This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Error estimates of finite element methods for nonlocal problems using exact or approximated interaction neighborhoods

Qiang Du Hehu Xie Xiaobo Yin  and  Jiwei Zhang
Abstract.

We study the asymptotic error between the finite element solutions of nonlocal models with a bounded interaction neighborhood and the exact solution of the limiting local model. The limit corresponds to the case when the horizon parameter, the radius of the spherical nonlocal interaction neighborhood of the nonlocal model, and the mesh size simultaneously approach zero. Two important cases are discussed: one involving the original nonlocal models and the other for nonlocal models with polygonal approximations of the nonlocal interaction neighborhood. Results of numerical experiments are also reported to substantiate the theoretical studies.

Key words and phrases:
Nonlocal models, integrable kernel, approximate interaction neighborhood, conforming discontinuous Galerkin, peridynamics, nonlocal diffusion
2020 Mathematics Subject Classification:
Primary 65R20, 74S05, 46N20, 46N40, 45A05
Department of Applied Physics and Applied Mathematics, and Data Science Institute, Columbia University, NY 10027, USA (qd2125@columbia.edu)
LSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, & School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China (hhxie@lsec.cc.ac.cn)
School of Mathematics and Statistics, and Key Laboratory of Nonlinear Analysis & Applications (Ministry of Education), Central China Normal University, Wuhan 430079, China (yinxb@ccnu.edu.cn)
School of Mathematics and Statistics, and Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China (jiweizhang@whu.edu.cn)

1. Introduction

Nonlocal modeling has become popular in recent years among many applications [3, 9, 12, 30, 32]. As nonlocal integral operators are the key components of nonlocal modeling, their effective numerical integrations play important roles in both practice applications and numerical analysis. Our study here is devoted to this topic of wide interest. We focus on a model problem described below.

Let Ωd\Omega\subset\mathbb{R}^{d} denote a bounded and open polyhedron. For uδ(𝐱):Ωu_{\delta}({\bf x}):\Omega\rightarrow\mathbb{R}, the nonlocal operator δ\mathcal{L}_{\delta} on uδ(𝐱)u_{\delta}({\bf x}) is defined as

(1.1) δuδ(𝐱)=2d(uδ(𝐲)uδ(𝐱))γδ(𝐱,𝐲)𝑑𝐲𝐱Ω,\mathcal{L}_{\delta}u_{\delta}({\bf x})=2\int_{\mathbb{R}^{d}}\left(u_{\delta}({\bf y})-u_{\delta}({\bf x})\right)\gamma_{\delta}({\bf x},{\bf y})d{\bf y}\quad\forall{\bf x}\in\Omega,

where the nonnegative symmetric mapping γδ(𝐱,𝐲):d×d\gamma_{\delta}({\bf x},{\bf y}):\mathbb{R}^{d}\times\mathbb{R}^{d}\rightarrow\mathbb{R} is called a kernel. The operator δ\mathcal{L}_{\delta} is regarded nonlocal since the value of δuδ\mathcal{L}_{\delta}u_{\delta} at a point 𝐱\bf x involves information about uδu_{\delta} at points 𝐲𝐱{\bf y}\neq{\bf x}. In this paper, we consider the following nonlocal Dirichlet volume-constrained diffusion problem

(1.2) {δuδ(𝐱)=fδ(𝐱)onΩ,uδ(𝐱)=gδ(𝐱)onΩδc,\left\{\begin{array}[]{rll}-\mathcal{L}_{\delta}u_{\delta}({\bf x})&=f_{\delta}({\bf x})&\mbox{on}\>\Omega,\\ u_{\delta}({\bf x})&=g_{\delta}({\bf x})&\mbox{on}\>{\Omega_{\delta}^{c}},\end{array}\right.

where Ωδc={𝐲dΩ:dist(𝐲,Ω)<δ}{\Omega_{\delta}^{c}}=\{{\bf y}\in\mathbb{R}^{d}\setminus\Omega:\,\mbox{dist}({\bf y},\partial\Omega)<\delta\} denotes the interaction domain, fδf_{\delta} and gδg_{\delta} are given functions. For convenience, we denote by Ω^δ=ΩΩδc{\widehat{\Omega}_{\delta}}=\Omega\cup{\Omega_{\delta}^{c}}. Since interactions often occur over finite distances in real-world applications, we only consider kernels having bounded support, i.e., γδ(𝐱,𝐲)0\gamma_{\delta}({\bf x},{\bf y})\neq 0 only if 𝐲{\bf y} is within a neighborhood of 𝐱{\bf x}. For this neighborhood, a popular practice is to choose a spherical domain, that is, a Euclidean ball Bδ(𝐱)B_{\delta}({\bf x}) centered at 𝐱{\bf x} with a radius δ\delta, i.e.,

(1.3) for𝐱Ω:γδ(𝐱,𝐲)=0,𝐲dBδ(𝐱).\mbox{for}\>\>{\bf x}\in\Omega:\>\gamma_{\delta}({\bf x},{\bf y})=0,\>\forall{\bf y}\in\mathbb{R}^{d}\setminus B_{\delta}({\bf x}).

Here δ\delta is known as the horizon parameter or the interaction radius. Volume constraints (VCs) imposed on Ωδc{\Omega_{\delta}^{c}} are natural extensions to the nonlocal case of boundary conditions (BCs) for differential equation problems. While the Dirichlet case is given in (1.2) as an illustration, one can find discussions on other BCs, for example, nonlocal versions of Neumann and Robin BCs in [13, 16]. Along with (1.3), the kernel is further assumed to be radial, i.e. γδ(𝐱,𝐲)=γ~δ(|𝐲𝐱|)\gamma_{\delta}({\bf x},{\bf y})=\widetilde{\gamma}_{\delta}(|{\bf y}-{\bf x}|), with the following conditions being satisfied:

(1.4) {γ~δ(s)>0for  0<s<δ,γ~δ(s)L1(0,δ),wd0δsd+1γ~δ(s)𝑑s=d,\left\{\begin{array}[]{l}\widetilde{\gamma}_{\delta}(s)>0\>\>\mbox{for}\>\>0<s<\delta,\\ \widetilde{\gamma}_{\delta}(s)\in L^{1}(0,\delta),\\ w_{d}\int_{0}^{\delta}s^{d+1}\widetilde{\gamma}_{\delta}(s)ds=d,\end{array}\right.

where wdw_{d} is the surface area of the unit sphere in d\mathbb{R}^{d}. The radial symmetry of γδ(𝐱,𝐲)\gamma_{\delta}({\bf x},{\bf y}) matches with the choice of the spherical interaction neighborhood. Note that the first condition of 1.4 means that the kernel is strictly positive for 𝐲{\bf y} inside Bδ(𝐱)B_{\delta}({\bf x}). The second condition is a simplifying assumption, which implies that δ\mathcal{L}_{\delta} is a bounded operator in L2L^{2}. The third condition of 1.4 is set to ensure that if the operator δ\mathcal{L}_{\delta} converges to a limit as δ0\delta\to 0, then the limit is given by 0=Δ\mathcal{L}_{0}=\Delta, the classical diffusion operator, see related discussions in [35, 36]. To be specific, if the corresponding local problem is defined as follows:

(1.5) {0u0(𝐱)=f0(𝐱)onΩ,u0(𝐱)=g0(𝐱)onΩ.\left\{\begin{array}[]{rll}-\mathcal{L}_{0}u_{0}({\bf x})&=f_{0}({\bf x})&\mbox{on}\>\Omega,\\ u_{0}({\bf x})&=g_{0}({\bf x})&\mbox{on}\>\partial\Omega.\end{array}\right.
Refer to caption
(a) regular
Refer to caption
(b) nocaps
Refer to caption
(c) approxcaps
Figure 1. Polygonally approximated balls, taken from [17]

Then the third condition of 1.4 implies that as δ0\delta\rightarrow 0, the nonlocal effect diminishes and if the solutions of nonlocal equations converge, the limit is given by the solution of a classical local differential equation. Such a limiting property can serve to connect nonlocal and local models and is of great significance for practical application, e.g., multiscale modeling and benchmark testing. It is an important issue of numerical analysis to investigate the extent of preserving this limiting property on the discrete level for various discrete approximations. Motivated by the findings in [6, 7, 10, 34] that the numerical solutions based on the piecewise constant finite element methods (FEMs) fail to converge to a physically consistent local limit if the ratio of δ\delta and hh (mesh size) is fixed, Tian and Du [35] proposed the concept of asymptotically compatible (AC) schemes for the numerical approximations of a broad class of parametrized problems which, for nonlocal problems under consideration, are convergent discrete approximation schemes of the nonlocal models that preserve the correct local limiting behavior. In other words, the numerical approximation given by an AC scheme can also reproduce the correct local limiting solution as the horizon parameter and the mesh size approach zero free of the relationship between them. They lead to consistent numerical results for benchmark problems without the need for a fine-tuning of model and discretization parameters, δ\delta and hh, and thus are regarded as more robust and more suitable for simulating problems involving nonlocal interactions on multiple scales such as in peridynamics [4]. In [35], it was revealed that under very general assumptions on the problems, as long as the finite element space contains continuous piecewise linear functions, the Galerkin finite element approximation is always AC. However, the method using piecewise constant finite element is only a conditionally AC scheme under the condition that δ=o(h)\delta=o(h) [7, 10, 35]. In [7], one can find similar discussions, using numerical experiments, on the convergence in different regimes of the parameters δ\delta and hh.

It is worth noting that most of the existing studies were carried out under the assumption that all the integrals involved are computed exactly. The latter could be demanding, thus requiring careful consideration in practice [41, 27]. One important cause is due to the choice of the nonlocal interaction neighborhood of the operator δ\mathcal{L}_{\delta} defined in 1.1 being confined to Euclidean balls. For finite element methods based on polyhedral meshes, dealing with intersections of such balls and mesh elements leads to considerable challenges in numerical implementation. As possible alternatives, the integrals may be approximated by truncation of the interaction neighborhoods, or by numerical integration, or a combination of both. For example, D’Elia et. al. [11] discussed several geometric approximations of the Euclidean balls in 2D (like regular, nocaps and approxcaps approximations, see Figure 1). They showed how such approximations, in combination with quadrature rules, affect the discretization error. They also provided numerical realization which shows that some geometric approximations preserve optimal accuracy in approximating the nonlocal solution under the assumption that the horizon parameter is fixed. However, when the AC property is concerned, the conclusion is different. It is revealed in [17] that all types of polygonal approximations considered in [11] lose the desirable AC property even when they are used in the context of an AC scheme with exact integration. In other words, the numerical solutions of nonlocal problems with polygonal approximations may fail to converge to the right local limit. On the other hand, the AC property can hold conditionally which means they could be used with certain restrictions.

The discussion in [17] was carried out on the continuum level, focused only on the approximations of the interaction neighborhoods. The conclusions are mostly qualitative. Thus, quantitative analysis on both continuum and discrete levels remains an interesting issue, which provides the key motivation and the first objective of this study. In fact, even for the FEM taking Euclidean balls as supports of nonlocal interaction kernels, there have been limited derivations of rigorous error estimates with respect to the horizon parameter and mesh size. Moreover, there has been no theoretical attempt to analyze the convergence of numerical approximations of peridynamic models where the spherical support of the kernel is polygonally approximated. The same observation can also be made in the case of meshfree methods when partial interaction volumes and geometric centers of intersecting regions are not precisely calculated. In contrast, it is worth mentioning that in [18] for Fourier spectral methods of nonlocal Allen-Cahn equation for 1D in space with periodic BCs, error estimates with respect to horizon parameter and Fourier parameter have been rigorously derived for smooth local solutions.

As the second objective of this work, we study the convergence property of nonlocal solutions and their finite element approximations in both energy and L2L^{2} norms. Recall the analog for the local PDE setting: the error in the energy norm is first derived, followed by the Aubin-Nitsche technique, which leads to the error estimate in the L2L^{2} norm. Unfortunately, due to the possible lack of elliptic smoothing property, the L2L^{2} error estimate remained in the same order as the estimate in the nonlocal energy norm if the horizon parameter is fixed. A natural question is how the Aubin-Nitsche theory behaves if the dependence of the horizon parameter is considered.

In this work, the error estimates are derived using the following triangle inequality:

(1.6) uhu~0\displaystyle\left\|u_{\sharp}^{h}-\widetilde{u}_{0}\right\|_{\sharp} uu~0+uuh:=E1+E2,\displaystyle\leq\left\|u_{\sharp}-\widetilde{u}_{0}\right\|_{\sharp}+\left\|u_{\sharp}-u_{\sharp}^{h}\right\|_{\sharp}:=E_{1}+E_{2},
(1.7) uhu0L2(Ω)\displaystyle\left\|u_{\sharp}^{h}-u_{0}\right\|_{L^{2}(\Omega)} uu0L2(Ω)+uuhL2(Ω).\displaystyle\leq\left\|u_{\sharp}-u_{0}\right\|_{L^{2}(\Omega)}+\left\|u_{\sharp}-u_{\sharp}^{h}\right\|_{L^{2}(\Omega)}.

Here, u~0\widetilde{u}_{0} is the C4C^{4} extension of u0u_{0} as defined in definition 2.1, see also [20, 38]. Here the symbol \sharp is used to identify the solution or the energy norm associated with one of the following two cases

(1.8) {=δ;=(δ,nδ)}.\left\{\sharp=\delta;\>\>\sharp=(\delta,n_{\delta})\right\}.

The two cases identified by \sharp correspond respectively to nonlocal solutions and the energy norms associated with interaction neighborhoods given by Euclidean balls and non-symmetric polygons with nδn_{\delta} being the maximum number of polygons’ sides.

Concerning the energy norm \left\|\cdot\right\|_{\sharp}, the first part E1E_{1} has the estimate

E1={uδu~0δδ(3+μ)/2,uδ,nδu~0δ,nδδ(3+μ)/2+δ1nδλ,E_{1}=\left\{\begin{array}[]{rl}\|u_{\delta}-\widetilde{u}_{0}\|_{\delta}&\lesssim\delta^{(3+\mu)/2},\\ \|u_{\delta,n_{\delta}}-\widetilde{u}_{0}\|_{\delta,n_{\delta}}&\lesssim\delta^{(3+\mu)/2}+\delta^{-1}n_{\delta}^{-\lambda},\end{array}\right.

for λ=2\lambda=2 or 44 with the value depending on the kernel, see 2.15. In this part, we also derive the estimate for another interesting case, =(δ|nδ)\sharp=(\delta|n_{\delta}), with the interaction neighborhoods given by symmetric polygons and the estimate of the form

uδ|nδu~0δδ(3+μ)/2+nδλ.\|u_{\delta|n_{\delta}}-\widetilde{u}_{0}\|_{\delta}\lesssim\delta^{(3+\mu)/2}+n_{\delta}^{-\lambda}.

One may observe that the error of uδ,nδu_{\delta,n_{\delta}} against the local solution is one order lower than that of uδ|nδu_{\delta|n_{\delta}} with respect to δ\delta. To offer an explanation, we notice that for sufficiently smooth u~0\widetilde{u}_{0},

δ,nδu~0(𝐱)=F(𝐱)+i=12σnδii,2(𝐱)iiu~0(𝐱)+O(δ2),\mathcal{L}_{\delta,n_{\delta}}\widetilde{u}_{0}({\bf x})=F({\bf x})+\sum_{i=1}^{2}\sigma_{n_{\delta}}^{ii,2}({\bf x})\partial_{ii}\widetilde{u}_{0}({\bf x})+O\left(\delta^{2}\right),

where, due to the non-symmetric nature of the effective interaction domain, F(𝐱)F({\bf x}) contains the odd moments up to the third-order and the second-order mixed moment of kernel γδ,nδ\gamma_{\delta,n_{\delta}} while the dominant term is given by the first-order moment. In contrast, δ|nδu~0(𝐱)\mathcal{L}_{\delta|n_{\delta}}\widetilde{u}_{0}({\bf x}) does not contain any term like F(𝐱)F({\bf x}), since the support of its kernel is symmetric with respect to 𝐱{\bf x}. In fact, we have |F(𝐱)|δ1nδλ\left|F({\bf x})\right|\lesssim\delta^{-1}n_{\delta}^{-\lambda}, which contributes to the extra error term of the error estimate in the non-symmetric case.

The second part E2E_{2} is derived using the Cea’s lemma in the nonlocal setting and the triangle inequality (see 3.13 for =δ\sharp=\delta, and 3.21 for =δ,nδ\sharp=\delta,n_{\delta}) as

E2\displaystyle E_{2} =uuhuu+uuhuu+uIhu~0\displaystyle=\left\|u_{\sharp}-u_{\sharp}^{h}\right\|_{\sharp}\leq\left\|u_{\sharp}-u_{\sharp}^{*}\right\|_{\sharp}+\left\|u_{\sharp}^{*}-u_{\sharp}^{h}\right\|_{\sharp}\leq\left\|u_{\sharp}-u_{\sharp}^{*}\right\|_{\sharp}+\left\|u_{\sharp}^{*}-I_{h}\widetilde{u}_{0}\right\|_{\sharp}
uu+uu+uu~0+u~0Ihu~0\displaystyle\leq\left\|u_{\sharp}-u_{\sharp}^{*}\right\|_{\sharp}+\left\|u_{\sharp}^{*}-u_{\sharp}\right\|_{\sharp}+\left\|u_{\sharp}-\widetilde{u}_{0}\right\|_{\sharp}+\left\|\widetilde{u}_{0}-I_{h}\widetilde{u}_{0}\right\|_{\sharp}
=2uu+u~0Ihu~0+uu~0\displaystyle=2\left\|u_{\sharp}-u_{\sharp}^{*}\right\|_{\sharp}+\left\|\widetilde{u}_{0}-I_{h}\widetilde{u}_{0}\right\|_{\sharp}+\left\|u_{\sharp}-\widetilde{u}_{0}\right\|_{\sharp}
Cδ1/2h2+Cδ1u~0Ihu~0C(Ω^δ)+uu~0\displaystyle\leq C\delta^{-1/2}h^{2}+C\delta^{-1}\left\|\widetilde{u}_{0}-I_{h}\widetilde{u}_{0}\right\|_{C\left({\widehat{\Omega}_{\delta}}\right)}+\left\|u_{\sharp}-\widetilde{u}_{0}\right\|_{\sharp}
Cδ1/2h2+Cδ1h2u~0C2(Ω^δ)+uu~0\displaystyle\leq C\delta^{-1/2}h^{2}+C\delta^{-1}h^{2}\left\|\widetilde{u}_{0}\right\|_{C^{2}\left({\widehat{\Omega}_{\delta}}\right)}+\left\|u_{\sharp}-\widetilde{u}_{0}\right\|_{\sharp}
δ1h2+uu~0.\displaystyle\lesssim\delta^{-1}h^{2}+\left\|u_{\sharp}-\widetilde{u}_{0}\right\|_{\sharp}.

Thus we obtain the total error estimate

{uδhu~0δδ(3+μ)/2+δ1h2,uδ,nδhu~0δ,nδδ(3+μ)/2+δ1h2+δλ1hλ,\left\{\begin{array}[]{rl}\|u_{\delta}^{h}-\widetilde{u}_{0}\|_{\delta}&\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2},\\ \|u_{\delta,n_{\delta}}^{h}-\widetilde{u}_{0}\|_{\delta,n_{\delta}}&\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}+\delta^{-\lambda-1}h^{\lambda},\end{array}\right.

under assumptions on the regularity of the local solution, but not on that of the nonlocal solution, see Theorems 4.1 and 4.2. A key contribution in this regard is the derivation of explicit error estimates with respect to the horizon parameter and the mesh size for finite element solutions of nonlocal problems under mild assumptions. The sharpness of the error estimate in the energy norm is verified in Section 5. This further offers confidence in using the estimates to guide numerical simulations of problems like the numerical simulations of peridynamics.

While the error estimate in the L2L^{2} norm can be derived, via the Poincaré’s inequality, from the error in the energy norm, such a result is generally not sharp as shown in Section 5. Naturally, if a nonlocal analog of Aubin-Nitsche theory for FEM of the local problem (Aubin [5] and Nitsche [26]) could be developed, then improved estimates of the error in the L2L^{2} norm would be feasible, that is, an estimate of the form

{uδhu0L2(Ω)δ2+h2,uδ,nδhu0L2(Ω)δ2+h2+δλhλ,\left\{\begin{array}[]{rl}\|u_{\delta}^{h}-u_{0}\|_{L^{2}(\Omega)}&\lesssim\delta^{2}+h^{2},\\ \|u_{\delta,n_{\delta}}^{h}-u_{0}\|_{L^{2}(\Omega)}&\lesssim\delta^{2}+h^{2}+\delta^{-\lambda}h^{\lambda},\end{array}\right.

might be expected. While the theoretical analysis is missing at the moment, it is verified numerically in Section 5. Based on the reported error estimates there, one can directly assess the convergence of the computed nonlocal solutions to the correct local limit for different choices of δ\delta and hh.

The rest of the paper is organized as follows. In Section 2, error estimates of the nonlocal solutions with different kernels against the local counterpart (E1E_{1}) are derived in terms of horizon parameter and, for the second case of 1.8, the maximum number of sides of polygons. Next, we study the error between the nonlocal solutions and their finite element approximations (E2E_{2}) in terms of horizon parameter and mesh size, and for the second case of 1.8, the maximum number of polygons’s sides in Section 3. In Section 4, the error estimates in Section 2 are combined with that in Section 3 to obtain bounds of the error between the nonlocal discrete solutions and the local exact solution. Results of numerical experiments are reported in Section 5 to substantiate the theoretical studies. Finally, we give some concluding remarks in Section 6.

