This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Estimating the spin of the black hole candidate MAXI J1659-152 with the X-ray continuum-fitting method

Ye Feng[Uncaptioned image] Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Beijing 100012, China; [email protected], [email protected] School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Datun Road A20, Beijing 100049, China Xueshan Zhao[Uncaptioned image] Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Beijing 100012, China; [email protected], [email protected] School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Datun Road A20, Beijing 100049, China Lijun Gou[Uncaptioned image] Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Beijing 100012, China; [email protected], [email protected] School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Datun Road A20, Beijing 100049, China Jianfeng Wu[Uncaptioned image] Department of Astronomy, Xiamen University, Xiamen, Fujian 361005, China James F. Steiner[Uncaptioned image] Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Yufeng Li[Uncaptioned image] Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Beijing 100012, China; [email protected], [email protected] School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Datun Road A20, Beijing 100049, China Zhenxuan Liao[Uncaptioned image] Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Beijing 100012, China; [email protected], [email protected] School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Datun Road A20, Beijing 100049, China Nan Jia[Uncaptioned image] Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Beijing 100012, China; [email protected], [email protected] School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Datun Road A20, Beijing 100049, China Yuan Wang[Uncaptioned image] Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Beijing 100012, China; [email protected], [email protected] School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Datun Road A20, Beijing 100049, China
Abstract

As a transient X-ray binary, MAXI J1659-152 contains a black hole candidate as its compact star. MAXI J1659-152 was discovered on 2010 September 25 during its only known outburst. Previously-published studies of this outburst indicate that MAXI J1659-152 may have an extreme retrograde spin, which, if confirmed, would provide an important clue as to the origin of black hole spin. In this paper, utilizing updated dynamical binary-system parameters (i.e. the black hole mass, the orbital inclination and the source distance) provided by Torres et al. (2021), we analyze 65 spectra of MAXI J1659-152 from RXTE/PCA, in order to assess the spin parameter. With a final selection of 9 spectra matching our fsc25%f_{\mathrm{sc}}\lesssim 25\%, soft-state criteria, we apply a relativistic thin disk spectroscopic model kerrbb2 over 3.0-45.0 keV. We find that inclination angle correlates inversely with spin, and, considering the possible values for inclination angle, we constrain spin to be 1<a0.44-1<a_{*}\lesssim 0.44 at 90% confidence interval via X-ray continuum-fitting. We can only rule out an extreme prograde (positive) spin. We confirm that an extreme retrograde solution is possible and is not ruled out by considering accretion torques given the young age of the system.

RXTE, black hole physics, X-rays: binaries - stars: individual: MAXI J1659-152

1 1. INTRODUCTION

Spin is one of the most important basic physical quantities that characterizes a black hole. Knowledge of this parameter is essential for understanding the physics governing black holes and their phenomena such as jets (Narayan & McClintock 2012). Spin is described by a dimensionless parameter a=cJ/GM2a_{*}=cJ/GM^{2}, which lies in a range from -1 to 1 (where cc is the speed of light, JJ is the angular momentum of the black hole, GG is the gravitational constant, and MM is the black hole mass).

The spin of a black hole X-ray binary (BHXRB) is generally measured in one of two spectroscopic methods. The first technique, X-ray “reflection fitting” was pioneered by Fabian et al. (1989). Subsequently, the X-ray “continuum-fitting” method was proposed by Zhang et al. (1997). In recent years, non spectroscopic techniques for measuring spin have also been proposed and explored. For instance, the high-frequency quasi-periodic oscillations (HFQPO) method (Wagoner et al. 2001, Motta et al. 2014), X-ray polarization method (Dovčiak et al. 2008), and methods for other black holes not in X-ray binaries such as the black hole horizon method (Dokuchaev & Nazarova 2019), and numerous gravitational waveform measurements of black hole mergers (See Gravitational Wave Open Science Center111https://www.gw-openscience.org/catalog/GWTC-1-confident/html/).

Of these methods, only X-ray continuum-fitting (hereafter CF) and X-ray reflection fitting (also known as the \textFeKα\text{FeK}\alpha method) are widely used in BHXRBs. To date, less than 100 BHXRBs have been found (See BlackCAT222http://www.astro.puc.cl/BlackCAT/ for details), the spin of more than two dozen BHXRBs (including persistent and transient sources) in and around the Galaxy have been measured by at least one method. For example, GRS 1915+105 (McClintock et al. 2006), M33 X-7 (Liu et al. 2008), LMC X-1 (Gou et al. 2009), A 0620-00 (Gou et al. 2010), XTE J1550-564 (Steiner et al. 2011), Cyg X-1 (Gou et al. 2014), GS 1124-683 (Chen et al. 2016), XTE J1752-223 (García et al. 2018), 4U 1543-47 (Dong et al. 2020) and so on.

The CF method is based on the classic relativistic thin disk model (Novikov & Thorne 1973). Through fitting the thermal continuum emission of the accretion disk, the inner-disk radius is constrained. By adopting the usual assumption that the inner radius of the accretion disk extends to the innermost stable circular orbit (ISCO), we can ascertain the spin based on the unique mapping between ISCO and spin as revealed in Bardeen et al. (1972). The CF method relies on accurate measurement of the system parameters (such as black hole mass (MM), the inclination of the accretion disk (ii, which is assumed to be equal to the orbital inclination) and the source distance (DD)). The \textFeKα\text{FeK}\alpha fitting method also measures the inner-disk radius by modeling the relativistic reflection spectrum and is only weakly dependent upon inclination, which may also be fitted alongside spin. The CF method is generally only applicable to stellar-mass black holes, while \textFeKα\text{FeK}\alpha fitting is widely used for both stellar-mass black holes and supermassive black holes. Aside from mutual reliance on the association between inner-disk radius and ISCO, both methods are independent and can be used to cross-check one another. In this paper, we apply the CF method to estimate the spin of MAXI J1659-152.

As the capability of spin measurement by the CF method relies upon ensuring that the inner radius of the accretion disk extends to the ISCO, we implement a screening to identify data for which that requirement is most sound: namely, high/soft (HS) state spectra whose emission is dominated by the accretion disk (e.g., McClintock et al. 2006). This also avoids potential contamination by a strong Compton component. We additionally require that the disk is geometrically thin by requiring that the dimensionless luminosity l=L(a,M˙)/LEdd<l=L(a_{*},\dot{M})/L_{\mathrm{Edd}}<0.3 (where HH is the thickness of the disk, RR is the local disk radius and ll is the bolometric Eddington-scaled luminosity; e.g., Gou et al. 2011). To ensure the data are sufficiently dominated by the thermal disk emission, we apply a bound on the relative strength of the nonthermal emission (Steiner et al. 2009a; Steiner et al. 2009b) which has been applied in similar analysis of other black-hole systems (e.g., Steiner et al. 2011; Chen et al. 2016; Zhao et al. 2020). Briefly the proportion of thermal photons which scatter in the corona (the “scattering-fraction”) fsc25%f_{\mathrm{sc}}\lesssim 25\%, where fscf_{\mathrm{sc}} is a parameter of the Comptonization model simpl in XSPEC.

Generally, BHXRBs can be divided into high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries (LMXBs) according to the mass of the black hole’s companion star. Typically, HMXBs are fueled by the capture of strong winds from the companion star (Shakura et al. 2015). However, LMXBs are usually fueled via Roche-lobe overflow (RLO) in a stream through the first Lagrangian point (L1) (Savonije 1978). In theory, natal kicks may lead to a random initial distribution of prograde/retrograde black hole X-ray binaries. However, the strong majority of black holes observed have a positive spin. For these black holes with positive spin, Nielsen (2016) shows that black holes in HMXBs usually have higher spin, while LMXB black hole spins range from very low to very high. Notably, the binary black holes (BBHs) detected by LIGO/Virgo by O3a appear to exhibit spin magnitudes close to zero (see Abbott et al. 2020 for details on BBHs). At present, there is scant information on retrograde-spin systems. There are four black hole systems for whom a retrograde spin has been suggested as likely: IGR J17091-3624 (Rao & Vadawale 2012), Swift J1910.2-0546 (Reis et al. 2013), GS 1124-683 (Morningstar et al. 2014), XMMU J004243.6+412519 (Middleton et al. 2014). Amidst these, a revised estimate of GS 1124-683 has offered instead a moderate prograde spin (Chen et al. 2016).

Table 1: Properties of SP1-SP9
Spec. ObsID MJD Start Time End Time Exposure Count rates
(s) (cts \texts1\text{s}^{-1})
SP1 95118-01-03-00 55486 2010-10-17 19:01:04 2010-10-17 19:42:40 2345 248.8
SP2 95118-01-05-00 55488 2010-10-19 00:27:44 2010-10-19 01:17:52 2696 249.9
SP3 95118-01-05-01 55488 2010-10-19 20:52:32 2010-10-19 21:34:56 2249 222.3
SP4 95118-01-06-00 55489 2010-10-20 06:20:48 2010-10-20 07:23:44 2938 221.0
SP5 95118-01-07-01 55490 2010-10-21 02:45:04 2010-10-21 03:33:04 2764 247.9
SP6 95118-01-13-00 55496 2010-10-27 12:26:24 2010-10-27 13:07:44 2139 158.1
SP7 95118-01-14-00 55497 2010-10-28 12:03:12 2010-10-28 12:16:48 749 140.3
SP8 95118-01-15-00 55498 2010-10-29 11:40:48 2010-10-29 12:00:48 1126 140.3
SP9 95118-01-15-01 55499 2010-10-30 07:57:36 2010-10-30 08:21:36 1378 137.0

Notes.
In columns 2-7, we show undermentioned information: the observation ID (ObsID), Modified Julian Date (MJD), the start time, the end time, the exposure time in units of s, and the net count rates of SP1-SP9 for PCU2 top layer measured at 3.0-45.0 keV in units of cts \texts1\text{s}^{-1}.

