This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ergodicity of a nonlinear stochastic reaction-diffusion equation with memory

Hung D. Nguyen1 1 Department of Mathematics, University of California, Los Angeles, California, USA
Abstract.

We consider a class of semi-linear differential Volterra equations with memory terms, polynomial nonlinearities and random perturbation. For a broad class of nonlinearities, we show that the system in concern admits a unique weak solution. Also, any statistically steady state must possess regularity compatible with that of the solution. Moreover, if sufficiently many directions are stochastically forced, we employ the generalized coupling approach to prove that there exists a unique invariant probability measure and that the system is exponentially attractive. This extends ergodicity results previously established in [Bonaccorsi et al., SIAM J. Math. Anal., 44 (2012)].

1. Introduction

1.1. Overview

Let 𝒪d\mathcal{O}\in\mathbb{R}^{d} be a bounded open domain with smooth boundary. We consider the following system in the unknown variable u(t)=u(x,t):𝒪×u(t)=u(x,t):\mathcal{O}\times\mathbb{R}\to\mathbb{R}

du(t)\displaystyle\text{d}u(t) =u(t)dt0K(s)u(ts)dsdt+φ(u(t))dt+Qdw(t),\displaystyle=\triangle u(t)\text{d}t-\int_{0}^{\infty}\!\!\!K(s)\triangle u(t-s)\text{d}s\text{d}t+\varphi(u(t))\text{d}t+Q\text{d}w(t), (1.1)
u(t)|𝒪\displaystyle u(t)\big{|}_{\partial\mathcal{O}} =0,u(s)=u0(s),s0,\displaystyle=0,\qquad u(s)=u_{0}(s),\,\,s\leq 0,

modeling the temperature of a heat flow by conduction in viscoelastic materials [17, 18, 28, 41]. In (1.1), K:[0,)[0,)K:[0,\infty)\to[0,\infty) is the heat flux memory kernel satisfying 0K(s)ds<1\int_{0}^{\infty}K(s)\text{d}s<1, φ\varphi is a nonlinear term with polynomial growth, w(t)w(t) is a cylindrical Wiener process, and QQ is a linear bounded map on certain Hilbert spaces. For simplicity, we set all physical constants to 1.

In the absence of memory effects, that is when K0K\equiv 0, we note that (1.1) is reduced to the classical stochastic reaction-diffusion equation

du(t)\displaystyle\text{d}u(t) =u(t)dt+φ(u(t))dt+Qdw(t),\displaystyle=\triangle u(t)\text{d}t+\varphi(u(t))\text{d}t+Q\text{d}w(t), (1.2)
u(t)|𝒪\displaystyle u(t)\big{|}_{\partial\mathcal{O}} =0,u(0)=u0.\displaystyle=0,\qquad u(0)=u_{0}.

Under different assumptions on φ\varphi as well as the noise term, statistically steady states of (1.2) are well studied. Using a Krylov-Bogoliubov argument together with tightness, (1.2) always admits at least one invariant probability measure [22]. For both Lipschitz and dissipative assumptions on φ\varphi, it is a classical result that such an invariant measure is unique for (1.2) [10, 21, 22]. Under more general conditions on φ\varphi, provided that noise is sufficiently forced in many directions of the phase space, (1.2) satisfies the so-called asymptotic strong Feller property and hence exponentially attractive toward equilibrium [31].

On the other hand, in the presence of memory kernels without random perturbation, i.e., Q0Q\equiv 0, the well-posedness of the following equation

du(t)\displaystyle\text{d}u(t) =u(t)dt0K(s)u(ts)dsdt+φ(u(t))dt,\displaystyle=\triangle u(t)\text{d}t-\int_{0}^{\infty}\!\!\!K(s)\triangle u(t-s)\text{d}s\text{d}t+\varphi(u(t))\text{d}t, (1.3)
u(t)|𝒪\displaystyle u(t)\big{|}_{\partial\mathcal{O}} =0,u(s)=u0(s),s0,\displaystyle=0,\qquad u(s)=u_{0}(s),\,\,s\leq 0,

was studied as early as in the work of [40]. Moreover, positivity of the solutions for (1.3) as well as large-time asymptotic results were established in [15, 16]. The topic of global attractors was explored for a variety of deterministic systems related to (1.3) [12, 13, 19, 20, 43]. Equation (1.3) was also the motivation for many works of differential Volterra equations in the context of memory [2, 3, 4, 5].

Although there is a rich literature on (1.2) and (1.3), much less is known about asymptotic behaviors of the stochastic equation (1.1). To the best of the author’s knowledge, first result in this direction seems to be established in the work of [6]. For a wide class of nonlinearities, mild solutions of (1.1) was constructed [6, Section 4.2] via the classical Yosida approximation. Moreover, under the assumption of either φ0\varphi\equiv 0 or dissipative nonlinearity, that is φ0\varphi^{\prime}\leq 0, it was shown that (1.1) admits a unique invariant probability measure and that the system is mixing [6, Theorem 5.1]. Similarly method was also employed in [8, 9] to prove the existence of random attractors. The goal of this note is to make further progress toward statistically steady states of (1.1) under more general conditions on φ\varphi and the stochastic forcing.

In general, due to the memory effect, u(t)u(t) as in (1.1) is not a Markov process. It is thus convenient to transform (1.1) to a Cauchy problem on suitable spaces accounting for the whole past information. To see this, following the framework in [6, 40], we introduce the auxiliary memory variable η\eta given by

η(t;s)=u(ts),\displaystyle\eta(t;s)=u(t-s),

and observe that formally η\eta satisfies the following transport equation

tη=sη,η(t;0)=u(t).\displaystyle\partial_{t}\eta=-\partial_{s}\eta,\quad\eta(t;0)=u(t). (1.4)

So that the above equation together with (1.1) forms a Markovian dynamics in the pair (u(t),η(t))(u(t),\eta(t)) (see (2.14) below). It is thus necessary to construct memory spaces in which the dynamic η(t)\eta(t) evolves over time tt (see Section 2 below). The method of augmenting (1.1) by memory variables and spaces was employed as early as in the work of [40] and later popularized in [6]. One of the main difficulties dealing with these memory spaces, however, is the lack of compact embeddings that are typically found in classical Sobolev spaces. Therefore, when it comes to studying large-time asymptotics, it is a challenging problem to prove the existence of invariant measures via the Krylov-Bogoliubov procedure. To circumvent the issue, in [6], based on the assumption that φ0\varphi^{\prime}\leq 0, it was shown that the invariant measure uniquely exists. Because of such dissipative condition, however, the method employed therein does not cover more general potential instances, e.g., the Allen-Cahn function φ(x)=xx3\varphi(x)=x-x^{3}. On the other hand, in the absence of memory, it is well-known that one can employ the so-called generalized coupling argument [7, 31, 37, 36] to study invariant structures of (1.2) with the Allen-Cahn function. One of our goal here therefore is to generalize the ergodic results previously established in [6] making use of the framework from [7, 31, 37, 36] applied to our settings in the context of memory.

Unlike the mild solution approach of [6, 8, 9], we will study the well-posedness of (1.1) in a weak formulation. More specifically, under a general condition on the nonlinearities, we will construct the solution via a Galerkin approximation. As a byproduct of doing so, we are able to obtain useful moment bounds on the solutions. In turn, this will establish our first main result about the regularity of statistically steady states that is compatible to that of the weak solutions, cf. Theorem 3.8. In the second main result concerning unique ergodicity, under a slightly stronger assumption on the random perturbation, namely, noise is sufficiently forced in many Fourier directions, we employ the approach of generalized coupling developed in [7, 31] to prove the existence and uniqueness of the invariant probability measure μ\mu to which the system (1.1) is exponentially attracted in suitable Wasserstein distances, cf. Theorem 3.11.

1.2. Physical motivation

Equation (1.1) is derived from the heat conduction in a viscoelastic material such as polymer [18, 41]. More specifically, by Fick’s law of balance of heat, it holds that [6]

te+divq=r,\displaystyle\partial_{t}\,\mathrm{e}+\text{div}\,\mathrm{q}=r,

where e\mathrm{e} represents the internal energy, rr is an external heat supply and q\mathrm{q} is the heat flux of the form

q(t,x)=0da(s)u(ts,x).\displaystyle\mathrm{q}(t,x)=-\int_{0}^{\infty}\!\!\!\text{d}a(s)\nabla u(t-s,x).

In Fourier conductors, ak0a\equiv k_{0}, where k0k_{0} is the instantaneous conductivity constant. So that, q\mathrm{q} is reduced to

q(t,x)=k0u(t,x),\displaystyle\mathrm{q}(t,x)=-k_{0}\nabla u(t,x),

which yields the classical nonlinear heat equation (1.2) (by setting k0=1k_{0}=1). This amounts to the assumption that there is no time correlation between the heat transfer and the surrounding medium. However, as pointed out elsewhere  [18, 17, 28], the above type of q\mathrm{q} does not account for memory effects in viscoelastic materials, particularly at low temperature [41]. It is thus more appropriate to consider a(t)a(t) given by

a(t)=k0±0tk(s)ds,\displaystyle a(t)=k_{0}\pm\int_{0}^{t}k(s)\text{d}s,

where k[0,)(0,)k\in[0,\infty)\to(0,\infty) is the memory kernel that is decreasing on [0,)[0,\infty). With regard to the sign of the memory integral, there have been many works considering a(t)=k0+0tk(s)dsa(t)=k_{0}+\int_{0}^{t}k(s)\text{d}s, as 0tk(s)ds\int_{0}^{t}k(s)\text{d}s representing the thermal drag in addition to instantaneous conductivity. See [8, 9, 18, 19, 17, 20, 28, 41] and the references therein. On the other hand, [6, 15, 16] as well as this note study a(t)=k00tk(s)dsa(t)=k_{0}-\int_{0}^{t}k(s)\text{d}s, which yields (1.1) by setting k0=1k_{0}=1. It is worth to mention that for physical reasons, one should require [15]

k0=1>0k(s)ds.\displaystyle k_{0}=1>\int_{0}^{\infty}\!\!\!k(s)\text{d}s.

Later in Sections 4-6, we will see that the above condition is actually critical in the analysis of (1.1).

Finally, we remark that in literature, stochastic equations with memory was studied as early as in the seminal work of [34] for finite-dimensional settings. The theory of stationary solutions was then developed further in [1] and was employed to study a variety of finite-dimensional and infinite-dimensional settings, e.g., Navier-Stokes equation [24], Ginzburg-Landau equation [23] and Langevin equation [33]. In particular, heat equation with memory was studied in a series of work in [2, 3, 4, 5]

The rest of the paper is organized as follows: in Section 2, we introduce all the functional settings needed for the analysis. In particular, we will see that (1.1) induces a Markovian dynamics as an abstract Cauchy equation evolving on an appropriate product space. In Section 3, we introduce the main assumptions on the non-linearities and noise structure. We also state our main results in this section, including Theorem 3.8 on the regularity of invariant measures and Theorem 3.11 on geometric ergodicity. In Section 4, we collect a priori moment bounds on the solutions that will be employed to prove the main results. In Section 5, we establish regularity of an invariant measure. We then discuss the coupling approach and prove geometric ergodicity in Section 6. In Appendix A, we employ Galerkin approximation to construct the solutions of (1.1).

2. Functional setting

Letting 𝒪\mathcal{O} be a smooth bounded domain in d\mathbb{R}^{d}, we denote by HH the Hilbert space L2(𝒪)L^{2}(\mathcal{O}) endowed with the inner product ,H\langle\cdot,\cdot\rangle_{H} and the induced norm H\|\cdot\|_{H}.

Let AA be the realization of -\triangle in HH endowed with the Dirichlet boundary condition and the domain Dom(A)=H01(𝒪)H2(𝒪)\text{Dom}(A)=H^{1}_{0}(\mathcal{O})\cap H^{2}(\mathcal{O}). It is well-known that there exists an orthonormal basis {ek}k1\{e_{k}\}_{k\geq 1} in HH that diagonalizes AA, i.e.,

Aek=αkek,Ae_{k}=\alpha_{k}e_{k}, (2.1)

for a sequence of positive numbers α1<α2<\alpha_{1}<\alpha_{2}<\dots diverging to infinity.

For each rr\in\mathbb{R}, we denote

Hr=Dom(Ar/2),H^{r}=\text{Dom}(A^{r/2}), (2.2)

endowed with the inner product

u1,u2Hr=Ar/2u1,Ar/2u2H.\displaystyle\langle u_{1},u_{2}\rangle_{H^{r}}=\langle A^{r/2}u_{1},A^{r/2}u_{2}\rangle_{H}.

In view of (2.1), the inner product in HrH^{r} may be rewritten as [11, 19, 20]

u1,u2Hr=k1αkru1,ekHu2,ekH.\displaystyle\langle u_{1},u_{2}\rangle_{H^{r}}=\sum_{k\geq 1}\alpha_{k}^{r}\langle u_{1},e_{k}\rangle_{H}\langle u_{2},e_{k}\rangle_{H}.

The induced norm in HrH^{r} then is given by

uHr2=k1αkr|u1,ekH|2.\displaystyle\|u\|^{2}_{H^{r}}=\sum_{k\geq 1}\alpha_{k}^{r}|\langle u_{1},e_{k}\rangle_{H}|^{2}.

It is well-known that the embedding Hr1Hr2H^{r_{1}}\subset H^{r_{2}} is compact for r1>r2r_{1}>r_{2}. For n1n\geq 1, we denote by PnP_{n} the projection onto the first nn wavenumbers {e1,,en}\{e_{1},\dots,e_{n}\}, i.e.,

Pnu=k=1nu,ekHek.P_{n}u=\sum_{k=1}^{n}\langle u,e_{k}\rangle_{H}e_{k}. (2.3)

The above projection will be useful in Sections 5 and 6 when we study the asymptotic behavior of (1.1).

In order to treat the memory term of (1.1) on an extended phase space, following the framework in [6], we introduce the function ρ(t)\rho(t) given by

ρ(t)=tK(s)ds,\rho(t)=\int_{t}^{\infty}\!\!\!K(s)\text{d}s, (2.4)

and the weighted space

r:=Lρ2(+;Hr+1),r,\mathcal{M}^{r}:=L^{2}_{\rho}(\mathbb{R}^{+};H^{r+1}),\quad r\in\mathbb{R}, (2.5)

endowed with the inner product

η1,η2r=0ρ(s)η1(s),η2(s)Hr+1ds.\langle\eta_{1},\eta_{2}\rangle_{\mathcal{M}^{r}}=\int_{0}^{\infty}\!\!\!\rho(s)\langle\eta_{1}(s),\eta_{2}(s)\rangle_{H^{r+1}}\text{d}s. (2.6)

As mentioned in Section 1.1, unlike the compact embedding Hr1Hr2H^{r_{1}}\subset H^{r_{2}}, r1>r2r_{1}>r_{2}, the embedding r1r2\mathcal{M}^{r_{1}}\subset\mathcal{M}^{r_{2}} is only continuous [19, 20].

Next, we define r\mathcal{H}^{r} to be the product space given by

r=Hr×r,r,\mathcal{H}^{r}=H^{r}\times\mathcal{M}^{r},\quad r\in\mathbb{R}, (2.7)

endowed with the norm

xr2=uHr2+ηr2.\|\mathrm{x}\|^{2}_{\mathcal{H}^{r}}=\|u\|^{2}_{H^{r}}+\|\eta\|^{2}_{\mathcal{M}^{r}}.

To simplify notation, we shall use \mathcal{M} and \mathcal{H} instead of 0\mathcal{M}^{0} and 0=H×0\mathcal{H}^{0}=H\times\mathcal{M}^{0}, respectively. For x=(u,η)r\mathrm{x}=(u,\eta)\in\mathcal{H}^{r}, the projections of x\mathrm{x} onto the marginal spaces are given by

π1x=uHrandπ2x=ηr.\pi_{1}\mathrm{x}=u\in H^{r}\quad\text{and}\quad\pi_{2}\mathrm{x}=\eta\in\mathcal{M}^{r}. (2.8)

On the Hilbert space \mathcal{H}, we consider the operator 𝒜\mathcal{A} defined for x=(u,η)\mathrm{x}=(u,\eta)

𝒜x=(Au+0K(s)Aη(s)dss),\mathcal{A}\mathrm{x}=\begin{pmatrix}-Au+\int_{0}^{\infty}K(s)A\eta(s)\text{d}s\\ -\partial_{s}\end{pmatrix}, (2.9)

with the domain [6, Section 2.3]

Dom(𝒜)={x=(u,η)|uH2,ηWρ1,2(+;H2),η(0)=u}.\displaystyle\text{Dom}(\mathcal{A})=\{\mathrm{x}=(u,\eta)\in\mathcal{H}|u\in H^{2},\eta\in W^{1,2}_{\rho}(\mathbb{R}^{+};H^{2}),\eta(0)=u\}.

It can be shown that 𝒜\mathcal{A} generates a strong continuous semigroup of contractions S(t)S(t) in \mathcal{H} [6, Theorem 2.5]. Concerning the operator s\partial_{s}, by the choice of ρ\rho as in (2.4), observe that

sη,η\displaystyle\langle-\partial_{s}\eta,\eta\rangle_{\mathcal{M}} =0ρ(s)12sη(s)H012ds=12ρ(0)η(0)H12+120ρ(s)η(s)H12ds.\displaystyle=-\int_{0}^{\infty}\!\!\!\rho(s)\tfrac{1}{2}\partial_{s}\|\eta(s)\|^{2}_{H^{1}_{0}}\text{d}s=\tfrac{1}{2}\rho(0)\|\eta(0)\|^{2}_{H^{1}}+\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\|\eta(s)\|^{2}_{H^{1}}\text{d}s. (2.10)

We will make use of the above identity later in the analysis of (1.1). Furthermore, given uL2(0,T;H1)u\in L^{2}(0,T;H^{1}), the following transport equation

ddtη(t;)=sη(t;),η(0;)=η0,η(t;0)=u(t),\tfrac{\text{d}}{\text{d}t}\eta(t;\cdot)=-\partial_{s}\eta(t;\cdot),\quad\eta(0;\cdot)=\eta_{0}\in\mathcal{M},\quad\eta(t;0)=u(t), (2.11)

admits a unique solution given by (see [6, Expression (2.17)] and [44, Proposition 1.2])

η(t;s)=u(ts)𝟏{st}+η0(st)𝟏{s>t}.\eta(t;s)=u(t-s)\boldsymbol{1}\{s\leq t\}+\eta_{0}(s-t)\boldsymbol{1}\{s>t\}. (2.12)

Also, for η~\widetilde{\eta}\in\mathcal{M} such that η~\partial\widetilde{\eta}\in\mathcal{M}, by integration by parts, we note that [6]

ddtη(t),η~=sη(t),η~\displaystyle\tfrac{\text{d}}{\text{d}t}\langle\eta(t),\widetilde{\eta}\rangle_{\mathcal{M}}=\langle-\partial_{s}\eta(t),\widetilde{\eta}\rangle_{\mathcal{M}}
=ρ(s)η(t;s),η~(s)H1|0+0η(t;s),s(ρ(s)η~(s))H1ds\displaystyle=-\rho(s)\langle\eta(t;s),\widetilde{\eta}(s)\rangle_{H^{1}}\big{|}^{\infty}_{0}+\int_{0}^{\infty}\!\!\!\langle\eta(t;s),\partial_{s}\big{(}\rho(s)\widetilde{\eta}(s)\big{)}\rangle_{H^{1}}\text{d}s
=ρ(0)u(t),η~(0)H1+0ρ(s)η(t;s),η~(s)H1ds+0ρ(s)η(t;s),sη~(s)H1ds.\displaystyle=\rho(0)\langle u(t),\widetilde{\eta}(0)\rangle_{H^{1}}+\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\langle\eta(t;s),\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s+\int_{0}^{\infty}\!\!\!\rho(s)\langle\eta(t;s),\partial_{s}\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s. (2.13)

Having introduced suitable spaces, we may transform (1.1) to the following equation

d(u(t)η(t))=𝒜(u(t)η(t))dt+(φ(u(t))0)dt+(Q0)dw(t),\displaystyle\text{d}\begin{pmatrix}u(t)\\ \eta(t)\end{pmatrix}=\mathcal{A}\begin{pmatrix}u(t)\\ \eta(t)\end{pmatrix}\text{d}t+\begin{pmatrix}\varphi(u(t))\\ 0\end{pmatrix}\text{d}t+\begin{pmatrix}Q\\ 0\end{pmatrix}\text{d}w(t), (2.14)

where 𝒜\mathcal{A} is as in (2.9) together with the conditions

u(0)=u0H,η(0)=η0,η(t;0)=u(t),t>0.\displaystyle u(0)=u_{0}\in H,\eta(0)=\eta_{0}\in\mathcal{M},\,\eta(t;0)=u(t),\,t>0.

3. Main results

3.1. Well-posedness

We begin this section by stating the following condition on the kernel KK:

Assumption 3.1.

The kernel K(t):[0,)(0,)K(t):[0,\infty)\to(0,\infty) satisfies

0K(s)ds<1,\int_{0}^{\infty}\!\!\!K(s)\emph{d}s<1, (3.1)

and

K(s)+δK(s)0,s>0,\displaystyle K^{\prime}(s)+\delta K(s)\leq 0,\quad s>0, (3.2)

for some constant δ>0\delta>0. Furthermore,

sups0|K(s)|K(s)<.\displaystyle\sup_{s\geq 0}\frac{|K^{\prime}(s)|}{K(s)}<\infty. (3.3)
Remark 3.2.

We note that conditions (3.1)-(3.2) are quite standard and can be found in literature [6, 14, 41, 44]. Condition (3.3) implies that

K(t)cK(t),t0,\displaystyle-K^{\prime}(t)\leq c\,K(t),\quad t\geq 0,

for some positive constant cc. Taking integral on [t,)[t,\infty) yields

K(s)csK(r)dr=cρ(s).\displaystyle K(s)\leq c\int_{s}^{\infty}\!\!\!K(r)\emph{d}r=c\rho(s). (3.4)

As a consequence, rLK2(+;Hr+1)\mathcal{M}^{r}\subseteq L^{2}_{K}(\mathbb{R}^{+};H^{r+1}), i.e., if ηr\eta\in\mathcal{M}^{r}, (3.4) implies

0K(s)η(s)Hr+12dscηr2.\displaystyle\int_{0}^{\infty}\!\!\!K(s)\|\eta(s)\|^{2}_{H^{r+1}}\emph{d}s\leq c\|\eta\|^{2}_{\mathcal{M}^{r}}.

