0)<α0,1<α1,1andα1,j1<μj(0)<α0,j,j2.\mu_{1}^{(0)}<\alpha_{0,1}<\alpha_{1,1}\quad\text{and}\quad\alpha_{1,j-1}<\mu_{j}^{(0)}<\alpha_{0,j},\quad j\geq 2.

    Using the previous relation and knowing that α1,1=3.8317\alpha_{1,1}=3.8317, we deduce that μj(0)>3.8317\mu_{j}^{(0)}>3.8317, for j2j\geq 2. Therefore, for j2j\geq 2, we have μj(0) 1\mu_{j}^{(0)}\;\sim\;1. Hence, from (2.1)(\ref{EigValDef}), we obtain

    λ0,ja2,forj2.\lambda_{0,j}\;\sim\;a^{2},\quad\text{for}\quad j\geq 2.

    Next, contrary to (2.4)(\ref{EquaBessel}), because the equation (2.3)(\ref{EigValk>1}) is independent on the parameter aa, we deduce that μj(k)1\mu_{j}^{(k)}\sim 1. Hence, the eigenvalues λk,j\lambda_{k,j} defined by (2.1)(\ref{EigValDef}) behave as

    λk,ja2,fork1andj1.\lambda_{k,j}\;\sim\;a^{2},\quad\text{for}\quad k\geq 1\quad\text{and}\quad j\geq 1.

    Arranging the obtained results we get:

    (2.8) λ0,1a2|log(a)|andλk,ja2,for(k,j)(0,1).\lambda_{0,1}\;\sim\;a^{2}\,\left|\log(a)\right|\quad\text{and}\quad\lambda_{k,j}\;\sim\;a^{2},\quad\text{for}\quad(k,j)\neq(0,1).

    In what follows, when we talk about the first eigenvalue of the Newtonian potential operator in the disc we refer to λ0,1\lambda_{0,1}. This is because the eigenvalues of the Newtonian operator are decreasing and, as proved by (2.8)(\ref{BehaviourEigVal}), λ0,1\lambda_{0,1} is the highest one.
    Similarly to (2.8)(\ref{BehaviourEigVal}), we derive an analogous result for the integrals of the associated eigenfunctions uk,j(,)u_{k,j}(\cdot,\cdot), defined by (2.2)(\ref{Eigfcts}). We start with the coming computations.

    Duk,j(x)𝑑x=02π0auk,j(r,ϕ)r𝑑r𝑑ϕ\displaystyle\int_{D}u_{k,j}(x)\,dx=\int_{0}^{2\pi}\int_{0}^{a}u_{k,j}(r,\phi)\,r\ dr\,d\phi =\displaystyle= 02π0aJk(μj(k)ra)eikϕr𝑑r𝑑ϕ\displaystyle\int_{0}^{2\pi}\int_{0}^{a}\LARGE\textbf{J}_{k}\left(\mu_{j}^{(k)}\,\frac{r}{a}\right)\,e^{ik\phi}\,r\ dr\,d\phi
    =\displaystyle= 2π0aJ0(μj(0)ra)r𝑑rδ0,k\displaystyle 2\,\pi\,\int_{0}^{a}\LARGE\textbf{J}_{0}\left(\mu_{j}^{(0)}\,\frac{r}{a}\right)\,r\ dr\,\,\delta_{0,k}
    =\displaystyle= 2π(aμj(0))20μj(0)J0(r)r𝑑rδ0,k,\displaystyle 2\,\pi\,\left(\frac{a}{\mu_{j}^{(0)}}\right)^{2}\,\int_{0}^{\mu_{j}^{(0)}}\LARGE\textbf{J}_{0}\left(r\right)\,r\ dr\,\,\delta_{0,k},

    where δ,\delta_{\cdot,\cdot} is the Kronecker-symbol. Thanks to [5, Formula (5), page 206], we know that

    xJ1(x)=0xrJ0(r)𝑑r.x\,\LARGE\textbf{J}_{1}\left(x\right)=\int_{0}^{x}r\,\LARGE\textbf{J}_{0}\left(r\right)\,dr.

    Then,

    (2.9) Duk,j(x)𝑑x=2πa2μj(0)J1(μj(0))δ0,k.\int_{D}u_{k,j}(x)\,dx=2\,\pi\,\frac{a^{2}}{\mu_{j}^{(0)}}\,\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\,\delta_{0,k}.