MAXI J1659-152 (hereafter MAXI J1659) is a Galactic black hole candidate X-ray binary (de Ugarte Postigo et al. 2010). As a transient source, MAXI J1659 has been dormant during the monitoring of the Gas Slit Camera of the Monitor of All-sky X-ray Image (MAXI/GSC) over the past 11 years. On September 25th, 2010, it was first detected entering a seven-month outburst (Homan et al. 2013). The discovery was reported by the Burst Alert Telescope of the Neil Gehrels Swift Observatory (Swift/BAT) (Mangano et al. 2010) and MAXI/GSC (Negoro et al. 2010) in the gamma-ray and X-ray bands, individually. Later, optical (de Ugarte Postigo et al. 2010), radio (Plotkin et al. 2013) and near-infrared (Kaur et al. 2012) data were also obtained. Its fast timing behaviour flagged it as a likely stellar-mass black hole candidate (Yamaoka et al. 2012). Kuulkers et al. (2013) report that the orbital period of the binary system is just 2.42 hours and that the binary system consists of an M5 dwarf companion with the mass of 0.15-0.25M~{}\mathrm{M}_{\odot} and a radius of 0.2-0.25R~{}\mathrm{R}_{\odot}, establishing MAXI J1659 as a low-mass X-ray binary. Since its outburst, the black hole has attracted much attention, and there has been extensive discussion about its mass (Kennea et al. 2011; Yamaoka et al. 2012; Shaposhnikov et al. 2011; Rao Jassal & Vadawale 2015; Molla et al. 2016), inclination (Kennea et al. 2011; Yamaoka et al. 2012) and distance (Kennea et al. 2011; Kaur et al. 2012; Kong 2012; Jonker et al. 2012; Kuulkers et al. 2013). Whereas, due to the faintness of the quiescent optical counterpart and short orbital period of MAXI J1659, it is difficult to measure its dynamic parameters (Torres et al. 2021). Recently, Rout et al. (2020) claims that the black hole’s spin is retrograde and that it may be maximal. Through the HαH_{\alpha} emission, Torres et al. (2021) find a radial velocity semi-amplitude of the donor of K2=750±80\textkm\texts1K_{2}=750\pm 80\text{km}\text{s}^{-1}. Furthermore, Torres et al. (2021) obtain q=M2/M1=0.020.07q=M_{2}/M_{1}=0.02-0.07 based on the interdependence between the ratio of line double-peak line separation (DP) and FWHM with qq. Since the system lacks eclipses, based on modeling the light curve, Torres et al. (2021) further consider a case where the disk’s outer rim occults the central X-ray source from the donor, and compares the HαH_{\alpha} line profile with that of multiple black hole systems. Taken together, the inclination is restricted in the range 70i8070^{\circ}\lesssim i\lesssim 80^{\circ}. In addition, the detection of X-ray absorption dips during the early outburst indicates a high inclination (e.g., Kuulkers et al. 2013). The mass of MAXI J1659 is constrained between 5.7±1.8M5.7\pm 1.8~{}\mathrm{M}_{\odot} (i=70i=70^{\circ}) and 4.9±1.6M4.9\pm 1.6~{}\mathrm{M}_{\odot} (i=80i=80^{\circ}) at the confidence level of 68.3%68.3\% (for details, see Torres et al. 2021). In recent years, measuring properties of the HαH_{\alpha} emission line profile emitted by the quiescent accretion disk to estimate K2K_{2} and qq has become more mature and reliable (Casares 2015, 2016, 2018; Casares & Torres 2018), which also inspires us to revisit the spin of MAXI J1659.

Our work is based upon the CF method, and utilizes the latest measurement results of Torres et al. (2021), adopting two limiting solutions: M=5.7±1.8MM=5.7\pm 1.8~{}\mathrm{M}_{\odot} (1σ\sigma), i=70.0i=70.0^{\circ}, D=6±2D=6\pm 2 kpc and M=4.9±1.6MM=4.9\pm 1.6~{}\mathrm{M}_{\odot} (1σ\sigma), i=80.0i=80.0^{\circ}, D=6±2D=6\pm 2 kpc. For the above two sets of system parameters (MM, ii, DD), we fit 9 selected spectra of RXTE/PCA of MAXI J1659 throughout its 2010 outburst in the soft state with a relativistic thin disk model kerrbb2 (McClintock et al. 2006) and constrain its spin.

The paper is organized as follows. In Section 2, we introduce the data selection and reduction, including both RXTE/PCA and XMM-Newton/EPIC-pn data. In Section 3, we describe the spectral analysis and results in detail. A discussion is presented in Section 4. We offer our conclusions in Section 5.

2 2. DATA SELECTION AND REDUCTION

During MAXI J1659’s 2010 outburst, the Rossi X-ray Timing Explorer (RXTE) carried out a total of 65 continuous observations, which were stored in three program IDs (95358, 95108, and 95118, respectively). We employ the Proportional Counter Array data of RXTE (RXTE/PCA) (Jahoda et al. 1996). In addition, we also consider data from the European Photon Imaging Camera on X-ray Multi-Mirror Newton (XMM-Newton/EPIC-pn) (Strüder et al. 2001). All data are grouped to achieve a signal-to-noise ratio (S/N) of 25 per energy bin. Spectra are fitted using XSPEC v12.11.1333https://heasarc.gsfc.nasa.gov/xanadu/xspec/ (Arnaud 1996) using χ2\chi^{2} statistics. We also check 9 spectra separately using the “ignore bad” command in XSPEC, and no bad channels need to be ignored.

Table 2: The best-fitting parameters for SP1-SP9 with crabcor*TBabs*(simpl*diskbb)
Spec. ObsID simpl diskbb χν2\chi^{2}_{\nu} χ2\chi^{2}(d.o.f.)
Γ\Gamma fscf_{\rm sc} TinT_{\rm in} norm\rm norm (×103)(\times 10^{3})
SP1 95118-01-03-00 2.42 ±\pm 0.02 0.202 ±\pm 0.003 0.785 ±\pm 0.006 1.26 ±\pm 0.05 1.296 96.48 (68)
SP2 95118-01-05-00 2.42 ±\pm 0.02 0.240 ±\pm 0.003 0.771 ±\pm 0.006 1.31 ±\pm 0.05 1.502 115.02 (68)
SP3 95118-01-05-01 2.35 ±\pm 0.02 0.204 ±\pm 0.003 0.775 ±\pm 0.006 1.20 ±\pm 0.05 1.169 91.79 (68)
SP4 95118-01-06-00 2.39 ±\pm 0.02 0.178 ±\pm 0.003 0.780 ±\pm 0.005 1.22 ±\pm 0.04 1.094 78.80 (68)
SP5 95118-01-07-01 2.39 ±\pm 0.02 0.259 ±\pm 0.003 0.781 ±\pm 0.006 1.16 ±\pm 0.05 1.260 93.76 (68)
SP6 95118-01-13-00 2.32 ±\pm 0.02 0.248 ±\pm 0.004 0.727 ±\pm 0.008 1.13 ±\pm 0.07 0.966 64.33 (68)
SP7 95118-01-14-00 2.27 ±\pm 0.05 0.162 ±\pm 0.005 0.741 ±\pm 0.011 1.08 ±\pm 0.09 0.964 60.46 (68)
SP8 95118-01-15-00 2.36 ±\pm 0.03 0.214 ±\pm 0.005 0.697 ±\pm 0.010 1.40 ±\pm 0.12 1.246 83.04 (68)
SP9 95118-01-15-01 2.36 ±\pm 0.03 0.225 ±\pm 0.004 0.684 ±\pm 0.010 1.49 ±\pm 0.13 0.791 54.26 (68)

Notes.
In columns 2-8, we show summary information: the observation ID (ObsID), the dimensionless photon index of power-law (Γ\Gamma), the scattered fraction (fscf_{\rm sc}), the temperature of inner disk radius (TinT_{\rm in}) in the units of keV, the correction factor between the apparent inner disk radius and the realistic radius (norm\rm norm) (see e.g., Kubota et al. 1998), the reduced chi-square (χν2\chi_{\nu}^{2}), the total chi-square (χ2\chi^{2}) and the degrees of freedom (d.o.f.).

