This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Error analysis of finite element method for nonlocal diffusion model

Zuoqiang Shi Yau Mathematical Sciences Center, Tsinghua University, Beijing, China, 100084. Email: [email protected].
Abstract

We analyze the error of finite element method for nonlocal diffusion model include both conformal and nonconformal method. We also consider the mesh with and without shape regularity. For shape regular mesh, finite element method for nonlocal diffusion model is asymptotic preserving and the error is O(hk+δ)O(h^{k}+\delta). For shape irregular mesh, the error becomes O(hk+1δ+δ)O(\frac{h^{k+1}}{\delta}+\delta).

1 Nonlocal diffusion model and conformal finite element discretization

We consider the Poisson equation with Neumann boundary condition.

Δu(𝒙)+u(𝒙)\displaystyle-\Delta u(\bm{x})+u(\bm{x}) =f(𝒙),𝒙Ωd,\displaystyle=f(\bm{x}),\quad\bm{x}\in\Omega\subset\mathbb{R}^{d}, (1.1)
u𝐧(𝒙)\displaystyle\frac{\partial u}{\partial\mathbf{n}}(\bm{x}) =g(𝒙),𝒙Ω.\displaystyle=g(\bm{x}),\quad\bm{x}\in\partial\Omega.

A nonlocal counterpart of Poisson equation is given as follows

1δ2ΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))d𝒚+ΩR¯δ(𝒙,𝒚)u(𝒚)d𝒚=ΩR¯δ(𝒙,𝒚)f(𝒚)d𝒚+2ΩR¯δ(𝒙,𝒚)g(𝒚)dτ𝒚,\displaystyle\frac{1}{\delta^{2}}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(u(\bm{x})-u(\bm{y}))\mathrm{d}\bm{y}+\int_{\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})u(\bm{y})\mathrm{d}\bm{y}=\int_{\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})f(\bm{y})\mathrm{d}\bm{y}+2\int_{\partial\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})g(\bm{y})\mathrm{d}\tau_{\bm{y}},\quad (1.2)
Rδ(𝒙,𝒚)=CδR(𝒙𝒚24δ2),R¯δ(𝒙,𝒚)=CδR¯(𝒙𝒚24δ2),\displaystyle R_{\delta}(\bm{x},\bm{y})=C_{\delta}R\left(\frac{\|\bm{x}-\bm{y}\|^{2}}{4\delta^{2}}\right),\quad\bar{R}_{\delta}(\bm{x},\bm{y})=C_{\delta}\bar{R}\left(\frac{\|\bm{x}-\bm{y}\|^{2}}{4\delta^{2}}\right){,} (1.3)

where

R¯(r)=r+R(s)ds=r1R(s)ds,\displaystyle\bar{R}(r)=\int_{r}^{+\infty}R(s)\mathrm{d}s=\int_{r}^{1}R(s)\mathrm{d}s, (1.4)

which satisfies obviously

R¯(r)=ddrR¯(r)=R(r),r+,andR¯(r)=0,r>1.\bar{R}^{\prime}(r)=\frac{d}{dr}\bar{R}(r)=-R(r),\;\forall r\in\mathbb{R}^{+},\quad\text{and}\quad\bar{R}(r)=0,\;\forall r>1.

The constant Cδ=αdδdC_{\delta}=\alpha_{d}\delta^{-d} in (1.3) is a normalization factor so that

dR¯δ(𝒙,𝒚)d𝒚=αdSd01R¯(r24)rd1dr=1,\displaystyle\int_{\mathbb{R}^{d}}\bar{R}_{\delta}(\bm{x},\bm{y})\mathrm{d}\bm{y}=\alpha_{d}S_{d}\int_{0}^{1}\bar{R}(\frac{r^{2}}{4})r^{d-1}\mathrm{d}r=1, (1.5)

with SdS_{d} denotes area of the unit sphere in d\mathbb{R}^{d}.

RR is a kernel function which satisfies following conditions:

  • (a)

    (regularity) RC1[0,1]R\in C^{1}[0,1];

  • (b)

    (positivity and compact support) R(r)0R(r)\geq 0 and R(r)=0R(r)=0 for r>1\forall r>1;

  • (c)

    (nondegeneracy) γ0>0\exists\gamma_{0}>0 so that R(r)γ0R(r)\geq\gamma_{0} for 0r120\leq r\leq\frac{1}{2}.

For the truncation error of the nonlocal model (1.2), we have following theorem [SS17].

Theorem 1.1.

