This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Equation-of-motion and Lorentz-invariance relations
for tensor-polarized parton distribution functions of spin-1 hadrons

S. Kumano [email protected] Qin-Tao Song [email protected] KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK),
Oho 1-1, Tsukuba, Ibaraki, 305-0801, Japan
J-PARC Branch, KEK Theory Center, Institute of Particle and Nuclear Studies, KEK,
and Theory Group, Particle and Nuclear Physics Division, J-PARC Center, Shirakata 203-1, Tokai, Ibaraki, 319-1106, Japan
School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
(December 25, 2021)
Abstract

Structure functions of polarized spin-1 hadrons will be measured at various accelerator facilities in the near future. Recently, transverse-momentum-dependent and collinear parton distribution functions were theoretically proposed at twist 3 and twist 4 in addition to the twist-2 ones, so that full investigations became possible for structure functions of spin-1 hadrons in the same level with those of the spin-1/2 nucleons. Furthermore, twist-3 tensor-polarized multiparton distribution functions were also recently found for spin-1 hadrons. In this work, we show relations among the collinear parton- and multiparton-distribution functions for spin-1 hadrons by using equation of motion for quarks. These relations are valuable in constraining the distribution functions and learning about multiparton correlations in spin-1 hadrons.

keywords:
QCD, Polarized structure function, Spin-1 hadron, Equation of motion, Lorentz-invariance relation
journal: Physics Letters B

1 Introduction

High-energy spin physics has been an exciting field in physics since late 1980’s for finding the origin of nucleon spin. Now, the longitudinally polarized parton distribution functions (PDFs) are relatively well determined except for the gluon distribution. Partonic angular-momentum contributions are not still determined experimentally, and their studies are in progress with measurements of generalized parton distributions (GPDs) [1]. In addition, the field of finding the origin of hadron masses is also rapidly progressing because similar theoretical formalisms are used and the same GPDs or generalized distribution amplitudes (timelike GPDs) can be used for probing quark and gluon composition of hadron masses [2].

On the other hand, structure functions of spin-1 hadrons are quite interesting in providing different aspects of hadron polarizations because of the existence of new tensor-polarization observables, which do not exist in the spin-1/2 nucleons. As for the tensor-polarized structure functions, there exist four functions b14b_{1-4} in charged-lepton deep inelastic scattering from a spin-1 target such as the deuteron [3], and there was a measurement on b1b_{1} [4]. There were theoretical studies on the spin-1 physics on the b1b_{1} sum rule [5], its second moment [6], fragmentation functions [7], tensor-polarized PDFs in the proton-deuteron Drell-Yan process [8, 9], GPDs [10], projection operators on b14b_{1-4} [11], optimum tensor-polarized PDFs [12], standard-deuteron model prediction for b1b_{1} [13, 14], effects of pions and hidden-color state in b1b_{1} [15], and gluon transversity [16, 17, 18]. In addition to twist 2 [19], transverse-momentum-dependent parton distribution functions (TMDs), PDFs, and their sum rules were investigated at twist 3 and twist 4 [20], recently. Furthermore, a twist-2 relation and a sum rule were obtained for the twist-3 function fLTf_{LT} with investigations on possible twist-3 multiparton distributions [21].

In future, there are experimental projects [22] to investigate structure functions of the spin-1 deuteron at the Thomas Jefferson National Accelerator Facility (JLab), Fermilab (Fermi National Accelerator Laboratory), Nuclotron-based Ion Collider fAcility (NICA), LHC (Large Hadron Collider)-spin, and electron-ion colliders (EIC, EicC). Therefore, the field of spin-1 hadrons could become an exciting topic in hadron physics for investigating exotic aspects of hadrons and nuclei, possibly beyond the simple bound systems of nucleons for the deuteron.

In this work, we show useful relations among the tensor-polarized PDFs and the multiparton distribution functions by using equation of motion for quarks. Then, a so-called Lorentz-invariance relation is derived for the tensor-polarized PDFs and the multiparton distribution functions. This kind of studies have been done for structure functions of spin-1/2 nucleons [23]. Here, we investigate such relations for tensor-polarized spin-1 hadrons. In Sec.,2, we introduce correlation functions necessary for explaining possible tensor-polarized PDFs and multiparton distribution functions. Then, their relations are obtained by using the equation of motion, and a Lorentz-invariance relation is derived in Sec. 3. Our results are summarized in Sec. 4.

2 Correlation functions of spin-1 hadrons

The PDFs and the multiparton distribution functions are defined through correlation functions for spin-1 hadrons, so that we introduce them in this section. The correlation function is related to the amplitude to extract a parton from a hadron and then to insert it into the hadron at a different spacetime point ξ\xi as given by

Φij[c](k,P,T)=d4ξ(2π)4eikξP,T|ψ¯j(0)W[c](0,ξ)ψi(ξ)|P,T,\displaystyle\ \Phi_{ij}^{[c]}(k,P,T)=\!\!\int\!\frac{d^{4}\xi}{(2\pi)^{4}}\,e^{ik\cdot\xi}\langle P,T\left|\,\bar{\psi}_{j}(0)W^{[c]}(0,\xi)\psi_{i}(\xi)\,\right|P,T\rangle,\!\! (1)

where ψ\psi is the quark field, kk is the quark momentum, PP and TT indicate hadron momentum and tensor polarization, W[c]W^{[c]} is the gauge link necessary for the color gauge invariance, and cc indicates the integral path. In this work, we discuss only the tensor polarization, so that the spin vector SS is not explicitly denoted in Eq. (1). The TMD correlation function is given by integrating Eq. (1) over the lightcone momentum kk^{-} as

Φij[c](x,kT,P,T)\displaystyle\Phi^{[c]}_{ij}(x,k_{T},P,T) =𝑑k+𝑑kΦij[c](k,P,T)δ(k+xP+),\displaystyle=\int dk^{+}dk^{-}\,\Phi^{[c]}_{ij}(k,P,T)\,\delta(k^{+}-xP^{+}), (2)

where xx is the momentum fraction carried by a parton as defined by k+=xP+k^{+}=xP^{+}, and kTk_{T} is the transverse momentum. The lightcone vectors nn and n¯\bar{n} defined as

nμ=12( 1, 0, 0,1),n¯μ=12( 1, 0, 0, 1),\displaystyle n^{\mu}=\frac{1}{\sqrt{2}}(\,1,\,0,\,0,\,-1\,),\ \ \bar{n}^{\mu}=\frac{1}{\sqrt{2}}(\,1,\,0,\,0,\,1\,), (3)

are used in this paper.

