This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Error analysis of an unfitted HDG method
for a class of non-linear elliptic problems.

Nestor Sánchez Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile. Centro de Investigación en Ingeniería Matemática (CI2MA),Universidad de Concepción, Concepción, Chile. Instituto de Matemáticas, Unidad Juriquilla. Universidad Nacional Autónoma de México. Tonatiuh Sánchez-Vizuet Department of Mathematics, The University of Arizona, USA. Manuel Solano Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile. Centro de Investigación en Ingeniería Matemática (CI2MA),Universidad de Concepción, Concepción, Chile.
Abstract

We study Hibridizable Discontinuous Galerkin (HDG) discretizations for a class of non-linear interior elliptic boundary value problems posed in curved domains where both the source term and the diffusion coefficient are non-linear. We consider the cases where the non-linear diffusion coefficient depends on the solution and on the gradient of the solution. To sidestep the need for curved elements, the discrete solution is computed on a polygonal subdomain that is not assumed to interpolate the true boundary, giving rise to an unfitted computational mesh. We show that, under mild assumptions on the source term and the computational domain, the discrete systems are well posed. Furthermore, we provide a priori error estimates showing that the discrete solution will have optimal order of convergence as long as the distance between the curved boundary and the computational boundary remains of the same order of magnitude as the mesh parameter.

Keywords: Hybridizable Discontinuous Galerkin, Non-linear Boundary Value Problems, Curved Boundary, Unfitted mesh, Transfer paths.

AMS subject classification: 65N08, 65N30, 65N85.

1 Introduction

In this work we will study a discretization based on the hybridizable discontinous Galerkin (HDG) method [2] for a class of quasilinear elliptic boundary value problems of the form

(κu)=\displaystyle-\nabla\cdot\left(\kappa\,\nabla u\right)=\, f(u)\displaystyle f(u) in Ω\displaystyle\text{ in }\Omega (1.1a)
u=\displaystyle u=\, g\displaystyle g on Γ:=Ω,\displaystyle\text{ on }\Gamma:=\partial\Omega, (1.1b)
where the domain Ωd\Omega\subset\mathbb{R}^{d} (d=2,3d=2,3) is not necessarily polygonal/polyhedral, the diffusion coefficient, κ\kappa, is a positive function that depends on the solution, uu, in one of the following functional forms
κ={κ(u)κ(u),\kappa=\left\{\begin{array}[]{c}\kappa(u)\\ \kappa(\nabla u)\end{array}\right., (1.1c)

and that will be assumed to be a bounded and Lipschitz—in a sense that will be made precise in due time. In addition, the source function ff will be taken to be a Lipschitz-continuous mapping from L2(Ω)L^{2}(\Omega) to L2(Ω)L^{2}(\Omega), so that there exists Lf>0L_{f}>0 such that

f(u1)f(u2)ΩLfu1u2Ωu1,u2L2(Ω).\|f(u_{1})-f(u_{2})\|_{\Omega}\leq L_{f}\,\|u_{1}-u_{2}\|_{\Omega}\qquad\forall\,u_{1},u_{2}\in L^{2}(\Omega). (1.2)

The authors became interested boundary value problems of this form through the study of magnetic equilibrium configurations in cylindrically symmetric fusion reactors. In the context of plasma equilibrium, if the location of the plasma within the reactor is assumed to be known, the equilibrium condition between magnetic and hydrostatic forces results in an equation like the one above, known as the Grad-Shafranov (or Grad-Shafranov-Schlüter) equation [11, 13, 19]. The domain Ω\Omega in which the equation holds, corresponds to the region of the reactor occupied by the plasma. This region in general has a non-polygonal, piecewise smooth Lipschitz boundary Γ:=Ω\Gamma:=\partial\Omega with a small number of corners—known in the plasma literature as x-points.

In this model, the unknown uu is the stream function of the poloidal magnetic field, the source term ff is a nonlinear function of uu accounting for the effects of the hydrostatic pressure and total electric currents present in the device, and the coefficient κ\kappa encodes the magnetic properties of the system. The case where κ\kappa is a constant leads to a semi-linear equation for which an HDG discretization was proposed and implemented in [17, 18], and analyzed in detail in [16]. However, in the presence of ferroelectric materials, the permeability is affected by the total magnetic field 𝐁\mathbf{B}—which is proportional to the gradient of uu—and the coefficient then takes the form κ=κ(u)\kappa=\kappa(\nabla u), leading to a quasi-linear equation that requires the more detailed treatment that will be the subject of this article. Some theoretical studies of the HDG method applied to quasilinear problems have been pursued recently [8, 9, 10], however these efforts are limited to polygonal domains. Moreover, the first reference does not consider non-linearities of the form κ(u)\kappa(\nabla u), while in [9, 10] the authors analyzed an augmented HDG discretization for a strictly quasi-linear problem arising from a non-linear Stokes flow using an approach based on a nonlinear version of the Babuska-Brezzi theory. A remarkable effort involving HDG and interpolatory methods for semilinear problems was recently carried out in [1, 6], as well as some recent contribution for the steady state incompressible Navier–Stokes equations [12]. An interesting application of HDG to some fully non-linear time dependent equations related to shallow water models was carried out in [14], while an HDG scheme for the equations of magnetohydrodynamics was analyzed in [15]. However in these works, either the domain is considered to be polygonal or non-linearities are restricted to the source term—or both. As we will show, our analysis will be valid for both quasi-linear and semi-linear problems, will not require an augmented formulation and the domain may be piecewise smooth.

Due to the non-polygonal nature of the domain of definition, any discretization scheme employed must handle the additional geometric complexity of the problem. The HDG scheme that we propose deals with the geometry using a method introduced within the context of HDG discretizations for linear elliptic equations in [7] and given firm theoretical justification in [5]. The idea consists of posing the discrete problem in a polygonal subdomain ΩhΩ\Omega_{h}\subset\Omega and transferring the boundary data to the computational boundary Γh:=Ωh\Gamma_{h}:=\partial\Omega_{h} through a mechanism that involves a line integral of the numerical flux. This process requires reformulating the equation in the form of a first order system (mixed form), but greatly simplifies the computational implementation by allowing the use of a shape regular triangulation and avoiding the need for high order curved elements on the boundary. Moreover, in applications where the flux is a physically relevant variable—as is the case of the plasma problem—the direct discretization of the flux required by the mixed formulation is an additional advantage of the HDG formulation.

Depending on the location of the non-linearity within the equation, the analysis required to generalize [5, 7] into non-linear problems of the form (1.1) can be split into two independent parts. The case where κ\kappa is independent of the solution and only the source ff is a function of uu, has already been dealt with in [16]. The current communication will deal with situations where the source term is independent of uu and κ\kappa takes one of the forms (1.1c), each of which must also be analyzed separately. We will start by introducing basic notation in Section 2, where and the idea of the extended domains and transfer paths will be presented. In this section we will also describe some geometric hypotheses on the the computational domain that will be useful for the error analysis. Having established the basic setting, we then proceed to study separately the HDG discretizations for the case when the diffusion coefficient is a function of uu only (Section 3), and the case where the diffusion coefficient depends on u\nabla u (Section 4). In these sections the well posedness of the corresponding discrete HDG formulations are established, and a priori error analyses on the discretizations are performed.

2 Preliminaries

2.1 Computational domains and admissible triangulations

Given the domain Ω\Omega where (1.1) is posed, we will define a family of polygonal subdomains and admissible triangulations approximating Ω\Omega where we will ultimately pose our discretization. First, consider a family of simply connected domains {Ωα}α>0\{\Omega_{\alpha}\}_{\alpha>0} such that, for every α\alpha the following conditions hold: (1) ΩαΩ\Omega_{\alpha}\subseteq\Omega, (2) the boundary Γα:=Ωα\Gamma_{\alpha}:=\partial\Omega_{\alpha} is a polygon, and (3) for every ϵ>0\epsilon>0 there are infinitely many indices α\alpha such that λ(ΩΩα)<ϵ\lambda(\Omega\setminus\Omega_{\alpha})<\epsilon. In the preceding expression λ()\lambda(\cdot) denotes the Lebesgue measure. These conditions ensure that the family of subdomains {Ωα}α>0\{\Omega_{\alpha}\}_{\alpha>0} will exhaust Ω\Omega.

Having built the family {Ωα}α>0\{\Omega_{\alpha}\}_{\alpha>0} satisfying all the conditions above, the next step is to define a family of admissible simplicial triangulations {𝒯h}h>0\{\mathcal{T}_{h}\}_{h>0}. To be considered admissible, a triangulation 𝒯h\mathcal{T}_{h} must be such that: (1) 𝒯h\mathcal{T}_{h} is a triangulation for at least one Ωh{Ωα}α>0\Omega_{h}\in\{\Omega_{\alpha}\}_{\alpha>0} (we will identify both 𝒯h\mathcal{T}_{h} and the respective domain Ωh\Omega_{h} with the same subscript hh, adding copies of Ωh\Omega_{h} to {Ωα}α>0\{\Omega_{\alpha}\}_{\alpha>0} if necessary to account for different triangulations of the same domain) (2) it is shape regular, meaning that there exists β>0\beta>0 such that for all elements T𝒯hT\in\mathcal{T}_{h} and all h>0h>0, hT/ρTβh_{T}/\rho_{T}\leq\beta, where hTh_{T} is the diameter of TT and ρT\rho_{T} is the diameter of the largest ball contained in TT, and (3) for every T𝒯hT\in\mathcal{T}_{h} such that TΓhT\cap\Gamma_{h}\neq\varnothing, the maximum distance between 𝒙TΓh\boldsymbol{x}\in T\cap\Gamma_{h} and 𝒚Γ\boldsymbol{y}\in\Gamma is of the same order of magnitude as the element diameter hTh_{T}. More precisely, if dloc:=max{d(𝒙,𝒚):𝒙TΓh and 𝒚Γ}d_{loc}:=\max\{d(\boldsymbol{x},\boldsymbol{y}):\boldsymbol{x}\in T\cap\Gamma_{h}\text{ and }\boldsymbol{y}\in\Gamma\} then dloc=𝒪(hT)d_{loc}=\mathcal{O}(h_{T}). This last requirement, which will be referred to as the local proximity condition and is depicted schematically in Figure 1, is of key importance for the transfer process that will be defined later on.

Refer to caption   Refer to caption   Refer to caption
Figure 1: Left and center: The proximity condition ensures that the distance between the computational and the physical boundaries remains always of the same order of magnitude as the local element diameter. The schematic shows close ups to the boundary of two triangulations of the same domain: an admissible triangulation satisfying the local proximity condition (left), and inadmissible one that violates the local proximity condition (center). Right: An admissible triangulation and one possible arrangement of extension patches TexteT^{e}_{ext} (shaded in the figure) defined on the region ΩΩh\Omega\setminus\Omega_{h}.

For every element TT in a particular triangulation, we will denote by 𝒏T\boldsymbol{n}_{T} the outward unit normal vector to TT, or simply 𝒏\boldsymbol{n} instead of 𝒏T\boldsymbol{n}_{T} whenever the context prevents any confusion. As it is conventional, we will denote the mesh parameter as h:=maxT𝒯hhT\displaystyle h:=\max_{T\in\mathcal{T}_{h}}h_{T}, which will be assumed to be smaller than one for the sake of simplicity. We will denote by ee any face of a simplex and its length by heh_{e}. Moreover, we will talk about an interior face ee if there are two elements T+T^{+} and TT^{-} in the triangulation 𝒯h\mathcal{T}_{h} such that e=T+Te=\partial T^{+}\cap\partial T^{-}. The set of all interior faces will be denoted by h\mathcal{E}_{h}^{\circ}. In a similar manner, we will talk about a boundary face ee if there is an element T𝒯hT\in\mathcal{T}_{h} such that e=TΓhe=\partial T\cap\Gamma_{h}; the set of boundary faces will be denoted by h\mathcal{E}_{h}^{\partial}. Note that with these definitions, the entirety of the faces of the triangulation denoted by h\mathcal{E}_{h} (often referred to as the skeleton of the mesh) can then be decomposed as h=hh\mathcal{E}_{h}=\mathcal{E}_{h}^{\circ}\cup\mathcal{E}_{h}^{\partial}.

Throughout the paper, we will be working with functions that in general will not be continuous across mesh elements. For a scalar-valued function we will use the symbol [[w]]:=w+w[\![{w}]\!]:=w^{+}-w^{-} to refer to its jump across any given interior face. At the boundary faces, the jump will be defined as [[w]]:=wφh[\![{w}]\!]:=w-\varphi_{h}, where φh\varphi_{h} is the approximation of the boundary data at Γh\Gamma_{h} that will be defined later. In the case of vector-valued functions 𝒗\boldsymbol{v}, we will be interested in the discontinuity of its normal component across interior faces, which will be denoted by [[𝒗]]:=𝒗+𝒏++𝒗𝒏[\![{\boldsymbol{v}}]\!]:=\boldsymbol{v}^{+}\cdot\boldsymbol{n}^{+}+\boldsymbol{v}^{-}\cdot\boldsymbol{n}^{-}.

A remark on the local proximity condition and mesh refinement: The local proximity condition limits the minimum size that the elements near the boundary of an admissible triangulation can attain. Therefore, mesh refinement in this context must be understood as moving through a sequence of computational domains in the set {Ωh}h>0\{\Omega_{h}\}_{h>0} and their corresponding admissible triangulations in {𝒯h}h>0\{\mathcal{T}_{h}\}_{h>0} as the parameter h0h\to 0. As it will be shown later, the error estimates will not depend on the particular domain Ωh\Omega_{h} or triangulation 𝒯h\mathcal{T}_{h} as long as the three requirements on the mesh stated above are satisfied. Possible ways of building sequences of admissible triangulations and computational domians have been detailed in [7] for uniform meshes and in [18] for adaptively refined triangulations.

2.2 The extended domain

Having defined the family of polygonal subdomains and admissible triangulations on which the discretization will be performend, we will now proceed to detail the process through which the boundary information will be transferred from the boundary into the computational domain. In order to do that we will have to tessellate the region enclosed between the two boundaries Γ\Gamma and Γh\Gamma_{h} as follows.

Given a triangulation 𝒯h\mathcal{T}_{h} of the computational domain Ωh\Omega_{h} and a boundary face ehe\in\mathcal{E}_{h}^{\partial}, we will denote by TeT^{e} the unique element of 𝒯h\mathcal{T}_{h} such that eTe¯=ee\cap\overline{T^{e}}=e. To every point 𝒙e\boldsymbol{x}\in e, we will associate—in a smooth fashion—a point 𝒙¯Γ\overline{\boldsymbol{x}}\in\Gamma and set l(𝒙)=|𝒙𝒙¯|l(\boldsymbol{x})=|\boldsymbol{x}-\overline{\boldsymbol{x}}|. We will define the extension patch TexteT^{e}_{ext} as

Texte:={𝒙+s𝒕:0sl(𝒙),𝒙e},T^{e}_{ext}:=\{\boldsymbol{x}+s\boldsymbol{t}:0\leq s\leq l(\boldsymbol{x}),\boldsymbol{x}\in e\},

where 𝒕=𝒕(𝒙)\boldsymbol{t}=\boldsymbol{t}(\boldsymbol{x}) is the unit vector anchored at 𝒙\boldsymbol{x} and pointing in the direction of 𝒙¯\overline{\boldsymbol{x}}. With this notation, the line segment connecting 𝒙\boldsymbol{x} to 𝒙¯\overline{\boldsymbol{x}} can be parameterized by

σ𝒕(𝒙):={𝒙+s𝒕:s[0,l(𝒙)]}.\sigma_{\boldsymbol{t}}(\boldsymbol{x}):=\{\boldsymbol{x}+s\boldsymbol{t}:s\in[0,l(\boldsymbol{x})]\}.

The point 𝒙¯Γ\overline{\boldsymbol{x}}\in\Gamma and therefore the vector 𝒕(𝒙)\boldsymbol{t}(\boldsymbol{x}) can be specified in several ways. Here, we will consider that the point has been determined in such a way that

𝒕(𝒙)=𝒏 for all 𝒙e.\boldsymbol{t}(\boldsymbol{x})=\boldsymbol{n}\text{ for all }\boldsymbol{x}\in e. (2.1)

This assumption is made with the sole purpose of making the analysis simpler, it can in fact be relaxed to the existence of a constant a0a_{0} such that 0<a0𝒕(𝒙)𝒏0<a_{0}\leq\boldsymbol{t}(\boldsymbol{x})\cdot\boldsymbol{n} for every 𝒙\boldsymbol{x} belonging to a boundary edge. The numerical method described here is remarkably robust with respect to the method used to choose 𝒕(𝒙)\boldsymbol{t}(\boldsymbol{x}). Previously, the direction had been determined using the algorithm proposed by [7], which assigns 𝒙¯\overline{\boldsymbol{x}} in such a way that the three following conditions are satisfied: (1) 𝒙¯\overline{\boldsymbol{x}} is unique, (2) any two different line segments σ𝒕\sigma_{\boldsymbol{t}} do not intersect each other inside TexteT^{e}_{ext}, and (3) the segments σ𝒕\sigma_{\boldsymbol{t}} do not intersect the interior of Ωh\Omega_{h}. As it is proven in the aforementioned reference, these three conditions guarantee that the union of TexteT^{e}_{ext} completely covers Ωhc:=ΩΩh¯\Omega_{h}^{c}:=\Omega\setminus\overline{\Omega_{h}}. An alternate method was used and tested numerically in [17, 18], where 𝒕(𝒙)\boldsymbol{t}(\boldsymbol{x}) was determined using a weighted average of the normal vectors from neighboring boundary edges.

For an extended patch TexteT^{e}_{ext} and a mesh element Te𝒯hT^{e}\in\mathcal{T}_{h} sharing a boundary face ehe\in\mathcal{E}^{\partial}_{h}, we denote by heh_{e}^{\perp} (resp. HeH_{e}^{\perp}) the largest distance between a point inside TeT_{e} (resp. TexteT_{ext}^{e}) and the plane determined by the face ee. The ratio between these two distances will be denoted by re:=He/her_{e}:=H_{e}^{\perp}/h_{e}^{\perp} and the maximum such ratio taken over all the boundary edges will be denoted by R𝒯h:=maxehre\displaystyle R_{\mathcal{T}_{h}}:=\max_{e\in\mathcal{E}_{h}^{\partial}}r_{e}. Note that the local proximity condition will ensure the existence of a constant R, that we will call the proximity constant, independent of the particular triangulation 𝒯h\mathcal{T}_{h}, such that

R:=sup𝒯hR𝒯h=sup𝒯h{maxehre}<.R:=\sup_{\mathcal{T}_{h}}R_{\mathcal{T}_{h}}=\sup_{\mathcal{T}_{h}}\left\{\max_{e\in\mathcal{E}_{h}^{\partial}}\,r_{e}\right\}<\infty. (2.2)

We will also define the class of non-trivial vector-valued polynomials of degree at most kk defined in and across both patches as

𝒱k:={𝒑[k(TexteTe)]2:𝒑𝒏e𝟎}.\mathcal{V}^{k}:=\left\{\boldsymbol{p}\in\mathbb{[}\mathbb{P}_{k}(T^{e}_{ext}\cup T^{e})]^{2}\,:\,\boldsymbol{p}\cdot\boldsymbol{n}_{e}\neq\boldsymbol{0}\right\}.

We can then introduce, for all those elements with a non-empty intersection with the computational boundary, the element-wise constants

Cexte:=1resup𝝌𝒱k𝝌𝒏eTexte𝝌𝒏eTe and Cinve:=hesup𝝌𝒱k𝝌𝒏eTe𝝌𝒏eTe,C^{e}_{ext}:=\dfrac{1}{\sqrt{r_{e}}}\sup_{\boldsymbol{\chi}\in\mathcal{V}^{k}}\dfrac{\|\boldsymbol{\chi}\cdot\boldsymbol{n}_{e}\|_{T_{ext}^{e}}}{\|\boldsymbol{\chi}\cdot\boldsymbol{n}_{e}\|_{T^{e}}}\quad\text{ and }\quad C^{e}_{inv}:=h_{e}^{\perp}\sup_{\boldsymbol{\chi}\in\mathcal{V}^{k}}\dfrac{\|\nabla\boldsymbol{\chi}\cdot\boldsymbol{n}_{e}\|_{T^{e}}}{\|\boldsymbol{\chi}\cdot\boldsymbol{n}_{e}\|_{T^{e}}},

where, in abuse of notation, 𝒏e\boldsymbol{n}_{e} is a constant vector field defined in TexteTeeT^{e}_{ext}\cup T^{e}\cup\,e that coincides with the unit exterior normal vector associated to the face ee and pointing in the direction of the extension patch. Above, the norms Texte\|\cdot\|_{T^{e}_{ext}} and Te\|\cdot\|_{T^{e}} are the standard L2L^{2} norms supported on the extension patch TexteT^{e}_{ext} and its neighboring element TeT^{e} respectively. In [5], these constants were bounded in terms of the polynomial degree of the approximation, kk, and the regularity constant of the mesh, β\beta, as

CexteC1(k+1)2(3β+2)k,CinveC2k2,C^{e}_{ext}\leq C_{1}(k+1)^{2}(3\beta+2)^{k}\,,\qquad C^{e}_{inv}\leq C_{2}k^{2}, (2.3)

where C1C_{1} and C2C_{2} depend only on the mesh regularity. As we will see below, these constants will determine the magnitude of the proximity constant and therefore the maximum admissible gap between the computational and physical boundaries.

We will also need to make two technical assumptions relating the proximity constant to the and the diffusion coefficient κ\kappa and the degree of the polynomial approximation. For each ehe\in\mathcal{E}_{h}^{\partial} we will require the following to hold:

He13κ¯τ¯1,\displaystyle H_{e}^{\perp}\,\leq\frac{1}{3}\,\underline{\kappa}\,\overline{\tau}\,^{-1}, (2.4a)
κ¯κ¯1re3(CexteCinve)21,\displaystyle\overline{\kappa}\,\underline{\kappa}^{-1}\,r_{e}^{3}\,(C_{ext}^{e}\,C_{inv}^{e})^{2}\leq 1, (2.4b)

where κ¯\underline{\kappa} and κ¯\overline{\kappa} are the lower and upper bounds of κ\kappa, resp., specified in (3.1), whereas τ¯\overline{\tau} is the maximum of the stabilization parameter τ\tau of the HDG scheme. The first of these two conditions, (2.4a), states the well known fact that for small values of the diffusivity, small scale behavior can be expected near the physical boundary, and therefore fine extension patches are required. However, it also provides the additional insight that the distance between the boundaries can be increased at the cost of accepting smaller values of the stabilization factor τ\tau—and hence larger discontinuities in the discrete solution. In a similar vein, (2.4b) relates the range of values of the diffusion coefficient with the maximum separation between the computational and physical boundaries, thus making sure that the external patches are fine enough to resolve possible boundary behavior induced by large variations in diffusivity over the domain. Moreover, it sets a hard upper limit to the mechanism that allows for a larger separation by decreasing τ\tau.

By combining (2.3) with (2.4) it is not hard to show that, for k>0k>0, HeH^{\perp}_{e} must be bounded as

Hemin{he(C1C2)2(κ¯1κ¯k4(k+1)4(3β+1)2k)1/3,13κ¯τ¯1}.H^{\perp}_{e}\leq\min\left\{\frac{h^{\perp}_{e}}{(C_{1}C_{2})^{2}}\left(\frac{\overline{\kappa}^{-1}\underline{\kappa}}{k^{4}(k+1)^{4}(3\beta+1)^{2k}}\right)^{1/3},\,\frac{1}{3}\underline{\kappa}\,\overline{\tau}^{-1}\right\}.

This expression provides insight into the way in which the physics of the problem—through the range of values for κ\kappa—interacts with the discretization—through the parameters HeH^{\perp}_{e}, heh^{\perp}_{e}, kk, β\beta, and τ\tau—and determines the maximum separation between the physical boundary and that of an admissible triangulation. Of particular note is the role played by the polynomial degree of the approximation: for larger values of kk the distance between the mesh and the boundary must decrease. The reason for this will become apparent soon, as we will resort to extrapolation to approximate some quantities over the extension patches.

2.3 An equivalent mixed formulation and the transfer paths

Having established the requirements for an admissible triangulation, and defined the extension patches TexteT^{e}_{ext} in such a way that for each of them there corresponds a single Te𝒯hT^{e}\in\mathcal{T}_{h}, we can define a way to extend polynomial functions from the computational domain into Ωhc\Omega_{h}^{c}. This extension process will enable us to transfer the boundary condition from Γ\Gamma into the computational boundary Γh\Gamma_{h}. Let p:Tep:T^{e}\to\mathbb{R} be a polynomial function and TexteT^{e}_{ext} an extension patch associated to TeT^{e}. We will define the extension 𝑬h(p)\boldsymbol{E}_{h}(p) of pp to TexteT^{e}_{ext} by extrapolation as follows:

Eh:k(Te)\displaystyle E_{h}:\quad\mathbb{P}_{k}(T^{e}) \displaystyle\,\longrightarrow k(TeTexte)\displaystyle\,\mathbb{P}_{k}(T^{e}\cup T^{e}_{ext})
p(𝒚)𝒚Te\displaystyle p(\boldsymbol{y})\;\forall\,\boldsymbol{y}\in T^{e} \displaystyle\,\longmapsto p(𝒚)𝒚TeTexte.\displaystyle\,p(\boldsymbol{y})\;\forall\,\boldsymbol{y}\in T^{e}\cup T^{e}_{ext}.