    Later, to define the normalized eigenfunctions, we compute the u0,j𝕃2(D)\left\|u_{0,j}\right\|_{\mathbb{L}^{2}(D)}. We have,

    u0,j𝕃2(D)2:=D|u0,j|2(x)𝑑x=02π0a|u0,j|2(r,ϕ)r𝑑r𝑑ϕ\displaystyle\left\|u_{0,j}\right\|^{2}_{\mathbb{L}^{2}(D)}:=\int_{D}\left|u_{0,j}\right|^{2}(x)\,dx=\int_{0}^{2\,\pi}\,\int_{0}^{a}\left|u_{0,j}\right|^{2}(r,\phi)\,r\,dr\,d\phi =\displaystyle= 2π0a|J0(μj(0)ra)|2r𝑑r\displaystyle 2\,\pi\,\int_{0}^{a}\left|\LARGE\textbf{J}_{0}\left(\mu_{j}^{(0)}\,\frac{r}{a}\right)\right|^{2}\,r\,dr
    =\displaystyle= 2π(aμj(0))20μj(0)|J0(r)|2r𝑑r.\displaystyle 2\,\pi\,\left(\frac{a}{\mu_{j}^{(0)}}\right)^{2}\,\int_{0}^{\mu_{j}^{(0)}}\left|\LARGE\textbf{J}_{0}\left(r\right)\right|^{2}\,r\,dr.

    Combining the previous formula with (2.9)(\ref{IntEigFcts}), gives us a formula for the integral of the normalized eigenfunctions. More precisely,

    (2.10) Dv0,j(x)𝑑x:=Du0,j(x)𝑑xu0,j𝕃2(D)=2πaJ1(μj(0))[0μj(0)|J0(r)|2r𝑑r]12.\int_{D}v_{0,j}(x)\,dx:=\frac{\int_{D}u_{0,j}(x)\,dx}{\left\|u_{0,j}\right\|_{\mathbb{L}^{2}(D)}}=\dfrac{\sqrt{2\,\pi}\;a\;\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)}{\left[\int_{0}^{\mu_{j}^{(0)}}\left|\LARGE\textbf{J}_{0}\left(r\right)\right|^{2}\,r\,dr\right]^{\frac{1}{2}}}.

    As a result of the different behaviors of {μj(0)}j1\left\{\mu_{j}^{(0)}\right\}_{j\geq 1}, with respect to the parameter aa, to estimate (2.10)(\ref{IntNEigFcts}) we split our computations into two steps.

    1. (a)

      For j=1j=1, as μ1(0)\mu_{1}^{(0)} is small, we have

      Dv0,1(x)𝑑x=2πaJ1(μ1(0))[0μ1(0)|J0(r)|2r𝑑r]12(2.6)2πaμ1(0)2[0μ1(0)r𝑑r]12=πaa.\int_{D}v_{0,1}(x)\,dx=\frac{\sqrt{2\,\pi}\;a\;\LARGE\textbf{J}_{1}\left(\mu_{1}^{(0)}\right)}{\left[\int_{0}^{\mu_{1}^{(0)}}\left|\LARGE\textbf{J}_{0}\left(r\right)\right|^{2}\,r\,dr\right]^{\frac{1}{2}}}\overset{(\ref{BesselNearZero})}{\sim}\frac{\sqrt{2\,\pi}\;a\;\dfrac{\mu_{1}^{(0)}}{2}}{\left[\int_{0}^{\mu_{1}^{(0)}}r\,dr\right]^{\frac{1}{2}}}=\sqrt{\pi}\,a\;\sim\;a.
    2. (b)

      For j2j\geq 2, as μj(0)\mu_{j}^{(0)} is moderate, we have

      Dv0,j(x)𝑑x=2πaJ1(μj(0))[0μj(0)|J0(r)|2r𝑑r]12.\int_{D}v_{0,j}(x)\,dx=\dfrac{\sqrt{2\,\pi}\;a\;\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)}{\left[\int_{0}^{\mu_{j}^{(0)}}\left|\LARGE\textbf{J}_{0}\left(r\right)\right|^{2}\,r\,dr\right]^{\frac{1}{2}}}.