Let u(𝐱)H3(Ω)u(\bm{x})\in H^{3}({\Omega}) and

rbd=j=1dΩnj(𝒚)(𝒙𝒚)(ju(𝒚))R¯δ(𝒙,𝒚)dτ𝒚,\displaystyle r_{bd}=\sum_{j=1}^{d}\int_{\partial{\Omega}}n^{j}(\bm{y})(\bm{x}-\bm{y})\cdot\nabla(\nabla^{j}u(\bm{y}))\bar{R}_{\delta}(\bm{x},\bm{y})\mathrm{d}\tau_{\bm{y}}, (1.6)

and

rin=1δ2ΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))d𝒚\displaystyle r_{in}=\frac{1}{\delta^{2}}\int_{{\Omega}}R_{\delta}(\bm{x},\bm{y})(u(\bm{x})-u(\bm{y}))\mathrm{d}\bm{y} +ΩR¯δ(𝒙,𝒚)Δu(𝒚)d𝒚\displaystyle+\int_{\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})\Delta u(\bm{y})\mathrm{d}\bm{y}
2ΩR¯δ(𝒙,𝒚)u𝐧(𝒚)dτ𝒚rbd.\displaystyle-2\int_{\partial{\Omega}}\bar{R}_{\delta}(\bm{x},\bm{y})\frac{\partial u}{\partial\mathbf{n}}(\bm{y})\mathrm{d}\tau_{\bm{y}}-r_{bd}.

where 𝐧(𝐲)=(n1(𝐲),,nd(𝐲))\mathbf{n}(\bm{y})=(n^{1}(\bm{y}),\cdots,n^{d}(\bm{y})) is the out normal vector of Ω\partial{\Omega} at 𝐲\bm{y}, j\nabla^{j} is the jjth component of gradient \nabla, R¯δ(𝐱,𝐲)=CδR¯(𝐱𝐲24δ2)\bar{R}_{\delta}(\bm{x},\bm{y})=C_{\delta}\bar{R}\left(\frac{\|\bm{x}-\bm{y}\|^{2}}{4\delta^{2}}\right) and R¯(r)=rR(s)ds\bar{R}(r)=\int_{r}^{\infty}R(s)\mathrm{d}s.

Then there exist constants C,T0C,T_{0} depending only on Ω{\Omega}, so that,

rinL2(Ω)CδuH3(Ω),rbdL2(Ω)Cδ1/2uH3(Ω)\displaystyle\left\|r_{in}\right\|_{L^{2}(\Omega)}\leq C\delta\|u\|_{H^{3}(\Omega)},\quad\left\|r_{bd}\right\|_{L^{2}(\Omega)}\leq C\delta^{1/2}\|u\|_{H^{3}(\Omega)} (1.7)

as long as δT0\delta\leq T_{0}.

Let Ωh\Omega_{h} be a polyhedral approximation of Ω\Omega, and 𝒯h\mathcal{T}_{h} be the mesh associated with Ωh\Omega_{h}, where h=maxT𝒯hdiam(T)h=\max_{T\in\mathcal{T}_{h}}\mbox{diam}(T) is the maximum diameter, ρ=minT𝒯hρ(T)\rho=\min_{T\in\mathcal{T}_{h}}\rho(T) where ρ(T)\rho(T) denotes the radius of the inscribed ball of TT. We focus on the continuous kk-th order finite element space defined on Ωh\Omega_{h}, i.e.

Sh={vhC0(Ωh):vh|Tk(T),TΩh}.S_{h}=\{v_{h}\in C^{0}(\Omega_{h}):v_{h}|_{T}\in\mathbb{P}_{k}(T),\quad\forall T\in\Omega_{h}\}. (1.8)

k(T)\mathbb{P}_{k}(T) denotes the set of all kk-th order polynomials in TT.

The finite element discretization of the nonlocal diffusion model is to find uhShu_{h}\in S_{h} such that

Lδuh,vhΩh=f¯,vhΩh,vhSh,\displaystyle\left<L_{\delta}u_{h},v_{h}\right>_{\Omega_{h}}=\left<\bar{f},v_{h}\right>_{\Omega_{h}},\quad\forall v_{h}\in S_{h},

with f¯(𝒙)=ΩR¯δ(𝒙,𝒚)f(𝒚)d𝒚+2ΩR¯δ(𝒙,𝒚)g(𝒚)dτ𝒚\bar{f}(\bm{x})=\int_{\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})f(\bm{y})\mathrm{d}\bm{y}+2\int_{\partial\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})g(\bm{y})\mathrm{d}\tau_{\bm{y}} and

Lδu(𝒙)=1δ2ΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))d𝒚+ΩR¯δ(𝒙,𝒚)u(𝒚)d𝒚.\displaystyle L_{\delta}u(\bm{x})=\frac{1}{\delta^{2}}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(u(\bm{x})-u(\bm{y}))\mathrm{d}\bm{y}+\int_{\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})u(\bm{y})\mathrm{d}\bm{y}. (1.9)

<,>Ωh<\cdot,\cdot>_{\Omega_{h}} denotes the inner product in Ωh\Omega_{h},

u,vΩh=Ωhu(𝒙)v(𝒙)d𝒙\displaystyle\left<u,v\right>_{\Omega_{h}}=\int_{\Omega_{h}}u(\bm{x})v(\bm{x})\mathrm{d}\bm{x} (1.10)

For the sake of simplification, we focus on the case Ω=Ωh\Omega=\Omega_{h} which means that we do not consider the error from domain approximation. In the rest of the paper, we do not distinguish Ω\Omega and Ωh\Omega_{h}.

