This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\thankstext

e1e-mail: [email protected] \thankstexte2e-mail: [email protected]

11institutetext: School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand 22institutetext: Department of Physics, Srinakharinwirot University, Bangkok, 10110, Thailand 33institutetext: Department of Physics, Faculty of Science, Khon Kaen University, 123 Mitraphap Rd., Khon Kaen, 40002, Thailand

Estimation of coupling constants for D-meson, charmed, and light baryons in effective Lagrangian approach and quark model

Thanat Sangkhakrit\thanksrefe1,SUT    Attaphon Kaewsnod\thanksrefSUT    Warintorn Sreethawong\thanksrefSUT    Thananuwat Suyuporn\thanksrefSUT    Nopmanee Supanam\thanksrefSWU    Daris Samart\thanksrefKKU   
Yupeng Yan\thanksrefe2,SUT
(Received: date / Accepted: date)
Abstract

We estimate coupling constants for effective Lagrangians of DD-meson, charmed, and light baryons from charmed baryon decay processes. First, we calculate decay widths for the processes ΛcDN\Lambda_{c}\to DN, ΣcDΔ\Sigma_{c}\to D\Delta, ΣcDΔ\Sigma_{c}\to D^{*}\Delta, and ΛcDN\Lambda_{c}\to D^{*}N in effective Lagrangian method and quark model picture with P03{}^{3}P_{0} model. By employing the coupling constants for DΛcND^{*}\Lambda_{c}N interaction from several literatures, the strength parameter λ\lambda for P03{}^{3}P_{0} quark model is fixed in the decay process ΛcDN\Lambda_{c}\to D^{*}N. Then, the coupling constants for the effective Lagrangians of DΛcND\Lambda_{c}N, DΣcΔD\Sigma_{c}\Delta, and DΣcΔD^{*}\Sigma_{c}\Delta interactions are estimated in the decay channels ΛcDN\Lambda_{c}\to DN, ΣcDΔ\Sigma_{c}\to D\Delta, and ΣcDΔ\Sigma_{c}\to D^{*}\Delta, respectively. These coupling constants will be useful for further studies of charm hadrons.

journal: Eur. Phys. J. A

1 Introduction

Physics of charm hadrons has been one of the main subjects in hadron physics since the first observations of J/ψJ/\psi meson in 1974 Augustin:1974xw ; Aubert:1974js and of charmed baryons (Λc,Σc\Lambda_{c},\Sigma_{c}) in 1975 Cazzoli:1975et . Ever since, experimental observations for various exotic hadrons have been reported by Belle, BABAR, BESIII, and LHCb Collaborations Choi:2003ue ; Aubert:2004ns ; Aubert:2005rm ; Abe:2007jna ; Choi:2007wga ; Hosaka:2016pey ; Ablikim:2013mio ; Liu:2013dau ; Ablikim:2013wzq ; Aaij:2013zoa ; Aaij:2014jqa , and theoretical studies have been carried out in a variety of models Micu:1968mk ; Godfrey:1985xj ; Maiani:2004vq ; Ebert:2005nc ; Limphirat:2010zz ; Xu:2020ppr ; Gupta:1994mw ; Ebert:1997nk ; Glozman:2003bt ; Nowak:2003ra ; AlFiky:2005jd ; Liu:2006jx ; Brambilla:1999xf ; Braguta:2005kr ; Isgur:1984bm ; Chen:2000ej ; Okamoto:2001jb ; Liao:2002rj ; McNeile:2002az ; Chiu:2005ey ; Chiu:2006hd (See Refs.Swanson:2006st ; Brambilla:2010cs for reviews). While charmed mesons have been extensively investigated, the properties of charmed baryons are less known since they have not yet been explored in the same detail. Proposals for charmed baryons study have been planned at future experiments at P¯\bar{\text{P}}ANDA Wiedner:2011mf and J-PARC e50 and the facilities are now under preparation. Thus, theoretical study of their production is important. The production rate of charmed baryons will be crucial to guide and assess these experimental plans. Moreover, their production mechanism provides not only the information of their internal structure and non-perturbative QCD dynamics, but also the role of chiral and heavy quark symmetries in heavy-light quark systems.

One of the most important ingredients for calculation of charmed baryon production rate is the coupling constants. So far, it is not possible to determine the coupling constants for the effective Lagrangians of DD-meson, charmed, and light baryons directly from the existing data. Therefore, several methods have been used to extract the coupling constants for various charmed baryon interaction vertices. In Refs.Kim:2015ita , coupling constants for strange hadrons derived from Nijmegen potential are employed to study charmed productions from pion-proton collisions. The coupling constants in these studies are of the same order as those in Ref.Sangkhakrit:2020wyi , where they are determined from the SU(3)SU(3) symmetry relations and from the fit with the observed data for strangeness productions. In Ref.Khodjamirian:2011sp , coupling constants derived from light cone QCD sum-rules are employed to predict charmed hadron production cross sections at P¯\bar{\text{P}}ANDA. On the other hand, the coupling constants from the SU(4)SU(4) symmetry are utilized to study the production of charmed baryons from proton-antiproton collisions in Refs.Haidenbauer:1991kt ; Titov:2008yf ; Shyam:2014dia ; Haidenbauer:2016pva . From the previous studies, different sets of coupling constants result in discrepancies in the predicted charm production rates.