      By induction on the formula (2.7)(\ref{DixonResults}), we obtain for j2j\geq 2 the following relation

      α0,j1<μj(0)<α0,j.\alpha_{0,j-1}<\mu_{j}^{(0)}<\alpha_{0,j}.

      Then,

      2πa|J1(μj(0))|[0α0,j|J0(r)|2r𝑑r]12<|Dv0,j(x)𝑑x|<2πa|J1(μj(0))|[0α0,j1|J0(r)|2r𝑑r]12,\dfrac{\sqrt{2\,\pi}\;a\;\left|\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\right|}{\left[\int_{0}^{\alpha_{0,j}}\left|\LARGE\textbf{J}_{0}\left(r\right)\right|^{2}\,r\,dr\right]^{\frac{1}{2}}}<\left|\int_{D}v_{0,j}(x)\,dx\right|<\dfrac{\sqrt{2\,\pi}\;a\;\left|\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\right|}{\left[\int_{0}^{\alpha_{0,j-1}}\left|\LARGE\textbf{J}_{0}\left(r\right)\right|^{2}\,r\,dr\right]^{\frac{1}{2}}},

      or, equivalently,

      2πa|J1(μj(0))|α0,j[01|J0(α0,jr)|2r𝑑r]12<|Dv0,j(x)𝑑x|<2πa|J1(μj(0))|α0,j1[01|J0(α0,j1r)|2r𝑑r]12.\dfrac{\sqrt{2\,\pi}\;a\;\left|\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\right|}{\alpha_{0,j}\,\left[\int_{0}^{1}\left|\LARGE\textbf{J}_{0}\left(\alpha_{0,j}\,r\right)\right|^{2}\,r\,dr\right]^{\frac{1}{2}}}<\left|\int_{D}v_{0,j}(x)\,dx\right|<\dfrac{\sqrt{2\,\pi}\;a\;\left|\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\right|}{\alpha_{0,j-1}\,\left[\int_{0}^{1}\left|\LARGE\textbf{J}_{0}\left(\alpha_{0,j-1}\,r\right)\right|^{2}\,r\,dr\right]^{\frac{1}{2}}}.

      Now, thanks to [5, Formula (2), page 205], we know that

      01(J0(α0,kr))2r𝑑r=12(J1(α0,k))21,fork,\int_{0}^{1}\left(\LARGE\textbf{J}_{0}\left(\alpha_{0,k}\,r\right)\right)^{2}\,r\,dr=\frac{1}{2}\,\left(\LARGE\textbf{J}_{1}\left(\alpha_{0,k}\right)\right)^{2}\sim 1,\quad\text{for}\quad k\in\mathbb{N},

      hence,

      2πa|J1(μj(0))|α0,j|J1(α0,j)|<|Dv0,j(x)𝑑x|<2πa|J1(μj(0))|α0,j1|J1(α0,j1)|.\dfrac{2\,\sqrt{\pi}\;a\;\left|\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\right|}{\alpha_{0,j}\,\left|\LARGE\textbf{J}_{1}\left(\alpha_{0,j}\right)\right|}<\left|\int_{D}v_{0,j}(x)\,dx\right|<\dfrac{2\,\sqrt{\pi}\;a\;\left|\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\right|}{\alpha_{0,j-1}\,\left|\LARGE\textbf{J}_{1}\left(\alpha_{0,j-1}\right)\right|}.

      As α0,k1\alpha_{0,k}\sim 1 and |J1(α0,k)|1\left|\LARGE\textbf{J}_{1}\left(\alpha_{0,k}\right)\right|\sim 1, for k=j1k=j-1 or k=jk=j, with respect to the parameter aa, we deduce that

      a|J1(μj(0))||Dv0,j(x)𝑑x|a|J1(μj(0))|,a\;\left|\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\right|\lesssim\left|\int_{D}v_{0,j}(x)\,dx\right|\lesssim a\;\left|\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\right|,

      or, equivalently,

      |Dv0,j(x)𝑑x|a|J1(μj(0))|=(2.4)a|J0(μj(0))|2μj(0)|log(a)|.\left|\int_{D}v_{0,j}(x)\,dx\right|\;\sim\;a\;\left|\LARGE\textbf{J}_{1}\left(\mu_{j}^{(0)}\right)\right|\overset{(\ref{EquaBessel})}{=}\frac{a\;\left|\LARGE\textbf{J}_{0}\left(\mu_{j}^{(0)}\right)\right|}{2\,\mu_{j}^{(0)}\,\left|\log(a)\right|}.