Concerning the noise term, we assume that w(t)w(t) is a cylindrical Wiener process of the form

w(t)=k1ekBk(t),\displaystyle w(t)=\sum_{k\geq 1}e_{k}B_{k}(t),

where {ek}k1\{e_{k}\}_{k\geq 1} are as in (2.1) and {Bk(t)}k1\{B_{k}(t)\}_{k\geq 1} is a sequence of mutually independent Brownian motions, all defined on the same stochastic basis (Ω,,{t}t0,)(\Omega,\mathcal{F},\{\mathcal{F}_{t}\}_{t\geq 0},\mathbb{P}). With regard to the operator QQ, we impose the following condition: [11, 26]

Assumption 3.3.

The operator Q:HHQ:H\to H is diagonalized by {ek}k1\{e_{k}\}_{k\geq 1}, i.e., there exists a sequence {λk}k1\{\lambda_{k}\}_{k\geq 1} such that

Qek=λkek.\displaystyle Qe_{k}=\lambda_{k}e_{k}. (3.5)

Furthermore,

Tr(AQQ)=k1λk2αk<.\emph{Tr}(AQQ^{*})=\sum_{k\geq 1}\lambda_{k}^{2}\alpha_{k}<\infty. (3.6)

Concerning the nonlinearity, we will assume the following standard conditions: [8, 9, 11]

Assumption 3.4.

The function φ:\varphi:\mathbb{R}\to\mathbb{R} is C1C^{1} satisfying φ(0)=0\varphi(0)=0. Moreover, the followings hold:

1. There exist p>0,a1>0p>0,\,a_{1}>0 such that

|φ(x)|a1(1+|x|p),x.|\varphi(x)|\leq a_{1}(1+|x|^{p}),\quad x\in\mathbb{R}. (3.7)

2. There exist a2,a3>0a_{2},\,a_{3}>0 such that

xφ(x)a2|x|p+1+a3,x,x\varphi(x)\leq-a_{2}|x|^{p+1}+a_{3},\quad x\in\mathbb{R}, (3.8)

where pp is the same constant as in (3.7).

3. There exists aφ>0a_{\varphi}>0 such that

supxφ(x)=:aφ<.\sup_{x\in\mathbb{R}}\varphi^{\prime}(x)=:a_{\varphi}<\infty. (3.9)

A concrete example of φ\varphi is the class of odd–degree polynomials with negative leading coefficients, i.e.,

φ(x)=c2n+1x2n+1+c2nx2n++c0,\varphi(x)=-c_{2n+1}x^{2n+1}+c_{2n}x^{2n}+\dots+c_{0},

for some constants n1n\geq 1, c2n+1>0c_{2n+1}>0 and c2n,,c0c_{2n},\dots,c_{0}\in\mathbb{R} are constants.

In light of relation (2.13) together with Assumptions 3.1, 3.3 and 3.4, we are now in a position to define weak solutions for (2.14).

Definition 3.5.

For x\mathrm{x}\in\mathcal{H}, a process Φx(t)=(ux(t),ηx(t))\Phi_{\mathrm{x}}(t)=(u_{\mathrm{x}}(t),\eta_{\mathrm{x}}(t)) is called a weak solution for (2.14) if

uxC(0,T;H)L2(0,T;H1),φ(ux)Lq(0,T;Lq),ηxC(0,T;),\displaystyle u_{\mathrm{x}}\in C(0,T;H)\cap L^{2}(0,T;H^{1}),\quad\varphi(u_{\mathrm{x}})\in L^{q}(0,T;L^{q}),\quad\eta_{\mathrm{x}}\in C(0,T;\mathcal{M}),

where qq is the Hölder conjugate of p+1p+1 as in Assumption 3.4. Moreover, for all t[0,T]t\in[0,T], vH1Lp+1v\in H^{1}\cap L^{p+1} and η~\widetilde{\eta}\in\mathcal{M} such that sη~\partial_{s}\widetilde{\eta}\in\mathcal{M}

ux(t),vH\displaystyle\langle u_{\mathrm{x}}(t),v\rangle_{H} =π1x,vH0tA1/2ux(r),vH1dr+0t0K(s)A1/2ηx(r;s),vH1dsdr\displaystyle=\langle\pi_{1}\mathrm{x},v\rangle_{H}-\int_{0}^{t}\langle A^{1/2}u_{\mathrm{x}}(r),v\rangle_{H^{1}}\emph{d}r+\int_{0}^{t}\int_{0}^{\infty}\!\!\!K(s)\langle A^{1/2}\eta_{\mathrm{x}}(r;s),v\rangle_{H^{1}}\emph{d}s\emph{d}r (3.10)
+0tφ(ux(r)),vHdr+0tv,Qdw(r)H,\displaystyle\qquad\qquad+\int_{0}^{t}\langle\varphi(u_{\mathrm{x}}(r)),v\rangle_{H}\emph{d}r+\int_{0}^{t}\langle v,Q\emph{d}w(r)\rangle_{H},
ηx(t),η~\displaystyle\langle\eta_{\mathrm{x}}(t),\widetilde{\eta}\rangle_{\mathcal{M}} =π2x,η~+0tρ(0)ux(r),η~(0)H1dr+0tηx(r),sη~dr\displaystyle=\langle\pi_{2}\mathrm{x},\widetilde{\eta}\rangle_{\mathcal{M}}+\int_{0}^{t}\rho(0)\langle u_{\mathrm{x}}(r),\widetilde{\eta}(0)\rangle_{H^{1}}\emph{d}r+\int_{0}^{t}\langle\eta_{\mathrm{x}}(r),\partial_{s}\widetilde{\eta}\rangle_{\mathcal{M}}\emph{d}r (3.11)
+0t0ρ(s)ηx(r;s),η~(s)H1dsdr.\displaystyle\qquad\qquad+\int_{0}^{t}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\langle\eta_{\mathrm{x}}(r;s),\widetilde{\eta}(s)\rangle_{H^{1}}\emph{d}s\emph{d}r.

We now state the following proposition giving the existence of a solution for (2.14).

Proposition 3.6.

Suppose that Assumptions 3.1, 3.3 and 3.4 hold. Then, (2.14) admits a unique solution in the sense of Definition 3.5. In particular,

η(t;s)=u(ts)𝟏{0st}+η0(st)𝟏{s>t}.\displaystyle\eta(t;s)=u(t-s)\boldsymbol{1}\{0\leq s\leq t\}+\eta_{0}(s-t)\boldsymbol{1}\{s>t\}. (3.12)

We remark that in [6], under a stronger assumption on the nonlinearities, the authors studied the notion of mild solutions for (2.14). The existence of such solutions was established using a classical Yosida approximation for SPDEs that can be found in literature [6, Section 4.2] (see also [10, 21, 22]). Similar method was also employed in the work of [8, 9]. On the other hand, in this note, we will construct the weak solutions for (2.14) via a Galerkin approximation, following the framework in [27, 45]. The explicit construction will be presented later in Appendix A.

3.2. Geometric ergodicity

We now turn to the main topic of the paper concerning statistically steady states of (2.14).

Given the well-posedness result in the previous subsection, we can thus introduce the Markov transition probabilities of the solution Φx(t)\Phi_{\mathrm{x}}(t) by

Pt(x,A):=(Φx(t)A),\displaystyle P_{t}(\mathrm{x},A):=\mathbb{P}(\Phi_{\mathrm{x}}(t)\in A),

which are well-defined for t0t\geq 0, initial states x\mathrm{x}\in\mathcal{H} and Borel sets AA\subseteq\mathcal{H}. Letting b()\mathcal{B}_{b}(\mathcal{H}) denote the set of bounded Borel measurable functions f:f:\mathcal{H}\rightarrow\mathbb{R}, the associated Markov semigroup Pt:b()b()P_{t}:\mathcal{B}_{b}(\mathcal{H})\to\mathcal{B}_{b}(\mathcal{H}) is defined and denoted by

Ptf(x)=𝔼[f(Φx(t))],fb().\displaystyle P_{t}f(\mathrm{x})=\mathbb{E}[f(\Phi_{\mathrm{x}}(t))],\quad f\in\mathcal{B}_{b}(\mathcal{H}). (3.13)
Remark 3.7.

We note that following the estimates in Appendix A, it can be shown that the solution Φx(t)\Phi_{\mathrm{x}}(t) is continuous with respect to the initial condition x\mathrm{x}\in\mathcal{H}, i.e.,

Φxn(t)Φx(t) a.s. in ,\displaystyle\Phi_{\mathrm{x}_{n}}(t)\to\Phi_{\mathrm{x}}(t)\text{ a.s. in }\mathcal{H},

whenever xnx\mathrm{x}_{n}\to\mathrm{x} in \mathcal{H}. As a consequence, the Markov semigroup PtP_{t} is Feller. That is PtfCb()P_{t}f\in C_{b}(\mathcal{H}) for all fCb()f\in C_{b}(\mathcal{H}) where Cb()C_{b}(\mathcal{H}) represents the set of continuous bounded functions on \mathcal{H} [10, 21, 22].

Recall that a probability measure μPr()\mu\in Pr(\mathcal{H}) is said to be invariant for the semigroup PtP_{t} if for every fb()f\in\mathcal{B}_{b}(\mathcal{H})

Ptf(x)μ(dx)=f(x)μ(dx).\displaystyle\int_{\mathcal{H}}P_{t}f(\mathrm{x})\mu(\text{d}\mathrm{x})=\int_{\mathcal{H}}f(\mathrm{x})\mu(\text{d}\mathrm{x}).

In literature, the existence of invariant probability measures is typically established via the Krylov-Bogoliubov argument combined with the tightness of a sequence of auxiliary probability measures [1, 24, 31, 32, 34]. However, as mentioned in Section 2, since the embedding of r1r2\mathcal{M}^{r_{1}}\subset\mathcal{M}^{r_{2}}, r1>r2r_{1}>r_{2}, is only continuous [19, 20], it is not clear whether under the same hypothesis of Proposition 3.6, an invariant probability measure μ\mu exists. Nevertheless, we are able to assert the following moment bounds of any such μ\mu.

Theorem 3.8.

Under the same hypothesis of Proposition 3.6, any invariant probability measure μ\mu for (2.14) must satisfy

exp{βx2}+π1xH1nπ1xH22+π2x1nμ(dx)<,\int_{\mathcal{H}}\exp\{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}\}+\|\pi_{1}\mathrm{x}\|^{n}_{H^{1}}\|\pi_{1}\mathrm{x}\|^{2}_{H^{2}}+\|\pi_{2}\mathrm{x}\|^{n}_{\mathcal{M}^{1}}\mu(\emph{d}\mathrm{x})<\infty, (3.14)

for all β>0\beta>0 sufficiently small and n1n\geq 1.

The proof of Theorem 3.8 will be carried out in Section 5.

Following the framework of [7, 11, 29, 30, 32], we recall that a function d:×[0,)d:\mathcal{H}\times\mathcal{H}\to[0,\infty) is called distance-like if it is symmetric, lower semi-continuous, and d(x,y)=0x=yd(\mathrm{x},\mathrm{y})=0\Leftrightarrow\mathrm{x}=\mathrm{y} [32, Definition 4.3]. Let 𝒲d\mathcal{W}_{d} be the Wasserstein metric in Pr()Pr(\mathcal{H}) associated with dd, defined by

𝒲d(μ1,μ2)=sup[f]Lip1|f(x)μ1(dx)f(x)μ2(dx)|,\displaystyle\mathcal{W}_{d}(\mu_{1},\mu_{2})=\sup_{[f]_{\text{Lip}}\leq 1}\Big{|}\int_{\mathcal{H}}f(\mathrm{x})\mu_{1}(\text{d}\mathrm{x})-\int_{\mathcal{H}}f(\mathrm{x})\mu_{2}(\text{d}\mathrm{x})\Big{|}, (3.15)

where

[f]Lip=supxy|f(x)f(y)|d(x,y).\displaystyle[f]_{\text{Lip}}=\sup_{\mathrm{x}\neq\mathrm{y}}\frac{|f(\mathrm{x})-f(\mathrm{y})|}{d(\mathrm{x},\mathrm{y})}.

By the dual Kantorovich Theorem, it is well-known that

𝒲d(μ1,μ2)=inf𝔼d(X,Y),\mathcal{W}_{d}(\mu_{1},\mu_{2})=\inf\mathbb{E}\,d(X,Y), (3.16)

where the infimum is taken over all pairs (X,Y)(X,Y) such that Xμ1X\sim\mu_{1} and Yμ2Y\sim\mu_{2}. In our settings, we will particularly pay attention to the following two distances in \mathcal{H}: the former is the discrete metric, i.e., d(x,y)=𝟏{xy}d(\mathrm{x},\mathrm{y})=\mathbf{1}\{\mathrm{x}\neq\mathrm{y}\}. The corresponding 𝒲d\mathcal{W}_{d} is the usual total variation distance, denoted by 𝒲TV\mathcal{W}_{\text{TV}}. The latter is the distance dNd_{N}, N>0N>0, given by [7, 32, 36, 37]

dN(x,y):=Nxy1,d_{N}(\mathrm{x},\mathrm{y}):=N\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}}\wedge 1, (3.17)

which we will employ to estimate the convergent rate of (2.14) toward equilibrium. The relation between 𝒲dN\mathcal{W}_{d_{N}} and 𝒲TV\mathcal{W}_{\text{TV}} will be become clearer in Section 6, cf. Lemma 6.7.

As mentioned in Section 1.1, given the generality of the potential φ\varphi, we will make use of the noise term that is sufficiently forced in many directions of the phase space. So that φ\varphi can be dominated by the noise together with the Laplacian. More precisely, we make the following additional assumption on QQ and φ\varphi: [11, 26]

Assumption 3.9.

Let φ\varphi be as in Assumption 3.4 and n¯\bar{n}\in\mathbb{N} be an index such that

supxφ(x)=aφ<[1KL1(+)]αn¯,\sup_{x\in\mathbb{R}}\varphi^{\prime}(x)=a_{\varphi}<\big{[}1-\|K\|_{L^{1}(\mathbb{R}^{+})}\big{]}\alpha_{\bar{n}}, (3.18)

where αn¯\alpha_{\bar{n}} is the eigenvalue associated with en¯e_{\bar{n}} as in (2.1). There exists a positive constant aQa_{Q} such that

QuHaQPn¯uH,uH,\|Qu\|_{H}\geq a_{Q}\|P_{\bar{n}}u\|_{H},\quad u\in H, (3.19)

where QQ is as in Assumption 3.3, and Pn¯P_{\bar{n}} is the projection onto {e1,,en¯}\{e_{1},\dots,e_{\bar{n}}\} as in (2.3).

Remark 3.10.

We note that Assumption 3.9 is actually a condition about the noise structure. Since supxφ(x)=aφ<\sup_{x}\varphi^{\prime}(x)=a_{\varphi}<\infty, cf. (3.9), KL1(+)<1\|K\|_{L^{1}(\mathbb{R}^{+})}<1, cf. (3.1), and the sequence of eigenvalues {αn}n1\{\alpha_{n}\}_{n\geq 1} as in (2.9) is diverging to infinity, there always exists an index n¯\bar{n} such that condition (3.18) holds. We then require that noise be forced in at least eke_{k}-directions, k=1,,n¯k=1,\dots,\bar{n}, hence the condition (3.19).

We are now in a position to state the main result of the paper ensuring geometric ergodicity of (2.14).

Theorem 3.11.

Under the same hypothesis of Proposition 3.6, suppose Assumption 3.9 holds. Then, (2.14) admits a unique invariant measure μ\mu. Furthermore, there exists N>0N>0 sufficiently large such that

𝒲dN(Pt(x,),μ)C1(1+x2)eC2t,t0,x,\mathcal{W}_{d_{N}}(P_{t}(\mathrm{x},\cdot),\mu)\leq C_{1}(1+\|\mathrm{x}\|^{2}_{\mathcal{H}})e^{-C_{2}t},\quad t\geq 0,\,\mathrm{x}\in\mathcal{H}, (3.20)

where dNd_{N} is as in (3.17) and C1,C2C_{1},C_{2} are positive constants independent of x\mathrm{x} and tt.

The proof of Theorem 3.11 will be presented in Section 6.

4. A priori bounds of  (2.14)

Throughout the rest of the paper, cc and CC denote generic positive constants that may change from line to line. The main parameters that they depend on will appear between parenthesis, e.g., c(T,q)c(T,q) is a function of TT and qq.

In this section, we collect several useful a priori moment bounds on the solutions of (2.14). These results will be employed to prove Theorems 3.8 and 3.11 in later sections.

We start off by setting

ε1:=1KL1(+)KL1(+),andK1:=1(1+12ε1)KL1(+)=1KL1(+)2.\varepsilon_{1}:=\frac{1-\|K\|_{L^{1}(\mathbb{R}^{+})}}{\|K\|_{L^{1}(\mathbb{R}^{+})}},\quad\text{and}\quad K_{1}:=1-\big{(}1+\tfrac{1}{2}\varepsilon_{1}\big{)}\|K\|_{L^{1}(\mathbb{R}^{+})}=\frac{1-\|K\|_{L^{1}(\mathbb{R}^{+})}}{2}. (4.1)

Recalling condition (3.1), we observe that ε1\varepsilon_{1} and K1K_{1} are both positive. In Lemma 4.1 below, we assert two moment bounds in \mathcal{H}.

Lemma 4.1.

Under the same hypothesis as in Proposition 3.6, the followings hold:

1.

𝔼(ux(t),ηx(t))2ectx2+C,\mathbb{E}\|(u_{\mathrm{x}}(t),\eta_{\mathrm{x}}(t))\|^{2}_{\mathcal{H}}\leq e^{-ct}\|\mathrm{x}\|^{2}_{\mathcal{H}}+C, (4.2)

for some positive constants cc and CC independent of initial condition x\mathrm{x} and time tt.

2. For all

β(0,2K1α1/QL(H)2),\beta\in\big{(}0,2K_{1}\alpha_{1}/\|Q\|^{2}_{L(H)}\big{)}, (4.3)

there exist positive constants c=c(β)c=c(\beta) and C=C(β)C=C(\beta) independent of x\mathrm{x} and tt such that

𝔼eβ(ux(t),ηx(t))2ecteβx2+C.\mathbb{E}\,e^{\beta\|(u_{\mathrm{x}}(t),\eta_{\mathrm{x}}(t))\|_{\mathcal{H}}^{2}}\leq e^{-ct}e^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}+C. (4.4)
Proof.

To simplify notations, throughout the proof, we will omit the subscript x\mathrm{x} in uxu_{\mathrm{x}} and ηx\eta_{\mathrm{x}}.

Denote by gg the function given by

g(u,η)=12(u,η)2=12uH2+12η2.g(u,\eta)=\tfrac{1}{2}\|(u,\eta)\|_{\mathcal{H}}^{2}=\tfrac{1}{2}\|u\|^{2}_{H}+\tfrac{1}{2}\|\eta\|^{2}_{\mathcal{M}}. (4.5)

A routine calculation gives

dg(u(t),η(t))\displaystyle\text{d}g(u(t),\eta(t)) =u(t)H12dt+0K(s)η(t;s),u(t)H1dsdt+sη,ηdt\displaystyle=-\|u(t)\|^{2}_{H^{1}}\text{d}t+\int_{0}^{\infty}\!\!\!K(s)\langle\eta(t;s),u(t)\rangle_{H^{1}}\text{d}s\text{d}t+\langle-\partial_{s}\eta,\eta\rangle_{\mathcal{M}}\text{d}t
+φ(u(t),u(t)Hdt+u(t),Qdw(t)H+12Tr(QQ)dt.\displaystyle\qquad+\langle\varphi(u(t),u(t)\rangle_{H}\text{d}t+\langle u(t),Q\text{d}w(t)\rangle_{H}+\tfrac{1}{2}\text{Tr}(QQ^{*})\text{d}t.

Recalling condition (3.6), we have

Tr(QQ)=k1λk2<.\displaystyle\text{Tr}(QQ^{*})=\sum_{k\geq 1}\lambda_{k}^{2}<\infty.

Concerning the convolution involving KK, by Young’s inquality,

0K(s)η(t;s),u(t)H1ds\displaystyle\int_{0}^{\infty}\!\!\!K(s)\langle\eta(t;s),u(t)\rangle_{H^{1}}\text{d}s 1+ε12KL1(+)u(t)H12+12(1+ε1)0K(s)η(t;s)H12ds\displaystyle\leq\tfrac{1+\varepsilon_{1}}{2}\|K\|_{L^{1}(\mathbb{R}^{+})}\|u(t)\|^{2}_{H^{1}}+\tfrac{1}{2(1+\varepsilon_{1})}\int_{0}^{\infty}\!\!\!K(s)\|\eta(t;s)\|^{2}_{H^{1}}\text{d}s
=1+ε12KL1(+)u(t)H1212(1+ε1)0ρ(s)η(t;s)H12ds,\displaystyle=\tfrac{1+\varepsilon_{1}}{2}\|K\|_{L^{1}(\mathbb{R}^{+})}\|u(t)\|^{2}_{H^{1}}-\tfrac{1}{2(1+\varepsilon_{1})}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\|\eta(t;s)\|^{2}_{H^{1}}\text{d}s,

where ε1\varepsilon_{1} is as in (4.1). Recalling the identity (2.10) and the fact that η(t;0)=u(t)\eta(t;0)=u(t), it holds that

sη(t),η(t)\displaystyle\langle-\partial_{s}\eta(t),\eta(t)\rangle_{\mathcal{M}} =12KL1()u(t)H12+120ρ(s)η(t;s)H12ds.\displaystyle=\tfrac{1}{2}\|K\|_{L^{1}(\mathbb{R})}\|u(t)\|^{2}_{H^{1}}+\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\|\eta(t;s)\|^{2}_{H^{1}}\text{d}s.