2. Convergence of the nonlocal solutions to the local limit

As in [13], the nonlocal energy inner product, nonlocal energy norm, nonlocal energy space, and nonlocal constrained energy subspaces are defined by

(u,v)δ:=\displaystyle(u,v)_{\delta}:= Ω^δΩ^δ(u(𝐲)u(𝐱))(v(𝐲)v(𝐱))γδ(𝐱,𝐲)𝑑𝐲𝑑𝐱,uδ:=(u,u)δ1/2,\displaystyle\int_{{\widehat{\Omega}_{\delta}}}\int_{{\widehat{\Omega}_{\delta}}}\left(u\left({\bf y}\right)-u\left({\bf x}\right)\right)\left(v({\bf y})-v({\bf x})\right)\gamma_{\delta}({\bf x},{\bf y})d{\bf y}d{\bf x},\>\>\|u\|_{\delta}:=(u,u)_{\delta}^{1/2},
V(Ω^δ):=\displaystyle V({\widehat{\Omega}_{\delta}}):= {uL2(Ω^δ):u(𝐱)=gδ(𝐱)onΩδc,uδ<},\displaystyle\left\{u\in L^{2}({\widehat{\Omega}_{\delta}}):u({\bf x})=g_{\delta}({\bf x})\>\mbox{on}\>{\Omega_{\delta}^{c}},\>\|u\|_{\delta}<\infty\right\},
V0(Ω^δ):=\displaystyle V^{0}({\widehat{\Omega}_{\delta}}):= {uV(Ω^δ):u(𝐱)=0onΩδc},\displaystyle\left\{u\in V({\widehat{\Omega}_{\delta}}):u({\bf x})=0\>\mbox{on}\>{\Omega_{\delta}^{c}}\right\},
Vc(Ω^δ):=\displaystyle V^{c}({\widehat{\Omega}_{\delta}}):= {uV(Ω^δ):u(𝐱)=0onΩ},\displaystyle\left\{u\in V({\widehat{\Omega}_{\delta}}):u({\bf x})=0\>\mbox{on}\>\Omega\right\},

respectively. For a bounded domain DdD\subset\mathbb{R}^{d}, the space of bounded and continuous functions is denoted by Cb(D):={uC(D):uis bounded onD¯}C_{b}(D):=\left\{u\in C(D):u\>\mbox{is bounded on}\>\overline{D}\right\}. For any non-negative integer nn, we define

Cbn(D):={uCb(D):non-negative integerjn,u(j)Cb(D)}.C_{b}^{n}(D):=\left\{u\in C_{b}(D):\forall\>\mbox{non-negative integer}\>j\leq n,u^{(j)}\in C_{b}(D)\right\}.
Definition 2.1.

For any function uu defined on Ω\Omega, we let u~\widetilde{u} be a CnC^{n} extension of uu such that u~Cbn(Ω^δ)\widetilde{u}\in C^{n}_{b}({\widehat{\Omega}_{\delta}}) and u~|Ω=u\widetilde{u}|_{\Omega}=u, see also Definition 4.1 in [38].

2.1. Convergence of the nonlocal solutions to the local limit

In this subsection, we investigate for what kind of VCs, the nonlocal solutions of 1.2 converge to the local solution of 1.5, and with what asymptotic rate with respect to δ\delta.

Theorem 2.2.

Suppose u0Cb4(Ω)u_{0}\in C^{4}_{b}(\Omega) is the solution of the local problem (1.5), the family of kernels {γδ}\{\gamma_{\delta}\} satisfies 1.3, 1.4, and

(2.1) G(γδ):=sup𝐱Ω^δBδ(𝐱)Ω^δγδ(𝐱,𝐲)𝑑𝐲δ2.G(\gamma_{\delta}):=\sup_{{\bf x}\in{\widehat{\Omega}_{\delta}}}\int_{B_{\delta}({\bf x})\cap{\widehat{\Omega}_{\delta}}}\gamma_{\delta}({\bf x},{\bf y})d{\bf y}\lesssim\delta^{-2}.

Let uδu_{\delta} be the solution of the nonlocal problem 1.2. If u~0\widetilde{u}_{0} is a C4C^{4} extension of u0u_{0} and

(2.2) fδf0C(Ω)=O(δ2),gδu~0C(Ωδc)=O(δ2+μ),μ=0,1,\left\|f_{\delta}-f_{0}\right\|_{C(\Omega)}=O\left(\delta^{2}\right),\quad\left\|g_{\delta}-\widetilde{u}_{0}\right\|_{C({\Omega_{\delta}^{c}})}=O\left(\delta^{2+\mu}\right),\>\mu=0,1,

then it holds that

(2.3) uδu0C(Ω)=O(δ2),uδu~0δ=O(δ(3+μ)/2).\left\|u_{\delta}-u_{0}\right\|_{C(\Omega)}=O\left(\delta^{2}\right),\quad\left\|u_{\delta}-\widetilde{u}_{0}\right\|_{\delta}=O\left(\delta^{(3+\mu)/2}\right).
Proof.

Since u~0Cb4(Ω^δ)\widetilde{u}_{0}\in C^{4}_{b}({\widehat{\Omega}_{\delta}}), a direct calculation leads to

δu~0(𝐱)=0u0(𝐱)+O(δ2)|u~0|4,,Ω^δ=f0(𝐱)+O(δ2),𝐱Ω.\displaystyle-\mathcal{L}_{\delta}\widetilde{u}_{0}({\bf x})=-\mathcal{L}_{0}u_{0}({\bf x})+O\left(\delta^{2}\right)|\widetilde{u}_{0}|_{4,\infty,{\widehat{\Omega}_{\delta}}}=f_{0}({\bf x})+O\left(\delta^{2}\right),\>\forall\,{\bf x}\in\Omega.

Thus, together with 2.2 it holds that

(2.4) {δ(uδu~0)(𝐱)=O(δ2),𝐱Ω,uδ(𝐱)u~0(𝐱)=gδ(𝐱)u~0(𝐱)=O(δ2+μ),𝐱Ωδc.\left\{\begin{array}[]{ll}-\mathcal{L}_{\delta}\left(u_{\delta}-\widetilde{u}_{0}\right)({\bf x})=O\left(\delta^{2}\right),&{\bf x}\in\Omega,\\ u_{\delta}({\bf x})-\widetilde{u}_{0}({\bf x})=g_{\delta}({\bf x})-\widetilde{u}_{0}({\bf x})=O\left(\delta^{2+\mu}\right),&{\bf x}\in{\Omega_{\delta}^{c}}.\end{array}\right.

The application of nonlocal maximum principle [20, 33, 38, 39] to 2.4 produces

uδu0C(Ω)=uδu~0C(Ω)=O(δ2).\left\|u_{\delta}-u_{0}\right\|_{C(\Omega)}=\left\|u_{\delta}-\widetilde{u}_{0}\right\|_{C(\Omega)}=O\left(\delta^{2}\right).

This, together with 2.1, 2.2, and 2.4, leads to

uδu~0δ2=Ω(uδ(𝐱)u0(𝐱))δ(uδ(𝐱)u~0(𝐱))𝑑𝐱\displaystyle\left\|u_{\delta}-\widetilde{u}_{0}\right\|_{\delta}^{2}=-\int_{\Omega}\left(u_{\delta}({\bf x})-u_{0}({\bf x})\right)\mathcal{L}_{\delta}\left(u_{\delta}({\bf x})-\widetilde{u}_{0}({\bf x})\right)d{\bf x}
Ωδc(gδ(𝐱)u~0(𝐱))Ω^δ(uδ(𝐲)u~0(𝐲)gδ(𝐱)+u~0(𝐱))γδ(𝐱,𝐲)𝑑𝐲𝑑𝐱\displaystyle-\int_{{\Omega_{\delta}^{c}}}\left(g_{\delta}({\bf x})-\widetilde{u}_{0}({\bf x})\right)\int_{{\widehat{\Omega}_{\delta}}}\left(u_{\delta}({\bf y})-\widetilde{u}_{0}({\bf y})-g_{\delta}({\bf x})+\widetilde{u}_{0}({\bf x})\right)\gamma_{\delta}({\bf x},{\bf y})d{\bf y}d{\bf x}
δ4+|Ωδc|gδu~0C(Ωδc)(uδu0C(Ω)+gδu~0C(Ωδc))G(γδ)\displaystyle\lesssim\delta^{4}+|{\Omega_{\delta}^{c}}|\cdot\left\|g_{\delta}-\widetilde{u}_{0}\right\|_{C({\Omega_{\delta}^{c}})}\cdot\left(\left\|u_{\delta}-u_{0}\right\|_{C(\Omega)}+\left\|g_{\delta}-\widetilde{u}_{0}\right\|_{C({\Omega_{\delta}^{c}})}\right)\cdot G(\gamma_{\delta})
δ4+δδ2+μδ2δ2δ3+μ.\displaystyle\lesssim\delta^{4}+\delta\cdot\delta^{2+\mu}\cdot\delta^{2}\cdot\delta^{-2}\approx\delta^{3+\mu}.

Remark 2.3.

Although the auxiliary solution u~0\widetilde{u}_{0} is required to be Cb4(Ω^δ)C^{4}_{b}({\widehat{\Omega}_{\delta}}), the nonlocal solution itself uδu_{\delta} is not subject to this restriction. As we will see in Section 5.2, uδu_{\delta} could be discontinuous across Ω\partial\Omega.

It is worth pointing out that, nonlocal models with the second order convergence rate to the local limit in the LL^{\infty} norm have been studied in [20, 23, 33, 38, 39]. In [42], the authors considered nonlocal integral relaxations of local differential equations on a manifold, and proved the second-order convergence in the H1H^{1} semi-norm to the local counterpart, although the nonlocal relaxation used there is different from what we discuss in this paper.

In the rest of this paper, we take two-dimensional cases for illustration. A similar process of numerical analysis and the corresponding results can be readily extended to higher dimensions.

2.2. Convergence of the nonlocal solutions with polygonal approximations of the spherical interaction neighborhoods

To make the analysis more concise, we assume that γ~δ\widetilde{\gamma}_{\delta} has a re-scaled form, that is,

(2.5) γ~δ(s)=1δ4γ(sδ)\widetilde{\gamma}_{\delta}(s)=\frac{1}{\delta^{4}}\gamma\left(\frac{s}{\delta}\right)

for some nonnegative function γ\gamma defined on (0,1)(0,1). Then by the normalization condition given in 1.4 we have

B1(𝟎)ξi2γ(|𝝃|2)𝑑𝝃=1,i=1,2.\int_{B_{1}({\bf 0})}\xi_{i}^{2}\gamma\left(|{\boldsymbol{\xi}}|_{2}\right)d{\boldsymbol{\xi}}=1,\>\>i=1,2.

Denote by

Φ(t)=12|𝝃|2t|𝝃|22γ(|𝝃|2)𝑑𝝃=π0tρ3γ(ρ)𝑑ρ,Ψ(t)=40tρ2γ(ρ)𝑑ρ.\Phi(t)=\frac{1}{2}\int_{|{\boldsymbol{\xi}}|_{2}\leq t}|{\boldsymbol{\xi}}|_{2}^{2}\cdot\gamma(|{\boldsymbol{\xi}}|_{2})d{\boldsymbol{\xi}}=\pi\int_{0}^{t}\rho^{3}\gamma(\rho)d\rho,\quad\Psi(t)=4\int_{0}^{t}\rho^{2}\gamma(\rho)d\rho.

Thus Φ(1)=1\Phi(1)=1 according to 1.4, and for t(0,1]t\in(0,1],

Φ(t)=πt3γ(t),Ψ(t)=4t2γ(t).\Phi^{\prime}(t)=\pi t^{3}\gamma(t),\>\>\Psi^{\prime}(t)=4t^{2}\gamma(t).
Refer to caption

𝐱{\bf x}rδ,𝐱r_{\delta,{\bf x}}Hnδ𝐱H_{n_{\delta}^{\bf x}}

(a) Bδ(𝐱)B_{\delta}({\bf x})
Refer to caption

OOr^δ,𝐱\widehat{r}_{\delta,{\bf x}}H^nδ𝐱\widehat{H}_{n_{\delta}^{\bf x}}

(b) B1(𝟎)B_{1}({\bf 0})
Figure 2. Inscribed polygon in Bδ(𝐱)B_{\delta}({\bf x}) and its image by 2.6

For any 𝐱Ω{\bf x}\in\Omega, an inscribed polygon of the circle Bδ(𝐱)B_{\delta}({\bf x}) is denoted by Bδ,nδ𝐱(𝐱)B_{\delta,n_{\delta}^{\bf x}}(\bf x), or simply Bδ,nδ𝐱B_{\delta,n_{\delta}^{\bf x}}, where nδ𝐱n_{\delta}^{\bf x} denotes its number of sides. Furthermore, by 2.5 the rescaled polygon of Bδ,nδ𝐱B_{\delta,n_{\delta}^{\bf x}} is defined as

(2.6) B1,nδ𝐱(𝟎)={𝐳=(𝐲𝐱)/δ:𝐲Bδ,nδ𝐱}.B_{1,n_{\delta}^{\bf x}}({\bf 0})=\left\{{\bf z}=\left({\bf y}-{\bf x}\right)/\delta:{\bf y}\in B_{\delta,n_{\delta}^{\bf x}}\right\}.

For a given δ>0\delta>0 and a family of polygons {Bδ,nδ𝐱}𝐱\{B_{\delta,n_{\delta}^{\bf x}}\}_{\bf x}, we introduce the notation

nδ=sup𝐱Ωnδ𝐱,nδ,inf=inf𝐱Ωnδ𝐱.n_{\delta}=\sup_{{\bf x}\in\Omega}n_{\delta}^{\bf x},\quad n_{\delta,\inf}=\inf_{{\bf x}\in\Omega}n_{\delta}^{\bf x}.

Denote by rδ,𝐱r_{\delta,{\bf x}} the radius of the largest circle (centered on 𝐱{\bf x}) contained in Bδ,nδ𝐱B_{\delta,n_{\delta}^{\bf x}}, see (A) of Figure 2, and r(nδ)=inf𝐱Ωrδ,𝐱r(n_{\delta})=\inf\limits_{{\bf x}\in\Omega}r_{\delta,{\bf x}}.

Let us define the weakly quasi-uniformity for a family of inscribed polygons which is weaker than the quasi-uniformity introduced in [17].

Definition 2.4.

A family of inscribed polygons {Bδ,nδ𝐱}\{B_{\delta,n_{\delta}^{\bf x}}\} is called weakly quasi-uniform if there exist two constants C1C_{1} and C2>0C_{2}>0 such that δ>0\forall\delta>0, the following two bounds hold

sup𝐱ΩHnδ𝐱2sin(π/nδ𝐱)C1δ,andinf𝐱Ωrδ,𝐱C2δ\sup_{{\bf x}\in\Omega}\frac{H_{n_{\delta}^{\bf x}}}{2\sin\left(\pi/n_{\delta}^{\bf x}\right)}\leq C_{1}\delta,\quad\text{and}\quad\inf\limits_{{\bf x}\in\Omega}r_{\delta,{\bf x}}\geq C_{2}\delta

where Hnδ𝐱H_{n_{\delta}^{\bf x}} stands for the length of the longest side of Bδ,nδ𝐱B_{\delta,n_{\delta}^{\bf x}}, see (A) of Figure 2.

For a weakly quasi-uniform family of inscribed polygons, there exists a constant C3>0C_{3}>0 such that for all δ>0\delta>0, nδC3nδ,infn_{\delta}\leq C_{3}n_{\delta,\inf} holds. Denoted by

Bδ,nδ𝐱={𝐲Bδ(𝐱):𝐱Bδ,nδ𝐲},B^{\prime}_{\delta,n_{\delta}^{\bf x}}=\{{\bf y}\in B_{\delta}({\bf x}):{\bf x}\in B_{\delta,n_{\delta}^{\bf y}}\},

then the family of kernels

γδ,nδ(𝐱,𝐲)=12γδ(𝐱,𝐲)(χBδ,nδ𝐱(𝐲)+χBδ,nδ𝐱(𝐲))\gamma_{\delta,n_{\delta}}({\bf x},{\bf y})=\frac{1}{2}\gamma_{\delta}({\bf x},{\bf y})\left(\chi_{B_{\delta,n_{\delta}^{\bf x}}}({\bf y})+\chi_{B^{\prime}_{\delta,n_{\delta}^{\bf x}}}({\bf y})\right)

are symmetric with respect to 𝐱{\bf x} and 𝐲{\bf y}, but not radial. We then define a family of nonlocal operators

δ,nδu(𝐱)=22(u(𝐲)u(𝐱))γδ,nδ(𝐱,𝐲)𝑑𝐲𝐱Ω,\mathcal{L}_{\delta,n_{\delta}}u({\bf x})=2\int_{\mathbb{R}^{2}}\left(u({\bf y})-u({\bf x})\right)\gamma_{\delta,n_{\delta}}({\bf x},{\bf y})d{\bf y}\quad\forall{\bf x}\in\Omega,

and the corresponding family of nonlocal problems

(2.7) {δ,nδuδ,nδ(𝐱)=fδ(𝐱)onΩ,uδ,nδ(𝐱)=gδ(𝐱)onΩδc.\left\{\begin{array}[]{rll}-\mathcal{L}_{\delta,n_{\delta}}u_{\delta,n_{\delta}}({\bf x})&=f_{\delta}({\bf x})&\mbox{on}\>\Omega,\\ u_{\delta,n_{\delta}}({\bf x})&=g_{\delta}({\bf x})&\mbox{on}\>{\Omega_{\delta}^{c}}.\end{array}\right.

The nonlocal energy inner product associated with δ,nδ-\mathcal{L}_{\delta,n_{\delta}} and the corresponding norm are defined as follows

(u,v)δ,nδ\displaystyle(u,v)_{\delta,n_{\delta}} :=Ω^δΩ^δ(u(𝐲)u(𝐱))(v(𝐲)v(𝐱))γδ,nδ(𝐱,𝐲)𝑑𝐲𝑑𝐱,\displaystyle:=\int_{{\widehat{\Omega}_{\delta}}}\int_{{\widehat{\Omega}_{\delta}}}\left(u({\bf y})-u({\bf x})\right)\left(v({\bf y})-v({\bf x})\right)\gamma_{\delta,n_{\delta}}({\bf x},{\bf y})d{\bf y}d{\bf x},
uδ,nδ\displaystyle\left\|u\right\|_{\delta,n_{\delta}} :=(u,u)δ,nδ1/2.\displaystyle:=(u,u)_{\delta,n_{\delta}}^{1/2}.

To simplify the notation, let ur(nδ)\|u\|_{r(n_{\delta})} be the same as δ\|\cdot\|_{\delta} except for the replacement of δ\delta by r(nδ)r(n_{\delta}). As derived in [17] we have

(2.8) ur(nδ)uδ,nδuδ.\|u\|_{r(n_{\delta})}\leq\|u\|_{\delta,n_{\delta}}\leq\|u\|_{\delta}.

It is worth noting that for a fixed point 𝐱\bf x, the support of γδ,nδ(𝐱,𝐲)\gamma_{\delta,n_{\delta}}({\bf x},{\bf y}) is not necessarily symmetric, so the integral of (𝐲𝐱)γδ,nδ(𝐱,𝐲)({\bf y}-{\bf x})\gamma_{\delta,n_{\delta}}({\bf x},{\bf y}) does not necessarily vanish. In order to inherit the symmetric-support property of the original kernel γδ\gamma_{\delta}, we define kernels

γδ|nδ(𝐱,𝐲)=12γδ(𝐱,𝐲)(χBδ,nδ𝐱(𝐲)+χBδ,nδ𝐱T(𝐲)),\gamma_{\delta|n_{\delta}}({\bf x},{\bf y})=\frac{1}{2}\gamma_{\delta}({\bf x},{\bf y})\left(\chi_{B_{\delta,n_{\delta}^{\bf x}}}({\bf y})+\chi_{B^{T}_{\delta,n_{\delta}^{\bf x}}}({\bf y})\right),

with

Bδ,nδ𝐱T={𝐲Bδ(𝐱):2𝐱𝐲Bδ,nδ𝐱}.B^{T}_{\delta,n_{\delta}^{\bf x}}=\{{\bf y}\in B_{\delta}({\bf x}):2{\bf x}-{\bf y}\in B_{\delta,n_{\delta}^{\bf x}}\}.

Based on the definition of γδ|nδ\gamma_{\delta|n_{\delta}}, we define a new family of nonlocal operators

δ|nδu(𝐱)=22(u(𝐲)u(𝐱))γδ|nδ(𝐱,𝐲)𝑑𝐲𝐱Ω,\mathcal{L}_{\delta|n_{\delta}}u({\bf x})=2\int_{\mathbb{R}^{2}}\left(u({\bf y})-u({\bf x})\right)\gamma_{\delta|n_{\delta}}({\bf x},{\bf y})d{\bf y}\quad\forall{\bf x}\in\Omega,

and the corresponding family of nonlocal problems

(2.9) {δ|nδuδ|nδ(𝐱)=fδ(𝐱)onΩ,uδ|nδ(𝐱)=gδ(𝐱)onΩδc,\left\{\begin{array}[]{rll}-\mathcal{L}_{\delta|n_{\delta}}u_{\delta|n_{\delta}}({\bf x})&=f_{\delta}({\bf x})&\mbox{on}\>\Omega,\\ u_{\delta|n_{\delta}}({\bf x})&=g_{\delta}({\bf x})&\mbox{on}\>{\Omega_{\delta}^{c}},\end{array}\right.

where the support of the kernel is a symmetric polygon for any fixed point x. However, the operator δ|nδ-\mathcal{L}_{\delta|n_{\delta}} is not self-adjoint/symmetric so we could not directly define the corresponding inner product and norm.