      The final step consist in using the fact that555This can be proved using the integral representation of the Bessel function J0(x):=1π0πcos(xsin(τ))𝑑τ,\LARGE\textbf{J}_{0}\left(x\right):=\frac{1}{\pi}\,\int_{0}^{\pi}\cos\left(x\,\sin(\tau)\right)\,d\tau, see [14, Formula 9.19, page 230]. |J0(x)|1,x\left|\LARGE\textbf{J}_{0}\left(x\right)\right|\leq 1,\,\forall\,x\in\mathbb{R}, see [15, Formula (5), page 31]. Hence,

      |Dv0,j(x)𝑑x|a|log(a)|1.\left|\int_{D}v_{0,j}(x)\,dx\right|\;\sim\;a\;\left|\log(a)\right|^{-1}.

    Analogously to (2.8)(\ref{BehaviourEigVal}), after arranging the obtained results we deduce that:

    (2.11) Dv0,1(x)𝑑xaandDv0,j(x)𝑑xa|log(a)|1,j2.\int_{D}v_{0,1}(x)\,dx\;\;\sim\;\;a\quad\text{and}\quad\int_{D}v_{0,j}(x)\,dx\;\;\sim\;\;a\,\left|\log(a)\right|^{-1},\quad j\geq 2.

    Obviously,

    Dvk,j(x)𝑑x=0,k1andj1.\int_{D}v_{k,j}(x)\,dx=0,\quad k\geq 1\quad\text{and}\quad j\geq 1.
  2. (2)

    The case of an arbitrary shape Ω\Omega.
    To estimate the behavior of the eigenvalues of the Newtonian potential operator defined over an arbitrary domain Ω\Omega, we proceed in two steps.

    1. (a)

      We start by proving the property of domain monotonicity for the Newtonian potential operator: eigenvalues of the Newtonian potential operator monotonously increase when the domain is enlarged, i.e., λn(Ω1)λn(Ω2)\lambda_{n}\left(\Omega_{1}\right)\leq\lambda_{n}\left(\Omega_{2}\right) if Ω1Ω2\Omega_{1}\subset\Omega_{2}. To accomplish this, we define an extension operator 𝑷\bm{P}, as follows:

      𝑷:=𝕃2(Ω1)\displaystyle\bm{P}:=\mathbb{L}^{2}\left(\Omega_{1}\right) \displaystyle\longrightarrow 𝕃2(Ω2)\displaystyle\mathbb{L}^{2}\left(\Omega_{2}\right)
      (2.12) f()\displaystyle f(\cdot) \displaystyle\longrightarrow 𝑷(f)():=f~():=f()χΩ1()+ 0χΩ2Ω1(),\displaystyle\bm{P}\left(f\right)(\cdot):=\tilde{f}(\cdot):=f(\cdot)\;\underset{\Omega_{1}}{\chi}(\cdot)\;+\;0\;\underset{\Omega_{2}\setminus\Omega_{1}}{\chi}(\cdot),

      where we have assumed that Ω1Ω2\Omega_{1}\subset\Omega_{2}. Manifestly, we have the following injection

      (2.13) 𝕃2(Ω1)𝕃2(Ω2).\mathbb{L}^{2}\left(\Omega_{1}\right)\hookrightarrow\mathbb{L}^{2}\left(\Omega_{2}\right).

      In similar manner we define the extension of a function represented by the Newtonian operator

      u(x)=Ω1Φ0(x,y)f(y)𝑑y,xΩ1,u(x)=\int_{\Omega_{1}}\Phi_{0}(x,y)\,f(y)\,dy,\quad x\in\Omega_{1},

      to the domain Ω2\Omega_{2}, as follows

      u~(x)=Ω2Φ0(x,y)f~(y)𝑑y,xΩ2,\tilde{u}(x)=\int_{\Omega_{2}}\Phi_{0}(x,y)\,\tilde{f}(y)\,dy,\quad x\in\Omega_{2},

      where f~()\tilde{f}(\cdot) is the extension of f()f(\cdot), with zero in Ω2Ω1\Omega_{2}\setminus\Omega_{1}, defined by (2a)(\ref{Extension}). Now, from the min-max principle applied to the Newtonian potential operator, see [12, Theorem 4, page 318-319], we have666In (2.14)(\ref{min-max}), the positivity of the operator NΩ1()N_{\Omega_{1}}(\cdot) ensures that all eigenvalues are non-negative.