In this study, we estimate the coupling constants for the effective Lagrangians of DD-meson, charmed, and light baryons from the decay widths of Λc\Lambda_{c} and Σc\Sigma_{c} baryons. Firstly, the decay widths for the processes ΛcDN\Lambda_{c}\to DN, ΛcDN\Lambda_{c}\to D^{*}N, ΣcDΔ\Sigma_{c}\to D\Delta, and ΣcDΔ\Sigma_{c}\to D^{*}\Delta are computed in effective Lagrangian method and quark model picture with P03{}^{3}P_{0} model. Then, the strength parameter λ\lambda of the P03{}^{3}P_{0} quark model is fixed from the decay channel ΛcDN\Lambda_{c}\to D^{*}N, where the coupling constants for DΛcND^{*}\Lambda_{c}N vertex from several literatures are used as inputs. The coupling constants for the vertices DΛcND\Lambda_{c}N, DΣcΔD\Sigma_{c}\Delta, and DΣcΔD^{*}\Sigma_{c}\Delta are consequently estimated in the corresponding decay channels. In this work, we present four sets of the coupling constants for DΛcND\Lambda_{c}N, DΣcΔD\Sigma_{c}\Delta, and DΣcΔD^{*}\Sigma_{c}\Delta interactions.

The content of this paper is organised as follows. In Sec.2, we compute the decay widths of charmed baryons in effective Lagrangian method. In Sec.3, the calculations of the same decay processes from Sec.2 are performed in quark model with P03{}^{3}P_{0} model. Then, the estimation of the coupling constants from the two models is presented in Sec.5. Finally, the summary of this study is given in Sec.6.

2 Effective Lagrangian method

In this section, we calculate decay widths of charmed baryons in effective Lagrangian method. The decay of an initial charmed baryon BcB_{c} into an outgoing light baryon BB and a charmed meson ϕc\phi_{c} is displayed by the diagram in Fig.1. Here, the momentum of the initial charmed baryon (Λc(2286) or Σc(2455))\left(\Lambda_{c}(2286)\text{ or }\Sigma_{c}(2455)\right) is denoted by pp, while kk and qq are those of the outgoing light baryon (N(939) or Δ(1232))\left(N(939)\text{ or }\Delta(1232)\right) and charmed meson (D(1868) or \left(D(1868)\text{ or }\right. D(2009))\left.D^{*}(2009)\right) respectively.

Refer to caption
Figure 1: Feynman diagram for the decay process BcBϕcB_{c}\to B\phi_{c}.

The effective Lagrangians for DBcBDB_{c}B interaction vertices are given by

DΛcN(A)\displaystyle\mathcal{L}_{D\Lambda_{c}N}^{(A)} =g0mDN¯γμγ5ΛcμD,\displaystyle=-\frac{g_{0}}{m_{D}}\bar{N}\gamma^{\mu}\gamma_{5}\Lambda_{c}\partial_{\mu}D, (1)
DΛcN(P)\displaystyle\mathcal{L}_{D\Lambda_{c}N}^{(P)} =g1N¯iγ5ΛcD,\displaystyle=g_{1}\bar{N}i\gamma_{5}\Lambda_{c}D, (2)
DΣcΔ\displaystyle\mathcal{L}_{D\Sigma_{c}\Delta} =g2mDΔ¯μ𝚺c𝑻μD.\displaystyle=\frac{g_{2}}{m_{D}}\bar{\Delta}^{\mu}\bm{\Sigma}_{c}\cdot\bm{T}\partial_{\mu}D. (3)

For DBcBD^{*}B_{c}B interaction vertices, we introduce the following Lagrangians

DΛcN\displaystyle\mathcal{L}_{D^{*}\Lambda_{c}N} =f0N¯γμΛcDμ+h0mDN¯σμνΛcνDμ,\displaystyle=f_{0}\bar{N}\gamma^{\mu}\Lambda_{c}D_{\mu}+\dfrac{h_{0}}{m_{D}}\bar{N}\sigma^{\mu\nu}\Lambda_{c}\partial_{\nu}D_{\mu}, (4)
DΣcΔ\displaystyle\mathcal{L}_{D^{*}\Sigma_{c}\Delta} =f1Δ¯μγ5𝚺c𝑻Dμ,\displaystyle=f_{1}\bar{\Delta}^{\mu}\gamma_{5}\bm{\Sigma}_{c}\cdot\bm{T}D_{\mu}, (5)

where mDm_{D} corresponds to the approximate mass of the pseudoscalar DD-meson and 𝑻=(T1,T2,T3)\bm{T}=(T_{1},T_{2},T_{3}) represents the isospin transition matrices operating on the isospin states of Δ\Delta and DD (or DD^{*}).