2.1 2.1. RXTE observations

The PCA spectra are extracted according to the standard procedures described in RXTE Cook Book, based on the New PCA Tools444https://heasarc.gsfc.nasa.gov/docs/xte/recipes2/Overview.html with HEAsoft555https://heasarc.gsfc.nasa.gov/docs/software/heasoft/download.html v6.28. The whole procedure uses the PCA calibration files666https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_supported_missions.html v20200515. We select the data from the top layer of the best-calibrated detector PCU2 in Standard 2 mode. A dead time correction is taken into account. The latest bright-source background model is used to generate background spectra. After generating standard data products, we also apply calibration correction pcacorr 777http://www.srl.caltech.edu/personnel/javier/crabcorr/index.html which can reduce the systematic error that accounts for the uncertainties in the instrumental responses (García et al. 2014). We adopt a 0.1%0.1\% systematic error. In this work, we choose the energy band of 3.0-45.0 keV. Following our stringent screening requirements on ll and fsc25%f_{\mathrm{sc}}\lesssim 25\%, we select 9 spectra (SP1-SP9). To account for the significant flux-normalization differences between X-ray missions, we follow the previous work (Steiner et al. 2010) in attempt to standardize the calibration using the Crab as a reference. We opt for observations of Crab that are close to the target dates for SP1-SP9, and adopt Γ=2.1\Gamma=2.1, N=9.7\textphotonss1\textkeV1N=9.7\text{photons}s^{-1}\text{keV}^{-1} (Toor & Seward 1974) as the standard values. For spectra SP1-SP8, we determine that the normalization-correction coefficient CTSC_{\mathrm{TS}} is 1.1281.128 and the slope difference ΔΓTS\Delta\Gamma_{\mathrm{TS}} is 0.0210.021. For SP9, CTSC_{\mathrm{TS}} and ΔΓTS\Delta\Gamma_{\mathrm{TS}} are 1.123, 0.018, respectively. This standardization is implemented in XSPEC via crabcor. We list the detailed information about SP1-SP9 in Table 1. It is worth noting that MAXI J1659 is a bright source, whose peak flux reaches about 300 mCrab (Kalamkar et al. 2011). Jahoda et al. (2006) put forward that the threshold of pile-up significance of RXTE/PCA is 10,000 ctss1PCU1\mathrm{cts}~{}\mathrm{s}^{-1}~{}\mathrm{PCU}^{-1}. In other words, below this threshold, the photon pile-up is not significant. SP1-SP9 are all far below this threshold.

Refer to caption
Figure 1: The light curve of MAXI J1659-152 over the past 11 years as observed by MAXI/GSC. The inset shows the evolution of the hardness ratio during the 2010 outburst. The hardness is defined as the ratio of the counts detected at 4.0-10.0 keV (hard X-ray bands) to the counts detected at 2.0-4.0 keV (soft X-ray bands) of MAXI/GSC. The red circles in inset correspond to dates with observations

by RXTE/PCA, with two points (SP2 and SP3) overlapping.

2.2 2.2. XMM-Newton observations

With RXTE/PCA coverage beginning at 3 keV, the hydrogen column density (NHN_{\mathrm{H}}) can not be well constrained. So we turn to XMM-Newton data which covers the low-energy band in which NHN_{\mathrm{H}} is most prominent. We employ EPIC-pn timing-mode data during observation (ObsID 0656780601) which spanned \sim23 ks during the X-ray outburst. Data reduction is carried out using the Science Analysis System (SAS)888https://www.cosmos.esa.int/web/xmm-newton/download-and-install-sas v18.0 with the latest calibration files. We follow the standard procedures and remove the influence caused by pile-up. In addition, we include 0.5%0.5\% systematic error as suggested by the XMM-Newton team999https://heasarc.gsfc.nasa.gov/docs/xmm/sl/epic/image/sas_cl.html. Crab calibration is also made for XMM-Newton data. Implementing TBabs*(diskbb+powerlaw), eventually, we get a NH=3.22×1021cm2N_{\mathrm{H}}=3.22\times 10^{21}\mathrm{cm}^{-2} via fitting the spectrum over the energy range of 0.7-12.0 keV with a reduced chi-square χv2=1.179(2451.8/2080.0)\chi_{v}^{2}=1.179~{}(2451.8/2080.0). In subsequent work, all NHN_{\mathrm{H}} are fixed to this value.

3 3. SPECTRAL ANALYSIS AND RESULTS

3.1 3.1. The Non-Relativistic Model

As shown in Figure 1, MAXI/GSC has been monitoring MAXI J1659 for up to eleven years. The horizontal axis represents MJD and the vertical axis represents the flux in 2.0-20.0 keV detected by MAXI/GSC. As can be seen from Figure 1, MAXI J1659 has exhibited just one major outburst and shown no other signs of activity. As displayed in Figure 2, the hardness-intensity diagram (HID) shows a classical “q”-like shape, which is a typical for an outbursting black hole LMXB.

Refer to caption
Figure 2: The hardness-intensity diagram of MAXI J1659-152 by MAXI/GSC observations. The hardness is defined as the ratio of the counts detected at 4.0-10.0 keV to the counts detected at 2.0-4.0 keV of MAXI/GSC. The red circles above represent the observations by RXTE/PCA that we analyze in this paper, again with two points (SP2 and SP3) overlapping.
Table 3: The best-fitting parameters for SP1-SP9 with crabcor*TBabs*(simpl*kerrbb2)  (α=0.1\alpha=0.1)
Group Spec. ObsID SIMPL KERRBB2 χν2\chi^{2}_{\nu} χ2\chi^{2}(d.o.f.) L/LEddL/L_{\mathrm{Edd}}
Γ\Gamma fscf_{\rm sc} aa_{*} M˙\dot{M}
SP1 95118-01-03-00 2.39 ±\pm 0.02 0.189 ±\pm 0.003 0.163 ±\pm 0.03 1.36 ±\pm 0.05 1.141 77.62 (68) 0.109
SP2 95118-01-05-00 2.40 ±\pm 0.02 0.227 ±\pm 0.003 0.146 ±\pm 0.03 1.33 ±\pm 0.04 1.422 96.71 (68) 0.104
SP3 95118-01-05-01 2.31 ±\pm 0.02 0.191 ±\pm 0.003 0.217 ±\pm 0.02 1.18 ±\pm 0.03 1.085 73.76 (68) 0.097
SP4 95118-01-06-00 2.35 ±\pm 0.02 0.166 ±\pm 0.003 0.205 ±\pm 0.02 1.24 ±\pm 0.03 0.961 65.34 (68) 0.102
SP5 95118-01-07-01 2.37 ±\pm 0.02 0.245 ±\pm 0.003 0.234 ±\pm 0.03 1.15 ±\pm 0.04 1.171 79.63 (68) 0.096
SP6 95118-01-13-00 2.31 ±\pm 0.02 0.237 ±\pm 0.003 0.263 ±\pm 0.04 0.84 ±\pm 0.05 0.834 56.71 (68) 0.074
SP7 95118-01-14-00 2.25 ±\pm 0.05 0.152 ±\pm 0.004 0.277 ±\pm 0.06 0.86 ±\pm 0.07 0.852 57.94 (68) 0.056
SP8 95118-01-15-00 2.34 ±\pm 0.03 0.203 ±\pm 0.005 0.143 ±\pm 0.07 0.96 ±\pm 0.08 1.133 77.02 (68) 0.076
Group 1 SP9 95118-01-15-01 2.34 ±\pm 0.03 0.215 ±\pm 0.004 0.071 ±\pm 0.09 1.01 ±\pm 0.09 0.734 49.92 (68) 0.076
SP1 95118-01-03-00 2.38 ±\pm 0.01 0.188 ±\pm 0.002 1.33 ±\pm 0.02 0.096
SP2 95118-01-05-00 2.38 ±\pm 0.01 0.225 ±\pm 0.002 1.27 ±\pm 0.02 0.099
SP3 95118-01-05-01 2.33 ±\pm 0.01 0.194 ±\pm 0.002 1.23 ±\pm 0.02 0.096
SP4 95118-01-06-00 2.37 ±\pm 0.02 0.167 ±\pm 0.002 1.27 ±\pm 0.02 0.099
SP5 95118-01-07-01 2.39 ±\pm 0.01 0.250 ±\pm 0.003 0.184 ±\pm0.02 1.23 ±\pm 0.02 1.049 650.65 (620) 0.096
SP6 95118-01-13-00 2.34 ±\pm 0.01 0.241 ±\pm 0.003 0.93 ±\pm 0.02 0.072
SP7 95118-01-14-00 2.31 ±\pm 0.03 0.157 ±\pm 0.004 0.97 ±\pm 0.02 0.075
SP8 95118-01-15-00 2.33 ±\pm 0.02 0.202 ±\pm 0.004 0.92 ±\pm 0.02 0.071
SP9 95118-01-15-01 2.31 ±\pm 0.02 0.212 ±\pm 0.004 0.89 ±\pm 0.02 0.069
SP1 95118-01-03-00 2.39 ±\pm 0.02 0.191 ±\pm 0.003 -0.872 ±\pm 0.05 4.55 ±\pm 0.14 1.175 79.92 (68) 0.263
SP2 95118-01-05-00 2.39 ±\pm 0.02 0.229 ±\pm 0.003 -0.888 ±\pm 0.05 4.40 ±\pm 0.14 1.458 99.16 (68) 0.252
SP3 95118-01-05-01 2.31 ±\pm 0.02 0.194 ±\pm 0.003 -0.778 ±\pm 0.05 3.96 ±\pm 0.13 1.113 75.70 (68) 0.236
SP4 95118-01-06-00 2.36 ±\pm 0.02 0.169 ±\pm 0.002 -0.840 ±\pm 0.05 4.25 ±\pm 0.13 0.969 65.88 (68) 0.248
SP5 95118-01-07-01 2.37 ±\pm 0.02 0.249 ±\pm 0.003 -0.737 ±\pm 0.06 3.86 ±\pm 0.14 1.193 81.13 (68) 0.234
SP6 95118-01-13-00 2.30 ±\pm 0.02 0.239 ±\pm 0.004 -0.635 ±\pm 0.08 2.73 ±\pm 0.16 0.839 57.07 (68) 0.172
SP7 95118-01-14-00 2.24 ±\pm 0.05 0.154 ±\pm 0.004 -0.620 ±\pm 0.11 2.81 ±\pm 0.22 0.854 58.04 (68) 0.178
SP8 95118-01-15-00 2.34 ±\pm 0.03 0.205 ±\pm 0.005 -0.874 ±\pm 0.10 3.15 ±\pm 0.22 1.138 77.36 (68) 0.182
Group 2 SP9 95118-01-15-01 2.34 ±\pm 0.03 0.217 ±\pm 0.004 -0.959 ±\pm 0.10 3.24 ±\pm 0.22 0.736 50.03 (68) 0.182
SP1 95118-01-03-00 2.37 ±\pm 0.02 0.189 ±\pm 0.002 4.42 ±\pm 0.07 0.250
SP2 95118-01-05-00 2.38 ±\pm 0.01 0.227 ±\pm 0.002 4.23 ±\pm 0.06 0.239
SP3 95118-01-05-01 2.33 ±\pm 0.02 0.196 ±\pm 0.002 4.08 ±\pm 0.06 0.231
SP4 95118-01-06-00 2.35 ±\pm 0.02 0.168 ±\pm 0.002 4.21 ±\pm 0.06 0.238
SP5 95118-01-07-01 2.39 ±\pm 0.01 0.252 ±\pm 0.003 -0.826±\pm 0.02 4.09 ±\pm 0.06 1.066 661.14 (620) 0.231
SP6 95118-01-13-00 2.34 ±\pm 0.01 0.244 ±\pm 0.003 3.12 ±\pm 0.05 0.176
SP7 95118-01-14-00 2.32 ±\pm 0.03 0.160 ±\pm 0.004 3.25 ±\pm 0.05 0.184
SP8 95118-01-15-00 2.32 ±\pm 0.02 0.204 ±\pm 0.004 3.05 ±\pm 0.05 0.172
SP9 95118-01-15-01 2.31 ±\pm 0.02 0.214 ±\pm 0.004 2.96 ±\pm 0.05 0.167