Furthermore, if the function is integrated over the transverse momentum, we obtain the collinear correlation function as

Φij(x,P,T)=d2kTΦij[c](x,kT,P,T)\displaystyle\ \Phi_{ij}(x,P,T)=\int d^{2}k_{T}\,\Phi^{[c]}_{ij}(x,k_{T},P,T)
=dξ2πeixP+ξP,T|ψ¯j(0)W(0,ξ|n)ψi(ξ)|P,Tξ+=0,ξT=0.\displaystyle\ =\!\int\frac{d\xi^{-}}{2\pi}\,e^{ixP^{+}\xi^{-}}\!\langle\,P,T\left|\,\bar{\psi}_{j}(0)\,W(0,\xi\,|\,n)\,\psi_{i}(\xi)\,\right|P,\,T\,\rangle_{\xi^{+}=0,\,\vec{\xi}_{T}=0}. (4)

In investigating various polarized collinear distribution functions, it is useful to define the kTk_{T}-weighted collinear correlation function by [24, 25]

(Φ[±]μ)ij(x,P,T)=d2kTkTμΦij[±](x,kT,P,T).\displaystyle(\Phi_{\partial}^{[\pm]\,\mu})_{ij}(x,P,T)=\int d^{2}k_{T}\,k_{T}^{\,\mu}\,\Phi^{[\pm]}_{ij}(x,k_{T},P,T). (5)

Although some collinear distribution functions vanish due to the time-reversal invariance, the kTk_{T}-weighted distributions could exist. The superscript index c=±c=\pm indicates the direction of the integral path, namely the plus or minus direction of the coordinate ξ\xi^{-} (nn^{-}) as shown in Fig. 4 of Ref. [20]. For example, the sign ++ and - are associated with the correlation functions in the simi-inclusive deep inelatic scattering (SIDIS) and the Drell-Yan process, respectively [20]. For discussing twist-3 PDFs, multiparton (three-parton in this work) correlation functions are defined with the gluon field tensor G+μG^{+\mu}, the gluon field AμA^{\mu}, or the covariant derivative DμD^{\mu} as

(ΦXμ)ij(x1,x2,P,T)\displaystyle(\Phi_{X}^{\,\mu})_{ij}(x_{1},x_{2},P,T) =dξ12πdξ22πeix1P+ξ1ei(x2x1)P+ξ2\displaystyle=\int\!\frac{d\xi_{1}^{\,-}}{2\pi}\frac{d\xi_{2}^{\,-}}{2\pi}\,e^{ix_{1}P^{+}\xi_{1}^{\,-}}e^{i(x_{2}-x_{1})P^{+}\xi_{2}^{\,-}}
×P,T|ψ¯j(0)Yμ(ξ2)ψi(ξ1)|P,T,\displaystyle\ \hskip 14.22636pt\times\langle\,P,T\left|\,\bar{\psi}_{j}(0)\,Y^{\mu}(\xi_{2}^{\,-})\,\psi_{i}(\xi_{1}^{\,-})\,\right|P,T\,\rangle,
X(Yμ)=G(gG+μ),A(gAμ),D(iDμ),\displaystyle\ X\,(Y^{\mu})=G\,(g\,G^{+\mu}),\ \ A\,(g\,A^{\mu}),\ \ D\,(iD^{\mu}), (6)

where the gauge link is not explicitly written and gg is the QCD coupling constant. The field tensor GμνG^{\mu\nu} is given by the gluon field AμA^{\mu} as Gμν=μAννAμig[Aμ,Aν]G^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}-ig\left[A^{\mu},A^{\nu}\right], where the color factor is included in the field as Aμ=Aaμλa/2A^{\mu}=A^{\mu}_{a}\lambda^{a}/2 with the Gell-Mann matrix λa\lambda^{a}. In this paper, the lightcone gauge (nA=A+=0n\cdot A=A^{+}=0) is used, so that the field tensor G+αG^{+\alpha} is expressed by the gluon field AαA^{\alpha} as G+α=+AαG^{+\alpha}=\partial^{+}A^{\alpha}. The covariant derivative DμD^{\mu} is given by Dμ=μigAμD^{\mu}=\partial^{\mu}-igA^{\mu}. These are the correlation functions used in this work for discussing the tensor-polarized PDFs and the multiparton distributions functions.

3 Relations among PDFs and multiparton distribution
functions for spin-1 hadrons by equation of motion

Using the correlation functions defined in the previous section, we derive relations among the PDFs and the multiparton distribution functions. Since the correlation functions appear repeatedly in this section, we abbreviate the momentum PP and tensor polarization TT hereafter in denoting the correlation functions Φ\Phi. The transverse gluon field is the only relevant degree of freedom in the lightcone quantization [21, 26], so that the transverse index α(=1,2)\alpha\,(=1,2) is used in the following equations (Aα=ATαA^{\alpha}=A_{T}^{\alpha}, α=Tα\partial^{\,\alpha}=\partial_{T}^{\,\alpha}).

In the kTk_{T}-weighted correlation function of Eq. (5), kTαk_{T}^{\,\alpha} is expressed by the derivative Tα=/ξTα\partial_{T}^{\,\alpha}=\partial/\partial\xi_{T\alpha}. Applying this derivative to the gauge link and integrating over kT\vec{k}_{T}, we express the function Φ[±]α\Phi_{\partial}^{\left[\pm\right]\,\alpha} by the covariant derivative and the gluon field tensor as [24]

(Φ[±]α)ij(x)\displaystyle(\Phi_{\partial}^{\left[\pm\right]\,\alpha})_{ij}(x) =dξ2πeixP+ξ[P,T|ψ¯j(0)iDαψi(ξ)|P,T\displaystyle=\int\frac{d\xi^{\,-}}{2\pi}\,e^{ixP^{+}\xi^{\,-}}\,\bigg{[}\,\langle\,P,T\,|\,\bar{\psi}_{j}(0)\,iD^{\alpha}\,\psi_{i}(\xi^{-})\,|\,P,T\,\rangle
P,T|ψ¯j(0)±ξdηgG+α(η)ψi(ξ)|P,T]\displaystyle\ -\langle\,P,T\,|\,\bar{\psi}_{j}(0)\!\int_{\pm\infty}^{\,\xi^{\,-}}\!d\eta^{-}gG^{+\alpha}(\eta^{-})\,\psi_{i}(\xi^{\,-})\,|\,P,T\,\rangle\,\bigg{]}
=dξ2πeixP+ξ[P,T|ψ¯j(0)iαψi(ξ)|P,T\displaystyle\ =\int\frac{d\xi^{-}}{2\pi}\,e^{ixP^{+}\xi^{\,-}}\,\bigg{[}\,\langle\,P,T\,|\,\bar{\psi}_{j}(0)\,i\partial^{\alpha}\,\psi_{i}(\xi^{\,-})\,|\,P,T\,\rangle
+P,T|ψ¯j(0)gAα(ξ=±)ψi(ξ)|P,T].\displaystyle\ +\langle\,P,T\,|\,\bar{\psi}_{j}(0)\,g\,A^{\alpha}(\xi^{\,-}=\pm\infty)\,\psi_{i}(\xi^{\,-})\,|\,P,T\,\rangle\,\bigg{]}. (7)

