This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ergodic Deviations of Degenerate Multidimensional Actions - Convex Bodies

Hao Wu

Abstract. We prove that the ergodic deviation of a degenerate β„€2\mathbb{Z}^{2}-action on the torus 𝕋2\mathbb{T}^{2} relative to a symmetric, strictly convex body can be decomposed into two parts, and that each part admits a limit distribution after choosing a suitable normalizer. Specifically, the first part is similar to an ergodic sum of smooth observables after being normalized by NN, and the second part is similar to the case of a random toral translation, i.e., the β„€\mathbb{Z}-action, but with a normalizer of N12N^{\frac{1}{2}}. The key difference is that we employ the product flow on the product space of β„€2\mathbb{Z}^{2} lattices for the multidimensional action.

1 INTRODUCTION

In a dd-dimensional torus, given a translation vector Ξ±=(Ξ±1,…,Ξ±d)βˆˆβ„d\alpha=(\alpha_{1},\dots,\alpha_{d})\in\mathbb{R}^{d}, we can consider the dynamical system (𝕋d,TΞ±,ΞΌ)(\mathbb{T}^{d},T_{\alpha},\mu), where ΞΌ\mu is the Haar measure on 𝕋d\mathbb{T}^{d}, and TΞ±T_{\alpha} is the translation from 𝕋d→𝕋d\mathbb{T}^{d}\rightarrow\mathbb{T}^{d} defined by T​(x)=x+Ξ±T(x)=x+\alpha, in the sense of modulo 1 for each coordinate. In this dynamical system, ergodic theory states that for every irrational translation, the number of visits inside a measurable set π’ž\mathcal{C} before time NN has a ratio conveging to the measure of the set Vol​(π’ž)\text{Vol}(\mathcal{C}). One object of interest is the discrepancy function defined as the difference of the actual visits before time NN and the expected visits N​Vol​(π’ž)N\text{Vol}(\mathcal{C}). In dimension 1, Kesten [6, 7] proved that the discrepancy function for the circle rotation relative to an interval converges to a standard Cauchy distribution after being normalized by log⁑N\log N.

There are different ways to extend this result to higher dimensions, one way is to study the random toral translation relative to higher dimensional counterparts of the interval, such as balls (analytic convex bodies) and boxes, both of which were studied by Dolgopyat and Fayad in [4, 3]. They showed that dd-dimensional boxes behave similarly to 1-dimensional intervals, i.e., the discrepancy function also converges to a Cauchy distribution after normalized by (ln⁑N)d(\ln N)^{d}. As for balls, they showed that the discrepancy function converges to a distribution function defined over the product space of infinite tori and the homogeneous space SL​(d+1,ℝ)/SL​(d+1,β„€)\text{SL}(d+1,\mathbb{R})/\text{SL}(d+1,\mathbb{Z}) with the normalizer N(dβˆ’1)/2​dN^{(d-1)/2d}. Their proof consists of a combination of harmonic analysis of the discrepancy’s Fourier series, probability, and an important ingredient is the equidistribution of locally unstable submanifolds over the whole space of unimodular lattices.

In this paper, we follow a similar approach as Dolgopyat and Fayad, but instead of translations, we will consider the degenerate β„€2\mathbb{Z}^{2} action in dimension d=2d=2 (see the definition below), we restrict the set to be strictly convex, symmetric, and analytic bodies π’ž\mathcal{C}. Given a convex body π’ž\mathcal{C}, we denote π’žr\mathcal{C}_{r} the rescaled bodies with ratio r>0r>0 by the homothety centered at the origin, where r<r0r<r_{0} so that π’žr\mathcal{C}_{r} can fit inside the unit cube of ℝ2\mathbb{R}^{2}. Let Ξ±=(Ξ±1,Ξ±2)βˆˆπ•‹2\alpha=(\alpha_{1},\alpha_{2})\in\mathbb{T}^{2} be the action vector, we consider the following discrepancy function:

Dπ’žβ€‹(r,x,Ξ±;N)=βˆ‘0≀n1≀Nβˆ’10≀n2≀Nβˆ’1Ο‡π’žr​(x1+n1​α1,x2+n2​α2)βˆ’N2​Vol​(π’žr)D_{\mathcal{C}}(r,x,\alpha;N)=\sum_{\begin{subarray}{c}0\leq n_{1}\leq N-1\\ 0\leq n_{2}\leq N-1\end{subarray}}\chi_{\mathcal{C}_{r}}(x_{1}+n_{1}\alpha_{1},x_{2}+n_{2}\alpha_{2})-N^{2}\text{Vol}(\mathcal{C}_{r}) (1 .1)

where Ο‡π’žr\chi_{\mathcal{C}_{r}} is the indicator function of the set π’žr\mathcal{C}_{r}.

We will show that by decomposing the discrepancy function into 22 components, each component would admit a limit distribution after a suitable normalization, specifically:

Dπ’žβ€‹(r,x,Ξ±;N)=βˆ‘dΒ―=12Dπ’ž,d¯​(r,x,Ξ±;N)D_{\mathcal{C}}(r,x,\alpha;N)=\sum_{\bar{d}=1}^{2}D_{\mathcal{C},\bar{d}}(r,x,\alpha;N) (1 .2)

where Dπ’ž,dΒ―D_{\mathcal{C},\bar{d}} represents the part of the Fourier series of Dπ’žD_{\mathcal{C}} with coefficients of dΒ―\bar{d} non-zero coordinate(s), whose definitions will be clearer after we introduce the Fourier series of π’Ÿπ’ž\mathcal{D}_{\mathcal{C}} in Section 3.

Our main result is the following:

Theorem 1.

Let π’ž\mathcal{C} be a symmetric, strictly convex analytic body that fits inside the unit cube of ℝ2\mathbb{R}^{2}, and Dπ’žD_{\mathcal{C}}, Dπ’ž,dΒ―D_{\mathcal{C},\bar{d}} defined as in (1 .1) and (1 .2), there exists a limit distribution for each Dπ’ž,d¯​(r,x,Ξ±)D_{\mathcal{C},\bar{d}}(r,x,\alpha) after a suitable normalization, specifically, we have 2 distinct cases:

(a) For dΒ―=1\bar{d}=1, assume that (x,Ξ±)(x,\alpha) are uniformly distributed in 𝕋2×𝕋2\mathbb{T}^{2}\times\mathbb{T}^{2}, then for every fixed rr, there exists a function π’Ÿπ’ž,1,r​(x,Ξ±,Ξ²):(𝕋2)3→ℝ\mathcal{D}_{\mathcal{C},1,r}(x,\alpha,\beta):(\mathbb{T}^{2})^{3}\rightarrow\mathbb{R}, such that as Nβ†’βˆžN\rightarrow\infty,

Dπ’ž,1​(r,x,Ξ±;N)/Nβ‡’π’Ÿπ’ž,1,r​(x,Ξ±,Ξ²)D_{\mathcal{C},1}(r,x,\alpha;N)/N\Rightarrow\mathcal{D}_{\mathcal{C},1,r}(x,\alpha,\beta)

in distribution, where (x,Ξ±,Ξ²)(x,\alpha,\beta) is uniformly distribtuted on (𝕋2)3(\mathbb{T}^{2})^{3}.

(b) For dΒ―=2\bar{d}=2, assume that (r,x,Ξ±)(r,x,\alpha) are uniformly distributed in X=[a,b]×𝕋2×𝕋2X=[a,b]\times\mathbb{T}^{2}\times\mathbb{T}^{2}, and denote Ξ»\lambda the normalized Lebesgue measure on XX, then there exists a distribtuion function π’Ÿπ’ž,2​(z):ℝ→[0,1]\mathcal{D}_{\mathcal{C},2}(z):\mathbb{R}\rightarrow[0,1] such that for any b>a>0b>a>0, we have

limNβ†’βˆžΞ»β€‹{(r,x,Ξ±)∈[a,b]×𝕋2×𝕋2|Dπ’ž,2​(r,x,Ξ±;N)r12​N12≀z}=π’Ÿπ’ž,2​(z).\lim_{N\rightarrow\infty}\lambda\{(r,x,\alpha)\in[a,b]\times\mathbb{T}^{2}\times\mathbb{T}^{2}|\frac{D_{\mathcal{C},2}(r,x,\alpha;N)}{r^{\frac{1}{2}}N^{\frac{1}{2}}}\leq z\}=\mathcal{D}_{\mathcal{C},2}(z). (1 .3)

The explicit forms of π’Ÿπ’ž,dΒ―\mathcal{D}_{\mathcal{C},\bar{d}} will be given in Proposition 2.2 of Section 2.

Remark.

With the same reason as in [4, 3], rr needs to be random in part (b) in Theorem 1, in order to help prove independence between variables. While in part (a), the function behaves like a smooth function, and rr does not need to be random.

This paper is organized as follows: Section 2 will present the explicit form of the distribution functions. In Section 3 we will prove the limit distribution of the easier part of the discrepancy function Dπ’ž,1D_{\mathcal{C},1}. Sections 4 to 6 are devoted to the general d-dimensional counterpart of the sum Dπ’ž,2D_{\mathcal{C},2}, we give a detailed description of the sum in terms of short vectors of the lattice spaces, and how the variables become independent as Nβ†’βˆžN\rightarrow\infty. Section 4 obtains the main part of the sum that contributes to the discrepancy by using harmonic analysis. Section 5 introduces the space of lattices and express the discrepancy in the language of lattices. Section 6 shows the variables in the expression of Section 5 become independent as Nβ†’βˆžN\rightarrow\infty.

2 LIMIT DISTRIBUTIONS

2.1 Limit Dstribution for the case dΒ―=1\bar{d}=1.

Proposition 2.1.

If π’ž\mathcal{C} is an analytic symmetric strictly convex body in ℝ2\mathbb{R}^{2}, then we have

π’Ÿπ’ž,1​(r,x,Ξ±,Ξ²)=Bπ’žr​(Ξ±,Ξ²)βˆ’Bπ’žr​(Ξ±,x),\mathcal{D}_{\mathcal{C},1}(r,x,\alpha,\beta)=B_{\mathcal{C}_{r}}(\alpha,\beta)-B_{\mathcal{C}_{r}}(\alpha,x),

where

Bπ’žr​(Ξ±,x)=βˆ‘kβ‰ 0ak​(r)e2​π​i​(k,x)βˆ’1​e2​π​i​(k,x),B_{\mathcal{C}_{r}}(\alpha,x)=\sum_{k\neq 0}\frac{a_{k}(r)}{e^{2\pi i(k,x)}-1}e^{2\pi i(k,x)},

ak​(r)=0a_{k}(r)=0 when k1​k2β‰ 0k_{1}k_{2}\neq 0 and ak​(r)=Ο‡^π’žr​(k)a_{k}(r)=\hat{\chi}_{\mathcal{C}_{r}}(k) when k1​k2=0k_{1}k_{2}=0, where Ο‡^π’žr​(k)\hat{\chi}_{\mathcal{C}_{r}}(k) represent the kkth Fourier coefficient of Ο‡π’žr\chi_{\mathcal{C}_{r}}, the specific form of which is shown in (3 .1).

2.2 Limit Distribution for the case dΒ―=2\bar{d}=2.

Notations. Let M=S​L​(2,ℝ)/S​L​(2,β„€)M=SL(2,\mathbb{R})/SL(2,\mathbb{Z}) denote the space of 2-dimensional unimodular lattices of ℝ2\mathbb{R}^{2}. M2=∏2 copiesMM^{2}=\prod_{\text{2 copies}}M. Given L=(L1,L2)∈M2L=(L_{1},L_{2})\in M^{2} we denote by e1​(Li)e_{1}(L_{i}) the shortest vector in LiL_{i}, and e2​(Li)e_{2}(L_{i}) the shortest vector in LiL_{i} among those who have the shortest nonzero projection on the orthocomplement of the line generated by e1​(Li)e_{1}(L_{i}). Clearly the vectors e1​(Li),e2​(Li)e_{1}(L_{i}),e_{2}(L_{i}) are well defined outside a set of Haar measure 0. In fact, these vectors generate the lattice (see [1]). We denote e​(Li)=(e1​(Li),e2​(Li))e(L_{i})=(e_{1}(L_{i}),e_{2}(L_{i})).

