This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ergodic inventory control with diffusion demand and general ordering costs

Bo Wei   Dacheng Yao🖂
Abstract

In this work, we consider a continuous-time inventory system where the demand process follows an inventory-dependent diffusion process. The ordering cost of each order depends on the order quantity and is given by a general function, which is not even necessarily continuous and monotone. By applying a lower bound approach together with a comparison theorem, we show the global optimality of an (s,S)(s,S) policy for this ergodic inventory control problem.

Keywords: stochastic inventory model, general ordering costs, diffusion process, (s,S)(s,S) policy, impulse control.

1 Introduction

This paper is a sequel to [6], which investigates a continuous-time inventory system with a Brownian demand process and a quantity-dependent setup cost. In this setting, an (s,S)(s,S) replenishment policy turns out to be optimal under the average cost criterion. In [6], the setup cost function is only required to be a nonnegative, bounded, and lower semicontinuous function of the order quantity. It is necessary to consider such a general ordering cost structure, because in practice, expenses arising from administration and transportation may not be continuous in the order quantity. Furthermore, general ordering cost structure was studied by [12, 13] in inventory models with deterministic demand and renewal demand, respectively.

In this work, we establish the global optimality of an (s,S)(s,S) policy for ergodic inventory control with an inventory-dependent diffusion demand process under a general ordering cost structure. One may refer to [3, 2] for state-dependent inventory models and their applications. Ergodic inventory control with a diffusion demand process has been studied in two recent papers by Helmes et al. [7, 8]. More specifically, an (s,S)(s,S) policy is proved to be optimal in a subset of admissible policies in [7], in which the authors assume the ordering cost is continuous with respect to the order quantity. In [8], the authors proposed a weak convergence approach, which allow them to further show the global optimality of an (s,S)(s,S) policy among all admissible policies. Our work complements their papers by allowing for a more general ordering cost function that may have discontinuities.

The main results in this paper provide a rigorous justification for the following intuitive interpretation of the optimality of (s,S)(s,S) policies for ergodic inventory control: If the demand process has almost sure continuous sample paths, the inventory administrator is allowed to replenish inventory at any level as she wants. Moreover, if the demand process is also Markovian, the distribution of future demand can be determined based on the current state (inventory level). In this case, an (s,S)(s,S) policy would be optimal to minimize the average cost, even a general ordering cost function is involved. Such a simple optimal policy stands in stark contrast with optimal ergodic control in discrete-time inventory models: the inventory administrator is only allowed to replenish the inventory at the start of each period, the reorder level would be different from period to period. Thus, if the setup cost function is not a constant, this dynamic optimization problem would be generally difficult to tackle (see, e.g., [5, 4, 18]).

The remainder of this paper is organized as follows. The diffusion inventory model is introduced and the main results are presented in Section 2. An (s,S)(s,S) policy is selected and is proven to be the best one in a subset of admissible policies by a lower bound theorem in Section 3. A comparison theorem is provided to establish the global optimality of the (s,S)(s,S) policy among all admissible policies in Section 4. Finally, Section 5 concludes the study.

2 Problem Formulation and Main Results

2.1 Diffusion Inventory Model

Consider a single-item inventory model, where the inventory level process is governed by

Z(t)=xD(t)+Q(t),t0,Z(t)=x-D(t)+Q(t),\quad t\geq 0, (1)

where Z(0)=xZ(0-)=x denotes the initial inventory level, D(t)D(t) and Q(t)Q(t) represent the cumulative demand process and cumulative order quantity up to time tt, respectively. The inventory-dependent demand process {D(t)}t0\{D(t)\}_{t\geq 0} is represented as

D(t)=0tμ(Z(s))ds+0tσ(Z(s))dB(s),D(t)=\int_{0}^{t}\mu(Z(s))\,\mathrm{d}s+\int_{0}^{t}\sigma(Z(s))\,\mathrm{d}B(s),

where {B(t)}t0\{B(t)\}_{t\geq 0} denotes a standard Brownian motion on (Ω,,;t,t0)(\Omega,\mathcal{F},\mathbb{P};\mathcal{F}_{t},t\geq 0). We assume that the drift coefficient μ()\mu(\cdot) and the diffusion coefficient σ()\sigma(\cdot) satisfy the following conditions.

Assumption 1.
  1. (a)(a)

    μ()\mu(\cdot) is continuously differentiable, nondecreasing with μ¯:=limzμ(z)>0\underline{\mu}:=\lim_{z\to-\infty}\mu(z)>0 and μ¯:=limzμ(z)<\bar{\mu}:=\lim_{z\to\infty}\mu(z)<\infty.

  2. (b)(b)

    σ()\sigma(\cdot) is continuous, and σ()[σ¯,σ¯]\sigma(\cdot)\in[\underline{\sigma},\bar{\sigma}], where σ¯,σ¯>0\underline{\sigma},\bar{\sigma}>0 are two finite constants.

Without any replenishment, the inventory level process turns out to be a diffusion process {X(t)}t0\{X(t)\}_{t\geq 0} given by

X(t)=x0tμ(X(s))ds0tσ(X(s))dB(s).X(t)=x-\int_{0}^{t}\mu(X(s))\,\mathrm{d}s-\int_{0}^{t}\sigma(X(s))\,\mathrm{d}B(s). (2)

For later use, we denote the scale function of XX by

𝒮(x)=axexp(ay2μ(v)σ2(v)dv)dyfor x,\mathcal{S}(x)=\int_{a}^{x}\exp\Big{(}\int_{a}^{y}\frac{2\mu(v)}{\sigma^{2}(v)}\,\mathrm{d}v\Big{)}\,\mathrm{d}y\quad\mbox{for $x\in\mathbb{R}$},

where aa is an arbitrary real number, and the speed measure of XX by

(dx)=1σ2(x)exp(ax2μ(v)σ2(v)dv)dx.\mathcal{M}(\mathrm{d}x)=\frac{1}{\sigma^{2}(x)}\exp\Big{(}-\int_{a}^{x}\frac{2\mu(v)}{\sigma^{2}(v)}\,\mathrm{d}v\Big{)}\mathrm{d}x.

We represent the ordering policy by a cumulative order process Q={Q(t)}t0Q=\{Q(t)\}_{t\geq 0}, which is called admissible if it satisfies the three conditions as follows: (i) Q(t)Q(t) is nonnegative for all t0t\geq 0; (ii) The sample paths of QQ are nondecreasing and right-continuous with left limits (RCLL); (iii) QQ is adapted.

In this work, the ordering cost function c()c(\cdot) is assumed to satisfy the following conditions.

Assumption 2.

The function c:++c:\mathbb{R}_{+}\to\mathbb{R}_{+} is subadditive111A function c:++c:\mathbb{R}_{+}\to\mathbb{R}_{+} is subadditive if c(ξ1+ξ2)c(ξ1)+c(ξ2)c(\xi_{1}+\xi_{2})\leq c(\xi_{1})+c(\xi_{2}) for ξi0\xi_{i}\geq 0, i=1,2i=1,2. and lower semicontinuous222A function c:++c:\mathbb{R}_{+}\to\mathbb{R}_{+} is lower semicontinuous if c(ξ)lim infξξc(ξ)c(\xi^{\prime})\leq\liminf_{\xi\to\xi^{\prime}}c(\xi) for each ξ>0\xi^{\prime}>0. with c(0)=0c(0)=0 and c(0+):=limξ0c(ξ)>0c(0+):=\lim_{\xi\downarrow 0}c(\xi)>0.

The ordering cost function satisfies the condition above is very general, and it is not even necessarily continuous (cf. [7, 9] for continuous ordering cost) and monotone. In particular, it includes the classical linear cost (cf. [16, 10]), all unit quantity discount cost (cf. [1]), incremental quantity discounted cost (cf. [14, 17]), and quantity-dependent setup cost (cf. [5, 4]) as special cases.

Since c(0+)=limξ0c(ξ)>0c(0+)=\lim_{\xi\downarrow 0}c(\xi)>0, we only need to consider impulse control policies, which can be specified by {(τn,ξn):n=0,1,2,}\{(\tau_{n},\xi_{n}):n=0,1,2,\cdots\} with that τn\tau_{n} and ξn\xi_{n} denote the time and the amount of nnth order, respectively. For convenience, we assume that τ0=0\tau_{0}=0 and ξ00\xi_{0}\geq 0, i.e., no order is placed when ξ0=0\xi_{0}=0. Then, an admissible policy QQ can be denoted as Q(t)=n=0N(t)ξnQ(t)=\sum_{n=0}^{N(t)}\xi_{n}, where N(t)=max{n0:τnt}N(t)=\max\{n\geq 0:\tau_{n}\leq t\}. We define Φ\Phi as the set including all such admissible policies.

In addition, let h(z)h(z) represent the holding and shortage cost rate for inventory level zz\in\mathbb{R}.

Assumption 3.

The function h:+h:\mathbb{R}\to\mathbb{R}_{+} is polynomially bounded, convex, continuously differentiable except at z=0z=0 with h(0)=0h(0)=0. Further, h(z)>0h^{\prime}(z)>0 if z>0z>0, and h(z)<0h^{\prime}(z)<0 if z<0z<0.

Remark 1.

(a)(a) The boundedness of the coefficient in Assumption 1 and polynomial boundedness of hh in Assumption 3 imply that

xh(y)(dy)<.\int_{x}^{\infty}h(y)\,\mathcal{M}(\mathrm{d}y)<\infty.

(b)(b) Assumption 3 implies lim|x|h(x)=\lim_{\lvert x\rvert\to\infty}h(x)=\infty.

We need to find an admissible policy QΦQ\in\Phi to minimize the following long-run average cost:

𝒞(x,Q)=lim supt1t𝔼x[0th(Z(u))du+n=0N(t)c(ξn)],\displaystyle\mathcal{C}(x,Q)=\limsup_{t\to\infty}\frac{1}{t}\mathbb{E}_{x}\Big{[}\int_{0}^{t}h(Z(u))\,\mathrm{d}u+\sum_{n=0}^{N(t)}c(\xi_{n})\Big{]}, (3)

where 𝔼x[]:=𝔼x[|Z(0)=x]\mathbb{E}_{x}[\cdot]:=\mathbb{E}_{x}[\cdot|Z(0-)=x].