By employing the Lagrangians in Eqs.(1)-(5), Feynman amplitudes for the decay processes ΛcDN\Lambda_{c}\to DN, ΛcDN\Lambda_{c}\to D^{*}N, ΣcDΔ\Sigma_{c}\to D\Delta, and ΣcDΔ\Sigma_{c}\to D^{*}\Delta are written as

ΛcDN(A)\displaystyle\mathcal{M}^{(A)}_{\Lambda_{c}\to DN} =g0mDu¯N(k,s)γ5uΛc(p,s),\displaystyle=\dfrac{g_{0}}{m_{D}}\bar{u}_{N}\left(k,s^{\prime}\right)\not{q}\gamma_{5}u_{\Lambda_{c}}\left(p,s\right), (6)
ΛcDN(p)\displaystyle\mathcal{M}^{(p)}_{\Lambda_{c}\to DN} =g1u¯N(k,s)γ5uΛc(p,s),\displaystyle=-g_{1}\bar{u}_{N}\left(k,s^{\prime}\right)\gamma_{5}u_{\Lambda_{c}}\left(p,s\right), (7)
ΛcDN\displaystyle\mathcal{M}_{\Lambda_{c}\to D^{*}N} =if0u¯N(k,s)ΓμuΛc(p,s)ϵμ(q,s′′),\displaystyle=if_{0}\bar{u}_{N}\left(k,s^{\prime}\right)\Gamma^{\mu}u_{\Lambda_{c}}\left(p,s\right)\epsilon^{*}_{\mu}\left(q,s^{\prime\prime}\right), (8)
ΣcDΔ\displaystyle\mathcal{M}_{\Sigma_{c}\to D\Delta} =g2mDqμu¯Δμ(k,s)uΣc(p,s),\displaystyle=-\dfrac{g_{2}}{m_{D}}q_{\mu}\bar{u}^{\mu}_{\Delta}\left(k,s^{\prime}\right)u_{\Sigma_{c}}\left(p,s\right), (9)
ΣcDΔ\displaystyle\mathcal{M}_{\Sigma_{c}\to D^{*}\Delta} =if1u¯Δμ(k,s)γ5uΣc(p,s)ϵμ(q,s′′),\displaystyle=if_{1}\bar{u}^{\mu}_{\Delta}\left(k,s^{\prime}\right)\gamma_{5}u_{\Sigma_{c}}\left(p,s\right)\epsilon^{*}_{\mu}\left(q,s^{\prime\prime}\right), (10)

where

Γμ=[γμ+imD(h0f0)σμνqν].\Gamma^{\mu}=\left[\gamma^{\mu}+\dfrac{i}{m_{D}}\left(\dfrac{h_{0}}{f_{0}}\right)\sigma^{\mu\nu}q_{\nu}\right]. (11)

The spin projections of the initial charmed baryon, outgoing light baryon and DD^{*}-meson are respectively denoted by ss, ss^{\prime}, and s′′s^{\prime\prime}. The decay width of the initial charmed baryon BcB_{c} is then computed from

ΓEFT=132π2|q|mBc||2𝑑Ω,\Gamma_{\text{EFT}}=\dfrac{1}{32\pi^{2}}\frac{\left|\vec{q}\right|}{m_{B_{c}}}\int\left<\left|\mathcal{M}\right|^{2}\right>d\Omega, (12)

where

||2={12s||2if ϕc=D,12s,s′′||2if ϕc=D.\left<\left|\mathcal{M}\right|^{2}\right>=\begin{cases}\dfrac{1}{2}\sum_{s^{\prime}}\left|\mathcal{M}\right|^{2}&\text{if }\phi_{c}=D,\\ \vspace{0.5 pt}\\ \dfrac{1}{2}\sum_{s^{\prime},s^{\prime\prime}}\left|\mathcal{M}\right|^{2}&\text{if }\phi_{c}=D^{*}.\end{cases} (13)

The mass of the initial charmed baryon and the magnitude of outgoing 3-momentum in the center of mass frame of the initial charmed baryon are denoted by mBcm_{B_{c}} and |q|\left|\vec{q}\right|.