Let 𝒡\mathcal{Z} be the set of prime vectors mβˆˆβ„€2m\in\mathbb{Z}^{2} (i.e. the coordinates are coprime) with positive first nonzero coordinate. For later usage in Section 4 and 5, we define 𝒡2={𝐦=(m1,m2),miβˆˆπ’΅}\mathcal{Z}^{2}=\{\mathbf{m}=(m^{1},m^{2}),m^{i}\in\mathcal{Z}\}, and let

T2∞=(𝕋2)2×𝕋𝒡×𝒡2T_{2}^{\infty}=(\mathbb{T}^{2})^{2}\times\mathbb{T}^{\mathcal{Z}\times\mathcal{Z}^{2}}

We denote elements of T2∞T_{2}^{\infty} by (𝜽,𝐛)(\bm{\theta},\mathbf{b}), where 𝜽=(ΞΈ1,ΞΈ2)\bm{\theta}=(\theta^{1},\theta^{2}), ΞΈiβˆˆπ•‹2\theta^{i}\in\mathbb{T}^{2}, and 𝐛=(bp,𝐦)(p,𝐦)βˆˆπ’΅Γ—π’΅2\mathbf{b}=(b_{p,\mathbf{m}})_{(p,\mathbf{m})\in{\mathcal{Z}\times\mathcal{Z}^{2}}}. For 𝐦=(m1,m2)βˆˆπ’΅2\mathbf{m}=(m^{1},m^{2})\in\mathcal{Z}^{2} and L=(L1,L2)∈M2L=(L_{1},L_{2})\in M^{2}, we denote by (Xmi,Zmi)=(mi,e​(Li))(X_{m^{i}},Z_{m^{i}})=(m^{i},e(L_{i})) the vector m1i​e1​(Li)+m2i​e2​(Li)m^{i}_{1}e_{1}(L_{i})+m^{i}_{2}e_{2}(L_{i}). Given a prime vector p=(p1,p2)βˆˆπ’΅p=(p_{1},p_{2})\in\mathcal{Z}, we denote Xp,𝐦=(p1​Xm1,p2​Xm2)X_{p,\mathbf{m}}=(p_{1}X_{m^{1}},p_{2}X_{m^{2}}) and Rp,𝐦=β€–Xp,𝐦‖R_{p,\mathbf{m}}=\|X_{p,\mathbf{m}}\| the Euclidean norm of Xp,𝐦X_{p,\mathbf{m}}.

Limit distribution. Let π’ž\mathcal{C} be a stricly convex body with smooth boundary. For each vector ΞΎβˆˆπ•Š1\xi\in\mathbb{S}^{1}, we denote by K​(ΞΎ)K(\xi) the gaussian curvature of βˆ‚C\partial C at the unique point x​(ΞΎ)βˆˆβˆ‚Cx(\xi)\in\partial C where the unit outer normal vector is ΞΎ\xi.

Denote

β„³2=M2Γ—T2∞,\mathcal{M}_{2}=M^{2}\times T_{2}^{\infty},

and let ΞΌ\mu be the Haar measure on β„³2\mathcal{M}_{2}. Define the following function on β„³2\mathcal{M}_{2}

β„’π’žβ€‹(L,𝜽,𝐛)=1Ο€3β€‹βˆ‘|pΛ‡|=1βˆžβˆ‘pβˆˆπ’΅βˆ‘mβˆˆπ’΅2Kβˆ’12​(Xp,𝐦Rp,𝐦)Γ—cos⁑(2​π​pˇ​(βˆ‘i=12(pi​(mi,ΞΈi))))​sin⁑(2​π​(pˇ​bp,π¦βˆ’18))β€‹βˆi=12sin⁑(π​pˇ​pi​Zmi)pΛ‡72​Rp,𝐦32β€‹βˆi=12(pi​Zmi).\begin{aligned} &\mathcal{L}_{\mathcal{C}}\left(L,\bm{\theta},\mathbf{b}\right)=\frac{1}{\pi^{3}}\sum_{|\check{p}|=1}^{\infty}\sum_{p\in\mathcal{Z}}\sum_{m\in\mathcal{Z}^{2}}K^{-\frac{1}{2}}\left(\frac{X_{p,\mathbf{m}}}{R_{p,\mathbf{m}}}\right)\\ &\times\frac{\cos\left(2\pi\check{p}\left(\sum_{i=1}^{2}\left(p_{i}\left(m^{i},\theta^{i}\right)\right)\right)\right)\sin\left(2\pi\left(\check{p}b_{p,\mathbf{m}}-\frac{1}{8}\right)\right)\prod_{i=1}^{2}\sin\left(\pi\check{p}p_{i}Z_{m^{i}}\right)}{\check{p}^{\frac{7}{2}}R_{p,\mathbf{m}}^{\frac{3}{2}}\prod_{i=1}^{2}\left(p_{i}Z_{m^{i}}\right)}\end{aligned}. (2 .1)

The distribution π’Ÿπ’ž,2\mathcal{D}_{\mathcal{C},2} of Theorem 1 can now be described by the level set of the function above:

Proposition 2.2.

If π’ž\mathcal{C} is an analytic, symmetric, strictly convex body in ℝ2\mathbb{R}^{2}, then for any zβˆˆβ„z\in\mathbb{R} we have

π’Ÿπ’ž,2​(z)=μ​{(L,𝜽,𝐛)βˆˆβ„³2:ℒ​(L,𝜽,𝐛)≀z}.\mathcal{D}_{\mathcal{C},2}(z)=\mu\{(L,\bm{\theta},\mathbf{b})\in\mathcal{M}_{2}:\mathcal{L}(L,\bm{\theta},\mathbf{b})\leq z\}.

3 FOURIER SERIES AND PROOF OF PROPOSITION 2.1

In this section, we first introduce the Fourier series of the discrepancy function as our main object of study, and then give a proof for the limit distribution of the first part of the discrepancy function.

In following sections, Ο΅>0\epsilon>0 is fixed and can be arbitrarily small. The constants CC may vary between inequalities but it does not depend on any variables other than the dimension dd, which is fixed to 2 in our case. Though we only treat the special case d=2d=2 for the sum Dπ’žD_{\mathcal{C}}, it will be clear from the proof that higher dimensional counterparts Dπ’ž,dΒ―<d+12D_{\mathcal{C},\bar{d}<\frac{d+1}{2}} can be treated in the exact same way as Dπ’ž,1D_{\mathcal{C},1}, and higher dimensional counterparts Dπ’ž,dΒ―>d+12D_{\mathcal{C},\bar{d}>\frac{d+1}{2}} is similar to the case of Dπ’ž,2D_{\mathcal{C},2}. The sum Dπ’ž,d+12D_{\mathcal{C},\frac{d+1}{2}} exhibits distinctly different behavior and we conjecture that it is similar to the case of toral translations relative to boxes and admits a limit Cauchy distribution.

3.1 Fourier series for convex bodies.

We introduce the Fourier series for the smooth strictly convex body π’ž\mathcal{C} by using the aymptotic formula obtained in [5]. For each vector tβˆˆβ„2t\in\mathbb{R}^{2}, define its maximal projection on βˆ‚π’ž\partial\mathcal{C} by P​(t)=supxβˆˆβˆ‚π’ž(t,x)P(t)=\sup_{x\in\partial\mathcal{C}}(t,x), if π’ž\mathcal{C} is of class C92C^{\frac{9}{2}}, then we have the following formula for the Fourier node:

(2​π​i​|t|)​χ^π’žβ€‹(t)=ρ​(π’ž,t)βˆ’ΟΒ―β€‹(π’ž,βˆ’t)(2\pi i|t|)\hat{\chi}_{\mathcal{C}}(t)=\rho(\mathcal{C},t)-\bar{\rho}(\mathcal{C},-t) (3 .1)

with

ρ​(π’ž,t)=|t|βˆ’12​Kβˆ’12​(t/|t|)​ei​2​π​(P​(t)βˆ’18)+π’ͺ​(|t|βˆ’32).\rho(\mathcal{C},t)=|t|^{-\frac{1}{2}}K^{-\frac{1}{2}}(t/|t|)e^{i2\pi(P(t)-\frac{1}{8})}+\mathcal{O}(|t|^{-\frac{3}{2}}).

By a change of variable we have Ο‡^π’žr​(k)=r​χ^π’žβ€‹(r​k)\hat{\chi}_{\mathcal{C}_{r}}(k)=r\hat{\chi}_{\mathcal{C}}(rk), and by grouping the corresponding positive and negative terms in the Fourier series we get that for a symmetric body:

Ο‡π’žr​(x)βˆ’V​o​l​(π’žr)=r12β€‹βˆ‘kβˆˆβ„€2βˆ’{0}ck​(r)​cos⁑(2​π​(k,x)),\chi_{\mathcal{C}_{r}}(x)-Vol(\mathcal{C}_{r})=r^{\frac{1}{2}}\sum_{k\in{\mathbb{Z}^{2}}-\{0\}}c_{k}(r)\cos(2\pi(k,x)), (3 .2)
ck​(r)=dk​(r)+π’ͺ​(|k|βˆ’52),c_{k}(r)=d_{k}(r)+\mathcal{O}(|k|^{-\frac{5}{2}}),
dk​(r)=1π​g​(k,r)|k|32,d_{k}(r)=\frac{1}{\pi}\frac{g(k,r)}{|k|^{\frac{3}{2}}},
g​(k,r)=Kβˆ’12​(k/|k|)​sin⁑(2​π​(r​P​(k))βˆ’18).g(k,r)=K^{-\frac{1}{2}}(k/|k|)\sin(2\pi(rP(k))-\frac{1}{8}).

3.2 Proof for the limit distribution when dΒ―=1\bar{d}=1.

We will show that after being normalized by NN, Dπ’ž,1D_{\mathcal{C},1}, the part of the Fourier series that consists of nodes

k=(k1,k2)β‰ (0,0)​ and ​k1​k2=0,k=(k_{1},k_{2})\neq(0,0)\text{ and }k_{1}k_{2}=0,

will behave like the ergodic sum of a smooth function.

First, we define

Aπ’žr(x)=βˆ‘k1β‰ 0Ο‡^π’žr(k1,0)ei​2​π​k1​x1+βˆ‘k2β‰ 0Ο‡^π’žr(0,k2)ei​2​π​k2​x2=:βˆ‘kβˆˆβ„€2βˆ’0ak(r)ei​2​π​(k,x),A_{\mathcal{C}_{r}}(x)=\sum_{k_{1}\neq 0}\hat{\chi}_{\mathcal{C}_{r}}(k_{1},0)e^{i2\pi k_{1}x_{1}}+\sum_{k_{2}\neq 0}\hat{\chi}_{\mathcal{C}_{r}}(0,k_{2})e^{i2\pi k_{2}x_{2}}=:\sum_{k\in{\mathbb{Z}^{2}}-{0}}a_{k}(r)e^{i2\pi(k,x)},

where ak​(r)=0a_{k}(r)=0 when k1​k2β‰ 0k_{1}k_{2}\neq 0 and ak​(r)=Ο‡^π’žr​(k)a_{k}(r)=\hat{\chi}_{\mathcal{C}_{r}}(k) when k1​k2=0k_{1}k_{2}=0, then Dπ’ž,1D_{\mathcal{C},1} takes the following form:

Dπ’ž,1​(r,x,Ξ±;N)=Nβ€‹βˆ‘n=0Nβˆ’1Aπ’žr​(x+n​α),D_{\mathcal{C},1}(r,x,\alpha;N)=N\sum^{N-1}_{n=0}A_{\mathcal{C}_{r}}(x+n\alpha),

Proposition 2.1 will follow if we could prove the following:

Lemma 3.1.

For almost every Ξ±βˆˆπ•‹2\alpha\in\mathbb{T}^{2}, the series defined by:

Bπ’žr​(Ξ±,x)=βˆ‘kβ‰ 0ak​(r)e2​π​i​(k,Ξ±)βˆ’1​e2​π​i​(k,x),B_{\mathcal{C}_{r}}(\alpha,x)=\sum_{k\neq 0}\frac{a_{k}(r)}{e^{2\pi i(k,\alpha)}-1}e^{2\pi i(k,x)},

is convergent in L2​(x)L^{2}(x), and we have

Aπ’žr​(x+n​α)=Bπ’žr​(Ξ±,x+(n+1)​α)βˆ’Bπ’žr​(Ξ±,x+n​α).A_{\mathcal{C}_{r}}(x+n\alpha)=B_{\mathcal{C}_{r}}(\alpha,x+(n+1)\alpha)-B_{\mathcal{C}_{r}}(\alpha,x+n\alpha).
Proof.