2.2 Main Results

Under an (s,S)(s,S) policy, a cycle is defined as the duration from SS to ss. Then, the controlled process ZZ can be regarded as a regenerative process. Using the regenerative process theory, we have

α(s,S):=𝒞(S,(s,S))=𝔼S[0τSsh(Z(u))du]+c(Ss)𝔼S[τSs],\alpha(s,S):=\mathcal{C}(S,(s,S))=\frac{\mathbb{E}_{S}[\int_{0}^{\tau_{S}^{s}}h(Z(u))\,\mathrm{d}u]+c(S-s)}{\mathbb{E}_{S}[\tau_{S}^{s}]},

where τSs\tau_{S}^{s} is the duration time of one cycle. Under Assumptions 1 and 3, we have

𝔼S[0τSsh(Z(u))du]=2sSxh(y)(dy)d𝒮(x) and 𝔼S[τSs]=2sSx(dy)d𝒮(x);\displaystyle\mathbb{E}_{S}\Big{[}\int_{0}^{\tau_{S}^{s}}h(Z(u))\,\mathrm{d}u\Big{]}=2\int_{s}^{S}\int_{x}^{\infty}h(y)\,\mathcal{M}(\mathrm{d}y)\,\mathrm{d}\mathcal{S}(x)\text{ and }\mathbb{E}_{S}\big{[}\tau_{S}^{s}\big{]}=2\int_{s}^{S}\int_{x}^{\infty}\mathcal{M}(\mathrm{d}y)\,\mathrm{d}\mathcal{S}(x); (4)

see Proposition 2.6 in [7]. Therefore,

α(s,S)=2sSxh(y)(dy)d𝒮(x)+c(Ss)2sSx(dy)d𝒮(x).\displaystyle\alpha(s,S)=\frac{2\int_{s}^{S}\int_{x}^{\infty}h(y)\,\mathcal{M}(\mathrm{d}y)\,\mathrm{d}\mathcal{S}(x)+c(S-s)}{2\int_{s}^{S}\int_{x}^{\infty}\,\mathcal{M}(\mathrm{d}y)\,\mathrm{d}\mathcal{S}(x)}. (5)

Under (s,S)(s,S) policy, for any initial state xx\in\mathbb{R}, level SS can be reached in finite expected time due to strictly positive demand drift. Actually, α(s,S)\alpha(s,S) is the average cost which is independent of the initial state xx\in\mathbb{R}, i.e., α(s,S)=𝒞(x,(s,S))\alpha(s,S)=\mathcal{C}(x,(s,S)) for any xx\in\mathbb{R}. In the following lemma, we claim the existence of the best (s,S)(s,S) policy in minimizing α(s,S)\alpha(s,S).

Lemma 1.

Under Assumptions 1-3, there exists a finite pair (s,S)(s^{\star},S^{\star}) with s<Ss^{\star}<S^{\star} satisfying

(s,S)=arginfs<Sα(s,S).(s^{\star},S^{\star})=\arg\inf_{s<S}\alpha(s,S). (6)

Our main results are as follows.

Theorem 1.

Suppose Assumptions 1-3 hold. The (s,S)(s^{\star},S^{\star}) policy given by (6) is optimal for the ergodic inventory control problem (3) and α:=α(s,S)\alpha^{\star}:=\alpha(s^{\star},S^{\star}) is the optimal cost, where α(s,S)\alpha(s,S) is defined in (5).

Theorem 1 will be proven by two steps. First, in Section 3, by a lower bound theorem, we show that the (s,S)(s^{\star},S^{\star}) policy is the best one in a subset of Φ\Phi. Then in Section 4, we show its global optimality in Φ\Phi by a comparison theorem.

3 Optimality of the (s,S) Policy in A Subset

In this section, by a lower bound theorem, we show that the (s,S)(s^{\star},S^{\star}) policy is the best one in a subset of admissible policies. Specifically, in Proposition 1, we show that if some function ff with certain properties and a constant α\alpha satisfy the lower bound conditions (7)-(9), then the cost under any policy in a subset Φf\Phi_{f} is larger than α\alpha. We construct a function VV and in Proposition 2 check that f=Vf=V and α=α\alpha=\alpha^{\star} satisfy all lower bound conditions. Thus, α=α(s,S)\alpha^{\star}=\alpha(s^{\star},S^{\star}) is a lower bound of the cost under any QΦVQ\in\Phi_{V}, i.e., (s,S)(s^{\star},S^{\star}) policy is optimal in ΦV\Phi_{V}. Finally, in Proposition 3, we show that ΦV\Phi_{V} is large enough to include a class of admissible policies with order-up-bounds.

Let 𝒜f(z)=12σ2(z)f′′(z)μ(z)f(z)\mathscr{A}f(z)=\frac{1}{2}\sigma^{2}(z)f^{\prime\prime}(z)-\mu(z)f^{\prime}(z). The following proposition provides a lower bound theorem. See Proposition 2 in [6] for a similar proof.

Proposition 1 (Lower Bound Theorem).

Suppose Assumption 3 holds. Let ff be a real-value function with absolutely continuous ff^{\prime}, and let α\alpha be a positive number. If

𝒜f(z)+h(z)αfor any z when f′′(z) exists,\displaystyle\mathscr{A}f(z)+h(z)\geq\alpha\quad\text{for any $z\in\mathbb{R}$ when $f^{\prime\prime}(z)$ exists}, (7)

with

f(z2)f(z1)c(z2z1)for any z2>z1,and\displaystyle f(z_{2})-f(z_{1})\geq-c(z_{2}-z_{1})\quad\text{for any $z_{2}>z_{1}$},\quad\text{and} (8)
|f(z)|<a0for all z<0 and some positive number a0,\displaystyle\lvert f^{\prime}(z)\rvert<a_{0}\quad\text{for all $z<0$ and some positive number $a_{0}$}, (9)

then we have 𝒞(x,Q)α\mathcal{C}(x,Q)\geq\alpha for each QΦfQ\in\Phi_{f} and each xx\in\mathbb{R}, where ΦfΦ\Phi_{f}\subset\Phi consists of those policies QQ such that their resulting inventory process ZZ satisfying

(i)\displaystyle(i) 𝔼x[0t(f(Z(s))σ(Z(s)))2ds]< for t0;\displaystyle\quad\mathbb{E}_{x}\Big{[}\int_{0}^{t}\big{(}f^{\prime}(Z(s))\sigma(Z(s))\big{)}^{2}\,\mathrm{d}s\Big{]}<\infty\text{ for $t\geq 0$}; (10)
(ii)\displaystyle(ii) 𝔼x[|f(Z(t))|]< for t0; and\displaystyle\quad\mathbb{E}_{x}[\lvert f(Z(t))\rvert]<\infty\text{ for $t\geq 0$};\text{ and} (11)
(iii)\displaystyle(iii) limt1t𝔼x[|f(Z(t))1{Z(t)0}|]=0.\displaystyle\quad\lim_{t\to\infty}\frac{1}{t}\mathbb{E}_{x}[\lvert f(Z(t))1_{\{Z(t)\geq 0\}}\rvert]=0. (12)

We next construct a function, embodied by VV, which together with α=α(s,S)\alpha^{\star}=\alpha(s^{\star},S^{\star}), satisfies all conditions in Proposition 1. Define

g(z)=2𝒮(z)zh(u)(du)and(z)=2𝒮(z)z(du),\displaystyle g(z)=2\mathcal{S}^{\prime}(z)\int_{z}^{\infty}h(u)\,\mathcal{M}(\mathrm{d}u)\quad\text{and}\quad\ell(z)=2\mathcal{S}^{\prime}(z)\int_{z}^{\infty}\,\mathcal{M}(\mathrm{d}u),

Note that gg and \ell satisfy

σ2(z)2g(z)μ(z)g(z)+h(z)=0andσ2(z)2(z)μ(z)(z)+1=0.\frac{\sigma^{2}(z)}{2}g^{\prime}(z)-\mu(z)g(z)+h(z)=0\quad\text{and}\quad\frac{\sigma^{2}(z)}{2}\ell^{\prime}(z)-\mu(z)\ell(z)+1=0. (13)
Lemma 2.

If Assumptions 1-3 hold, then there is an s¯\underline{s} with s¯s\underline{s}\leq s^{\star} such that

α¯(s,S):=sSg(ys¯)dy+c(Ss)sS(ys¯)dyαand\displaystyle\underline{\alpha}(s,S):=\frac{\int_{s}^{S}g(y\vee\underline{s})\,\mathrm{d}y+c(S-s)}{\int_{s}^{S}\ell(y\vee\underline{s})\,\mathrm{d}y}\geq\alpha^{\star}\quad\text{and} (14)
g(z)α(z)<0for all zs¯.\displaystyle g^{\prime}(z)-\alpha^{\star}\ell^{\prime}(z)<0\quad\text{for all $z\leq\underline{s}$}. (15)

Now we are ready to construct the function VV as follows.

V(z)\displaystyle V(z) =s¯zg(max(y,s¯))dyαs¯z(max(y,s¯))dy={s¯zg(y)dyαs¯z(y)dyfor zs¯,[g(s¯)α(s¯)](zs¯)for z<s¯.\displaystyle=\int_{\underline{s}}^{z}g(\max(y,\underline{s}))\,\mathrm{d}y-\alpha^{\star}\int_{\underline{s}}^{z}\ell(\max(y,\underline{s}))\,\mathrm{d}y=\begin{cases}\int_{\underline{s}}^{z}g(y)\,\mathrm{d}y-\alpha^{\star}\int_{\underline{s}}^{z}\ell(y)\,\mathrm{d}y&\text{for $z\geq\underline{s}$},\\ [g(\underline{s})-\alpha^{\star}\ell(\underline{s})](z-\underline{s})&\text{for $z<\underline{s}$}.\end{cases} (16)

Next, we show that VV and α\alpha^{\star} satisfy conditions (7)-(9), and then Proposition 1 implies that α=α(s,S)𝒞(x,Q)\alpha^{\star}=\alpha(s^{\star},S^{\star})\leq\mathcal{C}(x,Q) for QΦVQ\in\Phi_{V}, i.e., (s,S)(s^{\star},S^{\star}) policy is optimal in ΦV\Phi_{V}.

Proposition 2.

If Assumptions 1-3 hold, we have that 𝒞(x,Q)α\mathcal{C}(x,Q)\geq\alpha^{\star} holds for each QΦVQ\in\Phi_{V} and xx\in\mathbb{R}.

Proof of Proposition 2.