By expanding the decay width with respect to the outgoing 3-momentum qq near the threshold, the following expressions for the decay widths are obtained

ΓΛcDN(A)\displaystyle\Gamma^{(A)}_{\Lambda_{c}\to DN} =g02(mD+2mN)28πmD2mNmΛcq3,\displaystyle=\frac{g_{0}^{2}\left(m_{D}+2m_{N}\right)^{2}}{8\pi m_{D}^{2}m_{N}m_{\Lambda_{c}}}q^{3}, (14)
ΓΛcDN(P)\displaystyle\Gamma^{(P)}_{\Lambda_{c}\to DN} =g128πmNmΛcq3,\displaystyle=\frac{g_{1}^{2}}{8\pi m_{N}m_{\Lambda_{c}}}q^{3}, (15)
ΓΛcDN\displaystyle\Gamma_{\Lambda_{c}\to D^{*}N} =𝒜8πmD2mD2mNmΛcq3,\displaystyle=\frac{\mathcal{A}}{8\pi m_{D}^{2}m_{D^{*}}^{2}m_{N}m_{\Lambda_{c}}}q^{3}, (16)
ΓΣcDΔ\displaystyle\Gamma_{\Sigma_{c}\to D\Delta} =g22(mD+mΔ)23πmD2mΔmΣcq3,\displaystyle=\frac{g_{2}^{2}\left(m_{D}+m_{\Delta}\right)^{2}}{3\pi m_{D}^{2}m_{\Delta}m_{\Sigma_{c}}}q^{3}, (17)
ΓΣcDΔ\displaystyle\Gamma_{\Sigma_{c}\to D^{*}\Delta} =f124πmΔmΣcq3,\displaystyle=\frac{f_{1}^{2}}{4\pi m_{\Delta}m_{\Sigma_{c}}}q^{3}, (18)

where

𝒜=\displaystyle\mathcal{A}= f02(3mD2mD2+4mDmNmD2+4mN2mD2)\displaystyle f_{0}^{2}\left(3m_{D^{*}}^{2}m_{D}^{2}+4m_{D^{*}}m_{N}m_{D}^{2}+4m_{N}^{2}m_{D}^{2}\right)
6f0h0(mD3mD+2mD2mNmD)\displaystyle-6f_{0}h_{0}\left(m_{D^{*}}^{3}m_{D}+2m_{D^{*}}^{2}m_{N}m_{D}\right)
+h02(3mD4+8mD3mN+8mN2mD2).\displaystyle+h_{0}^{2}\left(3m_{D^{*}}^{4}+8m_{D^{*}}^{3}m_{N}+8m_{N}^{2}m_{D^{*}}^{2}\right). (19)

We note that the decay widths in Eqs.(14)-(18) hold for real and imaginary outgoing momenta.

3 P03{}^{3}P_{0} quark model

In this section, decay widths of the same decay processes as in Sec.2 are calculated in a quark model picture with the P03{}^{3}P_{0} model. The corresponding diagram is displayed in Fig. 2. Here, the decay process BcBϕcB_{c}\to B\phi_{c} may arise from the qqqq and cc of the initial state BcB_{c} which are directly dressed by two additional quark-antiquark pair pumped out of the vacuum to form BB and ϕc\phi_{c} in the final state.

Refer to caption
Figure 2: Schematic diagram for the decay process BcBϕcB_{c}\to B\phi_{c} in P03{}^{3}P_{0} quark model. The bottom quark line is that of charm quark while the rest are those of uu and dd quarks.

The transition amplitude derived in the P03{}^{3}P_{0} model is written as

T=Bϕc|Vqq¯|Bc,\displaystyle T=\langle B\phi_{c}|V_{q\bar{q}}|B_{c}\rangle, (20)

where Vqq¯V_{q\bar{q}} corresponds to the effective quark-antiquark vertex. The P03{}^{3}P_{0} model defines the quantum states of quark-antiquark pair that are destroyed into or created from vacuum (P03{}^{3}P_{0}, isospin I=0I=0, and color singlet). The effective quark-antiquark vertex in the P03{}^{3}P_{0} model is defined according to Refs. Yan:2004jg ; Kittimanapun:2008wg :

Vqq¯ij=\displaystyle V^{ij}_{q\bar{q}}= λσij(pipj)F^ijC^ijδ(pi+pj)\displaystyle\ \lambda\,\vec{\sigma}_{ij}\cdot(\vec{p}_{i}-\vec{p}_{j})\hat{F}_{ij}\hat{C}_{ij}\delta(\vec{p}_{i}+\vec{p}_{j})
=\displaystyle= λμ4π3(1)μσijμY1μ(pipj)F^ijC^ijδ(pi+pj)\displaystyle\ \lambda\sum_{\mu}\sqrt{\frac{4\pi}{3}}(-1)^{\mu}\sigma^{\mu}_{ij}Y_{1\mu}(\vec{p}_{i}-\vec{p}_{j})\hat{F}_{ij}\hat{C}_{ij}\delta(\vec{p}_{i}+\vec{p}_{j})

where the parameter λ\lambda denotes the effective coupling strength of the P03{}^{3}P_{0} vertex. The spin operator that creates (or annihilates) the spin-1 qq¯q\bar{q} pair is denoted by σijμ\sigma^{\mu}_{ij} and Y1μ(p)Y_{1\mu}(\vec{p}) corresponds to the spherical harmonics in the momentum space. The flavor and color unit operators are denoted by F^ij\hat{F}_{ij} and C^ij\hat{C}_{ij}.