      (2.14) λk(Ω1)=SupΞkInfu(Ξk𝕃2(Ω1))Ω1NΩ1(u)(x)u(x)𝑑xΩ1|u|2(x)𝑑x,\lambda_{k}\left(\Omega_{1}\right)=\underset{\Xi_{k}}{Sup}\quad\underset{u\in\left(\Xi_{k}\cap\mathbb{L}^{2}(\Omega_{1})\right)}{Inf}\quad\dfrac{\int_{\Omega_{1}}N_{\Omega_{1}}\left(u\right)(x)u(x)\;dx}{\int_{\Omega_{1}}\left|u\right|^{2}(x)\;dx},

      where Ξk𝕃2(2)\Xi_{k}\subset\mathbb{L}^{2}(\mathbb{R}^{2}) is kk dimensional subspace. Now, using the injection (2.13)(\ref{Injection}) we deduce that:

      (2.15) λk(Ω1)SupΞkInfu(Ξk𝕃2(Ω2))Ω1NΩ1(u)(x)u(x)𝑑xΩ1|u|2(x)𝑑x.\lambda_{k}\left(\Omega_{1}\right)\leq\underset{\Xi_{k}}{Sup}\quad\underset{u\in\left(\Xi_{k}\cap\mathbb{L}^{2}(\Omega_{2})\right)}{Inf}\quad\dfrac{\int_{\Omega_{1}}N_{\Omega_{1}}\left(u\right)(x)u(x)\;dx}{\int_{\Omega_{1}}\left|u\right|^{2}(x)\;dx}.

      Exploiting the properties of the extension function, defined by (2a)(\ref{Extension}), we obtain

      Ω1NΩ1(u)(x)u(x)𝑑x=Ω2NΩ2(u~)(x)u~(x)𝑑xandΩ1|u|2(x)𝑑x=Ω2|u~|2(x)𝑑x.\int_{\Omega_{1}}N_{\Omega_{1}}\left(u\right)(x)u(x)\;dx=\int_{\Omega_{2}}N_{\Omega_{2}}\left(\tilde{u}\right)(x)\tilde{u}(x)\;dx\quad\text{and}\quad\int_{\Omega_{1}}\left|u\right|^{2}(x)\;dx=\int_{\Omega_{2}}\left|\tilde{u}\right|^{2}(x)\;dx.

      Hence, (2.15)(\ref{Black}) becomes,

      λk(Ω1)SupΞkInfu~(Ξk𝕃2(Ω2))Ω2NΩ2(u~)(x)u~(x)𝑑xΩ2|u~|2(x)𝑑x=λk(Ω2).\lambda_{k}\left(\Omega_{1}\right)\leq\underset{\Xi_{k}}{Sup}\quad\underset{\tilde{u}\in\left(\Xi_{k}\cap\mathbb{L}^{2}(\Omega_{2})\right)}{Inf}\quad\dfrac{\int_{\Omega_{2}}N_{\Omega_{2}}\left(\tilde{u}\right)(x)\tilde{u}(x)\;dx}{\int_{\Omega_{2}}\left|\tilde{u}\right|^{2}(x)\;dx}=\lambda_{k}\left(\Omega_{2}\right).

      Finally,

      (2.16) ifΩ1Ω2we obtainλk(Ω1)λk(Ω2),\text{if}\quad\Omega_{1}\subset\Omega_{2}\quad\text{we obtain}\quad\lambda_{k}\left(\Omega_{1}\right)\leq\lambda_{k}\left(\Omega_{2}\right),

      and this ends the proof of the monotonicity property for the eigenvalues of the Newtonian potential operator.

    2. (b)

      At this stage, we use the proved monotonicity property, given by (2.16)(\ref{Monotonicity}), by assuming the existence of two discs B1:=B(z1,ρ1)B_{1}:=B(z_{1},\rho_{1}) and B2:=B(z2,ρ2)B_{2}:=B(z_{2},\rho_{2}), where zjΩz_{j}\in\Omega and ρj>0\rho_{j}>0, for j=1,2j=1,2, such that:

      B1ΩB2and|Bj|a2,j=1,2.B_{1}\subset\Omega\subset B_{2}\quad\text{and}\quad\left|B_{j}\right|\sim a^{2},\;\;j=1,2.

