This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Entropy solutions to the Dirichlet problem for nonlinear diffusion equations with conservative noise

Kai Du Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200438, China. [email protected] Ruoyang Liu Corresponding author. School of Mathematical Sciences, Fudan University, Shanghai 200433, China. [email protected]  and  Yuxing Wang School of Mathematical Sciences, Fudan University, Shanghai 200433, China. [email protected]
Abstract.

Motivated by porous medium equations with randomly perturbed velocity field, this paper considers a class of nonlinear degenerate diffusion equations with nonlinear conservative noise in bounded domains. The existence, uniqueness and L1L_{1}-stability of non-negative entropy solutions under the homogeneous Dirichlet boundary condition are proved. The approach combines Kruzhkov’s doubling variables technique with a revised strong entropy condition that is automatically satisfied by the solutions of approximate equations.

Key words and phrases:
nonlinear diffusion equation, entropy solution, Dirichlet problem, stochastic porous medium equation, conservation noise.
2010 Mathematics Subject Classification:
60H15; 35R60; 35K59

1. Introduction

This paper is concerned with the Dirichlet problem for nonlinear diffusion equations

(1.1) du(t,x)\displaystyle\mathrm{d}u(t,x) =(ΔΦ(u)+G(x,u)+F(x,u))dt\displaystyle=\big{(}\Delta\Phi(u)+\nabla\cdot G(x,u)+F(x,u)\big{)}\mathrm{d}t
+(σk(x,u))dWk(t),(t,x)(0,T)×D;\displaystyle\quad+\big{(}\nabla\cdot\sigma^{k}(x,u)\big{)}\circ\mathrm{d}W^{k}(t),\quad(t,x)\in(0,T)\times D;
u(0,x)\displaystyle u(0,x) =ξ(x),xD;\displaystyle=\xi(x),\quad x\in D;
u(t,x)\displaystyle u(t,x) =0,(t,x)[0,T]×D,\displaystyle=0,\quad(t,x)\in[0,T]\times\partial D,

where DD is a bounded domain in d\mathbb{R}^{d} with smooth boundary, and Φ:\Phi:\mathbb{R\rightarrow\mathbb{R}} is a monotone function. The noise {Wk}k\{W^{k}\}_{k\in\mathbb{N}} is a sequence of independent standard Brownian motions defined on a complete filtered probability space (Ω,,(t)t0,)(\Omega,\mathcal{F},(\mathcal{F}_{t})_{t\geq 0},\mathbb{P}), and the stochastic integral is in the Stratonovich sense. The Einstein summation convention is used throughout this paper.

A typical example of 1.1 and also our primary motivation of this paper is the porous medium equation in random environment, which describes the flow of an ideal gas in a homogeneous porous medium: let uu be the gas density that satisfies

(1.2) εtu+(u𝑽)=0,\varepsilon\partial_{t}u+\nabla\cdot(u\bm{V})=0,

where ε(0,1)\varepsilon\in(0,1) is the porosity of the medium, and 𝑽\bm{V} is the randomly perturbed velocity field of the form

(1.3) 𝑽=𝑽0+σkW˙k,\bm{V}=\bm{V}_{0}+\sigma^{k}\circ\dot{W}^{k},

where 𝑽0\bm{V}_{0} is derived from Darcy’s law

μ𝑽0=kp=k(p0um1).\mu\bm{V}_{0}=-k\nabla p=-k\nabla(p_{0}u^{m-1}).

Then, we can informally derive a stochastic porous medium equation

du(t,x)=cΔumdt+ε1(uσk)dWk(t).\mathrm{d}u(t,x)=c\Delta u^{m}\mathrm{d}t+\varepsilon^{-1}\nabla\cdot(u\sigma^{k})\circ\mathrm{d}W^{k}(t).

For more details of the model, we refer to [V0́7] and references therein. Moreover, equations of type 1.1 also arise as limits of interacting particle systems driven by common noise from mean field models [LL06a, LL06b, LL07], and as simplified models of fluctuations in non-equilibrium statistical physics [DSZ16]; for more applications we refer to [FG19, DG20] and the references therein.

The well-posedness of the Cauchy problem for stochastic nonlinear diffusion equations with general noise has been investigated in various frameworks, for example, the variational approach in the space H1H^{-1} (cf. [BDPR08, BDPR16, Cio20] etc.), the kinetic formulation (cf. [DHV16, GH18, FG21a] etc.), and the entropy formulation (cf. [BVW15, DGG19, DGT20] etc.). The case of linear gradient noise, say σ(x,u)=h(x)u\sigma(x,u)=h(x)u in 1.1, has been studied in [DG19, T2̈0, Cio20], and the general case was discussed in [FG19] by a kinetic approach with rough path techniques (cf. [LPS13, LPS14, GS15, GS17a, GS17b]), requiring σCbγ(𝕋d×)\sigma\in C^{\gamma}_{b}(\mathbb{T}^{d}\times\mathbb{R}) for some γ>5\gamma>5. The paper [DG20] relaxed the regularity assumption to σCb3(𝕋d×)\sigma\in C^{3}_{b}(\mathbb{T}^{d}\times\mathbb{R}) and treated general diffusion nonlinearity Φ\Phi under the entropy formulation. The recent work [FG21b] introduced a concept of stochastic kinetic solution based on the concept of renormalized solutions, and proved the existence and uniqueness results under a very general setting that can even cover the case σ(x,u)=f(x)u\sigma(x,u)=f(x)\sqrt{u} with fCb2(𝕋d)f\in C^{2}_{b}(\mathbb{T}^{d}).

In this paper, we adopt the entropy approach to study 1.1. The notion of entropy solution was proposed for nonlinear PDEs in 1970s to tackle the difficulty that the weak solution may not be unique (see, for example, [Kru70, Ser99, ABK00, Daf05] for scalar conservation laws and [Car99] for degenerate parabolic equations). The entropy solution discriminates the physical admissible solution and maintains the uniqueness theoretically.

The entropy formulation has been naturally extended to nonlinear SPDEs. Many works have been done for first order equations (see, for example, [Kim03] for additive noise and [FN08, VW09, CDK12, BVW12, BVW14] for multiplicative noise). For second order equations, most works considered the Cauchy problem in the whole space or a torus; for instance, [BVW15] studied the Cauchy problem of parabolic-hyperbolic SPDEs with the noise term σ(x,u)dW\sigma(x,u)\mathrm{d}W and Lipschitz functions Φ\Phi. Stochastic nonlinear diffusion equations in a torus are considered in [DGG19] for the noise term σ(x,u)dW\sigma(x,u)\mathrm{d}W and in [DG20] for the conservative noise σ(x,u)dW\nabla\cdot\sigma(x,u)\circ\mathrm{d}W. The obstacle problem with the noise term σ(x,u)dW\sigma(x,u)\mathrm{d}W in a torus is introduced in [LT21].