In this work, the baryon and meson spatial wave functions are approximated with the Gaussian form Faessler:2010zzc . The flavor and spin parts are constructed in the framework of the SU(2)SU(2) flavor and SU(2)SU(2) spin symmetries. The transition amplitude is obtained as

T=λ4π3CifeQq2C(Sisi;1μ;Sf,si+μ),T=\lambda\sqrt{\dfrac{4\pi}{3}}C_{i}\ fe^{-Qq^{2}}C(S_{i}s_{i};1\mu;S_{f},s_{i}+\mu), (22)

with

f=\displaystyle f= 63a3b3/2(b2mr+2a2(1+mr))|q|(3a2+b2)5/2(1+mr)π3/4,\displaystyle-\dfrac{6\sqrt{3}a^{3}b^{3/2}(b^{2}m_{r}+2a^{2}(1+m_{r}))|\vec{q}|}{(3a^{2}+b^{2})^{5/2}(1+m_{r})\pi^{3/4}},
Q=\displaystyle Q= a2(3a2(1+mr)2+b2(52mr+2mr2))6(3a2+b2)(1+mr)2,\displaystyle\dfrac{a^{2}(3a^{2}(1+m_{r})^{2}+b^{2}(5-2m_{r}+2m_{r}^{2}))}{6(3a^{2}+b^{2})(1+m_{r})^{2}},
Ci=\displaystyle C_{i}= 23(12)δS,12\displaystyle\frac{2}{\sqrt{3}}\left(\frac{1}{\sqrt{2}}\right)^{\delta_{S^{\prime},\frac{1}{2}}}
(2S+1)(2S′′+1)(2Si+1)(3)\displaystyle\sqrt{(2S^{\prime}+1)(2S^{\prime\prime}+1)(2S_{i}+1)(3)}
(2T+1)(2T′′+1)(2Ti+1)(1)\displaystyle\sqrt{(2T^{\prime}+1)(2T^{\prime\prime}+1)(2T_{i}+1)(1)}
{Ti(6)S(8)(7)S′′Si1Sf}{Ti(6)T0(7)T′′Ti0Tf},\displaystyle\begin{Bmatrix}T_{i}&(6)&S^{\prime}\\ (8)&(7)&S^{\prime\prime}\\ S_{i}&1&S_{f}\\ \end{Bmatrix}\begin{Bmatrix}T_{i}&(6)&T^{\prime}\\ 0&(7)&T^{\prime\prime}\\ T_{i}&0&T_{f}\\ \end{Bmatrix}, (23)

where (Si,Ti)\left(S_{i},T_{i}\right), (S,T)\left(S^{\prime},T^{\prime}\right), and (S′′,T′′)\left(S^{\prime\prime},T^{\prime\prime}\right) denote the spin-isospin of the states BcB_{c}, BB, and ϕc\phi_{c}, respectively. The spin SfS_{f} and isospin TfT_{f} are defined by Sf=SS′′S_{f}=S^{\prime}\otimes S^{\prime\prime} and Tf=TT′′T_{f}=T^{\prime}\otimes T^{\prime\prime}. The spin projections of the qq¯q\bar{q} pair in the P03{}^{3}P_{0} model and the initial charmed baryon BcB_{c} are denoted by μ\mu and sis_{i}. CC is the Clebsch-Gordan coefficient. The parameter mr=mq/mQm_{r}=m_{q}/m_{Q} is the ratio between the light quark mass mqm_{q} and heavy quark mass mQm_{Q}. The value of mrm_{r} in this study is 300/1270300/1270. δ\delta is the Kronecker delta and the brackets {}\{\ \} in CiC_{i} are the 9-j symbols. The flavor-spin-color factors CiC_{i} for the decay processes in this study are summarized in TABLE 1. The baryon and meson length parameters aa and bb are respectively 3.0 GeV-1 and 2.28 GeV-1 Isgur:1979be ; Sreethawong:2014jra ; Dover:1992vj ; Muhm:1996tx ; Limphirat:2013jga .