The identity is obtained by direct calculation. We will focus on the convergence of the series Bπ’žr​(Ξ±,x)B_{\mathcal{C}_{r}}(\alpha,x). Note that

βˆ«π•‹2|Bπ’žr​(Ξ±,x)|2​𝑑x≀C​(βˆ‘k1β‰ 01|k1|3​|ei​2​π​k1​α1βˆ’1|2+βˆ‘k2β‰ 01|k2|3​|ei​2​π​k2​α2βˆ’1|2)\int_{\mathbb{T}^{2}}|B_{\mathcal{C}_{r}}(\alpha,x)|^{2}dx\leq C\left(\sum_{k_{1}\neq 0}\frac{1}{|k_{1}|^{3}|e^{i2\pi k_{1}\alpha_{1}}-1|^{2}}+\sum_{k_{2}\neq 0}\frac{1}{|k_{2}|^{3}|e^{i2\pi k_{2}\alpha_{2}}-1|^{2}}\right)

Therefore it suffices to prove that the series

βˆ‘kiβ‰ 01|ki|3​‖ki​αiβ€–2\sum_{k_{i}\neq 0}\frac{1}{|k_{i}|^{3}\|k_{i}\alpha_{i}\|^{2}} (3 .3)

is convergent for almost every Ξ±iβˆˆπ•‹\alpha_{i}\in\mathbb{T}, i=1,2i=1,2.

By standard application of Borel-Cantelli Lemma, we have for almost every Ξ±iβˆˆπ•‹\alpha_{i}\in\mathbb{T}, every ki>0k_{i}>0 and every Ξ΄>0\delta>0 we have

β€–ki​αiβ€–β‰₯C​(Ξ±i,Ξ΄)|ki|​(ln⁑|ki|)1+Ξ΄,\|k_{i}\alpha_{i}\|\geq\frac{C(\alpha_{i},\delta)}{|k_{i}|(\ln|k_{i}|)^{1+\delta}}, (3 .4)

which gives

|ln⁑‖ki​αiβ€–|≀C​ln⁑|ki||\ln\|k_{i}\alpha_{i}\||\leq C\ln|k_{i}| (3 .5)

where for convenience, ln⁑1\ln 1 is defined as 1. Therefore by taking Ξ΄\delta small, and let the constant C​(Ξ±,Ξ΄)C(\alpha,\delta) vary from line to line,

βˆ‘kiβ‰ 01|ki|3​‖ki​αiβ€–2\displaystyle\sum_{k_{i}\neq 0}\frac{1}{|k_{i}|^{3}\|k_{i}\alpha_{i}\|^{2}} ≀(​3 .4​)C​(Ξ±,Ξ΄)β€‹βˆ‘kiβ‰ 0(ln⁑|ki|)1+Ξ΄|ki|2​‖ki​αiβ€–\displaystyle\mathop{\leq}\limits_{\eqref{inequality for (k_ia_i)}}C(\alpha,\delta)\sum_{k_{i}\neq 0}\frac{(\ln|k_{i}|)^{1+\delta}}{|k_{i}|^{2}\|k_{i}\alpha_{i}\|} (3 .6)
≀C​(Ξ±,Ξ΄)β€‹βˆ‘kiβ‰ 01|ki|​(ln⁑|ki|)2+2​δ​‖ki​αiβ€–\displaystyle\leq C(\alpha,\delta)\sum_{k_{i}\neq 0}\frac{1}{|k_{i}|(\ln|k_{i}|)^{2+2\delta}\|k_{i}\alpha_{i}\|}
≀(​3 .5​)C​(Ξ±,Ξ΄)β€‹βˆ‘kiβ‰ 01|ki|​(ln⁑|ki|)1+δ​‖ki​αi‖​|ln⁑‖ki​αiβ€–|1+Ξ΄.\displaystyle\mathop{\leq}\limits_{\eqref{inequality for ln(k_ia_i)}}C(\alpha,\delta)\sum_{k_{i}\neq 0}\frac{1}{|k_{i}|(\ln|k_{i}|)^{1+\delta}\|k_{i}\alpha_{i}\||\ln\|k_{i}\alpha_{i}\||^{1+\delta}}.

Note that the integral

J​(ki)=βˆ«π•‹1β€–ki​αi‖​|ln⁑(β€–ki​αiβ€–)|1+δ​𝑑αiJ(k_{i})=\int_{\mathbb{T}}\frac{1}{\|k_{i}\alpha_{i}\||\ln(\|k_{i}\alpha_{i}\|)|^{1+\delta}}d\alpha_{i}

is convergent and the value is the same for all kik_{i}, thus for almost every αi∈T\alpha_{i}\in T,

βˆ‘kiβ‰ 01|ki|(ln|ki|)1+Ξ΄βˆ₯kiΞ±iβˆ₯|lnβˆ₯kiΞ±iβˆ₯)|1+Ξ΄\sum_{k_{i}\neq 0}\frac{1}{|k_{i}|(\ln|k_{i}|)^{1+\delta}\|k_{i}\alpha_{i}\||\ln\|k_{i}\alpha_{i}\|)|^{1+\delta}}

is also convergent. Then the L2L^{2} convergence of Bπ’žr​(Ξ±,x)B_{\mathcal{C}_{r}}(\alpha,x) follows from the convegence of (3 .3) through (3 .6). ∎

4 NON-RESONANT TERMS.

This section is devoted to highlight the nodes with main contributions in the Fourier series Dπ’ž,2D_{\mathcal{C},2}, the final goal is to arrive at the sum (4 .12) as an equivalent expression for our Fourier series in terms of limit distributions. Throughout Section 4, we will use the formula (3 .2) since we restrict ourselves to the case symmetric shapes.

For k=(k1,k2)k=(k_{1},k_{2}) and Ξ±=(Ξ±1,Ξ±2)\alpha=(\alpha_{1},\alpha_{2}), we use the notation {ki​αi}:=ki​αi+li\{k_{i}\alpha_{i}\}:=k_{i}\alpha_{i}+l_{i} where lil_{i} is the unique integer such that βˆ’1/2<ki​αi+li≀1/2-1/2<k_{i}\alpha_{i}+l_{i}\leq 1/2. To evaluate Dπ’ž,2D_{\mathcal{C},2}, we sum up term by term in the Fourier expansion (3 .2) of Ο‡π’žr\chi_{\mathcal{C}_{r}} for n1n_{1}, n2n_{2}, and we will simplify by using the summation formula

βˆ‘n=0Nβˆ’1cos⁑(A+n​B)=cos⁑(A+Nβˆ’12​B)​sin⁑(N2​B)sin⁑Bl2.\sum_{n=0}^{N-1}\cos(A+nB)=\frac{\cos(A+\frac{N-1}{2}B)\sin(\frac{N}{2}B)}{\sin{\frac{B_{l}}{2}}}.

Then the normalized term for the node kk becomes

f​(r,x,Ξ±;N,k)=ck​(r)​cos⁑(2​π​(k,x)+π​(Nβˆ’1)​(βˆ‘i=12{ki​αi}))β€‹βˆi=12sin⁑(π​N​{ki​αi})N12β€‹βˆi=12sin⁑(π​{ki​αi}).f(r,x,\alpha;N,k)=c_{k}(r)\frac{\cos(2\pi(k,x)+\pi(N-1)(\sum_{i=1}^{2}\{k_{i}\alpha_{i}\}))\prod_{i=1}^{2}\sin(\pi N\{k_{i}\alpha_{i}\})}{N^{\frac{1}{2}}\prod_{i=1}^{2}\sin(\pi\{k_{i}\alpha_{i}\})}. (4 .1)

where N12N^{\frac{1}{2}} is the normalizer.

Since the sum Dπ’ž,2D_{\mathcal{C},2} consists of all-non-zero coordinates nodes, it becomes the following:

Δ​(r,x,Ξ±;N)=βˆ‘kβˆˆβ„€2:∏i=12kiβ‰ 0f​(r,x,Ξ±;N,k)\Delta(r,x,\alpha;N)=\sum_{k\in\mathbb{Z}^{2}:\prod_{i=1}^{2}k_{i}\neq 0}f(r,x,\alpha;N,k)

𝑺​𝒕​𝒆​𝒑​ 1.\bm{Step\ 1.} This step shows that the nodes outside the circle of radius N/Ο΅N/\epsilon have a negligible combined contribution. Given a set SS, for funciton hh defined on (𝕋2)2Γ—S\left(\mathbb{T}^{2}\right)^{2}\times S, we denote by β€–hβ€–2\|h\|_{2} the supremum of the L2L^{2} norms β€–h​(β‹…,s)β€–\|h(\cdot,s)\| over all s∈Ss\in S. Let

Ξ”1​(r,x,Ξ±;N)=βˆ‘kβˆˆβ„€2:βˆ€1≀i≀2, 0<|ki|<NΟ΅f​(r,x,Ξ±;N,k)\Delta_{1}(r,x,\alpha;N)=\sum_{k\in\mathbb{Z}^{2}:\forall 1\leq i\leq 2,\ 0<|k_{i}|<\frac{N}{\epsilon}}f(r,x,\alpha;N,k)
Lemma 4.1.

We have

β€–Ξ”βˆ’Ξ”1β€–2≀C​ϡ1/2\|\Delta-\Delta_{1}\|_{2}\leq C\epsilon^{1/2} (4 .2)
Proof.

Since

βˆ«π•‹(sin(Ο€N(kiΞ±i)sin⁑(π​(ki​αi)))2​𝑑αi=βˆ«π•‹|ei​π​N​ki​αiβˆ’eβˆ’i​π​N​ki​αiei​π​ki​αiβˆ’eβˆ’i​π​ki​αi|2​𝑑αi\int_{\mathbb{T}}\left(\frac{\sin(\pi N(k_{i}\alpha_{i})}{\sin(\pi(k_{i}\alpha_{i}))}\right)^{2}d\alpha_{i}=\int_{\mathbb{T}}\left|\frac{e^{i\pi Nk_{i}\alpha_{i}}-e^{-i\pi Nk_{i}\alpha_{i}}}{e^{i\pi k_{i}\alpha_{i}}-e^{-i\pi k_{i}\alpha_{i}}}\right|^{2}d\alpha_{i}
=βˆ«π•‹|ei​2​π​N​ki​αiβˆ’1ei​2​π​ki​αiβˆ’1|2​𝑑αi=βˆ«π•‹|βˆ‘n=0Nβˆ’1ei​2​π​n​ki​αi|2​𝑑αi,=\int_{\mathbb{T}}\left|\frac{e^{i2\pi Nk_{i}\alpha_{i}}-1}{e^{i2\pi k_{i}\alpha_{i}}-1}\right|^{2}d\alpha_{i}=\int_{\mathbb{T}}|\sum_{n=0}^{N-1}e^{i2\pi nk_{i}\alpha_{i}}|^{2}d\alpha_{i},

we have for every 1≀i≀d1\leq i\leq d,

βˆ«π•‹(sin(Ο€N(kiΞ±i)sin⁑(π​(ki​αi)))2​𝑑αi≀N.\int_{\mathbb{T}}\left(\frac{\sin(\pi N(k_{i}\alpha_{i})}{\sin(\pi(k_{i}\alpha_{i}))}\right)^{2}d\alpha_{i}\leq N.

Since in the integral only the square terms have non zero contributions, and |dr​(k)|=π’ͺ​(|k|βˆ’32)|d_{r}(k)|=\mathcal{O}(|k|^{-\frac{3}{2}}), we get that

β€–Ξ”βˆ’Ξ”1β€–22≀C​N2​1Nβ€‹βˆ‘|k|β‰₯NΟ΅1|k|3≀C​N​1NΟ΅=C​ϡ.\|\Delta-\Delta_{1}\|_{2}^{2}\leq CN^{2}\frac{1}{N}\sum_{|k|\geq\frac{N}{\epsilon}}\frac{1}{|k|^{3}}\leq CN\frac{1}{\frac{N}{\epsilon}}=C\epsilon.