The second equation is obtained by using G+α(η)=Aα(η)G^{+\alpha}(\eta^{-})=\partial_{-}A^{\alpha}(\eta^{-}). The field-tensor relation G+α=+AαG^{+\alpha}=\partial^{+}A^{\alpha} is inverted as [27]

Aα(ξ)\displaystyle A^{\alpha}(\xi^{\,-}) =Aα()+Aα()212𝑑ηϵ(ηξ)G+α(η),\displaystyle=\frac{A^{\alpha}(\infty)+A^{\alpha}(-\infty)}{2}-\frac{1}{2}\int_{-\infty}^{\infty}\!d\eta^{-}\epsilon(\eta^{-}-\xi^{\,-})\,G^{+\alpha}(\eta^{-}), (8)

where ϵ(x)\epsilon(x) is the sign function [21], by noting the boundary conditions at ±\pm\infty. Using this relation for Eq. (7), we obtain

(Φ[±]α)ij(x)\displaystyle\!\!(\Phi_{\partial}^{\left[\pm\right]\,\alpha})_{ij}(x) =dξ2πeixP+ξ[P,T|ψ¯j(0)iαψi(ξ)|P,T\displaystyle=\int\frac{d\xi^{\,-}}{2\pi}\,e^{ixP^{+}\xi^{\,-}}\,\bigg{[}\,\langle\,P,T\,|\,\bar{\psi}_{j}(0)\,i\partial^{\alpha}\,\psi_{i}(\xi^{\,-})\,|\,P,T\,\rangle
+P,T|ψ¯j(0)g{Aα()+Aα()2\displaystyle\ \ \ +\langle\,P,T\,|\,\bar{\psi}_{j}(0)\,\,g\,\bigg{\{}\frac{A^{\alpha}(\infty)+A^{\alpha}(-\infty)}{2}
±Aα()Aα()2}ψi(ξ)|P,T].\displaystyle\ \ \ \hskip 25.6073pt\pm\frac{A^{\alpha}(\infty)-A^{\alpha}(-\infty)}{2}\bigg{\}}\,\psi_{i}(\xi^{\,-})\,|\,P,T\,\rangle\,\bigg{]}. (9)

Here, the first and second lines are T-even terms which are expressed by T-even kTk_{T}-weighted PDFs, whereas the third line is a T-odd term expressed by T-odd distributions [27]. The kTk_{T}-weighted PDFs are defined in Eq. (12). The T-odd kTk_{T}-weighted PDFs exist although ordinary T-odd PDFs should vanish due to the time-reversal invariance. The T-odd distributions are actually gluonic-pole effects which are reflected as the difference between ATα()A^{\alpha}_{T}(\infty) and ATα()A^{\alpha}_{T}(-\infty) [24]. If one considers Φ[+]α(x)+Φ[]α(x)\Phi_{\partial}^{\left[+\right]\,\alpha}(x)+\Phi_{\partial}^{\left[-\right]\,\alpha}(x), the T-odd distributions vanish, which is related to the TMD relation fSIDIS(x,kT2)=fDrell-Yan(x,kT2)f_{\text{SIDIS}}(x,k_{T}^{2})=-f_{\text{Drell-Yan}}(x,k_{T}^{2}) between the TMDs of the SIDIS and the Drell-Yan process. If the boundary condition were imposed as Aα()=Aα()A^{\alpha}(\infty)=A^{\alpha}(-\infty), the T-odd term vanishes in Eq. (9) [24].

Next, we try to obtain the kTk_{T}-weighted correlation function of Eq. (5) in terms of transverse-momentum moments of TMDs. First, the twist-2 TMD correlation function is given as [19, 20]

Φ[±](x,kT)twist-2=12[f1LT[±](x,kT2)kTSLTMn¯\displaystyle\Phi^{[\pm]}(x,k_{T})_{\text{twist-2}}=\,\frac{1}{2}\,\bigg{[}-f_{1LT}^{[\pm]}(x,k_{T}^{2})\frac{k_{T}\cdot S_{LT}}{M}{\not{\bar{n}}}
+g1LT[±](x,kT2)ϵTαμSLTαkTμMγ5n¯+h1LL[±](x,kT2)SLLkTασαμMn¯μ\displaystyle+g_{1LT}^{[\pm]}(x,k_{T}^{2})\frac{\epsilon_{T}^{\alpha\mu}S_{LT\alpha}k_{T\mu}}{M}\gamma_{5}{\not{\bar{n}}}+h_{1LL}^{\perp[\pm]}(x,k_{T}^{2})S_{LL}\frac{k_{T\alpha}\sigma^{\,\alpha\mu}}{M}\bar{n}_{\mu}
h1TT[±](x,kT2)kTαSTTαβσβμMn¯μ+h1TT[±](x,kT2)kTαSTTαβkTβM2kTρσρμMn¯μ\displaystyle-h_{1TT}^{\prime[\pm]}(x,k_{T}^{2})\frac{k_{T\alpha}S_{TT}^{\alpha\beta}\sigma_{\beta\mu}}{M}\bar{n}^{\mu}+h_{1TT}^{\perp[\pm]}(x,k_{T}^{2})\frac{k_{T\alpha}S_{TT}^{\alpha\beta}k_{T\beta}}{M^{2}}\frac{k_{T\rho}\sigma^{\,\rho\mu}}{M}\bar{n}_{\mu}
+kT-even terms],\displaystyle+\text{$k_{T}$-even terms}\,\bigg{]}, (10)

where MM is the mass of a spin-1 hadron. The path dependence [±][\pm] of the TMDs is often abbreviated, for example, as f1LT(x,kT2)f_{1LT}(x,k_{T}^{2}) instead of f1LT[±](x,kT2)f_{1LT}^{[\pm]}(x,k_{T}^{2}). However, we keep it here to show path-dependent relations in Eq. (13). By the kTk_{T}-weighted integral, the h1TTh_{1TT}^{\perp} vanishes because of STT11=STT22=1S_{TT}^{11}=-S_{TT}^{22}=-1. From Eq. (10), the kTk_{T}-weighted correlation function is expressed by transverse-momentum moments of the remaining four TMDs as [19, 20]