We recall [17] to show that neither δ,nδ(|𝐱|22)\mathcal{L}_{\delta,n_{\delta}}\left(|{\bf x}|_{2}^{2}\right) nor δ|nδ(|𝐱|22)\mathcal{L}_{\delta|n_{\delta}}\left(|{\bf x}|_{2}^{2}\right) converges to 0(|𝐱|22)\mathcal{L}_{0}\left(|{\bf x}|_{2}^{2}\right) if nδn_{\delta} is uniformly bounded, as δ0\delta\rightarrow 0.

Theorem 2.5.

[17, Theorem 3.1] Assume {Bδ,nδ𝐱}\left\{B_{\delta,n_{\delta}^{\bf x}}\right\} is a family of polygons which satisfies Bδ,nδ𝐱Bδ(𝐱)B_{\delta,n_{\delta}^{\bf x}}\subset B_{\delta}({\bf x}), δ\forall\delta, 𝐱Ω\forall{\bf x}\in\Omega. The family of kernels {γδ}\{\gamma_{\delta}\} satisfies the conditions 1.3 and 1.4. If nδn_{\delta} is uniformly bounded as δ0\delta\rightarrow 0, then both δ,nδ(|𝐱|22)\mathcal{L}_{\delta,n_{\delta}}\left(|{\bf x}|_{2}^{2}\right) and δ|nδ(|𝐱|22)\mathcal{L}_{\delta|n_{\delta}}\left(|{\bf x}|_{2}^{2}\right) do not converge to 0(|𝐱|22)\mathcal{L}_{0}\left(|{\bf x}|_{2}^{2}\right) for all 𝐱Ω{\bf x}\in\Omega.

Next, we want to establish the error estimate between uδ|nδu_{\delta|n_{\delta}} and u~0\widetilde{u}_{0}. To do that, we need a theorem of the maximum-principle type, which is important for the derivation of the estimate of uδ|nδu~0u_{\delta|n_{\delta}}-\widetilde{u}_{0}, once the estimate for δ|nδ(uδ|nδu~0)-\mathcal{L}_{\delta|n_{\delta}}\left(u_{\delta|n_{\delta}}-\widetilde{u}_{0}\right) is available.

Theorem 2.6.

Assume that γδ\gamma_{\delta} satisfies 1.3 and the first two of 1.4. If fδ(𝐱)0f_{\delta}({\bf x})\leq 0, for all 𝐱Ω{\bf x}\in\Omega, then

(2.10) sup𝐱Ωuδ|nδ(𝐱)sup𝐱Ωδcgδ(𝐱).\sup_{{\bf x}\in\Omega}u_{\delta|n_{\delta}}({\bf x})\leq\sup_{{\bf x}\in{\Omega_{\delta}^{c}}}g_{\delta}({\bf x}).
Proof.

Set M=sup𝐱Ωuδ|nδ(𝐱)M=\sup\limits_{{\bf x}\in\Omega}u_{\delta|n_{\delta}}({\bf x}). We begin with the following case:

(2.11) fδ(𝐱)η<0,𝐱Ω,f_{\delta}({\bf x})\leq-\eta<0,\>\forall{\bf x}\in\Omega,

where η\eta is an arbitrary positive number. In this case we prove 2.10 by contradiction. If 2.10 does not hold. By the definition of MM, we know that uδ|nδ(𝐲)Mu_{\delta|n_{\delta}}({\bf y})\leq M, 𝐲Ω\forall{\bf y}\in\Omega and there exists a point 𝐱0Ω{\bf x}_{0}\in\Omega such that uδ|nδ(𝐱0)>Mη/4/G(γδ)u_{\delta|n_{\delta}}({\bf x}_{0})>M-\eta/4/G(\gamma_{\delta}). Then

fδ(𝐱0)\displaystyle f_{\delta}({\bf x}_{0}) =δ|nδuδ|nδ(𝐱0)=2Bδ(𝐱0)(uδ|nδ(𝐱0)uδ|nδ(𝐲))γδ|nδ(𝐱0,𝐲)𝑑𝐲\displaystyle=-\mathcal{L}_{\delta|n_{\delta}}u_{\delta|n_{\delta}}({\bf x}_{0})=2\int_{B_{\delta}({\bf x}_{0})}\left(u_{\delta|n_{\delta}}({\bf x}_{0})-u_{\delta|n_{\delta}}({\bf y})\right)\gamma_{\delta|n_{\delta}}({\bf x}_{0},{\bf y})d{\bf y}
>2Bδ(𝐱0)(Muδ|nδ(𝐲))γδ|nδ(𝐱0,𝐲)𝑑𝐲2η4G(γδ)G(γδ)η/2,\displaystyle>2\int_{B_{\delta}({\bf x}_{0})}\left(M-u_{\delta|n_{\delta}}({\bf y})\right)\gamma_{\delta|n_{\delta}}({\bf x}_{0},{\bf y})d{\bf y}-2\cdot\frac{\eta}{4G(\gamma_{\delta})}\cdot G(\gamma_{\delta})\geq-\eta/2,

which contradicts 2.11.

For the general case, i.e. fδ(𝐱)0f_{\delta}({\bf x})\leq 0 for all 𝐱Ω{\bf x}\in\Omega, we introduce the notation

r^δ,𝐱=rδ,𝐱/δ,H^nδ𝐱=Hnδ𝐱/δ,r^(nδ)=r(nδ)/δ,r^=infδ{r^(nδ)},η=4Φ(r^).\widehat{r}_{\delta,{\bf x}}=r_{\delta,{\bf x}}/\delta,\>\>\widehat{H}_{n_{\delta}^{\bf x}}=H_{n_{\delta}^{\bf x}}/\delta,\>\>\hat{r}(n_{\delta})=r(n_{\delta})/\delta,\>\>\hat{r}=\inf\limits_{\delta}\{\hat{r}(n_{\delta})\},\>\>\eta^{*}=4\Phi(\hat{r}).

One can see (B) of Figure 2 for the description of r^δ,𝐱\widehat{r}_{\delta,{\bf x}} and H^nδ𝐱\widehat{H}_{n_{\delta}^{\bf x}}. Since Ω\Omega is bounded, there exists a point 𝐱Ω{\bf x}^{*}\in\Omega and a constant RR such that Ω^δBR(𝐱){\widehat{\Omega}_{\delta}}\subset B_{R}({\bf x}^{*}). Set q(𝐱)=|𝐱𝐱|22q({\bf x})=|{\bf x}-{\bf x}^{*}|_{2}^{2}, then for all 𝐱Ω{\bf x}\in\Omega, it holds that

δ|nδq(𝐱)\displaystyle\mathcal{L}_{\delta|n_{\delta}}q({\bf x}) =2Bδ(𝐱)(q(𝐲)q(𝐱))γδ|nδ(𝐱,𝐲)𝑑𝐲\displaystyle=2\int_{B_{\delta}({\bf x})}\left(q({\bf y})-q({\bf x})\right)\gamma_{\delta|n_{\delta}}({\bf x},{\bf y})d{\bf y}
=2Bδ(𝐱)|𝐲𝐱|22γδ|nδ(𝐱,𝐲)𝑑𝐲+4(𝐱𝐱)Bδ(𝐱)(𝐲𝐱)γδ|nδ(𝐱,𝐲)𝑑𝐲=𝟎\displaystyle=2\int_{B_{\delta}({\bf x})}|{\bf y}-{\bf x}|_{2}^{2}\gamma_{\delta|n_{\delta}}({\bf x},{\bf y})d{\bf y}+4\left({\bf x}-{\bf x}^{*}\right)\cdot\underbrace{\int_{B_{\delta}({\bf x})}({\bf y}-{\bf x})\gamma_{\delta|n_{\delta}}({\bf x},{\bf y})d{\bf y}}_{={\bf 0}}
(2.12) 2Br(nδ)(𝐱)|𝐲𝐱|22γδ(𝐱,𝐲)𝑑𝐲η.\displaystyle\geq 2\int_{B_{r(n_{\delta})}({\bf x})}|{\bf y}-{\bf x}|_{2}^{2}\cdot\gamma_{\delta}({\bf x},{\bf y})d{\bf y}\geq\eta^{*}.

With an arbitrary ε>0\varepsilon>0, uδ|nδ+εqu_{\delta|n_{\delta}}+\varepsilon q is the solution of the following problem:

{δ|nδv(𝐱)=fδ(𝐱)εδ|nδq(𝐱),onΩ,v(𝐱)=gδ(𝐱)+εq(𝐱),onΩδc.\left\{\begin{array}[]{rll}-\mathcal{L}_{\delta|n_{\delta}}v({\bf x})&=f_{\delta}({\bf x})-\varepsilon\mathcal{L}_{\delta|n_{\delta}}q({\bf x}),&\mbox{on}\>\Omega,\\ v({\bf x})&=g_{\delta}({\bf x})+\varepsilon q({\bf x}),&\mbox{on}\>{\Omega_{\delta}^{c}}.\end{array}\right.

Since fδ(𝐱)εδ|nδq(𝐱)εη<0f_{\delta}({\bf x})-\varepsilon\mathcal{L}_{\delta|n_{\delta}}q({\bf x})\leq-\varepsilon\eta^{*}<0, by the previous argument, we have

sup𝐱Ω(uδ|nδ(𝐱)+εq(𝐱))sup𝐱Ωδc(gδ(𝐱)+εq(𝐱)).\sup_{{\bf x}\in\Omega}(u_{\delta|n_{\delta}}({\bf x})+\varepsilon q({\bf x}))\leq\sup_{{\bf x}\in{\Omega_{\delta}^{c}}}(g_{\delta}({\bf x})+\varepsilon q({\bf x})).

Sending ε\varepsilon to zero, we complete the proof. ∎

Theorem 2.7.

Assume that γδ\gamma_{\delta} satisfies 1.3 and the first two of 1.4. It holds

uC(Ω)uC(Ωδc)+C4δ|nδuC(Ω),\|u\|_{C(\Omega)}\leq\|u\|_{C({\Omega_{\delta}^{c}})}+C_{4}\left\|\mathcal{L}_{\delta|n_{\delta}}u\right\|_{C(\Omega)},

with

C4=2qC(Ωδc)ηR22Φ(r^).C_{4}=\frac{2\|q\|_{C({\Omega_{\delta}^{c}})}}{\eta^{*}}\leq\frac{R^{2}}{2\Phi(\hat{r})}.
Proof.

Set for 𝐱Ω{\bf x}\in\Omega that

v±(𝐱)=±u(𝐱)δ|nδuC(Ω)q(𝐱)/η.v^{\pm}({\bf x})=\pm u({\bf x})-\left\|\mathcal{L}_{\delta|n_{\delta}}u\right\|_{C(\Omega)}\cdot q({\bf x})/\eta^{*}.

By Section 2.2 we have

δ|nδv±(𝐱)=±δ|nδu(𝐱)δ|nδuC(Ω)δ|nδq(𝐱)/η0,𝐱Ω.\mathcal{L}_{\delta|n_{\delta}}v^{\pm}({\bf x})=\pm\mathcal{L}_{\delta|n_{\delta}}u({\bf x})-\left\|\mathcal{L}_{\delta|n_{\delta}}u\right\|_{C(\Omega)}\cdot\mathcal{L}_{\delta|n_{\delta}}q({\bf x})/\eta^{*}\leq 0,\>\>{\bf x}\in\Omega.

Applying Theorem 2.6, we obtain

v±C(Ω)uC(Ωδc)+δ|nδuC(Ω)qC(Ωδc)/η.\left\|v^{\pm}\right\|_{C(\Omega)}\leq\left\|u\right\|_{C({\Omega_{\delta}^{c}})}+\left\|\mathcal{L}_{\delta|n_{\delta}}u\right\|_{C(\Omega)}\left\|q\right\|_{C({\Omega_{\delta}^{c}})}/\eta^{*}.

Thus we complete the proof. ∎

Theorem 2.8.

Suppose conditions of Theorem 2.2 hold, {Bδ,nδ𝐱}\left\{B_{\delta,n_{\delta}^{\bf x}}\right\} is a weakly quasi-uniform family of inscribed polygons. Let uδ|nδu_{\delta|n_{\delta}} be the solution of the nonlocal problem 2.9. If nδn_{\delta}\rightarrow\infty as δ0\delta\rightarrow 0, then it holds that

(2.13) uδ|nδu0C(Ω)\displaystyle\left\|u_{\delta|n_{\delta}}-u_{0}\right\|_{C(\Omega)} =O(δ2)+O(nδλ),\displaystyle=O\left(\delta^{2}\right)+O\left(n_{\delta}^{-\lambda}\right),
(2.14) uδ|nδu~0δ\displaystyle\left\|u_{\delta|n_{\delta}}-\widetilde{u}_{0}\right\|_{\delta} =O(δ(3+μ)/2)+O(nδλ),\displaystyle=O\left(\delta^{(3+\mu)/2}\right)+O\left(n_{\delta}^{-\lambda}\right),

with

(2.15) λ={2,ifΦ(1)0,4,ifΦ(1)=0,Φ′′(1)0.\lambda=\left\{\begin{array}[]{l}2,\>\>\mbox{if}\>\>\Phi^{\prime}(1)\neq 0,\\ 4,\>\>\mbox{if}\>\>\Phi^{\prime}(1)=0,\>\>\Phi^{\prime\prime}(1)\neq 0.\end{array}\right.
Proof.

Since u~0Cb4(Ω^δ)\widetilde{u}_{0}\in C^{4}_{b}({\widehat{\Omega}_{\delta}}), a direct calculation leads to

(2.16) δ|nδu~0(𝐱)=i=12σnδi(𝐱)iiu~0(𝐱)+O(δ2)|u~0|4,,Ω^δ\mathcal{L}_{\delta|n_{\delta}}\widetilde{u}_{0}({\bf x})=\sum_{i=1}^{2}\sigma_{n_{\delta}}^{i}({\bf x})\partial_{ii}\widetilde{u}_{0}({\bf x})+O\left(\delta^{2}\right)\left|\widetilde{u}_{0}\right|_{4,\infty,{\widehat{\Omega}_{\delta}}}

with (the notation is slightly different from that in [17])

σnδi(𝐱)=Bδ(𝐱)(yixi)2γδ|nδ(𝐱,𝐲)𝑑𝐲,i=1,2.\sigma_{n_{\delta}}^{i}({\bf x})=\int_{B_{\delta}({\bf x})}(y_{i}-x_{i})^{2}\gamma_{\delta|n_{\delta}}({\bf x},{\bf y})d{\bf y},\;i=1,2.

By the definition of r(nδ)r(n_{\delta}), we know for all 𝐱Ω{\bf x}\in\Omega that

(2.17) |𝐳|2<r(nδ)zi2γ~δ(|𝐳|2)𝑑𝐳σnδi(𝐱)|𝐳|2<δzi2γ~δ(|𝐳|2)𝑑𝐳=Φ(1)=1,\int_{|{\bf z}|_{2}<r(n_{\delta})}z_{i}^{2}\widetilde{\gamma}_{\delta}\left(|{\bf z}|_{2}\right)d{\bf z}\leq\sigma_{n_{\delta}}^{i}({\bf x})\leq\int_{|{\bf z}|_{2}<\delta}z_{i}^{2}\widetilde{\gamma}_{\delta}\left(|{\bf z}|_{2}\right)d{\bf z}=\Phi(1)=1,

where

|𝐳|2<r(nδ)zi2γ~δ(|𝐳|2)𝑑𝐳=|𝝃|2<r^(nδ)ξi2γ(|𝝃|2)𝑑𝝃=Φ(r^(nδ)).\int_{|{\bf z}|_{2}<r(n_{\delta})}z_{i}^{2}\widetilde{\gamma}_{\delta}\left(|{\bf z}|_{2}\right)d{\bf z}=\int_{|{\boldsymbol{\xi}}|_{2}<\hat{r}(n_{\delta})}\xi_{i}^{2}\gamma\left(|{\boldsymbol{\xi}}|_{2}\right)d{\boldsymbol{\xi}}=\Phi\left(\hat{r}(n_{\delta})\right).

By weak quasi-uniformity of the inscribed polygons, we have for any 𝐱Ω{\bf x}\in\Omega,

r^δ,𝐱 2=1(H^nδ𝐱/2)21C12sin2(π/nδ𝐱)\displaystyle\widehat{r}_{\delta,{\bf x}}^{\,2}=1-\left(\widehat{H}_{n_{\delta}^{\bf x}}/2\right)^{2}\geq 1-C_{1}^{2}\sin^{2}\left(\pi/n_{\delta}^{\bf x}\right) 1C12sin2(π/nδ,inf)\displaystyle\geq 1-C_{1}^{2}\sin^{2}\left(\pi/n_{\delta,\inf}\right)
1C12sin2(C3π/nδ).\displaystyle\geq 1-C_{1}^{2}\sin^{2}\left(C_{3}\pi/n_{\delta}\right).

Taking the infimum on both sides of the above inequality, we have

r^(nδ)21C12sin2(C3π/nδ),\hat{r}(n_{\delta})^{2}\geq 1-C_{1}^{2}\sin^{2}\left(C_{3}\pi/n_{\delta}\right),

which leads to

1r^(nδ)11C12sin2(C3π/nδ)=C12C32π2/2/nδ2+O(nδ4).1-\hat{r}(n_{\delta})\leq 1-\sqrt{1-C_{1}^{2}\sin^{2}\left(C_{3}\pi/n_{\delta}\right)}=C_{1}^{2}C_{3}^{2}\pi^{2}/2/n_{\delta}^{2}+O\left(n_{\delta}^{-4}\right).

By the Taylor expansion of Φ(t)\Phi(t) at the point t=1t=1,

1|𝐳|2<r(nδ)zi2γ~δ(|𝐳|2)𝑑𝐳=Φ(1)Φ(r^(nδ))\displaystyle 1-\int_{|{\bf z}|_{2}<r(n_{\delta})}z_{i}^{2}\widetilde{\gamma}_{\delta}\left(|{\bf z}|_{2}\right)d{\bf z}=\Phi(1)-\Phi\left(\hat{r}(n_{\delta})\right)
={Φ(1)(1r^(nδ))+o(1r^(nδ))=O(nδ2),ifΦ(1)0,Φ′′(1)(1r^(nδ))22+o((1r^(nδ))2)=O(nδ4),ifΦ(1)=0,Φ′′(1)0.\displaystyle=\left\{\begin{array}[]{rl}\Phi^{\prime}(1)\left(1-\hat{r}(n_{\delta})\right)+o\left(1-\hat{r}(n_{\delta})\right)&=O\left(n_{\delta}^{-2}\right),\>\mbox{if}\>\Phi^{\prime}(1)\neq 0,\\ -\Phi^{\prime\prime}(1)\frac{\left(1-\hat{r}(n_{\delta})\right)^{2}}{2}+o\left(\left(1-\hat{r}(n_{\delta})\right)^{2}\right)&=O\left(n_{\delta}^{-4}\right),\>\mbox{if}\>\Phi^{\prime}(1)=0,\>\Phi^{\prime\prime}(1)\neq 0.\end{array}\right.

Thus, by 2.15 and 2.17 we have

(2.18) 1σnδi(𝐱)1|𝐳|2<r(nδ)zi2γ~δ(|𝐳|2)𝑑𝐳=O(nδλ).1-\sigma_{n_{\delta}}^{i}({\bf x})\leq 1-\int_{|{\bf z}|_{2}<r(n_{\delta})}z_{i}^{2}\widetilde{\gamma}_{\delta}\left(|{\bf z}|_{2}\right)d{\bf z}=O\left(n_{\delta}^{-\lambda}\right).

Together with 2.16 and 2.2 it holds that

(2.19) {δ|nδ(uδ|nδu~0)(𝐱)=O(δ2)+O(nδλ),𝐱Ω,uδ|nδ(𝐱)u~0(𝐱)=gδ(𝐱)u~0(𝐱)=O(δ2+μ),𝐱Ωδc.\left\{\begin{array}[]{ll}-\mathcal{L}_{\delta|n_{\delta}}\left(u_{\delta|n_{\delta}}-\widetilde{u}_{0}\right)({\bf x})=O\left(\delta^{2}\right)+O\left(n_{\delta}^{-\lambda}\right),&{\bf x}\in\Omega,\\ u_{\delta|n_{\delta}}({\bf x})-\widetilde{u}_{0}({\bf x})=g_{\delta}({\bf x})-\widetilde{u}_{0}({\bf x})=O\left(\delta^{2+\mu}\right),&{\bf x}\in{\Omega_{\delta}^{c}}.\end{array}\right.