Where, to keep notation simple, a polynomial function pp should be understood as its extrapolation Eh(p)E_{h}(p) whenever an evaluation outside of Ωh\Omega_{h} is required, which should be clear from the context. For vector-valued polynomial functions, the extension is defined similarly component by component.

To avoid computing on a domain with curved boundary, we wish to pose the boundary vaue problem (1.1) polygonal subdomain ΩhΩ\Omega_{h}\subset\Omega. This simpler geometry can then be discretized by a uniform triangulation of size satisfying the conditions outlined in sections 2.1 and 2.2.

Recasting (1.1) in mixed form and restricting the resulting equivalent first order system to Ωh\Omega_{h} leads to

𝒒+κu\displaystyle\boldsymbol{q}+\kappa\,\nabla u =0\displaystyle=0 in Ωh\displaystyle\text{ in }\Omega_{h} (2.5a)
𝒒\displaystyle\nabla\cdot\boldsymbol{q} =f(u)\displaystyle=f(u) in Ωh,\displaystyle\text{ in }\Omega_{h}, (2.5b)
u\displaystyle u =φ\displaystyle=\varphi on Γh:=Ωh,\displaystyle\text{ on }\Gamma_{h}:=\partial\Omega_{h}, (2.5c)

where the specific relation between κ\kappa, uu and u\nabla\,u has not been made explicit, and the—a priori unknown—function φ\varphi encodes the restriction of uu to the computational boundary Γh\Gamma_{h}. We can recover φ\varphi following the method proposed by [4] (in one dimension) and extended to higher dimensions by [7]. The idea consists of transferring the Dirichlet data gg from Γ\Gamma to Γh\Gamma_{h} along segments called transfer paths by computing a line integral of the flux 𝒒\boldsymbol{q}.

To be precise, given 𝒙Γh\boldsymbol{x}\in\Gamma_{h} and 𝒙¯Γ\overline{\boldsymbol{x}}\in\Gamma, equation (2.5a) can be integrated along the segment connecting them. Lets denote by 𝒕(𝒙)\boldsymbol{t}(\boldsymbol{x}) the unit vector anchored at 𝒙\boldsymbol{x} pointing towards 𝒙¯\overline{\boldsymbol{x}}, and by l(𝒙)l(\boldsymbol{x}) the length of the segment connecting them. We then have the following representation for φ\varphi:

φ:=g(𝒙¯)+0l(𝒙)(κ1𝒒)(𝒙+𝒕(𝒙)s)𝒕(𝒙)𝑑s.\varphi:=g(\overline{\boldsymbol{x}})+\int_{0}^{l(\boldsymbol{x})}(\kappa^{-1}\,\boldsymbol{q})(\boldsymbol{x}+\boldsymbol{t}(\boldsymbol{x})s)\cdot\boldsymbol{t}(\boldsymbol{x})ds. (2.6)

Note that φ\varphi depends on the values of either uu or u\nabla\,u (through κ1\kappa^{-1}), and 𝒒\boldsymbol{q} over the extended domain Ωhc\Omega_{h}^{c}. As such, we should write φ=φ(u,u,𝒒,𝒙)\varphi=\varphi(u,\nabla\,u,\boldsymbol{q},\boldsymbol{x}) however, to keep notation simple, we will abstain from this and will write simply φ\varphi. In a similar fashion, g(𝒙¯)g(\overline{\boldsymbol{x}}) is in fact a function of 𝒙\boldsymbol{x}, since the point 𝒙¯\overline{\boldsymbol{x}} varies smoothly with 𝒙\boldsymbol{x}. To avoid the use of cumbersome notation we will write either g(𝒙¯)g(\overline{\boldsymbol{x}}) or simply g¯:=g(𝒙¯(𝒙))\overline{g}:=g(\overline{\boldsymbol{x}}(\boldsymbol{x})).

2.4 Sobolev space notation

To denote spaces of functions we will make use of the standard notation and terminology from Sobolev space theory. Let 𝒪\mathcal{O} be a domain in d\mathbb{R}^{d}, and Σ\Sigma be either a Lipschitz curve (if d=2d=2) or surface (if d=3d=3); for scalar-valued functions and non zero real numbers ss, we will use the spaces Hs(𝒪)H^{s}(\mathcal{O}) and Hs(Σ)H^{s}(\Sigma) with their usual definition, whereas for the case s=0s=0 we will write simply L2(𝒪)L^{2}(\mathcal{O}) and L2(Σ)L^{2}(\Sigma). The spaces of vector-valued functions will be denoted in bold face, therefore 𝑯s(𝒪):=[Hs(𝒪)]d\boldsymbol{H}^{s}(\mathcal{O}):=[H^{s}(\mathcal{O})]^{d} and 𝑯s(Σ):=[Hs(Σ)]d\boldsymbol{H}^{s}(\Sigma):=[H^{s}(\Sigma)]^{d}.

The L2L^{2} inner products for both scalar and vector-valued functions on volumes and surfaces will be denoted by (,)𝒪(\cdot,\cdot)_{\mathcal{O}} and ,Σ\left\langle\cdot,\cdot\right\rangle_{\Sigma} respectively. The associated norms will be denoted by s,𝒪\|\cdot\|_{s,\mathcal{O}} and s,Σ\|\cdot\|_{s,\Sigma} and simply 𝒪\|\cdot\|_{\mathcal{O}} for the case s=0s=0. As is common, will we write ||s,𝒪|\cdot|_{s,\mathcal{O}} for the 𝑯s\boldsymbol{H}^{s} and HsH^{s}-semi norms.

Given a triangulation 𝒯h\mathcal{T}_{h} we will define the following mesh-dependent inner products over elements and edges

(,)𝒯h:=T𝒯h(,)T,,𝒯h:=T𝒯h,T and ,Γh:=eh,e.(\cdot,\cdot)_{\mathcal{T}_{h}}:=\sum_{T\in\mathcal{T}_{h}}(\cdot,\cdot)_{T},\qquad\left\langle\cdot,\cdot\right\rangle_{\partial\mathcal{T}_{h}}:=\sum_{T\in\mathcal{T}_{h}}\left\langle\cdot,\cdot\right\rangle_{\partial T}\quad\text{ and }\quad\langle\cdot,\cdot\rangle_{\Gamma_{h}}:=\sum_{e\in\mathcal{E}_{h}^{\partial}}\langle\cdot,\cdot\rangle_{e}.

These inner products induce mesh-dependent norms that will be denoted, respectively, by

Ωh:=(T𝒯hT2)1/2,𝒯h:=(T𝒯hT2)1/2 and Γh:=(ehe2)1/2.\|\cdot\|_{\Omega_{h}}:=\left(\sum_{T\in\mathcal{T}_{h}}\|\cdot\|_{T}^{2}\right)^{1/2},\qquad\|\cdot\|_{\partial\mathcal{T}_{h}}:=\left(\sum_{T\in\mathcal{T}_{h}}\|\cdot\|_{\partial T}^{2}\right)^{1/2}\quad\text{ and }\quad\|\cdot\|_{\Gamma_{h}}:=\left(\sum_{e\in\mathcal{E}_{h}^{\partial}}\|\cdot\|_{e}^{2}\right)^{1/2}.

In the forthcoming analysis, the expression aba\lesssim b should be understood as meaning aCba\leq Cb where CC is a positive constant independent of hh.

For the discrete formulations that will be introduced in the next sections, we will make use of the following finite dimensional spaces of piece-wise polynomial functions

𝑽h\displaystyle\boldsymbol{V}_{h} :={𝒗𝑳2(𝒯h):𝒗|T[k(T)]d,T𝒯h},\displaystyle:=\{\boldsymbol{v}\in\boldsymbol{L}^{2}(\mathcal{T}_{h}):\boldsymbol{v}|_{T}\in[\mathds{P}_{k}(T)]^{d},\ \forall\ T\in\mathcal{T}_{h}\}, (2.7a)
Wh\displaystyle W_{h} :={wL2(𝒯h):w|Tk(T),T𝒯h},\displaystyle:=\{w\in L^{2}(\mathcal{T}_{h}):w|_{T}\in\mathds{P}_{k}(T),\ \forall\ T\in\mathcal{T}_{h}\}, (2.7b)
Mh\displaystyle M_{h} :={μL2(h):μ|Tk(e),eh},\displaystyle:=\{\mu\in L^{2}(\mathcal{E}_{h}):\mu|_{T}\in\mathds{P}_{k}(e),\ \forall\ e\in\mathcal{E}_{h}\}, (2.7c)

where, k(T)\mathds{P}_{k}(T) denotes the space of polynomials of degree at most kk defined in T𝒯hT\in\mathcal{T}_{h}. Similarly, k(e)\mathds{P}_{k}(e) denotes the space of polynomials of degree at most kk defined over a face ehe\in\mathcal{E}_{h}.

3 Non-linearities of the form κ(u)\kappa(u)

3.1 The HDG formulation

We will first consider the case when the coefficient κ\kappa depends on the solution in the form

κ:\displaystyle\kappa:\, L2(Ω)\displaystyle L^{2}(\Omega) \displaystyle\longrightarrow L(Ω¯)\displaystyle\;L^{\infty}(\overline{\Omega})
u\displaystyle u \displaystyle\longmapsto κ(u).\displaystyle\kappa(u).

For the analysis, we will require the existence of positive constants κ¯\underline{\kappa} and κ¯\overline{\kappa} such that for all uL2(Ω)u\in L^{2}(\Omega)

κ¯κ(u)κ¯ almost everywhere in Ω.\underline{\kappa}\leq\kappa(u)\leq\overline{\kappa}\quad\,\text{ almost everywhere in }\Omega. (3.1)

Moreover, κ\kappa will be assumed to be Lipschitz-continuous on L2(Ω)L^{2}(\Omega), i.e, there exists L~>0\tilde{L}>0 such that

κ(u1)κ(u2)L(Ω)L~u1u2L2(Ω)u1,u2L2(Ω).\|\kappa(u_{1})-\kappa(u_{2})\|_{L^{\infty}(\Omega)}\leq\tilde{L}\|u_{1}-u_{2}\|_{L^{2}(\Omega)}\qquad\forall\,u_{1},u_{2}\in L^{2}(\Omega). (3.2)

The two conditions above, together, imply the existence of constants L^\widehat{L} and LL such that

κ1/2(u1)κ1/2(u2)L(Γ)\displaystyle\|\kappa^{1/2}(u_{1})-\kappa^{1/2}(u_{2})\|_{L^{\infty}(\Gamma)}\leq\, L^u1u2L2(Ω)\displaystyle\widehat{L}\|u_{1}-u_{2}\|_{L^{2}(\Omega)} u1,u2L2(Ω),\displaystyle\forall\,u_{1},u_{2}\in L^{2}(\Omega), (3.3)
κ1(u1)κ1(u2)L(Ω¯)\displaystyle\|\kappa^{-1}(u_{1})-\kappa^{-1}(u_{2})\|_{L^{\infty}(\overline{\Omega})}\leq\, Lu1u2L2(Ω)\displaystyle L\|u_{1}-u_{2}\|_{L^{2}(\Omega)} u1,u2L2(Ω).\displaystyle\forall\,u_{1},u_{2}\in L^{2}(\Omega). (3.4)

Note that all these assumptions imply the Lipschitz continuity of κ,κ1/2\kappa,\kappa^{1/2}, and κ1\kappa^{-1} on the subdomain ΩhΩ\Omega_{h}\subset\Omega with corresponding Lipschitz constants equal to or smaller than those stated above.

Before introducing the discrete formulation we will recall here the mixed form (2.5), but now we make explicit the dependence κ=κ(u)\kappa=\kappa(u)

𝒒+κ(u)u\displaystyle\boldsymbol{q}+\kappa(u)\,\nabla u =0\displaystyle=0 in Ωh,\displaystyle\text{ in }\Omega_{h}, (3.5a)
𝒒\displaystyle\nabla\cdot\boldsymbol{q} =f(u)\displaystyle=f(u) in Ωh,\displaystyle\text{ in }\Omega_{h}, (3.5b)
u\displaystyle u =φ\displaystyle=\varphi on Ωh.\displaystyle\text{ on }\partial\Omega_{h}. (3.5c)

The boundary data φ\varphi on the computational boundary Γh\Gamma_{h} is transferred according to (2.6).

Taking an admissible triangulation 𝒯h\mathcal{T}_{h} of the computational domain Ωh\Omega_{h}, the HDG discretization of (3.5) reads: Find (𝒒h,uh,u^h)𝑽h×Wh×Mh(\boldsymbol{q}_{h},u_{h},\widehat{u}_{h})\in\boldsymbol{V}_{h}\times W_{h}\times M_{h}, such that

(κ1(uh)𝒒h,𝒗)𝒯h(uh,𝒗)𝒯h+u^h,𝒗𝒏𝒯h\displaystyle(\kappa^{-1}(u_{h})\,\boldsymbol{q}_{h},\boldsymbol{v})_{\mathcal{T}_{h}}-(u_{h},\nabla\cdot\boldsymbol{v})_{\mathcal{T}_{h}}+\langle\widehat{u}_{h},\boldsymbol{v}\cdot\boldsymbol{n}\rangle_{\partial\mathcal{T}_{h}} =0,\displaystyle=0, (3.6a)
(𝒒h,w)𝒯h+𝒒^h𝒏,w𝒯h\displaystyle-(\boldsymbol{q}_{h},\nabla w)_{\mathcal{T}_{h}}+\langle\widehat{\boldsymbol{q}}_{h}\cdot\boldsymbol{n},w\rangle_{\partial\mathcal{T}_{h}} =(f(uh),w)𝒯h,\displaystyle=(f(u_{h}),w)_{\mathcal{T}_{h}}, (3.6b)
u^h,μΓh\displaystyle\langle\widehat{u}_{h},\mu\rangle_{\Gamma_{h}} =φh(uh),μΓh,\displaystyle=\langle\varphi_{h}(u_{h}),\mu\rangle_{\Gamma_{h}}, (3.6c)
𝒒^h𝒏,μ𝒯hΓh\displaystyle\langle\widehat{\boldsymbol{q}}_{h}\cdot\boldsymbol{n},\mu\rangle_{\partial\mathcal{T}_{h}\setminus\Gamma_{h}} =0,\displaystyle=0, (3.6d)
for all (𝒗,w,μ)𝑽h×Wh×Mh(\boldsymbol{v},w,\mu)\in\boldsymbol{V}_{h}\times W_{h}\times M_{h}. Here
𝒒^h𝒏:=𝒒h𝒏+τ(uhu^h)on𝒯h\widehat{\boldsymbol{q}}_{h}\cdot\boldsymbol{n}:=\boldsymbol{q}_{h}\cdot\boldsymbol{n}+\tau(u_{h}-\widehat{u}_{h})\quad\textrm{on}\quad\partial\mathcal{T}_{h}
with τ\tau being a positive stabilization function, whose maximum will be denoted by τ¯\overline{\tau}. The approximate boundary condition φh\varphi_{h} on the right hand side of (3.6c) is given by the discrete counterpart of (2.6)
φh(uh)(𝒙):=g(𝒙¯)+0l(𝒙)(κ1(uh)Eh𝒒h)(𝒙+𝒕(𝒙)s)𝒕(𝒙))ds,for𝒙Γh.\varphi_{h}(u_{h})(\boldsymbol{x}):=g(\overline{\boldsymbol{x}})+\int_{0}^{l(\boldsymbol{x})}(\kappa^{-1}(u_{h})\,E_{h}\boldsymbol{q}_{h})(\boldsymbol{x}+\boldsymbol{t}(\boldsymbol{x})s)\cdot\boldsymbol{t}(\boldsymbol{x}))ds,\quad\textrm{for}\quad\boldsymbol{x}\in\Gamma_{h}. (3.6e)

In the definition above, we have used the extrapolation Eh𝒒hE_{h}\boldsymbol{q}_{h} due to the fact that the approximation 𝒒h\boldsymbol{q}_{h} is available only inside of the computational domain Ωh\Omega_{h}, but the transfer paths along which the integral is computed are defined over the complementary extended region Ωhc\Omega_{h}^{c}.

3.2 Well-posedness

In this section we employ a Banach fixed-point argument to ensure the well-posedness of the discrete problem (3.6). To that end we will define an operator 𝒥:WhWh\mathcal{J}:W_{h}\to W_{h} mapping ζ\zeta to the second component of the triplet (𝒒,u,u^)𝑽h×Wh×Mh(\boldsymbol{q},u,\widehat{u})\in\boldsymbol{V}_{h}\times W_{h}\times M_{h} satisfying, for all (𝒗,w,μ)𝑽h×Wh×Mh(\boldsymbol{v},w,\mu)\in\boldsymbol{V}_{h}\times W_{h}\times M_{h}, the HDG system (3.6) where the source has been evaluated at ζ\zeta, namely

(κ1(ζ)𝒒,𝒗)𝒯h(u,𝒗)𝒯h+u^,𝒗𝒏𝒯h\displaystyle(\kappa^{-1}(\zeta)\,\boldsymbol{q},\boldsymbol{v})_{\mathcal{T}_{h}}-(u,\nabla\cdot\boldsymbol{v})_{\mathcal{T}_{h}}+\left\langle\widehat{u},\boldsymbol{v}\cdot\boldsymbol{n}\right\rangle_{\partial\mathcal{T}_{h}} =0,\displaystyle=0, (3.7a)
(𝒒,w)𝒯h+𝒒^𝒏,w𝒯h\displaystyle-(\boldsymbol{q},\nabla w)_{\mathcal{T}_{h}}+\langle\widehat{\boldsymbol{q}}\cdot\boldsymbol{n},w\rangle_{\partial\mathcal{T}_{h}} =(f(ζ),w)𝒯h,\displaystyle=(f(\zeta),w)_{\mathcal{T}_{h}}, (3.7b)
u^,μΓh\displaystyle\langle\widehat{u},\mu\rangle_{\Gamma_{h}} =φ(ζ),μΓh,\displaystyle=\langle\varphi(\zeta),\mu\rangle_{\Gamma_{h}}, (3.7c)
𝒒^𝒏,μ𝒯hΓh\displaystyle\langle\widehat{\boldsymbol{q}}\cdot\boldsymbol{n},\mu\rangle_{\partial\mathcal{T}_{h}\setminus\Gamma_{h}} =0.\displaystyle=0. (3.7d)

Above, the term φ(ζ)\varphi(\zeta) corresponds to the boundary condition transferred to the computational domain by means of (3.6e). The mapping 𝒥\mathcal{J} is well defined, as the linearized system (3.7) is uniquely solvable as proven in [5].

The main result of this section—that the mapping 𝒥\mathcal{J} defined above is a contraction—relies on the validity of a particular inequality—estimate (3.8) below—but is otherwise a simple argument. Since the proof of (3.8) requires a sequence of technical arguments, in the interest of clarity (we will first prove the main theorem assuming that the aforementioned inequality is valid. After having established the well posedness of the discrete problem, the reminder of the section will be devoted to verifying the validity of (3.8). This will be finally established in Lemma 4, after a series of auxiliary results.

Theorem 1 (Well-posedness of the discrete problem).

Suppose that Assumptions (2.4) are satisfied and that additionally

(3c^+κ¯1/2R1/2)l1/2g¯ΓhL^h1/2<1/4,\displaystyle(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})\,\|l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}\,\widehat{L}\,h^{1/2}<1/4,
max{c^2h,1}Lf<1/8,\displaystyle\max\{\widehat{c}^{2}h,1\}\,L_{f}<1/8,

where c^\widehat{c} is the constant given in Lemma 4. Then 𝒥\mathcal{J} is a contraction operator.

Proof.

Let ζ1,ζ2Wh\zeta_{1},\zeta_{2}\in W_{h} and define u1:=𝒥(ζ1)u_{1}:=\mathcal{J}(\zeta_{1}) and u2:=𝒥(ζ2)u_{2}:=\mathcal{J}(\zeta_{2}). Then u1u_{1} and u2u_{2} are the second components of solutions to (3.7) and Lemma 4 guarantees that

𝒥(ζ1)𝒥(ζ2)Ωh=u1u2Ωh\displaystyle\|\mathcal{J}(\zeta_{1})-\mathcal{J}(\zeta_{2})\|_{\Omega_{h}}=\|u_{1}-u_{2}\|_{\Omega_{h}}
4max{c^2h,1}f(ζ1)f(ζ2)Ωh+2(3c^+κ¯1/2R1/2)h1/2(κ1/2(ζ1)κ1/2(ζ2))l1/2g¯Γh.\displaystyle\quad\leq 4\,\max\{\widehat{c}^{2}h,1\}\,\|f(\zeta_{1})-f(\zeta_{2})\|_{\Omega_{h}}+2\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})\,h^{1/2}\,\|(\kappa^{1/2}(\zeta_{1})-\kappa^{1/2}(\zeta_{2}))\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}. (3.8)

Then, applying the Lipschitz-continuity of ff and κ1/2\kappa^{1/2}—given respectively in (1.2) and (3.2)—we get

4max{c^2h,1}Lfζ1ζ2Ωh+2(3c^+κ¯1/2R1/2)h1/2κ1/2(ζ1)κ1/2(ζ2)L(Γh)l1/2g¯Γh\displaystyle\quad\leq 4\,\max\{\widehat{c}^{2}h,1\}\,L_{f}\,\|\zeta_{1}-\zeta_{2}\|_{\Omega_{h}}+2\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})\,h^{1/2}\,\|\kappa^{1/2}(\zeta_{1})-\kappa^{1/2}(\zeta_{2})\|_{L^{\infty}(\Gamma_{h})}\,\|l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}
4max{c^2h,1}Lfζ1ζ2Ωh+2(3c^+κ¯1/2R1/2)L^h1/2ζ1ζ2Ωhl1/2g¯Γh.\displaystyle\quad\leq 4\,\max\{\widehat{c}^{2}h,1\}\,L_{f}\,\|\zeta_{1}-\zeta_{2}\|_{\Omega_{h}}+2\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})\,\widehat{L}\,h^{1/2}\,\|\zeta_{1}-\zeta_{2}\|_{\Omega_{h}}\,\|l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}.

The result follows from the hypothesis for L^\widehat{L} and LfL_{f} . ∎

Combined with a standard fixed-point argument, the theorem above guarantees the existence and uniqueness of the solution to the discrete HDG system. We will now direct our efforts to showing that inequality (3.8) holds. To that end we will make use of the following auxiliary function and its properties listed in the lemma below—the proof of which can be found on [5, Lemma 5.2].

Lemma 1.

Consider 𝐱Γh\boldsymbol{x}\in\Gamma_{h} and any smooth enough function 𝐯\boldsymbol{v} defined in TeTexteT^{e}\cup T_{ext}^{e}, and define

δ𝒗(𝒙):=1l(𝒙)0l(𝒙)[𝒗(𝒙+𝒏s)𝒗(𝒙)]𝒏𝑑s.\delta_{\boldsymbol{v}}(\boldsymbol{x}):=\dfrac{1}{l(\boldsymbol{x})}\int_{0}^{l(\boldsymbol{x})}[\boldsymbol{v}(\boldsymbol{x}+\boldsymbol{n}s)-\boldsymbol{v}(\boldsymbol{x})]\cdot\boldsymbol{n}\,ds. (3.9)

The following estimates hold for each ehe\in\mathcal{E}_{h}^{\partial}:

l1/2δ𝒗e\displaystyle\|l^{1/2}\,\delta_{\boldsymbol{v}}\|_{e} 13re3/2CexteCinve𝒗Te\displaystyle\leq\dfrac{1}{\sqrt{3}}\,r_{e}^{3/2}\,C_{ext}^{e}\,C_{inv}^{e}\,\|\boldsymbol{v}\|_{T^{e}} 𝒗[k(T)]d,\displaystyle\forall\ \boldsymbol{v}\in[\mathds{P}_{k}(T)]^{d}, (3.10a)
l1/2δ𝒗e\displaystyle\|l^{1/2}\,\delta_{\boldsymbol{v}}\|_{e} 13rehn𝒗𝒏Texte\displaystyle\leq\dfrac{1}{\sqrt{3}}\,r_{e}\,\|h^{\perp}\partial_{n}\boldsymbol{v}\cdot\boldsymbol{n}\|_{T_{ext}^{e}} 𝒗[H1(T)]d.\displaystyle\forall\ \boldsymbol{v}\in[H^{1}(T)]^{d}. (3.10b)
l1/2δ𝒗\displaystyle\|l^{1/2}\,\delta_{\boldsymbol{v}}\|_{\infty} 13resup𝒙ehen𝒗𝒏l(𝒙)\displaystyle\leq\dfrac{1}{\sqrt{3}}\,r_{e}\,\sup_{\boldsymbol{x}\in e}\|h_{e}^{\perp}\,\partial_{n}\boldsymbol{v}\cdot\boldsymbol{n}\|_{l(\boldsymbol{x})} 𝒗[H1(T)]d.\displaystyle\forall\ \boldsymbol{v}\in[H^{1}(T)]^{d}. (3.10c)

For the subsequent analysis, we will also make use of the following norm. Given(𝒗,w,μ)𝑽h×Wh×Mh(\boldsymbol{v},w,\mu)\in\boldsymbol{V}_{h}\times W_{h}\times M_{h} and ξMh\xi\in M_{h} we define

|(𝒗,w,μ)|ξ\displaystyle|\!|\!|{(\boldsymbol{v},w,\mu)}|\!|\!|_{\xi} :=(κ1/2(ξ)𝒗Ωh2+τ1/2w𝒯h2+κ1/2(ξ)l1/2μ(ξ)Γh2)1/2.\displaystyle:=\left(\|\kappa^{-1/2}(\xi)\boldsymbol{v}\|_{\Omega_{h}}^{2}+\|\tau^{1/2}\,w\|_{\partial\mathcal{T}_{h}}^{2}+\|\kappa^{1/2}(\xi)\,l^{-1/2}\,\mu(\xi)\|_{\Gamma_{h}}^{2}\right)^{1/2}. (3.11)

The proof of (3.8) requires considering the solution ϕ\phi to an auxiliary problem (c.f. (B.1) ) and using a duality argument that connects a stability estimate for ϕ\phi with our variables of interest. This will be done in Lemma 4. Lemmas 2 and 3 below establish estimates relating the norm (3.11) of the solution (𝒒,u,u^)(\boldsymbol{q},u,\widehat{u}) to problem data that will be used in the final step of Lemma 4.