We will claim that (V,α)(V,\alpha^{\star}) satisfies all conditions of Proposition 1. First, VV defined in (16) is continuously differentiable in whole \mathbb{R} and f′′f^{\prime\prime} exists except at s¯\underline{s}, thus VV is continuously differentiable with absolutely continuous VV^{\prime}.

We next verify (7). From (13) and (16), we have that for zs¯z\geq\underline{s}, 𝒜V(z)+h(z)=α\mathscr{A}V(z)+h(z)=\alpha^{\star} holds. Further, for z<s¯z<\underline{s}, we have

𝒜V(z)+h(z)\displaystyle\mathscr{A}V(z)+h(z) =μ(z)[g(s¯)α(s¯)]+h(z)\displaystyle=-\mu(z)\big{[}g(\underline{s})-\alpha^{\star}\ell(\underline{s})\big{]}+h(z)
σ2(z)2[g(z)α(z)]μ(z)[g(z)α(z)]+h(z)\displaystyle\geq\frac{\sigma^{2}(z)}{2}\big{[}g^{\prime}(z)-\alpha^{\star}\ell^{\prime}(z)\big{]}-\mu(z)\big{[}g(z)-\alpha^{\star}\ell(z)\big{]}+h(z)
=α,\displaystyle=\alpha^{\star},

where the inequaly holds due to (15), and the last equality is derived from (13).

Now we check (8). It follows from (14) that for z1<z2z_{1}<z_{2},

V(z2)V(z1)=z1z2g(max(y,s¯))dyαz1z2(max(y,s¯))dyc(Ss).\displaystyle V(z_{2})-V(z_{1})=\int_{z_{1}}^{z_{2}}g(\max(y,\underline{s}))\,\mathrm{d}y-\alpha^{\star}\int_{z_{1}}^{z_{2}}\ell(\max(y,\underline{s}))\,\mathrm{d}y\geq-c(S-s).

Finally, we prove (9). It follows from (16) that for z<0z<0,

|V(z)|<max{g(s¯)α(s¯),maxz[s¯,0](g(z)α(z))}+1.\displaystyle\lvert V^{\prime}(z)\rvert<\max\{g(\underline{s})-\alpha^{\star}\ell(\underline{s}),\max_{z\in[\underline{s},0]}(g(z)-\alpha^{\star}\ell(z))\}+1.

To the end, we study how large is the subset ΦV\Phi_{V}. We define another subset of admissible policies as follows and then show that it is included in ΦV\Phi_{V}. For jj\in\mathbb{N}, let

Φ(j)={QΦ:Z(τn)jfor all n0},\Phi(j)=\{Q\in\Phi:Z(\tau_{n})\leq j\quad\text{for all $n\geq 0$}\},

i.e., under QΦ(j)Q\in\Phi(j), the inventory level after ordering at any ordering time does not exceed level jj. Let

Φ¯=j=1Φ(j).\bar{\Phi}=\cup_{j=1}^{\infty}\Phi(j).

We will show that Φ¯ΦV\bar{\Phi}\subseteq\Phi_{V}. To achieve that, we first provide some properties of VV which will be used in proving Proposition 3.

Lemma 3.

If Assumptions 1-3 hold, then there exist a z¯\bar{z} with 0<z¯<0<\bar{z}<\infty such that

V(z)>0andV(z)>0for all zz¯.V(z)>0\quad\text{and}\quad V^{\prime}(z)>0\quad\text{for all $z\geq\bar{z}$}. (17)

Furthermore, both VV and VV^{\prime} are polynomially bounded, i.e.,

|V(z)|b1+b2|z|nand|V(z)|b1+b2|z|n+1,\lvert V^{\prime}(z)\rvert\leq b_{1}+b_{2}\lvert z\rvert^{n}\quad\text{and}\quad\lvert V(z)\rvert\leq b_{1}+b_{2}\lvert z\rvert^{n+1}, (18)

for some positive constants bib_{i}, i=1,2i=1,2, and a positive integer nn.

Proposition 3.

If Assumptions 1-3 hold, then Φ¯ΦV\bar{\Phi}\subseteq\Phi_{V}.

Proof of Proposition 3.

For any given QΦ¯Q\in\bar{\Phi}, i.e., QΦjQ\in\Phi_{j} for some jj, we need to show that the controlled process Z={Z(t)}t0Z=\{Z(t)\}_{t\geq 0} under QQ as well as function VV defined in (16) satisfy conditions (10)-(12).

Let zb=z¯jxz_{b}=\bar{z}\vee j\vee x (xx is the initial level) and Zb={Zb(t)}t0Z_{b}=\{Z_{b}(t)\}_{t\geq 0} be the reflected process with lower barrier zbz_{b} and any initial level z[zb,)z\in[z_{b},\infty), then it follows from Remark 3.3 in [7] that ZbZ_{b} has a stationary distribution with density

π(z)=0 for z<zbandπ(z)=1σ2(z)exp(zbz2μ(u)σ2(u)du)zb1σ2(z)exp(zbz2μ(u)σ2(u)du)dzfor zzb.\displaystyle\pi(z)=0\text{ for $z<z_{b}$}\quad\text{and}\quad\pi(z)=\frac{\frac{1}{\sigma^{2}(z)}\exp(-\int_{z_{b}}^{z}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u)}{\int_{z_{b}}^{\infty}\frac{1}{\sigma^{2}(z)}\exp(-\int_{z_{b}}^{z}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u)\,\mathrm{d}z}\quad\text{for $z\geq z_{b}$}. (19)

Note that the boundedness of μ\mu and σ\sigma in Assumption 1 implies that

z¯f(z)π(z)dz<for any polynomially bounded function f.\int_{\bar{z}}^{\infty}f(z)\pi(z)\,\mathrm{d}z<\infty\quad\text{for any polynomially bounded function $f$}. (20)

Denote Z¯b={Z¯b(t)}t0\bar{Z}_{b}=\{\bar{Z}_{b}(t)\}_{t\geq 0} as the reflected process with lower barrier zbz_{b} and a initial level given by a random variable with distribution (19). Then, for any t0t\geq 0, Z¯b(t)\bar{Z}_{b}(t) has the same distribution with density (19). We next show

Z(t)Z¯b(t)a.s. for any t0.Z(t)\leq\bar{Z}_{b}(t)\quad\text{a.s. for any $t\geq 0$}. (21)

At time zero, it follows from zb=z¯jxz_{b}=\bar{z}\vee j\vee x that Z(0)=xzbZ¯b(0)Z(0-)=x\leq z_{b}\leq\bar{Z}_{b}(0) a.s.. Also, at any ordering time τ\tau of ZZ, zbjz_{b}\geq j and QΦjQ\in\Phi_{j} imply that Z(τ)jzbZ¯b(τ)Z(\tau)\leq j\leq z_{b}\leq\bar{Z}_{b}(\tau) a.s.. Furthermore, during any two successive ordering times, the process ZZ cannot move above Z¯b\bar{Z}_{b} through diffusion on each sample path since once ZZ and Z¯b\bar{Z}_{b} become same at certain time, they will keep same thereafter until the next ordering time. Thus, (21) holds.

We first prove (10). In fact, we have

𝔼x[0t(V(Z(s))σ(Z(s)))2ds]\displaystyle\mathbb{E}_{x}\Big{[}\int_{0}^{t}\big{(}V^{\prime}(Z(s))\sigma(Z(s))\big{)}^{2}\,\mathrm{d}s\Big{]} σ¯2𝔼x[0t(V(Z(s)))2(1{Z(s)<s¯}+1{s¯Z(s)<z¯}+1{Z(s)z¯})ds].\displaystyle\leq\bar{\sigma}^{2}\mathbb{E}_{x}\Big{[}\int_{0}^{t}\big{(}V^{\prime}(Z(s))\big{)}^{2}\big{(}1_{\{Z(s)<\underline{s}\}}+1_{\{\underline{s}\leq Z(s)<\bar{z}\}}+1_{\{Z(s)\geq\bar{z}\}}\big{)}\,\mathrm{d}s\Big{]}.

It follows from (16) that the first two terms are finite. For the last term, we have

𝔼x[0t(V(Z(s)))21{Z(s)z¯}ds]\displaystyle\mathbb{E}_{x}\Big{[}\int_{0}^{t}\big{(}V^{\prime}(Z(s))\big{)}^{2}1_{\{Z(s)\geq\bar{z}\}}\,\mathrm{d}s\Big{]} 𝔼x[0t(b1+b2|Z(s)|n)21{Z(s)z¯}ds]\displaystyle\leq\mathbb{E}_{x}\Big{[}\int_{0}^{t}\big{(}b_{1}+b_{2}\lvert Z(s)\rvert^{n}\big{)}^{2}1_{\{Z(s)\geq\bar{z}\}}\,\mathrm{d}s\Big{]}
𝔼x[0t(b1+b2Z¯b(s)n)2ds]\displaystyle\leq\mathbb{E}_{x}\Big{[}\int_{0}^{t}\big{(}b_{1}+b_{2}\bar{Z}_{b}(s)^{n}\big{)}^{2}\,\mathrm{d}s\Big{]}
=tzb(b1+b2zn)2π(z)dz\displaystyle=t\cdot\int_{z_{b}}^{\infty}\big{(}b_{1}+b_{2}z^{n}\big{)}^{2}\pi(z)\,\mathrm{d}z
<,\displaystyle<\infty,

where the first inequality is from (17)-(18), the second inequality is from (21) and Z¯b(t)zbz¯\bar{Z}_{b}(t)\geq z_{b}\geq\bar{z} a.s., and the equality holds because Z¯b(t)\bar{Z}_{b}(t) has the same distribution with density (19) for any t0t\geq 0. Therefore, we have proven (10).