The results on the Dirichlet problem for stochastic nonlinear diffusion equations are relatively few. The recent papers [BGV20, Hen21] adopted the variational approach from [RRW07] with the monotone condition and affine noise, thus not covering our setting; [DGT20] considered entropy solutions of stochastic porous medium equations with the noise term σ(x,u)dW\sigma(x,u)\mathrm{d}W. A recent paper [Cli23] is quite relevant to our paper, studying kinetic solutions to the Dirichlet problem for porous medium equations with nonlinear gradient noise driven by rough path. Thanks to the entropy approach, our result is built on the same regularity conditions with the existing work on the Cauchy problem in torus (cf. [DG20]), and do not require extra technical assumptions like [Cli23, Condition (2.4)] that prevents the space characteristics from escaping the domain. According to the recent work [FG21b], it is a very interesting question how to relax the regularity condition on σ\sigma for the Dirichlet problem.

The strategy of the proof of our main result (2.6) basically follows from [DGG19, DGT20, DG20], combining the method of strong entropy condition (called the ()(\star)-property in this paper) and Kruzhkov’s doubling variables technique (cf. [Kru70]). The notion of strong entropy condition was introduced by [FN08] to tackle the uniqueness issue of stochastic scalar conservation laws. The strategy can be summarized to two steps:

  1. (1)

    L1L_{1}-estimates: to derive an estimate for 𝔼u(t,)u~(t,)L1(D)\mathbb{E}\|u(t,\cdot)-\tilde{u}(t,\cdot)\|_{L_{1}(D)}, providing one of the entropy solutions uu and u~\tilde{u} (with different initial data) satisfies the ()(\star)-property.

  2. (2)

    Approximation: to construct a sequence of non-degenerate equations whose solutions have the ()(\star)-property and converge to the entropy solution of 1.1.

Kruzhkov’s doubling variables technique plays a key role in the proof of the L1L_{1}-estimates.

The new difficulty arising in the Dirichlet problem, comparing to the Cauchy problem (cf. [DG20]), is how to deal with the boundary integral terms that may emerge when applying the divergence theorem in the proof of the L1L_{1}-estimates. In the paper [DGT20] where the noise term is σ(x,u)dW\sigma(x,u)\mathrm{d}W, a weighted space with a weight function wH01w\in H_{0}^{1} satisfying Δw=1\Delta w=-1 is introduced to eliminate the boundary terms. However, in the case of gradient noise, there will be a new “trouble” term |(uu~)w||(u-\tilde{u})\nabla w| appearing in the estimate, which cannot be dominated by any “good” terms like |uu~|w|u-\tilde{u}|w.

There are three key points in our approach to overcome the above difficulty: i) to expand the set of test functions in the definition of entropy solution (see 2.2), ii) to refine the strong entropy condition, and iii) to construct subtly a pair of the convex function η\eta and the test function ϕ\phi to avoid the appearance of boundary terms. Specifically, when applying Kruzhkov’s doubling variables technique to our problem, we have to estimate both (u~(s,x)u(t,y))+(\tilde{u}(s,x)-u(t,y))^{+} and (u(t,x)u~(s,y))+(u(t,x)-\tilde{u}(s,y))^{+} rather than |u(t,x)u~(s,y)||u(t,x)-\tilde{u}(s,y)| as in [DGG19, DGT20, DG20]. Inspired by [Car99, BVW14], we make use of a partition of unity and shifted mollifiers to keep the test function in Cc(D)C_{c}^{\infty}(D) with respect to the variable yy; and for the variable xx, we choose a sequence of smooth convex functions to approach η(r)=r+\eta(r)=r^{+}. Those carefully chosen functions along our modified definition of entropy solution and the refined strong entropy condition let the boundary terms vanish. More specific details are given at the beginning of Section 3 and Remarks 3.5, 3.12 and 3.15. It is worth noting that our approach avoids the involvement of weight functions and considers the L1L_{1}-estimates in standard Sobolev spaces, and our method may also apply to nonlinear diffusion equations with the noise term σ(x,u)dW\sigma(x,u)\mathrm{d}W to obtain the L1L_{1}-estimates without weight.

This paper is organized as follows. Section 2 describes the entropy formulation and presents the main theorem. Section 3, which is the main part of this paper, introduces a refined strong entropy condition and derives the L1L_{1}-estimates for the difference of two entropy solutions. Section 4 constructs the approximate equations and proves the strong entropy condition of their solutions as well as their solvability. Section 5 completes the proof of the main theorem. Two auxiliary lemmas are proved in the final section.

We conclude the introduction with some notation. Fix T>0T>0. Define ΩTΩ×[0,T]\Omega_{T}\coloneqq\Omega\times[0,T] and DT[0,T]×DD_{T}\coloneqq[0,T]\times D. Define |D||D| and D¯\overline{D} as the volume and closure of DD, respectively. LpL_{p} and HpkH_{p}^{k} are the usual Lebesgue spaces and Sobolev spaces. Denote by Hp,0kH_{p,0}^{k} the closure of CcC_{c}^{\infty} in HpkH_{p}^{k}. When p=2p=2, we simplify the notation by HkH2kH^{k}\coloneqq H_{2}^{k} and H0kH2,0kH_{0}^{k}\coloneqq H_{2,0}^{k}. Moreover, if a function space is given on Ω\Omega or ΩT\Omega_{T}, we understand it to be defined with respect to T\mathcal{F}_{T} and the predictable σ\sigma-field, respectively. Let EE be a Banach space and U=DU=D or \mathbb{R}. For a function f:UEf:U\rightarrow E, we define

[f]Cα(U;E)\displaystyle[f]_{C^{\alpha}(U;E)} supx,yU,xyf(x)f(y)E|xy|α,α(0,1],\displaystyle\coloneqq\sup_{x,y\in U,\ x\neq y}\frac{\|f(x)-f(y)\|_{E}}{|x-y|^{\alpha}},\quad\alpha\in(0,1],
fCα(U;E)\displaystyle\|f\|_{C^{\alpha}(U;E)} [f]Cα(U;E)+supxUf(x)E.\displaystyle\coloneqq[f]_{C^{\alpha}(U;E)}+\sup_{x\in U}\|f(x)\|_{E}.

We define a non-negative smooth mollifier ρ:\rho:\mathbb{R}\rightarrow\mathbb{R}, such that suppρ(0,1)\text{supp}\,\rho\subset(0,1), ρ2\rho\leq 2 and ρ(r)dr=1\int_{\mathbb{R}}\rho(r)\mathrm{d}r=1. For δ>0\delta>0, we set ρδ(r)δ1ρ(δ1r)\rho_{\delta}(r)\coloneqq\delta^{-1}\rho(\delta^{-1}r) as a sequence of mollifiers.