Lemma 2.

Let φ\varphi be the transferred boundary condition appearing in (3.7) and suppose that assumptions (2.4) are satisfied. It holds

φ(ζ),δ𝒒Γh\displaystyle\langle\varphi(\zeta),\delta_{\boldsymbol{q}}\rangle_{\Gamma_{h}} 16κ1/2(ζ)l1/2φ(ζ)Γh2+12κ1/2(ζ)𝒒Ωh2,\displaystyle\leq\dfrac{1}{6}\,\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\varphi(\zeta)\|^{2}_{\Gamma_{h}}+\dfrac{1}{2}\,\|\kappa^{-1/2}(\zeta)\,\boldsymbol{q}\|_{\Omega_{h}}^{2},
φ(ζ),τ(uu^)Γh\displaystyle\langle\varphi(\zeta),\tau(u-\widehat{u})\rangle_{\Gamma_{h}} 16κ1/2(ζ)l1/2φ(ζ)Γh2+12τ1/2(uu^)𝒯h2,\displaystyle\leq\dfrac{1}{6}\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\varphi(\zeta)\|^{2}_{\Gamma_{h}}+\dfrac{1}{2}\|\tau^{1/2}(u-\widehat{u})\|^{2}_{\partial\mathcal{T}_{h}},
φ(ζ),κ(ζ)l1g¯Γh\displaystyle\langle\varphi(\zeta),\kappa(\zeta)\,l^{-1}\,\overline{g}\rangle_{\Gamma_{h}} 16κ1/2(ζ)l1/2φ(ζ)Γh2+32κ1/2(ζ)l1/2g¯Γh2,\displaystyle\leq\dfrac{1}{6}\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\varphi(\zeta)\|^{2}_{\Gamma_{h}}+\dfrac{3}{2}\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\overline{g}\|^{2}_{\Gamma_{h}},

where g¯(𝐱)=g(𝐱¯(𝐱))𝐱Γh\overline{g}(\boldsymbol{x})=g(\overline{\boldsymbol{x}}(\boldsymbol{x}))\,\forall\,\boldsymbol{x}\in\Gamma_{h}.

Proof.

The first inequality is obtained after applying Young’s inequality and estimate (B.5a), whereas the second inequality follows from assumption (2.2) and (2.4a). The third inequality follows from Young’s inequality exclusively. ∎

Lemma 3.

If Assumptions (2.4) hold, then

|(𝒒,uu^,φ)|ζ2\displaystyle|\!|\!|{(\boldsymbol{q},u-\widehat{u},\varphi)}|\!|\!|_{\zeta}^{2} 2f(ζ)ΩhuΩh+3κ1/2(ζ)l1/2g¯Γh2.\displaystyle\leq 2\|f(\zeta)\|_{\Omega_{h}}\|u\|_{\Omega_{h}}+3\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}^{2}.
Proof.

Let ζWh\zeta\in W_{h} and u=𝒥(ζ)Whu=\mathcal{J}(\zeta)\in W_{h}. Since uu defined this way is the solution to the discrete system (3.7), then testing (3.7) with

𝒗=𝒒,w=u,μ:={𝒒^𝒏on Γh,u^on 𝒯hΓh\boldsymbol{v}=\boldsymbol{q},\quad w=u,\quad\mu:=\left\{\begin{array}[]{rcl}-\widehat{\boldsymbol{q}}\cdot\boldsymbol{n}&&\text{on }\Gamma_{h},\\ -\widehat{u}&&\text{on }\partial\mathcal{T}_{h}\setminus\Gamma_{h}\end{array}\right.

we deduce that

κ1/2(ζ)𝒒Ωh2+τ1/2(uu^)𝒯h2=φ(ζ),𝒒^𝒏Γh+(f(ζ),u)𝒯h.\|\kappa^{-1/2}(\zeta)\,\boldsymbol{q}\|^{2}_{\Omega_{h}}+\|\tau^{1/2}\,(u-\widehat{u})\|^{2}_{\partial\mathcal{T}_{h}}=-\left\langle\varphi(\zeta),\widehat{\boldsymbol{q}}\cdot\boldsymbol{n}\right\rangle_{\Gamma_{h}}+(f(\zeta),u)_{\mathcal{T}_{h}}. (3.12)

On the other hand, we can use the definition of φ\varphi and δ𝒒\delta_{\boldsymbol{q}} (cf. (3.6e) and (B.4)) to show that

𝒒^𝒏=κ(ζ)l1(φ(ζ)g¯)δ𝒒+τ(uu^).\widehat{\boldsymbol{q}}\cdot\boldsymbol{n}=\kappa(\zeta)\,l^{-1}(\varphi(\zeta)-\overline{g})-\delta_{\boldsymbol{q}}+\tau(u-\widehat{u}).

Substituting the expression for 𝒒^𝒏\widehat{\boldsymbol{q}}\cdot\boldsymbol{n} above in (3.12) , we obtain

κ1/2(ζ)𝒒Ωh2+τ1/2(uu^)𝒯h2+κ1/2(ζ)l1/2φ(ζ)Γh2=|(𝒒,uu^,φ)|ζ2|φ(ζ),κ(ζ)l1g¯Γh|+|φ(ζ),δ𝒒Γh|+|φ(ζ),τ(uu^)Γh|+|(f(ζ),u)𝒯h|.\begin{array}[]{rl}\|\kappa^{-1/2}(\zeta)\,\boldsymbol{q}\|^{2}_{\Omega_{h}}&+\,\|\tau^{1/2}\,(u-\widehat{u})\|^{2}_{\partial\mathcal{T}_{h}}+\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\varphi(\zeta)\|_{\Gamma_{h}}^{2}\\[8.61108pt] &=|\!|\!|{(\boldsymbol{q},u-\widehat{u},\varphi)}|\!|\!|_{\zeta}^{2}\\[8.61108pt] &\leq|\langle\varphi(\zeta),\kappa(\zeta)\,l^{-1}\,\overline{g}\,\rangle_{\Gamma_{h}}|+|\langle\varphi(\zeta),\delta_{\boldsymbol{q}}\rangle_{\Gamma_{h}}|+|\langle\varphi(\zeta),\tau(u-\widehat{u})\rangle_{\Gamma_{h}}|+|(f(\zeta),u)_{\mathcal{T}_{h}}|.\\ \end{array}

Now, using Lemma 2 to estimate the first three terms in the right hand of this expression we obtain

12|(𝒒,uu^,φ)|ζ2f(ζ)ΩhuΩh+32κ1/2(ζ)l1/2g¯Γh2,\dfrac{1}{2}\,|\!|\!|{(\boldsymbol{q},u-\widehat{u},\varphi)}|\!|\!|_{\zeta}^{2}\leq\|f(\zeta)\|_{\Omega_{h}}\|u\|_{\Omega_{h}}+\dfrac{3}{2}\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}^{2},\\

whereupon the proof is concluded. ∎

For the following result, we will make use of the properties of the HDG projectors 𝚷𝑽\boldsymbol{\Pi}_{\boldsymbol{V}} and ΠW\Pi_{W} onto the discrete spaces 𝑽h\boldsymbol{V}_{h} and WhW_{h}. This projection was first introduced in [3] and we include its definition and main properties in the Appendix A. The L2L^{2} projector onto the space MhM_{h} will be denoted by PMP_{M}, while IdMId_{M} will denote the identity on MhM_{h}.

Lemma 4.

Suppose that Assumptions (2.4) and the regularity (B.2) are satisfied. Then, there exists c^>0\widehat{c}>0, independent of hh such that

uΩh4max{c^2h,1}f(ζ)Ωh+2(3c^+κ¯1/2R1/2)h1/2κ1/2(ζ)l1/2g¯Γh.\|u\|_{\Omega_{h}}\leq 4\,\max\{\widehat{c}^{2}h,1\}\,\|f(\zeta)\|_{\Omega_{h}}+2\,\left(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2}\right)\,h^{1/2}\,\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}. (3.13)
Proof.

Consider ΘL2(Ω)\Theta\in L^{2}(\Omega) and let ϕ\phi and ψ\psi be the solutions to the dual problem (B.1) associated to Θ\Theta. If we define

𝕋𝒒:=(κ1(ζ)𝒒,𝚷𝑽ϕϕ)𝒯h,𝕋u:=u^,PM(ϕ𝒏)Γh𝒒^𝒏,ΠWψΓhand𝕋f:=(f(ζ),ΠWψ)𝒯h,\mathds{T}_{\boldsymbol{q}}:=(\kappa^{-1}(\zeta)\boldsymbol{q},\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{\phi}-\boldsymbol{\phi})_{\mathcal{T}_{h}},\quad\mathds{T}_{u}:=\langle\widehat{u},P_{M}(\boldsymbol{\phi}\cdot\boldsymbol{n})\rangle_{\Gamma_{h}}-\langle\widehat{\boldsymbol{q}}\cdot\boldsymbol{n},\Pi_{W}\psi\rangle_{\Gamma_{h}}\quad\text{and}\quad\mathds{T}_{f}:=(f(\zeta),\Pi_{W}\psi)_{\mathcal{T}_{h}},

it is possible to verify that

(u,Θ)𝒯h=𝕋𝒒+𝕋f+𝕋u.(u,\Theta)_{\mathcal{T}_{h}}=\mathds{T}_{\boldsymbol{q}}+\mathds{T}_{f}+\mathds{T}_{u}. (3.14)

The terms 𝕋𝒒\mathds{T}_{\boldsymbol{q}} and 𝕋f\mathds{T}_{f} appearing on the expression above can be easily estimated by

|𝕋𝒒|\displaystyle|\mathds{T}_{\boldsymbol{q}}| κ¯1/2hκ1/2(ζ)𝒒ΩhΘΩ,and|𝕋f|f(ζ)ΩhΘΩ.\displaystyle\lesssim\underline{\kappa}^{-1/2}\,h\|\kappa^{-1/2}(\zeta)\,\boldsymbol{q}\|_{\Omega_{h}}\,\|\Theta\|_{\Omega},\quad\text{and}\quad|\mathds{T}_{f}|\lesssim\|f(\zeta)\|_{\Omega_{h}}\,\|\Theta\|_{\Omega}. (3.15)

In order to bound the final term of the decomposition of (u,Θ)𝒯h(u,\Theta)_{\mathcal{T}_{h}}, we rewrite 𝕋u=i=15𝕋ui\mathds{T}_{u}=\sum_{i=1}^{5}\mathds{T}_{u}^{i} where

𝕋u1:=κ(ζ)l1φ(ζ),ψ+lnψΓh,𝕋u4:=τ(uu^),PMψΓh,𝕋u2:=κ(ζ)φ(ζ),(PMIdM)nψΓh,𝕋u5:=κ(ζ)l1g¯,ψΓh,𝕋u3:=δ𝒒,ψΓh.\begin{array}[]{lcl}\mathds{T}_{u}^{1}:=-\langle\kappa(\zeta)l^{-1}\varphi(\zeta),\psi+l\partial_{n}\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{4}:=-\langle\tau(u-\widehat{u}),P_{M}\psi\rangle_{\Gamma_{h}},\\[8.61108pt] \mathds{T}_{u}^{2}:=\langle\kappa(\zeta)\varphi(\zeta),(P_{M}-Id_{M})\partial_{n}\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{5}:=\langle\kappa(\zeta)\,l^{-1}\,\overline{g},\psi\rangle_{\Gamma_{h}},\\[8.61108pt] \mathds{T}_{u}^{3}:=\langle\delta_{\boldsymbol{q}},\psi\rangle_{\Gamma_{h}}.&&\end{array}

It is not hard, if cumbersome, to verify that for the terms above the following estimates hold

|𝕋u1|\displaystyle|\mathds{T}_{u}^{1}| κ¯1/2Rhκ1/2(ζ)l1/2φ(ζ)ΓhΘΩ,\displaystyle\lesssim\overline{\kappa}^{1/2}\,R\,h\,\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\varphi(\zeta)\|_{\Gamma_{h}}\|\Theta\|_{\Omega}, |𝕋u2|\displaystyle|\mathds{T}_{u}^{2}| κ¯1/2R1/2hκ1/2(ζ)l1/2φ(ζ)ΓhΘΩ,\displaystyle\lesssim\overline{\kappa}^{1/2}\,R^{1/2}\,h\,\|\kappa^{1/2}(\zeta)l^{-1/2}\varphi(\zeta)\|_{\Gamma_{h}}\|\Theta\|_{\Omega},
|𝕋u3|\displaystyle|\mathds{T}_{u}^{3}| κ¯1/2R2h1/2κ1/2(ζ)𝒒ΩhΘΩ,\displaystyle\lesssim\overline{\kappa}^{1/2}\,R^{2}\,h^{1/2}\|\kappa^{-1/2}(\zeta)\boldsymbol{q}\|_{\Omega_{h}}\|\Theta\|_{\Omega}, |𝕋u4|\displaystyle|\mathds{T}_{u}^{4}| τ¯1/2Rhτ1/2(uu^)𝒯hΘΩ,\displaystyle\lesssim\overline{\tau}^{1/2}\,R\,h\,\|\tau^{1/2}(u-\widehat{u})\|_{\partial\mathcal{T}_{h}}\|\Theta\|_{\Omega},
|𝕋u5|\displaystyle|\mathds{T}_{u}^{5}| κ¯1/2(Rh)1/2κ1/2(ζ)l1/2g¯ΓhΘΩ.\displaystyle\lesssim\overline{\kappa}^{1/2}\,(Rh)^{1/2}\,\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}\|\Theta\|_{\Omega}.

Taking Θ=u\Theta=u in (3.14) and combining all of the above estimates with (3.15), we obtain

uΩhc^h1/2|(𝝈,uu^,φ)|ζ+κ¯1/2(Rh)1/2κ1/2(ζ)l1/2g¯Γh+f(ζ)Ωh,\|u\|_{\Omega_{h}}\leq\widehat{c}\,h^{1/2}|\!|\!|{(\boldsymbol{\sigma},u-\widehat{u},\varphi)}|\!|\!|_{\zeta}+\overline{\kappa}^{1/2}\,(Rh)^{1/2}\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}+\|f(\zeta)\|_{\Omega_{h}},

where c^:=Cmax{κ¯1/2,κ¯1/2R,κ¯1/2R2,κ¯1/2R1/2,τ¯1/2R}\widehat{c}:=C\,\max\{\underline{\kappa}^{-1/2},\overline{\kappa}^{1/2}R,\overline{\kappa}^{1/2}R^{2},\overline{\kappa}^{1/2}R^{1/2},\overline{\tau}^{1/2}R\}, and C>0C>0 is the constant hidden in the symbol \lesssim. Then, applying Lemma 3, we get

uΩh\displaystyle\|u\|_{\Omega_{h}} c^h1/2(2f(ζ)Ωh1/2uΩh1/2+3κ1/2(ζ)l1/2g¯Γh)\displaystyle\leq\quad\widehat{c}\,h^{1/2}\left(\sqrt{2}\|f(\zeta)\|_{\Omega_{h}}^{1/2}\|u\|_{\Omega_{h}}^{1/2}+\sqrt{3}\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}\right)
+κ¯1/2(Rh)1/2κ1/2(ζ)l1/2g¯Γh+f(ζ)Ωh\displaystyle\quad+\overline{\kappa}^{1/2}\,(Rh)^{1/2}\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}+\|f(\zeta)\|_{\Omega_{h}}
uΩh\displaystyle\|u\|_{\Omega_{h}} 4max{c^2h,1}f(ζ)Ωh+2(3c^+κ¯1/2R1/2)h1/2κ1/2(ζ)l1/2g¯Γh,\displaystyle\leq 4\,\max\{\widehat{c}^{2}h,1\}\,\|f(\zeta)\|_{\Omega_{h}}+2\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})\,h^{1/2}\,\|\kappa^{1/2}(\zeta)\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}},

with which the proof is concluded. ∎

3.3 A prior error analysis

We now provide the a priori error bounds for the discretization error. The main results of the section are Theorem 3.16 and Corollary 1 immediately after it. As we will see, several of the results leading to the main presented in this section can be proven by using similar arguments to those of Section 3.2 and we will omit some of the arguments. The analysis will be performed by decomposing the approximation errors in two components using the properties of the HDG projection (see Appendix A). The projection of the errors is defined as

𝜺𝒒:=𝚷𝑽𝒒𝒒h and εu:=ΠWuuh,\boldsymbol{\varepsilon}^{\boldsymbol{q}}:=\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q}-\boldsymbol{q}_{h}\quad\text{ and }\quad\varepsilon^{u}:=\Pi_{W}u-u_{h},

and the error of the projections are given by

𝑰𝒒:=𝒒𝚷𝑽𝒒 and Iu:=uΠWu.\boldsymbol{I}^{\boldsymbol{q}}:=\boldsymbol{q}-\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q}\quad\text{ and }\quad I^{u}:=u-\Pi_{W}u.

This allows to express the approximation errors as

𝒒𝒒h=𝜺𝒒+𝑰𝒒 and uuh=εu+Iu.\boldsymbol{q}-\boldsymbol{q}_{h}=\boldsymbol{\varepsilon}^{\boldsymbol{q}}+\boldsymbol{I}^{\boldsymbol{q}}\quad\text{ and }\quad u-u_{h}=\varepsilon^{u}+I^{u}.

In addition, recalling that PMP_{M} is the L2L^{2} projection into MhM_{h}, we define the projection error for the hybrid unknown u^h\widehat{u}_{h} as εu^:=PMuu^h\varepsilon^{\widehat{u}}:=P_{M}u-\widehat{u}_{h}. The L2L^{2}-projection of the error for the numerical flux on 𝒯h\partial\mathcal{T}_{h} can be expressed as 𝜺𝒒^𝒏=𝜺𝒒𝒏+τ(εuεu^)\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n}=\boldsymbol{\varepsilon}^{\boldsymbol{q}}\cdot\boldsymbol{n}+\tau(\varepsilon^{u}-\varepsilon^{\widehat{u}}). It is not difficult show that (𝜺𝒒,εu,εu^)(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u},\varepsilon^{\widehat{u}}) belongs to 𝑽h×Wh×Mh\boldsymbol{V}_{h}\times W_{h}\times M_{h} and satisfies

(κ1(uh)𝜺𝒒,𝒗)𝒯h(εu,𝒗)𝒯h+εu^,𝒗𝒏𝒯h=\displaystyle(\kappa^{-1}(u_{h})\boldsymbol{\varepsilon}^{\boldsymbol{q}},\boldsymbol{v})_{\mathcal{T}_{h}}-(\varepsilon^{u},\nabla\cdot\boldsymbol{v})_{\mathcal{T}_{h}}+\langle\varepsilon^{\widehat{u}},\boldsymbol{v}\cdot\boldsymbol{n}\rangle_{\partial\mathcal{T}_{h}}= (κ1(u)𝑰𝒒,v)𝒯h\displaystyle-(\kappa^{-1}(u)\boldsymbol{I}^{\boldsymbol{q}},v)_{\mathcal{T}_{h}}
((κ1(u)κ1(uh))Π𝑽𝒒,v)𝒯h,\displaystyle-\left((\kappa^{-1}(u)-\kappa^{-1}(u_{h}))\Pi_{\boldsymbol{V}}\boldsymbol{q},v\right)_{\mathcal{T}_{h}}, (3.16a)
(𝜺𝒒,w)𝒯h+𝜺𝒒^𝒏,w𝒯h=\displaystyle-(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\nabla w)_{\mathcal{T}_{h}}+\langle\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n},w\rangle_{\partial\mathcal{T}_{h}}= (f(u)f(uh),w)𝒯h,\displaystyle\,(f(u)-f(u_{h}),w)_{\mathcal{T}_{h}}, (3.16b)
εu^,μΓh=\displaystyle\langle\varepsilon^{\widehat{u}},\mu\rangle_{\Gamma_{h}}= φ(u)φh(uh),μΓh,\displaystyle\,\langle\varphi(u)-\varphi_{h}(u_{h}),\mu\rangle_{\Gamma_{h}}, (3.16c)
𝜺𝒒^𝒏,μ𝒯hΓh=\displaystyle\langle\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n},\mu\rangle_{\partial\mathcal{T}_{h}\setminus\Gamma_{h}}=  0,\displaystyle\,0, (3.16d)

for all (𝒗,w,μ)𝑽h×Wh×Mh(\boldsymbol{v},w,\mu)\in\boldsymbol{V}_{h}\times W_{h}\times M_{h}.

To try and keep the notation compact, we will define the following two quantities involving only the errors in the projections 𝑰𝒗\boldsymbol{I}^{\boldsymbol{v}}, 𝑰𝒒\boldsymbol{I}^{\boldsymbol{q}}, and IuI^{u} measured in the three relevant domains Ωh\Omega_{h}, Ωhc\Omega_{h}^{c} and Γh\Gamma_{h}

Λ𝒒\displaystyle\Lambda_{\boldsymbol{q}} :=\displaystyle:= (𝑰𝒒Ωh2+hn(𝑰𝒒𝒏)Ωhc2+(h)1/2𝑰𝒒𝒏)Γh2)1/2,\displaystyle\left(\|\boldsymbol{I}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}}+\|h^{\perp}\partial_{n}(\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Omega_{h}^{c}}+\|(h^{\perp})^{1/2}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Gamma_{h}}\right)^{1/2}, (3.17a)
Λu\displaystyle\Lambda_{u} :=\displaystyle:= ((h)1/2IuΓh+IuΩh)1/2.\displaystyle\left(\|(h^{\perp})^{1/2}I^{u}\|_{\Gamma_{h}}+\|I^{u}\|_{\Omega_{h}}\right)^{1/2}. (3.17b)

We note that, as pointed out in [16, 3] by using the properties of the projectors and scaling arguments, if 𝒒𝑯k+1(Ω)\boldsymbol{q}\in\boldsymbol{H}^{k+1}(\Omega), uHk+1(Ω)u\in H^{k+1}(\Omega) and τ\tau is of order one, then Λ𝒒\Lambda_{\boldsymbol{q}} and Λu\Lambda_{u} are of order hk+1h^{k+1}. As stated in the theorem below, these quantities are in fact the key to estimating the approximation error of the method

Theorem 2.

If LL is small enough, the regularity (B.2) holds and the discrete spaces are of polynomial degree k1k\geq 1, then there exists h0>0h_{0}>0 such that, for all hh0h\leq h_{0}, we have

|(𝜺𝒒,εuεu^,φφh)|uh2Λ𝒒2+Λu2.\displaystyle|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|_{u_{h}}^{2}\lesssim\Lambda_{\boldsymbol{q}}^{2}+\Lambda_{u}^{2}. (3.18)

The proof of this result will follow straightforwardly from lemmas 5 and 6 below.

Before setting out to prove these two lemmas (and therefore the theorem above) we first state the convergence order of the method—the main result of the section—which thanks to the remark made just above Theorem 2 follows as a corollary.

Corollary 1 (Order of convergence).

Suppose that the assumptions of Theorem 2 hold. If, in addition, uHk+1(Ω)u\in H^{k+1}(\Omega) and 𝐪𝐇k+1(Ω)\boldsymbol{q}\in\boldsymbol{H}^{k+1}(\Omega), then

𝒒𝒒hΩ+uuhΩChk+1(|u|k+1,Ω+|𝒒|k+1,Ω).\displaystyle\|\boldsymbol{q}-\boldsymbol{q}_{h}\|_{\Omega}+\|u-u_{h}\|_{\Omega}\leq Ch^{k+1}\left(|u|_{k+1,\Omega}+|\boldsymbol{q}|_{k+1,\Omega}\right).