Let eh=uuhe_{h}=u^{*}-u_{h}, uu^{*} is the solution of Poisson equation (1.1). From Theorem 1.1, we have

Lδeh,vhΩ=rin+rbd,vhΩ,vhSh.\displaystyle\left<L_{\delta}e_{h},v_{h}\right>_{\Omega}=\left<r_{in}+r_{bd},v_{h}\right>_{\Omega},\quad\forall v_{h}\in S_{h}. (1.11)

Now, we introduce some notations and technical results which will be used later.

Sδu(𝒙)=1wδ(𝒙)ΩRδ(𝒙,𝒚)u(𝒚)d𝒚,wδ(𝒙)=ΩRδ(𝒙,𝒚)d𝒚\displaystyle S_{\delta}u(\bm{x})=\frac{1}{w_{\delta}(\bm{x})}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})u(\bm{y})\mathrm{d}\bm{y},\qquad w_{\delta}(\bm{x})=\int_{\Omega}R_{\delta}(\bm{x},\bm{y})\mathrm{d}\bm{y} (1.12)

and

Eδ(u)2=12δ2ΩΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))2d𝒙d𝒚+ΩΩR¯δ(𝒙,𝒚)u(𝒙)u(𝒚)d𝒙d𝒚=Lδu,uΩ\displaystyle E_{\delta}(u)^{2}=\frac{1}{2\delta^{2}}\int_{\Omega}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(u(\bm{x})-u(\bm{y}))^{2}\mathrm{d}\bm{x}\mathrm{d}\bm{y}+\int_{\Omega}\int_{\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})u(\bm{x})u(\bm{y})\mathrm{d}\bm{x}\mathrm{d}\bm{y}=\left<L_{\delta}u,u\right>_{\Omega} (1.13)

And we also have

  • 1.

    Proof can be found in [SS17]

    uL2(Ω)CEδ(u),(Sδu)L2(Ω)CEδ(u),Eδ(u)CδuL2(Ω)\displaystyle\|u\|_{L^{2}(\Omega)}\leq CE_{\delta}(u),\quad\|\nabla(S_{\delta}u)\|_{L^{2}(\Omega)}\leq CE_{\delta}(u),\quad E_{\delta}(u)\leq\frac{C}{\delta}\|u\|_{L^{2}(\Omega)} (1.14)
  • 2.
    |Lδu,vΩ|=\displaystyle\left|\left<L_{\delta}u,v\right>_{\Omega}\right|= 12δ2|ΩΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))(v(𝒙)v(𝒚))d𝒚d𝒙|\displaystyle\frac{1}{2\delta^{2}}\left|\int_{\Omega}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(u(\bm{x})-u(\bm{y}))(v(\bm{x})-v(\bm{y}))\mathrm{d}\bm{y}\mathrm{d}\bm{x}\right|
    \displaystyle\leq 12δ2(ΩΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))2d𝒚d𝒙)1/2(ΩΩRδ(𝒙,𝒚)(v(𝒙)v(𝒚))2d𝒚d𝒙)1/2\displaystyle\frac{1}{2\delta^{2}}\left(\int_{\Omega}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(u(\bm{x})-u(\bm{y}))^{2}\mathrm{d}\bm{y}\mathrm{d}\bm{x}\right)^{1/2}\left(\int_{\Omega}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(v(\bm{x})-v(\bm{y}))^{2}\mathrm{d}\bm{y}\mathrm{d}\bm{x}\right)^{1/2}
    \displaystyle\leq CEδ(u)vH1(Ω)\displaystyle CE_{\delta}(u)\|v\|_{H^{1}(\Omega)} (1.15)
  • 3.
    LδuL2(Ω)2=\displaystyle\|L_{\delta}u\|_{L_{2}(\Omega)}^{2}= Ω1δ4|ΩRδ(𝒙,𝒚)(u(𝒙)v(𝒚))d𝒚|2d𝒙\displaystyle\int_{\Omega}\frac{1}{\delta^{4}}\left|\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(u(\bm{x})-v(\bm{y}))\mathrm{d}\bm{y}\right|^{2}\mathrm{d}\bm{x}
    \displaystyle\leq Cδ4ΩΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))2d𝒚d𝒙\displaystyle\frac{C}{\delta^{4}}\int_{\Omega}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(u(\bm{x})-u(\bm{y}))^{2}\mathrm{d}\bm{y}\mathrm{d}\bm{x}
    \displaystyle\leq Cδ2Eδ(u)2\displaystyle\frac{C}{\delta^{2}}E_{\delta}(u)^{2} (1.16)

For the boundary error rbdr_{bd}, we have another estimate.