A direct application of the maximum principle Theorem 2.7 to 2.19 produces

uδ|nδu0C(Ω)=O(δ2)+O(nδλ)\left\|u_{\delta|n_{\delta}}-u_{0}\right\|_{C(\Omega)}=O\left(\delta^{2}\right)+O\left(n_{\delta}^{-\lambda}\right)

This is 2.13, which, together with 2.1 and 2.19, leads to

uδ|nδu~0δ2=Ω(uδ|nδ(𝐱)u0(𝐱))δ(uδ|nδu~0)(𝐱)𝑑𝐱\displaystyle\left\|u_{\delta|n_{\delta}}-\widetilde{u}_{0}\right\|_{\delta}^{2}=-\int_{\Omega}\left(u_{\delta|n_{\delta}}({\bf x})-u_{0}({\bf x})\right)\mathcal{L}_{\delta}\left(u_{\delta|n_{\delta}}-\widetilde{u}_{0}\right)({\bf x})d{\bf x}
Ωδc(gδ(𝐱)u~0(𝐱))Ω^δ(uδ|nδ(𝐲)u~0(𝐲)gδ(𝐱)+u~0(𝐱))γδ(𝐱,𝐲)𝑑𝐲𝑑𝐱\displaystyle\;\;-\int_{{\Omega_{\delta}^{c}}}\left(g_{\delta}({\bf x})-\widetilde{u}_{0}({\bf x})\right)\int_{{\widehat{\Omega}_{\delta}}}\left(u_{\delta|n_{\delta}}({\bf y})-\widetilde{u}_{0}({\bf y})-g_{\delta}({\bf x})+\widetilde{u}_{0}({\bf x})\right)\gamma_{\delta}({\bf x},{\bf y})d{\bf y}d{\bf x}
(δ2+nδλ)2+|Ωδc|gδu~0C(Ωδc)(uδ|nδu0C(Ω)+gδu~0C(Ωδc))G(γδ)\displaystyle\lesssim\left(\delta^{2}+n_{\delta}^{-\lambda}\right)^{2}+|{\Omega_{\delta}^{c}}|\cdot\left\|g_{\delta}-\widetilde{u}_{0}\right\|_{C({\Omega_{\delta}^{c}})}\left(\left\|u_{\delta|n_{\delta}}-u_{0}\right\|_{C(\Omega)}+\left\|g_{\delta}-\widetilde{u}_{0}\right\|_{C({\Omega_{\delta}^{c}})}\right)G(\gamma_{\delta})
(δ2+nδλ+δ1gδu~0C(Ωδc))(δ2+nδλ).\displaystyle\lesssim\left(\delta^{2}+n_{\delta}^{-\lambda}+\delta^{-1}\left\|g_{\delta}-\widetilde{u}_{0}\right\|_{C({\Omega_{\delta}^{c}})}\right)\left(\delta^{2}+n_{\delta}^{-\lambda}\right).

Together with 2.2, we get 2.14. The proof is complete. ∎

By Theorem 2.8, if nδn_{\delta}\rightarrow\infty as δ0\delta\rightarrow 0, then {uδ|nδ}\{u_{\delta|n_{\delta}}\} converges to u~0\widetilde{u}_{0} in C(Ω)\|\cdot\|_{C(\Omega)} (thus in L2(Ω)\|\cdot\|_{L^{2}(\Omega)}) and δ\|\cdot\|_{\delta} norms. This offers a contrast with the conclusion of Theorem 2.5.

Similar to Theorem 2.8, the error estimate for the nonlocal solutions with non-symmetric polygonal interaction neighborhoods against their local counterpart can be established. To state the result, we first introduce some notations. Let

σnδi,1(𝐱)\displaystyle\sigma_{n_{\delta}}^{i,1}({\bf x}) =Ω^δ(yixi)γδ,nδ(𝐱,𝐲)𝑑𝐲,\displaystyle=\int_{{\widehat{\Omega}_{\delta}}}(y_{i}-x_{i})\gamma_{\delta,n_{\delta}}({\bf x},{\bf y})d{\bf y},
σnδij,2(𝐱)\displaystyle\sigma_{n_{\delta}}^{ij,2}({\bf x}) =Ω^δ(yixi)(yjxj)γδ,nδ(𝐱,𝐲)𝑑𝐲,\displaystyle=\int_{{\widehat{\Omega}_{\delta}}}(y_{i}-x_{i})(y_{j}-x_{j})\gamma_{\delta,n_{\delta}}({\bf x},{\bf y})d{\bf y},
σnδ𝜶,3(𝐱)\displaystyle\sigma_{n_{\delta}}^{\boldsymbol{\alpha},3}({\bf x}) =1𝜶!Ω^δ(y1x1)α1(y2x2)α2γδ,nδ(𝐱,𝐲)𝑑𝐲.\displaystyle=\frac{1}{\boldsymbol{\alpha}!}\int_{{\widehat{\Omega}_{\delta}}}(y_{1}-x_{1})^{\alpha_{1}}(y_{2}-x_{2})^{\alpha_{2}}\gamma_{\delta,n_{\delta}}({\bf x},{\bf y})d{\bf y}.
Theorem 2.9.

Suppose the conditions of Theorem 2.8 hold. Let uδ,nδu_{\delta,n_{\delta}} be the solution of the nonlocal problem 2.7. Under the condition

(2.20) |σnδi,1(𝐱)|0,i=1,2,asδ0,\left|\sigma_{n_{\delta}}^{i,1}({\bf x})\right|\rightarrow 0,\>\>i=1,2,\>\>\mbox{as}\>\>\delta\rightarrow 0,

it holds that

(2.21) uδ,nδu0C(Ω)=O(δ2)+O(δ1nδλ),\displaystyle\left\|u_{\delta,n_{\delta}}-u_{0}\right\|_{C(\Omega)}=O\left(\delta^{2}\right)+O\left(\delta^{-1}n_{\delta}^{-\lambda}\right),
(2.22) uδ,nδu~0δ,nδ=O(δ(3+μ)/2)+O(δ1nδλ).\displaystyle\left\|u_{\delta,n_{\delta}}-\widetilde{u}_{0}\right\|_{\delta,n_{\delta}}=O\left(\delta^{(3+\mu)/2}\right)+O\left(\delta^{-1}n_{\delta}^{-\lambda}\right).
Proof.

A direct calculation shows that

δ,nδu~0(𝐱)=F(𝐱)+i=12σnδii,2(𝐱)iiu~0(𝐱)+O(δ2),\mathcal{L}_{\delta,n_{\delta}}\widetilde{u}_{0}({\bf x})=F({\bf x})+\sum\limits_{i=1}^{2}\sigma_{n_{\delta}}^{ii,2}({\bf x})\partial_{ii}\widetilde{u}_{0}({\bf x})+O\left(\delta^{2}\right),

where

F(𝐱)=2i=12σnδi,1(𝐱)iu~0(𝐱)+2σnδ12,2(𝐱)12u~0(𝐱)+2|𝜶|=3σnδ𝜶,3(𝐱)𝜶u~0(𝐱).F({\bf x})=2\sum_{i=1}^{2}\sigma_{n_{\delta}}^{i,1}({\bf x})\partial_{i}\widetilde{u}_{0}({\bf x})+2\sigma_{n_{\delta}}^{12,2}({\bf x})\partial_{12}\widetilde{u}_{0}({\bf x})+2\sum_{|\boldsymbol{\alpha}|=3}\sigma_{n_{\delta}}^{\boldsymbol{\alpha},3}({\bf x})\partial_{\boldsymbol{\alpha}}\widetilde{u}_{0}({\bf x}).

Similar to the proof of 2.18, we have 1σnδii,2(𝐱)=O(nδλ)1-\sigma_{n_{\delta}}^{ii,2}({\bf x})=O\left(n_{\delta}^{-\lambda}\right). Thus, it holds that

(2.23) {δ,nδ(uδ,nδu~0)(𝐱)=O(δ2)+O(nδλ)+F(𝐱),𝐱Ω,uδ,nδ(𝐱)u~0(𝐱)=gδ(𝐱)u~0(𝐱)=O(δ2+μ),𝐱Ωδc.\left\{\begin{array}[]{ll}-\mathcal{L}_{\delta,n_{\delta}}\left(u_{\delta,n_{\delta}}-\widetilde{u}_{0}\right)({\bf x})=O\left(\delta^{2}\right)+O\left(n_{\delta}^{-\lambda}\right)+F({\bf x}),&{\bf x}\in\Omega,\\ u_{\delta,n_{\delta}}({\bf x})-\widetilde{u}_{0}({\bf x})=g_{\delta}({\bf x})-\widetilde{u}_{0}({\bf x})=O\left(\delta^{2+\mu}\right),&{\bf x}\in{\Omega_{\delta}^{c}}.\end{array}\right.

A direct application of nonlocal maximum principle similar to Theorems 2.6 and 2.7 (but with the condition 2.20) to 2.23 produces

(2.24) uδ,nδu0C(Ω)=O(δ2)+O(nδλ)+Fs,\left\|u_{\delta,n_{\delta}}-u_{0}\right\|_{C(\Omega)}=O\left(\delta^{2}\right)+O\left(n_{\delta}^{-\lambda}\right)+F_{s},

where Fs=sup𝐱Ω|F(𝐱)|F_{s}=\sup\limits_{{\bf x}\in\Omega}\left|F({\bf x})\right|. By the definition of γδ,nδ\gamma_{\delta,n_{\delta}}, we have

2σnδi,1(𝐱)=2Bδ(𝐱)(yixi)γδ,nδ(𝐱,𝐲)𝑑𝐲\displaystyle 2\sigma_{n_{\delta}}^{i,1}({\bf x})=2\int_{B_{\delta}({\bf x})}(y_{i}-x_{i})\gamma_{\delta,n_{\delta}}({\bf x},{\bf y})d{\bf y}
=2Bδ(𝐱)(yixi)γδ(𝐱,𝐲)𝑑𝐲=𝟎(Bδ(𝐱)Bδ,nδ𝐱+Bδ(𝐱)Bδ,nδ𝐱)(yixi)γδ(𝐱,𝐲)d𝐲.\displaystyle=2\underbrace{\int_{B_{\delta}({\bf x})}(y_{i}-x_{i})\gamma_{\delta}({\bf x},{\bf y})d{\bf y}}_{={\bf 0}}-(\int_{B_{\delta}({\bf x})\setminus B_{\delta,n_{\delta}^{\bf x}}}+\int_{B_{\delta}({\bf x})\setminus B^{\prime}_{\delta,n_{\delta}^{\bf x}}})(y_{i}-x_{i})\gamma_{\delta}({\bf x},{\bf y})d{\bf y}.

Thus the following estimate holds

|σnδi,1(𝐱)|\displaystyle\left|\sigma_{n_{\delta}}^{i,1}({\bf x})\right| 12Bδ(𝐱)Bδ,nδ𝐱+Bδ(𝐱)Bδ,nδ𝐱|yixi|γδ(𝐱,𝐲)𝑑𝐲\displaystyle\leq\frac{1}{2}\int_{B_{\delta}({\bf x})\setminus B_{\delta,n_{\delta}^{\bf x}}}+\int_{B_{\delta}({\bf x})\setminus B^{\prime}_{\delta,n_{\delta}^{\bf x}}}\left|y_{i}-x_{i}\right|\gamma_{\delta}({\bf x},{\bf y})d{\bf y}
|𝐳|2<δ|zi|γ~δ(|𝐳|2)𝑑𝐳|𝐳|2<r(nδ)|zi|γ~δ(|𝐳|2)𝑑𝐳\displaystyle\leq\int_{|{\bf z}|_{2}<\delta}|z_{i}|\widetilde{\gamma}_{\delta}\left(|{\bf z}|_{2}\right)d{\bf z}-\int_{|{\bf z}|_{2}<r(n_{\delta})}|z_{i}|\widetilde{\gamma}_{\delta}\left(|{\bf z}|_{2}\right)d{\bf z}
=δ1[Ψ(1)Ψ(r^(nδ))]=O(δ1nδλ),\displaystyle=\delta^{-1}\left[\Psi(1)-\Psi(\hat{r}(n_{\delta}))\right]=O\left(\delta^{-1}n_{\delta}^{-\lambda}\right),

where we use the Taylor expansion of Ψ(t)\Psi(t) at point t=1t=1. Similarly,

|σnδ12,2(𝐱)|=O(nδλ),|σnδ𝜶,3(𝐱)|=O(δnδλ).\left|\sigma_{n_{\delta}}^{12,2}({\bf x})\right|=O\left(n_{\delta}^{-\lambda}\right),\>\>\left|\sigma_{n_{\delta}}^{\boldsymbol{\alpha},3}({\bf x})\right|=O\left(\delta n_{\delta}^{-\lambda}\right).

Then Fs=O(δ1nδλ)F_{s}=O\left(\delta^{-1}n_{\delta}^{-\lambda}\right). Inserting this into 2.24, we get 2.21 which, together with 2.23 and 2.1, leads to

uδ,nδu~0δ,nδ2\displaystyle\left\|u_{\delta,n_{\delta}}-\widetilde{u}_{0}\right\|_{\delta,n_{\delta}}^{2} (δ2+nδλ+Fs)2+|Ωδc|gδu~0C(Ωδc)(δ2+nδλ+Fs)G(γδ)\displaystyle\lesssim\left(\delta^{2}+n_{\delta}^{-\lambda}+F_{s}\right)^{2}+\left|{\Omega_{\delta}^{c}}\right|\cdot\left\|g_{\delta}-\widetilde{u}_{0}\right\|_{C({\Omega_{\delta}^{c}})}\left(\delta^{2}+n_{\delta}^{-\lambda}+F_{s}\right)G(\gamma_{\delta})
(δ2+nδλ+Fs)(δ1+μ+nδλ+Fs).\displaystyle\lesssim\left(\delta^{2}+n_{\delta}^{-\lambda}+F_{s}\right)\cdot\left(\delta^{1+\mu}+n_{\delta}^{-\lambda}+F_{s}\right).

Thus, using the bound of FsF_{s}, we complete the proof. ∎

From Theorem 2.9, we know that even when nδn_{\delta}\rightarrow\infty, {uδ,nδ}\{u_{\delta,n_{\delta}}\} might not converge to u~0\widetilde{u}_{0} in C(Ω)\|\cdot\|_{C(\Omega)} or δ,nδ\|\cdot\|_{\delta,n_{\delta}} as δ0\delta\rightarrow 0. The reason is that the support of γδ,nδ(𝐱,𝐲)\gamma_{\delta,n_{\delta}}({\bf x},{\bf y}) is not symmetric with respect to 𝐱\bf x, so the integral of the product of the kernel with an odd function does not necessarily vanish. On the other hand, we could only prove the nonlocal maximum principle with the condition 2.20. Thus, an additional condition is required to ensure the convergence in C(Ω)\|\cdot\|_{C(\Omega)} or δ,nδ\|\cdot\|_{\delta,n_{\delta}}: Fs0F_{s}\rightarrow 0 as δ0\delta\rightarrow 0. However, one may observe the convergence in the L2L^{2} norm numerically even without this condition, see numerical results in Section 5 and additional discussions in Remark 3.4.

We could also prove lower bounds for 1σnδi(𝐱)1-\sigma_{n_{\delta}}^{i}({\bf x}) and 1σnδi,1(𝐱)1-\sigma_{n_{\delta}}^{i,1}({\bf x}) which play a helpful role in assessing whether the nonlocal operators converge to the local operator. The next theorem provides a lower bound for 1σnδi(𝐱)1-\sigma_{n_{\delta}}^{i}({\bf x}).

Theorem 2.10.

Suppose the family {γδ}\{\gamma_{\delta}\} satisfies 1.3 and 1.4, while {Bδ,nδ𝐱}\left\{B_{\delta,n_{\delta}^{\bf x}}\right\} is a family of inscribed polygons. If nδNn_{\delta}\leq N for all δ\delta, then we have for Φ(1)0\Phi^{\prime}(1)\neq 0,

(2.25) 1σnδi(𝐱)L1σL,1(π/N)/π,1-\sigma_{n_{\delta}}^{i}({\bf x})\geq L_{1}\cdot\sigma_{L,1}(\pi/N)/\pi,

with

L1=mincos(π/N)t1Φ(t),σL,1(s)=s2+14sin(2s)cos(s)log(tan(s2+π4)),L_{1}=\min_{\cos(\pi/N)\leq t\leq 1}\Phi^{\prime}(t),\>\>\sigma_{L,1}(s)=\frac{s}{2}+\frac{1}{4}\sin\left(2s\right)-\cos\left(s\right)\log\left(\tan\left(\frac{s}{2}+\frac{\pi}{4}\right)\right),

and for Φ(1)=0\Phi^{\prime}(1)=0, Φ′′(1)0\Phi^{\prime\prime}(1)\neq 0,

(2.26) 1σnδi(𝐱)L2σL,2(π/N)/π,1-\sigma_{n_{\delta}}^{i}({\bf x})\geq L_{2}\cdot\sigma_{L,2}(\pi/N)/\pi,

with

L2=mincos(π/N)t1|Φ′′(t)|,σL,2(s)=58sin(2s)s4cos(2s)cos(s)log(tan(s2+π4)).L_{2}=\min_{\cos(\pi/N)\leq t\leq 1}|\Phi^{\prime\prime}(t)|,\>\>\sigma_{L,2}(s)=\frac{5}{8}\sin\left(2s\right)-\frac{s}{4}\cos\left(2s\right)-\cos\left(s\right)\log\left(\tan\left(\frac{s}{2}+\frac{\pi}{4}\right)\right).
Proof.

Consider the section of the longest side in B1,nδ𝐱(𝟎)B_{1,n_{\delta}^{\bf x}}({\bf 0}), which is composed of a triangle and its adjoining cap. Denote the cap by Cnδ𝐱C_{n_{\delta}^{\bf x}}, then Cnδ𝐱B1(𝟎)B1,nδ𝐱(𝟎)C_{n_{\delta}^{\bf x}}\subset B_{1}({\bf 0})\setminus B_{1,n_{\delta}^{\bf x}}({\bf 0}), and

2(1σnδi(𝐱))=2Bδ(𝐱)(yixi)2γδ(𝐱,𝐲)𝑑𝐲2Bδ(𝐱)(yixi)2γδ|nδ(𝐱,𝐲)𝑑𝐲\displaystyle 2\left(1-\sigma_{n_{\delta}}^{i}({\bf x})\right)=2\int_{B_{\delta}({\bf x})}(y_{i}-x_{i})^{2}\gamma_{\delta}({\bf x},{\bf y})d{\bf y}-2\int_{B_{\delta}({\bf x})}(y_{i}-x_{i})^{2}\gamma_{\delta|n_{\delta}}({\bf x},{\bf y})d{\bf y}
=Bδ(𝐱)(yixi)2γδ(𝐱,𝐲)(1χBδ,nδ𝐱(𝐲)+1χBδ,nδ𝐱T(𝐲))𝑑𝐲\displaystyle=\int_{B_{\delta}({\bf x})}(y_{i}-x_{i})^{2}\gamma_{\delta}({\bf x},{\bf y})\left(1-\chi_{B_{\delta,n_{\delta}^{\bf x}}}({\bf y})+1-\chi_{B^{T}_{\delta,n_{\delta}^{\bf x}}}({\bf y})\right)d{\bf y}
Bδ(𝐱)(yixi)2γδ(𝐱,𝐲)(1χBδ,nδ𝐱(𝐲))𝑑𝐲Cnδ𝐱ξi2γ(𝝃2)𝑑𝝃.\displaystyle\geq\int_{B_{\delta}({\bf x})}(y_{i}-x_{i})^{2}\gamma_{\delta}({\bf x},{\bf y})\left(1-\chi_{B_{\delta,n_{\delta}^{\bf x}}}({\bf y})\right)d{\bf y}\geq\int_{C_{n_{\delta}^{\bf x}}}\xi_{i}^{2}\gamma\left(\left\|{\boldsymbol{\xi}}\right\|_{2}\right)d{\boldsymbol{\xi}}.

According to different orientations, the value of

12Cnδ𝐱ξi2γ(𝝃2)𝑑𝝃\frac{1}{2}\int_{C_{n_{\delta}^{\bf x}}}\xi_{i}^{2}\gamma\left(\left\|{\boldsymbol{\xi}}\right\|_{2}\right)d{\boldsymbol{\xi}}

may differ. However, we can estimate a lower bound for all cases. For Φ(1)0\Phi^{\prime}(1)\neq 0,

12Cnδ𝐱ξi2γ(𝝃2)𝑑𝝃0πNsin2(θ)cos(π/N)cos(θ)1ρ3γ(ρ)𝑑ρ𝑑θ\displaystyle\frac{1}{2}\int_{C_{n_{\delta}^{\bf x}}}\xi_{i}^{2}\gamma\left(\left\|{\boldsymbol{\xi}}\right\|_{2}\right)d{\boldsymbol{\xi}}\geq\int_{0}^{\frac{\pi}{N}}\sin^{2}(\theta)\int_{\frac{\cos(\pi/N)}{\cos(\theta)}}^{1}\rho^{3}\gamma(\rho)d\rho d\theta
=1π0πNsin2(θ)[Φ(1)Φ(cos(π/N)cos(θ))]𝑑θL1π0πNsin2(θ)[1cos(π/N)cos(θ)]𝑑θ\displaystyle=\frac{1}{\pi}\int_{0}^{\frac{\pi}{N}}\sin^{2}(\theta)\left[\Phi(1)-\Phi\left(\frac{\cos(\pi/N)}{\cos(\theta)}\right)\right]d\theta\geq\frac{L_{1}}{\pi}\int_{0}^{\frac{\pi}{N}}\sin^{2}(\theta)\left[1-\frac{\cos(\pi/N)}{\cos(\theta)}\right]d\theta
=L1[π2N+14sin(2πN)cos(πN)log(tan(π2N+π4))]/π,\displaystyle=L_{1}\cdot\left[\frac{\pi}{2N}+\frac{1}{4}\sin\left(\frac{2\pi}{N}\right)-\cos\left(\frac{\pi}{N}\right)\log\left(\tan\left(\frac{\pi}{2N}+\frac{\pi}{4}\right)\right)\right]/\pi,

which is 2.25. Using the similar argument and notice that for Φ(1)=0\Phi^{\prime}(1)=0, Φ′′(1)0\Phi^{\prime\prime}(1)\neq 0

Φ(1)Φ(cos(π/nδ)cos(θ))L22[1cos(π/nδ)cos(θ)]2,\Phi(1)-\Phi\left(\frac{\cos(\pi/n_{\delta})}{\cos(\theta)}\right)\\ \geq\frac{L_{2}}{2}\left[1-\frac{\cos(\pi/n_{\delta})}{\cos(\theta)}\right]^{2},

then 2.26 is gotten. Thus, we complete the proof. ∎

Note that this estimate for the lower bound of 1σnδi(𝐱)1-\sigma_{n_{\delta}}^{i}({\bf x}) in Theorem 2.10 might not be sharp in some cases. However, it could still play a helpful role in assessing whether the nonlocal operators converge to the local operator.