Having stated the main results of the section, we now set out to prove the two lemmas leading to Theorem 2. The first part of the analysis will require using an energy argument on the error equations (3.16) and a meticulous study of the error contribution due to the transferred boundary conditions φh(uh)\varphi_{h}(u_{h}). This will be done in the following

Lemma 5.

There exist positive constants, independent of hh, such that

|(𝜺𝒒,εuεu^,φφh)|uh212max{C1h,C2}L2(εuΩh2+IuΩh2)+C3Λ𝒒2.\displaystyle|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|_{{u_{h}}}^{2}\leq 12\,\max\{C_{1}\,h,C_{2}\}L^{2}\,\left(\|\varepsilon^{u}\|_{\Omega_{h}}^{2}+\|I^{u}\|_{\Omega_{h}}^{2}\right)+C_{3}\,\Lambda_{\boldsymbol{q}}^{2}. (3.19)
Proof.

Starting from (3.16) and letting

𝒗=𝜺𝒒, and w=εu in 𝒯h, and μ:={𝜺𝒒^𝒏on Γhεu^on 𝒯hΓh\boldsymbol{v}=\boldsymbol{\varepsilon}^{\boldsymbol{q}},\;\text{ and }\;w=\varepsilon^{u}\;\text{ in }\mathcal{T}_{h},\;\text{ and }\;\mu:=\left\{\begin{array}[]{rcl}-\,\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n}&&\text{on }\Gamma_{h}\\ -\varepsilon^{\widehat{u}}&&\text{on }\partial\mathcal{T}_{h}\setminus\Gamma_{h}\end{array}\right.

it follows that

κ1/2(uh)𝜺𝒒Ωh2+τ1/2(εuεu^)𝒯h2=\displaystyle\|\kappa^{-1/2}(u_{h})\,\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}}+\|\tau^{1/2}(\varepsilon^{u}-\varepsilon^{\widehat{u}})\|^{2}_{\partial\mathcal{T}_{h}}= (3.20)
(κ1(u)𝑰𝒒,𝜺𝒒)𝒯h((κ1(u)κ1(uh))Π𝑽𝒒,𝜺𝒒)𝒯h+(f(u)f(uh),εu)𝒯hφ(u)φh(uh),𝜺𝒒^𝒏Γh.\displaystyle-\!(\kappa^{-1}\!(u)\boldsymbol{I}^{\boldsymbol{q}},\boldsymbol{\varepsilon}^{\boldsymbol{q}})_{\mathcal{T}_{h}}\!-\!((\kappa^{-1}(u)-\kappa^{-1}\!(u_{h}))\Pi_{\boldsymbol{V}}\boldsymbol{q},\boldsymbol{\varepsilon}^{\boldsymbol{q}})_{\mathcal{T}_{h}}\!+\!(f(u)-f(u_{h}),\varepsilon^{u})_{\mathcal{T}_{h}}\!-\!\langle\varphi(u)-\varphi_{h}(u_{h}),\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n}\rangle_{\Gamma_{h}}.

We will now manipulate the final term in the expression above to include a term involving the norm of the difference φ(u)φh(uh)\varphi(u)-\varphi_{h}(u_{h}), thus allowing us to estimate the transfer error. Using definitions of φh\varphi_{h} and φ\varphi (cf. (2.6) and (3.6e) respectively), as well as the definition of δ𝒒\delta_{\boldsymbol{q}} it follows that

φ(u)g¯=κ1(u)(δ𝒒+𝒒𝒏) and φh(uh)g¯=κ1(uh)(δ𝒒h+𝒒h𝒏).\varphi(u)-\overline{g}=\kappa^{-1}(u)\ell\left(\delta_{\boldsymbol{q}}+\boldsymbol{q}\cdot\boldsymbol{n}\right)\quad\text{ and }\quad\varphi_{h}(u_{h})-\overline{g}=\kappa^{-1}(u_{h})\ell\left(\delta_{\boldsymbol{q}_{h}}+\boldsymbol{q}_{h}\cdot\boldsymbol{n}\right).

Subtracting the second expression from the first one and adding zero in the form of ±κ1(uh)(δ𝒒𝒒𝒏)\pm\kappa^{-1}(u_{h})\left(\delta_{\boldsymbol{q}}-\boldsymbol{q}\cdot\boldsymbol{n}\right) it is possible to express the difference as

φ(u)φh(uh)=\displaystyle\varphi(u)-\varphi_{h}(u_{h})=\, (κ1(u)κ1(uh))(δ𝒒+𝒒𝒏)+κ1(uh)(δ𝒒𝒒h+(𝒒𝒒h)𝒏)\displaystyle\ell\left(\kappa^{-1}(u)-\kappa^{-1}(u_{h})\right)(\delta_{\boldsymbol{q}}+\boldsymbol{q}\cdot\boldsymbol{n})+\ell\,\kappa^{-1}(u_{h})\left(\delta_{\boldsymbol{q}-\boldsymbol{q}_{h}}+(\boldsymbol{q}-\boldsymbol{q}_{h})\cdot\boldsymbol{n}\right)
=\displaystyle=\, (κ1(u)κ1(uh))(δ𝒒+𝒒𝒏)+κ1(uh)(δ𝜺𝒒+δ𝑰𝒒+(𝜺𝒒^+𝑰𝒒)𝒏τ(εuεu^))\displaystyle\ell\left(\kappa^{-1}(u)-\kappa^{-1}(u_{h})\right)\Big{(}\delta_{\boldsymbol{q}}+\boldsymbol{q}\cdot\boldsymbol{n}\Big{)}+\ell\,\kappa^{-1}(u_{h})\left(\delta_{\boldsymbol{\varepsilon}^{\boldsymbol{q}}}+\delta_{\boldsymbol{I}^{\boldsymbol{q}}}+\left(\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}+\boldsymbol{I}^{\boldsymbol{q}}\right)\cdot\boldsymbol{n}-\tau\left(\varepsilon^{u}-\varepsilon^{\widehat{u}}\right)\right)
=\displaystyle=\, (κ1(u)κ1(uh))(δ𝑰𝒒+δΠv𝒒+(𝑰𝒒+Π𝑽𝒒)𝒏)\displaystyle\ell\left(\kappa^{-1}(u)-\kappa^{-1}(u_{h})\right)\Big{(}\delta_{\boldsymbol{I}^{\boldsymbol{q}}}+\delta_{\Pi_{v}\boldsymbol{q}}+\big{(}\boldsymbol{I}^{\boldsymbol{q}}+\Pi_{\boldsymbol{V}}\boldsymbol{q}\big{)}\cdot\boldsymbol{n}\Big{)}
+κ1(uh)(δ𝜺𝒒+δ𝑰𝒒+(𝜺𝒒^+𝑰𝒒)𝒏τ(εuεu^)),\displaystyle+\ell\kappa^{-1}(u_{h})\left(\delta_{\boldsymbol{\varepsilon}^{\boldsymbol{q}}}+\delta_{\boldsymbol{I}^{\boldsymbol{q}}}+\left(\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}+\boldsymbol{I}^{\boldsymbol{q}}\right)\cdot\boldsymbol{n}-\tau\left(\varepsilon^{u}-\varepsilon^{\widehat{u}}\right)\right), (3.21)

where the first equality comes from the substitutions

(𝒒𝒒h)𝒏=(𝜺𝒒^+𝑰𝒒)𝒏τ(εuεu^),andδ𝒒+𝒒h=δ𝒒+δ𝒒h,(\boldsymbol{q}-\boldsymbol{q}_{h})\cdot\boldsymbol{n}=\left(\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}+\boldsymbol{I}^{\boldsymbol{q}}\right)\cdot\boldsymbol{n}-\tau\left(\varepsilon^{u}-\varepsilon^{\widehat{u}}\right),\quad\text{and}\quad\delta_{\boldsymbol{q}+\boldsymbol{q}_{h}}=\delta_{\boldsymbol{q}}+\delta_{\boldsymbol{q}_{h}},

while the second one is obtained by replacing 𝒒=𝑰𝒒+Π𝑽𝒒\boldsymbol{q}=\boldsymbol{I}^{\boldsymbol{q}}+\Pi_{\boldsymbol{V}}\boldsymbol{q}. The expression (3.21) allows us to write the term 𝜺𝒒^𝒏\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n} in terms of the transfer error

𝜺𝒒^𝒏\displaystyle\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n} =κ(uh)l1(φ(u)φh(uh))κ(uh)(κ1(u)κ1(uh))(δ𝑰𝒒+δΠ𝑽𝒒+𝑰𝒒𝒏+Π𝑽𝒒𝒏)\displaystyle=\kappa(u_{h})\,l^{-1}\,(\varphi(u)-\varphi_{h}(u_{h}))-\kappa(u_{h})\,(\kappa^{-1}(u)-\kappa^{-1}(u_{h}))(\delta_{\boldsymbol{I}^{\boldsymbol{q}}}+\delta_{\Pi_{\boldsymbol{V}}\boldsymbol{q}}+\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}+\Pi_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n})
δ𝜺𝒒δ𝑰q𝑰𝒒𝒏+τ(εuεu^).\displaystyle\quad-\delta_{\boldsymbol{\varepsilon}^{\boldsymbol{q}}}-\delta_{\boldsymbol{I}^{q}}-\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}+\tau(\varepsilon^{u}-\varepsilon^{\widehat{u}}).

Substituting this expression back into (3.20) and rearranging terms, it follows that

κ1/2(uh)𝜺𝒒Ωh2+τ1/2(εuεu^)𝒯h2+κ1/2(uh)l1/2(φ(u)φh(uh))Γh2|(κ1(u)𝑰𝒒,𝜺𝒒)𝒯h|+|((κ1(u)κ1(uh))Π𝑽𝒒,𝜺𝒒)𝒯h|+|𝕋f|+|𝕋φ|,\begin{array}[]{rl}\|\kappa^{-1/2}(u_{h})\,\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}}+&\|\tau^{1/2}(\varepsilon^{u}-\varepsilon^{\widehat{u}})\|^{2}_{\partial\mathcal{T}_{h}}+\|\kappa^{1/2}(u_{h})\,l^{-1/2}\,(\varphi(u)-\varphi_{h}(u_{h}))\|^{2}_{\Gamma_{h}}\\[8.61108pt] &\quad\leq|(\kappa^{-1}(u)\boldsymbol{I}^{\boldsymbol{q}},\boldsymbol{\varepsilon}^{\boldsymbol{q}})_{\mathcal{T}_{h}}|+|((\kappa^{-1}(u)-\kappa^{-1}(u_{h}))\Pi_{\boldsymbol{V}}\boldsymbol{q},\boldsymbol{\varepsilon}^{\boldsymbol{q}})_{\mathcal{T}_{h}}|+|\mathds{T}^{f}|+|\mathds{T}_{\varphi}|,\end{array} (3.22)

with 𝕋f:=(f(u)f(uh),εu)𝒯h\mathds{T}^{f}:=(f(u)-f(u_{h}),\varepsilon^{u})_{\mathcal{T}_{h}} and 𝕋φ:=i=18|Tφi|\mathds{T}_{\varphi}:=\sum_{i=1}^{8}{|\mathrm{T}_{\varphi}^{i}}|, where

𝕋φ1:=φ(u)φh(uh),δ𝜺𝒒Γh𝕋φ5:=φ(u)φh(uh),κ(uh)(κ1(u)κ1(uh))δΠ𝑽𝒒Γh𝕋φ2:=φ(u)φh(uh),τ(εuεu^)Γh𝕋φ6:=φ(u)φh(uh),κ(uh)(κ1(u)κ1(uh))δ𝑰𝒒Γh𝕋φ3:=φ(u)φh(uh),𝑰𝒒𝒏Γh𝕋φ7:=φ(u)φh(uh),κ(uh)(κ1(u)κ1(uh))𝑰𝒒𝒏Γh𝕋φ4:=φ(u)φh(uh),δ𝑰𝒒Γh𝕋φ8:=φ(u)φh(uh),κ(uh)(κ1(u)κ1(uh))Π𝑽𝒒𝒏Γh.\begin{array}[]{rclcrcl}\mathds{T}_{\varphi}^{1}&:=&\langle\varphi(u)-\varphi_{h}(u_{h}),\delta_{\boldsymbol{\varepsilon}^{\boldsymbol{q}}}\rangle_{\Gamma_{h}}&&\mathds{T}_{\varphi}^{5}&:=&\langle\varphi(u)-\varphi_{h}(u_{h}),\kappa(u_{h})\,(\kappa^{-1}(u)-\kappa^{-1}(u_{h}))\,\delta_{\Pi_{\boldsymbol{V}}\boldsymbol{q}}\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{2}&:=&-\langle\varphi(u)-\varphi_{h}(u_{h}),\tau(\varepsilon^{u}-\varepsilon^{\widehat{u}})\rangle_{\Gamma_{h}}&&\mathds{T}_{\varphi}^{6}&:=&\langle\varphi(u)-\varphi_{h}(u_{h}),\kappa(u_{h})\,(\kappa^{-1}(u)-\kappa^{-1}(u_{h}))\,\delta_{\boldsymbol{I}^{\boldsymbol{q}}}\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{3}&:=&\langle\varphi(u)-\varphi_{h}(u_{h}),\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\rangle_{\Gamma_{h}}&&\mathds{T}_{\varphi}^{7}&:=&\langle\varphi(u)-\varphi_{h}(u_{h}),\kappa(u_{h})\,(\kappa^{-1}(u)-\kappa^{-1}(u_{h}))\,\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{4}&:=&\langle\varphi(u)-\varphi_{h}(u_{h}),\delta_{\boldsymbol{I}^{\boldsymbol{q}}}\rangle_{\Gamma_{h}}&&\mathds{T}_{\varphi}^{8}&:=&\langle\varphi(u)-\varphi_{h}(u_{h}),\kappa(u_{h})\,(\kappa^{-1}(u)-\kappa^{-1}(u_{h}))\,\Pi_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n}\rangle_{\Gamma_{h}}.\end{array}

To determine upper bounds the terms in the right hand side of (3.22), we will make use of Young’s inequality, the Lipschitz continuity of ff and κ1\kappa^{-1} and the fact that vL2(e)he1/2ve,eh,vk(e)\|v\|_{L^{2}(e)}\lesssim h_{e}^{1/2}\,\|v\|_{e},\,\forall\,e\in\mathcal{E}_{h}^{\partial},\forall\,v\in\mathds{P}_{k}(e). A combination of these with arguments similar as those in [16, Lemma 5] results in the following

|𝕋φ1|\displaystyle|\mathds{T}_{\varphi}^{1}| 12δ1κ1/2(uh)l1/2(φ(u)φh(uh))Γh2+δ16κ1/2(uh)𝜺𝒒Ωh2,\displaystyle\leq\dfrac{1}{2\delta_{1}}\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{1}}{6}\,\|\kappa^{-1/2}(u_{h})\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}},
|𝕋φ2|\displaystyle|\mathds{T}_{\varphi}^{2}| 12δ1κ1/2(uh)l1/2(φ(u)φh(uh))Γh2+δ16τ1/2(εuεu^)𝒯h2,\displaystyle\leq\dfrac{1}{2\delta_{1}}\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{1}}{6}\,\|\tau^{1/2}(\varepsilon^{u}-\varepsilon^{\widehat{u}})\|^{2}_{\partial\mathcal{T}_{h}},
|𝕋φ3|\displaystyle|\mathds{T}_{\varphi}^{3}| 12δ2κ1/2(uh)l1/2(φ(u)φh(uh))Γh2+δ22Rκ¯1(h)1/2𝑰𝒒𝒏)2Γh,\displaystyle\leq\dfrac{1}{2\delta_{2}}\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{2}}{2}R\underline{\kappa}^{-1}\,\|(h^{\perp})^{1/2}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Gamma_{h}},
|𝕋φ4|\displaystyle|\mathds{T}_{\varphi}^{4}| 12δ2κ1/2(uh)l1/2(φ(u)φh(uh))Γh2+δ26κ¯1maxeh{re2}hn(𝑰𝒒𝒏)Ωhc2,\displaystyle\leq\dfrac{1}{2\delta_{2}}\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{2}}{6}\,\underline{\kappa}^{-1}\,\max_{e\in\mathcal{E}_{h}^{\partial}}\{r_{e}^{2}\}\,\|h^{\perp}\partial_{n}(\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Omega_{h}^{c}},
|𝕋φ5|\displaystyle|\mathds{T}_{\varphi}^{5}| 12δ2κ1/2(uh)l1/2(φ(u)φh(uh))Γh2+δ26κ¯Π𝑽𝒒L(Ωh)2hL2(εuΩh+IuΩh)2,\displaystyle\leq\dfrac{1}{2\delta_{2}}\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{2}}{6}\,\overline{\kappa}\,\|\Pi_{\boldsymbol{V}}\boldsymbol{q}\|^{2}_{L^{\infty}(\Omega_{h})}\,h\,L^{2}\,\left(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}}\right)^{2},
|𝕋φ6|\displaystyle|\mathds{T}_{\varphi}^{6}| 12δ2κ1/2(uh)l1/2(φ(u)φh(uh))Γh2+2δ23κ¯κ¯2maxehre2hn(𝑰𝒒𝒏)Ωhc2,\displaystyle\leq\dfrac{1}{2\delta_{2}}\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\|^{2}_{\Gamma_{h}}+\dfrac{2\delta_{2}}{3}\,\overline{\kappa}\,\underline{\kappa}^{-2}\,\max_{e\in\mathcal{E}_{h}^{\partial}}r_{e}^{2}\,\|h^{\perp}\partial_{n}(\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Omega_{h}^{c}},
|𝕋φ7|\displaystyle|\mathds{T}_{\varphi}^{7}| 12δ2κ1/2(uh)l1/2(φ(u)φh(uh))Γh2+2δ2Rκ¯κ¯2(h)1/2𝑰𝒒𝒏)2Γh,\displaystyle\leq\dfrac{1}{2\delta_{2}}\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\|^{2}_{\Gamma_{h}}+2\,\delta_{2}\,R\,\overline{\kappa}\,\underline{\kappa}^{-2}\,\|(h^{\perp})^{1/2}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Gamma_{h}},
|𝕋φ8|\displaystyle|\mathds{T}_{\varphi}^{8}| 12δ2κ1/2(uh)l1/2(φ(u)φh(uh))Γh2+δ22κ¯(h)1/2Π𝑽𝒒𝒏L(Γh)L2h(εuΩh+IuΩh)2,\displaystyle\leq\dfrac{1}{2\delta_{2}}\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{2}}{2}\overline{\kappa}\,\|(h^{\perp})^{1/2}\Pi_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n}\|_{L^{\infty}(\Gamma_{h})}L^{2}\,h\,\left(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}}\right)^{2},

as well as

|(κ1(u)𝑰𝒒,𝜺𝒒)𝒯h|\displaystyle|(\kappa^{-1}(u)\boldsymbol{I}^{\boldsymbol{q}},\boldsymbol{\varepsilon}^{\boldsymbol{q}})_{\mathcal{T}_{h}}| 12δ3κ1/2(uh)𝜺𝒒Ωh2+δ32κ¯2κ¯𝑰𝒒Ωh2,\displaystyle\leq\dfrac{1}{2\,\delta_{3}}\|\kappa^{-1/2}(u_{h})\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}}+\dfrac{\delta_{3}}{2}\,\underline{\kappa}^{-2}\,\overline{\kappa}\|\boldsymbol{I}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}},
|(κ1(u)κ1(uh))Π𝑽𝒒,𝜺𝒒)𝒯h|\displaystyle|(\kappa^{-1}(u)-\kappa^{-1}(u_{h}))\Pi_{\boldsymbol{V}}\boldsymbol{q},\boldsymbol{\varepsilon}^{\boldsymbol{q}})_{\mathcal{T}_{h}}| 12δ3κ1/2(uh)𝜺𝒒Ωh2+δ32Π𝑽𝒒L(Ωh)2κ¯L2(εuΩh+IuΩh)2.\displaystyle\leq\dfrac{1}{2\,\delta_{3}}\,\|\kappa^{-1/2}(u_{h})\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}}+\dfrac{\delta_{3}}{2}\|\Pi_{\boldsymbol{V}}\boldsymbol{q}\|_{L^{\infty}(\Omega_{h})}^{2}\,\overline{\kappa}\,L^{2}\left(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}}\right)^{2}.
|𝕋f|\displaystyle|\mathds{T}^{f}| Lf(εuΩh+IuΩh)εuΩh,\displaystyle\leq L_{f}\,(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}})\,\|\varepsilon^{u}\|_{\Omega_{h}},

where δ1,δ2,δ3\delta_{1},\delta_{2},\delta_{3} are free positive parameters arising from applications of Young’s inequality, κ¯\overline{\kappa} and κ¯\underline{\kappa} are the upper and lower bounds for the diffusivity, and LL and LfL_{f} are the Lipschitz constants from κ1\kappa^{-1} and ff respectively.

If we let δ1=4\delta_{1}=4, δ2=12\delta_{2}=12, and δ3=6\delta_{3}=6 in the above estimates and substitute back into (3.22) we obtain

|(𝜺𝒒,εuεu^,φφh)|uh212max{C1h,C2}L2(εuΩh2+IuΩh2)+CLf(εuΩh+IuΩh)εuΩh+C3Λ𝒒2.|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|_{{u_{h}}}^{2}\leq 12\,\max\{C_{1}\,h,C_{2}\}L^{2}\,\left(\|\varepsilon^{u}\|_{\Omega_{h}}^{2}+\|I^{u}\|_{\Omega_{h}}^{2}\right)+C\,L_{f}(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}})\,\|\varepsilon^{u}\|_{\Omega_{h}}+C_{3}\,\Lambda_{\boldsymbol{q}}^{2}.

where C1,C2C_{1},C_{2} and C3C_{3} only depend on κ¯,κ¯,R\overline{\kappa},\underline{\kappa},R, and the projections (h)1/2Π𝑽𝒒𝒏L(Γh)2\|(h^{\perp})^{1/2}\Pi_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n}\|_{L^{\infty}(\Gamma_{h})}^{2} and Π𝑽𝒒L(Ωh)2.\|\Pi_{\boldsymbol{V}}\boldsymbol{q}\|_{L^{\infty}(\Omega_{h})}^{2}.

We now proceed to show that the approximation error in uu can be indeed controlled by the errors in the approximation of the flux, the hybrid variable and the transfer error, modulo the approximation properties of the discrete spaces. To show that, in the next lemma we will build upon the ideas as in [16] and use a duality argument.

Lemma 6.

Assume that the Lipschitz constant is such that LfL_{f} is small enough, and consider the discrete spaces to be of polynomial degree k1k\geq 1. Then,

εuΩhh1/2|(𝜺𝒒,εuεu^,φφh)|uh+(h1/2+Lh)Λ𝒒+(L+h1/2)Λu.\displaystyle\|\varepsilon^{u}\|_{\Omega_{h}}\lesssim h^{1/2}\,|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|_{u_{h}}+(h^{1/2}+L\,h)\Lambda_{\boldsymbol{q}}+(L+h^{1/2})\Lambda_{u}. (3.23)
Proof.

The first part of the proof follows very closely the argument used in the proof of Lemma 4. Given ΘL2(Ω)\Theta\in L^{2}(\Omega) we will denote by ϕ\boldsymbol{\phi} the solution to the dual problem (B.1) associated to Θ\Theta. Considering then the equations (3.16), together with the dual system, it is possible to show that

(εu,Θ)𝒯h\displaystyle(\varepsilon^{u},\Theta)_{\mathcal{T}_{h}} =𝕋𝒒1+𝕋𝒒2+𝕋u+𝕋f,\displaystyle=\mathds{T}_{\boldsymbol{q}}^{1}+\mathds{T}_{\boldsymbol{q}}^{2}+\mathds{T}_{u}+\mathds{T}_{f}, (3.24)

where

𝕋𝒒1\displaystyle\mathds{T}_{\boldsymbol{q}}^{1} :=(κ1(uh)(𝒒𝒒h),𝚷𝑽ϕ)𝒯h+(𝜺𝒒,ψ)𝒯h,\displaystyle:=(\kappa^{-1}(u_{h})(\boldsymbol{q}-\boldsymbol{q}_{h}),\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{\phi})_{\mathcal{T}_{h}}+(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\nabla\psi)_{\mathcal{T}_{h}},\qquad 𝕋𝒒2\displaystyle\mathds{T}_{\boldsymbol{q}}^{2} :=(κ1(u)κ1(uh))(𝑰𝒒+ΠV𝒒),ΠVϕ)𝒯h,\displaystyle:=(\kappa^{-1}(u)-\kappa^{-1}(u_{h}))(\boldsymbol{I}^{\boldsymbol{q}}+\Pi_{V}\boldsymbol{q}),\Pi_{V}\phi)_{\mathcal{T}_{h}},
𝕋u\displaystyle\mathds{T}_{u} :=εu^,PM(ϕ𝒏)Γh𝜺𝒒^𝒏,ΠWψΓh\displaystyle:=\langle\varepsilon^{\widehat{u}},P_{M}(\boldsymbol{\phi}\cdot\boldsymbol{n})\rangle_{\Gamma_{h}}-\langle\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n},\Pi_{W}\psi\rangle_{\Gamma_{h}}\qquad 𝕋f\displaystyle\mathds{T}_{f} :=(f(u)f(uh),ΠWψ)𝒯h.\displaystyle:=(f(u)-f(u_{h}),\Pi_{W}\psi)_{\mathcal{T}_{h}}.