Φ[±]α(x)\displaystyle\Phi_{\partial}^{\,[\pm]\,\alpha}(x) =M2[f1LT[±](1)(x)SLTαn¯+g1LT[±](1)(x)ϵTαμSLTμγ5n¯\displaystyle=\frac{M}{2}\bigg{[}f_{1LT}^{\,[\pm]\,(1)}(x)\,S_{LT}^{\alpha}\,\not{\bar{n}}+g_{1LT}^{[\pm]\,(1)}(x)\,\epsilon_{T}^{\alpha\mu}S_{LT\mu}\,\gamma_{5}\,\not{\bar{n}}
h1LL[±](1)(x)SLLσαμn¯μ+h1TT[±](1)(x)STTαβσβμn¯μ].\displaystyle\ -h_{1LL}^{\perp\,[\pm]\,(1)}(x)S_{LL}\sigma^{\alpha\mu}\bar{n}_{\mu}+h_{1TT}^{\prime\,[\pm]\,(1)}(x)\,S_{TT}^{\alpha\beta}\,\sigma_{\beta\mu}\,\bar{n}^{\,\mu}\bigg{]}. (11)

Here, only the leading-twist kTk_{T}-weighted PDFs are included by neglecting higher-twist PDFs, and the transverse-momentum moments of the TMDs are given by

f(1)(x)=d2kTkT 22M2f(x,kT2).\displaystyle f^{\,(1)}(x)=\int\!d^{2}k_{T}\frac{\vec{k}_{T}^{\,2}}{2M^{2}}\,f(x,k_{T}^{2}). (12)

The only T-even distribution is f1LT(1)f_{1LT}^{\,(1)} and the others are T-odd ones [20] to satisfy

f1LT[+](1)(x)\displaystyle f_{1LT}^{\,[+]\,(1)}(x) =f1LT[](1)(x),\displaystyle=f_{1LT}^{\,[-]\,(1)}(x),\ \ \ g1LT[+](1)(x)\displaystyle g_{1LT}^{[+]\,(1)}(x) =g1LT[](1)(x),\displaystyle=-g_{1LT}^{[-]\,(1)}(x),\ \
h1LL[+](1)(x)\displaystyle h_{1LL}^{\perp\,[+]\,(1)}(x) =h1LL[](1)(x),\displaystyle=-h_{1LL}^{\perp\,[-]\,(1)}(x),\ \ \ h1TT[+](1)(x)\displaystyle h_{1TT}^{\prime\,[+]\,(1)}(x) =h1TT[](1)(x).\displaystyle=-h_{1TT}^{\prime\,[-]\,(1)}(x). (13)

By using the gluon-field expression in Eq. (8) and the sign function ϵ(x)\epsilon(x) in Eq. (3.36) of Ref. [21], the multiparton correlation function ΦAα(x,y)\Phi_{A}^{\alpha}(x,y) in Eq. (6) is related to another one ΦGα(x,y)\Phi_{G}^{\alpha}(x,y) as [27]

ΦAα(x,y)\displaystyle\Phi_{A}^{\,\alpha}(x,y) =δ(xy)ΦA()α(x)+ΦA()α(x)2\displaystyle=\delta(x-y)\,\frac{\Phi_{A(-\infty)}^{\,\alpha}(x)+\Phi_{A(\infty)}^{\,\alpha}(x)}{2}
𝒫[iP+(xy)]ΦGα(x,y),\displaystyle\ \ \ \ -{\cal P}\left[\frac{i}{P^{+}(x-y)}\right]\Phi_{G}^{\alpha}(x,y), (14)

where 𝒫{\cal P} indicates the principal integral. Then, from Eqs. (6), (9), and (14), the multiparton correlation function defined with the covariant derivative ΦDα(x,y)\Phi_{D}^{\alpha}(x,y) is given by

ΦDα(x,y)=δ(xy)1P+Φ~α(x)𝒫[iP+(xy)]ΦGα(x,y),\displaystyle\Phi_{D}^{\alpha}(x,y)=\delta(x-y)\frac{1}{P^{+}}\tilde{\Phi}^{\alpha}(x)-{\cal P}\left[\frac{i}{P^{+}(x-y)}\right]\Phi_{G}^{\alpha}(x,y), (15)

where Φ~α\tilde{\Phi}^{\alpha} is defined by the average of Φ[+]α\Phi_{\partial}^{[+]\,\alpha} and Φ[]α\Phi_{\partial}^{[-]\,\alpha} as

Φ~ijα(x)\displaystyle\!\tilde{\Phi}^{\alpha}_{ij}(x) (Φ[+]α)ij(x)+(Φ[]α)ij(x)2\displaystyle\equiv\frac{(\Phi_{\partial}^{\left[+\right]\,\alpha})_{ij}(x)+(\Phi_{\partial}^{\left[-\right]\,\alpha})_{ij}(x)}{2}
=dξ2πeixP+ξ[P,T|ψ¯j(0)iαψi(ξ)|P,T\displaystyle=\int\frac{d\xi^{-}}{2\pi}\,e^{ixP^{+}\xi^{-}}\bigg{[}\,\langle\,P,T\,|\,\bar{\psi}_{j}(0)\,i\partial^{\alpha}\,\psi_{i}(\xi^{-})\,|\,P,T\,\rangle
+P,T|ψ¯j(0)gAα()+Aα()2ψi(ξ)|P,T].\displaystyle\ \hskip 2.84544pt+\langle\,P,T\,|\,\bar{\psi}_{j}(0)\,g\frac{A^{\alpha}(\infty)\,+A^{\alpha}(-\infty)}{2}\psi_{i}(\xi^{-})\,|\,P,T\,\rangle\bigg{]}. (16)

This correlation function Φ~α\tilde{\Phi}^{\,\alpha} is the T-even part of Eq. (9). Using the kTk_{T}-weighted correlation function in Eq. (11), we find that it is given by the T-even function f1LT(1)(x)f_{1LT}^{\,(1)}(x) as

Φ~α(x)=M2f1LT(1)(x)SLTαn¯,\displaystyle\tilde{\Phi}^{\,\alpha}(x)=\frac{M}{2}f_{1LT}^{\,(1)}(x)\,S_{LT}^{\alpha}\,\not{\bar{n}}, (17)

where f1LT[+](1)(x)=f1LT[](1)(x)f1LT(1)(x)f_{1LT}^{\,[+]\,(1)}(x)=f_{1LT}^{\,[-]\,(1)}(x)\equiv f_{1LT}^{\,(1)}(x).