We next prove (12). We have

𝔼x[|V(Z(t))|1{Z(t)0}]\displaystyle\mathbb{E}_{x}\big{[}\lvert V(Z(t))\rvert 1_{\{Z(t)\geq 0\}}\big{]} =𝔼x[|V(Z(t))|1{0Z(t)<z¯}]+𝔼x[V(Z(t))1{Z(t)z¯}]\displaystyle=\mathbb{E}_{x}\big{[}\lvert V(Z(t))\rvert 1_{\{0\leq Z(t)<\bar{z}\}}\big{]}+\mathbb{E}_{x}\big{[}V(Z(t))1_{\{Z(t)\geq\bar{z}\}}\big{]}
maxz[0,z¯]V(z)+𝔼x[V(Z¯b(t))]\displaystyle\leq\max_{z\in[0,\bar{z}]}V(z)+\mathbb{E}_{x}\big{[}V(\bar{Z}_{b}(t))\big{]} (22)

where the inequality holds due to (17) and Z¯b(t)zbz¯\bar{Z}_{b}(t)\geq z_{b}\geq\bar{z} a.s.. Note that 𝔼x[V(Z¯b(t))]=zbV(z)π(z)dz\mathbb{E}_{x}\big{[}V(\bar{Z}_{b}(t))\big{]}=\int_{z_{b}}^{\infty}V(z)\pi(z)\,\mathrm{d}z, thus it follows from (18) and (20) that the right side of (22) is a finite constant and independent of tt. Thus we obtain (12).

Finally, we prove (11). We first notice

|V(Z(t))|\displaystyle\lvert V(Z(t))\rvert =|V(Z(t))|(1{Z(t)<s¯}+1{s¯Z(t)<0}+1{Z(t)0}).\displaystyle=\lvert V(Z(t))\rvert\big{(}1_{\{Z(t)<\underline{s}\}}+1_{\{\underline{s}\leq Z(t)<0\}}+1_{\{Z(t)\geq 0\}}\big{)}.

The definition of VV in (16) implies that the first two terms are finite, and (22) implies that the last term is also finite. Thus, (11) holds. ∎

4 Proof of Theorem 1

We, in this section, will prove that the (s,S)(s^{\star},S^{\star}) policy is optimal among all admissible policies (i.e., Theorem 1) by a comparison theorem. Specifically, for any admissible policy QΦQ\in\Phi, if we can find a sequence {QjΦ(j)Φ¯:j=1,2,}\{Q_{j}\in\Phi(j)\subseteq\bar{\Phi}:j=1,2,\cdots\} satisfying

lim supj𝒞(x,Qj)𝒞(x,Q)for x,\limsup_{j\to\infty}\mathcal{C}(x,Q_{j})\leq\mathcal{C}(x,Q)\quad\text{for $x\in\mathbb{R}$,} (23)

then the optimal policy in Φ¯=j=1Φ(j)\bar{\Phi}=\cup_{j=1}^{\infty}\Phi(j) must be optimal in Φ\Phi. From Propositions 2 and 3, we have proven that the (s,S)(s^{\star},S^{\star}) policy defined in (6) is the best one in Φ¯\bar{\Phi}. To eventually establish the global optimality of the (s,S)(s^{\star},S^{\star}) policy in Φ\Phi, what remains is to construct a sequence of {QjΦ(j):j=1,2,}\{Q_{j}\in\Phi(j):j=1,2,\cdots\} for each QΦQ\in\Phi and prove (23).

For any given admissible policy QΦ(j)Q\in\Phi(j) (with ZZ as the controlled inventory process under policy QQ), the construction of the sequence of policies {QjΦ(j):j=1,2,}\{Q_{j}\in\Phi(j):j=1,2,\cdots\} is same as that in [6]. However, a more general argument is required to tackle the technical issues arising from the general diffusion demand process. Let Qj(t)Q_{j}(t) denote the total order amount of policy QjQ_{j} in [0,t][0,t], and Zj={Zj(t):t0}Z_{j}=\{Z_{j}(t):t\geq 0\} be the resulting inventory process under YjY_{j}, i.e.,

Zj(t)=xDj(t)+Qj(t),t0,Z_{j}(t)=x-D_{j}(t)+Q_{j}(t),\quad t\geq 0, (24)

where Dj(t)=0tμ(Zj(s))ds+0tσ(Zj(s))dB(s)D_{j}(t)=\int_{0}^{t}\mu(Z_{j}(s))\,\mathrm{d}s+\int_{0}^{t}\sigma(Z_{j}(s))\,\mathrm{d}B(s). We define the jumps of QjQ_{j} as follows; see [6].

  • (𝒥1)(\mathcal{J}1)

    ΔQj(t)=0\Delta Q_{j}(t)=0 for tt satisfying ΔQ(t)>0\Delta Q(t)>0 and Zj(t)>j/2Z_{j}(t-)>j/2;

  • (𝒥2)(\mathcal{J}2)

    ΔQj(t)=ΔQ(t)\Delta Q_{j}(t)=\Delta Q(t) for tt satisfying ΔQ(t)>0\Delta Q(t)>0, Zj(t)j/2Z_{j}(t-)\leq j/2, and Zj(t)+ΔQ(t)jZ_{j}(t-)+\Delta Q(t)\leq j;

  • (𝒥3)(\mathcal{J}3)

    ΔQj(t)=jZj(t)\Delta Q_{j}(t)=j-Z_{j}(t-) for tt satisfying ΔQ(t)>0\Delta Q(t)>0, Zj(t)j/2Z_{j}(t-)\leq j/2, and Zj(t)+ΔQ(t)>jZ_{j}(t-)+\Delta Q(t)>j;

  • (𝒥4)(\mathcal{J}4)

    ΔQj(t)=max(min(Z(t),j),0)\Delta Q_{j}(t)=\max(\min(Z(t),j),0) for tt satisfying Zj(t)=0Z_{j}(t-)=0.

Proposition 4 (Comparison Theorem).

Suppose Assumption 1-3 hold. For any admissible policy QΦQ\in\Phi, the policy sequence {QjΦj:j=1,2,}\{Q_{j}\in\Phi_{j}:j=1,2,\cdots\} constructed by (𝒥1)(\mathcal{J}1)-(𝒥4)(\mathcal{J}4) satisfies (23).

Proof of Proposition 4.

To prove (23), we need to compare the holding/shortage cost and ordering cost under QQ and {QjΦ(j):j=1,2,}\{Q_{j}\in\Phi(j):j=1,2,\cdots\}.

Consider the holding/shortage cost. It follows from the construction of QjQ_{j} by (𝒥1)(\mathcal{J}1)-(𝒥4)(\mathcal{J}4), we can easily have that on each sample path,

Zj(t)Z(t) if Zj(t)0andZj(t)=Z(t) if Zj(t)<0.\displaystyle Z_{j}(t)\leq Z(t)\text{ if $Z_{j}(t)\geq 0$}\quad\text{and}\quad Z_{j}(t)=Z(t)\text{ if $Z_{j}(t)<0$.} (25)

By (25) and the properties of holding/shortage cost function hh in Assumption 3, we have that the holding/shortage cost incurred under QjQ_{j} is no greater than that under QQ.

Consider the ordering cost. We first show some properties of function cc. Since cc is a subadditive function in +\mathbb{R}_{+}, the limit limξc(ξ)/ξ\lim_{\xi\to\infty}c(\xi)/\xi must exist and limξc(ξ)/ξ=infξ>0c(ξ)/ξ\lim_{\xi\to\infty}c(\xi)/\xi=\inf_{\xi>0}c(\xi)/\xi (cf. Theorem 16.2.9 in [11]). Let

k:=infξ>0c(ξ)ξandK(ξ):=c(ξ)kξ.k:=\inf_{\xi>0}\frac{c(\xi)}{\xi}\quad\text{and}\quad K(\xi):=c(\xi)-k\xi.

Then we have

K(ξ)0andlimξK(ξ)ξ=0.K(\xi)\geq 0\quad\text{and}\quad\lim_{\xi\to\infty}\frac{K(\xi)}{\xi}=0. (26)

Thus, kk can be treated as the proportional cost and K(ξ)K(\xi) as the setup cost for an order with quantity ξ\xi, and the cumulative ordering cost up to time tt under QQ can be rewritten as n=0N(t)K(ξn)+kQ(t)\sum_{n=0}^{N(t)}K(\xi_{n})+kQ(t).

We next consider the proportional cost. The cumulative proportional costs up to time tt under QQ and QjQ_{j} are kQ(t)kQ(t) and kQj(t)kQ_{j}(t), respectively. We claim that for any j=1,2,j=1,2,\cdots,

lim supt𝔼x[Q(t)]/tlim supt𝔼x[Qj(t)]/t.\limsup_{t\to\infty}\mathbb{E}_{x}[Q(t)]/t\geq\limsup_{t\to\infty}\mathbb{E}_{x}[Q_{j}(t)]/t. (27)

Suppose (27) does not hold, i.e.,

a:=lim supt𝔼x[Q(t)]/t<lim supt𝔼x[Qj(t)]/t:=b,a:=\limsup_{t\to\infty}\mathbb{E}_{x}[Q(t)]/t<\limsup_{t\to\infty}\mathbb{E}_{x}[Q_{j}(t)]/t:=b, (28)

which, implies that we can find a subsequence of ordering times {θn}n1\{\theta_{n}\}_{n\geq 1} satisfying

limn𝔼x[Qj(θn)]/θn=b.\lim_{n\to\infty}\mathbb{E}_{x}[Q_{j}(\theta_{n})]/\theta_{n}=b. (29)

For this subsequence, we have

lim supn𝔼x[Q(θn)]/θnlim supt𝔼x[Q(t)]/t=a.\limsup_{n\to\infty}\mathbb{E}_{x}[Q(\theta_{n})]/\theta_{n}\leq\limsup_{t\to\infty}\mathbb{E}_{x}[Q(t)]/t=a. (30)

Thus, it follows from (28)-(30) that there must exists a n¯\bar{n} such that

𝔼x[Q(θn)]<𝔼x[Qj(θn)]for all nn¯.\mathbb{E}_{x}[Q(\theta_{n})]<\mathbb{E}_{x}[Q_{j}(\theta_{n})]\quad\text{for all $n\geq\bar{n}$}. (31)

Moreover, from (25) and the fact that μ()\mu(\cdot) is non-decreasing (see Assumption 1(a)), we have

𝔼x[D(t)]𝔼x[Dj(t)],for all t0,\mathbb{E}_{x}[D(t)]\geq\mathbb{E}_{x}[D_{j}(t)],\quad\text{for all $t\geq 0$}, (32)

where Dj(t)=0tμ(Zj(s))ds+0tσ(Zj(s))dB(s)D_{j}(t)=\int_{0}^{t}\mu(Z_{j}(s))\,\mathrm{d}s+\int_{0}^{t}\sigma(Z_{j}(s))\,\mathrm{d}B(s). Furthermore, it follows from (1) and (24) that Z(t)=xD(t)+Q(t)Z(t)=x-D(t)+Q(t) and Zj(t)=xDj(t)+Qj(t)Z_{j}(t)=x-D_{j}(t)+Q_{j}(t), which, together with (31)-(32), imply that

𝔼x[Z(θn)]<𝔼x[Zj(θn)]for all nn¯,\mathbb{E}_{x}[Z(\theta_{n})]<\mathbb{E}_{x}[Z_{j}(\theta_{n})]\quad\text{for all $n\geq\bar{n}$},

contradicting with (25). Therefore, (27) holds.