Theorem 2.10 offers a quantitative characterization of the lack of convergence stated in the Theorem 2.5. In fact, it indicates that if nδn_{\delta} is uniformly bounded as δ0\delta\rightarrow 0, then {uδ|nδ}\{u_{\delta|n_{\delta}}\} may converge to u~0\widetilde{u}_{0} only for the case of a trivial solution.

Similar results for 1σnδi,1(𝐱)1-\sigma_{n_{\delta}}^{i,1}({\bf x}) could be provided in the same manner, we omit that to save space for the paper.

2.3. Examples of the kernel function

Here we list some popular kernels in general dd-dimensional setting under the assumption that γ~δ\widetilde{\gamma}_{\delta} has a re-scaled form 2.5 while replacing δ4\delta^{4} (for d=2d=2) by δd+2\delta^{d+2}. For more discussions on the effects of the kernels on the nonlocal models, we refer to [12, 29].

Type 1. Constant kernel:

(2.27) γ(ρ)=d(d+2)wd,  0ρ1.\gamma(\rho)=\frac{d(d+2)}{w_{d}},\>\>0\leq\rho\leq 1.

Type 2. Linear kernel:

γ(ρ)=d(d+2)(d+3)wd(1ρ),  0ρ1.\gamma(\rho)=\frac{d(d+2)(d+3)}{w_{d}}(1-\rho),\>\>0\leq\rho\leq 1.

Type 3. Gaussian-like kernel:

γ(ρ)=dCewdeρ2,  0ρ1,withCe=01τd+1eτ2𝑑τ.\gamma(\rho)=\frac{d}{C_{e}w_{d}}e^{-\rho^{2}},\>\>0\leq\rho\leq 1,\>\>\mbox{with}\>\>C_{e}=\int_{0}^{1}\tau^{d+1}e^{-\tau^{2}}d\tau.

Type 4. Peridynamic kernel [31] for d2d\geq 2:

γ(ρ)=d(d+1)wdρ1,  0<ρ1.\gamma(\rho)=\frac{d(d+1)}{w_{d}}\rho^{-1},\>\>0<\rho\leq 1.

All four types of kernels shown above satisfy 1.3, 1.4 and 2.1. The functions Φ(t)\Phi(t) and Ψ(t)\Psi(t) corresponding to the linear kernel (Type 2) satisfy the condition

Φ(1)=0,Ψ(1)=0,Φ′′(1)0,Ψ(1)0,\Phi^{\prime}(1)=0,\>\>\Psi^{\prime}(1)=0,\>\>\Phi^{\prime\prime}(1)\neq 0,\>\>\Psi^{\prime}(1)\neq 0,

hence λ=4\lambda=4. The other three types of kernels satisfy

Φ(1)0,Ψ(1)0,\Phi^{\prime}(1)\neq 0,\>\>\Psi^{\prime}(1)\neq 0,

which leads to λ=2\lambda=2.

Note that our discussion so far involves only approximations of nonlocal operators on the continuum level and we have not incorporated the effect of finite dimensional discretizations of the operators. Next, we take the conforming DG (CDG) method as a representative setting to study the discretization error. Extensions to other types of numerical methods can be worked out analogously.

3. Error estimate of the linear CDG method for the nonlocal problems with respect to the horizon parameter and the mesh size

In this section, we review the linear CDG method proposed in [19] for solving nonlocal problems with integrable kernels. We then study the corresponding discretization error with respect to the horizon parameter and the mesh size. Note that in [11] (where the continuous piecewise linear FEM is used) and [19], the analysis is only concerned with the dependence on the mesh size.

3.1. Brief review of the linear CDG method for nonlocal problems

Now we briefly recall the basic steps of the linear CDG method for solving the nonlocal problems 1.2 to make the discussion reasonably self-contained. Firstly, the variational form of 1.2 finds uδV(Ω^δ)u_{\delta}\in V({\widehat{\Omega}_{\delta}}) such that

(3.1) Ωw(𝐱)δuδ(𝐱)𝑑𝐱=Ωfδ(𝐱)w(𝐱)𝑑𝐱,wV0(Ω^δ).-\int_{\Omega}w({\bf x})\mathcal{L}_{\delta}u_{\delta}({\bf x})d{\bf x}=\int_{\Omega}f_{\delta}({\bf x})w({\bf x})d{\bf x},\>\forall w\in V^{0}({\widehat{\Omega}_{\delta}}).

For a given triangulation 𝒯δh\mathcal{T}_{\delta}^{h} of Ω^δ{\widehat{\Omega}_{\delta}} that simultaneously triangulates Ω\Omega (we call such a triangulation consistent), let

Ωδh=𝒯δhΩ¯,Ωδc,h=𝒯δhΩδc¯.\Omega_{\delta}^{h}=\mathcal{T}_{\delta}^{h}\cap\overline{\Omega},\>\>\Omega^{c,h}_{\delta}=\mathcal{T}_{\delta}^{h}\cap\overline{{\Omega_{\delta}^{c}}}.

Assume that for any fixed δ\delta, 𝒯δh\mathcal{T}_{\delta}^{h} is quasi-uniform [8] with respect to the mesh size hh. The set of inner and boundary nodes of Ωδh\Omega_{\delta}^{h} are denoted by

NI={𝐱j:j=1,,n1},andNB={𝐱n1+j:j=1,,n2},N\!I=\{{\bf x}_{j}:j=1,\cdots,n_{1}\},\>\>\mbox{and}\>\>N\!B=\{{\bf x}_{n_{1}+j}:j=1,\cdots,n_{2}\},

respectively. The set of all nodes in Ωδc,h\Omega_{\delta}^{c,h} is denoted by

NC={𝐱n1+j:j=1,,n2+p}.N\!C=\{{\bf x}_{n_{1}+j}:j=1,\cdots,n_{2}+p\}.

Note that NBNCN\!B\subset N\!C. The continuous linear basis functions defined on 𝒯δh\mathcal{T}_{\delta}^{h} are denoted by

ϕj(𝐱),j=1,2,,n1+n2+p.\phi_{j}({\bf x}),\>\>j=1,2,\cdots,n_{1}+n_{2}+p.

The basis functions of Vδ0,hV_{\delta}^{0,h} which contains all piecewise linear functions vanishing on 𝒯δhΩδh\mathcal{T}_{\delta}^{h}\!\setminus\!\Omega_{\delta}^{h} are defined as follows: for j=1,2,,n1+n2j=1,2,\cdots,n_{1}+n_{2},

ϕ~j(𝐱)={ϕj(𝐱)|Ωδh,𝐱Ωδh,0,𝐱𝒯δhΩδh.\widetilde{\phi}_{j}({\bf x})=\left\{\begin{array}[]{ll}\phi_{j}({\bf x})|_{\Omega_{\delta}^{h}},&{\bf x}\in\Omega_{\delta}^{h},\\ 0,&{\bf x}\in\mathcal{T}_{\delta}^{h}\!\setminus\!\Omega_{\delta}^{h}.\end{array}\right.

The basis functions of Vδc,hV^{c,h}_{\delta} which contains all piecewise linear functions vanishing on 𝒯δhΩδc,h\mathcal{T}_{\delta}^{h}\!\setminus\!\Omega_{\delta}^{c,h} are defined as follows: for j=1,2,,p+n2j=1,2,\cdots,p+n_{2},

ϕ~jc(𝐱)={ϕn1+j(𝐱)|Ωδc,h,𝐱Ωδc,h,0,𝐱𝒯δhΩδc,h.\widetilde{\phi}_{j}^{c}({\bf x})=\left\{\begin{array}[]{ll}\phi_{n_{1}+j}({\bf x})|_{\Omega_{\delta}^{c,h}},&{\bf x}\in\Omega_{\delta}^{c,h},\\ 0,&{\bf x}\in\mathcal{T}_{\delta}^{h}\!\setminus\!\Omega_{\delta}^{c,h}.\end{array}\right.

The linear CDG space is then defined as

Vδh=Vδ0,h+gδh,V_{\delta}^{h}=V_{\delta}^{0,h}+g_{\delta}^{h},

where gδhVδc,hg_{\delta}^{h}\in V^{c,h}_{\delta} is an approximation of the boundary data gδg_{\delta}.

The following conforming property is satisfied,

(3.2) Vδ0,hV0(Ω^δ),Vδc,hVc(Ω^δ).V_{\delta}^{0,h}\subset V^{0}({\widehat{\Omega}_{\delta}}),\>\>\>V^{c,h}_{\delta}\subset V^{c}({\widehat{\Omega}_{\delta}}).

An element of VδhV_{\delta}^{h} is continuous on Ω\Omega or Ωδc{\Omega_{\delta}^{c}}, but possibly discontinuous across Ω\partial\Omega. The linear CDG approximation of 3.1 finds uδ0,hVδ0,hu_{\delta}^{0,h}\in V_{\delta}^{0,h} such that whVδ0,h\forall w_{h}\in V^{0,h}_{\delta},

(3.3) 2Ωwh(𝐱)Bδ(𝐱)Ω(uδ0,h(𝐲)uδ0,h(𝐱))γδ(𝐱,𝐲)𝑑𝐲𝑑𝐱\displaystyle-2\int_{\Omega}w_{h}({\bf x})\int_{B_{\delta}({\bf x})\cap\Omega}\left(u_{\delta}^{0,h}({\bf y})-u_{\delta}^{0,h}({\bf x})\right)\gamma_{\delta}({\bf x},{\bf y})d{\bf y}d{\bf x}\qquad
=Ωfδ(𝐱)wh(𝐱)𝑑𝐱+2Ωwh(𝐱)Bδ(𝐱)Ωδc(gδh(𝐲)uδ0,h(𝐱))γδ(𝐱,𝐲)𝑑𝐲𝑑𝐱.\displaystyle=\int_{\Omega}f_{\delta}({\bf x})w_{h}({\bf x})d{\bf x}+2\int_{\Omega}w_{h}({\bf x})\int_{B_{\delta}({\bf x})\cap{\Omega_{\delta}^{c}}}\left(g_{\delta}^{h}({\bf y})-u_{\delta}^{0,h}({\bf x})\right)\gamma_{\delta}({\bf x},{\bf y})d{\bf y}d{\bf x}.

Put together, we get uδh=uδ0,h+gδhu_{\delta}^{h}=u_{\delta}^{0,h}+g_{\delta}^{h} as the final CDG approximation of uδu_{\delta} on Ω^δ{\widehat{\Omega}_{\delta}}.

In fact, the triangulations for Ω^δ{\widehat{\Omega}_{\delta}} are not required to be consistent across the interface, since the continuity across Ω\partial\Omega of functions in the linear CDG space is not enforced (and there is no reason to assume the continuity a priori). So Ω¯\overline{\Omega} and Ωδc¯\overline{{\Omega_{\delta}^{c}}} could be triangulated separately by different mesh sizes (without any restriction when crossing the boundary) to get Ωδh\Omega_{\delta}^{h} and Ωδc,H\Omega^{c,H}_{\delta}. This offers more flexibility to implement compared to the use of consistent meshing. Hence a whole triangulation of Ω^δ{\widehat{\Omega}_{\delta}} is given as

𝒯δh,H=ΩδhΩδc,H,\mathcal{T}_{\delta}^{h,H}=\Omega_{\delta}^{h}\cup\Omega^{c,H}_{\delta},

which is called a non-consistent triangulation of Ω^δ{\widehat{\Omega}_{\delta}}. Thus we define

Vδh,H=Vδ0,h+gδH,V_{\delta}^{h,H}=V_{\delta}^{0,h}+g_{\delta}^{H},

where gδHVδc,Hg_{\delta}^{H}\in V^{c,H}_{\delta} is an approximation of gδg_{\delta}. In this case, the corresponding linear CDG approximation for 3.1 finds uδ0,hVδ0,hu_{\delta}^{0,h}\in V_{\delta}^{0,h} such that 3.3 (replacing gδhg_{\delta}^{h} by gδHg_{\delta}^{H}) holds for any whVδ0,hw_{h}\in V^{0,h}_{\delta}. And uδh,H=uδ0,h+gδHu_{\delta}^{h,H}=u_{\delta}^{0,h}+g_{\delta}^{H} is the final CDG approximation of uδu_{\delta}. We assume that max{h,H}<δ\max\{h,H\}<\delta for convenience, which is particularly beneficial when dealing with issues related to VC, because H<δH<\delta can help avoid potential complications in describing the VC discretization.

3.2. The CDG approximation for the nonlocal problem with spherical interaction neighborhoods

In [19], the linear CDG method has been shown to yield an optimal convergence rate with respect to the mesh size for some integrable kernels for fixed δ\delta. However, the dependence of error estimate on δ\delta has not been discussed so far. To analyze this dependence, we begin with the following lemma.

Lemma 3.1.

[1, 28] Assume that the family of kernels {γδ}\{\gamma_{\delta}\} satisfies the conditions 1.3 and 1.4. Then there exist constants δ0>0\delta_{0}>0, C5>0C_{5}>0 and C6>0C_{6}>0 such that for all 0<δδ00<\delta\leq\delta_{0} and vV0(Ω^δ)v\in V^{0}({\widehat{\Omega}_{\delta}}), it holds

(3.4) C5vL2(Ω)vδC6δ1vL2(Ω),C_{5}\left\|v\right\|_{L^{2}(\Omega)}\leq\left\|v\right\|_{\delta}\leq C_{6}\delta^{-1}\left\|v\right\|_{L^{2}(\Omega)},

where the constants C5C_{5} and C6C_{6} are all independent of δ\delta.

Notice that the original lemma in [1] states that for general dd dimensional setting

C~5δd/2+1vL2(Ω)vδC~6δd/2vL2(Ω),\widetilde{C}_{5}\delta^{d/2+1}\left\|v\right\|_{L^{2}(\Omega)}\leq\left\|v\right\|_{\delta}\leq\widetilde{C}_{6}\delta^{d/2}\left\|v\right\|_{L^{2}(\Omega)},

under the assumption γ~δ(𝐳2)=1\widetilde{\gamma}_{\delta}(\left\|{\bf z}\right\|_{2})=1 instead of the last condition in 1.4, however, the two lemmas are equivalent. The corresponding vector-valued version of the first inequality of 3.4 is proven in [25, Proposition 5.3].

As stated in [1, Remark 2.5], the first inequality of 3.4 can be extended, as done in [2, Proposition 2.5], to the estimate

(3.5) C^5vL2(Ω^δ)vδ+S1|v(𝐱)|2𝑑𝐱,\widehat{C}_{5}\left\|v\right\|_{L^{2}\left({\widehat{\Omega}_{\delta}}\right)}\leq\left\|v\right\|_{\delta}+\int_{S_{-1}}|v({\bf x})|^{2}d{\bf x},

for functions vL2(Ω^δ)v\in L^{2}({\widehat{\Omega}_{\delta}}) which do not necessarily vanish on Ωδc{\Omega_{\delta}^{c}}, where

S1:={𝐱Ωδc:dist(𝐱,Ω^δ)δ/2},S_{-1}:=\{{\bf x}\in{\Omega_{\delta}^{c}}:\mbox{dist}({\bf x},\partial{\widehat{\Omega}_{\delta}})\leq\delta/2\},

while the first inequality of 3.4 can be deduced from 3.5 with the homogeneous Dirichlet condition on Ωδc{\Omega_{\delta}^{c}} assumed. This result also coincides with the classical Poincaré’s inequality.

Similar to the proof for the error estimate in the δ\|\cdot\|_{\delta} norm in Theorem 2.2, we can derive the relationship between the two norms vδ\left\|v\right\|_{\delta} and vC(Ω)+vC(Ωδc)\left\|v\right\|_{C(\Omega)}+\left\|v\right\|_{C({\Omega_{\delta}^{c}})}.

Lemma 3.2.

Assume that the family of kernels {γδ}\{\gamma_{\delta}\} satisfies 1.3, 1.4 and 2.1. Then

vδδ1(vC(Ω)+vC(Ωδc)),vCb(Ω)Cb(Ωδc).\left\|v\right\|_{\delta}\lesssim\delta^{-1}(\|v\|_{C(\Omega)}+\|v\|_{C({\Omega_{\delta}^{c}})}),\quad\forall v\in C_{b}(\Omega)\cap C_{b}({\Omega_{\delta}^{c}}).

To separate the influence due to the discretization of VC, we introduce an intermediate problem which finds

uδV0(Ω^δ)+gδhu_{\delta}^{*}\in V^{0}({\widehat{\Omega}_{\delta}})+g_{\delta}^{h}

such that

(3.6) δuδ(𝐱)=fδ(𝐱)onΩ.-\mathcal{L}_{\delta}u_{\delta}^{*}({\bf x})=f_{\delta}({\bf x})\>\>\mbox{on}\>\>\Omega.
Theorem 3.3.

Assume that the conditions of Theorem 2.2 hold. Let uδu_{\delta} and uδhu_{\delta}^{h} be the solutions of 3.1 and 3.3, respectively. Then

(3.7) uδuδhδδ(3+μ)/2+δ1h2,\displaystyle\left\|u_{\delta}-u_{\delta}^{h}\right\|_{\delta}\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2},
(3.8) uδuδhL2(Ω)δ(3+μ)/2+δ1h2.\displaystyle\left\|u_{\delta}-u_{\delta}^{h}\right\|_{L^{2}(\Omega)}\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}.
Proof.

By 1.2 and 3.6 one has

(3.9) δ(uδuδ)(𝐱)=0,𝐱Ω.\mathcal{L}_{\delta}\left(u_{\delta}-u_{\delta}^{*}\right)({\bf x})=0,\>{\bf x}\in\Omega.

The direct application of nonlocal maximum principle to 3.9 produces

(3.10) uδuδC(Ω)gδgδhC(Ωδc)h2gδC2(Ωδc).\left\|u_{\delta}-u_{\delta}^{*}\right\|_{C(\Omega)}\lesssim\left\|g_{\delta}-g_{\delta}^{h}\right\|_{C({\Omega_{\delta}^{c}})}\lesssim h^{2}\left\|g_{\delta}\right\|_{C^{2}\left({\Omega_{\delta}^{c}}\right)}.

By the generalized nonlocal Green’s first identity ([14]) and 3.9 we get

uδuδδ2=Ωδc(uδ(𝐱)uδ(𝐱))Ω^δ(uδ(𝐲)uδ(𝐲)uδ(𝐱)+uδ(𝐱))γδ(𝐱,𝐲)𝑑𝐲𝑑𝐱\displaystyle\left\|u_{\delta}-u_{\delta}^{*}\right\|_{\delta}^{2}=\!\int_{{\Omega_{\delta}^{c}}}\!(u_{\delta}^{*}({\bf x})-u_{\delta}({\bf x}))\int_{{\widehat{\Omega}_{\delta}}}\!\left(u_{\delta}({\bf y})-u_{\delta}^{*}({\bf y})-u_{\delta}({\bf x})+u_{\delta}^{*}({\bf x})\right)\gamma_{\delta}({\bf x},{\bf y})d{\bf y}d{\bf x}
=Ωδc(gδh(𝐱)gδ(𝐱))Ω^δ(uδ(𝐲)uδ(𝐲)gδ(𝐱)+gδh(𝐱))γδ(𝐱,𝐲)𝑑𝐲𝑑𝐱\displaystyle=\int_{{\Omega_{\delta}^{c}}}(g_{\delta}^{h}({\bf x})-g_{\delta}({\bf x}))\int_{{\widehat{\Omega}_{\delta}}}\left(u_{\delta}({\bf y})-u_{\delta}^{*}({\bf y})-g_{\delta}({\bf x})+g_{\delta}^{h}({\bf x})\right)\gamma_{\delta}({\bf x},{\bf y})d{\bf y}d{\bf x}
|Ωδc|gδgδhC(Ωδc)(uδuδC(Ω)+gδgδhC(Ωδc))G(γδ)\displaystyle\lesssim|{\Omega_{\delta}^{c}}|\cdot\left\|g_{\delta}-g_{\delta}^{h}\right\|_{C({\Omega_{\delta}^{c}})}\cdot\left(\left\|u_{\delta}-u_{\delta}^{*}\right\|_{C(\Omega)}+\left\|g_{\delta}-g_{\delta}^{h}\right\|_{C({\Omega_{\delta}^{c}})}\right)\cdot G(\gamma_{\delta})
δh2gδC2(Ωδc)h2gδC2(Ωδc)δ2δ1h4.\displaystyle\lesssim\delta\cdot h^{2}\left\|g_{\delta}\right\|_{C^{2}\left({\Omega_{\delta}^{c}}\right)}\cdot h^{2}\left\|g_{\delta}\right\|_{C^{2}\left({\Omega_{\delta}^{c}}\right)}\cdot\delta^{-2}\approx\delta^{-1}h^{4}.