2. Entropy formulation and main results

First of all, we rewrite 1.1 into an Itô form (the notation follows from [DG20]):

(2.1) du(t,x)=[ΔΦ(u)+xi(aij(x,u)xju+bi(x,u)+fi(x,u))+F(x,u)]dt+(σk(x,u))dWk(t),(t,x)(0,T)×D;u(0,x)=ξ(x),xD;u(t,x)=0,(t,x)[0,T]×D,\displaystyle\begin{aligned} \mathrm{d}u(t,x)&=\big{[}\Delta\Phi(u)+\partial_{x_{i}}\big{(}a^{ij}(x,u)\partial_{x_{j}}u+b^{i}(x,u)+f^{i}(x,u)\big{)}+F(x,u)\big{]}\mathrm{d}t\\ &\quad+\big{(}\nabla\cdot\sigma^{k}(x,u)\big{)}\mathrm{d}W^{k}(t),\quad(t,x)\in(0,T)\times D;\\ u(0,x)&=\xi(x),\quad x\in D;\\ u(t,x)&=0,\quad(t,x)\in[0,T]\times\partial D,\end{aligned}

where i,j=1,,di,j=1,\dots,d and

aij(x,r)\displaystyle a^{ij}(x,r) =12σrik(x,r)σrjk(x,r),bi(x,r)=σrik(x,r)σxjjk(x,r),\displaystyle=\frac{1}{2}\sigma_{r}^{ik}(x,r)\sigma_{r}^{jk}(x,r),\quad b^{i}(x,r)=\sigma_{r}^{ik}(x,r)\sigma_{x_{j}}^{jk}(x,r),
fi(x,r)\displaystyle f^{i}(x,r) =Gi(x,r)12bi(x,r).\displaystyle=G^{i}(x,r)-\frac{1}{2}b^{i}(x,r).

We denote by Π(Φ,ξ)\Pi(\Phi,\xi) the Dirichlet problem 2.1 with given Φ\Phi and ξ\xi.

Throughout this paper, we denote

𝔞(r)Φ(r);\mathfrak{a}(r)\coloneqq\sqrt{\Phi^{\prime}(r)};

for a function g:D×g:D\times\mathbb{R}\rightarrow\mathbb{R}, we use the notation

g(x,r)0rg(x,s)ds,\llbracket g\rrbracket(x,r)\coloneqq\int_{0}^{r}g(x,s)\mathrm{d}s,

and drop xx in the above if gg does not depend on xDx\in D. Our condition on the nonlinearity Φ\Phi is the same with [DGG19, DGT20, DG20].

Assumption 2.1.

Φ:\Phi:\mathbb{R}\rightarrow\mathbb{R} is differentiable, strictly increasing and satisfying Φ(0)=0\Phi(0)=0. With 𝔞(r)=Φ(r)\mathfrak{a}(r)=\sqrt{\Phi^{\prime}(r)}, there exist constants m>1m>1 and K>0K>0 such that

(2.2) |𝔞(0)|K,|𝔞(r)|K|r|m32𝟏r0,𝔞(r)K1𝟏|r|1,\displaystyle|\mathfrak{a}(0)|\leq K,\quad|\mathfrak{a}^{\prime}(r)|\leq K|r|^{\frac{m-3}{2}}\bm{1}_{r\neq 0},\quad\mathfrak{a}(r)\geq K^{-1}\bm{1}_{|r|\geq 1},
|𝔞(r)𝔞(s)|{K1|rs|,if |r||s|1,K1|rs|m+12,if |r||s|<1.\displaystyle|\llbracket\mathfrak{a}\rrbracket(r)-\llbracket\mathfrak{a}\rrbracket(s)|\geq\begin{cases}K^{-1}|r-s|,&\mbox{if }\ |r|\lor|s|\geq 1,\\ K^{-1}|r-s|^{\frac{m+1}{2}},&\mbox{if }\ |r|\lor|s|<1.\end{cases}

The following definition of entropy solution is based on the formulation in [DGT20, DG20] with a slight but significant modification inspired by [BVW14, Definition 1]. Define two sets

\displaystyle\mathcal{E} {ηC2():η′′0,suppη′′ is compact},\displaystyle\coloneqq\{\eta\in C^{2}(\mathbb{R}):\eta^{\prime\prime}\geq 0,\ \text{supp}\,\eta^{\prime\prime}\text{ is compact}\},
0\displaystyle\mathcal{E}_{0} {η:η(0)=0}.\displaystyle\coloneqq\{\eta\in\mathcal{E}:\eta^{\prime}(0)=0\}.
Definition 2.2.

An entropy solution of 2.1 is a predictable stochastic process u:ΩTL1(D)u:\Omega_{T}\rightarrow L_{1}(D) such that

  1. (i)

    uLm+1(ΩT;Lm+1(D))u\in L_{m+1}(\Omega_{T};L_{m+1}(D));

  2. (ii)

    For all fCb()f\in C_{b}(\mathbb{R}), we have 𝔞f(u)L2(ΩT;H01(D))\llbracket\mathfrak{a}f\rrbracket(u)\in L_{2}(\Omega_{T};H_{0}^{1}(D)) and

    xi𝔞f(u)=f(u)xi𝔞(u);\partial_{x_{i}}\llbracket\mathfrak{a}f\rrbracket(u)=f(u)\partial_{x_{i}}\llbracket\mathfrak{a}\rrbracket(u);
  3. (iii)

    For all

    (η,φ,ϱ)(×Cc[0,T)×Cc(D))(0×Cc[0,T)×C(D¯))(\eta,\varphi,\varrho)\in\big{(}\mathcal{E}\times C_{c}^{\infty}[0,T)\times C_{c}^{\infty}(D)\big{)}\cup\big{(}\mathcal{E}_{0}\times C_{c}^{\infty}[0,T)\times C^{\infty}(\overline{D})\big{)}