To prove the result (3.23), we will bound each of the terms 𝕋\mathds{T}_{\star}, with {𝒒,u,f}\star\in\{\boldsymbol{q},u,f\} in the decomposition (3.24).

Bound for 𝕋fi\mathds{T}_{f}^{i}.

The simplest term to bound is 𝕋f\mathds{T}_{f}, for which an application of Cauchy-Schwartz, the properties of the HDG projector and the Lipschitz continuity of the source term ff, together with the dual estimate (B.2) yield

|𝕋f|CregLf(εuΩh+IuΩh)ΘΩ.|\mathds{T}_{f}|\leq C_{\text{reg}}\,L_{f}\,(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}})\|\Theta\|_{\Omega}. (3.25)

Where the constant CregC_{\text{reg}} is the stability constant from the dual problem (B.1).

Bound for 𝕋𝒒i\mathds{T}_{\boldsymbol{q}}^{i} .

Using the Lipschitz-continuity of κ\kappa (c.f. (3.2)) and following the arguments leading to equation (4.8) in [16, Lemma 5], the terms 𝕋𝒒1\mathds{T}_{\boldsymbol{q}}^{1} and 𝕋𝒒2\mathds{T}_{\boldsymbol{q}}^{2} can be bounded like

|𝕋𝒒1|\displaystyle|\mathds{T}_{\boldsymbol{q}}^{1}| κ¯1/2κ1/2(uh)(𝜺𝒒+𝑰𝒒)Ωh𝚷𝑽ϕϕΩh+𝑰𝒒Ωh(ψψh)Ωh\displaystyle\leq\underline{\kappa}^{-1/2}\,\|\kappa^{-1/2}(u_{h})(\boldsymbol{\varepsilon}^{\boldsymbol{q}}+\boldsymbol{I}^{\boldsymbol{q}})\|_{\Omega_{h}}\,\|\boldsymbol{\Pi}_{\boldsymbol{V}}\phi-\phi\|_{\Omega_{h}}+\|\boldsymbol{I}^{\boldsymbol{q}}\|_{\Omega_{h}}\,\|\nabla(\psi-\psi_{h})\|_{\Omega_{h}}
CCregκ¯1/2hmin{1,k}κ1/2(uh)𝜺𝒒ΩhΘΩ+2CCregmax{κ¯1/2κ¯1/2,1}hmin{1,k}𝑰𝒒ΩhΘΩ\displaystyle\leq C\,C_{\text{reg}}\,\underline{\kappa}^{-1/2}h^{\min\{1,k\}}\|\kappa^{-1/2}(u_{h})\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|_{\Omega_{h}}\|\Theta\|_{\Omega}+2C\,C_{\text{reg}}\,\max\{\underline{\kappa}^{-1/2}\,\overline{\kappa}^{-1/2},1\}h^{\min\{1,k\}}\,\|\boldsymbol{I}^{\boldsymbol{q}}\|_{\Omega_{h}}\,\|\Theta\|_{\Omega} (3.26a)
and
|𝕋𝒒2|\displaystyle|\mathds{T}_{\boldsymbol{q}}^{2}| Creg(𝑰𝒒+𝚷𝑽𝒒)L(εuΩh+IuΩh)θΩ.\displaystyle\leq C_{\text{reg}}(\|\boldsymbol{I}^{\boldsymbol{q}}\|_{\infty}+\|\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q}\|_{\infty})\,L\,(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}})\|\theta\|_{\Omega}. (3.26b)

Bound for 𝕋u\mathds{T}_{u}.

To estimate this term we will have to decompose it and treat each of the parts separately. We will write then write 𝕋u:=i=111𝕋ui\mathds{T}_{u}:=\sum_{i=1}^{11}\mathds{T}_{u}^{i}, where:

𝕋u1:=κ(uh)l1(φ(u)φ(uh)),ψ+lnψΓh,𝕋u7:=τ(εuεu^),PMψΓh,𝕋u2:=κ(uh)(φ(u)φh(uh)),(IdMPM)nψΓh,𝕋u8:=κ(uh)(φ(u)φh(uh))δ𝑰𝒒,ψΓh𝕋u3:=δ𝑰q,ψΓh,𝕋u9:=κ(uh)(φ(u)φh(uh))δ𝚷𝑽𝒒,ψΓh,𝕋u4:=𝑰𝒒𝒏,(IdMPM)ψΓh,𝕋u10:=κ(uh)(φ(u)φh(uh))𝑰𝒒𝒏,ψΓh.𝕋u5:=τPMIu,ψΓh,𝕋u11:=κ(uh)(φ(u)φh(uh))𝚷𝑽𝒒𝒏,ψΓh,𝕋u6:=δ𝜺𝒒,ψΓh.\begin{array}[]{lll}\mathds{T}_{u}^{1}:=-\langle\kappa(u_{h})\,l^{-1}\,(\varphi(u)-\varphi(u_{h})),\psi+l\partial_{n}\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{7}:=-\langle\tau(\varepsilon^{u}-\varepsilon^{\widehat{u}}),P_{M}\psi\rangle_{\Gamma_{h}},\\ \mathds{T}_{u}^{2}:=-\langle\kappa(u_{h})\,(\varphi(u)-\varphi_{h}(u_{h})),(Id_{M}-P_{M})\partial_{n}\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{8}:=-\langle\kappa(u_{h})\,(\varphi(u)-\varphi_{h}(u_{h}))\,\delta_{\boldsymbol{I}^{\boldsymbol{q}}},\psi\rangle_{\Gamma_{h}}\\ \mathds{T}_{u}^{3}:=\langle\delta_{\boldsymbol{I}^{q}},\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{9}:=-\langle\kappa(u_{h})\,(\varphi(u)-\varphi_{h}(u_{h}))\,\delta_{\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q}},\psi\rangle_{\Gamma_{h}},\\ \mathds{T}_{u}^{4}:=\langle\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n},(Id_{M}-P_{M})\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{10}:=-\langle\kappa(u_{h})\,(\varphi(u)-\varphi_{h}(u_{h}))\,\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n},\psi\rangle_{\Gamma_{h}}.\\ \mathds{T}_{u}^{5}:=-\langle\tau P_{M}I^{u},\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{11}:=-\langle\kappa(u_{h})\,(\varphi(u)-\varphi_{h}(u_{h}))\,\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n},\psi\rangle_{\Gamma_{h}},\\ \mathds{T}_{u}^{6}:=\langle\delta_{\boldsymbol{\varepsilon}^{\boldsymbol{q}}},\psi\rangle_{\Gamma_{h}}.&&\end{array}

Bounds for 𝕋u1𝕋u7\mathds{T}_{u}^{1}-\mathds{T}_{u}^{7}:

These terms can be estimated by we applying the same techniques of [16, Lemma 6]. We will omit most of the the details here. Recalling that the length of the transfer path l(𝒙)cRh𝒙Γhl(\boldsymbol{x})\leq c\,R\,h\quad\forall\boldsymbol{x}\in\Gamma_{h} and considering the constant c~\tilde{c} from Lemma B1 [16, Lemma 6], we have

|𝕋u1|cc~κ¯1/2Rhκ1/2(uh)l1/2(φ(u)φh(uh))ΓhΘΩ,|𝕋u2|cc~κ¯1/2R1/2hκ1/2(uh)l1/2(φ(u)φh(uh))ΓhΘΩ,|𝕋u3|13c1/2c~R3/2h1/2hn𝑰𝒒𝒏ΩhcΘΩ,|𝕋u4|c~h(h)1/2𝑰𝒒𝒏ΓhΘΩ,|𝕋u5|c~τ¯Rh1/2(h)1/2IuΓhΘΩ,|𝕋u6|13c1/2c~κ¯1/2maxeh{Cexte,Cinve}R2h1/2κ1/2(uh)𝜺𝒒ΩhΘΩ,|𝕋u7|cc~τ¯1/2Rhτ1/2(εuεu^)𝒯hΘΩ.\begin{array}[]{rl}|\mathds{T}_{u}^{1}|&\leq c\,\tilde{c}\,\overline{\kappa}^{1/2}\,R\,h\,\|\kappa^{1/2}(u_{h})\,l^{-1/2}\,(\varphi(u)-\varphi_{h}(u_{h}))\|_{\Gamma_{h}}\|\Theta\|_{\Omega},\\ |\mathds{T}_{u}^{2}|&\leq c\,\tilde{c}\,\overline{\kappa}^{1/2}\,R^{1/2}\,h\,\|\kappa^{1/2}(u_{h})\,l^{-1/2}\,(\varphi(u)-\varphi_{h}(u_{h}))\|_{\Gamma_{h}}\|\Theta\|_{\Omega},\\ |\mathds{T}_{u}^{3}|&\leq\frac{1}{\sqrt{3}}\,c^{1/2}\,\tilde{c}\,R^{3/2}\,h^{1/2}\|h^{\perp}\partial_{n}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\|_{\Omega_{h}^{c}}\|\Theta\|_{\Omega},\\ |\mathds{T}_{u}^{4}|&\leq\tilde{c}\,h\|(h^{\perp})^{1/2}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\|_{\Gamma_{h}}\|\Theta\|_{\Omega},\\ |\mathds{T}_{u}^{5}|&\leq\tilde{c}\,\overline{\tau}\,R\,h^{1/2}\|(h^{\perp})^{1/2}I^{u}\|_{\Gamma_{h}}\|\Theta\|_{\Omega},\\ |\mathds{T}_{u}^{6}|&\leq\frac{1}{\sqrt{3}}\,c^{1/2}\,\tilde{c}\,\overline{\kappa}^{1/2}\,\max_{e\in\mathcal{E}_{h}^{\partial}}\{C^{e}_{\text{ext}},C^{e}_{\text{inv}}\}R^{2}\,h^{1/2}\,\|\kappa^{-1/2}(u_{h})\,\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|_{\Omega_{h}}\|\Theta\|_{\Omega},\\ |\mathds{T}_{u}^{7}|&\leq c\,\tilde{c}\,\overline{\tau}^{1/2}\,R\,h\|\tau^{1/2}\,(\varepsilon^{u}-\varepsilon^{\widehat{u}})\|_{\partial\mathcal{T}_{h}}\|\Theta\|_{\Omega}.\end{array}

Bounds for 𝕋u8𝕋u9\mathds{T}_{u}^{8}-\mathds{T}_{u}^{9}:

Let us first notice that by definition of 𝕋u8\mathds{T}_{u}^{8}, we can obtain

|𝕋u8|=|κ1/2(uh)lκ1/2(uh)l1/2(φ(u)φh(uh))l1/2δ𝑰𝒒,l1ψΓh|.|\mathds{T}_{u}^{8}|=\left|\left\langle\kappa^{1/2}(u_{h})\,l\,\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\,l^{1/2}\,\delta_{\boldsymbol{I}^{\boldsymbol{q}}},l^{-1}\,\psi\right\rangle_{\Gamma_{h}}\right|.

Then, by Cauchy-Schwartz, the fact that l(𝒙)cRh𝒙Γhl(\boldsymbol{x})\leq c\,R\,h\quad\forall\boldsymbol{x}\in\Gamma_{h} and the boundedness of κ\kappa, we can obtain

|𝕋u8|cκ¯1/2Rhκ1/2(uh)l1/2(φ(u)φh(uh))l1/2δ𝑰𝒒Γhl1ψΓh.|\mathds{T}_{u}^{8}|\leq c\,\overline{\kappa}^{1/2}\,R\,h\,\|\kappa^{1/2}(u_{h})\,l^{-1/2}\,(\varphi(u)-\varphi_{h}(u_{h}))\,l^{1/2}\,\delta_{\boldsymbol{I}^{\boldsymbol{q}}}\|_{\Gamma_{h}}\|l^{-1}\,\psi\|_{\Gamma_{h}}.

Finally, a direct application of (B.5c) to the factor involving the function δ𝑰q\delta_{\boldsymbol{I}^{q}}, and using the estimation (B.3d) for the factor l1ψΓh\|l^{-1}\,\psi\|_{\Gamma_{h}}, results in

|𝕋u8|13cc~κ¯1/2R2hsup𝒙Γh(hn𝑰𝒒𝒏l(𝒙)κ1/2(uh)l1/2(φ(u)φh(uh))ΓhΘΩ.\begin{array}[]{rl}|\mathds{T}_{u}^{8}|&\leq\frac{1}{\sqrt{3}}\,c\,\tilde{c}\,\overline{\kappa}^{1/2}\,R^{2}\,h\,\displaystyle\sup_{\boldsymbol{x}\in\Gamma_{h}}\|(h^{\perp}\,\partial_{n}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\|_{l(\boldsymbol{x})}\,\|\kappa^{1/2}(u_{h})\,l^{-1/2}\,(\varphi(u)-\varphi_{h}(u_{h}))\|_{\Gamma_{h}}\,\|\Theta\|_{\Omega}.\end{array}

Analogously, we can show that

|𝕋u9|13cc~κ¯1/2R2hsup𝒙Γh(hn𝚷𝒗𝒒𝒏l(𝒙)κ1/2(uh)l1/2(φ(u)φh(uh))ΓhΘΩ.\begin{array}[]{rl}|\mathds{T}_{u}^{9}|&\leq\frac{1}{\sqrt{3}}\,c\,\tilde{c}\,\overline{\kappa}^{1/2}\,R^{2}\,h\,\displaystyle\sup_{\boldsymbol{x}\in\Gamma_{h}}\|(h^{\perp}\,\partial_{n}\boldsymbol{\Pi}_{\boldsymbol{v}}\boldsymbol{q}\cdot\boldsymbol{n}\|_{l(\boldsymbol{x})}\,\|\kappa^{1/2}(u_{h})\,l^{-1/2}\,(\varphi(u)-\varphi_{h}(u_{h}))\|_{\Gamma_{h}}\,\|\Theta\|_{\Omega}.\end{array}

Bounds for 𝕋u10𝕋u11\mathds{T}_{u}^{10}-\mathds{T}_{u}^{11}:

We start as in the case for 𝕋u10𝕋u11\mathds{T}_{u}^{10}-\mathds{T}_{u}^{11} by combining, Cauchy-Schwartz , the bounds for κ\kappa and lRhl\,\lesssim Rh, to obtain

|𝕋u10|=|κ1/2(uh)lκ1/2(uh)l1/2(φ(u)φh(uh))l1/2𝑰𝒒𝒏,l1ψΓh|cκ¯1/2Rhκ1/2(uh)l1/2(φ(u)φh(uh))l1/2𝑰𝒒𝒏Γhl1ψΓh.cκ¯1/2Rhκ1/2(uh)l1/2(φ(u)φh(uh))Γhl1/2𝑰𝒒𝒏L(Γh)l1ψΓh.\begin{array}[]{rl}|\mathds{T}_{u}^{10}|&=\left|\left\langle\kappa^{1/2}(u_{h})\,l\,\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\,l^{1/2}\,\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n},l^{-1}\,\psi\right\rangle_{\Gamma_{h}}\right|\\ &\leq c\,\overline{\kappa}^{1/2}\,R\,h\,\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\,l^{1/2}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\|_{\Gamma_{h}}\|l^{-1}\,\psi\|_{\Gamma_{h}}.\\ &\leq c\,\overline{\kappa}^{1/2}\,R\,h\,\|\kappa^{1/2}(u_{h})\,l^{-1/2}(\varphi(u)-\varphi_{h}(u_{h}))\|_{\Gamma_{h}}\|l^{1/2}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\|_{L^{\infty}(\Gamma_{h}})\|l^{-1}\,\psi\|_{\Gamma_{h}}.\end{array}

From here, we will use the inequality l(𝒙)rehel(\boldsymbol{x})\leq r_{e}h_{e}^{\perp} together with the estimate (B.3d) for l1ψΓh\|l^{-1}\,\psi\|_{\Gamma_{h}}, we get

|𝕋u10|cc~κ¯1/2R3/2hκ1/2(uh)l1/2(φ(u)φh(uh))Γh(h)1/2𝑰𝒒𝒏L(Γh)ΘΩ.\begin{array}[]{rl}|\mathds{T}_{u}^{10}|&\leq c\,\tilde{c}\,\overline{\kappa}^{1/2}\,R^{3/2}\,h\,\|\kappa^{1/2}(u_{h})\,l^{-1/2}\,(\varphi(u)-\varphi_{h}(u_{h}))\|_{\Gamma_{h}}\,\|(h^{\perp})^{1/2}\,\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\|_{L^{\infty}(\Gamma_{h})}\|\Theta\|_{\Omega}.\end{array}

Similar arguments can be used to derive the following analogous bound

|𝕋u11|cc~κ¯1/2R3/2hκ1/2(uh)l1/2(φ(u)φh(uh))Γh(h)1/2𝚷𝑽𝒒𝒏L(Γh)ΘΩ.\begin{array}[]{rl}|\mathds{T}_{u}^{11}|&\leq c\,\tilde{c}\,\overline{\kappa}^{1/2}\,R^{3/2}\,h\,\|\kappa^{1/2}(u_{h})\,l^{-1/2}\,(\varphi(u)-\varphi_{h}(u_{h}))\|_{\Gamma_{h}}\,\|(h^{\perp})^{1/2}\,\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n}\|_{L^{\infty}(\Gamma_{h})}\|\Theta\|_{\Omega}.\end{array}

Finally, letting Θ=εu\Theta=\varepsilon^{u} in Ωh\Omega_{h} and Θ=0\Theta=0 in Ωhc\Omega_{h}^{c} and using the estimates derived above for all the terms 𝕋\mathbb{T}_{\star} in the decomposition (3.24), one arrives at the desired estimate:

εuΩhh1/2|(𝜺𝒒,εuεu^,φφh)|uh+(h1/2+Lh)Λ𝒒+(L+h1/2)Λu,\|\varepsilon^{u}\|_{\Omega_{h}}\lesssim h^{1/2}\,|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|_{u_{h}}+(h^{1/2}+L\,h)\Lambda_{\boldsymbol{q}}+(L+h^{1/2})\Lambda_{u},

∎ This concludes the analysis of the discretization for problems with nonlinear diffusivities of the form κ=κ(u)\kappa=\kappa(u). The reminder of the article will be devoted to the analysis of cases where the nonlinearity appears as a dependence to the gradient of the unknown. This functional dependence will require a different reformulation of the problem.

4 Non-linearities of the form κ(u)\kappa(\nabla u)

4.1 Problem statement

In some applications, the diffusivity coefficient depends on the gradient of the solution, rather than on the solution itself. This is indeed the case, for instance, in the plasma equilibrium problem, where the coefficient is the inverse of the magnetic permeability. In ferromagnetic materials, the magnetic permeability becomes a function of the total magnetic field and therefore the coefficient has the functional dependence κ=κ(u)\kappa=\kappa(\nabla u). In cases like this, we will be interested in boundary value problems of the form

(κ(u)u)\displaystyle-\nabla\cdot\left(\kappa(\nabla u)\nabla u\right) =f(u)\displaystyle=f(u) in Ω,\displaystyle\text{ in }\Omega, (4.1a)
u\displaystyle u =g\displaystyle=g on Γ:=Ω.\displaystyle\text{ on }\Gamma:=\partial\Omega. (4.1b)

where, just like in the previous section, the source term ff will be assumed to be Lipschitz-continuous in Ω\Omega, with Lipschitz constant Lf>0L_{f}>0. We will also maintain the assumption (3.1) on boundedness of the permeability. Note that, since we will be searching for solutions with H1(Ω)H^{1}(\Omega) regularity, the hypothesis (3.1) will guarantee that the permeability remains bounded as a function of u\nabla u. The Lipschitz-continuity assumptions (3.2), (3.3), and (3.4) will be replaced by their following vector counterparts

κ1(𝝈1)κ1(𝝈2)L2(Γ)L𝝈1𝝈2𝑳2(Ω)𝝈1,𝝈2𝑳2(Ω),κ1/2(𝝈1)κ1/2(𝝈2)L(Γ)L^𝝈1𝝈2𝑳2(Ω)𝝈1,𝝈2𝑳2(Ω),κ(𝝈1)κ(𝝈2)L2(Ω)L~𝝈1𝝈2𝑳2(Ω)𝝈1,𝝈2𝑳2(Ω).\begin{array}[]{rclcl}\|\kappa^{-1}(\boldsymbol{\sigma}_{1})-\kappa^{-1}(\boldsymbol{\sigma}_{2})\|_{L^{2}(\Gamma)}&\leq&L\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\|_{\boldsymbol{L}^{2}(\Omega)}&&\forall\,\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2}\in\boldsymbol{L}^{2}(\Omega),\\[8.61108pt] \|\kappa^{1/2}(\boldsymbol{\sigma}_{1})-\kappa^{1/2}(\boldsymbol{\sigma}_{2})\|_{L^{\infty}(\Gamma)}&\leq&\widehat{L}\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\|_{\boldsymbol{L}^{2}(\Omega)}&&\forall\,\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2}\in\boldsymbol{L}^{2}(\Omega),\\[8.61108pt] \|\kappa(\boldsymbol{\sigma}_{1})-\kappa(\boldsymbol{\sigma}_{2})\|_{L^{2}(\Omega)}&\leq&\widetilde{L}\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\|_{\boldsymbol{L}^{2}(\Omega)}&&\forall\,\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2}\in\boldsymbol{L}^{2}(\Omega).\end{array} (4.2)

Following the spirit of reformulating the problem in a mixed form, the functional dependence κ(u)\kappa(\nabla u) will require us to introduce a new auxiliary variable. Therefore, we introduce 𝝈:=u\boldsymbol{\sigma}:=\nabla u and will express the the flux as 𝒒:=κ(𝝈)𝝈\boldsymbol{q}:=-\kappa(\boldsymbol{\sigma})\boldsymbol{\sigma}, thus introducing two additional unknowns to the problem. With these definitions, it is possible to write (4.1) as the equivalent system

𝝈u\displaystyle\boldsymbol{\sigma}-\nabla u =0\displaystyle=0 in Ω,\displaystyle\text{ in }\Omega,
𝒒+κ(𝝈)𝝈\displaystyle\boldsymbol{q}+\kappa(\boldsymbol{\sigma})\,\boldsymbol{\sigma} =0\displaystyle=0 in Ω,\displaystyle\text{ in }\Omega,
𝒒\displaystyle\nabla\cdot\boldsymbol{q} =f(u)\displaystyle=f(u) in Ω,\displaystyle\text{ in }\Omega,
u\displaystyle u =g\displaystyle=g on Ω.\displaystyle\text{ on }\partial\Omega.

We shall analyze the discretization of this system when restricted to the subdomain in Ωh\Omega_{h}. In view of this, our target formulation is

𝝈u\displaystyle\boldsymbol{\sigma}-\nabla u =0\displaystyle=0 in Ωh,\displaystyle\text{ in }\Omega_{h}, (4.3a)
𝒒+κ(𝝈)𝝈\displaystyle\boldsymbol{q}+\kappa(\boldsymbol{\sigma})\,\boldsymbol{\sigma} =0\displaystyle=0 in Ωh,\displaystyle\text{ in }\Omega_{h}, (4.3b)
𝒒\displaystyle\nabla\cdot\boldsymbol{q} =f(u)\displaystyle=f(u) in Ωh,\displaystyle\text{ in }\Omega_{h}, (4.3c)
u\displaystyle u =φ\displaystyle=\varphi on Γh=Ωh.\displaystyle\text{ on }\Gamma_{h}=\partial\Omega_{h}. (4.3d)

where the boundary conditions have been transferred by means of

φ(𝝈,𝒙):=g(𝒙¯)+0l(𝒙)(κ1(𝝈)𝒒)(𝒙+𝒕(𝒙)s)𝒕(𝒙)𝑑s.\varphi(\boldsymbol{\sigma},\boldsymbol{x}):=g(\overline{\boldsymbol{x}})+\int_{0}^{l(\boldsymbol{x})}\big{(}\kappa^{-1}(\boldsymbol{\sigma})\boldsymbol{q}\big{)}(\boldsymbol{x}+\boldsymbol{t}(\boldsymbol{x})s)\cdot\boldsymbol{t}(\boldsymbol{x})ds.