      Thanks to (2.16)(\ref{Monotonicity}) we derive, from the previous formula, the following relation,

      (2.17) λk(B1)λk(Ω)λk(B2).\lambda_{k}\left(B_{1}\right)\leq\lambda_{k}\left(\Omega\right)\leq\lambda_{k}\left(B_{2}\right).

      Now, by combining (2.17)(\ref{B1OmegaB2}) with (2.8)(\ref{BehaviourEigVal}), we derive the following behavior of the eigenvalues of the Newtonian potential operator, defined over an arbitrary shape Ω\Omega.

      (2.18) λ0(Ω)a2|log(a)|andλk(Ω)a2,fork1.\lambda_{0}\left(\Omega\right)\,\sim\,a^{2}\,\left|\log(a)\right|\quad\text{and}\quad\lambda_{k}\left(\Omega\right)\,\sim\,a^{2},\quad\text{for}\quad k\geq 1.

    Regarding the estimation of the integral of the eigenfunction fnf_{n}, of the Newtonian potential operator defined over Ω\Omega, i.e.

    (2.19) NΩ(fn)=λn(Ω)fn,inΩ,N_{\Omega}\left(f_{n}\right)=\lambda_{n}(\Omega)\;f_{n},\,\quad\text{in}\quad\Omega,

    and as suggested by the behavior of the eigenvalues {λn(Ω)}n0\left\{\lambda_{n}\left(\Omega\right)\right\}_{n\geq 0}, i.e. (2.18)(\ref{EstimationEigOmega}), we split the study into two cases.

    1. i)

      For n=0n=0, we know from (2.18)(\ref{EstimationEigOmega}), that λ0(Ω)=β0a2|log(a)|\lambda_{0}(\Omega)=\beta_{0}\,a^{2}\,\left|\log(a)\right|, where β0\beta_{0} is a positive constant independent on the parameter aa. Moreover, after scaling the equation (2.19)(\ref{AddedEqua}), from Ω\Omega to Ω\Omega^{\star}, and taking the inner product with respect to f~n\tilde{f}_{n}, we end up with

      f~n;NΩ(f~n)𝕃2(Ω)=λn(Ω)a2f~n𝕃2(Ω)+12πlog(a)(Ωf~n)2.\left\langle\tilde{f}_{n};N_{\Omega^{\star}}\left(\tilde{f}_{n}\right)\right\rangle_{\mathbb{L}^{2}(\Omega^{\star})}=\frac{\lambda_{n}(\Omega)}{a^{2}}\;\left\|\tilde{f}_{n}\right\|_{\mathbb{L}^{2}(\Omega^{\star})}+\frac{1}{2\,\pi}\,\log(a)\,\left(\int_{\Omega^{\star}}\tilde{f}_{n}\right)^{2}.

      Next, we set f¯n:=f~nf~n𝕃2(Ω)\overline{f}_{n}:=\dfrac{\tilde{f}_{n}}{\left\|\tilde{f}_{n}\right\|_{\mathbb{L}^{2}\left(\Omega^{\star}\right)}} and λ~n:=f~n;NΩ(f~n)𝕃2(Ω)\tilde{\lambda}_{n}:=\left\langle\tilde{f}_{n};N_{\Omega^{\star}}\left(\tilde{f}_{n}\right)\right\rangle_{\mathbb{L}^{2}(\Omega^{\star})} we obtain from the previous equation

      (2.20) λ~n=λn(Ω)a2+12πlog(a)(Ωf¯n(x)𝑑x)2,\tilde{\lambda}_{n}=\frac{\lambda_{n}(\Omega)}{a^{2}}+\frac{1}{2\,\pi}\,\log(a)\,\left(\int_{\Omega^{\star}}\overline{f}_{n}(x)\,dx\right)^{2},

      where Ω=z+Ωa,|Ω| 1\Omega^{\star}=\dfrac{-z+\Omega}{a},\,\left|\Omega^{\star}\right|\,\sim\,1 and {λ~n}n0\left\{\tilde{\lambda}_{n}\right\}_{n\geq 0} is a positive and uniformly bounded sequence, i.e. 0<λ~nSup𝑛λ~n<Cte0<\tilde{\lambda}_{n}\leq\underset{n}{Sup}\;\tilde{\lambda}_{n}<C^{te}, where CteC^{te} is a uniformly constant. Using the scale of λ0(Ω)\lambda_{0}(\Omega) and the previous formula give us