Processes CiC_{i}
Sf=1/2S_{f}=1/2 Sf=3/2S_{f}=3/2
Λc(2286)ND\Lambda_{c}(2286)\rightarrow ND 12\frac{1}{\sqrt{2}}
Λc(2286)ND\Lambda_{c}(2286)\rightarrow ND^{*} 16-\frac{1}{\sqrt{6}} 23\sqrt{\frac{2}{3}}
Σc(2455)ΔD\Sigma_{c}(2455)\rightarrow\Delta D 2323-\frac{2}{3}\sqrt{\frac{2}{3}}
Σc(2455)ΔD\Sigma_{c}(2455)\rightarrow\Delta D^{*} 49\frac{4}{9} 2109\frac{2\sqrt{10}}{9}
Table 1: The flavor-spin-color factors CiC_{i} corresponding to the decay processes BcBϕcB_{c}\to B\phi_{c}.
Ref. Input Results
fDΛcNf_{D^{*}\Lambda_{c}N} hDΛcNh_{D^{*}\Lambda_{c}N} gDΛcN(P)g^{(P)}_{D\Lambda_{c}N} gDΛcN(A)g^{(A)}_{D\Lambda_{c}N} gDΣcΔg_{D\Sigma_{c}\Delta} fDΣcΔf_{D^{*}\Sigma_{c}\Delta}
Kim:2015ita -4.26 -12.4 17.57 15.12 (13.4) 9.28 26.05
Sangkhakrit:2020wyi -5.11 -10.4 16.65 14.33 (13.5) 8.79 24.68
Khodjamirian:2011sp 5.8 3.6 11.1 (10.7) 9.55 5.86 16.45
Titov:2008yf -5.18 -14.4 20.66 17.78 10.9 30.62
Table 2: Coupling constants of DD-meson, charmed, and light baryons from our estimation. The numbers in the brackets denote the magnitudes of the original coupling constants used in the cited literatures (if available).

The decay width of the charmed baryon BcB_{c} is calculated from

ΓQM\displaystyle\Gamma_{\text{QM}} =2πEE′′|q|mBc(2Si+1)si,μ,Sf|T|2,\displaystyle=\dfrac{2\pi E^{\prime}E^{\prime\prime}\left|\vec{q}\right|}{m_{B_{c}}(2S_{i}+1)}\displaystyle\sum_{s_{i},\mu,S_{f}}\left|T\right|^{2}, (24)

where EE^{\prime} and E′′E^{\prime\prime} denote energies of the outgoing light baryon BB and charmed meson ϕc\phi_{c} while |q|\left|\vec{q}\right| and mBcm_{B_{c}} are similar to those in Eq.12.

4 Estimation of coupling constants with charmed baryon

In this section, we estimate the coupling constants for the effective Lagrangians in Eqs.(1)-(5) from the decay widths calculated in Sec.2 and Sec.3. Considering that the decay width formulas in Eqs.(14)-(17) and Eq.(24) hold for both the real and imaginary values of the outgoing momentum qq, one may estimate the coupling constants by applying the near threshold off-shell decay processes of Λc\Lambda_{c} and Σc\Sigma_{c} baryons under consideration. In the low qq region, one requires

ΓEFT=ΓQM.\Gamma_{EFT}=\Gamma_{QM}. (25)

For comparison, we employ as inputs four different sets of the coupling constants fDΛcNf_{D^{*}\Lambda_{c}N} and hDΛcNh_{D^{*}\Lambda_{c}N} from Refs.Titov:2008yf ; Kim:2015ita ; Sangkhakrit:2020wyi ; Khodjamirian:2011sp for the decay process ΛcDN\Lambda_{c}\to D^{*}N. From Eq.(25), we fix the P03{}^{3}P_{0} strength parameter λ\lambda in Eq.(22) for each input set and then use its value to estimate the coupling constants gDΛcNg_{D\Lambda_{c}N}, gDΣcΔg_{D\Sigma_{c}\Delta}, and fDΣcΔf_{D^{*}\Sigma_{c}\Delta} of the effective Lagrangians. In our case, we assume that all coupling constants are positive and they are displayed in TABLE.2. Note that the expressions for the coupling constants resulted from Eq. (25) are independent of the corresponding initial masses.

Here, we have used gDΛcN(P)=g1g^{(P)}_{D\Lambda_{c}N}=g_{1}, gDΣcΔ=g2g_{D\Sigma_{c}\Delta}=g_{2}, and fDΣcΔ=f1f_{D^{*}\Sigma_{c}\Delta}=f_{1}. The coupling constants fDΛcNf_{D^{*}\Lambda_{c}N}, hDΛcNh_{D^{*}\Lambda_{c}N}, and gDΛcN(A)g^{(A)}_{D\Lambda_{c}N} are obtained by rescaling the coupling constants in Eq.(1) and Eq.(4) to those in Refs.Kim:2015ita ; Sangkhakrit:2020wyi ; Titov:2008yf . From our estimation, we have found that the magnitudes of the coupling constants gDΛcN(P)g^{(P)}_{D\Lambda_{c}N} and gDΛcN(A)g^{(A)}_{D\Lambda_{c}N} agree with those in Ref.Kim:2015ita ; Sangkhakrit:2020wyi ; Khodjamirian:2011sp . In Ref.Titov:2008yf , this interaction vertex is neglected since the vector dominance has been assumed. As the original values of gDΣcΔg_{D\Sigma_{c}\Delta} and fDΣcΔf_{D^{*}\Sigma_{c}\Delta} are not presented anywhere, we only display the results from our estimation.