The multiparton correlation function ΦDα(x,y)\Phi_{D}^{\,\alpha}(x,y) is expressed by the multiparton distribution functions in the same way with ΦGα(x,y)\Phi_{G}^{\,\alpha}(x,y) of Ref. [21] as

ΦDα(x,y)\displaystyle\Phi_{D}^{\alpha}(x,y) =M2P+[SLTαFD,LT(x,y)+iϵαμSLTμγ5GD,LT(x,y)\displaystyle=\frac{M}{2P^{+}}\bigg{[}S_{LT}^{\alpha}F_{D,LT}(x,y)+i\epsilon_{\bot}^{\alpha\mu}S_{LT\mu}\gamma_{5}G_{D,LT}(x,y)
+SLLγαHD,LL(x,y)+STTαμγμHD,TT(x,y)]n¯.\displaystyle\ +S_{LL}\gamma^{\alpha}H_{D,LL}^{\perp}(x,y)+S_{TT}^{\alpha\mu}\gamma_{\mu}H_{D,TT}(x,y)\bigg{]}\,\not{\bar{n}}. (18)

Substituting Eqs. (17), (18), and ΦGα(x,y)\Phi_{G}^{\,\alpha}(x,y) in Eq. (3.32) of Ref. [21] into Eq. (15), we obtain the relations between the multiparton distribution functions as

FD,LT(x,y)\displaystyle F_{D,LT}(x,y) =δ(xy)f1LT(1)(x)+𝒫(1xy)FG,LT(x,y),\displaystyle=\delta(x-y)f_{1LT}^{\,(1)}(x)+{\cal P}\left(\frac{1}{x-y}\right)F_{G,LT}(x,y),
GD,LT(x,y)\displaystyle G_{D,LT}(x,y) =𝒫(1xy)GG,LT(x,y),\displaystyle={\cal P}\left(\frac{1}{x-y}\right)G_{G,LT}(x,y),
HD,LL(x,y)\displaystyle H_{D,LL}^{\perp}(x,y) =𝒫(1xy)HG,LL(x,y),\displaystyle={\cal P}\left(\frac{1}{x-y}\right)H_{G,LL}^{\perp}(x,y),
HD,TT(x,y)\displaystyle H_{D,TT}(x,y) =𝒫(1xy)HG,TT(x,y).\displaystyle={\cal P}\left(\frac{1}{x-y}\right)H_{G,TT}(x,y). (19)

Similar relations are given for the multiparton distribution functions of the nucleons in Refs. [28] and [29]. From these relations, Eq. (13), and Eq. (3.33) of Ref. [21], we find that the function FD,LT(x,y)F_{D,LT}(x,y) is even under the exchange of xx and yy and the other functions [GD,LT(x,y)G_{D,LT}(x,y), HD,LL(x,y)H_{D,LL}^{\perp}(x,y), HD,TT(x,y)H_{D,TT}(x,y)] are odd as

FD,LT(x,y)\displaystyle F_{D,LT}(x,y) =FD,LT(y,x),\displaystyle=F_{D,LT}(y,x),\ \ GD,LT(x,y)\displaystyle G_{D,LT}(x,y) =GD,LT(y,x),\displaystyle=-G_{D,LT}(y,x),
HD,LL(x,y)\displaystyle H_{D,LL}^{\perp}(x,y) =HD,LL(y,x),\displaystyle=-H_{D,LL}^{\perp}(y,x),\ \ HD,TT(x,y)\displaystyle H_{D,TT}(x,y) =HD,TT(y,x).\displaystyle=-H_{D,TT}(y,x). (20)

The equation of motion for quarks is (im)ψ=0(i\not{D}-m)\psi=0, which is then multiplied by iσ+αi\hskip 0.56917pt\sigma^{+\alpha} and written by the lightcone coordinates as

i(γ+DαγαD+)ψ\displaystyle i(\gamma^{+}D^{\alpha}-\gamma^{\alpha}D^{+})\psi +iϵTαμγμγ5iD+ψ\displaystyle+i\epsilon_{T}^{\alpha\mu}\gamma_{\mu}\gamma_{5}iD^{+}\psi
iϵTαμγ+γ5iDμψ+imσ+αψ=0,\displaystyle-i\epsilon_{T}^{\alpha\mu}\gamma^{+}\gamma_{5}iD_{\mu}\psi+i\,m\,\sigma^{+\alpha}\psi=0, (21)

where mm is a quark mass. The constraint from this equation of motion is given by traces of collinear correlation functions ΦDμ(=α,+)(x)\Phi_{D}^{\,\mu\,(=\,\alpha,+)}(x) as

dξ2πeixP+ξP,T|ψ¯(0)[i(γ+DαγαD+)+iϵTαμγμγ5iD+\displaystyle\int\frac{d\xi^{-}}{2\pi}\,e^{ixP^{+}\xi^{-}}\langle\,P,T\,\big{|}\,\bar{\psi}(0)\,\big{[}\,i(\gamma^{+}D^{\alpha}-\gamma^{\alpha}D^{+})+i\epsilon_{T}^{\alpha\mu}\gamma_{\mu}\gamma_{5}iD^{+}
iϵTαμγ+γ5iDμ+imσ+α]ψ(ξ)|P,T\displaystyle\ \hskip 56.9055pt-i\epsilon_{T}^{\alpha\mu}\gamma^{+}\gamma_{5}iD_{\mu}+i\,m\,\sigma^{+\alpha}\,\big{]}\,\psi(\xi^{\,-})\,\big{|}\,P,\,T\,\rangle
=P+Tr[ΦDα(x)γ+]P+Tr[ΦD+(x)γα]+P+iϵTαμTr[ΦD+(x)γμγ5]\displaystyle\ =P^{+}\text{Tr}\,[\Phi_{D}^{\alpha}(x)\,\gamma^{+}]-P^{+}\text{Tr}\,[\Phi_{D}^{+}(x)\,\gamma^{\alpha}]+P^{+}i\epsilon_{T}^{\alpha\mu}\text{Tr}\,[\Phi_{D}^{+}(x)\,\gamma_{\mu}\gamma_{5}]
P+iϵTαμTr[ΦDμ(x)γ+γ5]+imTr[Φ(x)σ+α]\displaystyle\ \hskip 56.9055pt-P^{+}i\epsilon_{T}^{\alpha\mu}\text{Tr}\,[\Phi_{D\mu}(x)\,\gamma^{+}\gamma_{5}]+im\text{Tr}\,[\Phi(x)\,\sigma^{+\alpha}]
=0.\displaystyle\ =0. (22)

Here, the collinear correlation function ΦDμ(x)\Phi_{D}^{\,\mu}(x) is defined by integrating the correlation function ΦDμ(y,x)\Phi_{D}^{\,\mu}(y,x) over the variable yy as