    such that ϕφ×ϱ0\phi\coloneqq\varphi\times\varrho\geq 0, we have almost surely

    (2.3) 0TDη(u)tϕdxdt\displaystyle-\int_{0}^{T}\int_{D}\eta(u)\partial_{t}\phi\mathrm{d}x\mathrm{d}t
    Dη(ξ)ϕ(0)dx+0TD(𝔞2η(u)Δϕ+aijη(x,u)ϕxixj)dxdt\displaystyle\leq\int_{D}\eta(\xi)\phi(0)\mathrm{d}x+\int_{0}^{T}\int_{D}\Big{(}\llbracket\mathfrak{a}^{2}\eta^{\prime}\rrbracket(u)\Delta\phi+\llbracket a^{ij}\eta^{\prime}\rrbracket(x,u)\phi_{x_{i}x_{j}}\Big{)}\mathrm{d}x\mathrm{d}t
    +0TD(axjijηfriη(x,u)η(u)bi(x,u))ϕxidxdt\displaystyle+\int_{0}^{T}\int_{D}\Big{(}\llbracket a_{x_{j}}^{ij}\eta^{\prime}-f_{r}^{i}\eta^{\prime}\rrbracket(x,u)-\eta^{\prime}(u)b^{i}(x,u)\Big{)}\phi_{x_{i}}\mathrm{d}x\mathrm{d}t
    +0TD(η(u)fxii(x,u)frxiiη(x,u)+η(u)F(x,u))ϕdxdt\displaystyle+\int_{0}^{T}\int_{D}\Big{(}\eta^{\prime}(u)f_{x_{i}}^{i}(x,u)-\llbracket f_{rx_{i}}^{i}\eta^{\prime}\rrbracket(x,u)+\eta^{\prime}(u)F(x,u)\Big{)}\phi\mathrm{d}x\mathrm{d}t
    +0TD(12η′′(u)k=1|σxiik(x,u)|2η′′(u)|𝔞(u)|2)ϕdxdt\displaystyle+\int_{0}^{T}\int_{D}\Big{(}\frac{1}{2}\eta^{\prime\prime}(u)\sum_{k=1}^{\infty}|\sigma_{x_{i}}^{ik}(x,u)|^{2}-\eta^{\prime\prime}(u)|\nabla\llbracket\mathfrak{a}\rrbracket(u)|^{2}\Big{)}\phi\mathrm{d}x\mathrm{d}t
    +0TD(η(u)ϕσxiik(x,u)σrxiikη(x,u)ϕσrikη(x,u)ϕxi)dxdWk(t).\displaystyle+\int_{0}^{T}\int_{D}\Big{(}\eta^{\prime}(u)\phi\sigma_{x_{i}}^{ik}(x,u)-\llbracket\sigma_{rx_{i}}^{ik}\eta^{\prime}\rrbracket(x,u)\phi-\llbracket\sigma_{r}^{ik}\eta^{\prime}\rrbracket(x,u)\phi_{x_{i}}\Big{)}\mathrm{d}x\mathrm{d}W^{k}(t).
Remark 2.3.

Comparing with [DGT20, Definition 2.4], we expand the set of test functions (η,φ,ϱ)(\eta,\varphi,\varrho) in order to give a more precise characterization of the behavior of solutions near the boundary. This is a critical point in our proof of the L1L_{1}-estimates. Moreover, the Dirichlet boundary condition is satisfied implicitly according to 2.2 (ii) and (iii).

The regularity assumption on coefficients coincides with [DG20, Assumption 2.3] for the Cauchy problem in a torus.

Assumption 2.4.

Let Gi:D×G^{i}:D\times\mathbb{R}\rightarrow\mathbb{R} and σi:D×l2\sigma^{i}:D\times\mathbb{R}\rightarrow l^{2} for i{1,,d}i\in\{1,\ldots,d\} and F:D×F:D\times\mathbb{R}\rightarrow\mathbb{R} are all continuous. For all i,l{1,,d}i,l\in\{1,\dots,d\}, q{1,2}q\in\{1,2\} and all multi-indices γd\gamma\in\mathbb{N}^{d} with q+|γ|3q+|\gamma|\leq 3, the derivatives rGi\partial_{r}G^{i}, xlGi\partial_{x_{l}}G^{i}, rxlGi\partial_{rx_{l}}G^{i} and rqxγσi\partial_{r}^{q}\partial_{x}^{\gamma}\sigma^{i} exist and are continuous on D×D\times\mathbb{R}. Moreover, there exist κ¯((m2)1,1]\bar{\kappa}\in((m\land 2)^{-1},1], β((2κ¯)1,1]\beta\in((2\bar{\kappa})^{-1},1], N0>0N_{0}>0 and β~(0,1)\tilde{\beta}\in(0,1) such that for all i,j,l{1,,d}i,j,l\in\{1,\dots,d\} and rr\in\mathbb{R}, we have:

(2.4) suprσri(,r)H2(D;l2)+σxii(,0)Cκ¯(D,l2)N0,\displaystyle\sup_{r}\|\sigma_{r}^{i}(\cdot,r)\|_{H_{\infty}^{2}(D;l^{2})}+\|\sigma_{x_{i}}^{i}(\cdot,0)\|_{C^{\bar{\kappa}}(D,l^{2})}\leq N_{0},
(2.5) supxD([σ(x,)]Cβ(,l2)+σrxli(x,)H1(;l2))N0,\displaystyle\sup_{x\in D}\Big{(}[\sigma(x,\cdot)]_{C^{\beta}(\mathbb{R},l^{2})}+\|\sigma_{rx_{l}}^{i}(x,\cdot)\|_{H_{\infty}^{1}(\mathbb{R};l^{2})}\Big{)}\leq N_{0},
(2.6) r(σxjjkσrxlik)LN0,\displaystyle\|\partial_{r}(\sigma_{x_{j}}^{jk}\sigma_{rx_{l}}^{ik})\|_{L_{\infty}}\leq N_{0},
(2.7) supxD(Gri(x,)Cβ()+r(σrikσxjjk)(x,)Cβ())N0,\displaystyle\sup_{x\in D}\Big{(}\|G_{r}^{i}(x,\cdot)\|_{C^{\beta}(\mathbb{R})}+\|\partial_{r}(\sigma_{r}^{ik}\sigma_{x_{j}}^{jk})(x,\cdot)\|_{C^{\beta}(\mathbb{R})}\Big{)}\leq N_{0},
(2.8) [Gxli(,r)]Cβ~(D)+[xl(σrik(,r)σxjjk(,r))]Cβ~(D)N0(1+|r|),\displaystyle[G_{x_{l}}^{i}(\cdot,r)]_{C^{\tilde{\beta}}(D)}+[\partial_{x_{l}}(\sigma_{r}^{ik}(\cdot,r)\sigma_{x_{j}}^{jk}(\cdot,r))]_{C^{\tilde{\beta}}(D)}\leq N_{0}(1+|r|),
(2.9) xlr(σrikσxjjk)L+GxlriLN0,\displaystyle\|\partial_{x_{l}}\partial_{r}(\sigma_{r}^{ik}\sigma_{x_{j}}^{jk})\|_{L_{\infty}}+\|G_{x_{l}r}^{i}\|_{L_{\infty}}\leq N_{0},
(2.10) supxD[F(x,)]C1()+suprF(,r)Cβ~(D)N0.\displaystyle\sup_{x\in D}[F(x,\cdot)]_{C^{1}(\mathbb{R})}+\sup_{r}\|F(\cdot,r)\|_{C^{\tilde{\beta}}(D)}\leq N_{0}.

Due to the physical background, we focus on non-negative solutions to the concerned problem, for which we need the following natural condition.

Assumption 2.5.