      (2.21) λ~0=β0a2|log(a)|a2+12πlog(a)(Ωf¯0(x)𝑑x)2,\tilde{\lambda}_{0}=\frac{\beta_{0}\,a^{2}\,\left|\log(a)\right|}{a^{2}}+\frac{1}{2\,\pi}\,\log(a)\,\left(\int_{\Omega^{\star}}\overline{f}_{0}(x)\,dx\right)^{2},

      and this implies

      (2.22) |Ωf¯0(x)𝑑x|=2π(β0λ~0|log(a)|)  1.\left|\int_{\Omega^{\star}}\overline{f}_{0}(x)\,dx\right|=\sqrt{2\,\pi\,\left(\beta_{0}-\frac{\tilde{\lambda}_{0}}{\left|\log(a)\right|}\right)}\;\;\sim\;\;1.
    2. ii)

      For n1n\geq 1, we know from (2.18)(\ref{EstimationEigOmega}), that λn(Ω)=βna2\lambda_{n}(\Omega)=\beta_{n}\,a^{2}\,, where βn\beta_{n} is a positive constant independent on the parameter aa. Hence, using (2.20)(\ref{Formulafrom2DWork}), we obtain

      λ~n=βna2a2+12πlog(a)(Ωf¯n(x)𝑑x)2,\tilde{\lambda}_{n}=\frac{\beta_{n}\,a^{2}}{a^{2}}+\frac{1}{2\,\pi}\,\log(a)\,\left(\int_{\Omega^{\star}}\overline{f}_{n}(x)\,dx\right)^{2},

      and, knowing that λ~n>0\tilde{\lambda}_{n}>0,

      (Ωf¯n(x)𝑑x)2βn 2π|log(a)|1.\left(\int_{\Omega^{\star}}\overline{f}_{n}(x)\,dx\right)^{2}\leq\beta_{n}\;2\,\pi\;\left|\log(a)\right|^{-1}.

      This implies,

      |Ωf¯n(x)𝑑x||log(a)|12.\left|\int_{\Omega^{\star}}\overline{f}_{n}(x)\,dx\right|\;\;\lesssim\;\;\left|\log(a)\right|^{-\frac{1}{2}}.

      Next, we show that the previous obtained estimation can be improved to be of order |log(a)|1\left|\log(a)\right|^{-1}, instead of |log(a)|12\left|\log(a)\right|^{-\frac{1}{2}}. Now, after scaling the equation (2.19)(\ref{AddedEqua}) and integrating again the obtained equation we obtain

      (2.23) Ωf¯n(x)𝑑x=ΩNΩ(1)(x)f¯n(x)𝑑x[λn(Ω)a212π|log(a)||Ω|],\int_{\Omega^{\star}}\overline{f}_{n}(x)\,dx=\frac{\int_{\Omega^{\star}}N_{\Omega^{\star}}\left(1\right)(x)\overline{f}_{n}(x)\,dx}{\left[\frac{\lambda_{n}\left(\Omega\right)}{a^{2}}-\frac{1}{2\,\pi}\,\left|\log(a)\right|\,\left|\Omega^{\star}\right|\right]},

      and knowing that λn(Ω)=βna2\lambda_{n}\left(\Omega\right)=\beta_{n}\,a^{2} we get

      Ωf¯n(x)𝑑x=ΩNΩ(1)(x)f¯n(x)𝑑x[βn12π|log(a)||Ω|].\int_{\Omega^{\star}}\overline{f}_{n}(x)\,dx=\frac{\int_{\Omega^{\star}}N_{\Omega^{\star}}\left(1\right)(x)\overline{f}_{n}(x)\,dx}{\left[\beta_{n}-\frac{1}{2\,\pi}\,\left|\log(a)\right|\,\left|\Omega^{\star}\right|\right]}.