It remains to consider the setup cost. For function K()K(\cdot), we can further claim

limjsupξ[0,j]K(ξ)j=0.\lim_{j\to\infty}\frac{\sup_{\xi\in[0,j]}K(\xi)}{j}=0. (33)

In fact, it follows from the second part in (26) that for any ϵ>0\epsilon>0, there is a nϵn_{\epsilon} such that K(ξ)/ξ<ϵK(\xi)/\xi<\epsilon for all ξnϵ\xi\geq n_{\epsilon}. Further, there exits an jϵnϵj_{\epsilon}\geq n_{\epsilon} such that supξ[0,nϵ]K(ξ)/j<ϵ\sup_{\xi\in[0,n_{\epsilon}]}K(\xi)/j<\epsilon for all jjϵj\geq j_{\epsilon}. Therefore, for all jjϵj\geq j_{\epsilon},

supξ[0,j]K(ξ)j=max{supξ[0,nϵ]K(ξ)j,supξ[nϵ,j]K(ξ)j}<ϵ.\frac{\sup_{\xi\in[0,j]}K(\xi)}{j}=\max\Big{\{}\frac{\sup_{\xi\in[0,n_{\epsilon}]}K(\xi)}{j},\frac{\sup_{\xi\in[n_{\epsilon},j]}K(\xi)}{j}\Big{\}}<\epsilon.

Since ϵ\epsilon is arbitrary, (33) holds.

Now we consider the setup cost incurred by the orders under policy QjQ_{j} in (𝒥2)(𝒥4)(\mathcal{J}2)-(\mathcal{J}4). For the order in (𝒥2)(\mathcal{J}2), QjQ_{j} and QQ incur the same setup cost.

Consider the orders under policy QjQ_{j} in (𝒥3)(\mathcal{J}3). Let t1t_{1} and t2t_{2} denote any two consecutive ordering times with t1<t2t_{1}<t_{2}. Let Xj(t)=x0tμ(Zj(u))du+0tσ(Zj(t))dB(u)X_{j}(t)=x-\int_{0}^{t}\mu(Z_{j}(u))\,\mathrm{d}u+\int_{0}^{t}\sigma(Z_{j}(t))\,\mathrm{d}B(u). Recall the definition of ZjZ_{j} in (24), we have

Zj(t1)=Xj(t1)+Qj(t1)andZj(t2)=Xj(t2)+Qj(t2),\displaystyle Z_{j}(t_{1})=X_{j}(t_{1})+Q_{j}(t_{1})\quad\text{and}\quad Z_{j}(t_{2}-)=X_{j}(t_{2})+Q_{j}(t_{2}-),

which, together with Qj(t1)Qj(t2)Q_{j}(t_{1})\leq Q_{j}(t_{2}-), imply

Xj(t1)Xj(t2)Zj(t1)Zj(t2)=jZj(t2)=Zj(t2)Zj(t2)=ΔQj(t2)j2,X_{j}(t_{1})-X_{j}(t_{2})\geq Z_{j}(t_{1})-Z_{j}(t_{2}-)=j-Z_{j}(t_{2}-)=Z_{j}(t_{2})-Z_{j}(t_{2}-)=\Delta Q_{j}(t_{2})\geq\frac{j}{2},

where the first two equalities follow from Zj(t1)=Zj(t2)=jZ_{j}(t_{1})=Z_{j}(t_{2})=j. Let τ=inf{s(0,t2t1]:Xj(t1+s)=Xj(t1)j/2=j/2}\tau=\inf\{s\in(0,t_{2}-t_{1}]:X_{j}(t_{1}+s)=X_{j}(t_{1})-j/2=j/2\}. It follows from the second part in (4) and Assumption 1 that

𝔼x[τ]\displaystyle\mathbb{E}_{x}[\tau] =2j2ju(dv)d𝒮(u)\displaystyle=2\int_{\frac{j}{2}}^{j}\int_{u}^{\infty}\mathcal{M}(\mathrm{d}v)\,\mathrm{d}\mathcal{S}(u)
=2j2ju1σ2(v)exp(uv2μ(z)σ2(z)dz)dvdu\displaystyle=2\int_{\frac{j}{2}}^{j}\int_{u}^{\infty}\frac{1}{\sigma^{2}(v)}\exp\Big{(}-\int_{u}^{v}\frac{2\mu(z)}{\sigma^{2}(z)}\,\mathrm{d}z\Big{)}\,\mathrm{d}v\,\mathrm{d}u
2σ¯2j2juexp(2μ¯σ¯2(vu))dvdu\displaystyle\geq\frac{2}{\bar{\sigma}^{2}}\int_{\frac{j}{2}}^{j}\int_{u}^{\infty}\exp\Big{(}-\frac{2\bar{\mu}}{\underline{\sigma}^{2}}(v-u)\Big{)}\,\mathrm{d}v\,\mathrm{d}u
=σ¯2j2μ¯σ¯2.\displaystyle=\frac{\underline{\sigma}^{2}j}{2\bar{\mu}\bar{\sigma}^{2}}. (34)

Let Nj,1(t)N_{j,1}(t) be the number of ordering in (𝒥3)(\mathcal{J}3) under QjQ_{j} up to time tt. Since t2t1τt_{2}-t_{1}\geq\tau, we have

𝔼x[Nj,1(t)]1𝔼x[τ]t+1=2μ¯σ¯2σ¯2jt+1.\mathbb{E}_{x}[N_{j,1}(t)]\leq\frac{1}{\mathbb{E}_{x}[\tau]}t+1=\frac{2\bar{\mu}\bar{\sigma}^{2}}{\underline{\sigma}^{2}j}t+1.

Now consider the orders under QjQ_{j} in (𝒥4)(\mathcal{J}4). Let t~1\tilde{t}_{1} and t~2\tilde{t}_{2} denote any two consecutive ordering times with t~1<t~2\tilde{t}_{1}<\tilde{t}_{2}. In this case, we claim that there must exist some t~3[t~1,t~2)\tilde{t}_{3}\in[\tilde{t}_{1},\tilde{t}_{2}) satisfying Zj(t~3)>j/2Z_{j}(\tilde{t}_{3})>j/2. If Zj(t~1)Z(t~1)Z_{j}(\tilde{t}_{1})\neq Z(\tilde{t}_{1}), we must have Zj(t~1)=jZ_{j}(\tilde{t}_{1})=j and then choose t~3=t~1\tilde{t}_{3}=\tilde{t}_{1}. If Zj(t~1)=Z(t~1)Z_{j}(\tilde{t}_{1})=Z(\tilde{t}_{1}), assume that such t~3\tilde{t}_{3} does not exist in [t~1,t~2)[\tilde{t}_{1},\tilde{t}_{2}), then the cases in (𝒥1)(\mathcal{J}1), (𝒥3)(\mathcal{J}3), and (𝒥4)(\mathcal{J}4) can not happen in (t~1,t~2)(\tilde{t}_{1},\tilde{t}_{2}). This implies Zj(t~2)=Z(t~2)Z_{j}(\tilde{t}_{2}-)=Z(\tilde{t}_{2}-), contradicting with the fact Zj(t~2)Z(t~2)Z_{j}(\tilde{t}_{2}-)\neq Z(\tilde{t}_{2}-). Let τ~=inf{s(0,t~2t~3]:Xj(t~3+s)=Xj(t~3)j2}\tilde{\tau}=\inf\{s\in(0,\tilde{t}_{2}-\tilde{t}_{3}]:X_{j}(\tilde{t}_{3}+s)=X_{j}(\tilde{t}_{3})-\frac{j}{2}\}. Using the same derivations as in (34), we have

𝔼x[τ~]σ¯2j2μ¯σ¯2.\mathbb{E}_{x}[\tilde{\tau}]\geq\frac{\underline{\sigma}^{2}j}{2\bar{\mu}\bar{\sigma}^{2}}.

Let Nj,2(t)N_{j,2}(t) be the number of ordering in (𝒥4)(\mathcal{J}4) under QjQ_{j} in [0,t][0,t]. Since t~2t~1t~2t~3τ~\tilde{t}_{2}-\tilde{t}_{1}\geq\tilde{t}_{2}-\tilde{t}_{3}\geq\tilde{\tau}, we have

𝔼x[Nj,2(t)]2μ¯σ¯2σ¯2jt+1.\mathbb{E}_{x}[N_{j,2}(t)]\leq\frac{2\bar{\mu}\bar{\sigma}^{2}}{\underline{\sigma}^{2}j}t+1.

To sum up the holding/shortage cost, proportional cost, and setup cost discussed above, we have

𝒞(x,Qj)𝒞(x,Q)\displaystyle\mathcal{C}(x,Q_{j})-\mathcal{C}(x,Q) lim supt1t𝔼x[𝔼x[Nj,1(t)]+𝔼x[Nj,2(t)]]supξ[0,j]K(ξ)\displaystyle\leq\limsup_{t\to\infty}\frac{1}{t}\mathbb{E}_{x}\big{[}\mathbb{E}_{x}[N_{j,1}(t)]+\mathbb{E}_{x}[N_{j,2}(t)]\big{]}\sup_{\xi\in[0,j]}K(\xi)
4μ¯σ¯2σ¯2supξ[0,j]K(ξ)j,\displaystyle\leq\frac{4\bar{\mu}\bar{\sigma}^{2}}{\underline{\sigma}^{2}}\frac{\sup_{\xi\in[0,j]}K(\xi)}{j},

which, together with (33), implies that (23). ∎

5 Concluding Remarks

In this paper, we used a two-step approach to prove the global optimality of an (s,S)(s,S) policy in an ergodic inventory control problem with inventory-dependent diffusion demand and general ordering costs. Specifically, we first applied a lower bound theorem to show the optimality of the selected policy in a subset of admissible policies, and then used a comparison theorem to establish the global optimality among all admissible policies.