The coefficients satisfy

(2.11) xG(x,0)+F(x,0)0,xσ(x,0)={0}k=1,xD.\nabla_{x}\cdot G(x,0)+F(x,0)\geq 0,\quad\nabla_{x}\cdot\sigma(x,0)=\{0\}_{k=1}^{\infty},\quad x\in D.

The main result of this paper is stated as follows.

Theorem 2.6.

Under Assumptions 2.1, 2.4 and 2.5, for all non-negative initial function ξLm+1(Ω,0;Lm+1(D))\xi\in L_{m+1}(\Omega,\mathcal{F}_{0};L_{m+1}(D)), we have that

  1. (i)

    the problem Π(Φ,ξ)\Pi(\Phi,\xi) has a unique entropy solution uu;

  2. (ii)

    u0u\geq 0 for almost all (ω,t,x)Ω×D(\omega,t,x)\in\Omega\times D;

  3. (iii)

    if u~\tilde{u} is the entropy solution to Π(Φ,ξ~)\Pi(\Phi,\tilde{\xi}) with 0ξ~Lm+1(Ω,0;Lm+1(D))0\leq\tilde{\xi}\in L_{m+1}(\Omega,\mathcal{F}_{0};L_{m+1}(D)), then

    (2.12) esssupt[0,T]𝔼(u(t,)u~(t,))+L1(D)C𝔼(ξξ~)+L1(D),\underset{t\in[0,T]}{\mathrm{ess\,sup}}\,\mathbb{E}\|(u(t,\cdot)-\tilde{u}(t,\cdot))^{+}\|_{L_{1}(D)}\leq C\mathbb{E}\|(\xi-\tilde{\xi})^{+}\|_{L_{1}(D)},

    where the constant CC depends only on N0N_{0}, KK, dd, TT and |D||D|.

We conclude this section by proving the non-negativity of entropy solutions under our assumptions.

Proposition 2.7.

Under the condition of 2.6, each entropy solution to Π(Φ,ξ)\Pi(\Phi,\xi) with 0ξLm+1(Ω,0;Lm+1(D))0\leq\xi\in L_{m+1}(\Omega,\mathcal{F}_{0};L_{m+1}(D)) is non-negative for almost all (ω,t,x)ΩT×D(\omega,t,x)\in\Omega_{T}\times D.

Proof.

For a small δ>0\delta>0, we introduce a function ηδC2()\eta_{\delta}\in C^{2}(\mathbb{R}) defined by

ηδ(0)=ηδ(0)=0,ηδ′′(r)=ρδ(r).\eta_{\delta}(0)=\eta_{\delta}^{\prime}(0)=0,\quad\eta_{\delta}^{\prime\prime}(r)=\rho_{\delta}(r).

Applying the entropy inequality 2.3 with η()=ηδ()\eta(\cdot)=\eta_{\delta}(-\cdot) and ϕ\phi independent of xx, using the non-negativity of ξ\xi, we have

(2.13) 𝔼0TDηδ(u)tϕdxdt\displaystyle-\mathbb{E}\int_{0}^{T}\int_{D}\eta_{\delta}(-u)\partial_{t}\phi\mathrm{d}x\mathrm{d}t
𝔼0TD(frxiiηδ()(x,u)ηδ(u)(fxii(x,u)Gxii(x,0)))ϕdxdt\displaystyle\leq\mathbb{E}\int_{0}^{T}\int_{D}\Big{(}\llbracket f_{rx_{i}}^{i}\eta_{\delta}^{\prime}(-\cdot)\rrbracket(x,u)-\eta_{\delta}^{\prime}(-u)\big{(}f_{x_{i}}^{i}(x,u)-G_{x_{i}}^{i}(x,0)\big{)}\Big{)}\phi\mathrm{d}x\mathrm{d}t
𝔼0TDη(u)δ(F(x,u)+Gxii(x,0))ϕdxdt\displaystyle\quad-\mathbb{E}\int_{0}^{T}\int_{D}\eta{}_{\delta}^{\prime}(-u)\big{(}F(x,u)+G_{x_{i}}^{i}(x,0)\big{)}\phi\mathrm{d}x\mathrm{d}t
+𝔼0TD(12ηδ′′(u)k=1|σxiik(x,u)|2ϕηδ′′(u)|𝔞(u)|2ϕ)dxdt.\displaystyle\quad+\mathbb{E}\int_{0}^{T}\int_{D}\Big{(}\frac{1}{2}\eta_{\delta}^{\prime\prime}(-u)\sum_{k=1}^{\infty}|\sigma_{x_{i}}^{ik}(x,u)|^{2}\phi-\eta_{\delta}^{\prime\prime}(-u)|\nabla\llbracket\mathfrak{a}\rrbracket(u)|^{2}\phi\Big{)}\mathrm{d}x\mathrm{d}t.

With 2.5 and 2.10 in 2.4, we have

(2.14) supx(F(x,r)+Gxii(x,0))supx(F(x,0)+Gxii(x,0))C|r|C|r|\sup_{x}\big{(}F(x,r)+G_{x_{i}}^{i}(x,0)\big{)}\geq\sup_{x}\big{(}F(x,0)+G_{x_{i}}^{i}(x,0)\big{)}-C|r|\geq-C|r|

for a positive constant CC. Moreover, using 2.5, the definition of fif^{i} and 2.5 and 2.9 in 2.4, we have

(2.15) supx|σxii(x,r)|l2+supx|fxii(x,r)Gxii(x,0)|C|r|.\sup_{x}|\sigma_{x_{i}}^{i}(x,r)|_{l_{2}}+\sup_{x}|f_{x_{i}}^{i}(x,r)-G_{x_{i}}^{i}(x,0)|\leq C|r|.

Combining 2.13-2.15 with 2.9 in 2.4, we have

𝔼0TDηδ(u)tϕdxdt\displaystyle-\mathbb{E}\int_{0}^{T}\int_{D}\eta_{\delta}(-u)\partial_{t}\phi\mathrm{d}x\mathrm{d}t C𝔼0TD(u)+ϕdxdt+Cδ.\displaystyle\leq C\mathbb{E}\int_{0}^{T}\int_{D}(-u)^{+}\phi\mathrm{d}x\mathrm{d}t+C\delta.

Since |ηδ(r)r+|δ|\eta_{\delta}(r)-r^{+}|\leq\delta, taking δ0+\delta\rightarrow 0^{+}, we have

(2.16) 𝔼0TD(u)+tϕdxdtC𝔼0TD(u)+ϕdxdt.-\mathbb{E}\int_{0}^{T}\int_{D}(-u)^{+}\partial_{t}\phi\mathrm{d}x\mathrm{d}t\leq C\mathbb{E}\int_{0}^{T}\int_{D}(-u)^{+}\phi\mathrm{d}x\mathrm{d}t.