Notes.
In columns 3-10, we show undermentioned information: the observation ID (ObsID), the dimensionless photon index of power-law (Γ\Gamma), the scattered fraction (fscf_{\rm sc}), the dimensionless spin parameter (aa_{*}), the effective mass accretion rate of the disk in units of 1018 g s -1 (M˙\dot{M}), the reduced chi-square (χν2\chi_{\nu}^{2}), the total chi-square (χ2\chi^{2}) and the degrees of freedom (d.o.f.), the bolometric Eddington-scaled luminosities (L(a,M˙)/LEddL(a_{*},\dot{M})/L_{\mathrm{Edd}})  (where LEdd=1.3×1038(M/M)L_{\mathrm{Edd}}=1.3\times 10^{38}\left(M/M_{\odot}\right) erg s1\mathrm{s}^{-1}, see Shapiro & Teukolsky 1983).
Single horizontal lines are used to distinguish between simultaneous fitting and independent fitting, above the single horizontal line are the results of independent fitting of 9 spectra, and below the single horizontal line are the results of simultaneous fitting of 9 spectra. The two sets of system parameters: M=5.7MM=5.7M_{\odot}, i=70.0i=70.0^{\circ}, D=6±2D=6\pm 2 kpc (group 1) and M=4.9MM=4.9M_{\odot}, i=80.0i=80.0^{\circ}, D=6±2D=6\pm 2 kpc (group 2) are separated with double horizontal lines. Above the double horizontal lines is group 1, below lines is group 2.

Table 4: The best-fitting parameters for SP1-SP9 with crabcor*TBabs*(simpl*kerrbb2)  (α=0.01\alpha=0.01)
Group Spec. ObsID simpl kerrbb2 χν2\chi^{2}_{\nu} χ2\chi^{2}(d.o.f.) L/LEddL/L_{\mathrm{Edd}}
Γ\Gamma fscf_{\rm sc} aa_{*} M˙\dot{M}
SP1 95118-01-03-00 2.38 ±\pm 0.02 0.188 ±\pm 0.003 0.210 ±\pm 0.02 1.31 ±\pm 0.03 1.148 78.09 (68) 0.107
SP2 95118-01-05-00 2.40 ±\pm 0.02 0.228 ±\pm 0.003 0.177 ±\pm 0.03 1.30 ±\pm 0.05 1.430 97.25 (68) 0.104
SP3 95118-01-05-01 2.31 ±\pm 0.02 0.192 ±\pm 0.003 0.237 ±\pm 0.02 1.17 ±\pm 0.04 1.080 73.45 (68) 0.097
SP4 95118-01-06-00 2.35 ±\pm 0.02 0.166 ±\pm 0.003 0.218 ±\pm 0.02 1.23 ±\pm 0.03 0.956 65.03 (68) 0.102
SP5 95118-01-07-01 2.37 ±\pm 0.02 0.246 ±\pm 0.003 0.254 ±\pm 0.03 1.14 ±\pm 0.04 1.172 79.70 (68) 0.096
SP6 95118-01-13-00 2.30 ±\pm 0.02 0.236 ±\pm 0.004 0.310 ±\pm 0.03 0.80 ±\pm 0.03 0.838 56.98 (68) 0.070
SP7 95118-01-14-00 2.24 ±\pm 0.05 0.152 ±\pm 0.005 0.314 ±\pm 0.03 0.83 ±\pm 0.05 0.852 57.95 (68) 0.073
SP8 95118-01-15-00 2.34 ±\pm 0.03 0.203 ±\pm 0.004 0.165 ±\pm 0.07 0.95 ±\pm 0.08 1.137 77.30 (68) 0.076
Group 1 SP9 95118-01-15-01 2.34 ±\pm 0.03 0.214 ±\pm 0.004 0.132 ±\pm 0.05 0.96 ±\pm 0.06 0.733 49.84 (68) 0.075
SP1 95118-01-03-00 2.37 ±\pm 0.02 0.186 ±\pm 0.002 1.28 ±\pm 0.01 0.102
SP2 95118-01-05-00 2.37 ±\pm 0.01 0.223 ±\pm 0.002 1.23 ±\pm 0.01 0.098
SP3 95118-01-05-01 2.32 ±\pm 0.02 0.193 ±\pm 0.002 1.18 ±\pm 0.01 0.094
SP4 95118-01-06-00 2.35 ±\pm 0.02 0.165 ±\pm 0.002 1.22 ±\pm 0.01 0.097
SP5 95118-01-07-01 2.39 ±\pm 0.01 0.249 ±\pm 0.003 0.224±\pm 0.01 1.18 ±\pm 0.01 1.048 649.55 (620) 0.094
SP6 95118-01-13-00 2.34 ±\pm 0.01 0.241 ±\pm 0.003 0.90 ±\pm 0.01 0.072
SP7 95118-01-14-00 2.30 ±\pm 0.03 0.157 ±\pm 0.004 0.94 ±\pm 0.01 0.075
SP8 95118-01-15-00 2.31 ±\pm 0.02 0.200 ±\pm 0.004 0.88 ±\pm 0.01 0.070
SP9 95118-01-15-01 2.30 ±\pm 0.02 0.211 ±\pm 0.004 0.85 ±\pm 0.01 0.068
SP1 95118-01-03-00 2.39 ±\pm 0.02 0.191 ±\pm 0.003 -0.684 ±\pm 0.04 4.19 ±\pm 0.12 1.170 79.53 (68) 0.259
SP2 95118-01-05-00 2.40 ±\pm 0.02 0.230 ±\pm 0.003 -0.731 ±\pm 0.06 4.13 ±\pm 0.15 1.451 98.66 (68) 0.250
SP3 95118-01-05-01 2.32 ±\pm 0.02 0.194 ±\pm 0.003 -0.641 ±\pm 0.05 3.74 ±\pm 0.14 1.107 75.27 (68) 0.234
SP4 95118-01-06-00 2.36 ±\pm 0.02 0.168 ±\pm 0.003 -0.657 ±\pm 0.04 3.92 ±\pm 0.11 0.964 65.58 (68) 0.244
SP5 95118-01-07-01 2.37 ±\pm 0.02 0.248 ±\pm 0.004 -0.584 ±\pm 0.04 3.59 ±\pm 0.12 1.191 80.97 (68) 0.230
SP6 95118-01-13-00 2.30 ±\pm 0.02 0.239 ±\pm 0.004 -0.530 ±\pm 0.07 2.60 ±\pm 0.14 0.838 57.00 (68) 0.170
SP7 95118-01-14-00 2.24 ±\pm 0.05 0.154 ±\pm 0.004 -0.519 ±\pm 0.09 2.68 ±\pm 0.19 0.853 58.02 (68) 0.176
SP8 95118-01-15-00 2.34 ±\pm 0.03 0.205 ±\pm 0.005 -0.761 ±\pm 0.10 3.01 ±\pm 0.21 1.136 77.27 (68) 0.181
Group 2 SP9 95118-01-15-01 2.34 ±\pm 0.03 0.217 ±\pm 0.004 -0.835 ±\pm 0.12 3.09 ±\pm 0.24 0.735 49.99 (68) 0.181
SP1 95118-01-03-00 2.38 ±\pm 0.02 0.189 ±\pm 0.002 4.12 ±\pm 0.05 0.247
SP2 95118-01-05-00 2.38 ±\pm 0.01 0.226 ±\pm 0.002 3.93 ±\pm 0.05 0.236
SP3 95118-01-05-01 2.32 ±\pm 0.02 0.195 ±\pm 0.002 3.78 ±\pm 0.05 0.227
SP4 95118-01-06-00 2.36 ±\pm 0.02 0.168 ±\pm 0.002 3.92 ±\pm 0.05 0.235
SP5 95118-01-07-01 2.39 ±\pm 0.01 0.251 ±\pm 0.003 -0.659±\pm 0.02 3.78 ±\pm 0.05 1.057 655.57 (620) 0.227
SP6 95118-01-13-00 2.34 ±\pm 0.01 0.243 ±\pm 0.003 2.87 ±\pm 0.04 0.172
SP7 95118-01-14-00 2.30 ±\pm 0.03 0.159 ±\pm 0.004 2.99 ±\pm 0.04 0.179
SP8 95118-01-15-00 2.31 ±\pm 0.02 0.202 ±\pm 0.004 2.80 ±\pm 0.04 0.168
SP9 95118-01-15-01 2.30 ±\pm 0.02 0.213 ±\pm 0.003 2.72 ±\pm 0.04 0.163