Appendix A Proof of Lemma 1

Let

γ(s,S)=2sSxh(y)(dy)d𝒮(x)2sSx(dy)d𝒮(x).\gamma(s,S)=\frac{2\int_{s}^{S}\int_{x}^{\infty}h(y)\,\mathcal{M}(\mathrm{d}y)\,\mathrm{d}\mathcal{S}(x)}{2\int_{s}^{S}\int_{x}^{\infty}\,\mathcal{M}(\mathrm{d}y)\,\mathrm{d}\mathcal{S}(x)}. (35)

It follows from Assumptions 1 and 3 (as well as Remark 1 (a)) that the conditions in Lemma 2.1 in [8] hold. Then, we have

limsγ(s,S)\displaystyle\lim_{s\to-\infty}\gamma(s,S) =lim(s,S)(,)γ(s,S)=limzh(z)=and\displaystyle=\lim_{(s,S)\to(-\infty,-\infty)}\gamma(s,S)=\lim_{z\to-\infty}h(z)=\infty\quad\text{and} (36)
limSγ(s,S)\displaystyle\lim_{S\to\infty}\gamma(s,S) =lim(s,S)(,)γ(s,S)=limzh(z)=,\displaystyle=\lim_{(s,S)\to(\infty,\infty)}\gamma(s,S)=\lim_{z\to\infty}h(z)=\infty,

which, together with the non-negativity of cc in Assumption 2, imply

limsα(s,S)\displaystyle\lim_{s\to-\infty}\alpha(s,S) =lim(s,S)(,)α(s,S)=andlimSα(s,S)=lim(s,S)(,)α(s,S)=.\displaystyle=\lim_{(s,S)\to(-\infty,-\infty)}\alpha(s,S)=\infty\quad\text{and}\quad\lim_{S\to\infty}\alpha(s,S)=\lim_{(s,S)\to(\infty,\infty)}\alpha(s,S)=\infty.

Thus, we can find a finite positive number B1B_{1} satisfying

infs<Sα(s,S)=infB1s<SB1α(s,S).\inf_{s<S}\alpha(s,S)=\inf_{-B_{1}\leq s<S\leq B_{1}}\alpha(s,S). (37)

Let Δ=Ss\Delta=S-s, then α(s,S)\alpha(s,S) can be rewritten as

η(s,Δ)=2ss+Δxh(y)(dy)d𝒮(x)+c(Δ)2ss+Δx(dy)d𝒮(x).\eta(s,\Delta)=\frac{2\int_{s}^{s+\Delta}\int_{x}^{\infty}h(y)\,\mathcal{M}(\mathrm{d}y)\,\mathrm{d}\mathcal{S}(x)+c(\Delta)}{2\int_{s}^{s+\Delta}\int_{x}^{\infty}\,\mathcal{M}(\mathrm{d}y)\,\mathrm{d}\mathcal{S}(x)}.

From limΔ0c(Δ)>0\lim_{\Delta\downarrow 0}c(\Delta)>0 (see Assumption 2), we have limΔ0η(s,Δ)=\lim_{\Delta\downarrow 0}\eta(s,\Delta)=\infty, thus we can find a finite positive number B2B_{2} such that (37) becomes

infs<Sα(s,S)=minB1sB1,B2Δ2B1η(s,Δ).\inf_{s<S}\alpha(s,S)=\min_{-B_{1}\leq s\leq B_{1},B_{2}\leq\Delta\leq 2B_{1}}\eta(s,\Delta).

Since η(s,Δ)\eta(s,\Delta) is continuous in ss, there exists an s(Δ)[B1,B1]s(\Delta)\in[-B_{1},B_{1}] such that

η(s(Δ),Δ)=minB1sB1η(s,Δ)for each Δ[B2,2B1].\eta(s(\Delta),\Delta)=\min_{-B_{1}\leq s\leq B_{1}}\eta(s,\Delta)\quad\text{for each $\Delta\in[B_{2},2B_{1}]$}.

Further, since c(Δ)c(\Delta) is low semicontinuous and other parts in η(s(Δ),Δ)\eta(s(\Delta),\Delta) is continuous in Δ\Delta, by the extreme value theorem (see Theorem B.2 in [15]), there exists a Δ[B2,2B1]\Delta^{\star}\in[B_{2},2B_{1}] such that

η(s(Δ),Δ)η(s(Δ),Δ)for all Δ[B2,2B1].\eta(s(\Delta^{\star}),\Delta^{\star})\leq\eta(s(\Delta),\Delta)\quad\text{for all $\Delta\in[B_{2},2B_{1}]$}.

Let s=s(Δ)s^{\star}=s(\Delta^{\star}) and S=s+ΔS^{\star}=s^{\star}+\Delta^{\star}, then we complete the proof. ∎

Appendix B Proof of Lemma 2

We show the existence of s¯\underline{s} satisfying (14) and (15) as follows: First, in part (aa), we show that there exists an s¯1(,s]\underline{s}_{1}\in(-\infty,s^{\star}] such that (14) holds for any s¯(,s¯1]\underline{s}\in(-\infty,\underline{s}_{1}]; and in part (bb), we show that we can find an s¯2(,s]\underline{s}_{2}\in(-\infty,s^{\star}] such that g(z)α(z)<0g^{\prime}(z)-\alpha^{\star}\ell^{\prime}(z)<0 for any zs¯2z\leq\underline{s}_{2}. Then, we let s¯=s¯1s¯2\underline{s}=\underline{s}_{1}\wedge\underline{s}_{2}, then both (14) and (15) hold.

(aa) First, by Assumption 1, we have

limzz(du)\displaystyle\lim_{z\to-\infty}\int_{z}^{\infty}\,\mathcal{M}(\mathrm{d}u) =limzz1σ2(u)exp(cu2μ(y)σ2(y)dy)du\displaystyle=\lim_{z\to-\infty}\int_{z}^{\infty}\frac{1}{\sigma^{2}(u)}\exp\Big{(}-\int_{c}^{u}\frac{2\mu(y)}{\sigma^{2}(y)}\,\mathrm{d}y\Big{)}\,\mathrm{d}u
limzzc1σ2(u)exp(cu2μ(y)σ2(y)dy)du\displaystyle\geq\lim_{z\to-\infty}\int_{z}^{c}\frac{1}{\sigma^{2}(u)}\exp\Big{(}-\int_{c}^{u}\frac{2\mu(y)}{\sigma^{2}(y)}\,\mathrm{d}y\Big{)}\,\mathrm{d}u
limzzc1σ¯2exp(2μ¯σ¯2(cu))du\displaystyle\geq\lim_{z\to-\infty}\int_{z}^{c}\frac{1}{\bar{\sigma}^{2}}\exp\Big{(}\frac{2\underline{\mu}}{\bar{\sigma}^{2}}(c-u)\Big{)}\,\mathrm{d}u
=.\displaystyle=\infty.

Similarly, we have

limzzh(u)(du)=.\lim_{z\to-\infty}\int_{z}^{\infty}h(u)\,\mathcal{M}(\mathrm{d}u)=\infty.

Therefore, by L’ Hôpital’s rule, we have

limzg(z)(z)=limzzh(u)(du)z(du)=limzh(y)=,\lim_{z\to-\infty}\frac{g(z)}{\ell(z)}=\lim_{z\to-\infty}\frac{\int_{z}^{\infty}h(u)\,\mathcal{M}(\mathrm{d}u)}{\int_{z}^{\infty}\,\mathcal{M}(\mathrm{d}u)}=\lim_{z\to-\infty}h(y)=\infty,

which yields that we can find an ss^{\dagger} with sss^{\dagger}\leq s^{\star} such that

g(y)(y)αfor any y(,s].\frac{g(y)}{\ell(y)}\geq\alpha^{\star}\quad\text{for any $y\in(-\infty,s^{\dagger}]$}. (38)

Also, by L’ Hôpital’s rule, we have

limzg(z)(z)=limzzh(u)(du)z(du)=limyh(y)=,\lim_{z\to\infty}\frac{g(z)}{\ell(z)}=\lim_{z\to\infty}\frac{\int_{z}^{\infty}h(u)\,\mathcal{M}(\mathrm{d}u)}{\int_{z}^{\infty}\,\mathcal{M}(\mathrm{d}u)}=\lim_{y\to\infty}h(y)=\infty, (39)

which yields that there exists an ss^{\ddagger} with sss^{\ddagger}\geq s^{\star} such that

g(z)(z)αfor any y[s,).\frac{g(z)}{\ell(z)}\geq\alpha^{\star}\quad\text{for any $y\in[s^{\ddagger},\infty)$}. (40)

In addition, it follows from (35) and (36) that

limssSg(y)dysS(y)dy=limyh(y)=for any fixed S.\lim_{s\to-\infty}\frac{\int_{s}^{S}g(y)\,\mathrm{d}y}{\int_{s}^{S}\ell(y)\,\mathrm{d}y}=\lim_{y\to-\infty}h(y)=\infty\quad\text{for any fixed $S\in\mathbb{R}$}.