ΦDμ(x)11𝑑yΦDμ(y,x).\displaystyle\Phi_{D}^{\,\mu}(x)\equiv\int_{-1}^{1}dy\,\Phi_{D}^{\,\mu}(y,x). (23)

It should be noted that only the transverse (μ=α\mu=\alpha) correlation functions are associated with the multiparton distribution functions by Eq. (18). In expressing integrals of multiparton distribution functions over yy in the following [Eqs. (26), (27), (28), (32)], the variables xx and yy are interchanged by using Eq. (20). From the definition of Eq. (6), the correlation function ΦD+(x,y)\Phi_{D}^{+}(x,y) is expressed by the collinear correlation function Φ(x)\Phi(x) as

ΦD+(x,y)=δ(xy)xΦ(x),\displaystyle\Phi_{D}^{+}(x,y)=\delta(x-y)\,x\,\Phi(x), (24)

where Φ(x)\Phi(x) is given by [21]

Φ(x)\displaystyle\Phi(x) =12[SLLn¯f1LL(x)+MP+SLLeLL(x)\displaystyle=\frac{1}{2}\bigg{[}\,S_{LL}\,\not{\bar{n}}\,f_{1LL}(x)+\frac{M}{P^{+}}\,S_{LL}\,e_{LL}(x)
+MP+LTfLT(x)+M2(P+)2SLLf3LL(x)].\displaystyle\ \hskip 17.07182pt+\frac{M}{P^{+}}\,\not{S}_{LT}\,f_{LT}(x)+\frac{M^{2}}{(P^{+})^{2}}\,S_{LL}\,\not{n}\,f_{3LL}(x)\,\bigg{]}. (25)

Calculating Eq. (22) with Eqs. (18), (23), (24), and (25), we obtain the relations among the tensor-polarized PDFs and the multiparton distribution functions as

xfLT(x)11𝑑y[FD,LT(x,y)+GD,LT(x,y)]=0.\displaystyle xf_{LT}(x)-\int_{-1}^{1}dy\,\left[F_{D,LT}(x,y)+G_{D,LT}(x,y)\right]=0. (26)

A similar relation to this equation was obtained in Ref. [17] by using a different parametrization for the tensor polarization. Namely, the collinear twist-3 function fLT(x)f_{LT}(x) is given by integrating the twist-3 multiparton distribution functions FD,LTF_{D,LT} and GD,LTG_{D,LT} over one of the momentum-fraction variables. Then, this relation is written in terms of the multiparton distribution functions defined with the field tensor GμνG^{\mu\nu} by using Eq. (19) as

xfLT(x)f1LT(1)(x)𝒫11𝑑yFG,LT(x,y)+GG,LT(x,y)xy=0.\displaystyle xf_{LT}(x)-f_{1LT}^{\,(1)}(x)-{\cal P}\int_{-1}^{1}dy\,\frac{F_{G,LT}(x,y)+G_{G,LT}(x,y)}{x-y}=0. (27)

Therefore, the function fLT(x)f_{LT}(x) is also expressed by the kTk_{T}-weighted function f1LT(1)(x)f_{1LT}^{\,(1)}(x) and other multiparton distribution functions FG,LTF_{G,LT} and GG,LTG_{G,LT}. Using the relation between the twist-3 structure function fLTf_{LT} and the twist-2 one f1LLf_{1LL} in Eqs. (3.41) and (3.42) of Ref. [21], and taking the derivative of Eq. (27) with respect to xx, we obtain

df1LT(1)(x)dxfLT(x)+32f1LL(x)2𝒫11𝑑yFG,LT(x,y)(xy)2=0.\displaystyle\!\!\!\!\!\frac{df_{1LT}^{\,(1)}(x)}{dx}-f_{LT}(x)+\frac{3}{2}f_{1LL}(x)-2{\cal P}\!\!\int_{-1}^{1}\!dy\,\frac{F_{G,LT}(x,y)}{(x-y)^{2}}=0.\! (28)

This is a Lorentz-invariance relation for the tensor-polarized structure functions of spin-1 hadrons in the similar way to the ones for the spin-1/2 nucleons [23]. An equation like Eq. (28) is conventionally called a Lorentz-invariance relation. Here, the Lorentz invariance means the frame independence of twist-3 observables [23]. Therefore, Lorentz-invariant relations play an important role in twist-3 studies. Although it is abbreviated in Eq. (1), there is dependence on the lightcone vector nn due to the gauge link in the correlation function [20]. The Lorentz-invariance relation is affected by nn-dependent terms in the correlation function as noticed in the papers of Goeke et al. (2003) and Metz et al. (2009) in Ref. [23] for the spin-1/2 nucleons. Such effects are included in our formalism.

Multiplying γμ\gamma^{\mu} on the left-hand side of the Dirac equation and using the identity γμγν=gμνiσμν\gamma^{\mu}\gamma^{\nu}=g^{\mu\nu}-i\sigma^{\mu\nu}, we obtain (iDμiσμνiDνmγμ)ψ=0(iD^{\mu}-i\sigma^{\mu\nu}iD_{\nu}-m\gamma^{\mu})\psi=0. Then, taking the lightcone component ++, we have another equation of motion as

(iD+iσ+νiDνmγ+)ψ=0.\displaystyle(iD^{+}-i\sigma^{+\nu}iD_{\nu}-m\gamma^{+})\,\psi=0. (29)

The constraint from this equation of motion is written, in the same way with Eq. (22), as

dξ2πeixP+ξP,T|ψ¯(0)[iD+iσ+νiDνmγ+]ψ(ξ)|P,T\displaystyle\int\frac{d\xi^{-}}{2\pi}\,e^{ixP^{+}\xi^{-}}\langle\,P,T\,\big{|}\,\bar{\psi}(0)\,\big{[}iD^{+}-i\sigma^{+\nu}iD_{\nu}-m\gamma^{+}\big{]}\,\psi(\xi^{\,-})\,\big{|}\,P,T\,\rangle
=P+Tr[ΦD+(x)]P+iTr[ΦD+(x)σ+]\displaystyle\ \hskip 14.22636pt=P^{+}\text{Tr}\,[\Phi_{D}^{+}(x)]-P^{+}i\,\text{Tr}\,[\Phi_{D}^{+}(x)\,\sigma^{+-}]
P+iTr[ΦDα(x)σ+α]mTr[Φ(x)γ+]\displaystyle\ \hskip 36.98866pt-P^{+}i\,\text{Tr}\,[\Phi_{D\alpha}(x)\,\sigma^{+\alpha}]-m\text{Tr}\,[\Phi(x)\gamma^{+}]
=0.\displaystyle\ \hskip 14.22636pt=0. (30)