Notes.
In columns 3-10, we show the following information: the observation ID (ObsID), the dimensionless photon index of power-law (Γ\Gamma), the scattered fraction (fscf_{\rm sc}), the dimensionless spin parameter (aa_{*}), the mass accretion rate through the disk in units of 1018 g s -1 (M˙\dot{M}), the reduced chi-square (χν2\chi_{\nu}^{2}), the total chi-square (χ2\chi^{2}) and the degrees of freedom (d.o.f.), the luminosity (ll).
Single horizontal lines are used to distinguish between simultaneous fitting and independent fitting, above the single horizontal line are results of independent fitting of 9 spectra, and below the single horizontal line are the results of simultaneous fitting of 9 spectra. The two sets of system parameters: M=5.7MM=5.7M_{\odot}, i=70.0i=70.0^{\circ}, D=6±2D=6\pm 2 kpc (group 1) and M=4.9MM=4.9M_{\odot}, i=80.0i=80.0^{\circ}, D=6±2D=6\pm 2 kpc (group 2) are separated with double horizontal lines. Above the double horizontal double lines is group 1, below the double lines is group 2.

Firstly, we present the non-relativistic case, which consists of multiple blackbody disk components diskbb (Mitsuda et al. 1984; Makishima et al. 1986). The composite non-relativistic model crabcor*TBabs*(simpl*diskbb) is used to fit the data for the 9 screened RXTE/PCA spectral. The model crabcor and model simpl have been mentioned earlier (see Section 2 and Section 1 respectively). The photoionization cross-sections of the interstellar medium (ISM) in model TBabs are based on Verner et al. (1996) and the abundances are based on Wilms et al. (2000), and we set NHN_{\mathrm{H}} to 3.22×1021cm23.22\times 10^{21}\mathrm{cm}^{-2} (see Section 2). The best-fitting results of SP1-SP9 are listed in Table 2. As can be seen, these 9 spectra are well fitted and the reduced chi-square χν2\chi_{\nu}^{2} of SP1-SP9 are basically maintained in the vicinity of 1. Figure 3 shows the fitting of SP1 and SP4 as representatives. We can discover that the model fitted well without any significant residual.

Refer to caption
Figure 3: Illustrative spectral fits (non-relativistic) for SP1 (ObsID 95118-01-03-00) and SP4 (ObsID 95118-01-06-00). Data have been rebinned for visual clarity.
Refer to caption
Refer to caption
Figure 4: (a). The results of MC error analysis of aa_{*} for SP1-SP9 for group 1. (b). The analogous results for group 2. For both (a) and (b), black dotted lines represent the center value of aa_{*}, and red dotted lines represent the ±68.3%\pm 68.3\% (±\pm 1σ\sigma) lower and upper-limits between groups 1 and 2, respectively.

3.2 3.2. The Relativistic Model

We next move to the fully-relativistic accretion-disk model kerrbb2 (McClintock et al. 2006). kerrbb2 merges two different disk models, bhspec and kerrbb. Specifically, bhspec is used to determine the value of the spectral hardening factor fTcol/Tefff\equiv T_{\mathrm{col}}/T_{\mathrm{eff}} (also known as the color correction factor, Davis et al. 2005), while kerrbb employs ray-tracing computations to model the disk (Li et al. 2005). We first use bhspec101010http://people.virginia.edu/~swd8g/xspec.html to compute spectral-hardening look-up tables according to two representative values of the viscosity parameter (α=0.1\alpha=0.1 and α=0.01\alpha=0.01). It is worth noting that the calculations with the model BHSPEC are made for spins ranging from -1 to 1. During kerrbb2 fitting, the ff-table is read in and used to automatically set ff’s value; otherwise the performance is identical to the original kerrbb. The relativistic model can be expressed as crabcor*TBabs*(simpl*kerrbb2). By default we adopt α=0.1\alpha=0.1 and note that α=0.01\alpha=0.01 returns slightly larger values for spin.

We adopt the revised system parameters from improved by Torres et al. (2021), and consider inclination angles of 7070^{\circ} and 8080^{\circ}. The mass is restricted to 5.7±1.8M5.7\pm 1.8~{}\mathrm{M}_{\odot} (1σ\sigma) and 4.9±1.6M4.9\pm 1.6~{}\mathrm{M}_{\odot} (1σ\sigma) respectively. Following Torres et al. (2021), when the distance is D=6±2D=6\pm 2\text  kpc, the center value of the measured mass falls within the range of 4.3-6.0M~{}\mathrm{M}_{\odot} calculated based on formula 5 by Yamaoka et al. (2012). In addition, this distance is also consistent with Kuulkers et al. (2013). Therefore, we adopt the distance of D=6±2D=6\pm 2\textkpc\text{~{}kpc} in this paper.

The self-irradiation of the disk (rflag=1) and the effect of limb-darkening (lflag=1) are taken into account. And we set the torque at the inner boundary of the disk to be zero (eta=0). For both bracketing sets of system parameters: M=5.7±1.8MM=5.7\pm 1.8~{}\mathrm{M}_{\odot} (1σ\sigma), i=70.0i=70.0^{\circ}, D=6±2D=6\pm 2 kpc (hereafter group 1) and M=4.9±1.6MM=4.9\pm 1.6~{}\mathrm{M}_{\odot} (1σ\sigma), i=80.0i=80.0^{\circ}, D=6±2D=6\pm 2 kpc (hereafter group 2), we show our results in Table 3. Above the double horizontal lines is group 1, below the double horizontal lines is group 2. Group 1 (70) would have MAXI J1659 with a moderate positive spin, whereas group 2 (80) finds an extreme retrograde spin as most likely.

Although in this paper, we focus upon results for α=0.1\alpha=0.1 as our default, for the alternative case of α=0.01\alpha=0.01 we have performed the same calculations. Those results are in Table 4. The errors that appear in Table 3 and 4 are only due to the statistical uncertainties estimated by XSPEC for 90%90\% confidence. Next, we will discuss the error from uncertainties of input parameters: MM, ii, DD in detail.

Refer to caption
Figure 5: (a). The total histogram of aa_{*} for SP1-SP9 for group 1, which consists of 27000 data points. (b). The analogous histogram for group 2. For both (a) and (b), black dotted lines represent the center value of aa_{*}, and red dotted lines represent the ±68.3%\pm 68.3\% (±\pm 1σ\sigma) lower and upper-limits between groups 1 and 2, respectively.

3.3 3.3. Error Analysis

The dominant source of uncertainty in CF is the uncertainty of the input parameters: MM, ii, DD. In order to determine those uncertainties, Monte Carlo (MC) methods are often used (see, e.g., Liu et al. 2008; Gou et al. 2009). We follow these works, but differ in that, unlike those, here there are two distinct sets of input system parameters (group 1 and group 2). We first consider these groups separately.

For each individual spectrum in SP1-SP9, assuming that randomly generated data points are independent of each other and obey the Gaussian distribution, we have generated 3000 data points of M and D respectively. i=70.0i=70.0^{\circ} (i=80.0i=80.0^{\circ}), and these 3000 data points constituted 3000 data sets as input parameters. We next compute the look-up tables of ff for these 3000 data sets. Lastly, we use the composite model crabcor*TBabs*(simpl*kerrbb2) (see Section 2) to fit 3000 data sets to obtain the histogram of spin, so as to determine the errors. The MC-determined error analysis of each spectrum is shown in Figure 4. The histograms of aa_{*} for SP1-SP9 is shown in Figure 5. As shown in Figure 5, group 1 with higher-mass and lower inclination yields spin a=0.210.20+0.14a_{*}=0.21_{-0.20}^{+0.14} (1σ\sigma); group 2 gives a=0.790.20+0.31a_{*}=-0.79_{-0.20}^{+0.31} (1σ\sigma).