Also, since KK satisfies (3.2) and ρ(t)=tK(s)ds\rho(t)=\int_{t}^{\infty}K(s)\text{d}s, it holds that

ρ(t)δρ(t),t0.\displaystyle\rho^{\prime}(t)\leq-\delta\rho(t),\quad t\geq 0. (4.6)

Recalling K1K_{1} as in (4.1), we then derive the bound

u(t)H12+0K(s)η(t;s),u(t)H1ds+sη,η\displaystyle-\|u(t)\|^{2}_{H^{1}}+\int_{0}^{\infty}\!\!\!K(s)\langle\eta(t;s),u(t)\rangle_{H^{1}}\text{d}s+\langle-\partial_{s}\eta,\eta\rangle_{\mathcal{M}}
[1(1+ε12)KL1(+)]u(t)H12+ε12(1+ε1)0ρ(s)η(t;s)H12ds\displaystyle\leq-\Big{[}1-\big{(}1+\tfrac{\varepsilon_{1}}{2}\big{)}\|K\|_{L^{1}(\mathbb{R}^{+})}\Big{]}\|u(t)\|^{2}_{H^{1}}+\tfrac{\varepsilon_{1}}{2(1+\varepsilon_{1})}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\|\eta(t;s)\|^{2}_{H^{1}}\text{d}s
[1(1+ε12)KL1(+)]u(t)H12ε1δ2(1+ε1)0ρ(s)η(t;s)H12ds\displaystyle\leq-\Big{[}1-\big{(}1+\tfrac{\varepsilon_{1}}{2}\big{)}\|K\|_{L^{1}(\mathbb{R}^{+})}\Big{]}\|u(t)\|^{2}_{H^{1}}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\int_{0}^{\infty}\!\!\!\rho(s)\|\eta(t;s)\|^{2}_{H^{1}}\text{d}s
=K1u(t)H12ε1δ2(1+ε1)η(t)2\displaystyle=-K_{1}\|u(t)\|^{2}_{H^{1}}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\eta(t)\|^{2}_{\mathcal{M}} (4.7)
K1α1u(t)H2ε1δ2(1+ε1)η(t)2.\displaystyle\leq-K_{1}\alpha_{1}\|u(t)\|^{2}_{H}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\eta(t)\|^{2}_{\mathcal{M}}. (4.8)

To bound the non-linear term, we invoke (3.9) to see that

φ(u(t)),u(t)Ha2u(t)Lp+1p+1+a3|𝒪|a3|𝒪|.\displaystyle\langle\varphi(u(t)),u(t)\rangle_{H}\leq-a_{2}\|u(t)\|^{p+1}_{L^{p+1}}+a_{3}|\mathcal{O}|\leq a_{3}|\mathcal{O}|.

In the above, |𝒪||\mathcal{O}| denotes the volume of 𝒪\mathcal{O} in d\mathbb{R}^{d}. Collecting everything now yields the estimate

ddt𝔼g(u(t),η(t))K1α1𝔼u(t)H2ε1δ2(1+ε1)𝔼η(t)2+a3|𝒪|+12k1λk2,\displaystyle\tfrac{\text{d}}{\text{d}t}\mathbb{E}g(u(t),\eta(t))\leq-K_{1}\alpha_{1}\mathbb{E}\|u(t)\|^{2}_{H}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\mathbb{E}\|\eta(t)\|^{2}_{\mathcal{M}}+a_{3}|\mathcal{O}|+\tfrac{1}{2}\sum_{k\geq 1}\lambda_{k}^{2}, (4.9)

which proves (4.2) by virtue of Gronwall’s inequality.

With regard to (4.4), for β>0\beta>0 to be chosen later, the partial derivatives of eβge^{\beta g} along the direction of ξ\xi\in\mathcal{H} is given by

Dueβg,ξ=κeβgu,π1ξH,Dηeβg,ξ\displaystyle\langle D_{u}e^{\beta g},\xi\rangle_{\mathcal{H}}=\kappa e^{\beta g}\langle u,\pi_{1}\xi\rangle_{H},\quad\langle D_{\eta}e^{\beta g},\xi\rangle_{\mathcal{H}} =κeβgη,π2ξ,\displaystyle=\kappa e^{\beta g}\langle\eta,\pi_{2}\xi\rangle_{\mathcal{M}},

and

Duueβg(ξ)\displaystyle D_{uu}e^{\beta g}(\xi) =βeβgπ1ξ+β2eβgu,π1ξHπ1ξ.\displaystyle=\beta e^{\beta g}\pi_{1}\xi+\beta^{2}e^{\beta g}\langle u,\pi_{1}\xi\rangle_{H}\pi_{1}\xi.

Then, by Ito’s formula,

deβg(u(t),η(t))\displaystyle\text{d}\,e^{\beta g(u(t),\eta(t))} =βeβg(u(t),η(t))(u(t)H12dt+0K(s)η(t;s),u(t)H1dsdt+sη,ηdt\displaystyle=\beta e^{\beta g(u(t),\eta(t))}\Big{(}-\|u(t)\|^{2}_{H^{1}}\text{d}t+\int_{0}^{\infty}\!\!\!K(s)\langle\eta(t;s),u(t)\rangle_{H^{1}}\text{d}s\text{d}t+\langle-\partial_{s}\eta,\eta\rangle_{\mathcal{M}}\text{d}t
+φ(u(t),u(t)Hdt+u(t),Qdw(t)H+12k1λk2dt+12βk1λk2|u(t),ekH|2dt),\displaystyle\qquad+\langle\varphi(u(t),u(t)\rangle_{H}\text{d}t+\langle u(t),Q\text{d}w(t)\rangle_{H}+\tfrac{1}{2}\sum_{k\geq 1}\lambda_{k}^{2}\text{d}t+\tfrac{1}{2}\beta\sum_{k\geq 1}\lambda_{k}^{2}|\langle u(t),e_{k}\rangle_{H}|^{2}\text{d}t\Big{)},

where λk\lambda_{k} is as in Assumption 3.3. We note that

k1λk2|u(t),ekH|2QL(H)2u(t)H2.\displaystyle\sum_{k\geq 1}\lambda_{k}^{2}|\langle u(t),e_{k}\rangle_{H}|^{2}\leq\|Q\|^{2}_{L(H)}\|u(t)\|^{2}_{H}.

Together with the estimates as in the proof of (4.2), we arrive at the bound

ddt𝔼eβg(u(t),η(t))\displaystyle\tfrac{\text{d}}{\text{d}t}\mathbb{E}\,e^{\beta g(u(t),\eta(t))}
𝔼βeβg(u(t),η(t))([K1α112βQL(H)2]u(t)H2ε1δ2(1+ε1)η(t)2+a3|𝒪|+12k1λk2).\displaystyle\leq\mathbb{E}\,\beta e^{\beta g(u(t),\eta(t))}\Big{(}-\big{[}K_{1}\alpha_{1}-\tfrac{1}{2}\beta\|Q\|^{2}_{L(H)}\big{]}\|u(t)\|^{2}_{H}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\eta(t)\|^{2}_{\mathcal{M}}+a_{3}|\mathcal{O}|+\tfrac{1}{2}\sum_{k\geq 1}\lambda_{k}^{2}\Big{)}.

Since β(0,2K1α1/QL(H)2)\beta\in(0,2K_{1}\alpha_{1}/\|Q\|^{2}_{L(H)}), we infer

ddt𝔼eβg(u(t),η(t))\displaystyle\tfrac{\text{d}}{\text{d}t}\mathbb{E}\,e^{\beta g(u(t),\eta(t))} 𝔼eβg(u(t),η(t))(cg(u(t),η(t))+C),\displaystyle\leq\mathbb{E}e^{\beta g(u(t),\eta(t))}(-c\,g(u(t),\eta(t))+C),

for some positive constants cc and CC independent of tt. We now employ the elementary inequality

eβr(cr+C)c~eβr+C~,r0,\displaystyle e^{\beta r}(-cr+C)\leq-\widetilde{c}e^{\beta r}+\widetilde{C},\qquad r\geq 0,

to arrive at the bound

ddt𝔼eβg(u(t),η(t))\displaystyle\tfrac{\text{d}}{\text{d}t}\mathbb{E}\,e^{\beta g(u(t),\eta(t))} c𝔼eβg(u(t),η(t))+C,\displaystyle\leq-c\,\mathbb{E}e^{\beta g(u(t),\eta(t))}+C,

whence

𝔼eβg(u(t),η(t))ect𝔼eβg(x)+C.\displaystyle\mathbb{E}\,e^{\beta g(u(t),\eta(t))}\leq e^{-ct}\mathbb{E}\,e^{\beta g(\mathrm{x})}+C.

In the above, cc and CC are positive constants independent of initial condition x\mathrm{x} and time tt. This establishes (4.4), thereby concluding the proof. ∎

Next, we state and prove Lemma 4.2 giving moment bounds in 1\mathcal{H}^{1} of the solutions.

Lemma 4.2.

For all x1\mathrm{x}\in\mathcal{H}^{1}, n2n\geq 2, and t0t\geq 0, it holds that

𝔼(ux(t),ηx(t))12n+0tux(r)H12n2Aux(r)H2+ηx(r)12ndrC(x1n+t),\mathbb{E}\|(u_{\mathrm{x}}(t),\eta_{\mathrm{x}}(t))\|^{2n}_{\mathcal{H}^{1}}+\int_{0}^{t}\|u_{\mathrm{x}}(r)\|^{2n-2}_{H^{1}}\|Au_{\mathrm{x}}(r)\|^{2}_{H}+\|\eta_{\mathrm{x}}(r)\|^{2n}_{\mathcal{M}^{1}}\emph{d}r\leq C(\|\mathrm{x}\|^{n}_{\mathcal{H}^{1}}+t), (4.10)

and

𝔼(ux(t),ηx(t))12nectx12n+Ceβx2+C,\mathbb{E}\|(u_{\mathrm{x}}(t),\eta_{\mathrm{x}}(t))\|^{2n}_{\mathcal{H}^{1}}\leq e^{-ct}\|\mathrm{x}\|^{2n}_{\mathcal{H}^{1}}+C\,e^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}+C, (4.11)

where β\beta is as in (4.3), c=c(n,β)c=c(n,\beta) and C=C(n,β)C=C(n,\beta) are positive constants independent of x\mathrm{x} and tt.

Proof.

We proceed to prove (4.10) by induction on nn.

We first start with the base case n=2n=2 and set

g1(u,η)=12(uH12+η12),g_{1}(u,\eta)=\tfrac{1}{2}\big{(}\|u\|^{2}_{H^{1}}+\|\eta\|^{2}_{\mathcal{M}^{1}}\big{)}, (4.12)

A routine calculation yields

dg1(u(t),η(t))\displaystyle\text{d}g_{1}(u(t),\eta(t)) =Au(t)H2dt+0K(s)Aη(t;s),Au(t)Hdsdt+sη,η1dt\displaystyle=-\|Au(t)\|^{2}_{H}\text{d}t+\int_{0}^{\infty}\!\!\!K(s)\langle A\eta(t;s),Au(t)\rangle_{H}\text{d}s\text{d}t+\langle-\partial_{s}\eta,\eta\rangle_{\mathcal{M}^{1}}\text{d}t (4.13)
+φ(u(t)u(t),u(t)Hdt+u(t),Qdw(t)H1+12Tr(AQQ)dt.\displaystyle\qquad+\langle\varphi^{\prime}(u(t)\nabla u(t),\nabla u(t)\rangle_{H}\text{d}t+\langle u(t),Q\text{d}w(t)\rangle_{H^{1}}+\tfrac{1}{2}\text{Tr}(AQQ^{*})\text{d}t.

In the above,

Tr(AQQ)=k1λk2αk<,\displaystyle\text{Tr}(AQQ^{*})=\sum_{k\geq 1}\lambda_{k}^{2}\alpha_{k}<\infty,

by virtue of condition (3.6). Similarly to (2.10), we have

sη(t),η(t)1\displaystyle\langle-\partial_{s}\eta(t),\eta(t)\rangle_{\mathcal{M}^{1}} =120ρ(s)sAη(t;s)H2ds\displaystyle=-\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho(s)\partial_{s}\|A\eta(t;s)\|^{2}_{H}\text{d}s
=12KL1()Au(t)H2+120ρ(s)Aη(t;s)H2ds,\displaystyle=\tfrac{1}{2}\|K\|_{L^{1}(\mathbb{R})}\|Au(t)\|^{2}_{H}+\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\|A\eta(t;s)\|^{2}_{H}\text{d}s,

where in the last implication above, we employed again the fact that η(t;0)=u(t)\eta(t;0)=u(t). Also,

0K(s)Aη(t;s),Au(t)Hds\displaystyle\int_{0}^{\infty}\!\!\!K(s)\langle A\eta(t;s),Au(t)\rangle_{H}\text{d}s 1+ε12KL1(+)Au(t)H2+12(1+ε1)0K(s)Aη(t;s)H2ds\displaystyle\leq\tfrac{1+\varepsilon_{1}}{2}\|K\|_{L^{1}(\mathbb{R}^{+})}\|Au(t)\|^{2}_{H}+\tfrac{1}{2(1+\varepsilon_{1})}\int_{0}^{\infty}\!\!\!K(s)\|A\eta(t;s)\|^{2}_{H}\text{d}s
=1+ε12KL1(+)Au(t)H212(1+ε1)0ρ(s)Aη(t;s)H2ds,\displaystyle=\tfrac{1+\varepsilon_{1}}{2}\|K\|_{L^{1}(\mathbb{R}^{+})}\|Au(t)\|^{2}_{H}-\tfrac{1}{2(1+\varepsilon_{1})}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\|A\eta(t;s)\|^{2}_{H}\text{d}s,

where ε1\varepsilon_{1} is given by (4.1). Using an argument similarly to (4.8), we have the bound

Au(t)H2+0K(s)Aη(t;s),Au(t)Hds+sη,η1\displaystyle-\|Au(t)\|^{2}_{H}+\int_{0}^{\infty}\!\!\!K(s)\langle A\eta(t;s),Au(t)\rangle_{H}\text{d}s+\langle-\partial_{s}\eta,\eta\rangle_{\mathcal{M}^{1}}
K1Au(t)H2ε1δ2(1+ε1)η(t)12,\displaystyle\leq-K_{1}\|Au(t)\|^{2}_{H}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\eta(t)\|^{2}_{\mathcal{M}^{1}},

where δ\delta, K1K_{1} are respectively as in (3.2), (4.1) and α1\alpha_{1} is the first eigenvalue of AA. With regard to the nonlinear term in (4.13), we invoke Assumption 3.4 to see that

φ(u(t))u(t),u(t)Haφu(t),u(t)H=aφu(t),Au(t)Haφ22K1u(t)H2+12K1Au(t)H2.\displaystyle\langle\varphi^{\prime}(u(t))\nabla u(t),\nabla u(t)\rangle_{H}\leq a_{\varphi}\langle\nabla u(t),\nabla u(t)\rangle_{H}=a_{\varphi}\langle u(t),Au(t)\rangle_{H}\leq\frac{a_{\varphi}^{2}}{2K_{1}}\|u(t)\|^{2}_{H}+\tfrac{1}{2}K_{1}\|Au(t)\|^{2}_{H}.

Combining the above estimates with (4.13), we arrive at the moment bound

ddt𝔼(u(t),η(t))12\displaystyle\tfrac{\text{d}}{\text{d}t}\mathbb{E}\|(u(t),\eta(t))\|^{2}_{\mathcal{H}^{1}} +K1𝔼Au(t)H2+ε1δ1+ε1𝔼η(t)12aφ2K1𝔼u(t)H2+k1λk2αk.\displaystyle+K_{1}\mathbb{E}\|Au(t)\|^{2}_{H}+\tfrac{\varepsilon_{1}\delta}{1+\varepsilon_{1}}\mathbb{E}\|\eta(t)\|^{2}_{\mathcal{M}^{1}}\leq\tfrac{a_{\varphi}^{2}}{K_{1}}\mathbb{E}\|u(t)\|^{2}_{H}+\sum_{k\geq 1}\lambda_{k}^{2}\alpha_{k}. (4.14)

To estimate the term involving u(t)H2\|u(t)\|_{H}^{2} on the above right-hand side, we invoke (4.2) to see that

𝔼u(t)H2ectx2+C.\displaystyle\mathbb{E}\|u(t)\|^{2}_{H}\leq e^{-ct}\|\mathrm{x}\|^{2}_{\mathcal{H}}+C.

We then infer the estimate

𝔼(u(t),η(t))12\displaystyle\mathbb{E}\|(u(t),\eta(t))\|^{2}_{\mathcal{H}^{1}} +0tK1𝔼Au(r)H2+ε1δ1+ε1𝔼η(r)12C(x12+eβx2+t),\displaystyle+\int_{0}^{t}K_{1}\mathbb{E}\|Au(r)\|^{2}_{H}+\tfrac{\varepsilon_{1}\delta}{1+\varepsilon_{1}}\mathbb{E}\|\eta(r)\|^{2}_{\mathcal{M}^{1}}\leq C\big{(}\|\mathrm{x}\|^{2}_{\mathcal{H}^{1}}+e^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}+t\big{)},

and

𝔼(u(t),η(t))12\displaystyle\mathbb{E}\|(u(t),\eta(t))\|^{2}_{\mathcal{H}^{1}} ectx12+C0tec(tr)(𝔼u(t)H2+1)dr\displaystyle\leq e^{-ct}\|\mathrm{x}\|^{2}_{\mathcal{H}^{1}}+C\int_{0}^{t}e^{-c(t-r)}\Big{(}\mathbb{E}\|u(t)\|^{2}_{H}+1\Big{)}\text{d}r
ectx12+Ceβx2+C,\displaystyle\leq e^{-ct}\|\mathrm{x}\|^{2}_{\mathcal{H}^{1}}+C\,e^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}+C,

thereby finishing the proof of (4.10)-(4.11) for n=1n=1.

Now assume (4.10)-(4.11) hold for up to (n1)1(n-1)\geq 1. Let us consider the case nn. We first compute partial derivatives of g1(u,η)ng_{1}(u,\eta)^{n} in 1\mathcal{H}^{1}:

Dug1n,ξ1=ng1n1u,π1ξH1,Dηg1n,ξ1\displaystyle\langle D_{u}g_{1}^{n},\xi\rangle_{\mathcal{H}^{1}}=ng_{1}^{n-1}\langle u,\pi_{1}\xi\rangle_{H^{1}},\quad\langle D_{\eta}g_{1}^{n},\xi\rangle_{\mathcal{H}^{1}} =ng1n1η,π2ξ1,\displaystyle=ng_{1}^{n-1}\langle\eta,\pi_{2}\xi\rangle_{\mathcal{M}^{1}},

and

Duu(g1n)(ξ)\displaystyle D_{uu}(g_{1}^{n})(\xi) =ng1n1π1ξ+n(n1)g1n2u,π1ξH1u.\displaystyle=ng_{1}^{n-1}\pi_{1}\xi+n(n-1)g_{1}^{n-2}\langle u,\pi_{1}\xi\rangle_{H^{1}}u.

By Ito’s formula, the following holds

dg1(u(t),η(t))n\displaystyle\text{d}g_{1}(u(t),\eta(t))^{n}
=ng1(u(t),η(t))n1(Au(t)H2dt+0K(s)Aη(t;s),Au(t)Hdsdt+sη,η1dt\displaystyle=ng_{1}(u(t),\eta(t))^{n-1}\Big{(}-\|Au(t)\|^{2}_{H}\text{d}t+\int_{0}^{\infty}\!\!\!K(s)\langle A\eta(t;s),Au(t)\rangle_{H}\text{d}s\text{d}t+\langle-\partial_{s}\eta,\eta\rangle_{\mathcal{M}^{1}}\text{d}t
+φ(u(t)u(t),u(t)Hdt+u(t),Qdw(t)H1+12Tr(AQQ)dt)\displaystyle\qquad+\langle\varphi^{\prime}(u(t)\nabla u(t),\nabla u(t)\rangle_{H}\text{d}t+\langle u(t),Q\text{d}w(t)\rangle_{H^{1}}+\tfrac{1}{2}\text{Tr}(AQQ^{*})\text{d}t\Big{)}
+12n(n1)g1(u(t),η(t))n2k1λk2|u(t),ekH1|2.\displaystyle\qquad+\tfrac{1}{2}n(n-1)g_{1}(u(t),\eta(t))^{n-2}\sum_{k\geq 1}\lambda_{k}^{2}|\langle u(t),e_{k}\rangle_{H^{1}}|^{2}.

Similarly to the estimates in the base case n=1n=1, we readily have

Au(t)H2+0K(s)Aη(t;s),Au(t)Hds+sη,η1+φ(u(t)u(t),u(t)H\displaystyle-\|Au(t)\|^{2}_{H}+\int_{0}^{\infty}\!\!\!K(s)\langle A\eta(t;s),Au(t)\rangle_{H}\text{d}s+\langle-\partial_{s}\eta,\eta\rangle_{\mathcal{M}^{1}}+\langle\varphi^{\prime}(u(t)\nabla u(t),\nabla u(t)\rangle_{H}
12K1Au(t)H2ε1δ2(1+ε1)η(t)12+aφ22K1u(t)H2\displaystyle\leq-\tfrac{1}{2}K_{1}\|Au(t)\|^{2}_{H}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\eta(t)\|^{2}_{\mathcal{M}^{1}}+\frac{a_{\varphi}^{2}}{2K_{1}}\|u(t)\|^{2}_{H}
14K1Au(t)H214K1α1u(t)H12ε1δ2(1+ε1)η(t)12+aφ22K1u(t)H2\displaystyle\leq-\tfrac{1}{4}K_{1}\|Au(t)\|^{2}_{H}-\tfrac{1}{4}K_{1}\alpha_{1}\|u(t)\|^{2}_{H^{1}}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\eta(t)\|^{2}_{\mathcal{M}^{1}}+\tfrac{a_{\varphi}^{2}}{2K_{1}}\|u(t)\|^{2}_{H}

Using ε\varepsilon-Young’s inequality, we note that

g1(u(t),η(t))n1u(t)H2nn1εnn1g1(u(t),η(t))n+nεnu(t)H2n.\displaystyle g_{1}(u(t),\eta(t))^{n-1}\|u(t)\|^{2}_{H}\leq\tfrac{n}{n-1}\varepsilon^{\frac{n}{n-1}}g_{1}(u(t),\eta(t))^{n}+n\varepsilon^{-n}\|u(t)\|^{2n}_{H}.