Thus

(3.11) uδuδδδ1/2h2.\left\|u_{\delta}-u_{\delta}^{*}\right\|_{\delta}\lesssim\delta^{-1/2}h^{2}.

Since Vδ0,hV0(Ω^δ)V_{\delta}^{0,h}\subset V^{0}({\widehat{\Omega}_{\delta}}) as pointed out in 3.2, then for all whVδ0,hw_{h}\in V_{\delta}^{0,h}, it holds

Ωwh(𝐱)δuδ(𝐱)𝑑𝐱=Ωwh(𝐱)fδ(𝐱)𝑑𝐱,-\int_{\Omega}w_{h}({\bf x})\mathcal{L}_{\delta}u_{\delta}^{*}({\bf x})d{\bf x}=\int_{\Omega}w_{h}({\bf x})f_{\delta}({\bf x})d{\bf x},

which, together with 3.3 and the nonlocal Green’s first identity [14] leads to

(uδuδh,wh)δ=0,whVδ0,h.\left(u_{\delta}^{*}-u_{\delta}^{h},w_{h}\right)_{\delta}=0,\>\forall w_{h}\in V_{\delta}^{0,h}.

Thus we get the following estimate: for all vhVδhv_{h}\in V_{\delta}^{h},

uδuδhδ2=(uδuδh,uδuδh)δ=(uδuδh,uδvh)δuδuδhδuδvhδ,\left\|u_{\delta}^{*}-u_{\delta}^{h}\right\|_{\delta}^{2}=\left(u_{\delta}^{*}-u_{\delta}^{h},u_{\delta}^{*}-u_{\delta}^{h}\right)_{\delta}=\left(u_{\delta}^{*}-u_{\delta}^{h},u_{\delta}^{*}-v_{h}\right)_{\delta}\leq\left\|u_{\delta}^{*}-u_{\delta}^{h}\right\|_{\delta}\left\|u_{\delta}^{*}-v_{h}\right\|_{\delta},

where the crucial relation uδhvhVδ0,hu_{\delta}^{h}-v_{h}\in V_{\delta}^{0,h} is used. Then

(3.12) uδuδhδuδvhδ,vhVδh.\left\|u_{\delta}^{*}-u_{\delta}^{h}\right\|_{\delta}\leq\left\|u_{\delta}^{*}-v_{h}\right\|_{\delta},\>\forall v_{h}\in V_{\delta}^{h}.

Let vh=Ihu~0Vδhv_{h}=I_{h}\widetilde{u}_{0}\in V_{\delta}^{h} be the piecewise linear interpolant of u~0\widetilde{u}_{0} on 𝒯δh\mathcal{T}_{\delta}^{h}. By 2.3, Lemma 3.2, 3.11, and the error estimate for the Lagrangian interpolation, we have

(3.13) uδuδhδ\displaystyle\left\|u_{\delta}^{*}-u_{\delta}^{h}\right\|_{\delta} uδIhu~0δ\displaystyle\leq\left\|u_{\delta}^{*}-I_{h}\widetilde{u}_{0}\right\|_{\delta}
u~0Ihu~0δ+uδuδδ+uδu~0δ\displaystyle\leq\left\|\widetilde{u}_{0}-I_{h}\widetilde{u}_{0}\right\|_{\delta}+\left\|u_{\delta}^{*}-u_{\delta}\right\|_{\delta}+\left\|u_{\delta}-\widetilde{u}_{0}\right\|_{\delta}
Cδ1u~0Ihu~0C(Ω^δ)+Cδ1/2h2+Cδ(3+μ)/2\displaystyle\leq C\delta^{-1}\left\|\widetilde{u}_{0}-I_{h}\widetilde{u}_{0}\right\|_{C\left({\widehat{\Omega}_{\delta}}\right)}+C\delta^{-1/2}h^{2}+C\delta^{(3+\mu)/2}
Cδ1h2u~0C2(Ω^δ)+Cδ1/2h2+Cδ(3+μ)/2\displaystyle\leq C\delta^{-1}h^{2}\left\|\widetilde{u}_{0}\right\|_{C^{2}\left({\widehat{\Omega}_{\delta}}\right)}+C\delta^{-1/2}h^{2}+C\delta^{(3+\mu)/2}
δ(3+μ)/2+δ1h2.\displaystyle\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}.

This, together with 3.11, leads to 3.7.

Since uδuδhV0(Ω^δ)u_{\delta}^{*}-u_{\delta}^{h}\in V^{0}({\widehat{\Omega}_{\delta}}), then by Lemma 3.1, we have

(3.14) uδuδhL2(Ω)=uδuδhL2(Ω^δ)uδuδhδδ(3+μ)/2+δ1h2.\left\|u_{\delta}^{*}-u_{\delta}^{h}\right\|_{L^{2}\left(\Omega\right)}=\left\|u_{\delta}^{*}-u_{\delta}^{h}\right\|_{L^{2}\left({\widehat{\Omega}_{\delta}}\right)}\lesssim\left\|u_{\delta}^{*}-u_{\delta}^{h}\right\|_{\delta}\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}.

This, together with 3.10, leads to

uδuδhL2(Ω)uδuδL2(Ω)+uδuδhL2(Ω)δ(3+μ)/2+δ1h2,\left\|u_{\delta}-u_{\delta}^{h}\right\|_{L^{2}\left(\Omega\right)}\leq\left\|u_{\delta}-u_{\delta}^{*}\right\|_{L^{2}\left(\Omega\right)}+\left\|u_{\delta}^{*}-u_{\delta}^{h}\right\|_{L^{2}\left(\Omega\right)}\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2},

this is 3.8, the proof is complete. ∎

Remark 3.4.

The convergence rates 3.8 is possibly not sharp, which is due to the inequality 3.14 used. As we know, when FEMs are used to discretize a PDE, the Aubin-Nitsche technique often remains valid. Thus, the discretization error in the L2L^{2} norm tends to exhibit a higher order than that in the H1H^{1} semi-norm with respect to the mesh size. Although there is no proof of its analog in the nonlocal problem setting with an integrable kernel (due to the lack of regularity pick-up), we are able to numerically observe this phenomenon from the numerical results in Section 5. That is, the L2L^{2} norm of the discretization error exhibits a higher order with respect to the horizon parameter than the energy norm.

3.3. The CDG approximation for the nonlocal problem with polygonal interaction neighborhoods

The linear CDG approximation for the nonlocal problem 2.7 finds uδ,nδ0,hVδ0,hu_{\delta,n_{\delta}}^{0,h}\in V_{\delta}^{0,h} such that for all whVδ0,hw_{h}\in V^{0,h}_{\delta},

(3.15) 2Ωwh(𝐱)Ω(uδ,nδ0,h(𝐲)uδ,nδ0,h(𝐱))γδ,nδ(𝐱,𝐲)𝑑𝐲𝑑𝐱\displaystyle-2\int_{\Omega}w_{h}({\bf x})\int_{\Omega}\left(u_{\delta,n_{\delta}}^{0,h}({\bf y})-u_{\delta,n_{\delta}}^{0,h}({\bf x})\right)\gamma_{\delta,n_{\delta}}({\bf x},{\bf y})d{\bf y}d{\bf x}
=Ωfδ(𝐱)wh(𝐱)𝑑𝐱+2Ωwh(𝐱)Ωδc(gδh(𝐲)uδ,nδ0,h(𝐱))γδ,nδ(𝐱,𝐲)𝑑𝐲𝑑𝐱,\displaystyle=\int_{\Omega}f_{\delta}({\bf x})w_{h}({\bf x})d{\bf x}+2\int_{\Omega}w_{h}({\bf x})\int_{{\Omega_{\delta}^{c}}}\left(g_{\delta}^{h}({\bf y})-u_{\delta,n_{\delta}}^{0,h}({\bf x})\right)\gamma_{\delta,n_{\delta}}({\bf x},{\bf y})d{\bf y}d{\bf x},

and uδ,nδh=uδ,nδ0,h+gδhu_{\delta,n_{\delta}}^{h}=u_{\delta,n_{\delta}}^{0,h}+g_{\delta}^{h} is the final approximation of uδ,nδu_{\delta,n_{\delta}}. Note that since 𝒯δh\mathcal{T}_{\delta}^{h} is quasi-uniform, then

(3.16) nδδ/h.n_{\delta}\sim\delta/h.

We introduce the intermediate problem which finds uδ,nδV0(Ω^δ)+gδhu_{\delta,n_{\delta}}^{*}\in V^{0}({\widehat{\Omega}_{\delta}})+g_{\delta}^{h} such that

δ,nδuδ,nδ=fδ.-\mathcal{L}_{\delta,n_{\delta}}u_{\delta,n_{\delta}}^{*}=f_{\delta}.

Using the similar argument in Theorem 3.3, we have the following error estimate.

Theorem 3.5.

If the conditions of Theorem 2.9 hold. We have

(3.17) uδ,nδuδ,nδhδ,nδδ(3+μ)/2+δ1h2+δλ1hλ,\displaystyle\|u_{\delta,n_{\delta}}-u_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}}\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}+\delta^{-\lambda-1}h^{\lambda},
(3.18) uδ,nδuδ,nδhL2(Ω)δ(3+μ)/2+δ1h2+δλ1hλ.\displaystyle\|u_{\delta,n_{\delta}}-u_{\delta,n_{\delta}}^{h}\|_{L^{2}\left(\Omega\right)}\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}+\delta^{-\lambda-1}h^{\lambda}.
Proof.

Similar to the derivation in Theorem 3.3, we have

(3.19) uδ,nδuδ,nδC(Ω)\displaystyle\|u_{\delta,n_{\delta}}-u_{\delta,n_{\delta}}^{*}\|_{C(\Omega)} gδgδhC(Ωδc)Ch2gδC2(Ωδc),\displaystyle\lesssim\|g_{\delta}-g_{\delta}^{h}\|_{C({\Omega_{\delta}^{c}})}\leq Ch^{2}\|g_{\delta}\|_{C^{2}\left({\Omega_{\delta}^{c}}\right)},
(3.20) uδ,nδuδ,nδδ,nδ\displaystyle\|u_{\delta,n_{\delta}}-u_{\delta,n_{\delta}}^{*}\|_{\delta,n_{\delta}} Cδ1/2h2.\displaystyle\leq C\delta^{-1/2}h^{2}.

Since nδn_{\delta}\rightarrow\infty as δ0\delta\rightarrow 0, by 2.8, Lemma 3.2 and 2.22, we have

(3.21) uδ,nδuδ,nδhδ,nδuδ,nδIhu~0δ,nδ\displaystyle\|u_{\delta,n_{\delta}}^{*}-u_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}}\leq\|u_{\delta,n_{\delta}}^{*}-I_{h}\widetilde{u}_{0}\|_{\delta,n_{\delta}}
uδ,nδuδ,nδδ,nδ+u~0Ihu~0δ,nδ+uδ,nδu~0δ,nδ\displaystyle\leq\|u_{\delta,n_{\delta}}^{*}-u_{\delta,n_{\delta}}\|_{\delta,n_{\delta}}+\|\widetilde{u}_{0}-I_{h}\widetilde{u}_{0}\|_{\delta,n_{\delta}}+\|u_{\delta,n_{\delta}}-\widetilde{u}_{0}\|_{\delta,n_{\delta}}
Cδ1/2h2+Cδ1u~0Ihu~0C(Ω^δ)+uδ,nδu~0δ,nδ\displaystyle\leq C\delta^{-1/2}h^{2}+C\delta^{-1}\|\widetilde{u}_{0}-I_{h}\widetilde{u}_{0}\|_{C\left({\widehat{\Omega}_{\delta}}\right)}+\|u_{\delta,n_{\delta}}-\widetilde{u}_{0}\|_{\delta,n_{\delta}}
Cδ1/2h2+Cδ1h2u~0C2(Ω^δ)+Cδ1nδλ+Cnδλ+Cδ(3+μ)/2\displaystyle\leq C\delta^{-1/2}h^{2}+C\delta^{-1}h^{2}\|\widetilde{u}_{0}\|_{C^{2}\left({\widehat{\Omega}_{\delta}}\right)}+C\delta^{-1}n_{\delta}^{-\lambda}+Cn_{\delta}^{-\lambda}+C\delta^{(3+\mu)/2}
δ(3+μ)/2+δ1h2+δ1nδλ.\displaystyle\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}+\delta^{-1}n_{\delta}^{-\lambda}.

This, together with 3.20 and 3.16, leads to 3.17. By the uniform Poincaré’s inequality for the norm δ\|\cdot\|_{\delta}, 2.8 and 3.19, we get 3.18. ∎

4. Error estimates between the nonlocal discrete solutions and the local exact solution

We now combine the error estimates in Section 2 and Section 3 to derive the error estimate between the nonlocal discrete solutions and the local exact solution.

First, by combining Theorem 2.2 and Theorem 3.3 we get the following theorem.

Theorem 4.1.

Suppose u0Cb4(Ω)u_{0}\in C^{4}_{b}(\Omega) is the solution of the local problem 1.5, the family of kernels {γδ}\{\gamma_{\delta}\} satisfies 1.3, 1.4 and 2.1. If u~0\widetilde{u}_{0} is a C4C^{4} extension of u0u_{0}, uδhu_{\delta}^{h} is the linear CDG approximation of the nonlocal problem 1.2 under the condition 2.2, then it holds that

(4.1) u~0uδhδ\displaystyle\left\|\widetilde{u}_{0}-u_{\delta}^{h}\right\|_{\delta} =u~0uδ+uδuδhδδ(3+μ)/2+δ1h2,\displaystyle=\left\|\widetilde{u}_{0}-u_{\delta}+u_{\delta}-u_{\delta}^{h}\right\|_{\delta}\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2},
(4.2) u0uδhL2(Ω)\displaystyle\left\|u_{0}-u_{\delta}^{h}\right\|_{L^{2}\left(\Omega\right)} =u0uδ+uδuδhL2(Ω)δ(3+μ)/2+δ1h2.\displaystyle=\left\|u_{0}-u_{\delta}+u_{\delta}-u_{\delta}^{h}\right\|_{L^{2}\left(\Omega\right)}\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}.

To make the analysis related to polygonal approximation concrete, we take the constant kernel 2.27 as an illustrative example (λ=2\lambda=2) and adopt nocaps as an approximation of the spherical neighborhood, that is, an approximation using the inscribed polygon of the Euclidean disc. We note that the analysis can be extended to other types of kernels listed in Section 2.3 and other types of polygonal approximations. Since λ=2\lambda=2 and 3.16, together with Theorem 2.9 and Theorem 3.5 we get the following theorem.

Theorem 4.2.

Suppose u0Cb4(Ω)u_{0}\in C^{4}_{b}(\Omega) is the solution of the local problem 1.5, the family of kernels {γδ}\{\gamma_{\delta}\} satisfies 1.3, 1.4 and 2.1. {Bδ,nδ𝐱}\left\{B_{\delta,n_{\delta}^{\bf x}}\right\} is a weakly quasi-uniform family of inscribed polygons. u~0\widetilde{u}_{0} is a C4C^{4} extension of u0u_{0} and uδ,nδhu_{\delta,n_{\delta}}^{h} is the linear CDG approximation of the nonlocal problem 2.7 under the condition 2.2. If 2.20, then it holds that

(4.3) u~0uδ,nδhδ,nδ\displaystyle\|\widetilde{u}_{0}-u_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}} δ(3+μ)/2+δ1h2+δλ1hλδ(3+μ)/2+δ3h2,\displaystyle\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}+\delta^{-\lambda-1}h^{\lambda}\sim\delta^{(3+\mu)/2}+\delta^{-3}h^{2},
(4.4) u0uδ,nδhL2(Ω)\displaystyle\|u_{0}-u_{\delta,n_{\delta}}^{h}\|_{L^{2}\left(\Omega\right)} δ(3+μ)/2+δ1h2+δλ1hλδ(3+μ)/2+δ3h2.\displaystyle\lesssim\delta^{(3+\mu)/2}+\delta^{-1}h^{2}+\delta^{-\lambda-1}h^{\lambda}\sim\delta^{(3+\mu)/2}+\delta^{-3}h^{2}.

5. Numerical experiment

We first consider in Section 5.1 the nonlocal problems with the exact right-hand side (RHS) function and VC. Hence the error induced in Theorem 2.2 vanishes. We report the convergence results of exactcaps (uδhu_{\delta}^{h}) and nocaps (uδ,nδhu_{\delta,n_{\delta}}^{h}) solutions for three cases of parameter setting: fixed horizon parameter, fixed ratio and power function between the horizon parameter and the mesh size. They corresponds to mm-convergence, δ\delta-convergence, and δm\delta m-convergence for numerical methods of peridynamics defined in [7], respectively. Then in Section 5.2 the nonlocal problems with a perturbed RHS function and VC are discussed.

5.1. Nonlocal problems with an exact RHS function and VC

Example 5.1.

We consider the nonlocal problem 1.2 on the domain Ω=(0,1)2\Omega=(0,1)^{2} with the family of kernels {γδ}\{\gamma_{\delta}\} defined by 2.27 in 2D, namely

(5.1) γδ(𝐱,𝐲)={4/π/δ4,|𝐱𝐲|δ,0,|𝐱𝐲|>δ.\gamma_{\delta}({\bf x},{\bf y})=\left\{\begin{array}[]{cl}4/\pi/\delta^{4},&|{\bf x}-{\bf y}|\leq\delta,\\ 0,&|{\bf x}-{\bf y}|>\delta.\end{array}\right.

As in [11] the manufactured solution uδ(𝐱)=x12x2+x22u_{\delta}({\bf x})=x_{1}^{2}x_{2}+x_{2}^{2} is used to obtain the RHS function fδ(𝐱)=2(x2+1)f_{\delta}({\bf x})=-2(x_{2}+1) for 𝐱Ω{\bf x}\in\Omega and VC gδ(𝐱)=uδ(𝐱)g_{\delta}({\bf x})=u_{\delta}({\bf x}) for 𝐱Ωδc{\bf x}\in{\Omega_{\delta}^{c}}.

The solution of the local problem 1.5 with a RHS function f0(𝐱)=2(x2+1)f_{0}({\bf x})=-2(x_{2}+1) and boundary function g0(𝐱)=x12x2+x22g_{0}({\bf x})=x_{1}^{2}x_{2}+x_{2}^{2} is u0(𝐱)=uδ(𝐱)|Ωu_{0}({\bf x})=u_{\delta}({\bf x})|_{\Omega}, while we take

u~0(𝐱)=x12x2+x22for𝐱Ω^δ.\widetilde{u}_{0}({\bf x})=x_{1}^{2}x_{2}+x_{2}^{2}\>\>\mbox{for}\>\>{\bf x}\in{\widehat{\Omega}_{\delta}}.

In fact in this example gδ=u~0g_{\delta}=\widetilde{u}_{0} on Ωδc{\Omega_{\delta}^{c}}, fδ=f0f_{\delta}=f_{0} on Ω\Omega holds in Theorem 2.2. Thus uδ=u~0onΩ^δu_{\delta}=\widetilde{u}_{0}\>\>\mbox{on}\>\>{\widehat{\Omega}_{\delta}}, and the term δ(3+μ)/2\delta^{(3+\mu)/2} in 4.1, 4.2, 4.3 and 4.4 vanishes. Then we report on the errors in different norms of uδhu_{\delta}^{h} and uδ,nδhu_{\delta,n_{\delta}}^{h} against u~0\widetilde{u}_{0}.

5.1.1. Numerical results for a fixed horizon parameter

We fix δ=0.4\delta=0.4 as the mesh is refined with a decreasing hh, and then study the errors and convergence rates of the exactcaps and nocaps solutions. For the polygon Ω\Omega, the corresponding interaction domain Ωδc{\Omega_{\delta}^{c}} has rounded corners, thus it cannot be fully triangulated into elements with straight sides. As pointed out in [11], Ωδc{\Omega_{\delta}^{c}} can be approximated by a polygonal domain with sharp corners to replace the rounded corners while avoiding the extension of the function gδg_{\delta}. The corresponding (consistent) mesh 𝒯δh\mathcal{T}_{\delta}^{h} and the solution uδhu_{\delta}^{h} for h=0.05h=0.05 are plotted in Figure 3. Since the figure of uδ,nδhu_{\delta,n_{\delta}}^{h} is similar to that of uδhu_{\delta}^{h}, the former is omitted. We also use a non-consistent mesh to obtain uδhu_{\delta}^{h}, the corresponding mesh and the solution are plotted in Figure 4. Since the solutions of two strategies (using consistent and non-consistent meshes) are rather similar, we take the consistent mesh for later numerical experiments.