∎

𝑺​𝒕​𝒆​𝒑​ 2.\bm{Step\ 2.} We show that, within the range of |k|<N/Ο΅|k|<N/\epsilon, by taking out a small measure set of Ξ±\alpha, the divisors admit a lower bound such that N14​|ki|34​{ki​αi}>Ο΅1/2N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}}\{k_{i}\alpha_{i}\}>\epsilon^{1/2}, for every 1≀i≀21\leq i\leq 2. Therefore we can furthur restrict our sum in the set of small divisors S​(N,Ξ±)S(N,\alpha) (see (4 .3)).

Let

EN=⋃1≀|n|≀NΟ΅{Ξ±βˆˆπ•‹2:βˆƒ1≀i≀2,|n|34​|{n​αi}|<Ο΅12N14}.E_{N}=\bigcup_{1\leq|n|\leq\frac{N}{\epsilon}}\left\{\alpha\in\mathbb{T}^{2}:\exists 1\leq i\leq 2,\quad|n|^{\frac{3}{4}}|\{n\alpha_{i}\}|<\frac{\epsilon^{\frac{1}{2}}}{N^{\frac{1}{4}}}\right\}.

Note that

|EN|≀dβ€‹βˆ‘n=1Nϡϡ12|n|34​N14≀d​ϡ14.|{E}_{N}|\leq d\sum_{n=1}^{\frac{N}{\epsilon}}\frac{\epsilon^{\frac{1}{2}}}{|n|^{\frac{3}{4}}N^{\frac{1}{4}}}\leq d\epsilon^{\frac{1}{4}}.

Outside the 2​ϡ142\epsilon^{\frac{1}{4}} measure set EN{E}_{N}, we have for 0<|ki|<N/Ο΅0<|k_{i}|<N/\epsilon, N14​|ki|34​{ki​αi}>Ο΅1/2N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}}\{k_{i}\alpha_{i}\}>\epsilon^{1/2}, for every 1≀i≀21\leq i\leq 2. This is how we apply the short vector argument in the next section.

Let

S(N,Ξ±)={kβˆˆβ„€2:βˆ€1≀i≀2,0<|ki|<NΟ΅,|ki|34|{kiΞ±i}|<1Ο΅2​N14.},S(N,\alpha)=\left\{k\in\mathbb{Z}^{2}:\forall 1\leq i\leq 2,\quad 0<|k_{i}|<\frac{N}{\epsilon},\quad|k_{i}|^{\frac{3}{4}}|\{k_{i}\alpha_{i}\}|<\frac{1}{\epsilon^{2}N^{\frac{1}{4}}}.\right\}, (4 .3)
Ξ”2​(r,x,Ξ±;N)=βˆ‘k∈S​(N,Ξ±)f​(r,x,Ξ±;N,k),\Delta_{2}(r,x,\alpha;N)=\sum_{k\in S(N,\alpha)}f(r,x,\alpha;N,k), (4 .4)

We have

Lemma 4.2.
β€–Ξ”βˆ’Ξ”2β€–L2​(𝕋2Γ—(𝕋2βˆ’EN))≀C​ϡ1/2\|\Delta-\Delta_{2}\|_{L^{2}(\mathbb{T}^{2}\times(\mathbb{T}^{2}-E_{N}))}\leq C\epsilon^{1/2} (4 .5)
Proof.

By (4 .2) it is sufficient to show that β€–Ξ”1βˆ’Ξ”2β€–L2​(𝕋2Γ—(𝕋2βˆ’EN))2≀C​ϡ\|\Delta_{1}-\Delta_{2}\|_{L^{2}(\mathbb{T}^{2}\times(\mathbb{T}^{2}-E_{N}))}^{2}\leq C\epsilon. We have

β€–Ξ”1βˆ’Ξ”2β€–L2​(𝕋2Γ—(𝕋2βˆ’EN))2≀CNβ€‹βˆ‘|k|<NΟ΅Ak\|\Delta_{1}-\Delta_{2}\|_{L^{2}(\mathbb{T}^{2}\times(\mathbb{T}^{2}-E_{N}))}^{2}\leq\frac{C}{N}\sum_{|k|<\frac{N}{\epsilon}}A_{k}

with

Ak=ck2β€‹βˆ«π•‹21∏i=12{ki​αi}​χ{βˆƒ1≀i≀2,|ki|34​|{ki​αi}|β‰₯1Ο΅2​N14}​𝑑α.A_{k}=c_{k}^{2}\int_{\mathbb{T}^{2}}\frac{1}{\prod_{i=1}^{2}\{k_{i}\alpha_{i}\}}\chi_{\left\{\exists 1\leq i\leq 2,\ |k_{i}|^{\frac{3}{4}}|\{k_{i}\alpha_{i}\}|\geq\frac{1}{\epsilon^{2}N^{\frac{1}{4}}}\right\}}d\alpha.

We have

Ak≀ck2β€‹βˆ‘j=12A​(k,j),A_{k}\leq c_{k}^{2}\sum_{j=1}^{2}A(k,j),

where A​(k,j)A(k,j) denote the part when the jβˆ’j-coordinate violates the condition in S​(N,Ξ±)S(N,\alpha):

A​(k,j)=\displaystyle A(k,j)= ∏iβ‰ jβˆ‘piβ‰₯1βˆ«π•‹1({ki​αi})2​χ{pi​ϡ12≀N14​|ki|34​|{ki​αi}|≀(pi+1)​ϡ12}​𝑑αi\displaystyle\prod_{i\neq j}\sum_{p_{i}\geq 1}\int_{\mathbb{T}}\frac{1}{(\{k_{i}\alpha_{i}\})^{2}}\chi_{\{p_{i}\epsilon^{\frac{1}{2}}\leq N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}}|\{k_{i}\alpha_{i}\}|\leq(p_{i}+1)\epsilon^{\frac{1}{2}}\}}d\alpha_{i} (4 .6)
Γ—βˆ‘pjβ‰₯1βˆ«π•‹1({kj​αj})2Ο‡{pjΟ΅2≀N14​|kj|34​|{kj​αj}|≀(pj+1)Ο΅2}dΞ±j\displaystyle\times\sum_{p_{j}\geq 1}\int_{\mathbb{T}}\frac{1}{(\{k_{j}\alpha_{j}\})^{2}}\chi_{\{\frac{p_{j}}{\epsilon^{2}}\leq N^{\frac{1}{4}}|k_{j}|^{\frac{3}{4}}|\{k_{j}\alpha_{j}\}|\leq\frac{(p_{j}+1)}{\epsilon^{2}}\}}d\alpha_{j}
=:∏iβ‰ jβˆ‘piβ‰₯1A(k,i,pi)βˆ‘pjβ‰₯1AΒ―(k,j,pj)\displaystyle=:\prod_{i\neq j}\sum_{p_{i}\geq 1}A(k,i,p_{i})\sum_{p_{j}\geq 1}\bar{A}(k,j,p_{j})

For piβ‰₯1p_{i}\geq 1 we define

B​(k,i,pi)={Ξ±iβˆˆπ•‹:pi​ϡ12≀N14​|ki|34​|{ki​αi}|≀(pi+1)​ϡ12},B(k,i,p_{i})=\left\{\alpha_{i}\in\mathbb{T}:p_{i}\epsilon^{\frac{1}{2}}\leq N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}}|\{k_{i}\alpha_{i}\}|\leq(p_{i}+1)\epsilon^{\frac{1}{2}}\right\},

and for pjβ‰₯1p_{j}\geq 1, define

Bl¯​(k,j,pj)={pjΟ΅2≀N14​|kj|34​|{kj​αj}|≀(pj+1)Ο΅2}.\bar{B_{l}}(k,j,p_{j})=\left\{\frac{p_{j}}{\epsilon^{2}}\leq N^{\frac{1}{4}}|k_{j}|^{\frac{3}{4}}|\{k_{j}\alpha_{j}\}|\leq\frac{(p_{j}+1)}{\epsilon^{2}}\right\}.

Then

|B​(k,i,pi)|≀ϡ12N14​|ki|34,|Bl¯​(k,j,pj)|≀1Ο΅2​N14​|kj|34.|B(k,i,p_{i})|\leq\frac{\epsilon^{\frac{1}{2}}}{N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}}},\quad|\bar{B_{l}}(k,j,p_{j})|\leq\frac{1}{\epsilon^{2}N^{\frac{1}{4}}|k_{j}|^{\frac{3}{4}}}.

Thus

A​(k,i,pi)≀ϡ12​(N14​|ki|34)2(Ο΅12)2​pi2​N14​|ki|34≀N14​|ki|34Ο΅12​pi2,A(k,i,p_{i})\leq\frac{\epsilon^{\frac{1}{2}}(N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}})^{2}}{(\epsilon^{\frac{1}{2}})^{2}p_{i}^{2}N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}}}\leq\frac{N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}}}{\epsilon^{\frac{1}{2}}p_{i}^{2}}, (4 .7)

similarly,

A¯​(k,j,pj)≀(Ο΅2)2​(N14​|kj|34)2Ο΅2​pj2​N14​|kj|34≀ϡ2​N14​|kj|34,\bar{A}(k,j,p_{j})\leq\frac{(\epsilon^{2})^{2}(N^{\frac{1}{4}}|k_{j}|^{\frac{3}{4}})^{2}}{\epsilon^{2}p_{j}^{2}N^{\frac{1}{4}}|k_{j}|^{\frac{3}{4}}}\leq\epsilon^{2}N^{\frac{1}{4}}|k_{j}|^{\frac{3}{4}},

By using ck=O​(1|k|32)c_{k}=O\left(\frac{1}{|k|^{\frac{3}{2}}}\right), we obtain

Ak≀C​1|k|3​ϡ32β€‹βˆi=12(N14​|ki|34)≀C​ϡ32​N12|k|32A_{k}\leq C\frac{1}{|k|^{3}}\epsilon^{\frac{3}{2}}\prod_{i=1}^{2}\left(N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}}\right)\leq C\epsilon^{\frac{3}{2}}\frac{N^{\frac{1}{2}}}{|k|^{\frac{3}{2}}}

Summing over k, we get

βˆ‘|k|<NΟ΅Ak≀C​ϡ32​N12β€‹βˆ‘|k|≀NΟ΅1|k|32≀C​ϡ​N,\sum_{|k|<\frac{N}{\epsilon}}A_{k}\leq C\epsilon^{\frac{3}{2}}N^{\frac{1}{2}}\sum_{|k|\leq{\frac{N}{\epsilon}}}\frac{1}{|k|^{\frac{3}{2}}}\leq C\epsilon N,

and the claim follows. ∎

𝑺​𝒕​𝒆​𝒑​ 3.\bm{Step\ 3.} In fact, with the bounded range of {ki​αi}\{k_{i}\alpha_{i}\} in Step 2, we can show that the main contribution of the Fourier series comes from the nodes of coordinates of order NN. Let

S^(N,Ξ±)={kβˆˆβ„€2:βˆ€1≀i≀2,NΟ΅3<|ki|<NΟ΅,|ki|34|{kiΞ±i}|<1Ο΅2​N14.},\hat{S}(N,\alpha)=\left\{k\in\mathbb{Z}^{2}:\forall 1\leq i\leq 2,\quad N\epsilon^{3}<|k_{i}|<\frac{N}{\epsilon},\quad|k_{i}|^{\frac{3}{4}}|\{k_{i}\alpha_{i}\}|<\frac{1}{\epsilon^{2}N^{\frac{1}{4}}}.\right\},
Ξ”3​(r,x,Ξ±;N)=βˆ‘k∈S^​(N,Ξ±)f​(r,x,Ξ±;N,k),\Delta_{3}(r,x,\alpha;N)=\sum_{k\in\hat{S}(N,\alpha)}f(r,x,\alpha;N,k), (4 .8)

We have

Lemma 4.3.
β€–Ξ”βˆ’Ξ”3β€–L2​(𝕋2Γ—(𝕋2βˆ’EN))≀C​ϡ1/2\|\Delta-\Delta_{3}\|_{L^{2}(\mathbb{T}^{2}\times(\mathbb{T}^{2}-E_{N}))}\leq C\epsilon^{1/2}
Proof.