Likewise,

12g1(u(t),η(t))n2k1λk2|u(t),ekH1|2\displaystyle\tfrac{1}{2}g_{1}(u(t),\eta(t))^{n-2}\sum_{k\geq 1}\lambda_{k}^{2}|\langle u(t),e_{k}\rangle_{H^{1}}|^{2} QL(H)2g1(u(t),η(t))n212u(t)H12\displaystyle\leq\|Q\|^{2}_{L(H)}g_{1}(u(t),\eta(t))^{n-2}\cdot\tfrac{1}{2}\|u(t)\|^{2}_{H^{1}}
QL(H)2g1(u(t),η(t))n1\displaystyle\leq\|Q\|^{2}_{L(H)}g_{1}(u(t),\eta(t))^{n-1}
nn1εnn1g1(u(t),η(t))n+nεnQL(H)2n.\displaystyle\leq\tfrac{n}{n-1}\varepsilon^{\frac{n}{n-1}}g_{1}(u(t),\eta(t))^{n}+n\varepsilon^{-n}\|Q\|^{2n}_{L(H)}.

By taking ε\varepsilon small enough, we arrive at the following useful estimate in expectation

ddt𝔼g1(u(t),η(t))n\displaystyle\tfrac{\text{d}}{\text{d}t}\mathbb{E}g_{1}(u(t),\eta(t))^{n} c𝔼g1(u(t),η(t))nc𝔼g1(u(t),η(t))n1(Au(t)H2+η(t)12)\displaystyle\leq-c\,\mathbb{E}g_{1}(u(t),\eta(t))^{n}-c\,\mathbb{E}g_{1}(u(t),\eta(t))^{n-1}\big{(}\|Au(t)\|^{2}_{H}+\|\eta(t)\|^{2}_{\mathcal{M}^{1}}\big{)} (4.15)
+C𝔼u(t)H2n+C.\displaystyle\qquad\qquad+C\mathbb{E}\|u(t)\|^{2n}_{H}+C.

In view of Lemma 4.1,

𝔼u(t)H2nCecteβx2+C.\displaystyle\mathbb{E}\|u(t)\|^{2n}_{H}\leq Ce^{-ct}e^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}+C. (4.16)

Combining (4.16) and (4.15) and integrating with respect to time, we obtain

𝔼g1(u(t),η(t))n+c0t𝔼g1(u(r),η(r))n1(Au(r)H2+η(r)12)dr\displaystyle\mathbb{E}g_{1}(u(t),\eta(t))^{n}+c\int_{0}^{t}\mathbb{E}g_{1}(u(r),\eta(r))^{n-1}\big{(}\|Au(r)\|^{2}_{H}+\|\eta(r)\|^{2}_{\mathcal{M}^{1}}\big{)}\text{d}r g1(x)n+Ceβx2+Ct.\displaystyle\leq g_{1}(\mathrm{x})^{n}+Ce^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}+Ct.

Recalling g1g_{1} as in (4.12), estimate (4.10) immediately follows from the above inequality. Also, by variation formula,

𝔼g1(u(t),η(t))nectg1(x)n+Ceβx2+C,\displaystyle\mathbb{E}g_{1}(u(t),\eta(t))^{n}\leq e^{-ct}g_{1}(\mathrm{x})^{n}+Ce^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}+C,

which proves (4.11). The proof is thus finished. ∎

5. Moment bounds of invariant probability measures

In this section, we provide the proof of Theorem 3.8 giving regularity of any invariant measure μ\mu. Following the framework in [25], we introduce the auxiliary system

du^(t)\displaystyle\text{d}\widehat{u}(t) =Au^(t)dt+0K(s)Aη^(t;s)dsdt+φ(u^(t))dt+Qdw(t)\displaystyle=-A\widehat{u}(t)\text{d}t+\int_{0}^{\infty}\!\!\!K(s)A\widehat{\eta}(t;s)\text{d}s\text{d}t+\varphi(\widehat{u}(t))\text{d}t+Q\text{d}w(t) (5.1)
K1αnPn(u^(t)u(t))dt,\displaystyle\qquad-K_{1}\alpha_{n_{*}}P_{n_{*}}(\widehat{u}(t)-u(t))\text{d}t,
dη^(t)\displaystyle\text{d}\widehat{\eta}(t) =sη^(t)dt,(u^(0),η^(0))=0,η^(t;0)=u^(t),t>0.\displaystyle=-\partial_{s}\widehat{\eta}(t)\text{d}t,\quad(\widehat{u}(0),\widehat{\eta}(0))=0\in\mathcal{H},\,\widehat{\eta}(t;0)=\widehat{u}(t),\,t>0.

In the above, K1K_{1} is as in (4.1), αn\alpha_{n_{*}} is the eigenvalue of AA associated with ene_{n_{*}} as in (2.1), and PnP_{n_{*}} is the projection on to {e1,,en}\{e_{1},\dots,e_{n_{*}}\} as in (2.3). Also, we chose nn_{*} sufficiently large such that

supxφ(x)=aφ<K1αn=12[1KL1(+)]αn.\displaystyle\sup_{x\in\mathbb{R}}\varphi^{\prime}(x)=a_{\varphi}<K_{1}\alpha_{n_{*}}=\tfrac{1}{2}\big{[}1-\|K\|_{L^{1}(\mathbb{R}^{+})}\big{]}\alpha_{n_{*}}. (5.2)
Remark 5.1.

We note that the choice of nn_{*} as in (5.2) is always valid owing to the fact that supxφ(x)<\sup_{x}\varphi^{\prime}(x)<\infty, cf. (3.9), KL1(+)<1\|K\|_{L^{1}(\mathbb{R}^{+})}<1, cf. (3.1), and {αn}n1\{\alpha_{n}\}_{n\geq 1} is diverging to infinity. Although (5.2) seems similarly to (3.18) as in Assumption 3.9 for geometric ergodicity, cf. Remark 3.10, for higher regularity properties of invariant probability measures, we do not require noise be forced in enough many directions. Only the same conditions for the well-posedness as in Proposition 3.6 are sufficient to prove Theorem 3.8.

It is worth to point out that system (5.1) only differs from (2.14) by the appearance of the linear term K1αnPn(u^(t)u(t))dt-K_{1}\alpha_{n_{*}}P_{n_{*}}(\widehat{u}(t)-u(t))\text{d}t. More importantly, since (5.1) starts from the origin, it enjoys better regularity compared with (2.14). This is precisely summarized in the following lemma whose proof will be deferred to the end of this section.

Lemma 5.2.

Let (u^(t),η^(t))(\widehat{u}(t),\widehat{\eta}(t)) be the process as in (5.1). For all x\mathrm{x}\in\mathcal{H} and t0t\geq 0, the followings hold:

(u(t)u^(t),η(t)η^(t))2ectx2,\|(u(t)-\widehat{u}(t),\eta(t)-\widehat{\eta}(t))\|^{2}_{\mathcal{H}}\leq e^{-ct}\|\mathrm{x}\|^{2}_{\mathcal{H}}, (5.3)

and

𝔼(u^(t),η^(t))12Cx2+C,\mathbb{E}\|(\widehat{u}(t),\widehat{\eta}(t))\|^{2}_{\mathcal{H}^{1}}\leq C\|\mathrm{x}\|^{2}_{\mathcal{H}}+C, (5.4)

for some positive constants cc and CC independent of x\mathrm{x} and tt.

Assuming the above result, we are now ready to conclude Theorem 3.8.

Proof of Theorem 3.8.

We first show that

eβx2μ(dx)<,\displaystyle\int_{\mathcal{H}}e^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}\mu(\text{d}\mathrm{x})<\infty, (5.5)

for all β(0,2K1α1/QL(H)2)\beta\in(0,2K_{1}\alpha_{1}/\|Q\|^{2}_{L(H)}), cf. (4.3). To see this, for ε>0\varepsilon>0, consider R=R(ε)>0R=R(\varepsilon)>0 such that

μ(BRc)<ε,\displaystyle\mu(B_{R}^{c})<\varepsilon,

where

BR={x:xR}.\displaystyle B_{R}=\{x\in\mathcal{H}:\|\mathrm{x}\|_{\mathcal{H}}\leq R\}.

Given N>0N>0, we set ϕN(x)=eβx2N\phi_{N}(\mathrm{x})=e^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}\wedge N. By invariance of μ\mu, since ϕN\phi_{N} is bounded,

PtϕN(x)μ(dx)=ϕN(x)μ(dx).\displaystyle\int_{\mathcal{H}}P_{t}\phi_{N}(\mathrm{x})\mu(\text{d}\mathrm{x})=\int_{\mathcal{H}}\phi_{N}(\mathrm{x})\mu(\text{d}\mathrm{x}).

Also, by the choice of BRB_{R}, we have

PtϕN(x)μ(dx)\displaystyle\int_{\mathcal{H}}P_{t}\phi_{N}(\mathrm{x})\mu(\text{d}\mathrm{x}) =BRPtϕN(x)μ(dx)+BRcPtϕN(x)μ(dx)BRPtϕN(x)μ(dx)+Nε.\displaystyle=\int_{B_{R}}P_{t}\phi_{N}(\mathrm{x})\mu(\text{d}\mathrm{x})+\int_{B^{c}_{R}}P_{t}\phi_{N}(\mathrm{x})\mu(\text{d}\mathrm{x})\leq\int_{B_{R}}P_{t}\phi_{N}(\mathrm{x})\mu(\text{d}\mathrm{x})+N\varepsilon.

Considering PtϕN(x)P_{t}\phi_{N}(\mathrm{x}), we invoke (4.4) to see that

PtϕN(x)=𝔼(eβ(u(t),η(t))2N)ecteβx2+C,\displaystyle P_{t}\phi_{N}(\mathrm{x})=\mathbb{E}\big{(}e^{\beta\|(u(t),\eta(t))\|^{2}_{\mathcal{H}}}\wedge N\big{)}\leq e^{-ct}e^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}+C,

whence

BRPtϕN(x)μ(dx)ecteβR2+C.\displaystyle\int_{B_{R}}P_{t}\phi_{N}(\mathrm{x})\mu(\text{d}\mathrm{x})\leq e^{-ct}e^{\beta R^{2}}+C.

It follows that for all NN we have the bound

ϕN(x)μ(dx)ecteβR2+Nε+C.\displaystyle\int_{\mathcal{H}}\phi_{N}(\mathrm{x})\mu(\text{d}\mathrm{x})\leq e^{-ct}e^{\beta R^{2}}+N\varepsilon+C.

We may take ε\varepsilon small and then take t sufficiently large to arrive at the following uniform bound in NN:

ϕN(x)μ(dx)C<.\displaystyle\int_{\mathcal{H}}\phi_{N}(\mathrm{x})\mu(\text{d}\mathrm{x})\leq C<\infty.

The Dominated Convergence Theorem then implies (5.5).

Next, we aim to show that μ\mu must concentrate in 1\mathcal{H}^{1}. To do so, for R,NR,\,N, we set

ψR,N(u,η)=R(PNuH1+PNη1).\psi_{R,N}(u,\eta)=R\wedge(\|P_{N}u\|_{H^{1}}+\|P_{N}\eta\|_{\mathcal{M}^{1}}).

We invoke invariance of μ\mu again to see that

PtψR,N(x)μ(dx)=ϕR,N(x)μ(dx).\displaystyle\int_{\mathcal{H}}P_{t}\psi_{R,N}(\mathrm{x})\mu(\text{d}\mathrm{x})=\int_{\mathcal{H}}\phi_{R,N}(\mathrm{x})\mu(\text{d}\mathrm{x}). (5.6)

Recalling the pair (u^(t),η^(t))(\widehat{u}(t),\widehat{\eta}(t)) solving the auxiliary system (5.1), we estimate as follows:

PtψR,N(x)𝔼PN(u(t)u^(t))H1+𝔼PN(η(t)η^(t))1+𝔼PNu^(t)H1+𝔼PNη^(t)1.\displaystyle P_{t}\psi_{R,N}(\mathrm{x})\leq\mathbb{E}\|P_{N}(u(t)-\widehat{u}(t))\|_{H^{1}}+\mathbb{E}\|P_{N}(\eta(t)-\widehat{\eta}(t))\|_{\mathcal{M}^{1}}+\mathbb{E}\|P_{N}\widehat{u}(t)\|_{H^{1}}+\mathbb{E}\|P_{N}\widehat{\eta}(t)\|_{\mathcal{M}^{1}}.

In light of  (5.3) and Sobolev embedding, we have

𝔼PN(u(t)u^(t))H1+𝔼PN(η(t)η^(t))1\displaystyle\mathbb{E}\|P_{N}(u(t)-\widehat{u}(t))\|_{H^{1}}+\mathbb{E}\|P_{N}(\eta(t)-\widehat{\eta}(t))\|_{\mathcal{M}^{1}}
αN1/2(𝔼u(t)u^(t)H+𝔼η(t)η^(t))αN1/2ectx.\displaystyle\leq\alpha_{N}^{1/2}\big{(}\mathbb{E}\|u(t)-\widehat{u}(t)\|_{H}+\mathbb{E}\|\eta(t)-\widehat{\eta}(t)\|_{\mathcal{M}}\big{)}\leq\alpha_{N}^{1/2}e^{-ct}\|\mathrm{x}\|_{\mathcal{H}}.

Also, we invoke (5.4) to see that

𝔼PNu^(t)H1+𝔼PNη^(t)1\displaystyle\mathbb{E}\|P_{N}\widehat{u}(t)\|_{H^{1}}+\mathbb{E}\|P_{N}\widehat{\eta}(t)\|_{\mathcal{M}^{1}} 𝔼u^(t)H1+𝔼η^(t)1Cx+C.\displaystyle\leq\mathbb{E}\|\widehat{u}(t)\|_{H^{1}}+\mathbb{E}\|\widehat{\eta}(t)\|_{\mathcal{M}^{1}}\leq C\|\mathrm{x}\|_{\mathcal{H}}+C.

It follows that

PtψR,N(x)αN1/2ectx+Cx+C,\displaystyle P_{t}\psi_{R,N}(\mathrm{x})\leq\alpha_{N}^{1/2}e^{-ct}\|\mathrm{x}\|_{\mathcal{H}}+C\|\mathrm{x}\|_{\mathcal{H}}+C,

where cc and CC are independent of R,N,xR,N,\mathrm{x} and tt. Combining with (5.6), we infer that

ϕR,N(x)μ(dx)αN1/2ectxμ(dx)+Cxμ(dx)+C.\displaystyle\int_{\mathcal{H}}\phi_{R,N}(\mathrm{x})\mu(\text{d}\mathrm{x})\leq\alpha_{N}^{1/2}e^{-ct}\int_{\mathcal{H}}\|\mathrm{x}\|_{\mathcal{H}}\mu(\text{d}\mathrm{x})+C\int_{\mathcal{H}}\|\mathrm{x}\|_{\mathcal{H}}\mu(\text{d}\mathrm{x})+C.

By virtue of (5.5), we readily have xμ(dx)<\int_{\mathcal{H}}\|\mathrm{x}\|_{\mathcal{H}}\mu(\text{d}\mathrm{x})<\infty, implying

ϕR,N(x)μ(dx)αN1/2ectC+C.\displaystyle\int_{\mathcal{H}}\phi_{R,N}(\mathrm{x})\mu(\text{d}\mathrm{x})\leq\alpha_{N}^{1/2}e^{-ct}C+C.

Since the above inequality holds for arbitrarily t>0t>0, we may take tt sufficiently large so that αN1/2ect<1\alpha_{N}^{1/2}e^{-ct}<1. As a consequence, we obtain the following uniform bound in R,NR,N

ϕR,N(x)μ(dx)C.\displaystyle\int_{\mathcal{H}}\phi_{R,N}(\mathrm{x})\mu(\text{d}\mathrm{x})\leq C.

We invoke the Monotone Convergence Theorem again to obtain

uH1+η1μ(du,dη)<,\displaystyle\int_{\mathcal{H}}\|u\|_{H^{1}}+\|\eta\|_{\mathcal{M}^{1}}\mu(\text{d}u,\text{d}\eta)<\infty,

which proves that μ(1)=1\mu(\mathcal{H}^{1})=1.

We now turn to higher moment bounds in 1\mathcal{H}^{1} for μ\mu. For any n1n\geq 1 and x1\mathrm{x}\in\mathcal{H}^{1}, recall (4.11) that

𝔼(u(t),η(t))12nectx12n+Ceβx2+C.\displaystyle\mathbb{E}\|(u(t),\eta(t))\|^{2n}_{\mathcal{H}^{1}}\leq e^{-ct}\|\mathrm{x}\|^{2n}_{\mathcal{H}^{1}}+Ce^{\beta\|\mathrm{x}\|^{2}_{\mathcal{H}}}+C.

Using an argument similarly to the proof of (5.5), we deduce the bound

x12nμ(dx)<.\displaystyle\int_{\mathcal{H}}\|\mathrm{x}\|^{2n}_{\mathcal{H}^{1}}\mu(\text{d}\mathrm{x})<\infty. (5.7)

With regard to uH12n1AuH2μ(du,dη)\int_{\mathcal{H}}\|u\|^{2{n-1}}_{H^{1}}\|Au\|^{2}_{H}\mu(\text{d}u,\text{d}\eta), we employ (4.10) to see that

(uH12n1AuH2R)μ(du,dη)\displaystyle\int_{\mathcal{H}}\big{(}\|u\|^{2{n-1}}_{H^{1}}\|Au\|^{2}_{H}\wedge R\big{)}\mu(\text{d}u,\text{d}\eta) =1t0t𝔼(u(r)H12n2Au(r)H2R)μ(dx)\displaystyle=\frac{1}{t}\int_{\mathcal{H}}\int_{0}^{t}\mathbb{E}\Big{(}\|u(r)\|^{2n-2}_{H^{1}}\|Au(r)\|^{2}_{H}\wedge R\Big{)}\mu(\text{d}\mathrm{x})
Ct(x12nμ(dx)+t)\displaystyle\leq\frac{C}{t}\Big{(}\int_{\mathcal{H}}\|\mathrm{x}\|^{2n}_{\mathcal{H}^{1}}\mu(\text{d}\mathrm{x})+t\Big{)}
=Cx12nμ(dx)+C<,\displaystyle=C\int_{\mathcal{H}}\|\mathrm{x}\|^{2n}_{\mathcal{H}^{1}}\mu(\text{d}\mathrm{x})+C<\infty,

whence

uH12n1AuH2μ(du,dη)<,\displaystyle\int_{\mathcal{H}}\|u\|^{2{n-1}}_{H^{1}}\|Au\|^{2}_{H}\mu(\text{d}u,\text{d}\eta)<\infty, (5.8)

by virtue of the Monotone Convergence Theorem.

Finally, we combine (5.5), (5.5) and (5.8) to deduce (3.14). The proof is thus finished. ∎

We now give the proof of Lemma 5.2.

Proof of Lemma 5.2.

We start with (5.3) and set u¯=u^u\overline{u}=\widehat{u}-u, η¯=η^η\overline{\eta}=\widehat{\eta}-\eta. Observe that (u¯(t),η¯(t))(\overline{u}(t),\overline{\eta}(t)) satisfies the following deterministic equation with random coefficients

ddtu¯(t)\displaystyle\tfrac{\text{d}}{\text{d}t}\overline{u}(t) =Au¯(t)+0K(s)Aη¯(t;s)ds+φ(u^(t))φ(u(t))K1αnPnu¯(t),\displaystyle=-A\overline{u}(t)+\int_{0}^{\infty}\!\!\!K(s)A\overline{\eta}(t;s)\text{d}s+\varphi(\widehat{u}(t))-\varphi(u(t))-K_{1}\alpha_{n_{*}}P_{n_{*}}\overline{u}(t),
ddtη¯(t)\displaystyle\tfrac{\text{d}}{\text{d}t}\overline{\eta}(t) =sη¯(t),(u¯(0),η¯(0))=x,η¯(t;0)=u¯(t),t>0.\displaystyle=-\partial_{s}\overline{\eta}(t),\quad(\overline{u}(0),\overline{\eta}(0))=\mathrm{x}\in\mathcal{H},\quad\overline{\eta}(t;0)=\overline{u}(t),\,t>0.

It follows that (recalling gg as in (4.5))

ddtg(u¯(t),η¯(t))\displaystyle\frac{\text{d}}{\text{d}t}g(\overline{u}(t),\overline{\eta}(t)) =u¯(t)H12+0K(s)η¯(t;s),u¯(t)H1ds+sη¯(t),η¯(t)\displaystyle=-\|\overline{u}(t)\|^{2}_{H^{1}}+\int_{0}^{\infty}\!\!\!K(s)\langle\overline{\eta}(t;s),\overline{u}(t)\rangle_{H^{1}}\text{d}s+\langle-\partial_{s}\overline{\eta}(t),\overline{\eta}(t)\rangle_{\mathcal{M}}
+φ(u^(t))φ(u(t)),u¯(t)HK1αnPnu¯(t)H2.\displaystyle\qquad+\langle\varphi(\widehat{u}(t))-\varphi(u(t)),\overline{u}(t)\rangle_{H}-K_{1}\alpha_{n_{*}}\|P_{n_{*}}\overline{u}(t)\|^{2}_{H}.

Similarly to (4.7), we readily have

u¯(t)H12\displaystyle-\|\overline{u}(t)\|^{2}_{H^{1}} +0K(s)η¯(t;s),u¯(t)H1ds+sη¯(t),η¯(t)\displaystyle+\int_{0}^{\infty}\!\!\!K(s)\langle\overline{\eta}(t;s),\overline{u}(t)\rangle_{H^{1}}\text{d}s+\langle-\partial_{s}\overline{\eta}(t),\overline{\eta}(t)\rangle_{\mathcal{M}}
K1u¯(t)H12ε1δ2(1+ε1)η¯(t)2\displaystyle\leq-K_{1}\|\overline{u}(t)\|^{2}_{H^{1}}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\overline{\eta}(t)\|^{2}_{\mathcal{M}}
K1(IPn)u¯(t)H12ε1δ2(1+ε1)η¯(t)2\displaystyle\leq-K_{1}\|(I-P_{n_{*}})\overline{u}(t)\|^{2}_{H^{1}}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\overline{\eta}(t)\|^{2}_{\mathcal{M}}
K1αn(IPn)u¯(t)H2ε1δ2(1+ε1)η¯(t)2.\displaystyle\leq-K_{1}\alpha_{n_{*}}\|(I-P_{n_{*}})\overline{u}(t)\|^{2}_{H}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\overline{\eta}(t)\|^{2}_{\mathcal{M}}.