Let 0<s<τ<T0<s<\tau<T be Lebesgue points of the function

t𝔼D(u(t,x))+dx.t\mapsto\mathbb{E}\int_{D}(-u(t,x))^{+}\mathrm{d}x.

Fix a constant γ(0,(τs)(Tτ))\gamma\in(0,(\tau-s)\lor(T-\tau)). We choose a sequence of functions {ϕn}n\{\phi_{n}\}_{n\in\mathbb{N}} satisfying ϕnCc((0,T))\phi_{n}\in C_{c}^{\infty}((0,T)) and ϕnL(0,T)tϕnL1(0,T)1\|\phi_{n}\|_{L_{\infty}(0,T)}\lor\|\partial_{t}\phi_{n}\|_{L_{1}(0,T)}\leq 1, such that

limnϕnV(γ)H01(0,T)=0,\lim_{n\rightarrow\infty}\|\phi_{n}-V_{(\gamma)}\|_{H_{0}^{1}(0,T)}=0,

where V(γ):[0,T]V_{(\gamma)}:[0,T]\rightarrow\mathbb{R} satisfies V(γ)(0)=0V_{(\gamma)}(0)=0 and V(γ)=γ1𝟏[s,s+γ]γ1𝟏[τ,τ+γ]V_{(\gamma)}^{\prime}=\gamma^{-1}\mathbf{1}_{[s,s+\gamma]}-\gamma^{-1}\mathbf{1}_{[\tau,\tau+\gamma]}. Taking ϕ=ϕn\phi=\phi_{n} in 2.16 and passing to the limit nn\rightarrow\infty, we have

1γ𝔼ττ+γD(u)+dxdtC𝔼0τ+γD(u)+dxdt+1γ𝔼ss+γD(u)+dxdt.\displaystyle\frac{1}{\gamma}\mathbb{E}\int_{\tau}^{\tau+\gamma}\int_{D}(-u)^{+}\mathrm{d}x\mathrm{d}t\leq C\mathbb{E}\int_{0}^{\tau+\gamma}\int_{D}(-u)^{+}\mathrm{d}x\mathrm{d}t+\frac{1}{\gamma}\mathbb{E}\int_{s}^{s+\gamma}\int_{D}(-u)^{+}\mathrm{d}x\mathrm{d}t.

Let γ0+\gamma\rightarrow 0^{+}, we have

𝔼D(u(τ,x))+dxC𝔼0τD(u)+dxdt+𝔼D(u(s,x))+dx\mathbb{E}\int_{D}(-u(\tau,x))^{+}\mathrm{d}x\leq C\mathbb{E}\int_{0}^{\tau}\int_{D}(-u)^{+}\mathrm{d}x\mathrm{d}t+\mathbb{E}\int_{D}(-u(s,x))^{+}\mathrm{d}x

holds for almost all s(0,τ)s\in(0,\tau). Then, for each γ~(0,τ)\tilde{\gamma}\in(0,\tau), by averaging over s(0,γ~)s\in(0,\tilde{\gamma}), we have

𝔼D(u(τ,x))+dxC𝔼0τD(u)+dxdt+1γ~𝔼0γ~D(u)+dxds.\displaystyle\mathbb{E}\int_{D}(-u(\tau,x))^{+}\mathrm{d}x\leq C\mathbb{E}\int_{0}^{\tau}\int_{D}(-u)^{+}\mathrm{d}x\mathrm{d}t+\frac{1}{\tilde{\gamma}}\mathbb{E}\int_{0}^{\tilde{\gamma}}\int_{D}(-u)^{+}\mathrm{d}x\mathrm{d}s.

Taking the limit γ~0+\tilde{\gamma}\rightarrow 0^{+} and using 6.1, the non-negativity of ξ\xi and Gronwall’s inequality, we have u0u\geq 0 for almost all (ω,t,x)ΩT×D(\omega,t,x)\in\Omega_{T}\times D. ∎

3. Strong entropy condition and L1L_{1}-estimates

The uniqueness for entropy solutions of stochastic partial differential equations is usually a challenging problem. The seminal work [FN08] introduced a notion of strong entropy condition, called the ()(\star)-property in what follows, to deal with the stochastic integral in the L1L_{1}-estimates and proved the uniqueness of the strong entropy solution (namely, an entropy solution that satisfies the ()(\star)-property) for the Cauchy problem of stochastic scalar conservation laws. Recently, a series of papers [DGG19, DGT20, DG20] improved this technique and proved the uniqueness of entropy solutions to stochastic porous medium equations. The basic idea is to estimate the L1L_{1}-difference between an entropy solution and a strong entropy solution, which leads to the uniqueness of entropy solutions by proving that the entropy solutions constructed from approximation always satisfy the ()(\star)-property. The key technique in the proof of the L1L_{1}-estimates is Kruzhkov’s doubling variables method [Kru70], which is a classical method to study the uniqueness problem for deterministic conservation laws.

From the Cauchy problem to the Dirichlet problem, the new technical difficulties mainly lie in how to handle the boundary terms. Considering the noise form σ(x,u)dW\sigma(x,u)\mathrm{d}W, the paper [DGT20] introduced a weighted space to overcome the difficulties, where the weight function wH01w\in H_{0}^{1} satisfying Δw=1\Delta w=-1 is used to remove the boundary terms in the estimate. However, in the case of 1.1, there will be a new “trouble” term |(uu~)w||(u-\tilde{u})\nabla w| appearing in the L1L_{1}-estimates, which cannot be dominated by any “good” terms like |uu~|w|u-\tilde{u}|w.

In order to deal with the boundary terms in our case, we do not introduce the weight function but modify the definition of the ()(\star)-property by subtly choosing the test functions. Since the modified definition is highly intricate, we give a heuristic explanation before the exact formulation.

We begin by addressing the problem of obtaining the L1L_{1}-difference between entropy solutions uu and u~\tilde{u} of 1.1. Using Kruzhkov’s doubling variables technique (see, for example, [Kru70, LW12, DGG19, DGT20, DG20]), we wish to estimate the term

(3.1) 𝔼DTDT|u(t,x)u~(s,y)|ρθ(st)φε(x,y)dxdtdyds,\mathbb{E}\int_{D_{T}}\int_{D_{T}}|u(t,x)-\tilde{u}(s,y)|\rho_{\theta}(s-t)\varphi_{\varepsilon}(x,y)\mathrm{d}x\mathrm{d}t\mathrm{d}y\mathrm{d}s,

where ρθ()θ1ρ(θ1)\rho_{\theta}(\cdot)\coloneqq\theta^{-1}\rho(\theta^{-1}\cdot) defined before Section 2 is a time mollifier, and φεC(D¯×D¯)\varphi_{\varepsilon}\in C^{\infty}(\overline{D}\times\overline{D}) is a spatial mollifier which satisfies limε0+φε(x,y)=δ0(xy)\lim_{\varepsilon\rightarrow 0^{+}}\varphi_{\varepsilon}(x,y)=\delta_{0}(x-y) for all (x,y)D¯×D¯(x,y)\in\overline{D}\times\overline{D}. When θ,ε0+\theta,\varepsilon\rightarrow 0^{+}, we have the estimate for 𝔼DT|u(t,x)u~(t,x)|dxdt\mathbb{E}\int_{D_{T}}|u(t,x)-\tilde{u}(t,x)|\mathrm{d}x\mathrm{d}t.