Then, there exists an s¯1\underline{s}_{1} with s¯1s\underline{s}_{1}\leq s^{\dagger} such that

sSg(y)dysS(y)dyαfor S[s,s] and ss¯1.\frac{\int_{s}^{S}g(y)\,\mathrm{d}y}{\int_{s}^{S}\ell(y)\,\mathrm{d}y}\geq\alpha^{\star}\quad\text{for $S\in[s^{\dagger},s^{\ddagger}]$ and $s\leq\underline{s}_{1}$.} (41)

Now we can show that (14) holds for any s¯(,s¯1]\underline{s}\in(-\infty,\underline{s}_{1}]. If ss¯s\geq\underline{s}, we have

α¯(s,S)=α(s,S)α,\underline{\alpha}(s,S)=\alpha(s,S)\geq\alpha^{\star},

where the inequality follows from (6). Next, we prove the case when s<s¯s<\underline{s} in three subcases: SsS\leq s^{\dagger}, s<S<ss^{\dagger}<S<s^{\ddagger}, and SsS\geq s^{\ddagger}. If SsS\leq s^{\dagger}, we have

α¯(s,S)sSg(ys¯)dysS(ys¯)dysSα(ys¯)dysS(ys¯)dy=α,\underline{\alpha}(s,S)\geq\frac{\int_{s}^{S}g(y\vee\underline{s})\,\mathrm{d}y}{\int_{s}^{S}\ell(y\vee\underline{s})\,\mathrm{d}y}\geq\frac{\int_{s}^{S}\alpha^{\star}\cdot\ell(y\vee\underline{s})\,\mathrm{d}y}{\int_{s}^{S}\ell(y\vee\underline{s})\,\mathrm{d}y}=\alpha^{\star},

where the first inequlity follow the non-negativity of c()c(\cdot) in Assumption 2, and the second inequality follows (38) with s<Sss<S\leq s^{\dagger}. If s<S<ss^{\dagger}<S<s^{\ddagger}, we have

α¯(s,S)sSg(ys¯)dysS(ys¯)dy=g(s¯)(s¯s)+s¯Sg(ys¯)dy(s¯)(s¯s)+s¯S(ys¯)dyα,\underline{\alpha}(s,S)\geq\frac{\int_{s}^{S}g(y\vee\underline{s})\,\mathrm{d}y}{\int_{s}^{S}\ell(y\vee\underline{s})\,\mathrm{d}y}=\frac{g(\underline{s})(\underline{s}-s)+\int_{\underline{s}}^{S}g(y\vee\underline{s})\,\mathrm{d}y}{\ell(\underline{s})(\underline{s}-s)+\int_{\underline{s}}^{S}\ell(y\vee\underline{s})\,\mathrm{d}y}\geq\alpha^{\star},

the the last inequality is derived from (38) and (41) with s¯s¯1s<S<s\underline{s}\leq\underline{s}_{1}\leq s^{\dagger}<S<s^{\ddagger}. If SsS\geq s^{\ddagger}, we have

α¯(s,S)sSg(ys¯)dysS(ys¯)dy=g(s¯)(s¯s)+s¯sg(ys¯)dy+sSg(ys¯)dy(s¯)(s¯s)+s¯s(ys¯)dy+sS(ys¯)dyα,\underline{\alpha}(s,S)\geq\frac{\int_{s}^{S}g(y\vee\underline{s})\,\mathrm{d}y}{\int_{s}^{S}\ell(y\vee\underline{s})\,\mathrm{d}y}=\frac{g(\underline{s})(\underline{s}-s)+\int_{\underline{s}}^{s^{\ddagger}}g(y\vee\underline{s})\,\mathrm{d}y+\int_{s^{\ddagger}}^{S}g(y\vee\underline{s})\,\mathrm{d}y}{\ell(\underline{s})(\underline{s}-s)+\int_{\underline{s}}^{s^{\ddagger}}\ell(y\vee\underline{s})\,\mathrm{d}y+\int_{s^{\ddagger}}^{S}\ell(y\vee\underline{s})\,\mathrm{d}y}\geq\alpha^{\star},

where the last inequality holds due to (38), (40), and (41).

(bb) To prove that we can find an s¯2(,s]\underline{s}_{2}\in(-\infty,s^{\star}] such that g(z)α(z)<0g^{\prime}(z)-\alpha^{\star}\ell^{\prime}(z)<0 for any zs¯2z\leq\underline{s}_{2}, we will claim that

limz[g(z)α(z)]<0.\lim_{z\to-\infty}[g^{\prime}(z)-\alpha^{\star}\ell^{\prime}(z)]<0.

It follows from the convexity of hh in Assumption 3 that there exist c0>0c_{0}>0 and z0<0z_{0}<0 such that for all z<z0z<z_{0},

h(z)<c0.h^{\prime}(z)<-c_{0}. (42)

Then, for z<z0z<z_{0}, we rewrite g(z)α(z)g^{\prime}(z)-\alpha^{\star}\ell^{\prime}(z) as

g(z)α(z)\displaystyle g^{\prime}(z)-\alpha^{\star}\ell^{\prime}(z)
=2μ(z)σ2(z)[g(z)α(z)h(z)αμ(z)]\displaystyle=\frac{2\mu(z)}{\sigma^{2}(z)}\Big{[}g(z)-\alpha^{\star}\ell(z)-\frac{h(z)-\alpha^{\star}}{\mu(z)}\Big{]}
=2μ(z)σ2(z)0[2σ2(y+z)exp(zy+z2μ(u)σ2(u)du)((h(y+z)α)(h(z)α)μ(y+z)μ(z))]dy\displaystyle=\frac{2\mu(z)}{\sigma^{2}(z)}\int_{0}^{\infty}\Big{[}\frac{2}{\sigma^{2}(y+z)}\exp\Big{(}-\int_{z}^{y+z}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\Big{(}\big{(}h(y+z)-\alpha^{\star}\big{)}-\big{(}h(z)-\alpha^{\star}\big{)}\frac{\mu(y+z)}{\mu(z)}\Big{)}\Big{]}\,\mathrm{d}y
=2μ(z)σ2(z)(Λ1(z)Λ2(z)+Λ3(z)),\displaystyle=\frac{2\mu(z)}{\sigma^{2}(z)}\big{(}\Lambda_{1}(z)-\Lambda_{2}(z)+\Lambda_{3}(z)\big{)},

where the second equality holds because

02μ(y+z)σ2(y+z)exp(zy+z2μ(u)σ2(u)du)dy=1,\int_{0}^{\infty}\frac{2\mu(y+z)}{\sigma^{2}(y+z)}\exp\Big{(}-\int_{z}^{y+z}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\,\mathrm{d}y=1,

and in the last equality,

Λ1(z)\displaystyle\Lambda_{1}(z) =z0z[2σ2(y+z)exp(zy+z2μ(u)σ2(u)du)(h(y+z)α)]dy,\displaystyle=\int_{z_{0}-z}^{\infty}\Big{[}\frac{2}{\sigma^{2}(y+z)}\exp\Big{(}-\int_{z}^{y+z}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\big{(}h(y+z)-\alpha^{\star}\big{)}\Big{]}\,\mathrm{d}y,
Λ2(z)\displaystyle\Lambda_{2}(z) =z0z[2σ2(y+z)exp(zy+z2μ(u)σ2(u)du)(h(z)α)μ(y+z)μ(z)]dy,and\displaystyle=\int_{z_{0}-z}^{\infty}\Big{[}\frac{2}{\sigma^{2}(y+z)}\exp\Big{(}-\int_{z}^{y+z}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\big{(}h(z)-\alpha^{\star}\big{)}\frac{\mu(y+z)}{\mu(z)}\Big{]}\,\mathrm{d}y,\quad\text{and}
Λ3(z)\displaystyle\Lambda_{3}(z) =0z0z[2σ2(y+z)exp(zy+z2μ(u)σ2(u)du)((h(y+z)α)(h(z)α)μ(y+z)μ(z))]dy.\displaystyle=\int_{0}^{z_{0}-z}\Big{[}\frac{2}{\sigma^{2}(y+z)}\exp\Big{(}-\int_{z}^{y+z}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\Big{(}\big{(}h(y+z)-\alpha^{\star}\big{)}-\big{(}h(z)-\alpha^{\star}\big{)}\frac{\mu(y+z)}{\mu(z)}\Big{)}\Big{]}\,\mathrm{d}y.

If we can prove

limzΛ1(z)=limzΛ2(z)=0andlimzΛ3(z)<0,\lim_{z\to-\infty}\Lambda_{1}(z)=\lim_{z\to-\infty}\Lambda_{2}(z)=0\quad\text{and}\quad\lim_{z\to-\infty}\Lambda_{3}(z)<0, (43)

then it follows from the positiveness of μ\mu and the boundedness of μ\mu and σ\sigma (see Assumption 1) that

limz[g(z)α(z)]=limz2μ(z)σ2(z)(Λ1(z)Λ2(z)+Λ3(z))<0.\lim_{z\to-\infty}[g^{\prime}(z)-\alpha^{\star}\ell^{\prime}(z)]=\lim_{z\to-\infty}\frac{2\mu(z)}{\sigma^{2}(z)}\big{(}\Lambda_{1}(z)-\Lambda_{2}(z)+\Lambda_{3}(z)\big{)}<0.

Thus, it remains to prove (43).

First, for z<z0z<z_{0}, we rewrite Λ1\Lambda_{1} as

Λ1(z)=exp(zz02μ(u)σ2(u)du)z0[2σ2(y)exp(z0y2μ(u)σ2(u)du)(h(y)α)]dy.\displaystyle\Lambda_{1}(z)=\exp\Big{(}-\int_{z}^{z_{0}}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\int_{z_{0}}^{\infty}\Big{[}\frac{2}{\sigma^{2}(y)}\exp\Big{(}-\int_{z_{0}}^{y}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\big{(}h(y)-\alpha^{\star}\big{)}\Big{]}\,\mathrm{d}y.

Since lim|z|h(z)=\lim_{\lvert z\rvert\to\infty}h(z)=\infty (Remark 1 (bb)), there exist a z1>0z_{1}>0 such that for |z|>z1\lvert z\rvert>z_{1}

h(z)α,h(z)\geq\alpha^{\star}, (44)

which, together with the polynomial boundedness of hh (Assumption 3) , implies

z1[2σ2(y)exp(z0y2μ(u)σ2(u)du)(h(y)α)]dy\displaystyle\int_{z_{1}}^{\infty}\Big{[}\frac{2}{\sigma^{2}(y)}\exp\Big{(}-\int_{z_{0}}^{y}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\big{(}h(y)-\alpha^{\star}\big{)}\Big{]}\,\mathrm{d}y >0and\displaystyle>0\quad\text{and}
z1[2σ2(y)exp(z0y2μ(u)σ2(u)du)(h(y)α)]dy\displaystyle\int_{z_{1}}^{\infty}\Big{[}\frac{2}{\sigma^{2}(y)}\exp\Big{(}-\int_{z_{0}}^{y}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\big{(}h(y)-\alpha^{\star}\big{)}\Big{]}\,\mathrm{d}y z1[2σ¯2exp(2μ¯σ¯2(yz0))(h(y)α)]dy\displaystyle\leq\int_{z_{1}}^{\infty}\Big{[}\frac{2}{\underline{\sigma}^{2}}\exp\Big{(}-\frac{2\underline{\mu}}{\bar{\sigma}^{2}}(y-z_{0})\Big{)}\big{(}h(y)-\alpha^{\star}\big{)}\Big{]}\,\mathrm{d}y
<.\displaystyle<\infty.