Theorem 1.2.

Let u(𝐱)H3(Ω)u(\bm{x})\in H^{3}({\Omega}), then there exist constants CC depending only on Ω{\Omega}, for any vShv\in S_{h},

|Ωv(𝒙)rbd(𝒙)d𝒙|CδuH3(Ω)Eδ(v)\displaystyle\left|\int_{\Omega}v(\bm{x})r_{bd}(\bm{x})\mathrm{d}\bm{x}\right|\leq C\delta\|u\|_{H^{3}(\Omega)}E_{\delta}(v) (1.17)

with rbdr_{bd} defined in (1.6).

Proof.
|Ωv(𝒙)rbd(𝒙)d𝒙|=\displaystyle\left|\int_{\Omega}v(\bm{x})r_{bd}(\bm{x})\mathrm{d}\bm{x}\right|= |j=1dΩv(𝒙)Ωnj(𝒚)(𝒙𝒚)(ju(𝒚))R¯δ(𝒙,𝒚)dτ𝒚d𝒙|\displaystyle\left|\sum_{j=1}^{d}\int_{\Omega}v(\bm{x})\int_{\partial{\Omega}}n^{j}(\bm{y})(\bm{x}-\bm{y})\cdot\nabla(\nabla^{j}u(\bm{y}))\bar{R}_{\delta}(\bm{x},\bm{y})\mathrm{d}\tau_{\bm{y}}\mathrm{d}\bm{x}\right|
=\displaystyle= |j=1dΩnj(𝒚)Ωv(𝒙)(𝒙𝒚)(ju(𝒚))R¯δ(𝒙,𝒚)d𝒙dτ𝒚|\displaystyle\left|\sum_{j=1}^{d}\int_{\partial{\Omega}}n^{j}(\bm{y})\int_{\Omega}v(\bm{x})(\bm{x}-\bm{y})\cdot\nabla(\nabla^{j}u(\bm{y}))\bar{R}_{\delta}(\bm{x},\bm{y})\mathrm{d}\bm{x}\mathrm{d}\tau_{\bm{y}}\right|
\displaystyle\leq CδΩH(u)(𝒚)Ω|v(𝒙)|R¯δ(𝒙,𝒚)d𝒙dτ𝒚\displaystyle C\delta\int_{\partial{\Omega}}\|H(u)(\bm{y})\|\int_{\Omega}|v(\bm{x})|\bar{R}_{\delta}(\bm{x},\bm{y})\mathrm{d}\bm{x}\mathrm{d}\tau_{\bm{y}}
\displaystyle\leq CδuH2(Ω)S¯δ(|v|)L2(Ω)\displaystyle C\delta\|u\|_{H^{2}(\partial{\Omega})}\|\bar{S}_{\delta}(|v|)\|_{L^{2}(\partial{\Omega})}
\displaystyle\leq CδuH3(Ω)S¯δ(|v|)H1(Ω)\displaystyle C\delta\|u\|_{H^{3}({\Omega})}\|\bar{S}_{\delta}(|v|)\|_{H^{1}({\Omega})}

where H(u)H(u) denotes the Hessian of uu, and

S¯δ(v)(𝒚)=1w¯δ(𝒚)Ωv(𝒙)R¯δ(𝒙,𝒚)d𝒙,w¯δ(𝒚)=ΩR¯δ(𝒙,𝒚)d𝒙.\bar{S}_{\delta}(v)(\bm{y})=\frac{1}{\bar{w}_{\delta}(\bm{y})}\int_{\Omega}v(\bm{x})\bar{R}_{\delta}(\bm{x},\bm{y})\mathrm{d}\bm{x},\quad\bar{w}_{\delta}(\bm{y})=\int_{\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})\mathrm{d}\bm{x}.