By (4 .5) it is sufficient to show that β€–Ξ”3βˆ’Ξ”2β€–L2​(𝕋2Γ—(𝕋2βˆ’EN))2≀C​ϡ\|\Delta_{3}-\Delta_{2}\|_{L^{2}(\mathbb{T}^{2}\times(\mathbb{T}^{2}-E_{N}))}^{2}\leq C\epsilon. We have

β€–Ξ”3βˆ’Ξ”2β€–L2​(𝕋2Γ—(𝕋2βˆ’EN))2≀CNβ€‹βˆ‘|k|<N​ϡ3A^k\|\Delta_{3}-\Delta_{2}\|_{L^{2}(\mathbb{T}^{2}\times(\mathbb{T}^{2}-E_{N}))}^{2}\leq\frac{C}{N}\sum_{|k|<N\epsilon^{3}}\hat{A}_{k}

with

A^k=ck2β€‹βˆi=12βˆ«π•‹21{ki​αi}​χ{|ki|34​|{ki​αi}|β‰₯Ο΅12N14}​𝑑α.\hat{A}_{k}=c_{k}^{2}\prod_{i=1}^{2}\int_{\mathbb{T}^{2}}\frac{1}{\{k_{i}\alpha_{i}\}}\chi_{\left\{|k_{i}|^{\frac{3}{4}}|\{k_{i}\alpha_{i}\}|\geq\frac{\epsilon^{\frac{1}{2}}}{N^{\frac{1}{4}}}\right\}}d\alpha.

Repeating the argument in the Lemma 4.2 by replacing A¯​(k,j,pj)\bar{A}(k,j,p_{j}) in (4 .6) with A​(k,i,pi)A(k,i,p_{i}), and using the inequality (4 .7) we obtain

A^k≀C​1|k|3β€‹Ο΅βˆ’12β€‹βˆi=12(N14​|ki|34)≀Cβ€‹Ο΅βˆ’12​N12|k|32\hat{A}_{k}\leq C\frac{1}{|k|^{3}}\epsilon^{-\frac{1}{2}}\prod_{i=1}^{2}\left(N^{\frac{1}{4}}|k_{i}|^{\frac{3}{4}}\right)\leq C\epsilon^{-\frac{1}{2}}\frac{N^{\frac{1}{2}}}{|k|^{\frac{3}{2}}}

Summing over |k|≀N​ϡ3|k|\leq N\epsilon^{3}, we get

βˆ‘|k|<N​ϡ3A^k≀Cβ€‹Ο΅βˆ’12​N12β€‹βˆ‘|k|<N​ϡ31|k|32≀C​ϡ​N,\sum_{|k|<N\epsilon^{3}}\hat{A}_{k}\leq C\epsilon^{-\frac{1}{2}}N^{\frac{1}{2}}\sum_{|k|<N\epsilon^{3}}\frac{1}{|k|^{\frac{3}{2}}}\leq C\epsilon N,

and the claim follows. ∎

𝑺​𝒕​𝒆​𝒑​ 4.\bm{Step\ 4.} Now the error terms in the Fourier series can be savely removed. Introduce

fˇ​(r,x,Ξ±;N,k)=dk​(r)ck​(r)​f​(r,x,Ξ±;N,k)\check{f}(r,x,\alpha;N,k)=\frac{d_{k}(r)}{c_{k}(r)}f(r,x,\alpha;N,k)

and let

Δˇ​(r,x,Ξ±;N)=βˆ‘k∈Sˇ​(N,Ξ±)fˇ​(r,x,Ξ±;N,k).\check{\Delta}(r,x,\alpha;N)=\sum_{k\in\check{S}(N,\alpha)}\check{f}(r,x,\alpha;N,k). (4 .9)

Since |ckβˆ’dk|=π’ͺ​(|k|βˆ’52)|c_{k}-d_{k}|=\mathcal{O}(|k|^{-\frac{5}{2}}) and Ο΅\epsilon is fixed,

β€–Ξ”Λ‡βˆ’Ξ”^β€–L2​(𝕋2Γ—(𝕋2βˆ’EN))2β‰€βˆ‘Ο΅3​N<|k|<NΟ΅C|k|d+3​NN2≀π’ͺ​(Nβˆ’1).\|\check{\Delta}-\hat{\Delta}\|_{L^{2}(\mathbb{T}^{2}\times(\mathbb{T}^{2}-E_{N}))}^{2}\leq\sum_{\epsilon^{3}N<|k|<\frac{N}{\epsilon}}\frac{C}{|k|^{d+3}}\frac{N}{N^{2}}\leq\mathcal{O}(N^{-1}). (4 .10)

Therefor Ξ”^\hat{\Delta} and Ξ”Λ‡\check{\Delta} admit the same limit distribution if there exists one.

𝑺​𝒕​𝒆​𝒑​ 5.\bm{Step\ 5.} Observe that when Ο΅\epsilon is fixed, the sum in (4 .9) is limited to large kik_{i} and small ∏i=12|{ki​αi}|\prod_{i=1}^{2}|\{k_{i}\alpha_{i}\}|. We can replace fΛ‡\check{f} and Ξ”Λ‡\check{\Delta} by the following

g​(r,x,Ξ±;N,k)=dk​(r)​cos⁑(2​π​(k,x)+π​(Nβˆ’1)​(βˆ‘i=12{ki​αi}))β€‹βˆi=12sin⁑(π​N​{ki​αi})Ο€d​N12β€‹βˆi=12{ki​αi}.g(r,x,\alpha;N,k)=d_{k}(r)\frac{\cos(2\pi(k,x)+\pi(N-1)(\sum_{i=1}^{2}\{k_{i}\alpha_{i}\}))\prod_{i=1}^{2}\sin(\pi N\{k_{i}\alpha_{i}\})}{\pi^{d}N^{\frac{1}{2}}\prod_{i=1}^{2}\{k_{i}\alpha_{i}\}}.

Then it suffices to prove that

limNβ†’βˆžΞ»β€‹{(r,x,Ξ±)∈[a,b]×𝕋d×𝕋d|Δ′​(r,x,Ξ±;N)≀z}=π’Ÿβ€‹(z)\lim_{N\rightarrow\infty}\lambda\{(r,x,\alpha)\in[a,b]\times\mathbb{T}^{d}\times\mathbb{T}^{d}\ |\ \Delta^{\prime}(r,x,\alpha;N)\leq z\}=\mathcal{D}(z) (4 .11)

where

Ξ”β€²=βˆ‘k∈U​(N,Ξ±)g​(r,x,Ξ±;N,k)\Delta^{\prime}=\sum_{k\in U(N,\alpha)}g(r,x,\alpha;N,k) (4 .12)

and U​(N,Ξ±)U(N,\alpha) is any subset of β„€2\mathbb{Z}^{2} that contains S^​(N,Ξ±)\hat{S}(N,\alpha).

5 GEOMETRY OF THE SPACE OF LATTICES.

5.1.\bm{5.1.} Following [2], Section 2, and [4], Section 4, we show that the set S^​(N,Ξ±)\hat{S}(N,\alpha) corresponds to a set of short vectors in lattices in M2=MΓ—MM^{2}=M\times M, where the lattice takes the form L1Γ—L2L_{1}\times L_{2}, and Li∈M=S​L​(2,ℝ)/S​L​(2,β„€)L_{i}\in M=SL(2,\mathbb{R})/SL(2,\mathbb{Z}). Then the discrepancy function Ξ”β€²\Delta^{\prime} can be seen as a function on the homogeneous space M2M^{2}.

Let

gT=(eβˆ’T00eT),Λαi=(10Ξ±i1).g_{T}=\begin{pmatrix}e^{-T}&0\\ 0&e^{T}\end{pmatrix},\quad\Lambda_{\alpha_{i}}=\begin{pmatrix}1&0\\ \alpha_{i}&1\end{pmatrix}.

Consider the product lattice L​(N,Ξ±)=L​(N,Ξ±1)Γ—L​(N,Ξ±2)L(N,\alpha)=L(N,\alpha_{1})\times L(N,\alpha_{2}), where L​(N,Ξ±i)=gln⁑N​Λαi​℀2L(N,\alpha_{i})=g_{\ln N}\Lambda_{\alpha_{i}}\mathbb{Z}^{2}. For each k=(k1,k2)βˆˆβ„€2k=(k_{1},k_{2})\in\mathbb{Z}^{2}, we associate the vectors π’Œi=π’Œi​(ki)=(ki,li)\bm{k}_{i}=\bm{k}_{i}(k_{i})=(k_{i},l_{i}), where lil_{i} is the unique interger such that βˆ’12<ki​αi+li≀12-\frac{1}{2}<k_{i}\alpha_{i}+l_{i}\leq\frac{1}{2}. We then denote

(Xi,Zi)=(ki/N,N​{ki​αi})=gln⁑N​Λαiβ€‹π’Œi(X_{i},Z_{i})=(k_{i}/N,N\{k_{i}\alpha_{i}\})=g_{\ln N}\Lambda_{\alpha_{i}}\bm{k}_{i} (5 .1)

We have k∈S^​(N,Ξ±)k\in\hat{S}(N,\alpha) if and only if :

Ο΅3<|Xi|<1Ο΅,|Xi|34​|Zi|<1Ο΅2\epsilon^{3}<|X_{i}|<\frac{1}{\epsilon},\quad|X_{i}|^{\frac{3}{4}}|Z_{i}|<\frac{1}{\epsilon^{2}} (5 .2)

Recall the definition of the shortest vectors {e1​(N,Ξ±i),e2​(N,Ξ±i)}\{e_{1}(N,\alpha_{i}),\ e_{2}(N,\alpha_{i})\} of L​(N,Ξ±i)L(N,\alpha_{i}) in Section 2. We will prove a version of Lemma 4.1 in [4] that works for our product lattice space.

Lemma 5.1.

For every Ο΅>0\epsilon>0 there exists K​(Ο΅)>0K(\epsilon)>0 such that for Ξ±\alpha outside ENE_{N}, each k∈S^​(N,Ξ±)k\in\hat{S}(N,\alpha) corresponds to a pair of unique vectors (m1,m2)βˆˆβ„€2Γ—β„€2(m^{1},m^{2})\in\mathbb{Z}^{2}\times\mathbb{Z}^{2} such that for i=1,2i=1,2, β€–mi‖≀K​(Ο΅)\|m^{i}\|\leq K(\epsilon) and

gln⁑N​Λαiβ€‹π’Œi=m1i​e1​(N,Ξ±i)+m2i​e2​(N,Ξ±i).g_{\ln N}\Lambda_{\alpha_{i}}\bm{k}_{i}=m^{i}_{1}e_{1}(N,\alpha_{i})+m^{i}_{2}e_{2}(N,\alpha_{i}).

Conversely, for Ο΅>0\epsilon>0 fixed and NN large enough, Ξ±βˆ‰EN\alpha\notin E_{N} implies that for each pair of vectors (m1,m2)βˆˆβ„€2Γ—β„€2(m^{1},m^{2})\in\mathbb{Z}^{2}\times\mathbb{Z}^{2}, where β€–mi‖≀K​(Ο΅)\|m^{i}\|\leq K(\epsilon), i=1,2i=1,2, there exists a unique k=(k1,k2)βˆˆβ„€2k=(k_{1},k_{2})\in\mathbb{Z}^{2} such that for i=1,2,i=1,2,

gln⁑N​Λαiβ€‹π’Œi=(mi,e​(N,Ξ±i))=m1i​e1​(N,Ξ±i)+m2i​e2​(N,Ξ±i).g_{\ln N}\Lambda_{\alpha_{i}}\bm{k}_{i}=(m^{i},e(N,\alpha_{i}))=m^{i}_{1}e_{1}(N,\alpha_{i})+m^{i}_{2}e_{2}(N,\alpha_{i}).

Denote U​(N,Ξ±,Ο΅)U(N,\alpha,\epsilon) the set of k=(k1,k2)βˆˆβ„€2k=(k_{1},k_{2})\in\mathbb{Z}^{2} that corresponds to the set of pairs of vectors {(m1,m2)βˆˆβ„€2Γ—β„€2|β€–mi‖≀K​(Ο΅),i=1,2}\{(m^{1},m^{2})\in\mathbb{Z}^{2}\times\mathbb{Z}^{2}\ |\ \|m^{i}\|\leq K(\epsilon),\ i=1,2\}

Proof.