We now combine groups 1 and 2 in order to establish a net constraint on spin. We are interested in assessing the lower and upper bounds on spin which are mostly constrained by groups 2 and 1, respectively. We mark the appropriate 1-σ\sigma limit for each spectrum in Figure 4, and for the composite result in Figure 5. In total, we find that the spin of MAXI J1659 is poorly constrained, with an allowable range 1<a0.35-1<a_{*}\lesssim 0.35 in 1 sigma interval. The 90% upper limit on spin is 0.44 from group 1.

Table 5: The best-fitting parameters for SP1 with crabcor*TBabs*(simpl*kerrbb2)  (α=0.1\alpha=0.1)
NHN_{\mathrm{H}} simpl kerrbb2 χν2\chi^{2}_{\nu} χ2\chi^{2}(d.o.f.) L/LEddL/L_{\mathrm{Edd}}
(×1022cm2\times 10^{22}\mathrm{cm}^{-2}) Γ\Gamma fscf_{\rm sc} aa_{*} M˙\dot{M}
0.200 2.38 ±\pm 0.02 0.189 ±\pm 0.003 0.210 ±\pm 0.02 1.29 ±\pm 0.03 1.118 76.03 (68) 0.106
0.322 2.39 ±\pm 0.02 0.189 ±\pm 0.003 0.163 ±\pm 0.03 1.36 ±\pm 0.05 1.141 77.62 (68) 0.109
0.400 2.39 ±\pm 0.02 0.189 ±\pm 0.003 0.152 ±\pm 0.03 1.39 ±\pm 0.05 1.159 78.81 (68) 0.110
0.500 2.39 ±\pm 0.02 0.188 ±\pm 0.003 0.134 ±\pm 0.03 1.42 ±\pm 0.04 1.185 80.56 (68) 0.111
0.200 2.39 ±\pm 0.02 0.192 ±\pm 0.003 -0.834 ±\pm 0.06 4.42 ±\pm 0.16 1.143 77.71 (68) 0.258
0.322 2.39 ±\pm 0.02 0.191 ±\pm 0.003 -0.872 ±\pm 0.05 4.55 ±\pm 0.14 1.175 79.92 (68) 0.263
0.400 2.40 ±\pm 0.02 0.192 ±\pm 0.003 -0.929 ±\pm 0.06 4.71 ±\pm 0.17 1.197 81.41 (68) 0.267
0.500 2.40 ±\pm 0.02 0.191 ±\pm 0.003 -0.957 ±\pm 0.05 4.82 ±\pm 0.16 1.209 82.23 (68) 0.271

Notes.
In columns 1-8, we show the following information: the hydrogen column density in units of 1022cm210^{22}\mathrm{cm}^{-2} (NHN_{\mathrm{H}}), the dimensionless photon index of power-law (Γ\Gamma), the scattered fraction (fscf_{\rm sc}), the dimensionless spin parameter (aa_{*}), the effective mass accretion rate of the disk in units of 1018 g s -1 (M˙\dot{M}), the reduced chi-square (χν2\chi_{\nu}^{2}), the total chi-square (χ2\chi^{2}) and the degrees of freedom (d.o.f.), the bolometric Eddington-scaled luminosities (L(a,M˙)/LEddL(a_{*},\dot{M})/L_{\mathrm{Edd}}).
The two sets of system parameters: M=5.7MM=5.7M_{\odot}, i=70.0i=70.0^{\circ}, D=6±2D=6\pm 2 kpc (group 1) and M=4.9MM=4.9M_{\odot}, i=80.0i=80.0^{\circ}, D=6±2D=6\pm 2 kpc (group 2) are separated with double horizontal lines. Above the double horizontal lines is group 1, below the double lines is group 2.

4 4. DISCUSSION

Refer to caption
Refer to caption
Figure 6: (a) For α\alpha=0.1, the linked spectral fit and its residuals over the fitted bandpass for relativistic model. Data have been rebinned for visual clarity. (b). Same as the Figure 5 definition, but as a MC result of joint fits.

4.1 4.1. Effect of the Hydrogen Column Density

In order to assess whether the hydrogen column density significantly affects the spin results, we explore varying the value of NHN_{\mathrm{H}} from 0.322 to 0.2, 0.4, 0.5 in units of 1022cm210^{22}\mathrm{cm}^{-2}. These alternates are chosen as round numbers covering the range of values given by Kennea et al. (2011). The fitting is systematically affected for all the spectra in the same way. We illustrate this difference by showing such results for SP1 in Table 5. When NHN_{\mathrm{H}} increases from 2×1021cm22\times 10^{21}\mathrm{cm}^{-2} to 5×1021cm25\times 10^{21}\mathrm{cm}^{-2}, for group 1, aa_{*} varies from 0.210 to 0.134, with Δa\Delta a_{*} equaling to 0.076. And for group 2, aa_{*} changes from -0.834 to -0.957, and Δa\Delta a_{*} is 0.123. As expected, a slight increase of NHN_{\mathrm{H}}, causes the inferred spin decrease. Compared to the dynamical sources of uncertainty in hand, changing the value of NHN_{\mathrm{H}} has very minor effect on the final spin results.

Refer to caption
Refer to caption
Figure 7: (a). For SP1 under the default group 1 settings, the contour map of fscf_{\mathrm{sc}} and aa_{*}. The three contour lines represent 68.3%68.3\%, 90 and 99.7%99.7\%, respectively. (b). The relation between aa_{*} and fscf_{\mathrm{sc}} for SP1 to SP9 in different groups.

4.2 4.2. Effect of simultaneous fitting of 9 spectra on spin results

In addition to fitting each spectrum individually with the relativistic model, we also consider the case that all the spectra are fitted simultaneously and looked into its effect. We linked the spin parameters among all 9 spectra, and letting the other fit parameters free. For the convenience of comparison, we also listed the results of simultaneous fits in Table 3 and 4 to group 1 and 2, and use a single horizontal line as a distinction. As a showcase, the simultaneous fit to all the spectra is also shown in Figure 6 (a). As we can see, the spin ranging from 1<a0.33-1<a_{*}\lesssim 0.33 (1σ\sigma) obtained from MC result (Figure 6 (b)), and it is clear that the results are fully consistent with ones obtained from individual spectral fits (Figure 5), which is expected. Therefore, the effect of joint fits is negligible and our work uses the fit results from the individual spectra as our primary results.

4.3 4.3. Differences from Previous Measurements

Rout et al. (2020) construct a wider range of system parameter (MM, ii, DD) grids based on an older set of measurement results. They found a simultaneous data set with XMM/EPIC-pn and RXTE/PCA overlapping on September 28, 2010. Fitting the two data sets together, they simultaneously adopt the X-ray reflection fitting and continuum-fitting method. On this basis, they use meaningful values of mass accretion rate M˙\dot{M} to constrain the spin of MAXI J1659. In their results of the X-ray continuum-fitting show that the lower limit of the spin is pegged at -0.998, while the upper limit is 0.4. However, it should be noted that the spectra in Rout et al. (2020) do not meet the fsc25%f_{\mathrm{sc}}\lesssim 25\% criterion. Different from Rout et al. (2020), we firstly screen the spectra with fsc25%f_{\mathrm{sc}}\lesssim 25\% for the X-ray continuum-fitting and made crabcor correction. In addition, we use the relativistic model kerrbb2 that allows the spectral hardening factor ff to change, which will be closer to the actual situation. And we do not ignore the influence of self-irradiation in kerrbb2. Based on the use of different spectra, different models and updated dynamical parameters, we find a spin ranging from 1<a0.35-1<a_{*}\lesssim 0.35 (1σ\sigma). As reported by Rout et al. (2020), we also rule out extreme prograde spin.

4.4 4.4. The possible relation between the scattering fraction in the spectrum and the spin

To verify that a stronger hard tail does not introduce bias, we also check for possible correlation between the scattering fraction in the spectrum and the spin. We take SP1 as an example, and find for any individual spectrum, the contour map between black hole spin and fscf_{\mathrm{sc}} shows a strong degenerate relation (see subgraph (a) of Figure 7). However, we find that as an ensemble which encompasses a range of fscf_{\mathrm{sc}} values, the spin does not exhibit correlation (see subgraph (b) of Figure 7). Accordingly, we conclude that fscf_{\mathrm{sc}} does not affect our spin results.

4.5 4.5. Further discussion on the Possibility of Extreme Negative Spin

King & Kolb (1999) considered the effect of prograde accretion in changing the black hole mass and its spin (See their Figure 3). We also consider the influence of retrograde accretion in changing the black hole mass and spin in Appendix A. As stated above, Kuulkers et al. (2013) found that the companion of MAXI J1659 had an initial mass of about 1.5M1.5~{}\mathrm{M}_{\odot}, which evolved to its current mass in about 4.6-5.7 billion years. Let us make a simple estimate. We assume that MAXI J1659 is a retrograde black hole with an extreme spin, approaching a=1a_{*}=-1. And we suppose the initial mass of the black hole is 4M4~{}\mathrm{M}_{\odot}. The outburst-averaged dimensionless mass accretion rate (m˙=M˙/M˙Edd\dot{m}=\dot{M}/\dot{M}_{\mathrm{Edd}}) of the standard thin disk model is usually in the range of 0.01-0.3 (Narayan & Yi 1995; Ohsuga et al. 2002), nonetheless, if we take into account that only one 7-month outburst has been observed from the source in the last 25 years, the time-averaged accretion rate m˙=2×104\dot{m}=2\times 10^{-4} would be more realistic. When m˙=2×104\dot{m}=2\times 10^{-4}, the Eddington accretion rate (M˙Edd\dot{M}_{\mathrm{Edd}}) of a black hole with 4M4~{}\mathrm{M}_{\odot} is about 108Myr110^{-8}~{}\mathrm{M}_{\odot}~{}\mathrm{yr}^{-1}. According to Equation A1, in 4.6-5.7 billion years, the accreted mass onto MAXI J1659 should fall within the range 0.0092-0.0114M~{}\mathrm{M}_{\odot} as m˙=\dot{m}=2×1042\times 10^{-4}. In other words, ΔM/Mi\Delta M/M_{\rm i} (defined in Appendix A) should fall within the range of 0.0023-0.00285. This obviously is insufficient to rule out the possibility that MAXI J1659 has an extreme negative spin (see Figure 8, two of the red dash lines represent 0.0023 and 0.00285, respectively).