The HDG scheme associated to (4.3) reads: Find (𝒒h,𝝈h,uh,u^h)𝑽h×𝑽h×Wh×Mh(\boldsymbol{q}_{h},\boldsymbol{\sigma}_{h},u_{h},\widehat{u}_{h})\in\boldsymbol{V}_{h}\times\boldsymbol{V}_{h}\times W_{h}\times M_{h}, such that

(𝝈h,𝒗)𝒯h+(uh,𝒗)𝒯hu^h,𝒗𝒏𝒯h\displaystyle(\boldsymbol{\sigma}_{h},\boldsymbol{v})_{\mathcal{T}_{h}}+(u_{h},\nabla\cdot\boldsymbol{v})_{\mathcal{T}_{h}}-\left\langle\widehat{u}_{h},\boldsymbol{v}\cdot\boldsymbol{n}\right\rangle_{\partial\mathcal{T}_{h}} =0,\displaystyle=0, (4.4a)
(𝒒h,𝒔)𝒯h+(κ(𝝈h)𝝈h,𝒔)𝒯h\displaystyle(\boldsymbol{q}_{h},\boldsymbol{s})_{\mathcal{T}_{h}}+(\kappa(\boldsymbol{\sigma}_{h})\,\boldsymbol{\sigma}_{h},\boldsymbol{s})_{\mathcal{T}_{h}} =0,\displaystyle=0, (4.4b)
(𝒒h,w)𝒯h+𝒒^h𝒏,w𝒯h\displaystyle-(\boldsymbol{q}_{h},\nabla w)_{\mathcal{T}_{h}}+\left\langle\widehat{\boldsymbol{q}}_{h}\cdot\boldsymbol{n},w\right\rangle_{\partial\mathcal{T}_{h}} =(f(uh),w)𝒯h,\displaystyle=(f(u_{h}),w)_{\mathcal{T}_{h}}, (4.4c)
u^h,μΓh\displaystyle\langle\widehat{u}_{h},\mu\rangle_{\Gamma_{h}} =φh(𝝈h),μΓh,\displaystyle=\langle\varphi_{h}(\boldsymbol{\sigma}_{h}),\mu\rangle_{\Gamma_{h}}, (4.4d)
𝒒^h𝒏,μ𝒯hΓh\displaystyle\langle\widehat{\boldsymbol{q}}_{h}\cdot\boldsymbol{n},\mu\rangle_{\partial\mathcal{T}_{h}\setminus\Gamma_{h}} =0,\displaystyle=0, (4.4e)
for all (𝒗,𝒔,w,μ)𝑽h×𝑽h×Wh×Mh(\boldsymbol{v},\boldsymbol{s},w,\mu)\in\boldsymbol{V}_{h}\times\boldsymbol{V}_{h}\times W_{h}\times M_{h}. Here, the spaces 𝑽h\boldsymbol{V}_{h}, WhW_{h}, and MhM_{h} have been defined in (2.7), the restriction to the mesh skeleton of the numerical flux has been defined as
𝒒^h𝒏:=𝒒h𝒏+τ(uhu^h)on𝒯h,\widehat{\boldsymbol{q}}_{h}\cdot\boldsymbol{n}:=\boldsymbol{q}_{h}\cdot\boldsymbol{n}+\tau(u_{h}-\widehat{u}_{h})\quad\textrm{on}\quad\partial\mathcal{T}_{h},
and the approximate boundary condition given by
φh(𝝈h,𝒙):=g(𝒙¯)+0l(𝒙)(κ1(𝝈h)𝒒h)(𝒙+𝒕(𝒙)s)𝒕(𝒙)𝑑s.\varphi_{h}(\boldsymbol{\sigma}_{h},\boldsymbol{x}):=g(\overline{\boldsymbol{x}})+\int_{0}^{l(\boldsymbol{x})}\big{(}\kappa^{-1}(\boldsymbol{\sigma}_{h})\boldsymbol{q}_{h}\big{)}(\boldsymbol{x}+\boldsymbol{t}(\boldsymbol{x})s)\cdot\boldsymbol{t}(\boldsymbol{x})ds. (4.4f)

As before, the maximum value of the positive stabilization function τ\tau will be denoted by τ¯\overline{\tau}.

In this section we will analyze an HDG scheme for problems of this form. We will first have to reformulate the problem in terms of a mixed system with one additional unknown when compared to the case analyzed in the previous section. Many of the arguments required for the analysis will be similar to those developed in the previous section, and the analysis technique is similar as well. We will therefore omit many of the technical details and indicate the main steps in the analysis, focusing on those that are different from the previous section.

4.2 Well-posedness

The proof that the system (3.6) is well-posed will rely on a fixed point argument. As in the previous section, we define the operator 𝒥2:𝑽h×Wh𝑽h×Wh\mathcal{J}_{2}:\boldsymbol{V}_{h}\times W_{h}\to\boldsymbol{V}_{h}\times W_{h} that maps a pair of functions (𝜼,ζ)(\boldsymbol{\eta},\zeta) to the first and third component of the solution (𝒒,𝝈,u,u^)𝑽h×𝑽h×Wh×Mh(\boldsymbol{q},\boldsymbol{\sigma},u,\widehat{u})\in\boldsymbol{V}_{h}\times\boldsymbol{V}_{h}\times W_{h}\times M_{h} to the HDG system (4.4) where the source has been evaluated at (𝜼,ζ)(\boldsymbol{\eta},\zeta). Namely

(𝝈,𝒗)𝒯h+(u,𝒗)𝒯hu^,𝒗𝒏𝒯h\displaystyle(\boldsymbol{\sigma},\boldsymbol{v})_{\mathcal{T}_{h}}+(u,\nabla\cdot\boldsymbol{v})_{\mathcal{T}_{h}}-\left\langle\widehat{u},\boldsymbol{v}\cdot\boldsymbol{n}\right\rangle_{\partial\mathcal{T}_{h}} =0,\displaystyle=0, (4.5a)
(𝒒,𝒔)𝒯h+(κ(𝜼)𝝈,𝒔)𝒯h\displaystyle(\boldsymbol{q},\boldsymbol{s})_{\mathcal{T}_{h}}+(\kappa(\boldsymbol{\eta})\,\boldsymbol{\sigma},\boldsymbol{s})_{\mathcal{T}_{h}} =0,\displaystyle=0, (4.5b)
(𝒒,w)𝒯h+𝒒^𝒏,w𝒯h\displaystyle-(\boldsymbol{q},\nabla w)_{\mathcal{T}_{h}}+\left\langle\widehat{\boldsymbol{q}}\cdot\boldsymbol{n},w\right\rangle_{\partial\mathcal{T}_{h}} =(f(ζ),w)𝒯h,\displaystyle=(f(\zeta),w)_{\mathcal{T}_{h}}, (4.5c)
u^,μΓh\displaystyle\langle\widehat{u},\mu\rangle_{\Gamma_{h}} =φ(𝜼),μΓh,\displaystyle=\langle\varphi(\boldsymbol{\eta}),\mu\rangle_{\Gamma_{h}}, (4.5d)
𝒒^𝒏,μ𝒯hΓh\displaystyle\langle\widehat{\boldsymbol{q}}\cdot\boldsymbol{n},\mu\rangle_{\partial\mathcal{T}_{h}\setminus\Gamma_{h}} =0,\displaystyle=0, (4.5e)

for all (𝒗,𝒔,w,μ)𝑽h×𝑽h×Wh×Mh(\boldsymbol{v},\boldsymbol{s},w,\mu)\in\boldsymbol{V}_{h}\times\boldsymbol{V}_{h}\times W_{h}\times M_{h}. Just as before, φ(ζ)\varphi(\zeta) accounts for the transferred boundary conditions and, since the discrete linearized system above is uniquely solvable [5], 𝒥2\mathcal{J}_{2} is well defined.

Given a function 𝜼𝑽h\boldsymbol{\eta}\in\boldsymbol{V}_{h}, we define the following norm over the product space 𝑽h×𝑽h×Wh×Mh\boldsymbol{V}_{h}\times\boldsymbol{V}_{h}\times W_{h}\times M_{h}

|(𝒔,𝒗,w,λ)|𝜼\displaystyle|\!|\!|{(\boldsymbol{s},\boldsymbol{v},w,\lambda)}|\!|\!|_{\boldsymbol{\eta}} :=(𝒔Ωh2+κ1/2(𝜼)𝒗Ωh2+τ1/2w𝒯h2+κ1/2(𝜼)l1/2λ(𝜼)Γh2)1/2.\displaystyle:=\left(\|\boldsymbol{s}\|^{2}_{\Omega_{h}}+\|\kappa^{1/2}(\boldsymbol{\eta})\boldsymbol{v}\|_{\Omega_{h}}^{2}+\|\tau^{1/2}\,w\|_{\partial\mathcal{T}_{h}}^{2}+\|\kappa^{1/2}(\boldsymbol{\eta})\,l^{-1/2}\,\lambda(\boldsymbol{\eta})\|_{\Gamma_{h}}^{2}\right)^{1/2}. (4.6)

The general road map for the proof is as follows. Lemmas 7 and 8 below, will allow us to control (𝒒,𝝈,uu^,φ)(\boldsymbol{q},\boldsymbol{\sigma},u-\widehat{u},\varphi) by the linearized source term f(ζ)f(\zeta) and the boundary condition at the physical boundary, g¯\overline{g}. An application of these two results will then allow us—modulo some technical assumptions involving the bound of the diffusivity and the distance between the physical and computational domains—to use the Lipschitz continuity of ff and κ\kappa to prove that the mapping is indeed a contraction. This will be done in Theorem 3, from which the well posedness of the HDG system (4.4) will follow as a simple corollary.

Lemma 7.

If Assumptions (2.4) hold, then

|(𝒒,𝝈,uu^,φ)|𝜼2max{1,κ¯}(4f(ζ)ΩhuΩh+6κ1/2(𝜼)l1/2g¯Γh2).|\!|\!|{(\boldsymbol{q},\boldsymbol{\sigma},u-\widehat{u},\varphi)}|\!|\!|_{\boldsymbol{\eta}}^{2}\leq\max\{1,\overline{\kappa}\}\Big{(}4\|f(\zeta)\|_{\Omega_{h}}\|u\|_{\Omega_{h}}+6\|\kappa^{1/2}(\boldsymbol{\eta})\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}^{2}\Big{)}. (4.7)
Proof.

Note that if we let 𝒔=𝒒\boldsymbol{s}=\boldsymbol{q} in (4.5b) , we have

𝒒Ωh2κ¯κ1/2(𝜼)𝝈Ωh2.\|\boldsymbol{q}\|_{\Omega_{h}}^{2}\leq\overline{\kappa}\,\|\kappa^{1/2}(\boldsymbol{\eta})\,\boldsymbol{\sigma}\|_{\Omega_{h}}^{2}. (4.8)

Then, following the process outlined in the proof of Lemma 3, we go back to (4.5) and choose the test functions as 𝒗=𝒒,𝒔=𝝈,w=u\boldsymbol{v}=-\boldsymbol{q},\boldsymbol{s}=\boldsymbol{\sigma},w=u, and

μ={u^, on 𝒯hΓh𝒒^𝒏, on Γh.\mu=\left\{\begin{array}[]{cc}-\widehat{u},&\text{ on }\partial\mathcal{T}_{h}\setminus\Gamma_{h}\\ -\widehat{\boldsymbol{q}}\cdot\boldsymbol{n},&\text{ on }\Gamma_{h}.\end{array}\right.

This leads to the equality

κ1/2(𝜼)𝝈Ωh2+τ1/2(uu^)𝒯h2=\displaystyle\|\kappa^{1/2}(\boldsymbol{\eta})\boldsymbol{\sigma}\|^{2}_{\Omega_{h}}+\|\tau^{1/2}(u-\widehat{u})\|^{2}_{\partial\mathcal{T}_{h}}=\, (f(ζ),u)𝒯hφ(𝜼),κ(𝜼)l1φ(𝜼)Γh+φ(𝜼),κ(𝝈)l1g¯Γh\displaystyle\;\;(f(\zeta),u)_{\mathcal{T}_{h}}-\langle\varphi(\boldsymbol{\eta}),\kappa(\boldsymbol{\eta})l^{-1}\varphi(\boldsymbol{\eta})\rangle_{\Gamma_{h}}+\langle\varphi(\boldsymbol{\eta}),\kappa(\boldsymbol{\sigma})l^{-1}\overline{g}\rangle_{\Gamma_{h}}
+φ(𝜼),g¯Γhφ(𝜼),τ(uu^)Γh.\displaystyle+\langle\varphi(\boldsymbol{\eta}),\overline{g}\rangle_{\Gamma_{h}}-\langle\varphi(\boldsymbol{\eta}),\tau(u-\widehat{u})\rangle_{\Gamma_{h}}.

The terms on the right hand side can be estimated by an application of Lemma 2, yielding

κ1/2(𝜼)𝝈Ωh2+τ1/2(uu^)𝒯h2+κ1/2(η)l1/2φ(𝜼)Γh2\displaystyle\|\kappa^{1/2}(\boldsymbol{\eta})\boldsymbol{\sigma}\|_{\Omega_{h}}^{2}+\|\tau^{1/2}\,(u-\widehat{u})\|_{\partial\mathcal{T}_{h}}^{2}+\|\kappa^{1/2}(\eta)\,l^{-1/2}\,\varphi(\boldsymbol{\eta})\|_{\Gamma_{h}}^{2} 2f(ζ)ΩhuΩh+3κ1/2(𝜼)l1/2g¯Γh2.\displaystyle\leq 2\|f(\zeta)\|_{\Omega_{h}}\|u\|_{\Omega_{h}}+3\|\kappa^{1/2}(\boldsymbol{\eta})\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}^{2}.

Combining this estimate with (4.8), we obtain

|(𝒒,𝝈,uu^,φ)|𝜼2\displaystyle|\!|\!|{(\boldsymbol{q},\boldsymbol{\sigma},u-\widehat{u},\varphi)}|\!|\!|_{\boldsymbol{\eta}}^{2} max{1,κ¯}(4f(ζ)ΩhuΩh+6κ1/2(𝜼)l1/2g¯Γh2),\displaystyle\leq\max\{1,\overline{\kappa}\}\left(4\|f(\zeta)\|_{\Omega_{h}}\|u\|_{\Omega_{h}}+6\|\kappa^{1/2}(\boldsymbol{\eta})\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}^{2}\right),

which concludes the proof. ∎

It only remains now to estimate the norm of uu in terms of the sources and the boundary conditions. This will be done in the next lemma.

Lemma 8.

Suppose that Assumptions (2.4) and (B.2) are satisfied. Then, there exists c^>0\widehat{c}>0, independent of hh such that

uΩh4max{c^2h,1}f(ζ)Ωh+2(3c^+κ¯1/2R1/2)h1/2κ1/2(𝜼)l1/2g¯Γh.\|u\|_{\Omega_{h}}\leq 4\,\max\{\widehat{c}^{2}h,1\}\,\|f(\zeta)\|_{\Omega_{h}}+2\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})\,h^{1/2}\,\|\kappa^{1/2}(\boldsymbol{\eta})\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}. (4.9)
Proof.

The proof of this result is follows, with small variations, the same process as that of Lemma 4. By using 𝜼\boldsymbol{\eta} instead of ζ\zeta in the dual problem given in (B.1), and splitting the duality product as

(u,Θ)𝒯h=𝕋𝝈+𝕋u+𝕋f,(u,\Theta)_{\mathcal{T}_{h}}=\mathds{T}_{\boldsymbol{\sigma}}+\mathds{T}_{u}+\mathds{T}_{f},

where

𝕋𝝈:=(𝝈,𝚷𝑽ϕϕ)𝒯h,𝕋u:=u^,PM(ϕ𝒏)Γh𝒒^𝒏,ΠWψΓhand𝕋f:=(f(ζ),ΠWψ)𝒯h.\mathds{T}_{\boldsymbol{\sigma}}:=-(\boldsymbol{\sigma},\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{\phi}-\boldsymbol{\phi})_{\mathcal{T}_{h}},\quad\mathds{T}_{u}:=\langle\widehat{u},P_{M}(\boldsymbol{\phi}\cdot\boldsymbol{n})\rangle_{\Gamma_{h}}-\langle\widehat{\boldsymbol{q}}\cdot\boldsymbol{n},\Pi_{W}\psi\rangle_{\Gamma_{h}}\quad\text{and}\quad\mathds{T}_{f}:=(f(\zeta),\Pi_{W}\psi)_{\mathcal{T}_{h}}.

The terms 𝕋𝝈\mathds{T}_{\boldsymbol{\sigma}} and 𝕋f\mathds{T}_{f} are bounded as

|𝕋𝝈|\displaystyle|\mathds{T}_{\boldsymbol{\sigma}}| κ¯1/2hκ1/2(𝜼)𝝈ΩhΘΩ,and|𝕋f|f(ζ)ΩhΘΩ,\displaystyle\lesssim\underline{\kappa}^{-1/2}\,h\|\kappa^{-1/2}(\boldsymbol{\eta})\,\boldsymbol{\sigma}\|_{\Omega_{h}}\,\|\Theta\|_{\Omega},\quad\text{and}\quad|\mathds{T}_{f}|\lesssim\|f(\zeta)\|_{\Omega_{h}}\,\|\Theta\|_{\Omega},

and, we rewrite 𝕋u\mathds{T}_{u} as 𝕋u=i=15𝕋ui\mathds{T}_{u}=\sum_{i=1}^{5}\mathds{T}_{u}^{i}, with

𝕋u1:=κ(𝜼)l1φ(𝜼),ψ+lnψΓh,𝕋u4:=τ(uu^),PMψΓh,𝕋u2:=κ(𝜼)φ(𝜼),(PMId)nψΓh,𝕋u5:=κ(𝜼)l1g¯,ψΓh,𝕋u3:=δ𝝈,ψΓh.\begin{array}[]{lcl}\mathds{T}_{u}^{1}:=-\langle\kappa(\boldsymbol{\eta})l^{-1}\varphi(\boldsymbol{\eta}),\psi+l\partial_{n}\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{4}:=-\langle\tau(u-\widehat{u}),P_{M}\psi\rangle_{\Gamma_{h}},\\[8.61108pt] \mathds{T}_{u}^{2}:=\langle\kappa(\boldsymbol{\eta})\varphi(\boldsymbol{\eta}),(P_{M}-I_{d})\partial_{n}\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{5}:=\langle\kappa(\boldsymbol{\eta})\,l^{-1}\,\overline{g},\psi\rangle_{\Gamma_{h}},\\[8.61108pt] \mathds{T}_{u}^{3}:=\langle\delta_{\boldsymbol{\sigma}},\psi\rangle_{\Gamma_{h}}.&&\end{array}

These terms can be bounded using arguments analogous to those in Lemma 4, yielding the desired estimate (4.9). ∎

The results in the two preceding lemmas can be combined to estimate (𝒒,𝝈,uu^,φ)(\boldsymbol{q},\boldsymbol{\sigma},u-\widehat{u},\varphi) in terms of the source f(ζ)f(\zeta) and the boundary data g¯\overline{g}. This follows readily from an application of Lemma 8 to (4.7), yielding

|(𝒒,𝝈,uu^,φ)|η2\displaystyle|\!|\!|{(\boldsymbol{q},\boldsymbol{\sigma},u-\widehat{u},\varphi)}|\!|\!|^{2}_{\eta}\leq\, (16max{1,κ¯}2+8max{c^2h,1}2)f(ζ)Ωh2\displaystyle\;\;\;\left(16\,\max\{1,\overline{\kappa}\}^{2}+8\,\max\{\widehat{c}^{2}h,1\}^{2}\right)\|f(\zeta)\|_{\Omega_{h}}^{2}
+(6max{1,κ¯}+2(3c^+κ¯1/2R1/2)2h)κ1/2(𝜼)l1/2g¯Γh2.\displaystyle+\left(6\max\{1,\overline{\kappa}\}+2\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})^{2}\,h\right)\|\kappa^{1/2}(\boldsymbol{\eta})\,l^{-1/2}\,\overline{g}\|^{2}_{\Gamma_{h}}. (4.10)

In turn, (4.9) implies that

uΩh232max{c^2h,1}2f(ζ)Ωh2+8(3c^+κ¯1/2R1/2)2hκ1/2(𝜼)l1/2g¯Γh2.\begin{array}[]{rl}\|u\|_{\Omega_{h}}^{2}&\leq 32\,\max\{\widehat{c}^{2}h,1\}^{2}\,\|f(\zeta)\|_{\Omega_{h}}^{2}+8\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})^{2}\,h\,\|\kappa^{1/2}(\boldsymbol{\eta})\,l^{-1/2}\,\overline{g}\|_{\Gamma_{h}}^{2}.\end{array} (4.11)

These two estimates will be used to prove the contractive properties of 𝒥2\mathcal{J}_{2} as we will now show.

Theorem 3.

Suppose that the dual regularity (B.2) and the Assumptions (2.4) hold and suppose also that

(16max{1,κ¯}2+40max{c^2h,1}2)Lf2<14\bigg{(}16\,\max\{1,\overline{\kappa}\}^{2}+40\,\max\{\widehat{c}^{2}h,1\}^{2}\bigg{)}L^{2}_{f}<\dfrac{1}{4} (4.12)

and

(6max{1,κ¯}+10(3c^+κ¯1/2R1/2)2h)L^2l1/2g¯Γh2<14.\bigg{(}6\max\{1,\overline{\kappa}\}+10\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})^{2}\,h\bigg{)}\widehat{L}^{2}\|l^{-1/2}\,\overline{g}\|^{2}_{\Gamma_{h}}<\dfrac{1}{4}. (4.13)

are satisfied. Then 𝒥2\mathcal{J}_{2} is a contraction operator.

Proof.

Let (𝜼i,ζi)𝑽h×Wh(\boldsymbol{\eta}_{i},\zeta_{i})\in\boldsymbol{V}_{h}\times W_{h} and define (𝝈i,ui):=𝒥2((𝜼i,ζi))𝑽h×Wh(\boldsymbol{\sigma}_{i},u_{i}):=\mathcal{J}_{2}\left((\boldsymbol{\eta}_{i},\zeta_{i})\right)\in\boldsymbol{V}_{h}\times W_{h} for i{1,2}i\in\{1,2\}. Then,

𝒥2(𝜼1,ζ1)𝒥2(𝜼2,ζ2)Ωh=(𝝈1𝝈2,u1u2)Ωh=(𝝈1𝝈2Ωh2+u1u2Ωh2)1/2.\|\mathcal{J}_{2}(\boldsymbol{\eta}_{1},\zeta_{1})-\mathcal{J}_{2}(\boldsymbol{\eta}_{2},\zeta_{2})\|_{\Omega_{h}}=\|(\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2},u_{1}-u_{2})\|_{\Omega_{h}}=\left(\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\|^{2}_{\Omega_{h}}+\|u_{1}-u_{2}\|^{2}_{\Omega_{h}}\right)^{1/2}.

By applying the inequalities (4.10) and (4.11) respectively to (𝝈1𝝈2)(\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}) and (u1u2)(u_{1}-u_{2}), we obtain

𝒥2(𝜼1,ζ1)\displaystyle\|\mathcal{J}_{2}(\boldsymbol{\eta}_{1},\zeta_{1})-\, 𝒥2(𝜼2,ζ2)Ωh((16max{1,κ¯}2+40max{c^2h,1}2)f(ζ1)f(ζ2)Ωh2\displaystyle\mathcal{J}_{2}(\boldsymbol{\eta}_{2},\zeta_{2})\|_{\Omega_{h}}\leq\bigg{(}\left(16\,\max\{1,\overline{\kappa}\}^{2}+40\,\max\{\widehat{c}^{2}h,1\}^{2}\right)\|f(\zeta_{1})-f(\zeta_{2})\|_{\Omega_{h}}^{2}
+(6max{1,κ¯}+10(3c^+κ¯1/2R1/2)2h)κ1/2(𝜼1)κ1/2(𝜼2)L(Γh)2l1/2g¯Γh2)1/2.\displaystyle+\left(6\max\{1,\overline{\kappa}\}+10\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})^{2}\,h\right)\|\kappa^{1/2}(\boldsymbol{\eta}_{1})-\kappa^{1/2}(\boldsymbol{\eta}_{2})\|_{L^{\infty}(\Gamma_{h})}^{2}\|l^{-1/2}\,\overline{g}\|^{2}_{\Gamma_{h}}\bigg{)}^{1/2}.

Then, using the Lipschitz continuity of ff and κ1/2\kappa^{1/2}, we get

𝒥2(𝜼1,ζ1)\displaystyle\|\mathcal{J}_{2}(\boldsymbol{\eta}_{1},\zeta_{1})-\, 𝒥2(𝜼2,ζ2)Ωh((16max{1,κ¯}2+40max{c^2h,1}2)Lf2ζ1ζ2Ωh2\displaystyle\mathcal{J}_{2}(\boldsymbol{\eta}_{2},\zeta_{2})\|_{\Omega_{h}}\leq\bigg{(}\left(16\,\max\{1,\overline{\kappa}\}^{2}+40\,\max\{\widehat{c}^{2}h,1\}^{2}\right)L^{2}_{f}\|\zeta_{1}-\zeta_{2}\|_{\Omega_{h}}^{2}
+(6max{1,κ¯}+10(3c^+κ¯1/2R1/2)2h)L^2𝜼1𝜼2L(Ωh)2l1/2g¯Γh2)1/2.\displaystyle+\left(6\max\{1,\overline{\kappa}\}+10\,(\sqrt{3}\,\widehat{c}+\overline{\kappa}^{1/2}\,R^{1/2})^{2}\,h\right)\widehat{L}^{2}\|\boldsymbol{\eta}_{1}-\boldsymbol{\eta}_{2}\|_{L^{\infty}(\Omega_{h})}^{2}\|l^{-1/2}\,\overline{g}\|^{2}_{\Gamma_{h}}\bigg{)}^{1/2}.

The proof is concluded, by applying the assumptions (4.12) and (4.13) to the right hand side of the preceding inequality. ∎

As a result we can then conclude this section with with the following

Corollary 2.