From (5 .2) we can deduce that k∈S^​(N,Ξ±)k\in\hat{S}(N,\alpha) implies gln⁑N​Λαiβ€‹π’Œig_{\ln N}\Lambda_{\alpha_{i}}\bm{k}_{i} is shorter that R​(Ο΅)=Ο΅βˆ’174R(\epsilon)=\epsilon^{-\frac{17}{4}} for i=1,2i=1,2. Since for each Li=L​(N,Ξ±i)L_{i}=L(N,\alpha_{i}), the short vectors e1​(Li),e2​(Li)e_{1}(L_{i}),e_{2}(L_{i}) form a basis in ℝ2\mathbb{R}^{2}, we have that the norm β€–xβ€–\|x\| is equivalent to the norm β€–βˆ‘j=1,2xj​ej​(Li)β€–\|\sum_{j=1,2}x_{j}e_{j}(L_{i})\|. Then for every L=L1Γ—L2L=L_{1}\times L_{2}, there exists K​(L)K(L), such that if miβˆˆβ„€2m^{i}\in\mathbb{Z}^{2} satisfies β€–miβ€–β‰₯K​(L)\|m^{i}\|\geq K(L), we have β€–(mi,e​(Li))β€–β‰₯R​(Ο΅)\|(m^{i},e(L_{i}))\|\geq R(\epsilon). Now we show that the choice of K​(L)K(L) can be uniform for the set of lattices {L∈M2|∏i=12L​(N,Ξ±i),Ξ±βˆ‰EN}\{L\in M^{2}\ |\ \prod_{i=1}^{2}L(N,\alpha_{i}),\alpha\notin E_{N}\}. Therefore it is enough to show that the set

{∏i=12L​(N,Ξ±i),Ξ±βˆ‰EN}\{\prod_{i=1}^{2}L(N,\alpha_{i}),\alpha\notin E_{N}\} (5 .3)

is precompact, since we can write the set as ∏i=12{L​(N,Ξ±i),Ξ±iβˆ‰EN(i)}\prod_{i=1}^{2}\{L(N,\alpha_{i}),\alpha_{i}\notin E_{N}^{(i)}\}, we prove that each component is precompact. By the bound (5 .2) for XiX_{i} and ZiZ_{i}, when Ξ±iβˆ‰EN(i)\alpha_{i}\notin E_{N}^{(i)}, if |Xi|<Ο΅3|X_{i}|<\epsilon^{3}, then |Zi|β‰₯1Ο΅134|Z_{i}|\geq\frac{1}{\epsilon^{\frac{13}{4}}}. For any lβˆˆβ„€l\in\mathbb{Z}, |N(kiΞ±i+l)|>|N({ki,Ξ±i}|=|Zi||N(k_{i}\alpha_{i}+l)|>|N(\{k_{i},\alpha_{i}\}|=|Z_{i}|, so |N​(ki​αi+l)||N(k_{i}\alpha_{i}+l)| has a lower bound, therefore all vectors in LiL_{i} are longer than some Ξ΄\delta. Then by the Mahler compactness criterion for lattices[9], the set (5 .3) is precompact.

For the converse, when we fix Ο΅\epsilon and let NN be sufficiently large, if β€–mi‖≀K​(Ο΅)\|m^{i}\|\leq K(\epsilon), we have that β€–(mi,e​(N,Ξ±i))β€–\|(m_{i},e(N,\alpha_{i}))\| is much smaller than NN because of the equivalence between the two norms. For every miβˆˆβ„€2m^{i}\in\mathbb{Z}^{2}, (mi,e​(N,Ξ±i))=gln⁑N​Λαiβ€‹π’ŒΒ―i(m_{i},e(N,\alpha_{i}))=g_{\ln N}\Lambda_{\alpha_{i}}\bar{\bm{k}}_{i} for some unique π’ŒΒ―i=(ki,l~i)βˆˆβ„€2\bar{\bm{k}}_{i}=(k_{i},\tilde{l}_{i})\in\mathbb{Z}^{2}, we need to show that l~i=li\tilde{l}_{i}=l_{i}, where lil_{i} allows βˆ’12<ki​αi+li≀12-\frac{1}{2}<k_{i}\alpha_{i}+l_{i}\leq\frac{1}{2}. When l~i\tilde{l}_{i} is not equal to lil_{i}, then |N​(ki​αi+l~i)|β‰₯N/2|N(k_{i}\alpha_{i}+\tilde{l}_{i})|\geq N/2, contradicting the fact that β€–gln⁑N​Λαiβ€‹π’ŒΒ―iβ€–\|g_{\ln N}\Lambda_{\alpha_{i}}\bar{\bm{k}}_{i}\| is much smaller than NN. Therefore li~=li\tilde{l_{i}}=l_{i}, and π’ŒΒ―i=π’Œi\bar{\bm{k}}_{i}=\bm{k}_{i}.

For each pair of vectors {(m1,m2)βˆˆβ„€2Γ—β„€2|β€–mi‖≀K​(Ο΅),i=1,2}\{(m^{1},m^{2})\in\mathbb{Z}^{2}\times\mathbb{Z}^{2}|\ \|m^{i}\|\leq K(\epsilon),\ i=1,2\}, we have the corresponding set of {π’Œi}i=1,2\{\bm{k}_{i}\}_{i=1,2}, this gives us a unique vector k=(k1,k2)βˆˆβ„€2k=(k_{1},k_{2})\in\mathbb{Z}^{2}. Therefore the second statement follows. ∎

5.2.\bm{5.2.} For miβˆˆβ„€2m^{i}\in\mathbb{Z}^{2}, Ξ±iβˆˆπ•‹\alpha_{i}\in\mathbb{T}, we define the coordinates of the correponding vector as

(mi,e​(N,Ξ±i))=(Xmi,Zmi)(m^{i},e(N,\alpha_{i}))=(X_{m^{i}},Z_{m^{i}}) (5 .4)

and define 𝐦=(m1,m2)βˆˆβ„€2Γ—β„€2\mathbf{m}=(m^{1},m^{2})\in\mathbb{Z}^{2}\times\mathbb{Z}^{2}, X𝐦=(Xm1,Xm2)βˆˆβ„2X_{\mathbf{m}}=(X_{m^{1}},X_{m^{2}})\in\mathbb{R}^{2} and R𝐦=β€–X𝐦‖R_{\mathbf{m}}=\|X_{\mathbf{m}}\|. We introduce a corresponding function to g​(r,x,Ξ±;N,k)g(r,x,\alpha;N,k) with 𝐦\mathbf{m} as a variable:

h​(r,x,Ξ±;N,m)=dr​(N,n)​cos⁑(2​π​N​(X𝐦,x)+π​Nβˆ’1N​(βˆ‘i=12Zmi))β€‹βˆi=12sin⁑(π​Zmi)R𝐦32β€‹βˆi=12Zmih(r,x,\alpha;N,m)=\frac{d_{r}(N,n)\cos(2\pi N(X_{\mathbf{m}},x)+\pi\frac{N-1}{N}(\sum_{i=1}^{2}Z_{m^{i}}))\prod_{i=1}^{2}\sin(\pi Z_{m^{i}})}{R_{\mathbf{m}}^{\frac{3}{2}}\prod_{i=1}^{2}Z_{m^{i}}}

with

dr​(N,m)=1Ο€3​Kβˆ’12​(X𝐦/R𝐦)​sin⁑(2​π​(r​N​P​(X𝐦)βˆ’18)).d_{r}(N,m)=\frac{1}{\pi^{3}}K^{-\frac{1}{2}}(X_{\mathbf{m}}/R_{\mathbf{m}})\sin(2\pi(rNP(X_{\mathbf{m}})-\frac{1}{8})).

From Section 4.1. we see that for Ξ±βˆ‰EN\alpha\notin E_{N},

βˆ‘π¦βˆˆβ„€2Γ—β„€2,β€–mi‖≀K​(Ο΅),i=1,2h​(r,x,Ξ±;N,m)=βˆ‘k∈U​(N,Ξ±,Ο΅)g​(r,x,Ξ±;N,k),\sum_{\mathbf{m}\in\mathbb{Z}^{2}\times\mathbb{Z}^{2},\|m^{i}\|\leq K(\epsilon),i=1,2}h(r,x,\alpha;N,m)=\sum_{k\in U(N,\alpha,\epsilon)}g(r,x,\alpha;N,k),

where U​(N,Ξ±,Ο΅)βŠƒS^​(N,Ξ±)U(N,\alpha,\epsilon)\supset\hat{S}(N,\alpha).

When we restricted ourself to prime vectors π¦βˆˆβ„€2Γ—β„€2\mathbf{m}\in\mathbb{Z}^{2}\times\mathbb{Z}^{2}, the variables r​N​P​(X𝐦)rNP(X_{\mathbf{m}}) mod 11 will become independent random variables that are uniformly distributed on 𝕋1\mathbb{T}^{1}. In fact, 𝐦\mathbf{m} could be rewritten as pˇ​(p1​m1,p2​m2)\check{p}(p_{1}m^{1},p_{2}m^{2}), where pΛ‡\check{p} is the signed greatest common divisor such that the first coordinate of (p1​m1,p2​m2)(p_{1}m^{1},p_{2}m^{2}) is positive, and m1m^{1}, m2m^{2} and p=(p1,p2)p=(p_{1},p_{2}) are in 𝒡\mathcal{Z}. Since all the vectors are multiples of the prime ones, we introduce

Xp,𝐦=(p1​Xm1,p2​Xm2)X_{p,\mathbf{m}}=(p_{1}X_{m^{1}},p_{2}X_{m_{2}}) (5 .5)

and Rp,𝐦=β€–Xp,𝐦‖R_{p,\mathbf{m}}=\|X_{p,\mathbf{m}}\|.

Introduce

q​(r,x,Ξ±;N,m,p,pΛ‡)=\displaystyle q(r,x,\alpha;N,m,p,\check{p})= (5 .6)
dr​(N,m,p,pΛ‡)​cos⁑(2​π​pˇ​(βˆ‘i=12(pi​(m1,Ξ³i​(Ξ±,x,N))))+π​Nβˆ’1N​pˇ​(βˆ‘i=12(pi​Zmi)))β€‹βˆi=12sin⁑(π​pˇ​pi​Zmi)|pΛ‡|72​Rp,𝐦32β€‹βˆi=12(pi​Zmi)\displaystyle\frac{d_{r}(N,m,p,\check{p})\cos\left(2\pi\check{p}\left(\sum_{i=1}^{2}\left(p_{i}\left(m_{1},\gamma_{i}\left(\alpha,x,N\right)\right)\right)\right)+\pi\frac{N-1}{N}\check{p}\left(\sum_{i=1}^{2}\left(p_{i}Z_{m^{i}}\right)\right)\right)\prod_{i=1}^{2}\sin\left(\pi\check{p}p_{i}Z_{m^{i}}\right)}{|\check{p}|^{\frac{7}{2}}R_{p,\mathbf{m}}^{\frac{3}{2}}\prod_{i=1}^{2}\left(p_{i}Z_{m^{i}}\right)}

where

dr​(N,m,p,pΛ‡)=1Ο€3​Kβˆ’12​(Xp,𝐦Rp,𝐦)​sin⁑(2​π​(pˇ​r​N​P​(Xp,𝐦)βˆ’18)),d_{r}(N,m,p,\check{p})=\frac{1}{\pi^{3}}K^{-\frac{1}{2}}\left(\frac{X_{p,\mathbf{m}}}{R_{p,\mathbf{m}}}\right)\sin(2\pi(\check{p}rNP(X_{p,\mathbf{m}})-\frac{1}{8})),

and

Ξ³i​(Ξ±,x,N)=N​xi​(e11​(N,Ξ±i),e21​(N,Ξ±i)),\gamma_{i}(\alpha,x,N)=Nx_{i}(e_{11}(N,\alpha_{i}),e_{21}(N,\alpha_{i})), (5 .7)

where ei​je_{ij} is the jt​hj_{th} coordinate of the short vector eie_{i}.

Recall the definition of 𝒡\mathcal{Z} in Section 2. Remind that 𝒡2={𝐦=(m1,m2)βˆˆβ„€2Γ—β„€2}:miβˆˆπ’΅;i=1,2}\mathcal{Z}^{2}=\{\mathbf{m}=(m^{1},m^{2})\in\mathbb{Z}^{2}\times\mathbb{Z}^{2}\}:m^{i}\in\mathcal{Z};\ i=1,2\} and define 𝒡ϡ={π¦βˆˆπ’΅2:β€–mi‖≀K​(Ο΅);i=1,2}\mathcal{Z}_{\epsilon}=\{\mathbf{m}\in\mathcal{Z}^{2}:\|m^{i}\|\leq K(\epsilon);\ i=1,2\}. Since the set 𝒡\mathcal{Z} only consists of the primitive vectors with positive first coordinate, we need to add all the positive and negative pΛ‡\check{p}’s, the summation of hh above becomes a summation of qq, note that the summation over pp and mm is finite, and the sum over pΛ‡\check{p} is finite due to its large power:

βˆ‘|pΛ‡|=1βˆžβˆ‘pβˆˆπ’΅Ο΅βˆ‘mβˆˆπ’΅Ο΅q​(r,x,Ξ±;N,m,p,pΛ‡).\sum_{|\check{p}|=1}^{\infty}\sum_{p\in\mathcal{Z}_{\epsilon}}\sum_{m\in\mathcal{Z}_{\epsilon}}q(r,x,\alpha;N,m,p,\check{p}). (5 .8)

Essentially we have reformulated our discrepancy function as a function defined on the lattice space, and from Step 5 of Section 4 we have the following proposition:

Proposition 5.1.