How to select a suitable spatial mollifier is important but quite subtle: this is standard when xx is an interior point (see, e.g., [DGT20, proof of Proposition 4.2]), but much more complicated when xx is on the boundary. Following the idea from [Car99, BVW14], we introduce a partition of unity i=1Nψi1\sum_{i=1}^{N}\psi_{i}\equiv 1 on D¯\overline{D} as the set of localization functions, and then choose corresponding mollifiers ϱε,iC(d)\varrho_{\varepsilon,i}\in C^{\infty}(\mathbb{R}^{d}) such that suppϱε,i(x)D\text{supp}\,\varrho_{\varepsilon,i}(x-\cdot)\subset D for all xsuppψix\in\text{supp}\,\psi_{i} and sufficiently small ε\varepsilon. Then, the spatial mollifier φε(x,y)i=1Nψi(x)ϱε,i(xy)\varphi_{\varepsilon}(x,y)\coloneqq\sum^{N}_{i=1}\psi_{i}(x)\varrho_{\varepsilon,i}(x-y) satisfies

limε0+φε(x,y)=limε0+i=1Nψi(x)ϱε,i(xy)=δ0(xy),x,yD¯.\lim_{\varepsilon\rightarrow 0^{+}}\varphi_{\varepsilon}(x,y)=\lim_{\varepsilon\rightarrow 0^{+}}\sum^{N}_{i=1}\psi_{i}(x)\varrho_{\varepsilon,i}(x-y)=\delta_{0}(x-y),\quad\forall x,y\in\overline{D}.

It is worth noting that this mollifier is asymmetric in the spatial variables, specifically, for all sufficiently small ε\varepsilon,

φε(x,)Cc(D),xD¯,butφε(,y)C(D¯),yD¯.\varphi_{\varepsilon}(x,\cdot)\in C_{c}^{\infty}(D),\ \forall x\in\overline{D},\quad\text{but}\quad\varphi_{\varepsilon}(\cdot,y)\in C^{\infty}(\overline{D}),\ \forall y\in\overline{D}.

Consequently, this asymmetry makes it difficult to estimate 3.1. Instead, we respectively estimate both

(3.2) 𝔼DTDT(u(t,x)u~(s,y))+ρθ(st)φε(x,y)dtdxdsdy,and\displaystyle\mathbb{E}\int_{D_{T}}\int_{D_{T}}\big{(}u(t,x)-\tilde{u}(s,y)\big{)}^{+}\rho_{\theta}(s-t)\varphi_{\varepsilon}(x,y)\mathrm{d}t\mathrm{d}x\mathrm{d}s\mathrm{d}y,\quad\text{and}
𝔼DTDT(u~(t,x)u(s,y))+ρθ(st)φε(x,y)dtdxdsdy.\displaystyle\mathbb{E}\int_{D_{T}}\int_{D_{T}}\big{(}\tilde{u}(t,x)-u(s,y)\big{)}^{+}\rho_{\theta}(s-t)\varphi_{\varepsilon}(x,y)\mathrm{d}t\mathrm{d}x\mathrm{d}s\mathrm{d}y.

Actually, when directly applying the methods in [DGG19, DGT20, DG20], the estimate of 3.1 contains the following terms

(3.3) 𝔼0TDDxixjφε(x,y)0u(t,x)aij(x,r)sgn(ru~(t,y))drdxdydt\displaystyle\mathbb{E}\int_{0}^{T}\int_{D}\int_{D}\partial_{x_{i}x_{j}}\varphi_{\varepsilon}(x,y)\int_{0}^{u(t,x)}a^{ij}(x,r)\text{sgn}(r-\tilde{u}(t,y))\mathrm{d}r\mathrm{d}x\mathrm{d}y\mathrm{d}t
+𝔼0TDDxiφε(x,y)0u(t,x)axjij(x,r)sgn(ru~(t,y))drdxdydt,\displaystyle\quad+\mathbb{E}\int_{0}^{T}\int_{D}\int_{D}\partial_{x_{i}}\varphi_{\varepsilon}(x,y)\int_{0}^{u(t,x)}a_{x_{j}}^{ij}(x,r)\text{sgn}(r-\tilde{u}(t,y))\mathrm{d}r\mathrm{d}x\mathrm{d}y\mathrm{d}t,

which may not be equal to

(3.4) 𝔼0TDDxixjφε(x,y)u~(t,y)u(t,x)aij(x,r)sgn(ru~(t,y))drdxdydt\displaystyle\mathbb{E}\int_{0}^{T}\int_{D}\int_{D}\partial_{x_{i}x_{j}}\varphi_{\varepsilon}(x,y)\int_{\tilde{u}(t,y)}^{u(t,x)}a^{ij}(x,r)\text{sgn}(r-\tilde{u}(t,y))\mathrm{d}r\mathrm{d}x\mathrm{d}y\mathrm{d}t
+𝔼0TDDxiφε(x,y)u~(t,y)u(t,x)axjij(x,r)sgn(ru~(t,y))drdxdydt.\displaystyle\quad+\mathbb{E}\int_{0}^{T}\int_{D}\int_{D}\partial_{x_{i}}\varphi_{\varepsilon}(x,y)\int_{\tilde{u}(t,y)}^{u(t,x)}a_{x_{j}}^{ij}(x,r)\text{sgn}(r-\tilde{u}(t,y))\mathrm{d}r\mathrm{d}x\mathrm{d}y\mathrm{d}t.

The reason for this discrepancy is that when formally applying the divergence theorem in xx to the first term in 3.3, the boundary term does not vanish due to the asymmetry of the spatial mollifier, and estimating it when ε0+\varepsilon\rightarrow 0^{+} is challenging due to the potential absence of a trace for uu caused by its low regularity. While for the case of 3.2, this equivalence is guaranteed by the support of η()=(u~(s,y))+\eta(\cdot)=(\cdot-\tilde{u}(s,y))^{+}.