If the hypotheses of Theorem 3 are satisfied, the HDG system (4.5) is well posed.

Having established the well posedness of the discrete system (4.5), we will concentrate our efforts in the next section on establishing the convergence properties of the HDG scheme.

4.3 A priori error analysis

The study of the convergence properties and rates of our discretization follows similar steps as the ones laid out in Section 3.3, adapted for the extended system that arises from the introduction of the additional auxiliary variable 𝝈=u\boldsymbol{\sigma}=\nabla u. To avoid unnecessary repetition of arguments, we will focus on the differences between these two cases and will omit most of the details that can be easily inferred from Section 3.3.

As before, we decompose the error with the aid of the HDG projection as :

𝒒𝒒h=𝜺𝒒+𝑰𝒒,𝝈𝝈h=𝜺𝝈+𝑰𝝈, and uuh=εu+Iu,\boldsymbol{q}-\boldsymbol{q}_{h}=\boldsymbol{\varepsilon}^{\boldsymbol{q}}+\boldsymbol{I}^{\boldsymbol{q}},\quad\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}=\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}+\boldsymbol{I}^{\boldsymbol{\sigma}},\;\;\text{ and }\;\;u-u_{h}=\varepsilon^{u}+I^{u},

where, similar to Section 3.3, we have defined

𝜺𝒒:=\displaystyle\boldsymbol{\varepsilon}^{\boldsymbol{q}}:= 𝚷𝑽𝒒𝒒h,𝜺𝝈:=\displaystyle\,\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q}-\boldsymbol{q}_{h},\qquad\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}:= 𝚷𝑽𝝈𝝈h,εu:=\displaystyle\,\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h},\qquad\varepsilon^{u}:= ΠWuuh\displaystyle\,\Pi_{W}u-u_{h}\qquad (Projection of the error),\displaystyle\text{ {(Projection of the error)}},
𝑰𝒒:=\displaystyle\boldsymbol{I}^{\boldsymbol{q}}:= 𝒒𝚷𝑽𝒒,𝑰𝝈:=\displaystyle\,\boldsymbol{q}-\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q},\qquad\boldsymbol{I}^{\boldsymbol{\sigma}}:= 𝝈𝚷𝑽𝝈,Iu:=\displaystyle\,\boldsymbol{\sigma}-\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{\sigma},\qquad I^{u}:= uΠWu\displaystyle\,u-\Pi_{W}u\qquad (Error of the projection).\displaystyle\text{ {(Error of the projection)}}.

In addition, using the L2L^{2} projection into MhM_{h} we have εu^:=PMuu^h\varepsilon^{\widehat{u}}:=P_{M}u-\widehat{u}_{h}. The vector of error projections (𝜺𝒒,𝜺𝝈,εu,εu^)(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\varepsilon^{u},\varepsilon^{\widehat{u}}) belongs to 𝑽h×𝑽h×Wh×Mh\boldsymbol{V}_{h}\times\boldsymbol{V}_{h}\times W_{h}\times M_{h} and satisfies the error equations

(𝜺𝝈,𝒗)𝒯h+(εu,𝒗)𝒯hεu^,𝒗𝒏𝒯h=\displaystyle(\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\boldsymbol{v})_{\mathcal{T}_{h}}+(\varepsilon^{u},\nabla\cdot\boldsymbol{v})_{\mathcal{T}_{h}}-\langle\varepsilon^{\widehat{u}},\boldsymbol{v}\cdot\boldsymbol{n}\rangle_{\partial\mathcal{T}_{h}}= (𝑰𝝈,𝒗)𝒯h(𝑰u,𝒗)𝒯h\displaystyle-(\boldsymbol{I}^{\boldsymbol{\sigma}},\boldsymbol{v})_{\mathcal{T}_{h}}-(\boldsymbol{I}^{u},\nabla\cdot\boldsymbol{v})_{\mathcal{T}_{h}} (4.14a)
(𝜺𝒒,𝒔)𝒯h+(κ(𝝈h)𝜺𝝈,𝒔)𝒯h=\displaystyle(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\boldsymbol{s})_{\mathcal{T}_{h}}+\left(\kappa(\boldsymbol{\sigma}_{h})\,\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\boldsymbol{s}\right)_{\mathcal{T}_{h}}= (𝑰𝒒,𝒔)𝒯h(κ(𝝈)𝑰𝝈,𝒔)𝒯h\displaystyle-(\boldsymbol{I}^{\boldsymbol{q}},\boldsymbol{s})_{\mathcal{T}_{h}}-\left(\kappa(\boldsymbol{\sigma})\,\boldsymbol{I}^{\boldsymbol{\sigma}},\boldsymbol{s}\right)_{\mathcal{T}_{h}} (4.14b)
((κ(𝝈)κ(𝝈h))Π𝑽𝝈,s)𝒯h,\displaystyle-\left(\left(\kappa(\boldsymbol{\sigma})-\kappa(\boldsymbol{\sigma}_{h})\right)\Pi_{\boldsymbol{V}}\boldsymbol{\sigma},s\right)_{\mathcal{T}_{h}}, (4.14c)
(𝜺𝒒,w)𝒯h+𝜺𝒒^𝒏,w𝒯h=\displaystyle-(\boldsymbol{\varepsilon}^{\boldsymbol{q}},\nabla w)_{\mathcal{T}_{h}}+\langle\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n},w\rangle_{\partial\mathcal{T}_{h}}= (f(u)f(uh),w)𝒯h,\displaystyle\,(f(u)-f(u_{h}),w)_{\mathcal{T}_{h}}, (4.14d)
εu^,μΓh=\displaystyle\langle\varepsilon^{\widehat{u}},\mu\rangle_{\Gamma_{h}}= φ(𝝈)φh(𝝈h),μΓh,\displaystyle\,\langle\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}),\mu\rangle_{\Gamma_{h}}, (4.14e)
𝜺𝒒^𝒏,μ𝒯hΓh=\displaystyle\langle\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n},\mu\rangle_{\partial\mathcal{T}_{h}\setminus\Gamma_{h}}=  0,\displaystyle\,0, (4.14f)

for all (𝒗,𝒔,w,μ)𝑽h×𝑽h×Wh×Mh(\boldsymbol{v},\boldsymbol{s},w,\mu)\in\boldsymbol{V}_{h}\times\boldsymbol{V}_{h}\times W_{h}\times M_{h}. Here, as before, on 𝒯h\partial\mathcal{T}_{h} we have 𝜺𝒒^𝒏=𝜺𝒒𝒏+τ(εuεu^)\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n}=\boldsymbol{\varepsilon}^{\boldsymbol{q}}\cdot\boldsymbol{n}+\tau(\varepsilon^{u}-\varepsilon^{\widehat{u}}).

Following the same arguments of Lemma 5 is possible to estimate the magnitude of (𝜺𝝈,𝜺𝒒,εuεu^,φφh)(\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h}), as measured by the norm ||||||𝝈|\!|\!|{\cdot}|\!|\!|_{\boldsymbol{\sigma}} defined in (4.6). Choosing the vector of approximation errors both as test and trial in the error equations we obtain

κ1/2(𝝈h)𝜺𝝈Ωh2+τ1/2(εuεu^)𝒯h2+κ1/2(𝝈h)l1/2(φ(𝝈)φh(𝝈h))Γh2|(𝑰𝒒,𝜺𝝈)𝒯h|+|(𝑰𝝈,𝜺𝒒)𝒯h|+|(κ(𝝈)𝑰𝝈,𝜺𝝈)𝒯h|+|((κ(𝝈)κ(𝝈h))Π𝑽𝝈,𝜺𝝈)𝒯h|+|𝕋f|+|𝕋φ|.\begin{array}[]{l}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|^{2}_{\Omega_{h}}+\|\tau^{1/2}(\varepsilon^{u}-\varepsilon^{\widehat{u}})\|^{2}_{\partial\mathcal{T}_{h}}+\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,l^{-1/2}\,(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}))\|^{2}_{\Gamma_{h}}\\[8.61108pt] \quad\leq|(\boldsymbol{I}^{\boldsymbol{q}},\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}})_{\mathcal{T}_{h}}|+|(\boldsymbol{I}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{q}})_{\mathcal{T}_{h}}|+|(\kappa(\boldsymbol{\sigma})\boldsymbol{I}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}})_{\mathcal{T}_{h}}|+|((\kappa(\boldsymbol{\sigma})-\kappa(\boldsymbol{\sigma}_{h}))\Pi_{\boldsymbol{V}}\boldsymbol{\sigma},\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}})_{\mathcal{T}_{h}}|+|\mathds{T}^{f}|+|\mathds{T}_{\varphi}|.\end{array} (4.15)

The final two terms are defined as 𝕋f:=(f(u)f(uh),εu)𝒯h\mathds{T}^{f}:=(f(u)-f(u_{h}),\varepsilon^{u})_{\mathcal{T}_{h}} and 𝕋φ:=i=18|Tφi|\mathds{T}_{\varphi}:=\sum_{i=1}^{8}{|\mathrm{T}_{\varphi}^{i}}|, where

𝕋φ1:=φ(𝝈)φh(𝝈h),δ𝜺𝒒Γh𝕋φ2:=φ(𝝈)φh(𝝈h),τ(εuεu^)Γh𝕋φ3:=φ(𝝈)φh(𝝈h),𝑰𝒒𝒏Γh𝕋φ4:=φ(𝝈)φh(𝝈h),δ𝑰𝒒Γh𝕋φ5:=φ(𝝈)φh(𝝈h),κ(𝝈h)(κ1(𝝈)κ1(𝝈h))δΠ𝑽𝒒Γh𝕋φ6:=φ(𝝈)φh(𝝈h),κ(𝝈h)(κ1(𝝈)κ1(𝝈h))δ𝑰𝒒Γh𝕋φ7:=φ(𝝈)φh(𝝈h),κ(𝝈h)(κ1(𝝈)κ1(𝝈h))𝑰𝒒𝒏Γh𝕋φ8:=φ(𝝈)φh(𝝈h),κ(𝝈h)(κ1(𝝈)κ1(𝝈h))Π𝑽𝒒𝒏Γh.\begin{array}[]{rcl}\mathds{T}_{\varphi}^{1}&:=&\langle\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}),\delta_{\boldsymbol{\varepsilon}^{\boldsymbol{q}}}\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{2}&:=&-\langle\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}),\tau(\varepsilon^{u}-\varepsilon^{\widehat{u}})\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{3}&:=&\langle\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}),\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{4}&:=&\langle\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}),\delta_{\boldsymbol{I}^{\boldsymbol{q}}}\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{5}&:=&\langle\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}),\kappa(\boldsymbol{\sigma}_{h})\,(\kappa^{-1}(\boldsymbol{\sigma})-\kappa^{-1}(\boldsymbol{\sigma}_{h}))\,\delta_{\Pi_{\boldsymbol{V}}\boldsymbol{q}}\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{6}&:=&\langle\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}),\kappa(\boldsymbol{\sigma}_{h})\,(\kappa^{-1}(\boldsymbol{\sigma})-\kappa^{-1}(\boldsymbol{\sigma}_{h}))\,\delta_{\boldsymbol{I}^{\boldsymbol{q}}}\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{7}&:=&\langle\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}),\kappa(\boldsymbol{\sigma}_{h})\,(\kappa^{-1}(\boldsymbol{\sigma})-\kappa^{-1}(\boldsymbol{\sigma}_{h}))\,\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n}\rangle_{\Gamma_{h}}\\ \mathds{T}_{\varphi}^{8}&:=&\langle\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}),\kappa(\boldsymbol{\sigma}_{h})\,(\kappa^{-1}(\boldsymbol{\sigma})-\kappa^{-1}(\boldsymbol{\sigma}_{h}))\,\Pi_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n}\rangle_{\Gamma_{h}}.\end{array}

By a combined use of arguments similar to those appearing in Lemma 5, it is possible to deduce

|𝕋φ1|12δ1κ1/2(𝝈h)l1/2(φ(𝝈)φh(𝝈h)Γh2+δ16κ¯1𝜺𝒒Ωh2,|𝕋φ2|12δ2κ1/2(𝝈h)l1/2(φ(𝝈)φh(𝝈h)Γh2+δ26τ1/2(εuεu^)𝒯h2,|𝕋φ3|12δ3κ1/2(𝝈h)l1/2(φ(𝝈)φh(𝝈h)Γh2+δ32Rκ¯1(h)1/2𝑰𝒒𝒏)Γh2,|𝕋φ4|12δ3κ1/2(𝝈h)l1/2(φ(𝝈)φh(𝝈h)Γh2+δ36κ¯1R2hn(𝑰𝒒𝒏)Ωhc2,|𝕋φ5|12δ3κ1/2(𝝈h)l1/2(φ(𝝈)φh(𝝈h)Γh2+δ33κ¯R2sup𝒙eΓhhn(Π𝑽𝒒𝒏)l(𝒙)2L2(𝜺𝝈Ωh2+𝑰𝝈Ωh2),|𝕋φ6|12δ3κ1/2(𝝈h)l1/2(φ(𝝈)φh(𝝈h)Γh2+2δ33κ¯κ¯2R2hn(𝑰𝒒𝒏)Ωhc2,|𝕋φ7|12δ3κ1/2(𝝈h)l1/2(φ(𝝈)φh(𝝈h)Γh2+2δ3Rκ¯κ¯2(h)1/2𝑰𝒒𝒏)Γh2,|𝕋φ8|12δ3κ1/2(𝝈h)l1/2(φ(𝝈)φh(𝝈h)Γh2+δ3κ¯R(h)1/2Π𝑽𝒒𝒏2L2(𝜺𝝈Ωh2+𝑰𝝈Ωh2),\begin{array}[]{rl}|\mathds{T}_{\varphi}^{1}|&\leq\dfrac{1}{2\delta_{1}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,l^{-1/2}(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{1}}{6}\,\overline{\kappa}^{-1}\,\|\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}},\\ |\mathds{T}_{\varphi}^{2}|&\leq\dfrac{1}{2\delta_{2}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,l^{-1/2}(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{2}}{6}\,\|\tau^{1/2}(\varepsilon^{u}-\varepsilon^{\widehat{u}})\|^{2}_{\partial\mathcal{T}_{h}},\\ |\mathds{T}_{\varphi}^{3}|&\leq\dfrac{1}{2\delta_{3}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,l^{-1/2}(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{3}}{2}\,R\,\underline{\kappa}^{-1}\,\|(h^{\perp})^{1/2}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Gamma_{h}},\\ |\mathds{T}_{\varphi}^{4}|&\leq\dfrac{1}{2\delta_{3}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,l^{-1/2}(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{3}}{6}\,\underline{\kappa}^{-1}\,R^{2}\,\|h^{\perp}\partial_{n}(\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Omega_{h}^{c}},\\ |\mathds{T}_{\varphi}^{5}|&\displaystyle\leq\dfrac{1}{2\delta_{3}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,l^{-1/2}(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})\|^{2}_{\Gamma_{h}}+\dfrac{\delta_{3}}{3}\,\overline{\kappa}\,R^{2}\,\sup_{\boldsymbol{x}\in e\subseteq\Gamma_{h}}\|h^{\perp}\partial_{n}(\Pi_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n})\|^{2}_{l(\boldsymbol{x})}\,L^{2}\,\left(\|\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|_{\Omega_{h}}^{2}+\|\boldsymbol{I}^{\boldsymbol{\sigma}}\|_{\Omega_{h}}^{2}\right),\\ |\mathds{T}_{\varphi}^{6}|&\leq\dfrac{1}{2\delta_{3}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,l^{-1/2}(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})\|^{2}_{\Gamma_{h}}+\dfrac{2\delta_{3}}{3}\,\overline{\kappa}\,\underline{\kappa}^{-2}\,R^{2}\,\|h^{\perp}\partial_{n}(\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Omega_{h}^{c}},\\ |\mathds{T}_{\varphi}^{7}|&\leq\dfrac{1}{2\delta_{3}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,l^{-1/2}(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})\|^{2}_{\Gamma_{h}}+2\,\delta_{3}\,R\,\overline{\kappa}\,\underline{\kappa}^{-2}\,\|(h^{\perp})^{1/2}\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n})\|^{2}_{\Gamma_{h}},\\ |\mathds{T}_{\varphi}^{8}|&\leq\dfrac{1}{2\delta_{3}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,l^{-1/2}(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})\|^{2}_{\Gamma_{h}}+\delta_{3}\,\overline{\kappa}\,R\ \|(h^{\perp})^{1/2}\,\Pi_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n}\|_{\infty}^{2}\,L^{2}\,\left(\|\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|_{\Omega_{h}}^{2}+\|\boldsymbol{I}^{\boldsymbol{\sigma}}\|_{\Omega_{h}}^{2}\right),\end{array} (4.16)

and

|(𝑰𝝈,𝜺𝒒)𝒯h|12δ4𝜺𝒒Ωh2+δ42𝑰𝝈Ωh2,|(𝑰𝒒,𝜺𝝈)𝒯h|12δ5κ1/2(𝝈h)𝜺𝝈Ωh2+δ52κ¯1𝑰𝒒Ωh2,|(κ(𝝈)𝑰𝝈,𝜺𝝈)𝒯h|12δ5κ1/2(𝝈h)𝜺𝝈Ωh2+δ52κ¯1κ¯2𝑰𝝈Ωh2,|(κ(𝝈)κ(𝝈h))Π𝑽𝝈,𝜺𝝈)𝒯h|12δ5κ1/2(𝝈h)𝜺𝝈Ωh2+δ5κ¯1Π𝑽𝒒2L2(𝜺𝝈Ωh2+𝑰𝝈Ωh2).|𝕋f|Lf(εuΩh+IuΩh)εuΩh.\begin{array}[]{rl}|(\boldsymbol{I}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{q}})_{\mathcal{T}_{h}}|&\leq\dfrac{1}{2\,\delta_{4}}\|\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}}+\dfrac{\delta_{4}}{2}\,\|\boldsymbol{I}^{\boldsymbol{\sigma}}\|^{2}_{\Omega_{h}},\\ |(\boldsymbol{I}^{\boldsymbol{q}},\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}})_{\mathcal{T}_{h}}|&\leq\dfrac{1}{2\,\delta_{5}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|^{2}_{\Omega_{h}}+\dfrac{\delta_{5}}{2}\,\underline{\kappa}^{-1}\,\|\boldsymbol{I}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}},\\ |(\kappa(\boldsymbol{\sigma})\boldsymbol{I}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}})_{\mathcal{T}_{h}}|&\leq\dfrac{1}{2\,\delta_{5}}\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|^{2}_{\Omega_{h}}+\dfrac{\delta_{5}}{2}\,\underline{\kappa}^{-1}\,\overline{\kappa}^{2}\|\boldsymbol{I}^{\boldsymbol{\sigma}}\|^{2}_{\Omega_{h}},\\ |(\kappa^{(}\boldsymbol{\sigma})-\kappa(\boldsymbol{\sigma}_{h}))\,\Pi_{\boldsymbol{V}}\boldsymbol{\sigma},\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}})_{\mathcal{T}_{h}}|&\leq\dfrac{1}{2\,\delta_{5}}\,\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|^{2}_{\Omega_{h}}+\delta_{5}\,\underline{\kappa}^{-1}\,\|\Pi_{\boldsymbol{V}}\boldsymbol{q}\|_{\infty}^{2}\,L^{2}\,\left(\|\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|_{\Omega_{h}}^{2}+\|\boldsymbol{I}^{\boldsymbol{\sigma}}\|_{\Omega_{h}}^{2}\right).\\ |\mathds{T}^{f}|&\leq L_{f}\,(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}})\,\|\varepsilon^{u}\|_{\Omega_{h}}.\end{array} (4.17)

Then, taking the test function s=𝜺𝒒s=\boldsymbol{\varepsilon}^{\boldsymbol{q}} in the second equation of (4.14), we get

𝜺𝒒Ωh2(4κ¯+8κ¯1L2Π𝑽𝒒2)κ1/2(𝝈h)𝜺𝝈Ωh2+4𝑰𝒒Ωh2+4max{κ¯,2L2Π𝑽𝝈2}𝑰𝝈Ωh2.\|\boldsymbol{\varepsilon}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}}\leq\left(4\,\overline{\kappa}+8\,\underline{\kappa}^{-1}\,L^{2}\,\|\Pi_{\boldsymbol{V}}\boldsymbol{q}\|^{2}_{\infty}\right)\,\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|_{\Omega_{h}}^{2}+4\,\|\boldsymbol{I}^{\boldsymbol{q}}\|^{2}_{\Omega_{h}}+4\,\max\{\overline{\kappa},2\,L^{2}\,\|\Pi_{\boldsymbol{V}}\,\boldsymbol{\sigma}\|^{2}_{\infty}\}\,\|\boldsymbol{I}^{\boldsymbol{\sigma}}\|^{2}_{\Omega_{h}}. (4.18)

If the Lipschitz constants LL and LfL_{f} are sufficiently small, a direct application of (4.18) in the first equations of (4.16) and (4.17), together with the choices δ1=1,δ2=3,δ3=12,δ4=24/κ¯,δ5=18\delta_{1}=1,\delta_{2}=3,\delta_{3}=12,\delta_{4}=24/\overline{\kappa},\delta_{5}=18 yield the following estimate for the right hand side of (4.15)

κ1/2(𝝈h)𝜺𝝈Ωh2+τ1/2(εuεu^)𝒯h2+κ1/2(𝝈h)\displaystyle\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\,\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|^{2}_{\Omega_{h}}+\|\tau^{1/2}(\varepsilon^{u}-\varepsilon^{\widehat{u}})\|^{2}_{\partial\mathcal{T}_{h}}+\|\kappa^{1/2}(\boldsymbol{\sigma}_{h}) l1/2(φ(𝝈)φh(𝝈h))Γh2\displaystyle\,l^{-1/2}\,\,(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}))\|^{2}_{\Gamma_{h}}
\displaystyle\lesssim\, Λ𝒒2+Λ𝝈2+Lf(εuΩh+IuΩh)εuΩh.\displaystyle\Lambda_{\boldsymbol{q}}^{2}+\Lambda_{\boldsymbol{\sigma}}^{2}+L_{f}\,(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}})\,\|\varepsilon^{u}\|_{\Omega_{h}}. (4.19)

In the expression above, the term Λ𝝈\Lambda_{\boldsymbol{\sigma}} has been defined according to (3.17a). By combining (4.18) and (4.19) we get

|(𝜺𝝈,𝜺𝒒,εuεu^,φφh)|𝝈h2Λ𝒒2+Λ𝝈2+Lf(εuΩh+IuΩh)εuΩh.|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|^{2}_{\boldsymbol{\sigma}_{h}}\lesssim\Lambda_{\boldsymbol{q}}^{2}+\Lambda_{\boldsymbol{\sigma}}^{2}+L_{f}\,(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}})\,\|\varepsilon^{u}\|_{\Omega_{h}}. (4.20)

The following result allows us to estimate the term εu\varepsilon^{u} in (4.20) by means of a duality argument. The proof technique is analogous to the one used for Lemma 6.

Lemma 9.

Given the regularity condition (B.2), assume that the Lipschitz constant is such that LfL_{f} is small enough, and consider the discrete spaces to be of polynomial degree k1k\geq 1. Then,

εuΩh23h|(𝜺𝝈,𝜺𝒒,εuεu^,φφh)|𝝈h2+6((h+L2h2)Λ𝒒2+(L2+h)Λu2).\displaystyle\|\varepsilon^{u}\|_{\Omega_{h}}^{2}\lesssim 3\,h|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|_{\boldsymbol{\sigma}_{h}}^{2}+6\bigg{(}(h+L^{2}\,h^{2})\Lambda_{\boldsymbol{q}}^{2}+(L^{2}+h)\,\Lambda_{u}^{2}\bigg{)}. (4.21)
Proof.

Consider the pair of functions function ϕ\phi and ψ\psi satisfying the dual problem (B.1). We will use them to define the following terms

𝕋𝝈\displaystyle\mathds{T}_{\boldsymbol{\sigma}} :=(𝝈𝝈h,𝚷𝑽ϕϕ)𝒯h+((κ(𝝈h)κ(𝝈))(𝑰𝝈+𝚷𝑽𝝈),ψ)𝒯h,\displaystyle:=-(\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h},\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{\phi}-\boldsymbol{\phi})_{\mathcal{T}_{h}}+((\kappa(\boldsymbol{\sigma}_{h})-\kappa(\boldsymbol{\sigma}))(\boldsymbol{I}^{\boldsymbol{\sigma}}+\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{\sigma}),\nabla\psi)_{\mathcal{T}_{h}},
𝕋𝒒\displaystyle\mathds{T}_{\boldsymbol{q}} :=(𝑰𝒒,ψ)𝒯h,\displaystyle:=-(\boldsymbol{I}^{\boldsymbol{q}},\nabla\psi)_{\mathcal{T}_{h}},
𝕋f\displaystyle\mathds{T}_{f} :=(f(u)f(uh),ΠWψ)𝒯h,\displaystyle:=(f(u)-f(u_{h}),\Pi_{W}\psi)_{\mathcal{T}_{h}},
𝕋u\displaystyle\mathds{T}_{u} :=εu^,PM(ϕ𝒏)Γh𝜺𝒒^𝒏,ΠWψΓh.\displaystyle:=\langle\varepsilon^{\widehat{u}},P_{M}(\boldsymbol{\phi}\cdot\boldsymbol{n})\rangle_{\Gamma_{h}}-\langle\boldsymbol{\varepsilon}^{\widehat{\boldsymbol{q}}}\cdot\boldsymbol{n},\Pi_{W}\psi\rangle_{\Gamma_{h}}.