Moreover, using (1.14),

S¯δ(|v|)H1(Ω)2\displaystyle\|\bar{S}_{\delta}(|v|)\|_{H^{1}({\Omega})}^{2}\leq Cδ2ΩΩR¯δ(𝒙,𝒚)(|v(𝒙)||v(𝒚)|)2d𝒙d𝒚+CvL2(Ω)2\displaystyle\frac{C}{\delta^{2}}\int_{\Omega}\int_{\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})(|v(\bm{x})|-|v(\bm{y})|)^{2}\mathrm{d}\bm{x}\mathrm{d}\bm{y}+C\|v\|_{L^{2}({\Omega})}^{2}
\displaystyle\leq Cδ2ΩΩR¯δ(𝒙,𝒚)(v(𝒙)v(𝒚))2d𝒙d𝒚+CvL2(Ω)2\displaystyle\frac{C}{\delta^{2}}\int_{\Omega}\int_{\Omega}\bar{R}_{\delta}(\bm{x},\bm{y})(v(\bm{x})-v(\bm{y}))^{2}\mathrm{d}\bm{x}\mathrm{d}\bm{y}+C\|v\|_{L^{2}({\Omega})}^{2}
\displaystyle\leq Cδ2ΩΩRδ(𝒙,𝒚)(v(𝒙)v(𝒚))2d𝒙d𝒚+CEδ(v)2\displaystyle\frac{C}{\delta^{2}}\int_{\Omega}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(v(\bm{x})-v(\bm{y}))^{2}\mathrm{d}\bm{x}\mathrm{d}\bm{y}+CE_{\delta}(v)^{2}
\displaystyle\leq CEδ(v)2\displaystyle CE_{\delta}(v)^{2}

2 Error analysis with shape regular mesh

IhI_{h} denotes the projection operator onto ShS_{h}. Then, we have

Lδeh,ehΩ=\displaystyle\left<L_{\delta}e_{h},e_{h}\right>_{\Omega}= Lδeh,uIhuΩ+rin+rbd,IhuuhΩ\displaystyle\left<L_{\delta}e_{h},u^{*}-I_{h}u^{*}\right>_{\Omega}+\left<r_{in}+r_{bd},I_{h}u^{*}-u_{h}\right>_{\Omega}
\displaystyle\leq Eδ(eh)uIhuH1(Ω)+rinL2(Ω)IhuuhL2(Ω)+CδuH3(Ω)Eδ(Ihuuh)\displaystyle E_{\delta}(e_{h})\|u^{*}-I_{h}u^{*}\|_{H^{1}(\Omega)}+\|r_{in}\|_{L^{2}(\Omega)}\|I_{h}u^{*}-u_{h}\|_{L^{2}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(I_{h}u^{*}-u_{h})
\displaystyle\leq ChkEδ(eh)uHk+1(Ω)+CδuH3(Ω)Eδ(Ihuuh)\displaystyle Ch^{k}E_{\delta}(e_{h})\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(I_{h}u^{*}-u_{h})
\displaystyle\leq ChkEδ(eh)uHk+1(Ω)+CδuH3(Ω)Eδ(uIhu)+CδuH3(Ω)Eδ(eh)\displaystyle Ch^{k}E_{\delta}(e_{h})\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(u^{*}-I_{h}u^{*})+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(e_{h})
\displaystyle\leq ChkEδ(eh)uHk+1(Ω)+CδuH3(Ω)uIhuH1(Ω)+CδuH3(Ω)Eδ(eh)\displaystyle Ch^{k}E_{\delta}(e_{h})\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}\|u^{*}-I_{h}u^{*}\|_{H^{1}({\Omega})}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(e_{h})
\displaystyle\leq ChkEδ(eh)uHk+1(Ω)+CδhkuH3(Ω)uHk+1(Ω)+CδuH3(Ω)Eδ(eh)\displaystyle Ch^{k}E_{\delta}(e_{h})\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta h^{k}\|u^{*}\|_{H^{3}(\Omega)}\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(e_{h})

For second and third line, we use Theorem 1.1, Theorem 1.2 and the classical result that

uIhuH1(Ω)ChkuHk+1(Ω).\|u^{*}-I_{h}u^{*}\|_{H^{1}(\Omega)}\leq Ch^{k}\|u^{*}\|_{H^{k+1}(\Omega)}.

Then, we can get

Eδ(eh)2\displaystyle E_{\delta}(e_{h})^{2}\leq ChkEδ(eh)uHk+1(Ω)+CδhkuH3(Ω)uHk+1(Ω)+CδuH3(Ω)Eδ(eh)\displaystyle Ch^{k}E_{\delta}(e_{h})\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta h^{k}\|u^{*}\|_{H^{3}(\Omega)}\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(e_{h})

which implies that

Eδ(eh)C(hk+δ)uHmax{k+1,3}(Ω).\displaystyle E_{\delta}(e_{h})\leq C\left(h^{k}+\delta\right)\|u^{*}\|_{H^{\max\{k+1,3\}}(\Omega)}.

This gives the L2L^{2} norm of the error,

ehL2(Ω)CEδ(eh)C(hk+δ)uHmax{k+1,3}(Ω).\displaystyle\|e_{h}\|_{L^{2}({\Omega})}\leq CE_{\delta}(e_{h})\leq C\left(h^{k}+\delta\right)\|u^{*}\|_{H^{\max\{k+1,3\}}(\Omega)}.