In light of condition (3.9),

φ(u^(t))φ(u(t)),u¯(t)Haφu¯(t)H2.\displaystyle\langle\varphi(\widehat{u}(t))-\varphi(u(t)),\overline{u}(t)\rangle_{H}\leq a_{\varphi}\|\overline{u}(t)\|^{2}_{H}.

As a consequence, we obtain the almost sure bound

ddtg(u¯(t),η¯(t))(K1αnaφ)u¯(t)H2ε1δ2(1+ε1)η¯(t)2,\displaystyle\frac{\text{d}}{\text{d}t}g(\overline{u}(t),\overline{\eta}(t))\leq-(K_{1}\alpha_{n_{*}}-a_{\varphi})\|\overline{u}(t)\|^{2}_{H}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\overline{\eta}(t)\|^{2}_{\mathcal{M}},

which together with the choice of αn\alpha_{n_{*}} as in (5.2) and (u¯(0),η¯(0))=x(\overline{u}(0),\overline{\eta}(0))=\mathrm{x} clearly implies (5.3).

With regard to (5.4), we employ an argument similarly to the proof of Lemma 4.2 (in the base case n=1n=1). In particular, following (4.14), we have the bound

ddt𝔼(u^(t),η^(t))12\displaystyle\tfrac{\text{d}}{\text{d}t}\mathbb{E}\|(\widehat{u}(t),\widehat{\eta}(t))\|^{2}_{\mathcal{H}^{1}} +K1𝔼Au^(t)H2+ε1δ1+ε1𝔼η^(t)12\displaystyle+K_{1}\mathbb{E}\|A\widehat{u}(t)\|^{2}_{H}+\tfrac{\varepsilon_{1}\delta}{1+\varepsilon_{1}}\mathbb{E}\|\widehat{\eta}(t)\|^{2}_{\mathcal{M}^{1}}
aφ2K1𝔼u^(t)H2+k1λk2αkK1αn𝔼Pn(u^(t)u(t)),u^(t)H1.\displaystyle\leq\tfrac{a_{\varphi}^{2}}{K_{1}}\mathbb{E}\|\widehat{u}(t)\|^{2}_{H}+\sum_{k\geq 1}\lambda_{k}^{2}\alpha_{k}-K_{1}\alpha_{n_{*}}\mathbb{E}\langle P_{n_{*}}(\widehat{u}(t)-u(t)),\widehat{u}(t)\rangle_{H^{1}}.

Concerning the cross term on the above right-hand side, we employ Cauchy-Schwarz inequality to see that

Pn(u^(t)u(t)),u^(t)H1Pnu(t),u^(t)H1\displaystyle-\langle P_{n_{*}}(\widehat{u}(t)-u(t)),\widehat{u}(t)\rangle_{H^{1}}\leq\langle P_{n_{*}}u(t),\widehat{u}(t)\rangle_{H^{1}} =Pnu(t),Au^(t)H\displaystyle=\langle P_{n_{*}}u(t),A\widehat{u}(t)\rangle_{H}
αn2u(t)H2+12αnAu^(t)H2.\displaystyle\leq\tfrac{\alpha_{n_{*}}}{2}\|u(t)\|^{2}_{H}+\tfrac{1}{2\alpha_{n_{*}}}\|A\widehat{u}(t)\|^{2}_{H}.

It follows that

ddt𝔼(u^(t),η^(t))12\displaystyle\tfrac{\text{d}}{\text{d}t}\mathbb{E}\|(\widehat{u}(t),\widehat{\eta}(t))\|^{2}_{\mathcal{H}^{1}} +12K1𝔼Au^(t)H2+ε1δ1+ε1𝔼η^(t)12\displaystyle+\tfrac{1}{2}K_{1}\mathbb{E}\|A\widehat{u}(t)\|^{2}_{H}+\tfrac{\varepsilon_{1}\delta}{1+\varepsilon_{1}}\mathbb{E}\|\widehat{\eta}(t)\|^{2}_{\mathcal{M}^{1}}
aφ2K1𝔼u^(t)H2+K1αn22𝔼u(t)H2+k1λk2αk.\displaystyle\leq\tfrac{a_{\varphi}^{2}}{K_{1}}\mathbb{E}\|\widehat{u}(t)\|^{2}_{H}+\tfrac{K_{1}\alpha_{n_{*}}^{2}}{2}\mathbb{E}\|u(t)\|^{2}_{H}+\sum_{k\geq 1}\lambda_{k}^{2}\alpha_{k}.

Recalling (4.2) and (5.3),

aφ2K1𝔼u^(t)H2+K1αn22𝔼u(t)H2\displaystyle\tfrac{a_{\varphi}^{2}}{K_{1}}\mathbb{E}\|\widehat{u}(t)\|^{2}_{H}+\tfrac{K_{1}\alpha_{n_{*}}^{2}}{2}\mathbb{E}\|u(t)\|^{2}_{H} C𝔼u(t)H2+C𝔼u^(t)u(t)H2\displaystyle\leq C\mathbb{E}\|u(t)\|^{2}_{H}+C\mathbb{E}\|\widehat{u}(t)-u(t)\|^{2}_{H}
Cectx2+C.\displaystyle\leq Ce^{-ct}\|\mathrm{x}\|^{2}_{\mathcal{H}}+C.

Gronwall’s inequality then implies

𝔼(u^(t),η^(t))12C(x2+1).\displaystyle\mathbb{E}\|(\widehat{u}(t),\widehat{\eta}(t))\|^{2}_{\mathcal{H}^{1}}\leq C(\|\mathrm{x}\|^{2}_{\mathcal{H}}+1).

This establishes (5.4), thereby finishing the proof. ∎

6. Geometric Ergodicity of (2.14)

As mentioned in Section 1.1, the proof of Theorem 3.11 makes use of the generalized coupling in [7, 26, 32, 36, 37, 38]. The method is based on two important concepts: a suitable distance dd in \mathcal{H} that is contracting for the semigroup PtP_{t} and a dd-small set to which the Markov process Φ(t)\Phi(t) returns often enough. Given these ingredients, one is able to conclude the existence and uniqueness of an invariant probability measure μ\mu. Moreover, the convergent rate toward μ\mu can be quantified by the recurrence rate, i.e., how quickly the system returns to the dd-small set [7, 32, 36]. In turn, this can be estimated via suitable Lyapunov functions.

For the reader convenience, we recall the notions of contracting distances, d-small sets and Lyapunov functions [7, 32].

Definition 6.1.

A distance-like function dd bounded by 1 is called contracting for PtP_{t} if there exists α<1\alpha<1 such that for any x,y\mathrm{x},\mathrm{y}\in\mathcal{H} with d(x,y)<1d(\mathrm{x},\mathrm{y})<1, it holds that

𝒲d(Pt(x,),Pt(y,))αd(x,y).\mathcal{W}_{d}(P_{t}(\mathrm{x},\cdot),P_{t}(\mathrm{y},\cdot))\leq\alpha d(\mathrm{x},\mathrm{y}). (6.1)
Definition 6.2.

A set BB\subset\mathcal{H} is called dd-small for PtP_{t} if for some ε=ε(B)>0\varepsilon=\varepsilon(B)>0,

supx,yB𝒲d(Pt(x,),Pt(y,))1ε.\sup_{\mathrm{x},\mathrm{y}\in B}\mathcal{W}_{d}(P_{t}(\mathrm{x},\cdot),P_{t}(\mathrm{y},\cdot))\leq 1-\varepsilon. (6.2)
Definition 6.3.

A function V:[0,)V:\mathcal{H}\to[0,\infty) is called a Lyapunov function for PtP_{t} if

1. V(x)V(\mathrm{x})\to\infty as x\|\mathrm{x}\|_{\mathcal{H}}\to\infty.

2. There exist positive constants c,Cc,\,C independent of x\mathrm{x} and tt such that

PtV(x)+c0tPsV(x)dsV(x)+Ct,t0.\displaystyle P_{t}V(\mathrm{x})+c\int_{0}^{t}P_{s}V(\mathrm{x})\text{d}s\leq V(\mathrm{x})+Ct,\quad t\geq 0.

In Lemma 6.4 below, we assert the existence of a contracting distance dd and the corresponding dd-small set. The proof of Lemma 6.4 will be deferred to the end of this section.

Lemma 6.4.

Under the same hypothesis of Proposition 3.6, suppose that Assumption 3.9 holds. Then, for all RR, there exist t=t(R)>1t_{*}=t_{*}(R)>1 and N=N(R)>0N=N(R)>0 such that for all ttt\geq t_{*}:

  1. 1.

    The distance dN(x,y)=Nxy1d_{N}(\mathrm{x},\mathrm{y})=N\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}}\wedge 1 as in (3.17) is contracting for PtP_{t} in the sense of Definition 6.1.

  2. 2.

    The set BR={x:xR}B_{R}=\{\mathrm{x}:\|\mathrm{x}\|_{\mathcal{H}}\leq R\} is dNd_{N}-small for PtP_{t} in the sense of Definition 6.2.

Given the above result, we can now conclude Theorem 3.11. See also [7, 32, 36].

Proof of Theorem 3.11.

We first recall g(u,η)=12uH2+12η2g(u,\eta)=\frac{1}{2}\|u\|^{2}_{H}+\frac{1}{2}\|\eta\|^{2}_{\mathcal{M}} as in (4.5). By integrating both sides of (4.9) with respect to time, we obtain

𝔼g(u(t),η(t))+0tK1α1𝔼u(r)H2+ε1δ2(1+ε1)𝔼η(r)2drx2+(a3|𝒪|+12k1λk2)t.\displaystyle\mathbb{E}g(u(t),\eta(t))+\int_{0}^{t}K_{1}\alpha_{1}\mathbb{E}\|u(r)\|^{2}_{H}+\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\mathbb{E}\|\eta(r)\|^{2}_{\mathcal{M}}\text{d}r\leq\|\mathrm{x}\|^{2}_{\mathcal{H}}+\Big{(}a_{3}|\mathcal{O}|+\tfrac{1}{2}\sum_{k\geq 1}\lambda_{k}^{2}\Big{)}t.

So that g(u(t),η(t))g(u(t),\eta(t)) plays the role of the required Lyapunov function in the sense of Definition 6.3. In light of [7, Proposition 2.1], we combine the above estimate with Lemma 6.4 to conclude the unique existence of μ\mu as well as the convergent rate (3.20). ∎

We now turn to the proof of Lemma 6.4. Before diving into the details, it is illuminating to review the generalized coupling argument in [7, 32]. In order to establish required bounds on the Wassertstein distance 𝒲dN\mathcal{W}_{d_{N}} between Pt(x,)P_{t}(\mathrm{x},\cdot) and Pt(y,)P_{t}(\mathrm{y},\cdot), it is sufficient to compare the two solutions Φx\Phi_{\mathrm{x}} and Φy\Phi_{\mathrm{y}} of (2.14) starting from x\mathrm{x} and y\mathrm{y}, respectively. However, we will not do so directly. To help with the analysis, we will consider instead an auxiliary system, denoted by Φ~x,y\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}, obtained from (2.14) by shifting the Wiener process w(t)w(t) in a suitably chosen direction. We note that the change of measures is valid thanks to the assumption that noise is sufficiently forced in enough many directions in HH, cf. Assumption 3.9. As it turns out, the choice of Φ~x,y\widetilde{\Phi}_{\mathrm{x},\mathrm{y}} allows us to deduce two crucial estimates: firstly, Φx(t)\Phi_{\mathrm{x}}(t) and Φ~x,y(t)\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t) can be arbitrarily close to one another as tt tends to infinity. Secondly, Φ~x,y(t)\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t) and Φy(t)\Phi_{\mathrm{y}}(t) can be efffectively controlled. Altogether, we are able to conclude Lemma 6.4.

Recall from Assumption 3.9 that

[1KL1(+)]αn¯>aφ=supxφ(x),\displaystyle\big{[}1-\|K\|_{L^{1}(\mathbb{R}^{+})}\big{]}\alpha_{\bar{n}}>a_{\varphi}=\sup_{x\in\mathbb{R}}\varphi^{\prime}(x),

where αn¯\alpha_{\bar{n}} is as in (3.18). We set

ε2=(1KL1(+))αn¯aφKL1(+)αn¯,andK2=1(1+ε22)KL1(+).\varepsilon_{2}=\frac{(1-\|K\|_{L^{1}(\mathbb{R}^{+})})\alpha_{\bar{n}}-a_{\varphi}}{\|K\|_{L^{1}(\mathbb{R}^{+})}\alpha_{\bar{n}}},\quad\text{and}\quad K_{2}=1-(1+\tfrac{\varepsilon_{2}}{2})\|K\|_{L^{1}(\mathbb{R}^{+})}. (6.3)

Observe that ε2\varepsilon_{2} and K2K_{2} are both positive by virtue of (3.18). Moreover,

K2αn¯=12([1KL1(+)]αn¯+aφ)>aφ.\displaystyle K_{2}\alpha_{\bar{n}}=\tfrac{1}{2}\big{(}\big{[}1-\|K\|_{L^{1}(\mathbb{R}^{+})}\big{]}\alpha_{\bar{n}}+a_{\varphi}\big{)}>a_{\varphi}. (6.4)

Next, we introduce the following “shifted” system

du~(t)\displaystyle\text{d}\widetilde{u}(t) =Au~(t)dt+0K(s)Aη~(t;s)dsdt+φ(u~(t))dt+Qdw(t)\displaystyle=-A\widetilde{u}(t)\text{d}t+\int_{0}^{\infty}\!\!\!K(s)A\widetilde{\eta}(t;s)\text{d}s\text{d}t+\varphi(\widetilde{u}(t))\text{d}t+Q\text{d}w(t)
+K2αn¯Pn¯(ux(t)u~(t))dt,\displaystyle\qquad\qquad+K_{2}\alpha_{\bar{n}}P_{\bar{n}}(u_{\mathrm{x}}(t)-\widetilde{u}(t))\text{d}t, (6.5)
dη~(t)\displaystyle\text{d}\widetilde{\eta}(t) =sη~(t)dt,(u~(0),η~(0))=y,η~(t;0)=u~(t),t>0,\displaystyle=-\partial_{s}\widetilde{\eta}(t)\text{d}t,\quad(\widetilde{u}(0),\widetilde{\eta}(0))=\mathrm{y}\in\mathcal{H},\quad\widetilde{\eta}(t;0)=\widetilde{u}(t),\,t>0,

where K2K_{2} is as in (6.3), Pn¯P_{\bar{n}} is the projection on to {e1,,en¯}\{e_{1},\dots,e_{\bar{n}}\} as in (2.3), and ux(t)u_{\mathrm{x}}(t) is the uu-component in the solution Φx(t)\Phi_{\mathrm{x}}(t) of the original equation (2.14). Similarly to (5.1), we note that (6.5) only differs from (2.14) by the appearance of the term K2αn¯Pn¯(u(t)u~(t))dtK_{2}\alpha_{\bar{n}}P_{\bar{n}}(u(t)-\widetilde{u}(t))\text{d}t. For notational convenience, we denote

Φ~x,y(t)=(u~x,y(t),η~x,y(t)),\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)=(\widetilde{u}_{\mathrm{x},\mathrm{y}}(t),\widetilde{\eta}_{\mathrm{x},\mathrm{y}}(t)),

the solution of (6.5) with initial condition y\mathrm{y}\in\mathcal{H}.

Three of the main ingredients in the generalized coupling argument are given in the following results to be proved at the end of this section.

Lemma 6.5.

Under the same hypothesis of Proposition 3.6, suppose that Assumption 3.9 holds. Let Φx\Phi_{\mathrm{x}} and Φ~x,y\widetilde{\Phi}_{\mathrm{x},\mathrm{y}} respectively be the solutions of (2.14) and (6.5) with initial conditions x,y\mathrm{x},\,\mathrm{y}\in\mathcal{H}. Then,

Φx(t)Φ~x,y(t)eζtxy,t>0,\|\Phi_{\mathrm{x}}(t)-\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)\|_{\mathcal{H}}\leq e^{-\zeta t}\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}},\quad t>0, (6.6)

for some positive ζ\zeta independent of x,y\mathrm{x},\,\mathrm{y} and tt.

Lemma 6.6.

Under the same hypothesis of Proposition 3.6, suppose that Assumption 3.9 holds. Let Φx\Phi_{\mathrm{x}} and Φ~x,y\widetilde{\Phi}_{\mathrm{x},\mathrm{y}} respectively be the solutions of (2.14) and (6.5) with initial conditions x,y\mathrm{x},\,\mathrm{y}\in\mathcal{H}. Then, there exists a positive constant ζ1\zeta_{1} independent of tt, x\mathrm{x} and y\mathrm{y} such that

𝒲TV(Law(Φ~x,y(t)),Pt(y,))ζ1xy.\mathcal{W}_{\emph{TV}}(\emph{Law}(\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)),P_{t}(\mathrm{y},\cdot))\leq\zeta_{1}\|\mathrm{x}-\mathrm{y}\|. (6.7)

Furthermore, for all R>0R>0, there exists ε=ε(R)(0,1)\varepsilon=\varepsilon(R)\in(0,1) such that

𝒲TV(Law(Φ~x,y(t)),Pt(y,))1ε,x,yBR.\mathcal{W}_{\emph{TV}}(\emph{Law}(\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)),P_{t}(\mathrm{y},\cdot))\leq 1-\varepsilon,\quad\mathrm{x},\,\mathrm{y}\in B_{R}. (6.8)
Lemma 6.7.

For all probability measures μ1\mu_{1}, μ2\mu_{2} in Pr()\emph{Pr}(\mathcal{H}), and N>0N>0,

𝒲dN(μ1,μ2)<𝒲TV(μ1,μ2),\mathcal{W}_{d_{N}}(\mu_{1},\mu_{2})<\mathcal{W}_{\emph{TV}}(\mu_{1},\mu_{2}), (6.9)

where 𝒲dN\mathcal{W}_{d_{N}} is the Wasserstein distance associated with dNd_{N} as in (3.17).

Assuming the above results, we are ready to conclude Lemma 6.4 whose argument is based on [7, Proof of Theorem 2.4]. See also [32].

Proof of Lemma 6.4.

1. Suppose x,y\mathrm{x},\mathrm{y}\in\mathcal{H} such that dN(x,y)<1d_{N}(\mathrm{x},\mathrm{y})<1. Recalling dNd_{N} as in (3.17), this implies that

dN(x,y)=Nxy<1.d_{N}(\mathrm{x},\mathrm{y})=N\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}}<1.

By triangle inequality, for all t0t\geq 0,

𝒲dN(Pt(x,),Pt(y,))\displaystyle\mathcal{W}_{d_{N}}(P_{t}(\mathrm{x},\cdot),P_{t}(\mathrm{y},\cdot)) 𝒲dN(Pt(x,),Law(Φ~x,y(t)))+𝒲dN(Law(Φ~x,y(t)),Pt(y,))\displaystyle\leq\mathcal{W}_{d_{N}}(P_{t}(\mathrm{x},\cdot),\text{Law}(\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)))+\mathcal{W}_{d_{N}}(\text{Law}(\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)),P_{t}(\mathrm{y},\cdot)) (6.10)
=I1+I2.\displaystyle=I_{1}+I_{2}.

In view of (6.7) and (6.9), we readily have

I2=𝒲dN(Law(Φ~x,y(t)),Pt(y,))ζ1xy,\displaystyle I_{2}=\mathcal{W}_{d_{N}}(\text{Law}(\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)),P_{t}(\mathrm{y},\cdot))\leq\zeta_{1}\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}},

where ζ1\zeta_{1} is given by (6.20) below. Concerning I1I_{1}, by the dual formula (3.16), it holds that

I1=𝒲dN(Pt(x,),Law(Φ~x,y(t)))\displaystyle I_{1}=\mathcal{W}_{d_{N}}(P_{t}(\mathrm{x},\cdot),\text{Law}(\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t))) 𝔼[NΦx(t)Φ~x,y(t)1]\displaystyle\leq\mathbb{E}\big{[}N\|\Phi_{\mathrm{x}}(t)-\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)\|_{\mathcal{H}}\wedge 1\big{]}
N𝔼Φx(t)Φ~x,y(t)Neζtxy.\displaystyle\leq N\mathbb{E}\|\Phi_{\mathrm{x}}(t)-\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)\|_{\mathcal{H}}\leq Ne^{-\zeta t}\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}}. (6.11)

In the last estimate above, we made use of (6.6) with ζ\zeta as in (6.16) below. Altogether, we deduce the bound for all t1t\geq 1

𝒲dN(Pt(x,),Pt(y,))(eζt+ζ1N)Nxy(eζ+ζ1N)Nxy=(eζ+ζ1N)dN(x,y).\displaystyle\mathcal{W}_{d_{N}}(P_{t}(\mathrm{x},\cdot),P_{t}(\mathrm{y},\cdot))\leq\big{(}e^{-\zeta t}+\tfrac{\zeta_{1}}{N}\big{)}N\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}}\leq\big{(}e^{-\zeta}+\tfrac{\zeta_{1}}{N}\big{)}N\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}}=\big{(}e^{-\zeta}+\tfrac{\zeta_{1}}{N}\big{)}d_{N}(\mathrm{x},\mathrm{y}).

By choosing NN large enough such that

α:=eζ+ζ1N<1,\alpha:=e^{-\zeta}+\tfrac{\zeta_{1}}{N}<1, (6.12)

we obtain

𝒲dN(Pt(x,),Pt(y,))αdN(x,y),\displaystyle\mathcal{W}_{d_{N}}(P_{t}(\mathrm{x},\cdot),P_{t}(\mathrm{y},\cdot))\leq\alpha d_{N}(\mathrm{x},\mathrm{y}),

which establishes that dNd_{N} is contracting for PtP_{t} as claimed.