Refer to caption
(a) the consistent mesh 𝒯0.40.05\mathcal{T}_{0.4}^{0.05}
Refer to caption
(b) the solution u0.40.05u_{0.4}^{0.05}
Figure 3. Example 5.1: the consistent mesh and corresponding exactcaps solution uδhu_{\delta}^{h}, δ=0.4\delta=0.4, h=0.05h=0.05
Refer to caption
(a) the non-consistent mesh 𝒯0.4h,H\mathcal{T}_{0.4}^{h,H}
Refer to caption
(b) the solution u0.4h,Hu_{0.4}^{h,H}
Figure 4. Example 5.1: the non-consistent mesh and corresponding solution uδh,Hu_{\delta}^{h,H}, δ=0.4\delta=0.4, h=0.052h=0.05\sqrt{2}, H=3h/8H=3h/8

Panel (B) of Figure 3 shows that the solutions uδhu_{\delta}^{h} are continuous across Ω\partial\Omega. In fact, in this example, they are expected to be continuous since the analytic expression of uδu_{\delta} is specified in advance. This assertion could not be applied to uδ,nδhu_{\delta,n_{\delta}}^{h} since the analytic expression of uδ,nδu_{\delta,n_{\delta}} is unknown. In fact, there is a lack of theory so far to ensure the continuity of uδu_{\delta} across Ω\partial\Omega in general, although the continuity in Ω\Omega has been discussed in [19]. Along this line, the continuity across Ω\partial\Omega for uδ,nδu_{\delta,n_{\delta}} is also not assured. Due to the definition of the linear CDG space, uδhu_{\delta}^{h} and uδ,nδhu_{\delta,n_{\delta}}^{h} are allowed to be discontinuous across Ω\partial\Omega. Here u0.40.05u_{0.4}^{0.05} might appear to be continuous simply because the jumps across Ω\partial\Omega are smaller than the scales of the solution itself. If we zoom in to examine these solutions in greater detail, especially for larger hh, the discontinuity can become more visible. For this purpose, we present zoomed plots around point (1,1)(1,1) of the solutions uδhu_{\delta}^{h} and uδ,nδhu_{\delta,n_{\delta}}^{h} for h=δh=\delta in Figure 5.

Refer to caption
(a) the solution u0.40.4u_{0.4}^{0.4}
Refer to caption
(b) the solution u0.4,n0.40.4u_{0.4,n_{0.4}}^{0.4}
Figure 5. Example 5.1: zoom around point (1,1)(1,1) of uδhu_{\delta}^{h} and uδ,nδhu_{\delta,n_{\delta}}^{h}, h=δ=0.4h=\delta=0.4

It is seen from Table 1 that the solution uδhu_{\delta}^{h} has smaller errors in the energy norm than that of uδ,nδhu_{\delta,n_{\delta}}^{h}, while the opposite behavior is observed in the case of the L2L^{2} norm. However, we do observe the second-order convergence rates for both methods in both types of norms. This confirms the theoretical results since δ\delta is taken to be a constant in this set of experiments, that is by 4.1, 4.2, 4.3 and 4.4 without the term δ(3+μ)/2\delta^{(3+\mu)/2}, the errors in the energy and L2L^{2} norms of uδhu_{\delta}^{h} and uδ,nδhu_{\delta,n_{\delta}}^{h} are of δ1h2\delta^{-1}h^{2} and δ3h2\delta^{-3}h^{2} order, respectively.

Table 1. Example 5.1: errors and convergence rate of nonlocal numerical solutions uδhu_{\delta}^{h} and uδ,nδhu_{\delta,n_{\delta}}^{h} against the local exact solution u~0\widetilde{u}_{0} in the energy norms and L2L^{2} norms, δ=0.4\delta=0.4
Energy norm L2L^{2} norm
δh\frac{\delta}{h} u~0\|\widetilde{u}_{0}-uδhδu_{\delta}^{h}\!\|_{\delta} Rate u~0\|\widetilde{u}_{0}-uδ,nδhδ,nδu_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}} Rate u~0\|\widetilde{u}_{0}-uδ,nδhδu_{\delta,n_{\delta}}^{h}\!\|_{\delta} u0\|u_{0}-uδhu_{\delta}^{h}\| Rate u0\|u_{0}-uδ,nδhu_{\delta,n_{\delta}}^{h}\!\| Rate
202^{0} 6.38e-2 1.22e-1 1.25e-1 1.58e-2 1.40e-2
212^{1} 1.01e-2 2.66 2.51e-2 2.28 2.53e-2 6.11e-3 1.37 2.08e-3 2.75
222^{2} 2.83e-3 1.84 6.67e-3 1.91 6.69e-3 1.46e-3 2.06 4.65e-4 2.16
232^{3} 6.49e-4 2.12 1.58e-3 2.07 1.58e-3 3.70e-4 1.98 1.27e-4 1.88
242^{4} 1.58e-4 2.04 3.95e-4 2.00 3.95e-4 9.14e-5 2.02 3.17e-5 2.00
252^{5} 3.96e-5 1.99 9.76e-5 2.02 9.76e-5 2.28e-5 2.01 8.11e-6 1.97
Table 2. Example 5.1: errors u~0uδhδ\|\widetilde{u}_{0}-u_{\delta}^{h}\|_{\delta} and convergence rates, δ=mh\delta=mh
δ0/δ\delta_{0}/\delta 202^{0} 212^{1} 222^{2} 232^{3} 242^{4} 252^{5}
δ0\delta_{0}=0.4, mm=2 1.01e-2 5.12e-3 2.43e-3 1.16e-3 5.73e-4 2.84e-4
Rate 0.98 1.08 1.07 1.02 1.01
δ0\delta_{0}=0.6, mm=3 6.89e-3 3.60e-3 1.72e-3 8.14e-4 4.02e-4 1.98e-4
Rate 0.94 1.07 1.08 1.02 1.02
δ0\delta_{0}=0.8, mm=4 5.13e-3 2.83e-3 1.30e-3 6.19e-4 3.08e-4 1.51e-4
Rate 0.86 1.12 1.07 1.01 1.03
δ0\delta_{0}=1.0, mm=5 3.90e-3 2.26e-3 1.02e-3 4.99e-4 2.48e-4 1.21e-4
Rate 0.79 1.15 1.03 1.01 1.04
Table 3. Example 5.1: errors u~0uδhδ\|\widetilde{u}_{0}-u_{\delta}^{h}\|_{\delta}, u~0uδ,nδhδ,nδ\|\widetilde{u}_{0}-u_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}} and convergence rates, hh fixed
u~0uδhδ\|\widetilde{u}_{0}-u_{\delta}^{h}\|_{\delta} u~0uδ,nδhδ,nδ\|\widetilde{u}_{0}-u_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}}
hh δ=2h\delta=2h δ=3h\delta=3h δ=4h\delta=4h δ=5h\delta=5h δ=2h\delta=2h δ=3h\delta=3h δ=4h\delta=4h δ=5h\delta=5h
0.2 1.01e-2 6.89e-3 5.13e-3 3.90e-3 2.51e-2 1.37e-2 9.35e-3 7.25e-3
Rate -0.94 -1.03 -1.23 -1.49 -1.33 -1.14
0.1 5.12e-3 3.60e-3 2.83e-3 2.26e-3 2.73e-2 1.02e-2 6.67e-3 4.81e-3
Rate -0.87 -0.84 -1.01 -2.43 -1.48 -1.47
0.05 2.43e-3 1.72e-3 1.30e-3 1.02e-3 3.55e-2 1.21e-2 5.91e-3 3.83e-3
Rate -0.85 -0.97 -1.09 -2.65 -2.49 -1.94
0.025 1.16e-3 8.14e-4 6.19e-4 4.99e-4 6.51e-2 1.77e-2 7.81e-3 4.41e-3
Rate -0.87 -0.95 -0.97 -3.21 -2.84 -2.56
0.0125 5.73e-4 4.02e-4 3.08e-4 2.48e-4 1.36e-1 3.66e-2 1.48e-2 7.54e-3
Rate -0.87 -0.93 -0.97 -3.24 -3.15 -3.02
0.00625 2.84e-4 1.98e-4 1.51e-4 1.21e-4 2.67e-1 7.06e-2 2.94e-2 1.50e-2
Rate -0.89 -0.94 -0.99 -3.28 -3.05 -3.02

5.1.2. Numerical results for the case of a fixed ratio between the horizon parameter and the mesh size

In this part, we fix m=δ/hm=\delta/h as a constant while refining δ\delta. In this case 4.1 and 4.2 without the term δ(3+μ)/2\delta^{(3+\mu)/2} turn out as

(5.2) u~0uδhδδm1,\displaystyle\left\|\widetilde{u}_{0}-u_{\delta}^{h}\right\|_{\delta}\lesssim\delta m^{-1},
(5.3) u0uδhL2(Ω)δm1.\displaystyle\left\|u_{0}-u_{\delta}^{h}\right\|_{L^{2}\left(\Omega\right)}\lesssim\delta m^{-1}.

Table 2 provides errors and convergence rates of exactcaps solution uδhu_{\delta}^{h} against the local exact solution u0u_{0} in the energy norm with m=2m=2, 33, 44, and 55, respectively. The convergence rates all exhibit the first order with respect to δ\delta, which are consistent with 5.2. We also use the same data of errors to calculate the convergence rates with respect to δ\delta for fixed hh. To this end, notice that hh is constant in each column of Table 2. Thus, we rotate Table 2 9090 degrees to get the middle part of Table 3. It shows nearly 1-1 order with respect to δ\delta for a fixed hh, which coincides with the error estimate 4.1 without the term δ(3+μ)/2\delta^{(3+\mu)/2}.

Table 4. Example 5.1: errors u0uδhL2(Ω)\|u_{0}-u_{\delta}^{h}\|_{L^{2}(\Omega)} and convergence rates, δ=mh\delta=mh
δ0/δ\delta_{0}/\delta 202^{0} 212^{1} 222^{2} 232^{3} 242^{4} 252^{5}
δ0\delta_{0}=0.4, mm=2 6.11e-3 1.56e-3 3.61e-4 9.75e-5 2.32e-5 4.92e-6
Rate 1.97 2.11 1.89 2.07 2.24
δ0\delta_{0}=0.6, mm=3 5.97e-3 1.75e-3 4.47e-4 1.08e-4 2.72e-5 7.03e-6
Rate 1.77 1.97 2.05 1.99 1.95
δ0\delta_{0}=0.8, mm=4 5.97e-3 1.46e-3 3.55e-4 1.01e-4 2.38e-5 5.68e-6
Rate 2.03 2.04 1.81 2.09 2.07
δ0\delta_{0}=1.0, mm=5 6.31e-3 1.49e-3 3.84e-4 9.75e-5 2.44e-5 6.07e-6
Rate 2.08 1.96 1.98 2.00 2.01

In Table 4 the results in the L2L^{2} norm are reported. The convergence rates show the second order, across the table, which is better than that predicted by 5.3. Furthermore, we hardly observe any obvious drop or growth of errors when δ\delta decreases for fixed hh, see the data along each column. The two findings indicate that the error estimate 4.2 is likely not sharp. It seems 4.2 may be improved as

(5.4) u0uδhL2(Ω)δ2+h2,\left\|u_{0}-u_{\delta}^{h}\right\|_{L^{2}\left(\Omega\right)}\lesssim\delta^{2}+h^{2},

which suggests the possible validity of the Aubin-Nitsche technique with respect to the horizon parameter, see also Remark 3.4.

Since δ=mh\delta=mh, 4.3 and 4.4 turn out as

(5.5) u~0uδ,nδhδ,nδδ2+δ3h2δ1m2,\displaystyle\|\widetilde{u}_{0}-u_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}}\lesssim\delta^{2}+\delta^{-3}h^{2}\approx\delta^{-1}m^{-2},
(5.6) u0uδ,nδhL2(Ω)δ2+δ3h2δ1m2.\displaystyle\|u_{0}-u_{\delta,n_{\delta}}^{h}\|_{L^{2}\left(\Omega\right)}\lesssim\delta^{2}+\delta^{-3}h^{2}\approx\delta^{-1}m^{-2}.
Table 5. Example 5.1: errors u~0uδ,nδhδ,nδ\|\widetilde{u}_{0}-u_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}} and convergence rates, δ=mh\delta=mh
δ0/δ\delta_{0}/\delta 202^{0} 212^{1} 222^{2} 232^{3} 242^{4} 252^{5}
δ0\delta_{0}=0.4, mm=2 2.51e-2 2.73e-2 3.55e-2 6.51e-2 1.36e-1 2.67e-1
Rate -0.12 -0.38 -0.87 -1.06 -0.97
δ0\delta_{0}=0.6, mm=3 1.37e-2 1.02e-2 1.21e-2 1.77e-2 3.66e-2 7.06e-2
Rate 0.43 -0.25 -0.55 -1.05 -0.95
δ0\delta_{0}=0.8, mm=4 9.35e-3 6.67e-3 5.91e-3 7.81e-3 1.48e-2 2.94e-2
Rate 0.49 0.17 -0.40 -0.92 -0.99
δ0\delta_{0}=1.0, mm=5 7.25e-3 4.81e-3 3.83e-3 4.41e-3 7.54e-3 1.50e-2
Rate 0.59 0.33 -0.20 -0.77 -0.99

Table 5 provides errors and convergence rates of nocaps solution uδ,nδhu_{\delta,n_{\delta}}^{h} against the local exact solution u0u_{0} in the energy norm. The convergence rates are near 1-1 order with respect to δ\delta for decreasing δ\delta under the setting δ=mh\delta=mh (as seen for each row), which coincides with 5.5. We also calculate the convergence rates with respect to δ\delta for fixed hh, see the right part of Table 3. They show nearly 3-3 order, which coincides with 4.3 without the term δ(3+μ)/2\delta^{(3+\mu)/2}. In Table 6 the results in the L2L^{2} norm are reported. On the one hand, errors stabilize gradually around a certain value when δ\delta decreases under the setting δ=mh\delta=mh, which is better than that predicted by 5.6. On the other hand, the rates show nearly 2-2 order with respect to δ\delta for fixed hh (if computed along each column, similar to Table 3, the numerical values are omitted to save space). The two findings indicate that the error estimate 4.4 is not sharp, and a possible improvement of 4.4 may be given by

(5.7) u0uδ,nδhL2(Ω)δ2h2+δ2+h2.\|u_{0}-u_{\delta,n_{\delta}}^{h}\|_{L^{2}\left(\Omega\right)}\lesssim\delta^{-2}h^{2}+\delta^{2}+h^{2}.
Table 6. Example 5.1: errors u0uδ,nδhL2(Ω)\|u_{0}-u_{\delta,n_{\delta}}^{h}\|_{L^{2}(\Omega)} and convergence rates, δ=mh\delta=mh
δ0/δ\delta_{0}/\delta 202^{0} 212^{1} 222^{2} 232^{3} 242^{4} 252^{5}
δ0\delta_{0}=0.4, mm=2 2.08e-3 3.06e-3 3.52e-3 2.70e-3 2.20e-3 2.49e-3
Rate -0.56 -0.20 0.38 0.30 -0.18
δ0\delta_{0}=0.6, mm=3 2.68e-3 8.36e-4 1.66e-3 1.44e-3 1.21e-3 1.08e-3
Rate 1.68 -0.99 0.21 0.25 0.16
δ0\delta_{0}=0.8, mm=4 3.39e-3 4.65e-4 7.63e-4 8.21e-4 7.33e-4 7.20e-4
Rate 2.87 -0.71 -0.11 0.16 0.03
δ0\delta_{0}=1.0, mm=5 3.76e-3 4.95e-4 4.64e-4 5.45e-4 4.71e-4 4.63e-4
Rate 2.93 0.09 -0.23 0.21 0.02

5.1.3. Numerical results for power law between the horizon parameter and the mesh size

The sharpness of the estimates 4.1 and 4.3 has been discussed to some extent in the two subsections above. Here we further verify this sharpness by setting h=O(δβ)h=O\left(\delta^{\beta}\right). By 4.1 and 4.2 without the term δ(3+μ)/2\delta^{(3+\mu)/2}, it is expected that

(5.8) u~0uδhδδ1h2δ2β1,u0uδhL2(Ω)δ1h2δ2β1.\left\|\widetilde{u}_{0}-u_{\delta}^{h}\right\|_{\delta}\lesssim\delta^{-1}h^{2}\sim\delta^{2\beta-1},\>\>\left\|u_{0}-u_{\delta}^{h}\right\|_{L^{2}\left(\Omega\right)}\lesssim\delta^{-1}h^{2}\sim\delta^{2\beta-1}.

The errors for β=1.1,,2.0\beta=1.1,\cdots,2.0 are plotted in Figure 6. Here δ\delta is reduced to two-thirds of the previous step each time. Due to the increasing demand on the CPU time as β\beta increases, we take fewer δ\delta refinement for larger β\beta. In (A), the errors versus δ\delta in the energy norm are plotted. We find that the convergence rates are of 2β12\beta-1 order which is consistent with the estimate in the energy norm in 5.8. In (B) the errors in the L2L^{2} norm show the 2β2\beta order, which indicates again 4.2 may be improved as 5.4.

Refer to caption
(a) the energy norm
Refer to caption
(b) the L2L^{2} norm
Figure 6. Example 5.1: errors and convergence rates for exactcaps solution uδhu_{\delta}^{h} against the local exact solution u0u_{0} under the setting h=O(δβ)h=O\left(\delta^{\beta}\right), β(1,2]\beta\in(1,2]
Refer to caption
(a) the energy norm
Refer to caption
(b) the L2L^{2} norm
Figure 7. Example 5.1: errors in different norms for nocaps solution uδ,nδhu_{\delta,n_{\delta}}^{h} against the local exact solution u0u_{0} under the setting h=O(δβ)h=O\left(\delta^{\beta}\right), β(1,2]\beta\in(1,2]

Since h=O(δβ)h=O\left(\delta^{\beta}\right), 4.3 and 4.4 turn out to be given by

(5.9) u~0uδ,nδhδ,nδδ2β3,u0uδ,nδhL2(Ω)δ2β3.\|\widetilde{u}_{0}-u_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}}\lesssim\delta^{2\beta-3},\>\>\|u_{0}-u_{\delta,n_{\delta}}^{h}\|_{L^{2}\left(\Omega\right)}\lesssim\delta^{2\beta-3}.

We plot the results of uδ,nδhu_{\delta,n_{\delta}}^{h} in Figure 7. The errors versus δ\delta in the energy norm are plotted in (A). The convergence rates show nearly 2β32\beta-3 order which coincides with the estimate in the energy norm in 5.9. It is worth mentioning that errors in the energy norm decrease monotonically only for β>1.5\beta>1.5. In (B) the errors in the L2L^{2} norm show nearly 2β22\beta-2 order which again suggests 4.4 be improved as 5.7.

5.2. Nonlocal problems with a perturbed RHS function and VC

Example 5.2.

We consider nonlocal problems 1.2 on the domain Ω=(0,1)2\Omega=(0,1)^{2} with the family of kernels {γδ}\{\gamma_{\delta}\} defined by 5.1. We set the RHS function as

(5.10) fδ(𝐱)=2(x2+1)+δ2ex12+3x22,for𝐱Ω,f_{\delta}({\bf x})=-2(x_{2}+1)+\delta^{2}e^{x_{1}^{2}+3x_{2}^{2}},\>\>\mbox{for}\>\>{\bf x}\in\Omega,

and the following two kinds of VCs

(5.11) gδ(𝐱)\displaystyle g_{\delta}({\bf x}) =x12x2+x22+δ2sin(x12x2),for𝐱Ωδc,\displaystyle=x_{1}^{2}x_{2}+x_{2}^{2}+\delta^{2}\sin(x_{1}-2x_{2}),\>\>\mbox{for}\>\>{\bf x}\in{\Omega_{\delta}^{c}},
(5.12) gδ(𝐱)\displaystyle g_{\delta}({\bf x}) =x12x2+x22+δ3sin(x12x2),for𝐱Ωδc,\displaystyle=x_{1}^{2}x_{2}+x_{2}^{2}+\delta^{3}\sin(x_{1}-2x_{2}),\>\>\mbox{for}\>\>{\bf x}\in{\Omega_{\delta}^{c}},

which satisfy 2.2 with μ=0\mu=0 and μ=1\mu=1, respectively. The corresponding local problem is the same as Example 5.1. Here the nonlocal solutions uδu_{\delta} and uδ,nδu_{\delta,n_{\delta}} are all discontinuous across Ω\partial\Omega.

Most numerical results and findings here are similar to those in Section 5.1, so we do not repeat such discussions and only show the numerical results for the case of a fixed ratio between the horizon parameter and the mesh size. Tables 7 and 8 provide the results of exactcaps and nocaps solutions with m=2m=2, for VCs 5.11 and 5.12, respectively. The convergence rates of uδhu_{\delta}^{h} for both VCs against u~0\widetilde{u}_{0} in the L2L^{2} norm show second order, which is similar to the case m=2m=2 in Table 4.