Moreover, we can get H1H^{1} estimate of uSδuhu^{*}-S_{\delta}u_{h}.

uSδuhH1(Ω)=uSδuH1(Ω)+SδehH1(Ω)\displaystyle\|u^{*}-S_{\delta}u_{h}\|_{H^{1}(\Omega)}=\|u^{*}-S_{\delta}u^{*}\|_{H^{1}(\Omega)}+\|S_{\delta}e_{h}\|_{H^{1}(\Omega)} (2.1)

The second term is easy to bound, since

SδehH1(Ω)CEδ(eh)\displaystyle\|S_{\delta}e_{h}\|_{H^{1}(\Omega)}\leq CE_{\delta}(e_{h}) (2.2)

To bound first term, we need more calculation.

uSδuL2(Ω)2\displaystyle\|u^{*}-S_{\delta}u^{*}\|_{L^{2}(\Omega)}^{2}
=\displaystyle= Ω1wδ2(𝒙)(ΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))d𝒚)2d𝒙\displaystyle\int_{\Omega}\frac{1}{w_{\delta}^{2}(\bm{x})}\left(\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(u^{*}(\bm{x})-u^{*}(\bm{y}))\mathrm{d}\bm{y}\right)^{2}\mathrm{d}\bm{x}
\displaystyle\leq CΩΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))2d𝒚d𝒙Cδ2uH1(Ω)2\displaystyle C\int_{\Omega}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})(u^{*}(\bm{x})-u^{*}(\bm{y}))^{2}\mathrm{d}\bm{y}\mathrm{d}\bm{x}\leq C\delta^{2}\|u^{*}\|_{H^{1}(\Omega)}^{2} (2.3)

and

(uSδu)(𝒙)=\displaystyle\nabla(u^{*}-S_{\delta}u^{*})(\bm{x})= u(𝒙)(1wδ(𝒙)ΩRδ(𝒙,𝒚)u(𝒚)d𝒚)\displaystyle\nabla u^{*}(\bm{x})-\nabla\left(\frac{1}{w_{\delta}(\bm{x})}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})u^{*}(\bm{y})\mathrm{d}\bm{y}\right)
=\displaystyle= u(𝒙)1wδ(𝒙)ΩRδ(𝒙,𝒚)u(𝒚)d𝒚\displaystyle\nabla u^{*}(\bm{x})-\frac{1}{w_{\delta}(\bm{x})}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})\nabla u^{*}(\bm{y})\mathrm{d}\bm{y}
+1wδ2(𝒙)ΩΩRδ(𝒙,𝐳)Rδ(𝒙,𝒚)(u(𝐳)u(𝒚))d𝒚dS𝐳\displaystyle+\frac{1}{w^{2}_{\delta}(\bm{x})}\int_{\partial\Omega}\int_{\Omega}R_{\delta}(\bm{x},\mathbf{z})R_{\delta}(\bm{x},\bm{y})(u^{*}(\mathbf{z})-u^{*}(\bm{y}))\mathrm{d}\bm{y}\mathrm{d}S_{\mathbf{z}}
=\displaystyle= 1wδ(𝒙)ΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))d𝒚\displaystyle\frac{1}{w_{\delta}(\bm{x})}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})\left(\nabla u^{*}(\bm{x})-\nabla u^{*}(\bm{y})\right)\mathrm{d}\bm{y}
+1wδ2(𝒙)ΩΩRδ(𝒙,𝐳)Rδ(𝒙,𝒚)(u(𝐳)u(𝒚))d𝒚dS𝐳\displaystyle+\frac{1}{w^{2}_{\delta}(\bm{x})}\int_{\partial\Omega}\int_{\Omega}R_{\delta}(\bm{x},\mathbf{z})R_{\delta}(\bm{x},\bm{y})(u^{*}(\mathbf{z})-u^{*}(\bm{y}))\mathrm{d}\bm{y}\mathrm{d}S_{\mathbf{z}} (2.4)