2. Similarly to part 1., for all x,yBR\mathrm{x},\mathrm{y}\in B_{R}, we invoke (6.8) and (6.9) to see that

𝒲dN(Law(Φ~x,y(t)),Pt(y,))1ε,\displaystyle\mathcal{W}_{d_{N}}(\text{Law}(\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)),P_{t}(\mathrm{y},\cdot))\leq 1-\varepsilon,

where ε=ε(R)\varepsilon=\varepsilon(R) does not depend on t,x,yt,\mathrm{x},\mathrm{y}. Together with (6.10)-(6.11), we infer the bound

𝒲dN(Pt(x,),Pt(y,))\displaystyle\mathcal{W}_{d_{N}}(P_{t}(\mathrm{x},\cdot),P_{t}(\mathrm{y},\cdot)) Neζtxy+1ε1ε+2RNeζt.\displaystyle\leq Ne^{-\zeta t}\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}}+1-\varepsilon\leq 1-\varepsilon+2RNe^{-\zeta t}.

By choosing t=t(R)t_{*}=t_{*}(R) large enough such that

2RNeζt<ε2,2RNe^{-\zeta t}<\tfrac{\varepsilon}{2}, (6.13)

we obtain

𝒲dN(Pt(x,),Pt(y,))1ε2,tt,x,yBR,\displaystyle\mathcal{W}_{d_{N}}(P_{t}(\mathrm{x},\cdot),P_{t}(\mathrm{y},\cdot))\leq 1-\tfrac{\varepsilon}{2},\quad t\geq t_{*},\,\mathrm{x},\mathrm{y}\in B_{R},

which establishes that BRB_{R} is dNd_{N}-small for PtP_{t}. The proof is thus complete. ∎

We now turn to the auxiliary results in Lemmas 6.56.66.7. To prove Lemma 6.5, we will mainly invoke the choice of the index n¯\bar{n} as in (3.18) to derive the exponential estimate (6.6). In turn, we will combine (6.6) with the fact that QQ is invertible in span{e1,,en¯}\{e_{1},\dots,e_{\bar{n}}\}, cf. (3.19), to conclude Lemma 6.6. Finally, the proof of Lemma 6.7 is quite standard relying on the fact that the discrete metric 𝟏{xy}\mathbf{1}\{\mathrm{x}\neq\mathrm{y}\} dominates dN(x,y)d_{N}(\mathrm{x},\mathrm{y}).

We first provide the proof of Lemma 6.5 whose argument is similarly to that of Lemma 5.2.

Proof of Lemma 6.5.

To simplify notation, we will omit the subscripts x,y\mathrm{x},\,\mathrm{y} in the proof.

For a slightly abuse of notation, we set u¯=uu~\overline{u}=u-\widetilde{u} and η¯=ηη~\overline{\eta}=\eta-\widetilde{\eta}, from (6.5) and (2.14), and observe that

ddtu¯(t)\displaystyle\tfrac{\text{d}}{\text{d}t}\overline{u}(t) =Au¯(t)+0K(s)Aη¯(t;s)ds+φ(u(t))φ(u~(t))K2αn¯Pn¯u¯(t),\displaystyle=-A\overline{u}(t)+\int_{0}^{\infty}\!\!\!K(s)A\overline{\eta}(t;s)\text{d}s+\varphi(u(t))-\varphi(\widetilde{u}(t))-K_{2}\alpha_{\bar{n}}P_{\bar{n}}\overline{u}(t), (6.14)
ddtη¯(t)\displaystyle\tfrac{\text{d}}{\text{d}t}\overline{\eta}(t) =sη¯(t).\displaystyle=-\partial_{s}\overline{\eta}(t).

Following the same argument as in the proofs of Lemma 4.1 and (5.3), equation (6.14) implies (recalling gg as in (4.5))

ddtg(u¯(t),η¯(t))\displaystyle\tfrac{\text{d}}{\text{d}t}g(\overline{u}(t),\overline{\eta}(t)) =u¯(t)H12+0K(s)η¯(t;s),u¯(t)H1ds+sη¯(t),η¯(t)\displaystyle=-\|\overline{u}(t)\|^{2}_{H^{1}}+\int_{0}^{\infty}\!\!\!K(s)\langle\overline{\eta}(t;s),\overline{u}(t)\rangle_{H^{1}}\text{d}s+\langle-\partial_{s}\overline{\eta}(t),\overline{\eta}(t)\rangle_{\mathcal{M}}
+φ(u(t))φ(u~(t)),u¯(t)HK2αn¯Pn¯u¯(t)H2.\displaystyle\qquad+\langle\varphi(u(t))-\varphi(\widetilde{u}(t)),\overline{u}(t)\rangle_{H}-K_{2}\alpha_{\bar{n}}\|P_{\bar{n}}\overline{u}(t)\|^{2}_{H}.

Recalling ρ(r)=tK(s)ds\rho(r)=\int_{t}^{\infty}K(s)\text{d}s,

0K(s)η¯(t;s),u¯(t)H1ds\displaystyle\int_{0}^{\infty}\!\!\!K(s)\langle\overline{\eta}(t;s),\overline{u}(t)\rangle_{H^{1}}\text{d}s 1+ε22KL1(+)u¯(t)H12+12(1+ε2)0K(s)η¯(t;s)H12ds\displaystyle\leq\tfrac{1+\varepsilon_{2}}{2}\|K\|_{L^{1}(\mathbb{R}^{+})}\|\overline{u}(t)\|^{2}_{H^{1}}+\tfrac{1}{2(1+\varepsilon_{2})}\int_{0}^{\infty}\!\!\!K(s)\|\overline{\eta}(t;s)\|^{2}_{H^{1}}\text{d}s
=1+ε22KL1(+)u¯(t)H1212(1+ε2)0ρ(s)η(t;s)H12ds,\displaystyle=\tfrac{1+\varepsilon_{2}}{2}\|K\|_{L^{1}(\mathbb{R}^{+})}\|\overline{u}(t)\|^{2}_{H^{1}}-\tfrac{1}{2(1+\varepsilon_{2})}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\|\eta(t;s)\|^{2}_{H^{1}}\text{d}s,

where ε2>0\varepsilon_{2}>0 is given by (6.3). Also, recalling (2.10),

sη¯(t),η¯(t)\displaystyle\langle-\partial_{s}\overline{\eta}(t),\overline{\eta}(t)\rangle_{\mathcal{M}} =12KL1()u¯(t)H12+120ρ(s)η¯(t;s)H12ds.\displaystyle=\tfrac{1}{2}\|K\|_{L^{1}(\mathbb{R})}\|\overline{u}(t)\|^{2}_{H^{1}}+\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\|\overline{\eta}(t;s)\|^{2}_{H^{1}}\text{d}s.

We then deduce that

u¯(t)H12+0K(s)η¯(t;s),u¯(t)H1ds+sη¯,η¯\displaystyle-\|\overline{u}(t)\|^{2}_{H^{1}}+\int_{0}^{\infty}\!\!\!K(s)\langle\overline{\eta}(t;s),\overline{u}(t)\rangle_{H^{1}}\text{d}s+\langle-\partial_{s}\overline{\eta},\overline{\eta}\rangle_{\mathcal{M}}
[1(1+ε22)KL1(+)]u(t)H12+ε22(1+ε2)0ρ(s)η(t;s)H12ds\displaystyle\leq-\Big{[}1-\big{(}1+\tfrac{\varepsilon_{2}}{2}\big{)}\|K\|_{L^{1}(\mathbb{R}^{+})}\Big{]}\|u(t)\|^{2}_{H^{1}}+\tfrac{\varepsilon_{2}}{2(1+\varepsilon_{2})}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\|\eta(t;s)\|^{2}_{H^{1}}\text{d}s
[1(1+ε22)KL1(+)]u(t)H12ε2δ2(1+ε2)0ρ(s)η(t;s)H12ds\displaystyle\leq-\Big{[}1-\big{(}1+\tfrac{\varepsilon_{2}}{2}\big{)}\|K\|_{L^{1}(\mathbb{R}^{+})}\Big{]}\|u(t)\|^{2}_{H^{1}}-\tfrac{\varepsilon_{2}\delta}{2(1+\varepsilon_{2})}\int_{0}^{\infty}\!\!\!\rho(s)\|\eta(t;s)\|^{2}_{H^{1}}\text{d}s
=K2u(t)H12ε2δ2(1+ε2)η(t)2\displaystyle=-K_{2}\|u(t)\|^{2}_{H^{1}}-\tfrac{\varepsilon_{2}\delta}{2(1+\varepsilon_{2})}\|\eta(t)\|^{2}_{\mathcal{M}}
K2(IPn¯)u¯(t)H12ε2δ2(1+ε2)η¯(t)2\displaystyle\leq-K_{2}\|(I-P_{\bar{n}})\overline{u}(t)\|^{2}_{H^{1}}-\tfrac{\varepsilon_{2}\delta}{2(1+\varepsilon_{2})}\|\overline{\eta}(t)\|^{2}_{\mathcal{M}}
K2αn¯(IPn¯)u¯(t)H2ε2δ2(1+ε2)η¯(t)2,\displaystyle\leq-K_{2}\alpha_{\bar{n}}\|(I-P_{\bar{n}})\overline{u}(t)\|^{2}_{H}-\tfrac{\varepsilon_{2}\delta}{2(1+\varepsilon_{2})}\|\overline{\eta}(t)\|^{2}_{\mathcal{M}},

whence

u¯(t)H12+0K(s)η¯(t;s),u¯(t)H1ds+sη¯,η¯K2αn¯Pn¯u¯(t)H2\displaystyle-\|\overline{u}(t)\|^{2}_{H^{1}}+\int_{0}^{\infty}\!\!\!K(s)\langle\overline{\eta}(t;s),\overline{u}(t)\rangle_{H^{1}}\text{d}s+\langle-\partial_{s}\overline{\eta},\overline{\eta}\rangle_{\mathcal{M}}-K_{2}\alpha_{\bar{n}}\|P_{\bar{n}}\overline{u}(t)\|^{2}_{H}
K2αn¯u¯(t)H2ε2δ2(1+ε2)η¯(t)2.\displaystyle\leq-K_{2}\alpha_{\bar{n}}\|\overline{u}(t)\|^{2}_{H}-\tfrac{\varepsilon_{2}\delta}{2(1+\varepsilon_{2})}\|\overline{\eta}(t)\|^{2}_{\mathcal{M}}.

To control the nonlinear term, we invoke condition (3.18) to infer

φ(u(t))φ(u~(t)),u¯(t)Haφu¯(t)H2.\displaystyle\langle\varphi(u(t))-\varphi(\widetilde{u}(t)),\overline{u}(t)\rangle_{H}\leq a_{\varphi}\|\overline{u}(t)\|^{2}_{H}.

Altogether, we obtain

12ddt(u¯(t)H2+η¯(t)2)\displaystyle\tfrac{1}{2}\tfrac{\text{d}}{\text{d}t}\big{(}\|\overline{u}(t)\|^{2}_{H}+\|\overline{\eta}(t)\|^{2}_{\mathcal{M}}\big{)} (K2αn¯aφ)u¯(t)H2ε22(1+ε2)δη¯(t)2,\displaystyle\leq-(K_{2}\alpha_{\bar{n}}-a_{\varphi})\|\overline{u}(t)\|^{2}_{H}-\tfrac{\varepsilon_{2}}{2(1+\varepsilon_{2})}\delta\|\overline{\eta}(t)\|^{2}_{\mathcal{M}}, (6.15)

where K2K_{2} and ε2\varepsilon_{2} are as in (6.3). Thanks to (3.18), the choice of K2K_{2} satisfies (6.4), namely,

K2αn¯>aφ.K_{2}\alpha_{\bar{n}}>a_{\varphi}.

We now set

ζ=min{2(K2αn¯aφ),ε21+ε2δ},\zeta=\min\{2(K_{2}\alpha_{\bar{n}}-a_{\varphi}),\tfrac{\varepsilon_{2}}{1+\varepsilon_{2}}\delta\}, (6.16)

which is positive. Estimate (6.6) now follows from (6.15)-(6.16).

Next, we present the proof of Lemma 6.6.

Proof of Lemma 6.6.

In order to prove (6.7)-(6.8), we first consider the following cylindrical Wiener process

dw~(t)=β(t)dt+dw(t),\text{d}\widetilde{w}(t)=\beta(t)\text{d}t+\text{d}w(t), (6.17)

where

β(t)=K2αn¯Q1Pn¯(u(t)u~(t)),\beta(t)=K_{2}\alpha_{\bar{n}}Q^{-1}P_{\bar{n}}(u(t)-\widetilde{u}(t)), (6.18)

and u(t)u(t) and u~(t)\widetilde{u}(t) are the first components of Φx(t)\Phi_{\mathrm{x}}(t) and Φ~x,y(t)\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t), respectively. Since QQ is invertible on Hn¯=span{e1,,en¯}H_{\bar{n}}=\text{span}\{e_{1},\dots,e_{\bar{n}}\} by virtue of condition (3.19), we note that

β(t)H2=K2αn¯Q1Pn¯(u(t)u~(t))H2\displaystyle\|\beta(t)\|^{2}_{H}=\|K_{2}\alpha_{\bar{n}}Q^{-1}P_{\bar{n}}(u(t)-\widetilde{u}(t))\|_{H}^{2} (K2αn¯aQ1)2Pn¯(u(t)u~(t))H2\displaystyle\leq(K_{2}\alpha_{\bar{n}}a_{Q}^{-1})^{2}\|P_{\bar{n}}(u(t)-\widetilde{u}(t))\|_{H}^{2}
(K2αn¯aQ1)2e2ζtxy2.\displaystyle\leq(K_{2}\alpha_{\bar{n}}a_{Q}^{-1})^{2}e^{-2\zeta t}\|\mathrm{x}-\mathrm{y}\|^{2}_{\mathcal{H}}.

In the last estimate above, we employed (6.6) with ζ\zeta given by (6.16). As a consequence,

𝔼0β(r)H2dr\displaystyle\mathbb{E}\int_{0}^{\infty}\!\!\!\|\beta(r)\|^{2}_{H}\text{d}r =𝔼0K2αn¯Q1Pn¯(u(r)u~(r))H2drζ12xy2,\displaystyle=\mathbb{E}\int_{0}^{\infty}\!\!\!\|K_{2}\alpha_{\bar{n}}Q^{-1}P_{\bar{n}}(u(r)-\widetilde{u}(r))\|^{2}_{H}\text{d}r\leq\zeta_{1}^{2}\|\mathrm{x}-\mathrm{y}\|^{2}_{\mathcal{H}}, (6.19)

where

ζ1=K2αn¯aQ2ζ.\zeta_{1}=\frac{K_{2}\alpha_{\bar{n}}}{a_{Q}\sqrt{2\zeta}}. (6.20)

In light of [7, Inequality (A.1) and Theorem A.2] together with (6.19), it holds that

𝒲TV(Law(w~[0,t]),Law(w[0,t]))\displaystyle\mathcal{W}_{\text{TV}}(\text{Law}(\widetilde{w}_{[0,t]}),\text{Law}(w_{[0,t]})) 12(𝔼0β(r)H2dr)1/212ζ1xy.\displaystyle\leq\tfrac{1}{2}\Big{(}\mathbb{E}\int_{0}^{\infty}\!\!\!\|\beta(r)\|^{2}_{H}\text{d}r\Big{)}^{1/2}\leq\tfrac{1}{2}\zeta_{1}\|\mathrm{x}-\mathrm{y}\|_{\mathcal{H}}. (6.21)

On the other hand, we invoke [7, Inequality (A.2)] to see that for all x,yBR\mathrm{x},\mathrm{y}\in B_{R}

𝒲TV(Law(w~[0,t]),Law(w[0,t]))\displaystyle\mathcal{W}_{\text{TV}}(\text{Law}(\widetilde{w}_{[0,t]}),\text{Law}(w_{[0,t]})) 112e12𝔼0β(r)H2dr\displaystyle\leq 1-\tfrac{1}{2}e^{-\frac{1}{2}\mathbb{E}\int_{0}^{\infty}\|\beta(r)\|^{2}_{H}\text{d}r}
112e12ζ12xy2\displaystyle\leq 1-\tfrac{1}{2}e^{-\frac{1}{2}\zeta_{1}^{2}\|\mathrm{x}-\mathrm{y}\|^{2}_{\mathcal{H}}}
112e2ζ12R2.\displaystyle\leq 1-\tfrac{1}{2}e^{-2\zeta_{1}^{2}R^{2}}. (6.22)

Now, observe that (6.21)-(6.22) imply (6.7)-(6.8) if we can show that

𝒲TV(Law(Φ~x,y(t)),Pt(y,))𝒲TV(Law(w~[0,t]),Law(w[0,t])).\mathcal{W}_{\text{TV}}(\text{Law}(\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t)),P_{t}(\mathrm{y},\cdot))\leq\mathcal{W}_{\text{TV}}(\text{Law}(\widetilde{w}_{[0,t]}),\text{Law}(w_{[0,t]})). (6.23)

To see this, consider any coupling (w~1,w1)(\widetilde{w}^{1},w^{1}) for (w~,w)(\widetilde{w},w) and denote by X~x,y(t)\widetilde{X}_{\mathrm{x},\mathrm{y}}(t), Xy(t)X_{\mathrm{y}}(t) respectively the solutions of (6.5) and (2.14) associated with w~1\widetilde{w}^{1} and w1w^{1}. It is clear that (X~x,y(t),Xy(t))(\widetilde{X}_{\mathrm{x},\mathrm{y}}(t),X_{\mathrm{y}}(t)) is a coupling for (Φ~x,y(t),Φy(t))(\widetilde{\Phi}_{\mathrm{x},\mathrm{y}}(t),\Phi_{\mathrm{y}}(t)). We note that by the uniqueness of weak solution,

{w~1(r)=w1(r),r[0,t]}{X~x,y(t)=Xy(t)}.\displaystyle\{\widetilde{w}^{1}(r)=w^{1}(r),\,r\in[0,t]\}\subseteq\{\widetilde{X}_{\mathrm{x},\mathrm{y}}(t)=X_{\mathrm{y}}(t)\}.

It follows that if

𝟏{w~[0,t]1w[0,t]1}=0,\displaystyle\boldsymbol{1}\{\widetilde{w}^{1}_{[0,t]}\neq w^{1}_{[0,t]}\}=0,

then

𝟏{X~x,y(t)Xy(t)}=0.\displaystyle\boldsymbol{1}\{\widetilde{X}_{\mathrm{x},\mathrm{y}}(t)\neq X_{\mathrm{y}}(t)\}=0.

In particular,

𝟏{w~1[0,t]w[0,t]1}𝟏{X~x,y(t)Xy(t)}.\displaystyle\boldsymbol{1}\{\widetilde{w}^{1}[0,t]\neq w^{1}_{[0,t]}\}\geq\boldsymbol{1}\{\widetilde{X}_{\mathrm{x},\mathrm{y}}(t)\neq X_{\mathrm{y}}(t)\}.

By the dual formula (3.16), we establish (6.23), thereby concluding the proof. ∎

Lastly, we provide the proof of Lemma 6.7, which will finally conclude the proof of Lemma 6.4.

Proof of Lemma 6.7.

Let (X,Y)(X,Y) be any bivariate random variable such that Xμ1X\sim\mu_{1} and Yμ2Y\sim\mu_{2}. Recalling dN(X,Y)=NXY1d_{N}(X,Y)=N\|X-Y\|_{\mathcal{H}}\wedge 1 as in (3.17), by the formula (3.16),

𝒲dN(μ1,μ2)𝔼dN(X,Y)\displaystyle\mathcal{W}_{d_{N}}(\mu_{1},\mu_{2})\leq\mathbb{E}\,d_{N}(X,Y) =𝔼[dN(X,Y)𝟏{XY}]+𝔼[dN(X,Y)𝟏{X=Y}]\displaystyle=\mathbb{E}\big{[}d_{N}(X,Y)\mathbf{1}\{X\neq Y\}\big{]}+\mathbb{E}\big{[}d_{N}(X,Y)\mathbf{1}\{X=Y\}\big{]}
=𝔼[dN(X,Y)𝟏{XY}]\displaystyle=\mathbb{E}\big{[}d_{N}(X,Y)\mathbf{1}\{X\neq Y\}\big{]}
𝔼[𝟏{XY}].\displaystyle\leq\mathbb{E}\big{[}\mathbf{1}\{X\neq Y\}\big{]}.

Since the last implication above holds for any such pair (X,Y)(X,Y), we invoke (3.16) again to deduce

𝒲dN(μ1,μ2)𝒲TV(μ1,μ2),\displaystyle\mathcal{W}_{d_{N}}(\mu_{1},\mu_{2})\leq\mathcal{W}_{\text{TV}}(\mu_{1},\mu_{2}),

thereby finishing the proof. ∎

Acknowledgment

The author thanks Nathan Glatt-Holtz and Vincent Martinez for fruitful discussions on the topic of this paper. The author also would like to thank the anonymous reviewer for their valuable comments and suggestions.

Appendix A Well-posedness of (2.14)

In this section, we discuss Proposition 3.6 whose proof relies on the construction of the weak solutions for (2.14). We start with the Galerkin finite-dimensional approximation.

A.1. Finite-dimensional approximation

Recalling the projection PnP_{n} onto the first nn wavenumbers as in (2.3), we set

un(t)=k=1nun(t),ekHek,andηn(t;s)=k=1nηn(t;s),ekHek.\displaystyle u^{n}(t)=\sum_{k=1}^{n}\langle u^{n}(t),e_{k}\rangle_{H}e_{k},\qquad\text{and}\quad\eta^{n}(t;s)=\sum_{k=1}^{n}\langle\eta^{n}(t;s),e_{k}\rangle_{H}e_{k}.

We then consider the pair (un(t),ηn(t))(u^{n}(t),\eta^{n}(t)) solving the following finite-dimensional system

dun(t)\displaystyle\text{d}u^{n}(t) =Aun(t)dt+0K(s)Aηn(t;s)dsdt+Pnφ(un(t))dt+PnQdw(t),\displaystyle=-Au^{n}(t)\text{d}t+\int_{0}^{\infty}\!\!\!K(s)A\eta^{n}(t;s)\text{d}s\text{d}t+P_{n}\varphi(u^{n}(t))\text{d}t+P_{n}Q\text{d}w(t), (A.1)
dηn(t)\displaystyle\text{d}\eta^{n}(t) =sηn(t)dt,un(0)=Pnu0H,ηn(0;)=Pnη0()M,ηn(t;0)=un(t).\displaystyle=-\partial_{s}\eta^{n}(t)\text{d}t,\quad u^{n}(0)=P_{n}u_{0}\in H,\eta^{n}(0;\cdot)=P_{n}\eta_{0}(\cdot)\in M,\,\eta^{n}(t;0)=u^{n}(t).