5 Summary and conclusion

In this study, we have estimated the coupling constants for the effective Lagrangians of DD-meson, charmed, and light baryons from several decay processes of Λc\Lambda_{c} and Σc\Sigma_{c} baryons. We first calculated the decay widths for the processes ΛcDN\Lambda_{c}\to DN, ΛcDN\Lambda_{c}\to D^{*}N, ΣcDΔ\Sigma_{c}\to D\Delta, and ΣcDΔ\Sigma_{c}\to D^{*}\Delta from effective Lagrangian method and quark model picture with the P03{}^{3}P_{0} model, and then compared the decay widths from the two models to fix the strength parameter λ\lambda, where the coupling constants fDΛcNf_{D^{*}\Lambda_{c}N} and hDΛcNh_{D^{*}\Lambda_{c}N} from literatures are used as inputs. By utilizing the obtained value of λ\lambda, the coupling constants gDΛcNg_{D\Lambda_{c}N}, gDΣcΔg_{D\Sigma_{c}\Delta}, and fDΣcΔf_{D^{*}\Sigma_{c}\Delta} are estimated from the decay widths of the processes ΛcDN\Lambda_{c}\to DN, ΣcDΔ\Sigma_{c}\to D\Delta, and ΣcDΔ\Sigma_{c}\to D^{*}\Delta near threshold. It turns out that the expressions for the coupling constants are independent of the initial masses when one considers decay processes near threshold.

It is found that the coupling constants gDΛcN(P)g^{(P)}_{D\Lambda_{c}N} and gDΛcN(A)g^{(A)}_{D\Lambda_{c}N} derived in this study are consistent with those in the cited literatures. The estimated coupling constants gDΛcN(P)g^{(P)}_{D\Lambda_{c}N}, gDΛcN(A)g^{(A)}_{D\Lambda_{c}N}, gDΣcΔg_{D\Sigma_{c}\Delta}, and fDΣcΔf_{D^{*}\Sigma_{c}\Delta} are expected to be useful for further studies of charmed hadron production.

6 Acknowledgement

This work was supported by (i) Suranaree University of Technology (SUT), (ii) Thailand Science Research and Innovation (TSRI), and (iii) National Science Research and Innovation Fund (NSRF), project no. 160355. TS and YY acknowledge support from Thailand Science Research and Innovation and Suranaree University of Technology through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0041/2555).