5 5. CONCLUSION

In this paper, we present an X-ray continuum-fitting spectral spectral analysis of the black hole candidate MAXI J1659. We select 9 spectra of RXTE/PCA satisfying luminosity and state/coronal-brightness restrictions. Based on the two sets of plausible system parameters: M=5.7±1.8MM=5.7\pm 1.8~{}\mathrm{M}_{\odot}, i=70.0i=70.0^{\circ}, D=6±2D=6\pm 2  kpc and M=4.9±1.6MM=4.9\pm 1.6~{}\mathrm{M}_{\odot}, i=80.0i=80.0^{\circ}, D=6±2D=6\pm 2 kpc reported by Torres et al. (2021), we constrain the spin to 1<a0.44-1<a_{*}\lesssim 0.44 in 90% confidence interval via the X-ray continuum-fitting method, as suggested in Rout et al. (2020), there is a possibility of an extreme negative spin. Then we exclude the influence of changing NHN_{\mathrm{H}} on the spin. The possible effect of scattering fractions on spin results is also considered. We demonstrate that an extreme negative spin can not be ruled out on the basis of theoretically-expected accretion spin-up alone when considering the companion lifetime and a theoretical maximally retrograde black hole as a possible formation state.

Besides, it is important to note that, taking the linked spectral for group 1 in α\alpha=0.1 as an example, when we fix spin to its positive maximum value (a=0.998a_{*}=0.998) and thaw inclination angle, we can obtain i=26.02 ±\pm 0.17 degree, which is well below i=70.0i=70.0^{\circ} in group 1. This indicates that the inclination angle has a great impact on the spin. Therefore, accurate system parameters are very important for the CF method. It should be noted that, for MAXI J1659, more accurate spin results can be obtained when more precise measurements of system parameters are available in the future.

We thank the anonymous referee for the constructive comments. Y.F. thank the useful discussions with Prof. Tess Jaffe on extracting RXTE/PCA spectrum. Y.F. also thank the useful discussions with Prof. Chang-Hwan Lee. The standard data products of RXTE/PCA used in this work obtained from the RXTE satellite and the RXTE Guest Observer Facility (GOF). And the standard data products of XMM-Newton/EPIC-pn obtained from the XMM-Newton satellite, an ESA science mission funded by ESA Member States and the USA (NASA). The software used is provided by the High Energy Astrophysics Science Archive Research Centre (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and the High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory. L.G. is supported by the National Program on Key Research and Development Project (Grant No. 2016YFA0400804), and by the National Natural Science Foundation of China (Grant No. U1838114), and by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23040100). J.W. acknowledges the support of the National Natural Science Foundation of China (NSFC grant No. U1938105) and the President Fund of Xiamen University (No. 20720190051).

Appendix A retrograde accretion

Retrograde, meaning the black hole rotates in the opposite direction to its accretion disk (a<0a_{*}<0). In order to keep the consistency with King & Kolb (1999), ΔM\Delta M is remained in use (where ΔM\Delta M is the rest-mass added to the black hole from the initial state). And we assume the initial state of the black hole is M=MiM=M_{\rm i}, a=1a_{*}=-1. Under the assumption of King & Kolb (1999), for a retrograde black hole, through derivation, ΔM\Delta M can be expressed as

ΔM=(27Mi22)1/2[sin1((2M227Mi2)1/2)sin1((227)1/2)]\Delta M=\left(\frac{{27M_{\rm i}}^{2}}{2}\right)^{1/2}\left[\sin^{-1}\left(\left(\frac{2M^{2}}{27M_{\rm i}^{2}}\right)^{1/2}\right)-\sin^{-1}\left(\left(\frac{2}{27}\right)^{1/2}\right)\right] (A1)
a=MiM[4(27Mi2M22)1/2]a_{*}=\frac{M_{\rm i}}{M}\left[4-\left(\frac{27M_{\rm i}^{2}}{M^{2}}-2\right)^{1/2}\right] (A2)

When a=0a_{*}=0, M/Mi=(3/2)1/2M/M_{\rm i}=\left(3/2\right)^{1/2}. The spin will increase as the accretion mass increases, indicated by formula A2. And the speed of spin increasing is much faster than that of a prograde black hole. In other words, when the amount of spin changing is the same, the retrograde black hole accretion time is much shorter than the prograde black hole accretion time.

Refer to caption
Figure 8: aa_{*} versus accreted rest-mass ΔM\Delta M, in units of the final mass MfM_{\rm f} at zero spin (solid line, bottom axis), and in units of the initial mass Mi(a=1)M_{\rm i}\left(a_{*}=-1\right) at maximum negative spin (dotted line, top axis). Red dash lines represent ΔM/Mi\Delta M/M_{\rm i}= 0.0023 (left) and 0.00285 (right), respectively.

Combining formula A1 and A2, the relation between aa_{*} and ΔM\Delta M can be easily obtained, which shown in Figure 8. When a maximum retrograde black hole is accreting the mass of its donor, and caused aa_{*} to change from -1 to 0. The mass that needs to accrete is ΔM0.22Mi\Delta M\approx 0.22M_{\rm i}, where MiM_{\rm i} represents the initial mass at a=1a_{*}=-1. It can also be expressed as ΔM0.18Mf\Delta M\approx 0.18M_{\rm f}, where MfM_{\rm f} typifies the final mass at a=0a_{*}=0.