By Ito’s formula, we have

12d(un(t),ηn(t)2)\displaystyle\tfrac{1}{2}\text{d}\big{(}\|u^{n}(t),\eta^{n}(t)\|^{2}_{\mathcal{H}}\big{)} =un(t)H2dt+0K(s)ηn(t;s),un(t)Hdsdt\displaystyle=-\|\nabla u^{n}(t)\|^{2}_{H}\text{d}t+\int_{0}^{\infty}\!\!\!K(s)\langle\nabla\eta^{n}(t;s),\nabla u^{n}(t)\rangle_{H}\text{d}s\text{d}t
+Pnφ(un(t)),un(t)Hdt+un(t),PnQdw(t)Hdt+12k=1nλk2dt\displaystyle\qquad+\langle P_{n}\varphi(u^{n}(t)),u^{n}(t)\rangle_{H}\text{d}t+\langle u^{n}(t),P_{n}Q\text{d}w(t)\rangle_{H}\text{d}t+\tfrac{1}{2}\sum_{k=1}^{n}\lambda_{k}^{2}\text{d}t
120ρ(s)sηn(t;s)H2dsdt.\displaystyle\qquad-\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho(s)\partial_{s}\|\nabla\eta^{n}(t;s)\|^{2}_{H}\text{d}s\text{d}t.

Similarly to the a priori bounds in Section 4, e.g., the proof of Lemma 4.1, we proceed to estimate the above right-hand side as follows:

In view of (4.7), the drift terms can be bounded by

un(t)H2dt\displaystyle-\|\nabla u^{n}(t)\|^{2}_{H}\text{d}t +0K(s)ηn(t;s),un(t)Hdsdt120ρ(s)sηn(t;s)H2dsdt\displaystyle+\int_{0}^{\infty}\!\!\!K(s)\langle\nabla\eta^{n}(t;s),\nabla u^{n}(t)\rangle_{H}\text{d}s\text{d}t-\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho(s)\partial_{s}\|\nabla\eta^{n}(t;s)\|^{2}_{H}\text{d}s\text{d}t
K1un(t)H2dtε1δ2(1+ε1)ηn(t)2dt,\displaystyle\leq-K_{1}\|\nabla u^{n}(t)\|^{2}_{H}\text{d}t-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\eta^{n}(t)\|^{2}_{\mathcal{M}}\text{d}t,

where we recall ε1\varepsilon_{1} and K1=1(1+ε12)KL1(+)K_{1}=1-(1+\tfrac{\varepsilon_{1}}{2})\|K\|_{L^{1}(\mathbb{R}^{+})} as in (4.1).

Concerning the non-linear term, we invoke (3.8) to see that

Pnφ(un(t)),un(t)H\displaystyle\langle P_{n}\varphi(u^{n}(t)),u^{n}(t)\rangle_{H} =φ(un(t)),Pnun(t)H=φ(un(t)),un(t)Ha2un(t)Lp+1p+1+a3|𝒪|,\displaystyle=\langle\varphi(u^{n}(t)),P_{n}u^{n}(t)\rangle_{H}=\langle\varphi(u^{n}(t)),u^{n}(t)\rangle_{H}\leq-a_{2}\|u^{n}(t)\|^{p+1}_{L^{p+1}}+a_{3}|\mathcal{O}|,

where pp is the exponent constant from Assumption 3.4.

Using Burkholder’s inequality, the Martingale term can be bounded in expectation by

𝔼sup0rt|0run(),PnQdw()H|2QL(H)2𝔼0tun(r)H2dr.\displaystyle\mathbb{E}\sup_{0\leq r\leq t}\Big{|}\int_{0}^{r}\langle u^{n}(\ell),P_{n}Q\text{d}w(\ell)\rangle_{H}\Big{|}^{2}\leq\|Q\|^{2}_{L(H)}\mathbb{E}\int_{0}^{t}\|u^{n}(r)\|^{2}_{H}\text{d}r.

Altogether, we arrive at the following estimate

𝔼(un(t),ηn(t))2\displaystyle\mathbb{E}\|(u^{n}(t),\eta^{n}(t))\|^{2}_{\mathcal{H}} +K1un(r)H2+ε12(1+ε1)δ𝔼ηn(r)2+a2𝔼un(r)Lp+1p+1dr\displaystyle+\int K_{1}\|\nabla u^{n}(r)\|^{2}_{H}+\tfrac{\varepsilon_{1}}{2(1+\varepsilon_{1})}\delta\mathbb{E}\|\eta^{n}(r)\|^{2}_{\mathcal{M}}+a_{2}\mathbb{E}\|u^{n}(r)\|^{p+1}_{L^{p+1}}\text{d}r (A.2)
(u0,η0)2+(12k1λk2+a3|𝒪|)t.\displaystyle\leq\|(u_{0},\eta_{0})\|^{2}_{\mathcal{H}}+\Big{(}\tfrac{1}{2}\sum_{k\geq 1}\lambda_{k}^{2}+a_{3}|\mathcal{O}|\Big{)}t.

In particular, this implies the existence and uniqueness of the strong solution (un(),ηn())(u^{n}(\cdot),\eta^{n}(\cdot)) for (A.1) [35, 39, 42]. Moreover, combining Burkholder’s and Gronwall’s inequalities, we deduce the following bound in sup norm and

𝔼sup0rt(un(r),ηn(r))2(u0,η0)2ect,\displaystyle\mathbb{E}\sup_{0\leq r\leq t}\|(u^{n}(r),\eta^{n}(r))\|^{2}_{\mathcal{H}}\leq\|(u_{0},\eta_{0})\|^{2}_{\mathcal{H}}e^{ct},

for some positive constant cc independent of t,nt,\,n and initial condition (u0,η0)(u_{0},\eta_{0}). Also, setting q=(p+1)/pq=(p+1)/p, (3.7) combined with (A.2) implies that

𝔼0tφ(un(r))Lqqdrc𝔼0t1+un(r)p+1drc(u0,η0,t).\displaystyle\mathbb{E}\int_{0}^{t}\|\varphi(u^{n}(r))\|^{q}_{L^{q}}\text{d}r\leq c\,\mathbb{E}\int_{0}^{t}1+\|u^{n}(r)\|^{p+1}\text{d}r\leq c(u_{0},\eta_{0},t). (A.3)

Furthermore, since ηn\eta^{n} solves the transport equation in n\mathbb{R}^{n}

ηn(t;s)=sηn(t;s),ηn(t;0)=un(t),ηn(0;s)=Pnη0(s),\displaystyle\partial\eta^{n}(t;s)=-\partial_{s}\eta^{n}(t;s),\quad\eta^{n}(t;0)=u^{n}(t),\quad\eta^{n}(0;s)=P^{n}\eta_{0}(s),

ηn\eta^{n} admits the following representation [6]

ηn(t;s)=un(ts)𝟏{st}+Pnη0(st)𝟏{s>t}.\eta^{n}(t;s)=u^{n}(t-s)\boldsymbol{1}\{s\leq t\}+P_{n}\eta_{0}(s-t)\boldsymbol{1}\{s>t\}. (A.4)

A.2. Passage to the limit

As a consequence of the preceding subsection, we deduce the following limits (up to a subsequence)

un\displaystyle u^{n} u in L2(Ω;L(0,T;H)),\displaystyle\rightharpoonup^{*}u\text{ in }L^{2}(\Omega;L^{\infty}(0,T;H)),
un\displaystyle u^{n} u in L2(Ω;L2(0,T;H1)),\displaystyle\rightharpoonup u\text{ in }L^{2}(\Omega;L^{2}(0,T;H^{1})),
un\displaystyle u^{n} u in Lp+1(Ω;Lp+1(0,T;Lp+1)),\displaystyle\rightharpoonup u\text{ in }L^{p+1}(\Omega;L^{p+1}(0,T;L^{p+1})),
φ(un)\displaystyle\varphi(u^{n}) χ in Lq(Ω;Lq(0,T;Lq)),\displaystyle\rightharpoonup\chi\text{ in }L^{q}(\Omega;L^{q}(0,T;L^{q})),
ηn\displaystyle\eta^{n} η in L2(Ω;L(0,T;)),\displaystyle\rightharpoonup^{*}\eta\text{ in }L^{2}(\Omega;L^{\infty}(0,T;\mathcal{M})),
ηn\displaystyle\eta^{n} η in L2(Ω;L2(0,T;)).\displaystyle\rightharpoonup\eta\text{ in }L^{2}(\Omega;L^{2}(0,T;\mathcal{M})).

Furthermore, (see [45, pg. 224])

Pnφ(un)χ in Lq(Ω;Lq(0,T;Lq)).P_{n}\varphi(u^{n})\rightharpoonup\chi\text{ in }L^{q}(\Omega;L^{q}(0,T;L^{q})).

Next, we proceed to prove that a.s. η\eta satisfies (3.12), i.e.,

η(t;s)=u(ts)𝟏{st}+η0(st)𝟏{s>t}.\displaystyle\eta(t;s)=u(t-s)\boldsymbol{1}\{s\leq t\}+\eta_{0}(s-t)\boldsymbol{1}\{s>t\}. (A.5)

To see this, consider any arbitrary η^\widehat{\eta}\in\mathcal{M}. We first note that

0rρ(s)un(rs),η^(s)Hds=0run(rs),(ρ(s)η^(s))Hds,\displaystyle\int_{0}^{r}\rho(s)\langle\nabla u^{n}(r-s),\nabla\widehat{\eta}(s)\rangle_{H}\text{d}s=\int_{0}^{r}\langle\nabla u^{n}(r-s),\nabla(\rho(s)\widehat{\eta}(s))\rangle_{H}\text{d}s,

which converges to

0ru(rs),(ρ(s)η^(s))Hds\displaystyle\int_{0}^{r}\langle\nabla u(r-s),\nabla(\rho(s)\widehat{\eta}(s))\rangle_{H}\text{d}s =0rρ(s)u(rs),η^(s)Hds,\displaystyle=\int_{0}^{r}\rho(s)\langle\nabla u(r-s),\nabla\widehat{\eta}(s)\rangle_{H}\text{d}s,

as nn tends to infinity, since unuu^{n}\rightharpoonup u in L2(0,T;H1)L^{2}(0,T;H^{1}). Also, for each r[0,t]r\in[0,t], Cauchy-Schwarz inequality and the fact that ρ\rho is decreasing on [0,)[0,\infty) yield the bound

|0rρ(s)un(rs),η^(s)Hds|\displaystyle\Big{|}\int_{0}^{r}\rho(s)\langle\nabla u^{n}(r-s),\nabla\widehat{\eta}(s)\rangle_{H}\text{d}s\Big{|} 12ρ(0)0tun(s)H2ds+120ρ(s)η^(s)H2ds\displaystyle\leq\tfrac{1}{2}\rho(0)\int_{0}^{t}\|\nabla u^{n}(s)\|^{2}_{H}\text{d}s+\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho(s)\|\nabla\widehat{\eta}(s)\|^{2}_{H}\text{d}s
=c+12η^2,\displaystyle=c+\tfrac{1}{2}\|\widehat{\eta}\|^{2}_{\mathcal{M}},

which is a.s. integrable on [0,t][0,t]. The Dominated Convergence Theorem then implies a.s.

0t0rρ(s)un(rs),η^(s)Hdsdr0t0rρ(s)u(rs),η^(s)Hdsdr,\displaystyle\int_{0}^{t}\int_{0}^{r}\rho(s)\langle\nabla u^{n}(r-s),\nabla\widehat{\eta}(s)\rangle_{H}\text{d}s\text{d}r\to\int_{0}^{t}\int_{0}^{r}\rho(s)\langle\nabla u(r-s),\nabla\widehat{\eta}(s)\rangle_{H}\text{d}s\text{d}r, (A.6)

as nn\to\infty. On the other hand, since Pnη0P_{n}\eta_{0} converges to η0\eta_{0} in \mathcal{M}, for all r[0,t]r\in[0,t], it holds that

|rρ(s)Pnη0(sr)η0(sr),η^(s)H1ds|2\displaystyle\Big{|}\int_{r}^{\infty}\!\!\!\rho(s)\langle P_{n}\eta_{0}(s-r)-\eta_{0}(s-r),\widehat{\eta}(s)\rangle_{H^{1}}\text{d}s\Big{|}^{2}
rρ(s)Pnη0(sr)η0(sr)H12ds0ρ(s)η^(s)H12ds\displaystyle\leq\int_{r}^{\infty}\!\!\!\rho(s)\|P_{n}\eta_{0}(s-r)-\eta_{0}(s-r)\|^{2}_{H^{1}}\text{d}s\int_{0}^{\infty}\!\!\!\rho(s)\|\widehat{\eta}(s)\|^{2}_{H^{1}}\text{d}s
=0ρ(s+r)Pnη0(s)η0(s)H12dsη^(r)2\displaystyle=\int_{0}^{\infty}\!\!\!\rho(s+r)\|P_{n}\eta_{0}(s)-\eta_{0}(s)\|^{2}_{H^{1}}\text{d}s\,\|\widehat{\eta}(r)\|^{2}_{\mathcal{M}}
Pnη0η02η^20,n.\displaystyle\leq\|P_{n}\eta_{0}-\eta_{0}\|^{2}_{\mathcal{M}}\|\widehat{\eta}\|^{2}_{\mathcal{M}}\to 0,\quad n\to\infty.

Using the Dominated Convergence Theorem again, we obtain a.s.

0trρ(s)Pnη0(sr)η0(sr),η^(s)H1ds0,n.\displaystyle\int_{0}^{t}\int_{r}^{\infty}\!\!\!\rho(s)\langle P_{n}\eta_{0}(s-r)-\eta_{0}(s-r),\widehat{\eta}(s)\rangle_{H^{1}}\text{d}s\to 0,\quad n\to\infty. (A.7)

We now combine (A.6) and (A.7) to deduce

ηn(t)=un(ts)𝟏{st}+Pnη0(st)𝟏{s>t}u(ts)𝟏{st}+η0(st)𝟏{s>t},\displaystyle\eta^{n}(t)=u^{n}(t-s)\boldsymbol{1}\{s\leq t\}+P_{n}\eta_{0}(s-t)\boldsymbol{1}\{s>t\}\rightharpoonup u(t-s)\boldsymbol{1}\{s\leq t\}+\eta_{0}(s-t)\boldsymbol{1}\{s>t\},

in L2(0,T;)L^{2}(0,T;\mathcal{M}). This proves (3.12) by the uniqueness of weak limit.

Next, we turn to establish (3.11). Considering η~\widetilde{\eta}\in\mathcal{M} such that sη~\partial_{s}\widetilde{\eta}\in\mathcal{M}, we multiply both sides of ηn\eta^{n}-equation in (A.1) with η~\widetilde{\eta} and perform integration by parts to obtain

ddtηn(t),η~\displaystyle\tfrac{\text{d}}{\text{d}t}\langle\eta^{n}(t),\widetilde{\eta}\rangle_{\mathcal{M}} =sηn(t),η~\displaystyle=\langle-\partial_{s}\eta^{n}(t),\widetilde{\eta}\rangle_{\mathcal{M}}
=ρ(s)ηn(t;s),η~(s)H1|0+0ηn(t;s),s(ρ(s)η~(s))H1ds\displaystyle=-\rho(s)\langle\eta^{n}(t;s),\widetilde{\eta}(s)\rangle_{H^{1}}\Big{|}^{\infty}_{0}+\int_{0}^{\infty}\!\!\!\langle\eta^{n}(t;s),\partial_{s}(\rho(s)\widetilde{\eta}(s))\rangle_{H^{1}}\text{d}s
=ρ(0)ηn(t;0),η~(0)H1+ηn(t),sη~+0ρ(s)ηn(r;s),η~(s)H1dsdr\displaystyle=\rho(0)\langle\eta^{n}(t;0),\widetilde{\eta}(0)\rangle_{H^{1}}+\langle\eta^{n}(t),\partial_{s}\widetilde{\eta}\rangle_{\mathcal{M}}+\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\langle\eta^{n}(r;s),\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s\text{d}r
=ρ(0)un(t),η~(0)H1+ηn(t),sη~+0ρ(s)ηn(r;s),η~(s)H1dsdr.\displaystyle=\rho(0)\langle u^{n}(t),\widetilde{\eta}(0)\rangle_{H^{1}}+\langle\eta^{n}(t),\partial_{s}\widetilde{\eta}\rangle_{\mathcal{M}}+\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\langle\eta^{n}(r;s),\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s\text{d}r.

In the last implication above, we employed the fact that ηn(t;0)=un(t)\eta^{n}(t;0)=u^{n}(t). Integrating the above equation with respect to time tt yields

ηn(t),η~\displaystyle\langle\eta^{n}(t),\widetilde{\eta}\rangle_{\mathcal{M}} =Pnη0,η~+0tρ(0)un(r),η~(0)H1dr+0tηn(r),sη~dr\displaystyle=\langle P_{n}\eta_{0},\widetilde{\eta}\rangle_{\mathcal{M}}+\int_{0}^{t}\rho(0)\langle u^{n}(r),\widetilde{\eta}(0)\rangle_{H^{1}}\text{d}r+\int_{0}^{t}\langle\eta^{n}(r),\partial_{s}\widetilde{\eta}\rangle_{\mathcal{M}}\text{d}r
+0t0ρ(s)ηn(r;s),η~(s)H1dsdr.\displaystyle\qquad\qquad+\int_{0}^{t}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\langle\eta^{n}(r;s),\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s\text{d}r.

By sending nn to infinity, we deduce the identity (3.11) provided that

0t0ρ(s)ηn(r;s),η~(s)H1dsdr0t0ρ(s)η(r;s),η~(s)H1dsdr,n.\displaystyle\int_{0}^{t}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\langle\eta^{n}(r;s),\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s\text{d}r\to\int_{0}^{t}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\langle\eta(r;s),\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s\text{d}r,\quad n\to\infty. (A.8)

To see this, recall from (3.4) that

K(s)ρ(s)=|ρ(s)|ρ(s)<c,s0.\frac{K(s)}{\rho(s)}=\frac{|\rho^{\prime}(s)|}{\rho(s)}<c,\quad s\geq 0.

Thus, |ρ|ρη~\frac{|\rho^{\prime}|}{\rho}\widetilde{\eta}\in\mathcal{M}, whence

0t0ρ(s)ηn(r;s),η~(s)H1dsdr\displaystyle\int_{0}^{t}\int_{0}^{\infty}\!\!\!\rho^{\prime}(s)\langle\eta^{n}(r;s),\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s\text{d}r =0t0ρ(s)ηn(r;s),ρ(s)ρ(s)η~(s)H1ds\displaystyle=\int_{0}^{t}\int_{0}^{\infty}\!\!\!\rho(s)\langle\eta^{n}(r;s),\tfrac{\rho^{\prime}(s)}{\rho(s)}\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s
0t0ρ(s)η(r;s),ρ(s)ρ(s)η~(s)H1dsdr,\displaystyle\to\int_{0}^{t}\int_{0}^{\infty}\!\!\!\rho(s)\langle\eta(r;s),\tfrac{\rho^{\prime}(s)}{\rho(s)}\widetilde{\eta}(s)\rangle_{H^{1}}\text{d}s\text{d}r,

as nn\to\infty. This proves (A.8), which in turn implies (3.11).

We are left to establish (3.10). Considering any vH1Lp+1v\in H^{1}\cap L^{p+1}, it holds that

un(t),vH\displaystyle\langle u^{n}(t),v\rangle_{H} =Pnu0,vH0tun(r),vH1+0t0K(s)ηn(r;s),vH1dsdr\displaystyle=\langle P_{n}u_{0},v\rangle_{H}-\int_{0}^{t}\langle u^{n}(r),v\rangle_{H^{1}}+\int_{0}^{t}\int_{0}^{\infty}\!\!\!K(s)\langle\eta^{n}(r;s),v\rangle_{H^{1}}\text{d}s\text{d}r (A.9)
+0tPnφ(un(r)),vHdr+0tv,PnQdw(r)H.\displaystyle\qquad+\int_{0}^{t}\langle P^{n}\varphi(u^{n}(r)),v\rangle_{H}\text{d}r+\int_{0}^{t}\langle v,P_{n}Q\text{d}w(r)\rangle_{H}.

We first claim that

0t0K(s)ηn(r;s),vH1dsdr0t0K(s)η(r;s),vH1dsdr,n.\displaystyle\int_{0}^{t}\int_{0}^{\infty}\!\!\!K(s)\langle\eta^{n}(r;s),v\rangle_{H^{1}}\text{d}s\text{d}r\to\int_{0}^{t}\int_{0}^{\infty}\!\!\!K(s)\langle\eta(r;s),v\rangle_{H^{1}}\text{d}s\text{d}r,\quad n\to\infty.

To this end, recalling (3.4) again, we see that for all s0s\geq 0, K(s)ρ(s)<c\frac{K(s)}{\rho(s)}<c, implying

0ρ(s)K(s)2ρ(s)2vH12dsc2vH12ρL1(+).\displaystyle\int_{0}^{\infty}\!\!\!\rho(s)\cdot\frac{K(s)^{2}}{\rho(s)^{2}}\|v\|^{2}_{H^{1}}\text{d}s\leq c^{2}\|v\|^{2}_{H^{1}}\|\rho\|_{L^{1}(\mathbb{R}^{+})}.

In other words, K()ρ()v\frac{K(\cdot)}{\rho(\cdot)}v\in\mathcal{M}. It follows that as nn\to\infty,

0t0K(s)ηn(r;s),vH1dsdr\displaystyle\int_{0}^{t}\int_{0}^{\infty}\!\!\!K(s)\langle\eta^{n}(r;s),v\rangle_{H^{1}}\text{d}s\text{d}r =0t0ρ(s)ηn(r;s),K(s)ρ(s)vH1dsdr\displaystyle=\int_{0}^{t}\int_{0}^{\infty}\!\!\!\rho(s)\langle\eta^{n}(r;s),\tfrac{K(s)}{\rho(s)}v\rangle_{H^{1}}\text{d}s\text{d}r
0t0ρ(s)η(r;s),K(s)ρ(s)vH1dsdr\displaystyle\to\int_{0}^{t}\int_{0}^{\infty}\!\!\!\rho(s)\langle\eta(r;s),\tfrac{K(s)}{\rho(s)}v\rangle_{H^{1}}\text{d}s\text{d}r
=0t0K(s)η(r;s),vH1dsdr.\displaystyle=\int_{0}^{t}\int_{0}^{\infty}\!\!\!K(s)\langle\eta(r;s),v\rangle_{H^{1}}\text{d}s\text{d}r.