Notice that

1wδ(𝒙)ΩRδ(𝒙,𝒚)(u(𝒙)u(𝒚))d𝒚L2(Ω)CδuH2(Ω)\displaystyle\left\|\frac{1}{w_{\delta}(\bm{x})}\int_{\Omega}R_{\delta}(\bm{x},\bm{y})\left(\nabla u^{*}(\bm{x})-\nabla u^{*}(\bm{y})\right)\mathrm{d}\bm{y}\right\|_{L^{2}(\Omega)}\leq C\delta\|u^{*}\|_{H^{2}(\Omega)} (2.5)

and

1wδ2(𝒙)ΩΩRδ(𝒙,𝐳)Rδ(𝒙,𝒚)(u(𝐳)u(𝒚))d𝒚dS𝐳L2(Ω)2\displaystyle\left\|\frac{1}{w^{2}_{\delta}(\bm{x})}\int_{\partial\Omega}\int_{\Omega}R_{\delta}(\bm{x},\mathbf{z})R_{\delta}(\bm{x},\bm{y})(u^{*}(\mathbf{z})-u^{*}(\bm{y}))\mathrm{d}\bm{y}\mathrm{d}S_{\mathbf{z}}\right\|_{L^{2}(\Omega)}^{2}
\displaystyle\leq CΩΩΩRδ(𝒙,𝐳)Rδ(𝒙,𝒚)(u(𝐳)u(𝒚))2d𝒚dS𝐳d𝒙\displaystyle C\int_{\Omega}\int_{\partial\Omega}\int_{\Omega}R_{\delta}(\bm{x},\mathbf{z})R_{\delta}(\bm{x},\bm{y})(u^{*}(\mathbf{z})-u^{*}(\bm{y}))^{2}\mathrm{d}\bm{y}\mathrm{d}S_{\mathbf{z}}\mathrm{d}\bm{x}
\displaystyle\leq CΩΩΩRδ(𝒙,𝒚+𝐳2)Rδ(𝒚,𝐳)(u(𝐳)u(𝒚))2d𝒚dS𝐳d𝒙\displaystyle C\int_{\Omega}\int_{\partial\Omega}\int_{\Omega}R_{\delta}\left(\bm{x},\frac{\bm{y}+\mathbf{z}}{2}\right)R_{\delta}(\bm{y},\mathbf{z})(u^{*}(\mathbf{z})-u^{*}(\bm{y}))^{2}\mathrm{d}\bm{y}\mathrm{d}S_{\mathbf{z}}\mathrm{d}\bm{x}
\displaystyle\leq CΩΩRδ(𝒚,𝐳)(u(𝐳)u(𝒚))2d𝒚dS𝐳\displaystyle C\int_{\partial\Omega}\int_{\Omega}R_{\delta}(\bm{y},\mathbf{z})(u^{*}(\mathbf{z})-u^{*}(\bm{y}))^{2}\mathrm{d}\bm{y}\mathrm{d}S_{\mathbf{z}}
\displaystyle\leq Cδ2uH2(Ω)2\displaystyle C\delta^{2}\|u^{*}\|_{H^{2}(\Omega)}^{2} (2.6)

Combining all above calculation together, we have

uSδuhH1(Ω)C(hk+δ)uHmax{k+1,3}(Ω)\displaystyle\|u^{*}-S_{\delta}u_{h}\|_{H^{1}(\Omega)}\leq C\left(h^{k}+\delta\right)\|u^{*}\|_{H^{\max\{k+1,3\}}(\Omega)}

3 Error analysis with irregular mesh

In the analysis above, we need to require that h/ρh/\rho is bounded. For the irregular mesh without boundness of h/ρh/\rho, we can also get error estimate. First,

Lδeh,ehΩ=\displaystyle\left<L_{\delta}e_{h},e_{h}\right>_{\Omega}= Lδeh,uIhuΩ+Lδeh,IhuuhΩ\displaystyle\left<L_{\delta}e_{h},u^{*}-I_{h}u^{*}\right>_{\Omega}+\left<L_{\delta}e_{h},I_{h}u^{*}-u_{h}\right>_{\Omega}
=\displaystyle= Lδeh,uIhuΩ+rin+rbd,IhuuhΩ\displaystyle\left<L_{\delta}e_{h},u^{*}-I_{h}u^{*}\right>_{\Omega}+\left<r_{in}+r_{bd},I_{h}u^{*}-u_{h}\right>_{\Omega}
\displaystyle\leq LδehL2(Ω)uIhuL2(Ω)+rinL2(Ω)IhuuhL2(Ω)+CδuH3(Ω)Eδ(Ihuuh)\displaystyle\|L_{\delta}e_{h}\|_{L^{2}(\Omega)}\|u^{*}-I_{h}u^{*}\|_{L^{2}(\Omega)}+\|r_{in}\|_{L^{2}(\Omega)}\|I_{h}u^{*}-u_{h}\|_{L^{2}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(I_{h}u^{*}-u_{h})
\displaystyle\leq Chk+1δEδ(eh)uHk+1(Ω)+CδuH3(Ω)Eδ(Ihuuh)\displaystyle\frac{Ch^{k+1}}{\delta}E_{\delta}(e_{h})\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(I_{h}u^{*}-u_{h})
\displaystyle\leq Chk+1δEδ(eh)uHk+1(Ω)+CδuH3(Ω)Eδ(uIhu)+CδuH3(Ω)Eδ(eh)\displaystyle\frac{Ch^{k+1}}{\delta}E_{\delta}(e_{h})\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(u^{*}-I_{h}u^{*})+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(e_{h})
\displaystyle\leq Chk+1δEδ(eh)uHk+1(Ω)+CuH3(Ω)uIhuL2(Ω)+CδuH3(Ω)Eδ(eh)\displaystyle\frac{Ch^{k+1}}{\delta}E_{\delta}(e_{h})\|u^{*}\|_{H^{k+1}(\Omega)}+C\|u^{*}\|_{H^{3}(\Omega)}\|u^{*}-I_{h}u^{*}\|_{L^{2}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(e_{h})
\displaystyle\leq Chk+1δEδ(eh)uHk+1(Ω)+Chk+1uH3(Ω)uHk+1(Ω)+CδuH3(Ω)Eδ(eh)\displaystyle\frac{Ch^{k+1}}{\delta}E_{\delta}(e_{h})\|u^{*}\|_{H^{k+1}(\Omega)}+Ch^{k+1}\|u^{*}\|_{H^{3}(\Omega)}\|u^{*}\|_{H^{k+1}(\Omega)}+C\delta\|u^{*}\|_{H^{3}(\Omega)}E_{\delta}(e_{h})