Table 7. Example 5.2: errors and convergence rate of nonlocal numerical solutions uδhu_{\delta}^{h} and uδ,nδhu_{\delta,n_{\delta}}^{h} with VC 5.11 against the local exact solution u~0\widetilde{u}_{0}, δ0=0.4\delta_{0}=0.4, δ=2h\delta=2h
Energy norm L2L^{2} norm
δ0/δ\delta_{0}/\delta u~0uδhδ\|\widetilde{u}_{0}-u_{\delta}^{h}\|_{\delta} Rate u~0\|\widetilde{u}_{0}-uδ,nδhδ,nδu_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}} Rate u0uδh\|u_{0}-u_{\delta}^{h}\| Rate u0\|u_{0}-uδ,nδhu_{\delta,n_{\delta}}^{h}\| Rate
202^{0} 2.80e-1 2.74e-1 5.83e-2 5.61e-2
212^{1} 1.25e-1 1.17 1.29e-1 1.09 1.49e-2 1.97 1.54e-2 1.86
222^{2} 5.15e-2 1.28 6.46e-2 0.99 4.08e-3 1.87 5.74e-3 1.42
232^{3} 1.96e-2 1.40 6.93e-2 -1.01 1.06e-3 1.94 2.94e-3 0.97
242^{4} 7.20e-3 1.44 1.36e-1 -0.97 2.73e-4 1.96 2.19e-3 0.42
252^{5} 2.60e-3 1.47 2.67e-1 -0.97 6.92e-5 1.98 2.46e-3 -0.16
Table 8. Example 5.2: errors and convergence rate of nonlocal numerical solutions uδhu_{\delta}^{h} and uδ,nδhu_{\delta,n_{\delta}}^{h} with VC 5.12 against the local exact solution u~0\widetilde{u}_{0}, δ0=0.4\delta_{0}=0.4, δ=2h\delta=2h
Energy norm L2L^{2} norm
δ0/δ\delta_{0}/\delta u~0uδhδ\left\|\widetilde{u}_{0}-u_{\delta}^{h}\right\|_{\delta} Rate u~0\|\widetilde{u}_{0}-uδ,nδhδ,nδu_{\delta,n_{\delta}}^{h}\|_{\delta,n_{\delta}} Rate u0uδh\left\|u_{0}-u_{\delta}^{h}\right\| Rate u0\|u_{0}-uδ,nδhu_{\delta,n_{\delta}}^{h}\| Rate
202^{0} 2.28e-1 2.15e-1 6.13e-2 5.75e-2
212^{1} 4.56e-2 2.32 3.86e-2 2.48 1.10e-2 2.48 7.46e-3 2.95
222^{2} 1.06e-2 2.10 3.31e-2 2.23 2.40e-3 2.19 1.84e-3 2.02
232^{3} 2.86e-3 1.90 6.50e-2 -0.98 5.83e-4 2.04 2.36e-3 -0.36
242^{4} 8.65e-4 1.72 1.36e-1 -1.06 1.42e-4 2.03 2.15e-3 0.13
252^{5} 3.26e-4 1.41 2.67e-1 -0.98 3.44e-5 2.05 2.51e-3 -0.22

The convergence results of uδ,nδhu_{\delta,n_{\delta}}^{h} for both VCs against u~0\widetilde{u}_{0} in the energy and the L2L^{2} norms exhibit about 1-1 order and zeroth order, respectively. These results are similar to the corresponding results in Tables 5 and 6 although the rates in Tables 7 and 8 have much larger oscillations. The reason is similar to the seemingly abnormal rates for uδhu_{\delta}^{h} against u~0\widetilde{u}_{0} in the energy norm, which can be explained as follows.

For errors of uδhu_{\delta}^{h} in the energy norm, 4.1 turns out to be

(5.13) u~0uδhδ\displaystyle\left\|\widetilde{u}_{0}-u_{\delta}^{h}\right\|_{\delta} C7δ3/2+C8δ\displaystyle\leq C_{7}\delta^{3/2}+C_{8}\delta
(5.14) u~0uδhδ\displaystyle\left\|\widetilde{u}_{0}-u_{\delta}^{h}\right\|_{\delta} C7δ2+C8δ\displaystyle\leq C_{7}\delta^{2}+C_{8}\delta

for VCs 5.11 and 5.12, respectively. However, the convergence rates in Table 7 appear to be 3/23/2 order which seems inconsistent with 5.13. The rates in Table 8 have a decreasing trend. They might eventually reach the first order, which would coincide with 5.14. In fact, by 1.6 it holds that

u~0uδhδuδu~0δ+uδuδhδ=E1+E2.\left\|\widetilde{u}_{0}-u_{\delta}^{h}\right\|_{\delta}\leq\left\|u_{\delta}-\widetilde{u}_{0}\right\|_{\delta}+\left\|u_{\delta}-u_{\delta}^{h}\right\|_{\delta}=E_{1}+E_{2}.

Recall that in Example 5.1 the RHS function and VC are all exact such that uδ(𝐱)=u~0(𝐱)u_{\delta}({\bf x})=\widetilde{u}_{0}({\bf x}) for 𝐱Ω^δ{\bf x}\in{\widehat{\Omega}_{\delta}}. So, the term E1E_{1} vanishes, which leads to 5.2. The convergence rate of uδhu_{\delta}^{h} is stable around the first order (see Table 2), which confirms 5.2. Although the convergence rates in Tables 7 and 8 are greater than the first order, the errors are significantly larger than that in Example 5.1. So, it can be reasonably argued that for the RHS 5.10 together with VCs 5.11 and 5.12, E1E_{1} dominates the total error in the first few steps, and then E2E_{2} takes over (it could be understood that C7C_{7} is larger than C8C_{8}). Unfortunately, it is rather computationally demanding to carry out the last step in Tables 7 and 8, that is δ0/δ=25\delta_{0}/\delta=2^{5}. To validate the explanation above, we turn to the simpler 1D counterpart.

Example 5.3.

We consider the nonlocal problem 1.2 on the domain Ω=(0,1)\Omega=(0,1) with the family of kernels {γδ}\{\gamma_{\delta}\} defined by 2.27 in 1D case. Set RHS function

(5.15) fδ(x)=6x+δ2ex,forxΩ,f_{\delta}(x)=-6x+\delta^{2}e^{x},\>\mbox{for}\>\>x\in\Omega,

and the following two kinds of VCs

(5.16) gδ(x)=x3+δ2sin(x),forxΩδc,g_{\delta}(x)=x^{3}+\delta^{2}\sin(x),\>\mbox{for}\>\>x\in{\Omega_{\delta}^{c}},

and

(5.17) gδ(x)=x3+δ3sin(x),forxΩδc,g_{\delta}(x)=x^{3}+\delta^{3}\sin(x),\>\mbox{for}\>\>x\in{\Omega_{\delta}^{c}},

respectively. The solution of the corresponding local problem 1.5 with f0(x)=6xf_{0}(x)=-6x and g0(x)=x3g_{0}(x)=x^{3} is

u0(x)=x3.u_{0}(x)=x^{3}.

The exactcaps solution is used to numerically solve the nonlocal problem.

Let δ0=0.3\delta_{0}=0.3, m=3m=3, we use quasi-uniform meshes obtained from a randomly perturbed uniform mesh. To be specific, set h=1/n1h=1/n_{1}, then {xiu=ih:i=0,1,,n1}\left\{x_{i}^{u}=ih:\>i=0,1,\cdots,n_{1}\right\} is a uniform mesh of [0,1][0,1]. The quasi-uniform mesh is obtained by adding a random vector εn11{\bf\varepsilon}\in\mathbb{R}^{n_{1}-1} (which obeys the uniform distribution on [0.2h,0.2h][-0.2h,0.2h]) to xiux_{i}^{u} to reach xiu+εi,i=1,2,,n11x_{i}^{u}+\varepsilon_{i},\>i=1,2,\cdots,n_{1}-1. Together with x0ux_{0}^{u} and xn1ux_{n_{1}}^{u}, the new mesh grids are constructed as follows

(5.18) xi=xiu+εi,i=1,2,,n11,x0=x0u,xn1=xn1u.x_{i}=x_{i}^{u}+\varepsilon_{i},\>i=1,2,\cdots,n_{1}-1,\>x_{0}=x_{0}^{u},\>x_{n_{1}}=x_{n_{1}}^{u}.

We have done over twenty tests of different random perturbations, and the convergence rates are all similar. Thus, instead of listing all of them, we select one test to verify our theoretical analysis. Table 9 provides errors and convergence rates of uδhu_{\delta}^{h} for RHS 5.15 together with VCs 5.16 and 5.17 in the energy norm. It is seen that, in the first six steps, the convergence results are similar to the counterpart of the 2D case (see Tables 7 and 8). And then, as we expected earlier, the convergence rates approach the first order gradually. We also supply the error in the energy norm of the linear CDG approximation with an exact RHS and VC in boldface for the remaining seven steps. Since the error of uδhu_{\delta}^{h} with RHS 5.15 and VC 5.17 is very close to that with the exact ones at the seventh step, its convergence rate approaches the first order there. While for the rate with the RHS 5.15 and VC 5.16, it takes more steps to reach the first order.

Table 9. Example 5.3: errors in the energy norm and convergence rates for exactcaps solution
δ0/δ\delta_{0}/\delta 5.16 Rate 5.17 Rate 262^{6} 3.41e-4 1.49 7.95e-5 0.96 7.94𝐞\mathbf{7.94e}-𝟓\mathbf{5}
202^{0} 2.06e-1 9.79e-2 272^{7} 1.25e-4 1.45 3.97e-5 1.00 3.96𝐞\mathbf{3.96e}-𝟓\mathbf{5}
212^{1} 6.62e-2 1.64 1.90e-2 2.37 282^{8} 4.58e-5 1.45 1.93e-5 1.04 1.93𝐞\mathbf{1.93e}-𝟓\mathbf{5}
222^{2} 2.25e-2 1.56 3.98e-3 2.25 292^{9} 1.75e-5 1.39 9.62e-6 1.00 9.63𝐞\mathbf{9.63e}-𝟔\mathbf{6}
232^{3} 7.72e-3 1.54 1.01e-3 1.98 2102^{10} 7.11e-6 1.30 4.92e-6 0.97 4.92𝐞\mathbf{4.92e}-𝟔\mathbf{6}
242^{4} 2.69e-3 1.52 3.46e-4 1.55 2112^{11} 3.04e-6 1.23 2.44e-6 1.01 2.40𝐞\mathbf{2.40e}-𝟔\mathbf{6}
252^{5} 9.54e-4 1.49 1.55e-4 1.16 2122^{12} 1.38e-6 1.14 1.22e-6 1.01 1.20𝐞\mathbf{1.20e}-𝟔\mathbf{6}
Table 10. Error estimate in the energy norm and implementation issue for the linear CDG solutions, λ=2\lambda=2
Interaction neighborhood uu~0\left\|u_{\sharp}-\widetilde{u}_{0}\right\|_{\sharp} (Con) uhu~0\left\|u_{\sharp}^{h}-\widetilde{u}_{0}\right\|_{\sharp} (Dis) Implementation cost
Euclidean ball =δ\sharp=\delta δ2\delta^{2} δ2+δ1h2\delta^{2}+\delta^{-1}h^{2} Demanding
Symmetric polygon \sharp=(δ|nδ)(\delta|n_{\delta}) δ2+nδ2\delta^{2}+n_{\delta}^{-2} Very demanding
Polygon =(δ,nδ)\sharp=(\delta,n_{\delta}) δ2+δ1nδ2\delta^{2}+\delta^{-1}n_{\delta}^{-2} δ2+δ3h2\delta^{2}+\delta^{-3}h^{2} Less demanding

6. Concluding remarks

In this work, we estimated, in both energy and L2L^{2} norms, the errors between the linear CDG solutions for some linear nonlocal problems and the solution of the local limit, simultaneously with respect to the horizon parameter and mesh size. Let us summarize in Table 10 the error estimates of the two linear CDG solutions in the energy norm, along with their implementation costs. Here (Con) stands for the continuum level, while (Dis) stands for the discrete level. For the case δ|nδ\delta|n_{\delta} since it lacks an inner product and the induced norm, the corresponding error estimate on the discrete level is not given while the error estimate on the continuous level is actually measured in δ\|\cdot\|_{\delta} norm.

6.1. Other numerical methods

Besides the CDG method, error estimates for other types of numerical solutions of nonlocal problems (like mesh-free method, collocation method, quadrature-based finite difference method) against the exact local solution may also be carried out in two steps like in this paper. Step 1 (on the continuum level): the error estimate of the nonlocal solutions with different interaction neighborhoods against the local exact solution, which is almost the same as the derivation in Section 2. Step 2 (on the discrete level): the error estimate of the numerical solutions against the nonlocal exact solution removing the impact by the approximation of interaction neighborhood, which plays the same role as the conforming DG method in Section 3. It should be noted that one does not always need to follow the same 2-step process here; for example in [18], a different 2-step process has been given for Fourier spectral methods of nonlocal Allen-Cahn equation (1D in space). However, for numerical analysis in higher dimensions and with polygonal approximation to the original interaction neighborhood (Euclidean ball), our 2-step analysis could be more applicable.

6.2. Other nonlocal problems

We have focused on nonlocal problems with L1L^{1} kernels and Dirichlet-type VCs and piecewise smooth data. The approach can be extended to Neumann or other types of VCs. One could consider more general kernels that might not be L1L^{1}. Theoretically, in such cases, nonlocal problems with nonhomogeneous boundary data can be studied by utilizing analytical findings given in [15]. The discussion on the effect of quadrature on the interaction neighborhoods will be more demanding due to potential singularities of the kernels used, although the modifications to the interaction neighborhoods are done generally away from such singularities. In this sense, we expect similar studies can be carried out. Furthermore, one might study extensions to other nonlocal problems, both nonlocal variational problems and nonlocal dynamical systems for which issues like the convergence of the nonlocal numerical solutions to the exact local continuum limit have also been considered either theoretically or numerically [21, 22, 24, 27, 37, 39, 40].

References

  • [1] Burak Aksoylu and Tadele Mengesha, Results on nonlocal boundary value problems, Numerical Functional Analysis and Optimization 31 (2010), no. 12, 1301–1317.
  • [2] F Andreu, José M Mazón, Julio D Rossi, and Julián Toledo, A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions, SIAM Journal on Mathematical Analysis 40 (2009), no. 5, 1815–1851.
  • [3] Fuensanta Andreu-Vaillo, José M Mazón, Julio D Rossi, and J Julián Toledo-Melero, Nonlocal diffusion problems, no. 165, American Mathematical Soc., 2010.
  • [4] E Askari, F Bobaru, RB Lehoucq, ML Parks, SA Silling, and O Weckner, Peridynamics for multiscale materials modeling, Journal of Physics: Conference Series 125 (2008), no. 1, 012078.
  • [5] Jean Pierre Aubin, Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by galerkin’s and finite difference methods, Annali della Scuola Normale Superiore di Pisa-Scienze Fisiche e Matematiche 21 (1967), no. 4, 599–637.
  • [6] Florin Bobaru and Monchai Duangpanya, The peridynamic formulation for transient heat conduction, International Journal of Heat and Mass Transfer 53 (2010), no. 19-20, 4047–4059.
  • [7] Florin Bobaru, Mijia Yang, Leonardo Frota Alves, Stewart A Silling, Ebrahim Askari, and Jifeng Xu, Convergence, adaptive refinement, and scaling in 1d peridynamics, International Journal for Numerical Methods in Engineering 77 (2009), no. 6, 852–877.
  • [8] Susanne Brenner and Ridgway Scott, The mathematical theory of finite element methods, vol. 15, Springer Science & Business Media, 2007.
  • [9] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel, Image denoising methods. a new nonlocal principle, SIAM Review 52 (2010), no. 1, 113–147.
  • [10] Xi Chen and Max Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Computer Methods in Applied Mechanics and Engineering 200 (2011), no. 9, 1237–1250.
  • [11] Marta D’Elia, Max Gunzburger, and Christian Vollmann, A cookbook for approximating euclidean balls and for quadrature rules in finite element methods for nonlocal problems, Mathematical Models and Methods in Applied Sciences 31 (2021), no. 8, 1505–1567.
  • [12] Qiang Du, Nonlocal modeling, analysis and computation, SIAM, 2019.
  • [13] Qiang Du, Max Gunzburger, Richard B Lehoucq, and Kun Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review 54 (2012), no. 4, 667–696.
  • [14] by same author, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Mathematical Models and Methods in Applied Sciences 23 (2013), no. 03, 493–540.
  • [15] Qiang Du, Xiaochuan Tian, Cory Wright, and Yue Yu, Nonlocal trace spaces and extension results for nonlocal calculus, Journal of Functional Analysis 282 (2022), no. 12, 109453.
  • [16] Qiang Du, Xiaochuan Tian, and Zhi Zhou, Nonlocal diffusion models with consistent local and fractional limits, A3N2M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models: Proceedings of the 50th John H. Barrett Memorial Lectures, Springer, 2023, pp. 175–213.
  • [17] Qiang Du, Hehu Xie, and Xiaobo Yin, On the convergence to local limit of nonlocal models with approximated interaction neighborhoods, SIAM Journal on Numerical Analysis 60 (2022), no. 4, 2046–2068.
  • [18] Qiang Du and Jiang Yang, Asymptotically compatible fourier spectral approximations of nonlocal allen–cahn equations, SIAM Journal on Numerical Analysis 54 (2016), no. 3, 1899–1919.
  • [19] Qiang Du and Xiaobo Yin, A conforming dg method for linear nonlocal models with integrable kernels, Journal of Scientific Computing 80 (2019), no. 3, 1913–1935.
  • [20] Qiang Du, Jiwei Zhang, and Chunxiong Zheng, On uniform second order nonlocal approximations to linear two-point boundary value problems, Communications in Mathematical Sciences 17 (2019), no. 6, 1737–1755.
  • [21] Christian Glusa, Marta D’Elia, Giacomo Capodaglio, Max Gunzburger, and Pavel B Bochev, An asymptotically compatible coupling formulation for nonlocal interface problems with jumps, SIAM Journal on Scientific Computing 45 (2023), no. 3, A1359–A1384.
  • [22] Prashant K. Jha and Robert Lipton, Finite element approximation of nonlocal dynamic fracture models, Discrete and Continuous Dynamical Systems-Series B 26 (2021), no. 3, 1675.
  • [23] Hwi Lee and Qiang Du, Second-order accurate dirichlet boundary conditions for linear nonlocal diffusion problems, Communications in Mathematical Sciences 20 (2022), no. 7, 1815–1837.
  • [24] Wangbo Luo and Yanxiang Zhao, Asymptotically compatible schemes for nonlocal ohta kawasaki model, arXiv preprint arXiv:2311.15186 (2023).
  • [25] Tadele Mengesha and Qiang Du, The bond-based peridynamic system with dirichlet-type volume constraint, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 144 (2014), no. 1, 161–186.
  • [26] Joachim Nitsche, Ein kriterium für die quasi-optimalität des ritzschen verfahrens, Numerische Mathematik 11 (1968), no. 4, 346–348.
  • [27] Marco Pasetto, Zhaoxiang Shen, Marta D’Elia, Xiaochuan Tian, Nathaniel Trask, and David Kamensky, Efficient optimization-based quadrature for variational discretization of nonlocal problems, Computer Methods in Applied Mechanics and Engineering 396 (2022), 115104.
  • [28] Augusto C Ponce, An estimate in the spirit of poincaré’s inequality, Journal of the European Mathematical Society 6 (2004), 1–15.
  • [29] Pablo Seleson and Michael Parks, On the role of the influence function in the peridynamic theory, International Journal for Multiscale Computational Engineering 9 (2011), no. 6, 689–706.
  • [30] Stewart A Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids 48 (2000), no. 1, 175–209.
  • [31] Stewart A Silling and Ebrahim Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers & Structures 83 (2005), no. 17-18, 1526–1535.
  • [32] Stewart A Silling and RB Lehoucq, Peridynamic theory of solid mechanics, Advances in applied mechanics, vol. 44, Elsevier, 2010, pp. 73–168.
  • [33] Yunzhe Tao, Xiaochuan Tian, and Qiang Du, Nonlocal diffusion and peridynamic models with neumann type constraints and their numerical approximations, Applied Mathematics and Computation 305 (2017), 282–298.
  • [34] Xiaochuan Tian and Qiang Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM Journal on Numerical Analysis 51 (2013), no. 6, 3458–3482.
  • [35] by same author, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM Journal on Numerical Analysis 52 (2014), no. 4, 1641–1665.
  • [36] by same author, Asymptotically compatible schemes for robust discretization of parametrized problems with applications to nonlocal models, SIAM Review 62 (2020), no. 1, 199–227.
  • [37] Nathaniel Trask, Huaiqian You, Yue Yu, and Michael L Parks, An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics, Computer Methods in Applied Mechanics and Engineering 343 (2019), 151–165.
  • [38] Jerry Zhijian Yang, Xiaobo Yin, and Jiwei Zhang, On uniform second-order nonlocal approximations to diffusion and subdiffusion equations with nonlocal effect parameter, Communications in Mathematical Sciences 20 (2022), no. 2, 359–375.
  • [39] Huaiqian You, XinYang Lu, Nathaniel Trask, and Yue Yu, An asymptotically compatible approach for neumann-type boundary condition on nonlocal problems, ESAIM: Mathematical Modelling and Numerical Analysis 54 (2020), no. 4, 1373–1413.
  • [40] Yue Yu, Huaiqian You, and Nathaniel Trask, An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture, Computer Methods in Applied Mechanics and Engineering 377 (2021), 113691.
  • [41] Xiaoping Zhang, Max Gunzburger, and Lili Ju, Quadrature rules for finite element approximations of 1d nonlocal problems, Journal of Computational Physics 310 (2016), 213–236.
  • [42] Yajie Zhang and Zuoqiang Shi, A second-order nonlocal approximation for poisson model with dirichlet boundary, Research in the Mathematical Sciences 10 (2023), no. 3, 36.