As a consequence, sending nn\to\infty in (A.9) yields

u(t),vH\displaystyle\langle u(t),v\rangle_{H} =u0,vH0tu(r),vH1+0t0K(s)η(r;s),vH1dsdr\displaystyle=\langle u_{0},v\rangle_{H}-\int_{0}^{t}\langle u(r),v\rangle_{H^{1}}+\int_{0}^{t}\int_{0}^{\infty}\!\!\!K(s)\langle\eta(r;s),v\rangle_{H^{1}}\text{d}s\text{d}r
+0tχ(r),vHdr+0tv,Qdw(r)H.\displaystyle\qquad+\int_{0}^{t}\langle\chi(r),v\rangle_{H}\text{d}r+\int_{0}^{t}\langle v,Q\text{d}w(r)\rangle_{H}.

It therefore remains to establish that χ=φ(u)\chi=\varphi(u). The argument follows along the lines of [45, Theorem 8.4] tailored to our setting (see also [9, 27]).

We first consider the pair (Pnu(t),Pnη(t))(P_{n}u(t),P_{n}\eta(t)) and note that they obey the finite-dimensional system

dPnu(t)\displaystyle\text{d}P_{n}u(t) =APnu(t)dt0K(s)APnη(t;s)dsdt+Pnχ(t)dt+PnQdw(t),\displaystyle=-AP_{n}u(t)\text{d}t-\int_{0}^{\infty}\!\!\!K(s)AP_{n}\eta(t;s)\text{d}s\text{d}t+P_{n}\chi(t)\text{d}t+P_{n}Q\text{d}w(t), (A.10)
dPnη(t)\displaystyle\text{d}P_{n}\eta(t) =sPnη(t)dt,\displaystyle=-\partial_{s}P_{n}\eta(t)\text{d}t,
Pnu(0)\displaystyle P_{n}u(0) =Pnu0,Pnη(0)=Pnη0,Pnη(t;0)=Pnu(t),t>0.\displaystyle=P_{n}u_{0},\quad P_{n}\eta(0)=P_{n}\eta_{0},\quad P_{n}\eta(t;0)=P_{n}u(t),\,t>0.

Setting Zn=Pnuun,ζn=PnηηnZ_{n}=P_{n}u-u^{n},\,\zeta_{n}=P_{n}\eta-\eta^{n} and subtracting (A.1) from (A.10), observe that

ddtZn(t)\displaystyle\tfrac{\text{d}}{\text{d}t}Z_{n}(t) =AZn(t)0K(s)Aζn(t;s)ds+Pnχ(t)Pn(φ(un(t))),\displaystyle=-AZ_{n}(t)-\int_{0}^{\infty}\!\!\!K(s)A\zeta_{n}(t;s)\text{d}s+P_{n}\chi(t)-P_{n}(\varphi(u^{n}(t))), (A.11)
ddtζn(t)\displaystyle\tfrac{\text{d}}{\text{d}t}\zeta_{n}(t) =sζn(t),Zn(0)=0,ζn(0)=0,ζn(t;0)=Zn(t),t>0.\displaystyle=-\partial_{s}\zeta_{n}(t),\qquad Z_{n}(0)=0,\quad\zeta_{n}(0)=0,\quad\zeta_{n}(t;0)=Z_{n}(t),\,t>0.

It follows that

12ddt(Zn(t),ζn(t))2\displaystyle\tfrac{1}{2}\cdot\tfrac{\text{d}}{\text{d}t}\|(Z_{n}(t),\zeta_{n}(t))\|^{2}_{\mathcal{H}} =Zn(t)H2+0K(s)ζn(t;s),Zn(t)Hds120ρ(s)sζn(t;s)H2\displaystyle=-\|\nabla Z_{n}(t)\|^{2}_{H}+\int_{0}^{\infty}\!\!\!K(s)\langle\nabla\zeta_{n}(t;s),\nabla Z_{n}(t)\rangle_{H}\text{d}s-\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho(s)\partial_{s}\|\nabla\zeta_{n}(t;s)\|^{2}_{H}
+Pnχ(t)Pn(φ(un(t))),Zn(t)H.\displaystyle\qquad+\langle P_{n}\chi(t)-P_{n}(\varphi(u^{n}(t))),Z_{n}(t)\rangle_{H}.

Similarly to (4.7), we readily have the bound

Zn(t)H2+\displaystyle-\|\nabla Z_{n}(t)\|^{2}_{H}+ 0K(s)ζn(t;s),Zn(t)Hds120ρ(s)sζ(t;s)2H\displaystyle\int_{0}^{\infty}\!\!\!K(s)\langle\nabla\zeta_{n}(t;s),\nabla Z_{n}(t)\rangle_{H}\text{d}s-\tfrac{1}{2}\int_{0}^{\infty}\!\!\!\rho(s)\partial_{s}\|\nabla\zeta_{(}t;s)\|^{2}_{H}
K1Zn(t)H2ε1δ2(1+ε1)ζn(t)2,\displaystyle\leq-K_{1}\|\nabla Z_{n}(t)\|^{2}_{H}-\tfrac{\varepsilon_{1}\delta}{2(1+\varepsilon_{1})}\|\zeta_{n}(t)\|^{2}_{\mathcal{M}},

where we recall ε1\varepsilon_{1} and K1=1(1+ε12)KL1(+)K_{1}=1-(1+\tfrac{\varepsilon_{1}}{2})\|K\|_{L^{1}(\mathbb{R}^{+})} as in (4.1). Concerning the non-linear term involving χ\chi, we write

Pnχ(t)Pn(φ(un(t))),Pnu(t)un(t)H\displaystyle\langle P_{n}\chi(t)-P_{n}(\varphi(u^{n}(t))),P_{n}u(t)-u^{n}(t)\rangle_{H}
=χ(t)φ(un(t)),Pnu(t)un(t)H\displaystyle=\langle\chi(t)-\varphi(u^{n}(t)),P_{n}u(t)-u^{n}(t)\rangle_{H}
=χ(t),Pnu(t)un(t)H+φ(u(t))φ(un(t)),u(t)un(t)H\displaystyle=\langle\chi(t),P_{n}u(t)-u^{n}(t)\rangle_{H}+\langle\varphi(u(t))-\varphi(u^{n}(t)),u(t)-u^{n}(t)\rangle_{H}
+(IPn)φ(un(t)),u(t)Hφ(u(t)),u(t)un(t)H\displaystyle\qquad+\langle(I-P_{n})\varphi(u^{n}(t)),u(t)\rangle_{H}-\langle\varphi(u(t)),u(t)-u^{n}(t)\rangle_{H}
=I1+I2+I3I4.\displaystyle=I_{1}+I_{2}+I_{3}-I_{4}.

Concerning I1I_{1}, since both unu^{n} and PnuP_{n}u converge weakly to uu in Lp+1(Ω;Lp+1(0,T;Lp+1))L^{p+1}(\Omega;L^{p+1}(0,T;L^{p+1})), we obtain the limit

𝔼0tI1(r)dr0, as n.\mathbb{E}\int_{0}^{t}I_{1}(r)\text{d}r\to 0,\text{ as }n\to\infty.

Also, using Holder’s inequality,

|𝔼0tI1(r)dr|(𝔼0Tχ(r)Lqqdr)1q(𝔼0TPnu(r)un(r)Lp+1p+1dr)1p+1C,\displaystyle\Big{|}\mathbb{E}\int_{0}^{t}I_{1}(r)\text{d}r\Big{|}\leq\Big{(}\mathbb{E}\int_{0}^{T}\!\!\!\|\chi(r)\|^{q}_{L^{q}}\text{d}r\Big{)}^{\frac{1}{q}}\Big{(}\mathbb{E}\int_{0}^{T}\!\!\!\|P_{n}u(r)-u^{n}(r)\|_{L^{p+1}}^{p+1}\text{d}r\Big{)}^{\frac{1}{p+1}}\leq C,

for some positive constant C=C(T)C=C(T). To bound I4I_{4}, we note that since uLp+1(Ω;Lp+1(0,T;Lp+1))u\in L^{p+1}(\Omega;L^{p+1}(0,T;L^{p+1})), condition (3.7) implies φ(u)Lq(Ω;Lq(0,T;Lq))\varphi(u)\in L^{q}(\Omega;L^{q}(0,T;L^{q})). Similarly to I1I_{1}, we have

𝔼0tI4(r)dr0, as n,\mathbb{E}\int_{0}^{t}I_{4}(r)\text{d}r\to 0,\text{ as }n\to\infty,

and

|𝔼0tI4(r)dr|(𝔼0Tφ(u(r))Lqqdr)1q(𝔼0Tu(r)un(r)Lp+1p+1dr)1p+1C.\displaystyle\Big{|}\mathbb{E}\int_{0}^{t}I_{4}(r)\text{d}r\Big{|}\leq\Big{(}\mathbb{E}\int_{0}^{T}\!\!\!\|\varphi(u(r))\|^{q}_{L^{q}}\text{d}r\Big{)}^{\frac{1}{q}}\Big{(}\mathbb{E}\int_{0}^{T}\!\!\!\|u(r)-u^{n}(r)\|_{L^{p+1}}^{p+1}\text{d}r\Big{)}^{\frac{1}{p+1}}\leq C.

With regard to I3I_{3}, since φ(un)\varphi(u^{n}) is uniformly bounded in Lq(0,T;Lq)L^{q}(0,T;L^{q}), cf. (A.3), it holds that

(IPn)φ(un)0, in Lq(0,T;Lq).\displaystyle(I-P_{n})\varphi(u^{n})\rightharpoonup 0,\text{ in }L^{q}(0,T;L^{q}).

In particular, we have

𝔼0tI3(r)dr0, as n,\displaystyle\mathbb{E}\int_{0}^{t}I_{3}(r)\text{d}r\to 0,\text{ as }n\to\infty,

and

|𝔼0tI3(r)dr|(𝔼0T(IPn)φ(un(r))Lqqdr)1q(𝔼0Tu(r)Lp+1p+1dr)1p+1C.\displaystyle\Big{|}\mathbb{E}\int_{0}^{t}I_{3}(r)\text{d}r\Big{|}\leq\Big{(}\mathbb{E}\int_{0}^{T}\!\!\!\|(I-P_{n})\varphi(u^{n}(r))\|^{q}_{L^{q}}\text{d}r\Big{)}^{\frac{1}{q}}\Big{(}\mathbb{E}\int_{0}^{T}\!\!\!\|u(r)\|_{L^{p+1}}^{p+1}\text{d}r\Big{)}^{\frac{1}{p+1}}\leq C.

Concerning I2I_{2}, we invoke condition (3.9) again to infer

I2=φ(u(t))φ(un(t)),u(t)un(t)H\displaystyle I_{2}=\langle\varphi(u(t))-\varphi(u^{n}(t)),u(t)-u^{n}(t)\rangle_{H} aφu(t)un(t)H2\displaystyle\leq a_{\varphi}\|u(t)-u^{n}(t)\|^{2}_{H}
=aφPnu(t)un(t)H2+aφ(IPn)u(t)H2.\displaystyle=a_{\varphi}\|P_{n}u(t)-u^{n}(t)\|^{2}_{H}+a_{\varphi}\|(I-P_{n})u(t)\|^{2}_{H}.

Setting

Gn(t):=𝔼0tI1(r)+I2(r)I4(r)+aφ(IPn)u(r)H2dr,\displaystyle G_{n}(t):=\mathbb{E}\int_{0}^{t}I_{1}(r)+I_{2}(r)-I_{4}(r)+a_{\varphi}\|(I-P_{n})u(r)\|^{2}_{H}\text{d}r,

by Gronwall’s inequality, we infer the bound a.e. in [0,T][0,T]

𝔼(Zn(t),ζn(t))2|Gn(t)|+C0t|Gn(r)|dr,\displaystyle\mathbb{E}\|(Z_{n}(t),\zeta_{n}(t))\|^{2}_{\mathcal{H}}\leq|G_{n}(t)|+C\int_{0}^{t}|G_{n}(r)|\text{d}r,

for some positive constant C=C(T)C=C(T). We observe that Gn(t)G_{n}(t) converges to zero and that

|Gn(t)||𝔼0tI1(r)dr|+|𝔼0tI3(r)dr|+|𝔼0tI4(r)dr|+aφ𝔼|0Tu(r)H2drC.\displaystyle|G_{n}(t)|\leq\Big{|}\mathbb{E}\int_{0}^{t}I_{1}(r)\text{d}r\Big{|}+\Big{|}\mathbb{E}\int_{0}^{t}I_{3}(r)\text{d}r\Big{|}+\Big{|}\mathbb{E}\int_{0}^{t}I_{4}(r)\text{d}r\Big{|}+a_{\varphi}\mathbb{E}|\int_{0}^{T}\!\!\!\|u(r)\|^{2}_{H}\text{d}r\leq C.

By the Dominated Convergence Theorem, it holds that

0t|Gn(r)|dr0, as n,\displaystyle\int_{0}^{t}|G_{n}(r)|\text{d}r\to 0,\text{ as }n\to\infty,

whence for a.e. t[0,T]t\in[0,T]

𝔼(Zn(t),ζn(t))20, as n.\displaystyle\mathbb{E}\|(Z_{n}(t),\zeta_{n}(t))\|^{2}_{\mathcal{H}}\to 0,\text{ as }n\to\infty.

We invoke the Dominated Convergence Theorem again to deduce

𝔼0T(Zn(r),ζn(r))2dr0, as n.\displaystyle\mathbb{E}\int_{0}^{T}\!\!\!\|(Z_{n}(r),\zeta_{n}(r))\|^{2}_{\mathcal{H}}\text{d}r\to 0,\text{ as }n\to\infty.

In particular, this implies that (up to a subsequence)

unu a.s. in C(0,T;H),\displaystyle u^{n}\to u\text{ a.s. in }C(0,T;H),

and thus, (up to a further subsequence) unu^{n} converges to uu a.e. (x,t)𝒪×[0,T](x,t)\in\mathcal{O}\times[0,T]. It follows that φ(un)\varphi(u^{n}) converges to φ(u)\varphi(u) a.e. (x,t)𝒪×[0,T](x,t)\in\mathcal{O}\times[0,T] since φ\varphi is continuous. In view of [45, Lemma 8.3], we obtain

φ(un)φ(u) in Lq(0,T;Lq),\varphi(u^{n})\rightharpoonup\varphi(u)\text{ in }L^{q}(0,T;L^{q}),

whence a.s., χ=φ(u)\chi=\varphi(u) a.e. (x,t)𝒪×[0,T](x,t)\in\mathcal{O}\times[0,T]. This concludes the proof of Proposition 3.6.

References

  • [1] Y. Bakhtin and J. C. Mattingly. Stationary solutions of stochastic differential equations with memory and stochastic partial differential equations. Communications in Contemporary Mathematics, 7(05):553–582, 2005.
  • [2] V. Barbu. Nonlinear Volterra equations in a Hilbert space. SIAM Journal on Mathematical Analysis, 6(4):728–741, 1975.
  • [3] V. Barbu. Nonlinear semigroups and differential equations in Banach spaces. Noordhoff, Leyden, The Netherlands, 1976.
  • [4] V. Barbu. Existence for nonlinear Volterra equations in Hilbert spaces. SIAM Journal on Mathematical Analysis, 10(3):552–569, 1979.
  • [5] V. Barbu. Nonlinear differential equations of monotone types in Banach spaces. Springer Science & Business Media, 2010.
  • [6] S. Bonaccorsi, G. Da Prato, and L. Tubaro. Asymptotic behavior of a class of nonlinear stochastic heat equations with memory effects. SIAM Journal on Mathematical Analysis, 44(3):1562–1587, 2012.
  • [7] O. Butkovsky, A. Kulik, and M. Scheutzow. Generalized couplings and ergodic rates for SPDEs and other Markov models. The Annals of Applied Probability, 30(1):1–39, 2020.
  • [8] T. Caraballo, I. Chueshov, P. Marín-Rubio, and J. Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete & Continuous Dynamical Systems-A, 18(2&3):253, 2007.
  • [9] T. Caraballo, J. Real, and I. Chueshov. Pullback attractors for stochastic heat equations in materials with memory. Discrete & Continuous Dynamical Systems-B, 9(3&4, May):525, 2008.
  • [10] S. Cerrai. Second order PDE’s in finite and infinite dimension: a probabilistic approach, volume 1762. Springer Science & Business Media, 2001.
  • [11] S. Cerrai and N. Glatt-Holtz. On the convergence of stationary solutions in the Smoluchowski-Kramers approximation of infinite dimensional systems. Journal of Functional Analysis, 278(8):108421, 2020.
  • [12] M. D. Chekroun, F. Di Plinio, N. E. Glatt-Holtz, and V. Pata. Asymptotics of the Coleman-Gurtin model. arXiv preprint arXiv:1006.2579, 2010.
  • [13] M. D. Chekroun and N. E. Glatt-Holtz. Invariant measures for dissipative dynamical systems: Abstract results and applications. Communications in Mathematical Physics, 316(3):723–761, 2012.
  • [14] P. Clément and G. Da Prato. White noise perturbation of the heat equation in materials with memory. Dynam. Systems Appl., 6:441–460, 1997.
  • [15] P. Clément, R. MacCamy, and J. A. Nohel. Asymptotic properties of solutions of nonlinear abstract Volterra equations. The Journal of Integral Equations, pages 185–216, 1981.
  • [16] P. Clément and J. A. Nohel. Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM Journal on Mathematical Analysis, 12(4):514–535, 1981.
  • [17] B. D. Coleman and M. E. Gurtin. Equipresence and constitutive equations for rigid heat conductors. Zeitschrift für angewandte Mathematik und Physik ZAMP, 18(2):199–208, 1967.
  • [18] B. D. Coleman and W. Noll. Material symmetry and thermostatic inequalities in finite elastic deformations. Archive for Rational Mechanics and Analysis, 15(2):87–111, 1964.
  • [19] M. Conti, V. Pata, and M. Squassina. Singular limit of dissipative hyperbolic equations with memory. DYNAMICAL SYSTEMS, 2005:200–208.
  • [20] M. Conti, V. Pata, and M. Squassina. Singular limit of differential systems with memory. Indiana University mathematics journal, pages 169–215, 2006.
  • [21] G. Da Prato and J. Zabczyk. Ergodicity for infinite dimensional systems, volume 229. Cambridge University Press, 1996.
  • [22] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Cambridge university press, 2014.
  • [23] W. E and D. Liu. Gibbsian dynamics and invariant measures for stochastic dissipative PDEs. Journal of Statistical Physics, 108(5-6):1125–1156, 2002.
  • [24] W. E, J. C. Mattingly, and Y. Sinai. Gibbsian Dynamics and Ergodicity for the Stochastically Forced Navier–Stokes Equation. Communications in Mathematical Physics, 224(1):83–106, 2001.
  • [25] N. Glatt-Holtz, V. R. Martinez, and G. H. Richards. On the long-time statistical behavior of smooth solutions of the weakly damped, stochastically-driven KdV equation. arXiv preprint arXiv:2103.12942, 2021.
  • [26] N. Glatt-Holtz, J. C. Mattingly, and G. Richards. On unique ergodicity in nonlinear stochastic partial differential equations. Journal of Statistical Physics, 166(3-4):618–649, 2017.
  • [27] N. Glatt-Holtz and M. Ziane. The stochastic primitive equations in two space dimensions with multiplicative noise. Discrete & Continuous Dynamical Systems-B, 10(4):801, 2008.
  • [28] M. E. Gurtin and A. C. Pipkin. A general theory of heat conduction with finite wave speeds. Archive for Rational Mechanics and Analysis, 31(2):113–126, 1968.
  • [29] M. Hairer and J. C. Mattingly. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Annals of Mathematics, pages 993–1032, 2006.
  • [30] M. Hairer and J. C. Mattingly. Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations. The Annals of Probability, 36(6):2050–2091, 2008.
  • [31] M. Hairer and J. C. Mattingly. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electronic Journal of Probability, 16:658–738, 2011.
  • [32] M. Hairer, J. C. Mattingly, and M. Scheutzow. Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations. Probability Theory and Related Fields, 149(1):223–259, 2011.
  • [33] D. P. Herzog, J. C. Mattingly, and H. D. Nguyen. Gibbsian dynamics and the generalized Langevin equation. arXiv preprint arXiv:2111.04187, 2021.
  • [34] K. Itô and M. Nisio. On stationary solutions of a stochastic differential equation. J. Math. Kyoto Univ., 4(3):1–75, 1964.
  • [35] R. Khasminskii. Stochastic stability of differential equations, volume 66. Springer Science & Business Media, 2011.
  • [36] A. Kulik. Ergodic Behavior of Markov Processes. de Gruyter, 2017.
  • [37] A. Kulik and M. Scheutzow. Generalized couplings and convergence of transition probabilities. Probability Theory and Related Fields, pages 1–44, 2015.
  • [38] J. C. Mattingly. Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Communications in Mathematical Physics, 230(3):421–462, 2002.
  • [39] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Springer Science & Business Media, 2012.
  • [40] R. Miller. Linear Volterra integrodifferential equations as semigroups. Funkcial. Ekvac, 17:39–55, 1974.
  • [41] J. W. Nunziato. On heat conduction in materials with memory. Quart. Appl. Math., 29(2):187–204, 1971.
  • [42] B. Øksendal. Stochastic Differential Equations: An Introduction with Applications. Springer Science & Business Media, 2003.
  • [43] V. Pata and A. Zucchi. Attractors for a damped hyperbolic equation with linear memory. 2001.
  • [44] J. Prüss. Evolutionary Integral Equations and Applications, volume 87. Birkhäuser, 2013.
  • [45] J. C. Robinson. Infinite-dimensional dynamical systems: an introduction to dissipative parabolic PDEs and the theory of global attractors, volume 28. Cambridge University Press, 2001.