The third and fourth line are from Theorem 1.1, Theorem 1.2 and (3.) and the fact that

uIhuL2(Ω)Chk+1uHk+1(Ω).\|u^{*}-I_{h}u^{*}\|_{L^{2}(\Omega)}\leq Ch^{k+1}\|u^{*}\|_{H^{k+1}(\Omega)}.

Here, CC is independent on h/ρh/\rho. The sixth line is from (1.14), i.e.

Eδ(uIhu)CδuIhuL2(Ω).E_{\delta}(u^{*}-I_{h}u^{*})\leq\frac{C}{\delta}\|u^{*}-I_{h}u^{*}\|_{L^{2}(\Omega)}.

Then, using the definition of Eδ(u)E_{\delta}(u),(1.13), it is easy to get

Eδ(eh)C(hk+1δ+δ)uHmax{k+1,3}(Ω)\displaystyle E_{\delta}(e_{h})\leq C\left(\frac{h^{k+1}}{\delta}+\delta\right)\|u^{*}\|_{H^{\max\{k+1,3\}}(\Omega)}

which gives

ehL2(Ω)CEδ(eh)C(hk+1δ+δ)uHmax{k+1,3}(Ω)\displaystyle\|e_{h}\|_{L^{2}({\Omega})}\leq CE_{\delta}(e_{h})\leq C\left(\frac{h^{k+1}}{\delta}+\delta\right)\|u^{*}\|_{H^{\max\{k+1,3\}}(\Omega)}

Under the same argument as that in previous section, we can get

uSδuhH1(Ω)C(hk+1δ+δ)uHmax{k+1,3}(Ω)\displaystyle\|u^{*}-S_{\delta}u_{h}\|_{H^{1}(\Omega)}\leq C\left(\frac{h^{k+1}}{\delta}+\delta\right)\|u^{*}\|_{H^{\max\{k+1,3\}}(\Omega)}

4 DG method and error analysis

For nonlocal diffusion model, DG discretization is actually same with conformal finite element discretization since the nonlocal term provides the interaction between elements automatically. The only difference is that now we consider nonconformal kk-th order finite element space defined on Ωh\Omega_{h}, i.e.

Dh={vh:vh|Tk(T),TΩh}.D_{h}=\{v_{h}:v_{h}|_{T}\in\mathbb{P}_{k}(T),\quad\forall T\in\Omega_{h}\}. (4.1)

k(T)\mathbb{P}_{k}(T) denotes the set of all kk-th order polynomials in TT.

The DG discretization of the nonlocal diffusion model is to find uhDhu_{h}\in D_{h} such that

Lδuh,vhΩh=f¯,vhΩh,vhDh,\displaystyle\left<L_{\delta}u_{h},v_{h}\right>_{\Omega_{h}}=\left<\bar{f},v_{h}\right>_{\Omega_{h}},\quad\forall v_{h}\in D_{h},

Error analysis in previous section for conformal finite element method also holds for DG method.

5 Conclusion

We analysis the error of finite element method for nonlocal diffusion model. Our results show that finite element method for nonlocal diffusion model is asymptotic preserving with shape regular mesh. For irregular mesh, the error is bounded by O(hk+1δ+δ)O(\frac{h^{k+1}}{\delta}+\delta).

References

  • [SS17] Zuoqiang Shi and Jian Sun. Convergence of the point integral method for laplace-beltrami equation on point cloud. Research in the Mathematical Sciences, 4:1–39, 2017.