With all the definitions above and the equations in (B.1), it is possible to decompose the inner product between εu\varepsilon^{u} and the function Θ\Theta appearing as the source term of the dual problem in the form

(εu,Θ)𝒯h\displaystyle(\varepsilon^{u},\Theta)_{\mathcal{T}_{h}} =𝕋𝝈+𝕋𝒒+𝕋f+𝕋u,\displaystyle=\mathds{T}_{\boldsymbol{\sigma}}+\mathds{T}_{\boldsymbol{q}}+\mathds{T}_{f}+\mathds{T}_{u}, (4.22)

Following arguments similar to the ones applied in Lemma 8, it is possible to bound each of the terms in the decomposition as

|𝕋𝝈|\displaystyle|\mathds{T}_{\boldsymbol{\sigma}}| hmin{1,k}κ1/2(𝝈h)(𝜺𝝈+𝑰𝝈)ΩhΘΩ+L(κ1/2(𝝈h)𝜺𝝈+𝑰𝝈)ΘΩ\displaystyle\lesssim h^{\min\{1,k\}}\,\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})(\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}+\boldsymbol{I}^{\boldsymbol{\sigma}})\|_{\Omega_{h}}\,\|\Theta\|_{\Omega}+L\,(\|\kappa^{1/2}(\boldsymbol{\sigma}_{h})\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}}\|+\|\boldsymbol{I}^{\boldsymbol{\sigma}}\|)\,\|\Theta\|_{\Omega}
|𝕋𝒒|\displaystyle|\mathds{T}_{\boldsymbol{q}}| hmin{1,k}𝑰ΩhΘΩ,\displaystyle\lesssim h^{\min\{1,k\}}\|\boldsymbol{I}\|_{\Omega_{h}}\,\|\Theta\|_{\Omega},
|𝕋f|\displaystyle|\mathds{T}_{f}| Lf(εuΩh+IuΩh)ΘΩ\displaystyle\lesssim L_{f}\,\left(\|\varepsilon^{u}\|_{\Omega_{h}}+\|I^{u}\|_{\Omega_{h}}\right)\,\|\Theta\|_{\Omega}

The bound for the final term in (4.22) requires decomposing it in the form 𝕋u:=i=110𝕋ui\mathds{T}_{u}:=\sum_{i=1}^{10}\mathds{T}_{u}^{i}, where:

𝕋u1:=κ(𝝈h)l1(φ(𝝈)φh(𝝈h)),ψ+lnψΓh,𝕋u7:=τ(εuεu^),PMψΓh,𝕋u2:=κ(uh)(φ(𝝈)φh(𝝈h)),(IdMPM)nψΓh,𝕋u8:=κ(𝝈h)(φ(𝝈)φh(𝝈h))δ𝑰𝒒,ψΓh𝕋u3:=δ𝑰q,ψΓh,𝕋u9:=κ(𝝈h)(φ(𝝈)φh(𝝈h))δ𝚷𝑽𝒒,ψΓh,𝕋u4:=𝑰𝒒𝒏,(IdMPM)ψΓh,𝕋u10:=κ(𝝈h)(φ(𝝈)φh(𝝈h))𝑰𝒒𝒏,ψΓh.𝕋u5:=τPMIu,ψΓh,𝕋u11:=κ(𝝈h)(φ(𝝈)φh(𝝈h))𝚷𝑽𝒒𝒏,ψΓh,𝕋u6:=δ𝜺𝒒,ψΓh.\begin{array}[]{lll}\mathds{T}_{u}^{1}:=-\langle\kappa(\boldsymbol{\sigma}_{h})\,l^{-1}\,(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})),\psi+l\partial_{n}\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{7}:=-\langle\tau(\varepsilon^{u}-\varepsilon^{\widehat{u}}),P_{M}\psi\rangle_{\Gamma_{h}},\\ \mathds{T}_{u}^{2}:=-\langle\kappa(u_{h})\,(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h})),(Id_{M}-P_{M})\partial_{n}\psi\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{8}:=-\langle\kappa(\boldsymbol{\sigma}_{h})\,(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}))\,\delta_{\boldsymbol{I}^{\boldsymbol{q}}},\psi\rangle_{\Gamma_{h}}\\ \mathds{T}_{u}^{3}:=\left\langle\delta_{\boldsymbol{I}^{q}},\psi\right\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{9}:=-\langle\kappa(\boldsymbol{\sigma}_{h})\,(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}))\,\delta_{\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q}},\psi\rangle_{\Gamma_{h}},\\ \mathds{T}_{u}^{4}:=\left\langle\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n},(Id_{M}-P_{M})\psi\right\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{10}:=-\langle\kappa(\boldsymbol{\sigma}_{h})\,(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}))\,\boldsymbol{I}^{\boldsymbol{q}}\cdot\boldsymbol{n},\psi\rangle_{\Gamma_{h}}.\\ \mathds{T}_{u}^{5}:=-\left\langle\tau P_{M}I^{u},\psi\right\rangle_{\Gamma_{h}},&&\mathds{T}_{u}^{11}:=-\langle\kappa(\boldsymbol{\sigma}_{h})\,(\varphi(\boldsymbol{\sigma})-\varphi_{h}(\boldsymbol{\sigma}_{h}))\,\boldsymbol{\Pi}_{\boldsymbol{V}}\boldsymbol{q}\cdot\boldsymbol{n},\psi\rangle_{\Gamma_{h}},\\ \mathds{T}_{u}^{6}:=\left\langle\delta_{\boldsymbol{\varepsilon}^{\boldsymbol{q}}},\psi\right\rangle_{\Gamma_{h}}.&&\end{array}

These terms can be estimated by arguments like the ones detailed in Lemma 6. Finally, taking Θ=εu\Theta=\varepsilon^{u} in (4.22) and considering the estimates for the components of 𝕋ui\mathds{T}_{u}^{i} it is possible to deduce that

εuΩh23h|(𝜺𝝈,𝜺𝒒,εuεu^,φφh)|𝝈h2+6((h+L2h2)Λ𝒒2+(L2+h)Λu2).\|\varepsilon^{u}\|_{\Omega_{h}}^{2}\lesssim 3\,h|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|_{\boldsymbol{\sigma}_{h}}^{2}+6\bigg{(}(h+L^{2}\,h^{2})\Lambda_{\boldsymbol{q}}^{2}+(L^{2}+h)\,\Lambda_{u}^{2}\bigg{)}.

The result of the previous Lemma allows us to estimate the error incurred by the HDG approximation by that of the HDG projection onto the discrete space, as we now show.

Theorem 4.

If LL is small enough and the discrete spaces are of polynomial degree k1k\geq 1, then there exists h0>0h_{0}>0 such that, for all hh0h\leq h_{0}, we have

|(𝜺𝝈,𝜺𝒒,εuεu^,φφh)|𝝈h2Λ𝒒2+Λu2+Λ𝝈2.\displaystyle|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|_{\boldsymbol{\sigma}_{h}}^{2}\lesssim\Lambda_{\boldsymbol{q}}^{2}+\Lambda_{u}^{2}+\Lambda_{\boldsymbol{\sigma}}^{2}. (4.23)
Proof.

Using simple algebraic arguments, note that the term (4.20) can be rewritten as

|(𝜺𝝈,𝜺𝒒,εuεu^,φφh)|𝝈2Λ𝒒2+Λ𝝈2+32LfεuΩh2+12LfΛuεuΩh|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|^{2}_{\boldsymbol{\sigma}}\lesssim\Lambda_{\boldsymbol{q}}^{2}+\Lambda_{\boldsymbol{\sigma}}^{2}+\frac{3}{2}\,L_{f}\|\varepsilon^{u}\|_{\Omega_{h}}^{2}+\frac{1}{2}\,L_{f}\,\Lambda_{u}\|\varepsilon^{u}\|_{\Omega_{h}}

Combined the above with the estimate given in the Lemma 9, we can deduce

(192Lfhc)|(𝜺𝝈,𝜺𝒒,εuεu^,φφh)|𝝈29Lf((h+L2h2)Λ𝒒2+(L2+h)Λu2)+Λ𝒒2+Λ𝝈2+12LfΛu2,\displaystyle\left(1-\frac{9}{2}\,L_{f}\,h\,c\right)|\!|\!|{(\boldsymbol{\varepsilon}^{\boldsymbol{\sigma}},\boldsymbol{\varepsilon}^{\boldsymbol{q}},\varepsilon^{u}-\varepsilon^{\widehat{u}},\varphi-\varphi_{h})}|\!|\!|^{2}_{\boldsymbol{\sigma}}\lesssim 9\,L_{f}\bigg{(}(h+L^{2}\,h^{2})\Lambda_{\boldsymbol{q}}^{2}+(L^{2}+h)\,\Lambda_{u}^{2}\bigg{)}+\Lambda_{\boldsymbol{q}}^{2}+\Lambda_{\boldsymbol{\sigma}}^{2}+\frac{1}{2}\,L_{f}\Lambda_{u}^{2},

where c>0c>0 is a constant independent of hh arising from the symbol \lesssim. Assuming that LfL_{f} is small enough and considering that hh0h\leq h_{0}, te proof is concluded. ∎

As a consequence of this theorem, it follows that the HDG approximation of the linearized systems will indeed achieve optimal order of convergence with respect to the degree of the polynomial basis, provided that the true solutions are smooth enough.

Corollary 3.

Suppose that assumptions of Theorem 4 hold. If uHk+1(Ω)u\in H^{k+1}(\Omega) and 𝐪𝐇k+1(Ω)\boldsymbol{q}\in\boldsymbol{H}^{k+1}(\Omega), then

𝝈𝝈hΩ+𝒒𝒒hΩ+uuhΩChk+1(|u|k+1,Ω+|𝒒|k+1,Ω+|𝝈|k+1,Ω).\displaystyle\|\boldsymbol{\sigma}-\boldsymbol{\sigma}_{h}\|_{\Omega}+\|\boldsymbol{q}-\boldsymbol{q}_{h}\|_{\Omega}+\|u-u_{h}\|_{\Omega}\leq Ch^{k+1}\left(|u|_{k+1,\Omega}+|\boldsymbol{q}|_{k+1,\Omega}+|\boldsymbol{\sigma}|_{k+1,\Omega}\right).

Acknowledgments

Nestor Sánchez is supported by the Scholarship Program of CONICYT-Chile. Manuel E. Solano was partially funded by CONICYT–Chile through FONDECYT project No. 1200569 and by Project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal. Tonatiuh Sánchez–Vizuet was partially supported by the National Science Foundation throught the grant NSF-DMS-2137305 “LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement”.

Appendix A HDG projection

The HDG projectors introduced by [3] and their properties have been used extensively throughout the text. Here we provide a quick definition and summary of the properties used in this article.

Consider constants lu,l𝒒[0,k]l_{u},l_{\boldsymbol{q}}\in[0,k] and functions (𝒒,u)H1+lq(T)×H1+lu(T)(\boldsymbol{q},u)\in H^{1+l_{q}}(T)\times H^{1+l_{u}}(T). Moreover, recall the discrete spaces

𝑽h\displaystyle\boldsymbol{V}_{h} :={𝒗𝑳2(𝒯h):𝒗|T[k(T)]d,T𝒯h},\displaystyle:=\{\boldsymbol{v}\in\boldsymbol{L}^{2}(\mathcal{T}_{h}):\boldsymbol{v}|_{T}\in[\mathds{P}_{k}(T)]^{d},\ \forall\ T\in\mathcal{T}_{h}\},
Wh\displaystyle W_{h} :={wL2(𝒯h):w|Tk(T),T𝒯h},\displaystyle:=\{w\in L^{2}(\mathcal{T}_{h}):w|_{T}\in\mathds{P}_{k}(T),\ \forall\ T\in\mathcal{T}_{h}\},
Mh\displaystyle M_{h} :={μL2(h):μ|Tk(e),eh},\displaystyle:=\{\mu\in L^{2}(\mathcal{E}_{h}):\mu|_{T}\in\mathds{P}_{k}(e),\ \forall\ e\in\mathcal{E}_{h}\},

defined in (2.7) in the text. We will denote by 𝚷(𝒒,u):=(𝚷v𝒒,Πwu)\boldsymbol{\Pi}(\boldsymbol{q},u):=(\boldsymbol{\Pi}_{\mathrm{v}}\boldsymbol{q},\Pi_{\mathrm{w}}u) the projection over 𝑽h×Wh\boldsymbol{V}_{h}\times W_{h} defined by the unique element-wise solutions of

(𝚷v𝒒,𝒗)T\displaystyle(\boldsymbol{\Pi}_{\mathrm{v}}\boldsymbol{q},\boldsymbol{v})_{T} =(𝒒,𝒗)T\displaystyle=(\boldsymbol{q},\boldsymbol{v})_{T} 𝒗[k1(T)]d,\displaystyle\forall\ \boldsymbol{v}\in[\mathds{P}_{k-1}(T)]^{d}, (A.1a)
(Πwu,w)T\displaystyle(\Pi_{\mathrm{w}}u,w)_{T} =(u,w)T\displaystyle=(u,w)_{T} wk1(T),\displaystyle\forall\ w\in\mathds{P}_{k-1}(T), (A.1b)
𝚷v𝒒𝒏+τΠwu,μF\displaystyle\left\langle\boldsymbol{\Pi}_{\mathrm{v}}\boldsymbol{q}\cdot\boldsymbol{n}+\tau\Pi_{\mathrm{w}}u,\mu\right\rangle_{F} =𝒒𝒏+τu,μF\displaystyle=\left\langle\boldsymbol{q}\cdot\boldsymbol{n}+\tau u,\mu\right\rangle_{F} μk(F),\displaystyle\forall\ \mu\in\mathds{P}_{k}(F), (A.1c)

for every element T𝒯hT\in\mathcal{T}_{h}, and FTF\subset\partial T. Will will denote the L2L^{2} projector into MhM_{h} by PMP_{M}. It was proven in [3] that when the stabilization function is chosen so that τTmax:=maxτ|T>0\tau_{T}^{\max}:=\max\tau|_{\partial T}>0, then there is a constant C>0C>0 independent of TT and τ\tau such that

𝚷v𝒒𝒒T\displaystyle\|\boldsymbol{\Pi}_{\mathrm{v}}\boldsymbol{q}-\boldsymbol{q}\|_{T} ChTl𝒒+1|𝒒|𝑯l𝒒+1(T)+ChTlu+1τT|u|Hlu+1(T),\displaystyle\leq Ch_{T}^{l_{\boldsymbol{q}}+1}|\boldsymbol{q}|_{\boldsymbol{H}^{l_{\boldsymbol{q}}+1}(T)}+Ch_{T}^{l_{u}+1}\tau_{T}^{*}|u|_{H^{l_{u}+1}(T)}, (A.2a)
ΠwuuT\displaystyle\|\Pi_{\mathrm{w}}u-u\|_{T} ChTlu+1|u|Hlu+1(T)+ChTl𝒒+1τTmax|𝒒|Hl𝒒(T).\displaystyle\leq Ch_{T}^{l_{u}+1}|u|_{H^{l_{u}+1}(T)}+C\dfrac{h_{T}^{l_{\boldsymbol{q}}+1}}{\tau_{T}^{\max}}|\nabla\cdot\boldsymbol{q}|_{H^{l_{\boldsymbol{q}}}(T)}. (A.2b)

Here τT:=maxτ|TF\tau_{T}^{*}:=\max\tau|_{\partial T\setminus F^{*}} and FF^{*} is a face of TT at which τ|T\tau|_{\partial T} is maximum. As is customary, the symbol ||Hs|\cdot|_{H^{s}} is to be understood as the Sobolev semi norm of order ss\in\mathbb{R}.

Appendix B Auxiliary estimates

Duality argument

We will consider that, given ΘL2(Ω)\Theta\in L^{2}(\Omega), the solution to the auxiliary problem

κ1(ζ)ϕ+ψ\displaystyle\kappa^{-1}(\zeta)\boldsymbol{\phi}+\nabla\psi =0\displaystyle=0 in Ω,\displaystyle\text{in }\Omega, (B.1a)
ϕ\displaystyle\nabla\cdot\boldsymbol{\phi} =Θ\displaystyle=\Theta in Ω,\displaystyle\text{in }\Omega, (B.1b)
ψ\displaystyle\psi =0\displaystyle=0 on Ω,\displaystyle\text{on }\partial\Omega, (B.1c)

satisfies the regularity estimate

ϕH1(Ω)+ψH2(Ω)CregΘΩ.\|\boldsymbol{\phi}\|_{H^{1}(\Omega)}+\|\psi\|_{H^{2}(\Omega)}\leq C_{reg}\|\Theta\|_{\Omega}. (B.2)

where Creg>0C_{reg}>0 depends on the domain Ω\Omega. Moreover, if Ωh\Omega_{h} is a subdomain of Ω\Omega with boundary Γh:=Ωh\Gamma_{h}:=\partial\Omega_{h}, l(x)l(x) is the length of the transfer path connecting Γ:=Ω\Gamma:=\partial\Omega to Γh\Gamma_{h} as defined in Section 2.2, PMP_{M} is the L2L^{2}-projector onto the discrete space MhM_{h} defined in (2.7), and IdMId_{M} is the identity operator in MhM_{h} we have

Lemma B1.

[5, Lemma 5.5] Suppose Assumption (2.4b) and the elliptic regularity inequality (B.2) hold. Then, there exists a constant c~>0\tilde{c}>0, such that:

(h)1/2(IdMPM)ψΓh\displaystyle\|{(h^{\perp})}^{-1/2}(Id_{M}-P_{M})\psi\|_{\Gamma_{h}} c~hΘΩ,\displaystyle\leq\tilde{c}\,h\|\Theta\|_{\Omega}, (B.3a)
l1/2(IdMPM)nψΓh\displaystyle\|l^{1/2}(Id_{M}-P_{M})\partial_{n}\psi\|_{\Gamma_{h}} c~R1/2hΘΩ,\displaystyle\leq\tilde{c}\,R^{1/2}\,h\|\Theta\|_{\Omega}, (B.3b)
l3/2(ψ+lnψ)Γh\displaystyle\|l^{-3/2}(\psi+l\partial_{n}\psi)\|_{\Gamma_{h}} c~ΘΩ,\displaystyle\leq\tilde{c}\,\|\Theta\|_{\Omega}, (B.3c)
l1ψΓh\displaystyle\|l^{-1}\psi\|_{\Gamma_{h}} c~ΘΩ.\displaystyle\leq\tilde{c}\,\|\Theta\|_{\Omega}. (B.3d)

Function Delta

For any smooth enough function 𝒗\boldsymbol{v} defined in TeTexteT^{e}\cup T_{ext}^{e} and 𝒙Γh\boldsymbol{x}\in\Gamma_{h} we set

δ𝒗(𝒙):=1l(𝒙)0l(𝒙)[𝒗(𝒙+𝒏s)𝒗(𝒙)]𝒏𝑑s.\delta_{\boldsymbol{v}}(\boldsymbol{x}):=\dfrac{1}{l(\boldsymbol{x})}\int_{0}^{l(\boldsymbol{x})}[\boldsymbol{v}(\boldsymbol{x}+\boldsymbol{n}s)-\boldsymbol{v}(\boldsymbol{x})]\cdot\boldsymbol{n}ds. (B.4)

which hold for each ehe\in\mathcal{E}_{h}^{\partial} (cf. [5, Lemma 5.2]):

l1/2δ𝒗e\displaystyle\|l^{1/2}\,\delta_{\boldsymbol{v}}\|_{e} 13re3/2CexteCinve𝒗Te\displaystyle\leq\dfrac{1}{\sqrt{3}}\,r_{e}^{3/2}\,C_{ext}^{e}\,C_{inv}^{e}\,\|\boldsymbol{v}\|_{T^{e}} 𝒗[k(T)]d,\displaystyle\forall\ \boldsymbol{v}\in[\mathds{P}_{k}(T)]^{d}, (B.5a)
l1/2δ𝒗e\displaystyle\|l^{1/2}\,\delta_{\boldsymbol{v}}\|_{e} 13rehn𝒗𝒏Texte\displaystyle\leq\dfrac{1}{\sqrt{3}}\,r_{e}\,\|h^{\perp}\partial_{n}\boldsymbol{v}\cdot\boldsymbol{n}\|_{T_{ext}^{e}} 𝒗[H1(T)]d.\displaystyle\forall\ \boldsymbol{v}\in[H^{1}(T)]^{d}. (B.5b)
l1/2δ𝒗\displaystyle\|l^{1/2}\,\delta_{\boldsymbol{v}}\|_{\infty} 13resup𝒙ehen𝒗𝒏l(𝒙)\displaystyle\leq\dfrac{1}{\sqrt{3}}\,r_{e}\,\sup_{\boldsymbol{x}\in e}\|h_{e}^{\perp}\,\partial_{n}\boldsymbol{v}\cdot\boldsymbol{n}\|_{l(\boldsymbol{x})} 𝒗[H1(T)]d.\displaystyle\forall\ \boldsymbol{v}\in[H^{1}(T)]^{d}. (B.5c)

References

  • [1] G. Chen, B. Cockburn, J. Singler, and Y. Zhang. Superconvergent interpolatory HDG methods for reaction diffusion equations I: An HDGk method. Journal of Scientific Computing, 81(3):2188–2212, 2019.
  • [2] B. Cockburn, J. Gopalakrishnan, and R. D. Lazarov. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47:1319–1365, 2009.
  • [3] B. Cockburn, J. Gopalakrishnan, and F.-J. Sayas. A projection-based error analysis of HDG methods. Math. Comp., 79:1351–1367, 2010.
  • [4] B. Cockburn, D. Gupta, and F. Reitich. Boundary-conforming discontinuous Galerkin methods via extensions from subdomains. Journal of Scientific Computing, 42(1):144, Aug 2009.
  • [5] B. Cockburn, W. Qiu, and M. Solano. A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Mathematics of computation, 83(286):665–699, 2014.
  • [6] B. Cockburn, J. R. Singler, and Y. Zhang. Interpolatory HDG method for parabolic semilinear PDEs. Journal of Scientific Computing, 79(3):1777–1800, 2019.
  • [7] B. Cockburn and M. Solano. Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains. SIAM Journal on Scientific Computing, 34(1):A497–A519, 2012.
  • [8] R. Z. Dautov and E. M. Fedotov. Abstract theory of hybridizable discontinuous Galerkin methods for second-order quasilinear elliptic problems. Computational Mathematics and Mathematical Physics, 54(3):474–490, Mar. 2014.
  • [9] G. N. Gatica and F. A. Sequeira. Analysis of an augmented HDG method for a class of Quasi-Newtonian Stokes flows. Journal of Scientific Computing, 65(3):1270–1308, Mar. 2015.
  • [10] G. N. Gatica and F. A. Sequeira. A priori and a posteriori error analyses of an augmented HDG method for a class of Quasi-Newtonian Stokes flows. J. Sci. Comput., 69:1192–1250, 2016.
  • [11] H. Grad and H. Rubin. Hydromagnetic equilibria and force-free fields. In Proc. Second international conference on the peaceful uses of atomic energy, Geneva, volume 31,190, New York, Oct 1958. United Nations.
  • [12] H. Leng. Adaptive HDG methods for the steady-state incompressible Navier–Stokes equations. Journal of Scientific Computing, 87(1):1–26, 2021.
  • [13] R. Lüst and A. Schlüter. Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen. Z. Naturf, 12a:850–854, 1957.
  • [14] F. Marche. Combined hybridizable discontinuous Galerkin (HDG) and Runge-Kutta discontinuous Galerkin (RK-DG) formulations for Green-Naghdi equations on unstructured meshes. Journal of Computational Physics, 418:109637, 2020.
  • [15] W. Qiu and K. Shi. A mixed DG method and an HDG method for incompressible magnetohydrodynamics. IMA Journal of Numerical Analysis, 40(2):1356–1389, 01 2019.
  • [16] N. Sánchez, T. Sánchez-Vizuet, and M. E. Solano. A priori and a posteriori error analysis of an unfitted HDG method for semi-linear elliptic problems. Numerische Mathematik, 148(4):919–958, Aug. 2021.
  • [17] T. Sánchez-Vizuet and M. E. Solano. A Hybridizable discontinuous Galerkin solver for the Grad-Shafranov equation. Computer Physics Communications, 235:120–132, Feb 2019.
  • [18] T. Sánchez-Vizuet, M. E. Solano, and A. J. Cerfon. Adaptive hybridizable discontinuous Galerkin discretization of the Grad–Shafranov equation by extension from polygonal subdomains. Computer Physics Communications, 255:107239, 2020.
  • [19] V. D. Shafranov. On magnetohydrodynamical equilibrium configurations. Soviet Physics JETP, 6:545–554, 1958.