Then, calculating the traces with Eqs.  (18), (23), (24), and (25), we obtain the integral relation among the twist-3 PDF eLLe_{LL}, the twist-2 PDF f1LLf_{1LL}, and the twist-3 multiparton distribution function HD,LLH_{D,LL}^{\perp} as

xeLL(x)211𝑑yHD,LL(x,y)mMf1LL(x)=0.\displaystyle x\,e_{LL}(x)-2\int_{-1}^{1}dy\,H_{D,LL}^{\perp}(x,y)-\frac{m}{M}f_{1LL}(x)=0. (31)

This equation is expressed by another multiparton distribution function HG,LLH_{G,LL}^{\perp} by using Eq. (19) as

xeLL(x)2𝒫11𝑑yHG,LL(x,y)xymMf1LL(x)=0.\displaystyle x\,e_{LL}(x)-2{\cal P}\int_{-1}^{1}dy\,\frac{H_{G,LL}^{\perp}(x,y)}{x-y}-\frac{m}{M}f_{1LL}(x)=0. (32)

Because of m/M1m/M\ll 1, the third terms of Eqs. (31) and (32) could be practically neglected. Then, the twist-3 functions is described only by the multiparton distribution function HD,LL(x,y)H_{D,LL}^{\perp}(x,y) or HG,LL(x,y)H_{G,LL}^{\perp}(x,y). We notice that the distribution HD,LL(x,y)H_{D,LL}^{\perp}(x,y) has the corresponding twist-3 PDF eLL(x)e_{LL}(x) by Eq. (31). The distributions FD,LL(x,y)F_{D,LL}(x,y) and GD,LT(x,y)G_{D,LT}(x,y) are related to twist-3 PDF fLT(x)f_{LT}(x) as shown in Eq. (26). In the nucleon case, all the twist-3 PDFs are expressed by twist-3 multiparton distribution functions. One finds this correspondence in Eqs. (11), (16), (19), and (20) of Ref. [30] in the spin-1/2 case. However, we find that the corresponding twist-3 PDF does not exist for the distribution HD,TT(x,y)H_{D,TT}(x,y) of a spin-1 hadron in Eq. (18). This is because the distribution HD,TT(x,y)H_{D,TT}(x,y) is associated with the tensor-polarization parameter STTμμS_{TT}^{\mu\mu}, and there is no twist-3 PDF which is associated with the parameter STTμμS_{TT}^{\mu\mu} [18, 20, 21]. In this case, no twist-3 PDF is related to HD,TT(x,y)H_{D,TT}(x,y) by the equation of motion.

4 Summary

From the equation of motion for quarks, we derived relations among the tensor-polarized distribution functions and twist-3 multiparton distribution functions defined by the field tensor. We found the relations from the equation of motion for quarks as

xfLT(x)f1LT(1)(x)𝒫11𝑑yFG,LT(x,y)+GG,LT(x,y)xy=0,\displaystyle xf_{LT}(x)-f_{1LT}^{\,(1)}(x)-{\cal P}\int_{-1}^{1}dy\,\frac{F_{G,LT}(x,y)+G_{G,LT}(x,y)}{x-y}=0,
xeLL(x)2𝒫11𝑑yHG,LL(x,y)xymMf1LL(x)=0,\displaystyle x\,e_{LL}(x)-2{\cal P}\int_{-1}^{1}dy\,\frac{H_{G,LL}^{\perp}(x,y)}{x-y}-\frac{m}{M}f_{1LL}(x)=0,

for the twist-3 PDF fLTf_{LT}, the trasverse-momentum moment PDF f1LT(1)f_{1LT}^{\,(1)}, and the multiparton distribution functions FG,LTF_{G,LT} and GG,LTG_{G,LT}; for the twist-3 PDF eLLe_{LL}, the twist-2 PDF f1LLf_{1LL}, and the multiparton distribution function HG,LLH_{G,LL}^{\perp}. Then, the Lorentz-invariance relation was obtained as

df1LT(1)(x)dxfLT(x)+32f1LL(x)2𝒫11𝑑yFG,LT(x,y)(xy)2=0.\displaystyle\frac{df_{1LT}^{\,(1)}(x)}{dx}-f_{LT}(x)+\frac{3}{2}f_{1LL}(x)-2{\cal P}\!\int_{-1}^{1}\!dy\,\frac{F_{G,LT}(x,y)}{(x-y)^{2}}=0.

These relation are valuable in constraining the tensor-polarized PDFs and the multiparton distribution functions.

In deriving these relations, we also obtained new relations among the multiparton distribution functions defined by the field tensor and the covariant derivatives. First, the function FD,LT(x,y)F_{D,LT}(x,y) is expressed by f1LT(1)(x)f_{1LT}^{\,(1)}(x) and FG,LT(x,y)F_{G,LT}(x,y) as

FD,LT(x,y)=δ(xy)f1LT(1)(x)+𝒫(1xy)FG,LT(x,y).\displaystyle F_{D,LT}(x,y)=\delta(x-y)f_{1LT}^{\,(1)}(x)+{\cal P}\left(\frac{1}{x-y}\right)F_{G,LT}(x,y).

Next, the functions GD,LT(x,y)G_{D,LT}(x,y), HD,LL(x,y)H_{D,LL}^{\perp}(x,y), and HD,TT(x,y)H_{D,TT}(x,y) are expressed only by the corresponding functions defined with the field tensor as

GD,LT(x,y)=𝒫(1xy)GG,LT(x,y),\displaystyle G_{D,LT}(x,y)={\cal P}\left(\frac{1}{x-y}\right)G_{G,LT}(x,y),
and same equations for HD/G,LL(x,y) and HD/G,TT(x,y).\displaystyle\text{and same equations for }H_{D/G,LL}^{\perp}(x,y)\text{ and }H_{D/G,TT}(x,y).

These studies will be useful for investigating the tensor-polarized structure functions of spin-1 hadrons.

Acknowledgments

S. Kumano was partially supported by Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) Grant Number 19K03830. Qin-Tao Song was supported by the National Natural Science Foundation of China under Grant Number 12005191, the Academic Improvement Project of Zhengzhou University, and the China Scholarship Council for visiting Ecole Polytechnique.