Assume that (r,x,Ξ±)(r,x,\alpha) are uniformly distributed in X=[a,b]×𝕋2×𝕋2X=[a,b]\times\mathbb{T}^{2}\times\mathbb{T}^{2}, then the sum (5 .8) and the normalized discrepancy function Dπ’ž,2D_{\mathcal{C},2} in (1 .3) of Theorem 1 converge to the same law in distribution as Nβ†’βˆžN\rightarrow\infty and then Ο΅β†’0\epsilon\rightarrow 0, if there exists a limit law for the sum (​5 .8​)\eqref{sum q}.

5.3.\bm{5.3.} Uniform distribution of unstable submanifold Λα\Lambda_{\alpha}. Since for each ii, Λαi\Lambda_{\alpha_{i}} is the unstable submanifold under the geodesic flow gTg_{T} and will become equidistributed over the whole manifold MM, naturally the same uniform distribution law of holds in the finite product space M2M^{2}. We have the following proposition(see [8], Theorem 5.3):

Proposition 5.2.

Denote by ΞΌ\mu the Haar measure on M2M^{2}. If Ξ¦:(ℝ2×ℝ2)2×ℝ2→ℝ\Phi:(\mathbb{R}^{2}\times\mathbb{R}^{2})^{2}\times\mathbb{R}^{2}\rightarrow\mathbb{R} is a bounded continuous function, then

limNβ†’βˆžβˆ«π•‹2Φ​(e​(L​(N,Ξ±1)),e​(L​(N,Ξ±2)),Ξ±)​𝑑α\displaystyle\lim_{N\rightarrow{\infty}}\int_{\mathbb{T}^{2}}\Phi(e(L(N,\alpha_{1})),e(L(N,\alpha_{2})),\alpha)d\alpha (5 .9)
=∫M2×𝕋2Φ​(e​(L1),e​(L2),Ξ±)​𝑑μ​(L1Γ—L2)​𝑑α\displaystyle=\int_{M^{2}\times\mathbb{T}^{2}}\Phi(e(L_{1}),e(L_{2}),\alpha)d\mu(L_{1}\times L_{2})d\alpha

6 OSCILLATING TERMS.

In this section we will prove that typical variables appeared in the sum (5 .8) will behave like independent uniformly distributed random variables. We denote by ΞΌ2\mu_{2} the distribution of e​(L1)Γ—e​(L2)e(L_{1})\times e(L_{2}) when L=L1Γ—L2L=L_{1}\times L_{2} is distributed according to Haar measure on M2=∏2 copiesS​L​(2,ℝ)/S​L​(2,β„€)M^{2}=\prod_{\text{2 copies}}SL(2,\mathbb{R})/SL(2,\mathbb{Z}). We denote by Ξ»2,Ο΅\lambda_{2,\epsilon} the Haar measure on (𝕋2)2×𝕋ϡ𝒡×𝒡(\mathbb{T}^{2})^{2}\times\mathbb{T}^{\mathcal{Z}\times\mathcal{Z}}_{\epsilon}.

The main result of this section is the following, from which the main theorem follows:

Proposition 6.1.

Assume that (x,Ξ±,r)(x,\alpha,r) are uniformly distributed on 𝕋2×𝕋2Γ—[a,b]\mathbb{T}^{2}\times\mathbb{T}^{2}\times[a,b], then the following random variables

e​(N,Ξ±1),…,e​(N,Ξ±2),{Ξ³j​1}j=12,{Ξ³j​2}j=12,{Ap,𝐦}pβˆˆπ’΅,mβˆˆπ’΅Ο΅e(N,\alpha_{1}),\dots,e(N,\alpha_{2}),\quad\{\gamma_{j1}\}_{j=1}^{2},\quad\{\gamma_{j2}\}_{j=1}^{2},\quad\{A_{p,\mathbf{m}}\}_{p\in\mathcal{Z},m\in\mathcal{Z}_{\epsilon}}

where Ap,𝐦=r​N​P​(Xp,𝐦)A_{p,\mathbf{m}}=rNP(X_{p,\mathbf{m}}), converge in distribution as Nβ†’βˆžN\rightarrow\infty to ΞΌ2Γ—Ξ»2,Ο΅\mu_{2}\times{\lambda}_{2,\epsilon}

In order to prove Propsition 6.1 in Section 6.2, we will first prove that for different vectors (p(1),𝐦(1))\left(p^{(1)},\mathbf{m}^{(1)}\right),…\dots,(p(K),𝐦(K))\left(p^{(K)},\mathbf{m}^{(K)}\right) in 𝒡×𝒡2\mathcal{Z}\times\mathcal{Z}^{2}, {P​(Xp(i),𝐦(i))}i=1K\{P(X_{p^{(i)},\mathbf{m}^{(i)}})\}_{i=1}^{K} are typically independent over β„š\mathbb{Q}.

6.1.\bm{6.1.} Exceptionally in this subsection we use the lower index for mim_{i} to represent a vector in β„€2\mathbb{Z}^{2}, not to be confused with the coordinates in the Notations in section 2. For 𝐦=(m1,m2)βˆˆβ„€2Γ—β„€2\mathbf{m}=(m_{1},m_{2})\in\mathbb{Z}^{2}\times\mathbb{Z}^{2} with miβˆˆβ„€2m_{i}\in\mathbb{Z}^{2}, and p=(p1,p2)βˆˆβ„€2p=(p_{1},p_{2})\in\mathbb{Z}^{2}, piβ‰₯1p_{i}\geq 1, define the function Qp,𝐦:ℝ2×ℝ2→ℝ:(z1,z2)↦P​((p1​m1,z1),(p2​m2,z2))Q_{p,\mathbf{m}}\ :\ \mathbb{R}^{2}\times\mathbb{R}^{2}\rightarrow\mathbb{R}\ :\ (z_{1},z_{2})\mapsto P((p_{1}m_{1},z_{1}),(p_{2}m_{2},z_{2})), where zi=(zi​1,zi​2)βˆˆβ„€2z_{i}=(z_{i1},z_{i2})\in\mathbb{Z}^{2} is a vector, and the bracket means euclidean inner product.

Proposition 6.2.

For different vectors (p(1),𝐦(1))\left(p^{(1)},\mathbf{m}^{(1)}\right),…\dots,(p(K),𝐦(K))\left(p^{(K)},\mathbf{m}^{(K)}\right) in 𝒡×𝒡2\mathcal{Z}\times\mathcal{Z}^{2}, if l1,…,lKl_{1},\dots,l_{K} are such that βˆ‘i=1Kli​Qp(i),𝐦(i)≑0\sum_{i=1}^{K}l_{i}Q_{p^{(i)},\mathbf{m}^{(i)}}\equiv 0, then li=0l_{i}=0 for i=1,…,Ki=1,\dots,K.

Proof.

The proof follows the same line of reasoning of Lemma 5.2 and Proposition 5.4 in [4]. Similarly to Lemma 5.2 in [4], it is easy to see that the functions Qp,𝐦Q_{p,\mathbf{m}} and PP are real analytic and not equal to a polynomial in their variables. First we prove that the sum of terms with the same 𝐦(i)\mathbf{m}^{(i)}, (therefore with different p(i)p^{(i)}’s) must be zero.

For the first part m1(i)m_{1}^{(i)} of 𝐦(i)\mathbf{m}^{(i)}, let Ξ±1=(Ξ±11,Ξ±12)\alpha_{1}=(\alpha_{11},\alpha_{12}), Ξ²1=(Ξ²11,Ξ²12)\beta_{1}=(\beta_{11},\beta_{12}) z1​j=δ​α1​j+θ​β1​jz_{1j}=\delta\alpha_{1j}+\theta\beta_{1j} and z2=(0,0)z_{2}=(0,0), we have

Qp(i),𝐦(i)​(z1,z2)=p1(i)​(m1(i),Ξ±1)​P​(Ξ΄+(m1(i),Ξ²1)(m1(i),Ξ±1)​θ,0),Q_{p^{(i)},\mathbf{m}^{(i)}}(z_{1},z_{2})=p_{1}^{(i)}(m_{1}^{(i)},\alpha_{1})P\left(\delta+\frac{(m_{1}^{(i)},\beta_{1})}{(m_{1}^{(i)},\alpha_{1})}\theta,0\right), (6 .1)

develop Qp(i),𝐦(i)Q_{p^{(i)},\mathbf{m}^{(i)}} with respect to ΞΈ\theta and consider the coefficient of ΞΈ2\theta^{2} in the sum for li​Qp(i),𝐦(i)l_{i}Q_{p^{(i)},\mathbf{m}^{(i)}}, we have:

βˆ‘i=1Kli​|p1(i)​(m1(i),Ξ²1)2(m1(i),Ξ±1)|​Qp(i),𝐦(i)′′​(Ξ΄)=0.\sum_{i=1}^{K}l_{i}\left|p_{1}^{(i)}\frac{(m_{1}^{(i)},\beta_{1})^{2}}{(m_{1}^{(i)},\alpha_{1})}\right|Q_{p^{(i)},\mathbf{m}^{(i)}}^{\prime\prime}(\delta)=0. (6 .2)

With m1(i)m_{1}^{(i)}’s all being prime vectors in β„€2\mathbb{Z}^{2}, we can choose a special Ξ±1\alpha_{1} such that |(m1(i),Ξ±1)||(m_{1}^{(i)},\alpha_{1})| is arbitrarily small for one ii while all the other |(m1(j),Ξ±1)||(m_{1}^{(j)},\alpha_{1})| that are distinct from (m1(i),Ξ±1)(m_{1}^{(i)},\alpha_{1}) have a uniform lower bound, then the sum of li​Qp(i),𝐦(i)l_{i}Q_{p^{(i)},\mathbf{m}^{(i)}} with identical m1(i)m_{1}^{(i)} must be zero. Repeat this procedure for m2(i)m_{2}^{(i)}, then the sum of li​Qp(i),𝐦(i)l_{i}Q_{p^{(i)},\mathbf{m}^{(i)}} with identical 𝐦(i)\mathbf{m}^{(i)} must be zero.