Thus,

z0[2σ2(y)exp(z0y2μ(u)σ2(u)du)(h(y)α)]dy\displaystyle\int_{z_{0}}^{\infty}\Big{[}\frac{2}{\sigma^{2}(y)}\exp\Big{(}-\int_{z_{0}}^{y}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\big{(}h(y)-\alpha^{\star}\big{)}\Big{]}\,\mathrm{d}y
=(z0z1+z1)[2σ2(y)exp(z0y2μ(u)σ2(u)du)(h(y)α)]dy\displaystyle\quad=\big{(}\int_{z_{0}}^{z_{1}}+\int_{z_{1}}^{\infty}\Big{)}\Big{[}\frac{2}{\sigma^{2}(y)}\exp\Big{(}-\int_{z_{0}}^{y}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\big{(}h(y)-\alpha^{\star}\big{)}\Big{]}\,\mathrm{d}y

is a finite number. Furthermore, the boundedness of μ\mu and σ\sigma in Assumption 3 implies

limzexp(zz02μ(u)σ2(u)du)=0.\lim_{z\to-\infty}\exp\Big{(}-\int_{z}^{z_{0}}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}=0.

Therefore, we have

limzΛ1(z)=limzexp(zz02μ(u)σ2(u)du)z0[2σ2(y)exp(z0y2μ(u)σ2(u)du)(h(y)α)]dy=0.\lim_{z\to-\infty}\Lambda_{1}(z)=\lim_{z\to-\infty}\exp\Big{(}-\int_{z}^{z_{0}}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\int_{z_{0}}^{\infty}\Big{[}\frac{2}{\sigma^{2}(y)}\exp\Big{(}-\int_{z_{0}}^{y}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\big{(}h(y)-\alpha^{\star}\big{)}\Big{]}\,\mathrm{d}y=0.

Second, (44) and the boundedness of μ\mu and σ\sigma imply that for z<z1z<-z_{1},

Λ2(z)\displaystyle\Lambda_{2}(z) =h(z)αμ(z)z0z2μ(y+z)σ2(y+z)exp(zy+z2μ(u)σ2(u)du)dy\displaystyle=\frac{h(z)-\alpha^{\star}}{\mu(z)}\int_{z_{0}-z}^{\infty}\frac{2\mu(y+z)}{\sigma^{2}(y+z)}\exp\Big{(}-\int_{z}^{y+z}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\,\mathrm{d}y
h(z)αμ(z)z0z2μ¯σ¯2exp(2μ¯σ¯2y)dy\displaystyle\leq\frac{h(z)-\alpha^{\star}}{\mu(z)}\int_{z_{0}-z}^{\infty}\frac{2\bar{\mu}}{\underline{\sigma}^{2}}\exp\Big{(}-\frac{2\underline{\mu}}{\bar{\sigma}^{2}}y\Big{)}\,\mathrm{d}y
=μ¯σ¯2μ¯σ¯2h(z)αμ(z)exp(2μ¯σ¯2(z0z)).\displaystyle=\frac{\bar{\mu}\bar{\sigma}^{2}}{\underline{\mu}\underline{\sigma}^{2}}\frac{h(z)-\alpha^{\star}}{\mu(z)}\exp\Big{(}-\frac{2\underline{\mu}}{\bar{\sigma}^{2}}(z_{0}-z)\Big{)}.

Therefore,

0limzΛ2(z)limzμ¯σ¯2μ¯σ¯2h(z)αμ(z)exp(2μ¯σ¯2(z0z))=0,0\leq\lim_{z\to-\infty}\Lambda_{2}(z)\leq\lim_{z\to-\infty}\frac{\bar{\mu}\bar{\sigma}^{2}}{\underline{\mu}\underline{\sigma}^{2}}\frac{h(z)-\alpha^{\star}}{\mu(z)}\exp\Big{(}-\frac{2\underline{\mu}}{\bar{\sigma}^{2}}(z_{0}-z)\Big{)}=0,

where the equality follows from the polynomial boundedness of hh. Thus, we have

limzΛ2(z)=0.\lim_{z\to-\infty}\Lambda_{2}(z)=0.

Finally, we have

limzΛ3(z)\displaystyle\lim_{z\to-\infty}\Lambda_{3}(z) limz0z0z[2σ2(y+z)exp(zy+z2μ(u)σ2(u)du)(h(y+z)h(z))]dy\displaystyle\leq\lim_{z\to-\infty}\int_{0}^{z_{0}-z}\Big{[}\frac{2}{\sigma^{2}(y+z)}\exp\Big{(}-\int_{z}^{y+z}\frac{2\mu(u)}{\sigma^{2}(u)}\,\mathrm{d}u\Big{)}\big{(}h(y+z)-h(z)\big{)}\Big{]}\,\mathrm{d}y
limz0z0z2σ¯2exp(2μ¯σ¯2y)(c0)ydy\displaystyle\leq\lim_{z\to-\infty}\int_{0}^{z_{0}-z}\frac{2}{\underline{\sigma}^{2}}\exp\Big{(}-\frac{2\underline{\mu}}{\bar{\sigma}^{2}}y\Big{)}(-c_{0})y\,\mathrm{d}y
=c0σ¯42μ¯2σ¯2\displaystyle=-\frac{c_{0}\bar{\sigma}^{4}}{2\underline{\mu}^{2}\underline{\sigma}^{2}}
<0,\displaystyle<0,

where the first inequality holds due to (44) and that μ()\mu(\cdot) is non-decreasing (see Assumption 1(a)), the second inequality is derived from (42). ∎

Appendix C Proof of Lemma 3

To prove (17), we only need to prove

limzV(z)>0,\displaystyle\lim_{z\to\infty}V^{\prime}(z)>0, (45)

which yields limzV(z)=\lim_{z\to\infty}V(z)=\infty, and then (17) holds. We next prove (45). First, we have

limzg(z)\displaystyle\lim_{z\to\infty}g(z) =limz2z1σ2(u)h(u)exp(zu2μ(y)σ2(y)dy)du\displaystyle=\lim_{z\to\infty}2\int_{z}^{\infty}\frac{1}{\sigma^{2}(u)}h(u)\exp\Big{(}-\int_{z}^{u}\frac{2\mu(y)}{\sigma^{2}(y)}\,\mathrm{d}y\Big{)}\,\mathrm{d}u
limz2σ¯2h(z)zexp(2μ¯σ¯2(uz))du\displaystyle\geq\lim_{z\to\infty}\frac{2}{\bar{\sigma}^{2}}h(z)\int_{z}^{\infty}\exp\Big{(}-\frac{2\bar{\mu}}{\underline{\sigma}^{2}}(u-z)\Big{)}\,\mathrm{d}u
=limzσ¯2μ¯σ¯2h(z)\displaystyle=\lim_{z\to\infty}\frac{\underline{\sigma}^{2}}{\bar{\mu}\bar{\sigma}^{2}}h(z)
=,\displaystyle=\infty,

where the inequality follows from h(z)>0h^{\prime}(z)>0 for z>0z>0 (Assumption 3) and the boundedness of μ\mu and σ\sigma in Assumption 1. This, together with (39) and the definition of VV in (16), implies that

limzV(z)=limz[g(z)α(z)]=.\lim_{z\to\infty}V^{\prime}(z)=\lim_{z\to\infty}[g(z)-\alpha^{\star}\ell(z)]=\infty.

Finally, (18) can be implied by the polynomial boundedness of hh. ∎

References

  • [1] N. Altintas, F. Erhun, and S. Tayur. Quantity discounts under demand uncertainty. Management Science, 54(4):777–792, 2008.
  • [2] Opher Baron, Oded Berman, and David Perry. Shelf space management when demand depends on the inventory level. Production and Operations Management, 20(5):714–726, 2011.
  • [3] A. Cadenillas, P. Lakner, and M. Pinedo. Optimal control of a mean-reverting inventory. Operations Research, 58(6):1697–1710, 2010.
  • [4] O. Caliskan-Demirag, Y. Chen, and Y. Yang. Ordering policies for periodic-review inventory systems with quantity-dependent fixed costs. Operations Research, 60(4):785–796, 2012.
  • [5] X. Chao and P. Zipkin. Optimal policy for a periodic-review inventory system under a supply capacity contract. Operations Research, 56(6):887–896, 2008.
  • [6] S. He, D. Yao, and H. Zhang. Optimal ordering policy for inventory systems with quantity-dependent setup costs. Mathematics of Operations Research, 42(4):979–1006, 2017.
  • [7] K. L. Helmes, H. Stockbridge, and C. Zhu. Continuous inventory models of diffusion type: Long-term average cost criterion. The Annals of Applied Probability, 27(3):1831–1885, 2017.
  • [8] K. L. Helmes, H. Stockbridge, and C. Zhu. A weak convergence approach to inventory control using a long-term average criterion. Advances of Applied Probability, 50(4):1032–1074, 2018.
  • [9] K. L. Helmes, R. H Stockbridge, and C. Zhu. A weak convergence approach to inventory control using a long-term average criterion. Advances in Applied Probability, 50(4):1032–1074, 2018.
  • [10] D. L. Iglehart. Optimality of (s,S)(s,\,S) policies in the infinite horizon dynamic inventory problem. Management Science, 9(2):259–267, 1963.
  • [11] Marek Kuczma. An Introduction to the Theory of Functional Equations and Inequalities. Birkha¨\ddot{a}user, Berlin, Second edition, 2009.
  • [12] Sandun Perera, Ganesh Janakiraman, and Shun-Chen Niu. Optimality of (s,Ss,{S}) policies in EOQ models with general cost structures. International Journal of Production Economics, 187:216–228, 2017.
  • [13] Sandun Perera, Ganesh Janakiraman, and Shun-Chen Niu. Optimality of (s,Ss,{S}) inventory policies under renewal demand and general cost structures. Production and Operations Management, 27(2):368–383, 2018.
  • [14] E. Porteus. On the optimality of generalized (s,S)(s,\,S) policies. Management Science, 17(7):411–426, 1971.
  • [15] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &\& Son, Inc., New York, 1994.
  • [16] H. Scarf. The optimality of (s,S)(s,\,S) policies in the dynamic inventory problem. Mathematical Methods in the Social Sciences (P. Suppes, K. Arrow, and S. Karlin, eds.). Stanford University Press, Stanford, CA, USA, 1960.
  • [17] D. Yao, X. Chao, and J. Wu. Optimal control policy for a Brownian inventory system with concave ordering cost. Journal of Applied Probability, 52(4):909–925, 2015.
  • [18] Liqing Zhang and Sıla Çetinkaya. Stochastic dynamic inventory problem under explicit inbound transportation cost and capacity. Operations Research, 65(5):1267–1274, 2017.