References

  • (1) J. E. Augustin et al. [SLAC-SP-017], Phys. Rev. Lett. 33, 1406-1408 (1974)
  • (2) J. J. Aubert et al. [E598], Phys. Rev. Lett. 33, 1404-1406 (1974)
  • (3) E. G. Cazzoli, A. M. Cnops, P. L. Connolly, R. I. Louttit, M. J. Murtagh, R. B. Palmer, N. P. Samios, T. T. Tso and H. H. Williams, Phys. Rev. Lett. 34, 1125-1128 (1975)
  • (4) S. K. Choi et al. [Belle], Phys. Rev. Lett. 91, 262001 (2003)
  • (5) B. Aubert et al. [BaBar], Phys. Rev. D 71, 071103 (2005)
  • (6) B. Aubert et al. [BaBar], Phys. Rev. Lett. 95, 142001 (2005)
  • (7) K. Abe et al. [Belle], Phys. Rev. Lett. 98, 082001 (2007)
  • (8) S. K. Choi et al. [Belle], Phys. Rev. Lett. 100, 142001 (2008)
  • (9) A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai and S. Yasui, PTEP 2016, no.6, 062C01 (2016)
  • (10) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 110, 252001 (2013)
  • (11) Z. Q. Liu et al. [Belle], Phys. Rev. Lett. 110, 252002 (2013)
  • (12) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 111, no.24, 242001 (2013)
  • (13) R. Aaij et al. [LHCb], Phys. Rev. Lett. 110, 222001 (2013)
  • (14) R. Aaij et al. [LHCb], Phys. Rev. Lett. 112, no.22, 222002 (2014)
  • (15) L. Micu, Nucl. Phys. B 10, 521-526 (1969)
  • (16) S. Godfrey and N. Isgur, Phys. Rev. D 32, 189-231 (1985)
  • (17) L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 71, 014028 (2005)
  • (18) D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Lett. B 634, 214-219 (2006)
  • (19) A. Limphirat, C. Kobdaj, P. Suebka and Y. Yan, Phys. Rev. C 82, 055201 (2010)
  • (20) K. Xu, A. Kaewsnod, Z. Zhao, X.Y. Liu, S. Srisuphaphon, A. Limphirat and Y. Yan, Phys. Rev. D 101, no.7, 076025 (2020)
  • (21) S. N. Gupta and J. M. Johnson, Phys. Rev. D 51, 168-175 (1995)
  • (22) D. Ebert, V. O. Galkin and R. N. Faustov, Phys. Rev. D 57, 5663-5669 (1998)
  • (23) L. Y. Glozman, Phys. Lett. B 587, 69-77 (2004)
  • (24) M. A. Nowak, M. Rho and I. Zahed, Acta Phys. Polon. B 35, 2377-2392 (2004)
  • (25) M. T. AlFiky, F. Gabbiani and A. A. Petrov, Phys. Lett. B 640, 238-245 (2006)
  • (26) X. Liu, Y. M. Yu, S. M. Zhao and X. Q. Li, Eur. Phys. J. C 47, 445-452 (2006)
  • (27) N. Brambilla, A. Pineda, J. Soto and A. Vairo, Nucl. Phys. B 566, 275 (2000)
  • (28) V. V. Braguta, A. K. Likhoded and A. V. Luchinsky, Phys. Rev. D 72, 074019 (2005)
  • (29) N. Isgur and J. E. Paton, Phys. Rev. D 31, 2910 (1985)
  • (30) P. Chen, Phys. Rev. D 64, 034509 (2001)
  • (31) M. Okamoto, S.  Aoki, R.  Burkhalter, S.  Ejiri, M.  Fukugita, S.  Hashimoto et al. [CP-PACS], Phys. Rev. D 65, 094508 (2002)
  • (32) X. Liao and T. Manke, [arXiv:hep-lat/0210030 [hep-lat]].
  • (33) C. McNeile, C. Michael, and P. Pennanen, Phys. Rev. D 65, 094505 (2002)
  • (34) T. W. Chiu and T.H.  Hsieh et al. [TWQCD], Phys. Rev. D 73, 094510 (2006)
  • (35) T. W. Chiu et al. [TWQCD], Phys. Lett. B 646, 95-99 (2007)
  • (36) E. S. Swanson, Phys. Rept. 429, 243-305 (2006)
  • (37) N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt, G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer et al., Eur. Phys. J. C 71, 1534 (2011)
  • (38) U. Wiedner, Prog. Part. Nucl. Phys. 66, 477-518 (2011)
  • (39) Charmed Baryon Spectroscopy via the (π,D)(\pi^{-},D^{*-}) reaction, http://www.j-parc.jp/researcher/Hadron/en/Proposal_e.html#1301+.
  • (40) S. H. Kim, A. Hosaka, H. C. Kim and H. Noumi, Phys. Rev. D 92, no.9, 094021 (2015)
  • (41) T. Sangkhakrit, S. I. Shim, Y. Yan and A. Hosaka, Eur. Phys. J. A 58, no.2, 32 (2022)
  • (42) A. Khodjamirian, C. Klein, T. Mannel and Y. M. Wang, Eur. Phys. J. A 48, 31 (2012)
  • (43) J. Haidenbauer, T. Hippchen, K. Holinde, B. Holzenkamp, V. Mull and J. Speth, Phys. Rev. C 45, 931-946 (1992)
  • (44) A. I. Titov and B. Kampfer, Phys. Rev. C 78, 025201 (2008)
  • (45) R. Shyam and H. Lenske, Phys. Rev. D 90, no.1, 014017 (2014)
  • (46) J. Haidenbauer and G. Krein, Phys. Rev. D 95, no.1, 014017 (2017)
  • (47) Y. Yan, C. Kobdaj, P. Suebka, Y. M. Zheng, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. C 71, 025204 (2005)
  • (48) K. Kittimanapun, Y. Yan, K. Khosonthongkee, C. Kobdaj and P. Suebka, Phys. Rev. C 79, 025201 (2009)
  • (49) A. Faessler, K. Khosonthongkee, C. Kobdaj, A. Limphirat, P. Suebka and Y. Yan, J. Phys. G 37, no.11, 115002 (2010)
  • (50) N. Isgur and G. Karl, Phys. Rev. D 20, 1191-1194 (1979)
  • (51) W. Sreethawong, K. Xu and Y. Yan, J. Phys. G 42, no.2, 025001 (2015)
  • (52) C. B. Dover, T. Gutsche, M. Maruyama and A. Faessler, Prog. Part. Nucl. Phys. 29, 87-174 (1992)
  • (53) A. Muhm, T. Gutsche, R. Thierauf, Y. Yan and A. Faessler, Nucl. Phys. A 598, 285-317 (1996)
  • (54) A. Limphirat, W. Sreethawong, K. Khosonthongkee and Y. Yan, Phys. Rev. D 89, no.5, 054030 (2014)