Next, we can assume that all 𝐦(i)\mathbf{m}^{(i)} are the same. For the sake of simplicity, we assume that m1(i)=(1,0)m_{1}^{(i)}=(1,0) and m2(i)=(1,0)m_{2}^{(i)}=(1,0). First we suppose that z21=0z_{21}=0, choose jj such that p1(j)p_{1}^{(j)} is the greatest among all p1(i)p_{1}^{(i)}, then

Qp(i),𝐦(i)​(z1,0)=P​(p1(i)​z11​.0)=p1(j)​P​(p1(i)p1(j)​z11,0),Q_{p^{(i)},\mathbf{m}^{(i)}}(z_{1},0)=P(p_{1}^{(i)}z_{11}.0)=p_{1}^{(j)}P\left(\frac{p_{1}^{(i)}}{p_{1}^{(j)}}z_{11},0\right),

Consider the nn-th partial derivative of Qp(i),𝐦(i)Q_{p^{(i)},\mathbf{m}^{(i)}} with respect to z11z_{11}, then

βˆ‚nβˆ‚z11​Qp(i),𝐦(i)​(z1,0)=(p1(i))n(p1(j))nβˆ’1β€‹βˆ‚nβˆ‚z11​P​(p1(i)p1(j)​z11,0),\frac{\partial^{n}}{\partial z_{11}}Q_{p^{(i)},\mathbf{m}^{(i)}}(z_{1},0)=\frac{\left(p_{1}^{(i)}\right)^{n}}{\left(p_{1}^{(j)}\right)^{n-1}}\frac{\partial^{n}}{\partial z_{11}}P\left(\frac{p_{1}^{(i)}}{p_{1}^{(j)}}z_{11},0\right),

Since (p1(i))n(p1(j))nβˆ’1<1\frac{\left(p_{1}^{(i)}\right)^{n}}{\left(p_{1}^{(j)}\right)^{n-1}}<1 for all iβ‰ ji\neq j, we can take nn sufficiently large by analyticity of PP, then ljl_{j} becomes the dominant coefficient in the linear combination of nn-th derivatives, we must have the linear combination of terms of identical maximal p1(j)p_{1}^{(j)} is zero. By repeating this procedure for p2(i)p_{2}^{(i)}, we can deduce that the coefficient lil_{i} in front the term that has the greatest p2(i)p_{2}^{(i)} among those having the greatest p1(i)p_{1}^{(i)} is zero. Inductively, all coefficients lil_{i} are zero. ∎

By Proposition 6.2, we can deduce the following: if we take a lattice L∈M2L\in M^{2} and let zi=(e11​(Li),e21​(Li))z_{i}=(e_{11}(L_{i}),e_{21}(L_{i})), i=1,2i=1,2, then P​(Xp,𝐦​(L))=P​((p1​m1,z1),(p2​m2,z2))=Qp,𝐦​(z1,z2)P\left(X_{p,\mathbf{m}}(L)\right)=P((p_{1}m_{1},z_{1}),(p_{2}m_{2},z_{2}))=Q_{p,\mathbf{m}}(z_{1},z_{2}). By analyticity, for any different (p(1),𝐦(1))\left(p^{(1)},\mathbf{m}^{(1)}\right),…\dots,(p(K),𝐦(K))\left(p^{(K)},\mathbf{m}^{(K)}\right) in 𝒡×𝒡2\mathcal{Z}\times\mathcal{Z}^{2},

ΞΌ(L:βˆ‘i=1KliP(Xp,𝐦(L))=0)=0.\mu\left(L:\sum_{i=1}^{K}l_{i}P(X_{p,\mathbf{m}}(L))=0\right)=0. (6 .3)

Now by Proposition 5.2 we have that

mes(Ξ±βˆˆπ•‹2:|βˆ‘i=1KliP(Xp(i),𝐦(i)(L(N,Ξ±)))|<Ο΅)β†’0mes\left(\alpha\in\mathbb{T}^{2}\ :\ \left|\sum_{i=1}^{K}l_{i}P\left(X_{p^{(i)},\mathbf{m}^{(i)}}\left(L(N,\alpha)\right)\right)\right|<\epsilon\right)\rightarrow 0 (6 .4)

as Ο΅β†’0\epsilon\rightarrow 0, Nβ†’βˆžN\rightarrow\infty.

6.2. Proof of Proposition 6.1. Take integers ni​j,n21n_{ij},n_{21}, n12,n22n_{12},n_{22}, {lp,𝐦}pβˆˆπ’΅2,mβˆˆπ’΅Ο΅2\{l_{p,\mathbf{m}}\}_{p\in\mathcal{Z}^{2},m\in{\mathcal{Z}^{2}_{\epsilon}}} and a function Ξ¦:(ℝ2×ℝ2)2→ℝ\Phi\ :\ (\mathbb{R}^{2}\times\mathbb{R}^{2})^{2}\rightarrow\mathbb{R} of compact support. It remains to show that as Nβ†’βˆžN\rightarrow\infty

∭Φ(e(L(N,Ξ±1)),e(L(N,Ξ±2))exp[2Ο€i(βˆ‘j=12(nj​1Ξ³j​1+nj​2Ξ³j​2)+βˆ‘pβˆˆπ’΅2,mβˆˆπ’΅Ο΅2lp,𝐦Ap,𝐦)]\displaystyle\iiint\Phi(e(L(N,\alpha_{1})),e(L(N,\alpha_{2}))exp\left[2\pi i\left(\sum_{j=1}^{2}(n_{j1}\gamma_{j1}+n_{j2}\gamma_{j2})+\sum_{p\in\mathcal{Z}^{2},m\in{\mathcal{Z}^{2}_{\epsilon}}}l_{p,\mathbf{m}}A_{p,\mathbf{m}}\right)\right] (6 .5)
d​x​d​α​d​rβ†’βˆ«M2Φ​(e​(L1),e​(L2))​𝑑μ​(L)β€‹βˆ«π•‹2​de2​π​iβ€‹βˆ‘j(nj​1​γj​1+nj​2​γj​2)β€‹π‘‘Ξ³β€‹βˆ«π•‹π’΅2×𝒡ϡ2e2​π​iβ€‹βˆ‘p,𝐦lp,𝐦​Ap,𝐦​𝑑A,\displaystyle dxd\alpha dr\rightarrow\int_{M^{2}}\Phi(e(L_{1}),e(L_{2}))d\mu(L)\int_{\mathbb{T}^{2d}}e^{2\pi i\sum_{j}(n_{j1}\gamma_{j1}+n_{j2}\gamma_{j2})}d\gamma\int_{\mathbb{T}^{\mathcal{Z}^{2}\times\mathcal{Z}^{2}_{\epsilon}}}e^{2\pi i\sum_{p,\mathbf{m}}l_{p,\mathbf{m}}A_{p,\mathbf{m}}}dA,

as Nβ†’βˆžN\rightarrow\infty.

Proof.

This proof is very close to the proof of Proposition 5.1 in [4], it suffice to rewrite the original proof with the new variables and use Proposition 6.2 and (6 .4). If for all jj and p,𝐦p,\mathbf{m}, nj​1≑0n_{j1}\equiv 0, nj​2≑0n_{j2}\equiv 0 and lp,𝐦≑0l_{p,\mathbf{m}}\equiv 0, (6 .5) is a special case of (5 .9). Then it suffice to prove (6 .5) in the case that at least some njn_{j} or some lp,𝐦l_{p,\mathbf{m}} are non-zero, then the right-hand side of (6 .5) is zero, and it reduces to the following:

∭Φ(e(L(N,Ξ±1)),e(L(N,Ξ±2)exp[2Ο€i(βˆ‘j=12(nj​1Ξ³j​1+nj​2Ξ³j​2)+βˆ‘pβˆˆπ’΅2,mβˆˆπ’΅Ο΅2lp,𝐦Ap,𝐦)]\displaystyle\iiint\Phi(e(L(N,\alpha_{1})),e(L(N,\alpha_{2})exp\left[2\pi i\left(\sum_{j=1}^{2}(n_{j1}\gamma_{j1}+n_{j2}\gamma_{j2})+\sum_{p\in\mathcal{Z}^{2},m\in{\mathcal{Z}^{2}_{\epsilon}}}l_{p,\mathbf{m}}A_{p,\mathbf{m}}\right)\right] d​x​d​α​d​r\displaystyle dxd\alpha dr (6 .6)
β†’0\displaystyle\rightarrow 0

If nj​1β‰ 0n_{j1}\neq 0 for at least one jj, recall that Ξ³j​(Ξ±,x,N)=N​xj​(e11​(N,Ξ±j),e21​(N,Ξ±j))\gamma_{j}(\alpha,x,N)=Nx_{j}(e_{11}(N,\alpha_{j}),e_{21}(N,\alpha_{j})), then the coefficient in front of xjx_{j} in βˆ‘j(nj​1​γj​1+nj​2​γj​2)\sum_{j}(n_{j1}\gamma_{j1}+n_{j2}\gamma_{j2}) is N​(nj​1​e11​(N,Ξ±j)+nj​2​e21​(N,Ξ±j))N(n_{j1}e_{11}(N,\alpha_{j})+n_{j2}e_{21}(N,\alpha_{j})). Note that the coordinates e11​(N,Ξ±j)e_{11}(N,\alpha_{j}) and e21​(N,Ξ±j)e_{21}(N,\alpha_{j}) are typically β„€\mathbb{Z}-independent outside a zero measure set of Ξ±j\alpha_{j}. Hence (5 .9) implies that

mes(Ξ±jβˆˆπ•‹:|nj​1e11(N,Ξ±j)+nj​2e21(N,Ξ±j)|<1N)β†’0mes\left(\alpha_{j}\in\mathbb{T}:\left|n_{j1}e_{11}(N,\alpha_{j})+n_{j2}e_{21}(N,\alpha_{j})\right|<\frac{1}{\sqrt{N}}\right)\rightarrow 0 (6 .7)

as Nβ†’βˆžN\rightarrow\infty. This limit states that most Ξ±j\alpha_{j} will not allow the coefficient in front of xjx_{j} to be too small, then the integral of (6 .6) can be decomposed into two parts, L​H​S=I1+I2LHS=I_{1}+I_{2}, where I1I_{1} corresponds to the part of integral for Ξ±j\alpha_{j} with |nj​1​e11​(N,Ξ±j)+nj​2​e21​(N,Ξ±j)|<1N\left|n_{j1}e_{11}(N,\alpha_{j})+n_{j2}e_{21}(N,\alpha_{j})\right|<\frac{1}{\sqrt{N}} and I2I_{2} the part for Ξ±j\alpha_{j} with |nj​1​e11​(N,Ξ±j)+nj​2​e21​(N,Ξ±j)|β‰₯1N\left|n_{j1}e_{11}(N,\alpha_{j})+n_{j2}e_{21}(N,\alpha_{j})\right|\geq\frac{1}{\sqrt{N}}. Then

|I1|≀Const(Ξ¦)mes(Ξ±jβˆˆπ•‹:|nj​1e11(N,Ξ±j)+nj​2e21(N,Ξ±j)|<1N)|I_{1}|\leq Const(\Phi)mes\left(\alpha_{j}\in{\mathbb{T}}:\left|n_{j1}e_{11}(N,\alpha_{j})+n_{j2}e_{21}(N,\alpha_{j})\right|<\frac{1}{\sqrt{N}}\right)

so it can be arbitrarily small as Nβ†’βˆžN\rightarrow\infty by (6 .7) . For I2I_{2}, since the coefficient of xjx_{j} is not too small, we use integrate by parts with respect to xjx_{j} to achieve the following estimation:

|I2|≀C​o​n​s​t​(Ξ¦)N.|I_{2}|\leq\frac{Const(\Phi)}{\sqrt{N}}.

Therefore this proves the case where not all nj​1n_{j1} vanish, the case where not all nj​2n_{j2} vanish is the same.

Similarly, if there exists some (p,𝐦)(p,\mathbf{m}), such that lp,𝐦l_{p,\mathbf{m}} is non-zero, we can use (6 .4) and integrate with respect to rr to obtain (6 .6), using the same decomposition integration technique. ∎

6.3. Proof of Theorem 1(b). Combining Proposition 5.1 and Proposition 6.1, by letting Nβ†’βˆžN\rightarrow\infty and then Ο΅β†’0\epsilon\rightarrow 0, we can subsitute the variables in (5 .8) by uniformly distribtuted random variables on the infinite tori, thus we obtain Theorem 1(b) and Proposition 2.2.

References

  • [1] VladimirΒ Igorevich Arnol’d. Mathematical methods of classical mechanics, volumeΒ 60. Springer Science & Business Media, 2013.
  • [2] ShrikrishnaΒ Gopal Dani. Divergent trajectories of flows on homogeneous spaces and diophantine approximation. 1985.
  • [3] Dmitry Dolgopyat and Bassam Fayad. Deviations of ergodic sums for toral translations ii. boxes. arXiv preprint arXiv:1211.4323, 2012.
  • [4] Dmitry Dolgopyat and Bassam Fayad. Deviations of ergodic sums for toral translations i. convex bodies. Geometric and Functional Analysis, 24(1):85–115, 2014.
  • [5] CSΒ Herz. Fourier transforms related to convex sets. Annals of Mathematics, pages 81–92, 1962.
  • [6] HΒ Kesten. Uniform distribution mod 1. Annals of Mathematics, pages 445–471, 1960.
  • [7] HΒ Kesten. Uniform distribution mod 1 (ii). Acta Arithmetica, 7(4):355–380, 1962.
  • [8] Jens Marklof and Andreas StrΓΆmbergsson. The distribution of free path lengths in the periodic lorentz gas and related lattice point problems. Annals of Mathematics, pages 1949–2033, 2010.
  • [9] MadabusiΒ Santanam Raghunathan. Discrete subgroups of Lie groups, volumeΒ 3. Springer, 1972.