      By taking the modulus, in both sides, of the previous relation, using the fact that NΩ(𝕃2(Ω);𝕃2(Ω)) 1\left\|N_{\Omega^{\star}}\right\|_{\mathcal{L}\left(\mathbb{L}^{2}(\Omega^{\star});\mathbb{L}^{2}(\Omega^{\star})\right)}\;\sim\;1 and recalling that f¯n()\overline{f}_{n}(\cdot) are orthonormalized eigenfunctions in 𝕃2(Ω)\mathbb{L}^{2}(\Omega^{\star}), we deduce that

      |Ωf¯n(x)𝑑x||log(a)|1.\left|\int_{\Omega^{\star}}\overline{f}_{n}(x)\,dx\right|\;\lesssim\;\left|\log(a)\right|^{-1}.

    Finally, correspondingly to (2.11)(\ref{IranProtests}) and for an arbitrary shape domain Ω\Omega, we obtain after rescaling back to Ω\Omega the following behaviour of the integral of the eigenfunctions of the Newtonian potential operator with respect to the parameter aa.

    (2.24) Ωf0(x)𝑑xaand|Ωfn(x)𝑑x|a|log(a)|1,forn1.\int_{\Omega}f_{0}(x)\,dx\;\;\sim\;\;a\quad\text{and}\quad|\int_{\Omega}f_{n}(x)\,dx|\;\;\lesssim\;\;a\,\left|\log(a)\right|^{-1},\quad\text{for}\;\;n\geq 1.

References

  • [1] A. Alsenafi, A. Ghandriche and M. Sini, The Foldy–Lax approximation is valid for nearly resonating frequencies. Z. Angew. Math. Phys. 𝟕𝟒\bm{74}, 11 (2022).
  • [2] H. Ammari, Y. T. Chow and J. Zou, Super-resolution in imaging high contrast targets from the perspective of scattering coefficients, Journal de Mathématiques Pures et Appliquées, volume 111, pages 191–226, Elsevier, 2018.
  • [3] H. Ammari, A. Dabrowski, B. Fitzpatrick, P. Millien and M. Sini, Subwavelength resonant dielectric nanoparticles with high refractive indices, Mathematical Methods in the Applied Sciences, volume 42, number 18, pages 6567–6579, Wiley Online Library, 2019.
  • [4] J. M. Anderson, D. Khavinson and V. Lomonosov, Spectral properties of some integral operators arising in potential theory, The Quarterly Journal of Mathematics, volume 43, number 4, pages 387–407, Oxford University Press, 1992.
  • [5] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 1947.
  • [6] H. Cartan, Théorie du potentiel newtonien: énergie, capacité, suites de potentiels, Bulletin de la Société Mathématique de France, volume 73, pages 74–106, 1945.
  • [7] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 93, 2019, Springer Nature.
  • [8] A. Ghandriche and M. Sini, Mathematical analysis of the photo-acoustic imaging modality using resonating dielectric nano-particles: The 2D TM-model, Journal of Mathematical Analysis and Applications, volume 506, number 2, pages 125658, Elsevier, 2022.
  • [9] T. Kalmenov and D. Suragan, A boundary condition and spectral problems for the Newton potential, Modern aspects of the theory of partial differential equations, pages 187–210, Springer, 2011.
  • [10] O. D. Kellogg, Foundations of potential theory, volume 31, Courier Corporation, 1953.
  • [11] L.J. Landau, Ratios of Bessel Functions and Roots of αJν(x)+xJν(x)=0\alpha\,\LARGE\textbf{J}_{\nu}\left(x\right)+x\,\LARGE\textbf{J}^{\prime}_{\nu}\left(x\right)=0, Journal of Mathematical Analysis and Applications, volume 240, number 1, pages 174-204, 1999.
  • [12] P. D. Lax, Functional analysis, volume 55, John Wiley & Sons, 2002.
  • [13] M. Ruzhansky and D. Suragan, Isoperimetric inequalities for the logarithmic potential operator, Journal of Mathematical Analysis and Applications, volume 434, number 2, pages 1676–1689, Elsevier, 2016.
  • [14] N. M. Temme, Special functions: An introduction to the classical functions of mathematical physics, John Wiley & Sons, 1996.
  • [15] G. N. Watson, A treatise on the theory of Bessel functions, volume 3, The University Press,1922.