References

  • [1] For introductory review, see M. Diehl, Phys. Rep. 388, 41 (2003); X. Ji, Annu. Rev. Nucl. Part. Sci. 54, 413 (2004). For recent works, see H. Moutarde, P. Sznajder, and J. Wagner, Eur. Phys. J. C 78 (2018) 890; PARTONS project at http://partons.cea.fr/partons/doc/html/index.html. See also S. Kumano, M. Strikman, and K. Sudoh, Phys. Rev. D 80 (2009) 074003; H. Kawamura and S. Kumano, Phys. Rev. D 89 (2014) 054007; T. Sawada et al., Phys. Rev. D 93 (2016) 11.
  • [2] S. Kumano, Qin-Tao Song, and O. V. Teryaev, Phys. Rev. D 97 (2018) 014020; K. Tanaka, Phys.Rev.D 98 (2018) 034009, Y. Hatta, A, Rajan, and K. Tanaka, JHEP 12 (2018) 008; K. Tanaka, JHEP 01 (2019) 120. For reviews and recent works, see, for example, M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33 (2018) 1830025; X. Ji, Front. Phys. 16 (2021) 64601 and references therein; C. Lorcé, Eur. Phys. J. C 78 (2018) 120; C. Lorcé, A. Metz, B. Pasquini, and S. Rodini, JHEP 11 (2021) 121.
  • [3] L. L. Frankfurt and M. I. Strikman, Nucl. Phys. A405 (1983) 557; P. Hoodbhoy, R. L. Jaffe, and A. Manohar, Nucl. Phys. B 312 (1989) 571.
  • [4] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. Lett. 95 (2005) 242001.
  • [5] F. E. Close and S. Kumano, Phys. Rev. D 42 (1990) 2377; S. Kumano, J. Phys.: Conf. Series 543 (2014) 012001.
  • [6] A. Efremov and O. Teryaev, Sov. J. Nucl. Phys. 36 (1982) 557.
  • [7] X. Ji, Phys. Rev. D 49 (1994) 114.
  • [8] S. Hino and S. Kumano, Phys. Rev. D 59 (1999) 094026; D 60 (1999) 054018.
  • [9] S. Kumano and Qin-Tao Song, Phys. Rev. D 94 (2016) 054022.
  • [10] E. R. Berger, F. Cano, M. Diehl and B. Pire, Phys. Rev. Lett. 87 (2001) 142302; W. Cosyn and B. Pire, Phys. Rev. D 98 (2018) 074020; Bao-Dong Sun and Yu-Bing Dong, Phys. Rev. D 96 (2017) 036019; 101 (2020) 096008.
  • [11] T.-Y. Kimura and S. Kumano, Phys. Rev. D 78 (2008) 117505.
  • [12] S. Kumano, Phys. Rev. D 82 (2010) 017501.
  • [13] H. Khan and P. Hoodbhoy, Phys. Rev. C 44 (1991) 1219; W. Cosyn, Yu-Bing Dong, S. Kumano, and M. Sargsian, Phys. Rev. D 95 (2017) 074036.
  • [14] W. Cosyn and C. Weiss, Phys. Rev. C 102 (2020) 065204.
  • [15] G. A. Miller, Phys. Rev. C 89 (2014) 045203.
  • [16] R. L. Jaffe and A. Manohar, Phys. Lett. B 223 (1989) 218; M. Nzar and P. Hoodbhoy, Phys. Rev. D 45 (1992) 2264; W. Detmold and P. E. Shanahan, Phys. Rev. D 94 (2016) 014507; Erratum, 95 (2017) 079902.
  • [17] J. P. Ma, C. Wang, and G. P. Zhang, arXiv:1306.6693 (unpublished).
  • [18] S. Kumano, Qin-Tao Song, Phys. Rev. D 101 (2020) 054011; D 101 (2020) 094013.
  • [19] A. Bacchetta and P. Mulders, Phys. Rev. D 62 (2000) 114004.
  • [20] S. Kumano and Qin-Tao Song, Phys. Rev. D 103 (2021) 014025.
  • [21] S. Kumano and Qin-Tao Song, JHEP 09 (2021) 141.
  • [22] (JLab) J.-P. Chen et al., Proposal to Jefferson Lab PAC-38, PR12-11-110 (2011); M. Jones et al., A Letter of Intent to Jefferson Lab PAC 44, LOI12-16-006 (2016); (Fermilab) D. Geesaman et al., Proposal to Fermilab PAC, P-1039 (2013); D. Keller et al., proposal to be submitted to Fermilab in 2022; (NICA) A. Arbuzov et al., Prog. Nucl. Part. Phys. 119 (2021) 103858; (LHCspin) C. A. Aidala et al., arXiv:1901.08002; (EIC) R. Abdul Khalek et al., arXiv:2103.05419; (EicC) D. P. Anderle et al., Front. Phys. 16 (2021) 64701.
  • [23] For explanations on the Lorentz-invariance and equation-of-motion relations, see A. Accardi, A. Bacchetta, W. Melnitchouk, and M. Schlegel, JHEP 11 (2009) 093; K. Kanazawa, Y. Koike, A. Metz, D. Pitonyak, and M. Schlegel, Phys. Rev. D 93 (2016) 054024. Original and related works are R. D. Tangerman, Ph.D. thesis, Free University Amsterdam (1996); P. J. Mulders and R. D. Tangerman, Nucl. Phys. B 461 (1996) 197; Erratum, B 484 (1997) 538; D. Boer and P. J. Mulders, Phys. Rev. D 57 (1998) 5780; D. Boer, P. J. Mulders, and F. Pijlman, Nucl. Phys. B 667 (2003) 201; K. Goeke, A. Metz, P. V. Pobylitsa, and M. V. Polyakov, Phys. Lett. B 567 (2003) 27; A. V. Belitsky and D. Müller, Nucl. Phys. B 503 (1997) 279; A. V. Belitsky, Int. J. Mod. Phys. A 32 (2017) 1730018; A. Metz, P. Schweitzer, and T. Teckentrup, Phys. Lett. B 680 (2009) 141; A. Rajan, M. Engelhardt, and S. Liuti, Phys. Rev. D 98 (2018) 074022.
  • [24] D. Boer, P. J. Mulders, and F. Pijlman, Nucl. Phys. B 667 (2003) 201.
  • [25] V. Barone and R. G. Ratcliffe, Transverse Spin Physics (World Scientific, Singapore, 2003).
  • [26] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept. 301 (1998) 299.
  • [27] D. Boer, P. J. Mulders, and O. V. Teryaev, Phys. Rev. D 57 (1998) 3057.
  • [28] H. Eguchi, Y. Koike, and K. Tanaka, Nucl. Phys. B 752 (2006) 1.
  • [29] J. Zhou, F. Yuan, and Z. T. Liang, Phys. Rev. D 81 (2010) 054008.
  • [30] R. L. Jaffe and X. D. Ji, Nucl. Phys. B 375 (1992) 527.