References

  • Abbott et al. (2020) Abbott, R., Abbott, T. D., Abraham, S., et al. 2020, arXiv e-prints, arXiv:2010.14527. https://arxiv.org/abs/2010.14527
  • Arnaud (1996) Arnaud, K. A. 1996, in Astronomical Society of the Pacific Conference Series, Vol. 101, Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes, 17
  • Bardeen et al. (1972) Bardeen, J. M., Press, W. H., & Teukolsky, S. A. 1972, ApJ, 178, 347, doi: 10.1086/151796
  • Casares (2015) Casares, J. 2015, ApJ, 808, 80, doi: 10.1088/0004-637X/808/1/80
  • Casares (2016) —. 2016, ApJ, 822, 99, doi: 10.3847/0004-637X/822/2/99
  • Casares (2018) —. 2018, MNRAS, 473, 5195, doi: 10.1093/mnras/stx2690
  • Casares & Torres (2018) Casares, J., & Torres, M. A. P. 2018, MNRAS, 481, 4372, doi: 10.1093/mnras/sty2570
  • Chen et al. (2016) Chen, Z., Gou, L., McClintock, J. E., et al. 2016, ApJ, 825, 45, doi: 10.3847/0004-637X/825/1/45
  • Davis et al. (2005) Davis, S. W., Blaes, O. M., Hubeny, I., & Turner, N. J. 2005, ApJ, 621, 372, doi: 10.1086/427278
  • de Ugarte Postigo et al. (2010) de Ugarte Postigo, A., Lundrgren, A., Wyrowski, F., et al. 2010, GRB Coordinates Network, 11304, 1
  • Dokuchaev & Nazarova (2019) Dokuchaev, V. I., & Nazarova, N. O. 2019, Universe, 5, 183, doi: 10.3390/universe5080183
  • Dong et al. (2020) Dong, Y., García, J. A., Steiner, J. F., & Gou, L. 2020, MNRAS, 493, 4409, doi: 10.1093/mnras/staa606
  • Dovčiak et al. (2008) Dovčiak, M., Muleri, F., Goosmann, R. W., Karas, V., & Matt, G. 2008, MNRAS, 391, 32, doi: 10.1111/j.1365-2966.2008.13872.x
  • Fabian et al. (1989) Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729, doi: 10.1093/mnras/238.3.729
  • García et al. (2014) García, J. A., McClintock, J. E., Steiner, J. F., Remillard, R. A., & Grinberg, V. 2014, ApJ, 794, 73, doi: 10.1088/0004-637X/794/1/73
  • García et al. (2018) García, J. A., Steiner, J. F., Grinberg, V., et al. 2018, ApJ, 864, 25, doi: 10.3847/1538-4357/aad231
  • Gou et al. (2010) Gou, L., McClintock, J. E., Steiner, J. F., et al. 2010, The Astrophysical Journal, 718, L122, doi: 10.1088/2041-8205/718/2/l122
  • Gou et al. (2011) Gou, L., McClintock, J. E., Reid, M. J., et al. 2011, ApJ, 742, 85, doi: 10.1088/0004-637X/742/2/85
  • Gou et al. (2009) Gou, L. J., McClintock, J. E., Liu, J. F., et al. 2009, ApJ, 701, 1076, doi: 10.1088/0004-637X/701/2/1076
  • Gou et al. (2014) Gou, L. J., McClintock, J. E., Remillard, R. A., et al. 2014, ApJ, 790, 29, doi: 10.1088/0004-637X/790/1/29
  • Homan et al. (2013) Homan, J., Fridriksson, J. K., Jonker, P. G., et al. 2013, ApJ, 775, 9, doi: 10.1088/0004-637X/775/1/9
  • Jahoda et al. (2006) Jahoda, K., Markwardt, C. B., Radeva, Y., et al. 2006, ApJS, 163, 401, doi: 10.1086/500659
  • Jahoda et al. (1996) Jahoda, K., Swank, J. H., Giles, A. B., et al. 1996, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 2808, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, ed. O. H. Siegmund & M. A. Gummin, 59–70, doi: 10.1117/12.256034
  • Jonker et al. (2012) Jonker, P. G., Miller-Jones, J. C. A., Homan, J., et al. 2012, MNRAS, 423, 3308, doi: 10.1111/j.1365-2966.2012.21116.x
  • Kalamkar et al. (2011) Kalamkar, M., Homan, J., Altamirano, D., et al. 2011, ApJ, 731, L2, doi: 10.1088/2041-8205/731/1/L2
  • Kaur et al. (2012) Kaur, R., Kaper, L., Ellerbroek, L. E., et al. 2012, ApJ, 746, L23, doi: 10.1088/2041-8205/746/2/L23
  • Kennea et al. (2011) Kennea, J. A., Romano, P., Mangano, V., et al. 2011, ApJ, 736, 22, doi: 10.1088/0004-637X/736/1/22
  • King & Kolb (1999) King, A. R., & Kolb, U. 1999, MNRAS, 305, 654, doi: 10.1046/j.1365-8711.1999.02482.x
  • Kong (2012) Kong, A. K. H. 2012, ApJ, 760, L27, doi: 10.1088/2041-8205/760/2/L27
  • Kubota et al. (1998) Kubota, A., Tanaka, Y., Makishima, K., et al. 1998, PASJ, 50, 667, doi: 10.1093/pasj/50.6.667
  • Kuulkers et al. (2013) Kuulkers, E., Kouveliotou, C., Belloni, T., et al. 2013, A&A, 552, A32, doi: 10.1051/0004-6361/201219447
  • Li et al. (2005) Li, L.-X., Zimmerman, E. R., Narayan, R., & McClintock, J. E. 2005, ApJS, 157, 335, doi: 10.1086/428089
  • Liu et al. (2008) Liu, J. F., McClintock, J. E., Narayan, R., Davis, S. W., & Orosz, J. A. 2008, ApJ, 679, L37, doi: 10.1086/588840
  • Makishima et al. (1986) Makishima, K., Maejima, Y., Mitsuda, K., et al. 1986, ApJ, 308, 635, doi: 10.1086/164534
  • Mangano et al. (2010) Mangano, V., Hoversten, E. A., Markwardt, C. B., et al. 2010, GRB Coordinates Network, 11296, 1
  • McClintock et al. (2006) McClintock, J. E., Shafee, R., Narayan, R., et al. 2006, ApJ, 652, 518, doi: 10.1086/508457
  • Middleton et al. (2014) Middleton, M. J., Miller-Jones, J. C. A., & Fender, R. P. 2014, MNRAS, 439, 1740, doi: 10.1093/mnras/stu056
  • Mitsuda et al. (1984) Mitsuda, K., Inoue, H., Koyama, K., et al. 1984, PASJ, 36, 741
  • Molla et al. (2016) Molla, A. A., Debnath, D., Chakrabarti, S. K., Mondal, S., & Jana, A. 2016, MNRAS, 460, 3163, doi: 10.1093/mnras/stw860
  • Morningstar et al. (2014) Morningstar, W. R., Miller, J. M., Reis, R. C., & Ebisawa, K. 2014, ApJ, 784, L18, doi: 10.1088/2041-8205/784/2/L18
  • Motta et al. (2014) Motta, S. E., Belloni, T. M., Stella, L., Muñoz-Darias, T., & Fender, R. 2014, MNRAS, 437, 2554, doi: 10.1093/mnras/stt2068
  • Narayan & McClintock (2012) Narayan, R., & McClintock, J. E. 2012, MNRAS, 419, L69, doi: 10.1111/j.1745-3933.2011.01181.x
  • Narayan & Yi (1995) Narayan, R., & Yi, I. 1995, ApJ, 452, 710, doi: 10.1086/176343
  • Negoro et al. (2010) Negoro, H., Yamaoka, K., Nakahira, S., et al. 2010, The Astronomer’s Telegram, 2873, 1
  • Nielsen (2016) Nielsen, A. B. 2016, in Journal of Physics Conference Series, Vol. 716, Journal of Physics Conference Series, 012002, doi: 10.1088/1742-6596/716/1/012002
  • Novikov & Thorne (1973) Novikov, I. D., & Thorne, K. S. 1973, in Black Holes (Les Astres Occlus), 343–450
  • Ohsuga et al. (2002) Ohsuga, K., Mineshige, S., Mori, M., & Umemura, M. 2002, ApJ, 574, 315, doi: 10.1086/340798
  • Plotkin et al. (2013) Plotkin, R. M., Gallo, E., & Jonker, P. G. 2013, ApJ, 773, 59, doi: 10.1088/0004-637X/773/1/59
  • Rao & Vadawale (2012) Rao, A., & Vadawale, S. V. 2012, ApJ, 757, L12, doi: 10.1088/2041-8205/757/1/L12
  • Rao Jassal & Vadawale (2015) Rao Jassal, A., & Vadawale, S. V. 2015, Research in Astronomy and Astrophysics, 15, 45, doi: 10.1088/1674-4527/15/1/005
  • Reis et al. (2013) Reis, R. C., Reynolds, M. T., Miller, J. M., et al. 2013, ApJ, 778, 155, doi: 10.1088/0004-637X/778/2/155
  • Rout et al. (2020) Rout, S. K., Vadawale, S., & Méndez, M. 2020, ApJ, 888, L30, doi: 10.3847/2041-8213/ab629e
  • Savonije (1978) Savonije, G. J. 1978, A&A, 62, 317
  • Shakura et al. (2015) Shakura, N. I., Postnov, K. A., Kochetkova, A. Y., et al. 2015, Astronomy Reports, 59, 645, doi: 10.1134/S1063772915070112
  • Shapiro & Teukolsky (1983) Shapiro, S. L., & Teukolsky, S. A. 1983, Black holes, white dwarfs, and neutron stars : the physics of compact objects
  • Shaposhnikov et al. (2011) Shaposhnikov, N., Swank, J. H., Markwardt, C., & Krimm, H. 2011, arXiv e-prints, arXiv:1103.0531. https://arxiv.org/abs/1103.0531
  • Steiner et al. (2010) Steiner, J. F., McClintock, J. E., Remillard, R. A., et al. 2010, ApJ, 718, L117, doi: 10.1088/2041-8205/718/2/L117
  • Steiner et al. (2009a) Steiner, J. F., McClintock, J. E., Remillard, R. A., Narayan, R., & Gou, L. 2009a, ApJ, 701, L83, doi: 10.1088/0004-637X/701/2/L83
  • Steiner et al. (2009b) —. 2009b, ApJ, 701, L83, doi: 10.1088/0004-637X/701/2/L83
  • Steiner et al. (2011) Steiner, J. F., Reis, R. C., McClintock, J. E., et al. 2011, MNRAS, 416, 941, doi: 10.1111/j.1365-2966.2011.19089.x
  • Strüder et al. (2001) Strüder, L., Briel, U., Dennerl, K., et al. 2001, A&A, 365, L18, doi: 10.1051/0004-6361:20000066
  • Toor & Seward (1974) Toor, A., & Seward, F. D. 1974, AJ, 79, 995, doi: 10.1086/111643
  • Torres et al. (2021) Torres, M. A. P., Jonker, P. G., Casares, J., Miller-Jones, J. C. A., & Steeghs, D. 2021, MNRAS, 501, 2174, doi: 10.1093/mnras/staa3786
  • Verner et al. (1996) Verner, D. A., Ferland, G. J., Korista, K. T., & Yakovlev, D. G. 1996, ApJ, 465, 487, doi: 10.1086/177435
  • Wagoner et al. (2001) Wagoner, R. V., Silbergleit, A. S., & Ortega-Rodríguez, M. 2001, ApJ, 559, L25, doi: 10.1086/323655
  • Wilms et al. (2000) Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914, doi: 10.1086/317016
  • Yamaoka et al. (2012) Yamaoka, K., Allured, R., Kaaret, P., et al. 2012, PASJ, 64, 32, doi: 10.1093/pasj/64.2.32
  • Zhang et al. (1997) Zhang, S. N., Cui, W., & Chen, W. 1997, ApJ, 482, L155, doi: 10.1086/310705
  • Zhao et al. (2020) Zhao, X.-S., Dong, Y.-T., Gou, L.-J., et al. 2020, Journal of High Energy Astrophysics, 27, 53, doi: 10.1016/j.jheap.2020.03.001