Note that the time mollifier is also asymmetric and always requires s>ts>t. For this, we have an important observation: we only need the ()(\star)-property of the function at the larger time variable ss. However, when applying this observation to 3.2, it necessitates the ()(\star)-property of both uu and u~\tilde{u}, which is not what we desire. Therefore, we turn to estimate

(3.5) 𝔼DTDT(u(t,x)u~(s,y))+ρθ(st)φε(x,y)dtdxdsdy,and\displaystyle\mathbb{E}\int_{D_{T}}\int_{D_{T}}\big{(}u(t,x)-\tilde{u}(s,y)\big{)}^{+}\rho_{\theta}(s-t)\varphi_{\varepsilon}(x,y)\mathrm{d}t\mathrm{d}x\mathrm{d}s\mathrm{d}y,\quad\text{and}
𝔼DTDT(u~(s,x)u(t,y))+ρθ(st)φε(x,y)dtdxdsdy,\displaystyle\mathbb{E}\int_{D_{T}}\int_{D_{T}}\big{(}\tilde{u}(s,x)-u(t,y)\big{)}^{+}\rho_{\theta}(s-t)\varphi_{\varepsilon}(x,y)\mathrm{d}t\mathrm{d}x\mathrm{d}s\mathrm{d}y,

which only use u~\tilde{u} at time ss and thus require the ()(\star)-property of u~\tilde{u}. Since these two terms are asymmetric, we adapt the definition of the ()(\star)-property for both formulations in 3.5 (see the definition of the test functions at the beginning of the Section 3.1). Fortunately, the entropy solutions constructed from the vanishing viscosity approximation satisfy this modified ()(\star)-property, given a stronger integrability condition on the initial data in ω\omega.

Construction of the spatial mollifier

Now, we give the specific construction of the spatial mollifier. Define

dist(A1,A2)infx1A1,x2A2|x1x2|,A1,A2d.\text{dist}(A_{1},A_{2})\coloneqq\inf_{x_{1}\in A_{1},\ x_{2}\in A_{2}}|x_{1}-x_{2}|,\quad A_{1},A_{2}\subset\mathbb{R}^{d}.

Fix an open covering of D\partial D by balls {Bj}j=1N\{B^{\prime}_{j}\}_{j=1}^{N^{\prime}} which satisfy that BjDB_{j}^{\prime}\cap\partial D is part of a Lipschitz graph for each j=1,,Nj=1,\ldots,N^{\prime}. Choose an open covering of D¯\overline{D} by B0B_{0} and balls {Bi}i=1N\{B_{i}\}_{i=1}^{N} satisfying dist(B0,D)>0\text{dist}(B_{0},\partial D)>0, and for each i>0i>0, there exists j{1,,N}j\in\{1,\ldots,N^{\prime}\} such that BiBjB_{i}\subset B_{j}^{\prime} and dist(Bi,Bj)>0\text{dist}(B_{i},\partial B_{j}^{\prime})>0.

From [Bre11, Lemma 9.3], we know that there exist functions ψ0,ψ1,,ψNC(d)\psi_{0},\psi_{1},\ldots,\psi_{N}\in C^{\infty}(\mathbb{R}^{d}) such that 0ψi10\leq\psi_{i}\leq 1, suppψiBi\text{supp}\,\psi_{i}\subseteq B_{i} for i=0,1,,Ni=0,1,\ldots,N, and

i=0Nψi(x)1,xD¯.\sum_{i=0}^{N}\psi_{i}(x)\equiv 1,\quad x\in\overline{D}.

Without loss of generality, we assume dist(suppψi,Bi)>0\text{dist}(\text{supp}\,\psi_{i},\partial B_{i})>0 for all i=0,1,,Ni=0,1,\ldots,N. Otherwise, we consider larger open domains, also denoted as BiB_{i} for convenience, satisfying dist(B0,D)>0\text{dist}(B_{0},\partial D)>0 and dist(Bi,Bj)>0\text{dist}(B_{i},\partial B_{j}^{\prime})>0 for at least one j{1,,N}j\in\{1,\ldots,N^{\prime}\}.

For x=(x1,x2,,xd)dx=(x_{1},x_{2},\ldots,x_{d})\in\mathbb{R}^{d}, define the function ϱ~(x)i=1dρ(xi1/2)\tilde{\varrho}(x)\coloneqq\prod_{i=1}^{d}\rho(x_{i}-1/2) and the mollifier ϱ~ε()ϱ~(/ε)/(εd)\tilde{\varrho}_{\varepsilon}(\cdot)\coloneqq\tilde{\varrho}(\cdot/\varepsilon)/(\varepsilon^{d}). Similar to [BVW14, Section 3.2.1], for each i=1,,Ni=1,\ldots,N, there exist a constant εi\varepsilon_{i} and a vector η~id\tilde{\eta}_{i}\in\mathbb{R}^{d}, such that the translated sequence of mollifiers ϱε,i()ϱ~ε(η~i)\varrho_{\varepsilon,i}(\cdot)\coloneqq\tilde{\varrho}_{\varepsilon}(\cdot-\tilde{\eta}_{i}) satisfying yϱε,i(x)Cc(D)y\mapsto\varrho_{\varepsilon,i}(x-\cdot)\in C_{c}^{\infty}(D) for all (x,ε)(BiD¯)×(0,εi)(x,\varepsilon)\in(B_{i}\cap\overline{D})\times(0,\varepsilon_{i}). The vector η~i\tilde{\eta}_{i} depends only on the local representation of the boundary of DD in BiB_{i}^{\prime} as the graph of a Lipschitz function. We also define ϱε,0()ϱ~ε()\varrho_{\varepsilon,0}(\cdot)\coloneqq\tilde{\varrho}_{\varepsilon}(\cdot).

Remark 3.1.

From the construction of the function ϱε,i\varrho_{\varepsilon,i}, there exists a constant K~\tilde{K} depending on the maximum norm of ηi\eta_{i}, i=1,,Ni=1,\ldots,N, such that suppϱε,i{xd:|x|<K~ε}\text{supp}\,\varrho_{\varepsilon,i}\subset\{x\in\mathbb{R}^{d}:|x|<\tilde{K}\varepsilon\} holds for all ε(0,εi)\varepsilon\in(0,\varepsilon_{i}) and i=0,1,,Ni=0,1,\ldots,N.

Remark 3.2.

For each i=1,,Ni=1,\ldots,N, since dist(suppψi,Bi)>0\text{dist}(\text{supp}\,\psi_{i},\partial B_{i})>0, there exists a ε¯i(0,εi)\bar{\varepsilon}_{i}\in(0,\varepsilon_{i}) such that suppϱε,i(x)BiD\text{supp}\,\varrho_{\varepsilon,i}(x-\cdot)\subset B_{i}\cap D for all (x,ε)(suppψiD¯)×(0,ε¯i)(x,\varepsilon)\in(\text{supp}\,\psi_{i}\cap\overline{D})\times(0,\bar{\varepsilon}_{i}). Moreover, there exists a ε0(0,1)\varepsilon_{0}\in(0,1) such that suppϱε,0(x)D\text{supp}\,\varrho_{\varepsilon,0}(x-\cdot)\subset D for all (x,ε)B0×(0,ε0)(x,\varepsilon)\in B_{0}\times(0,{\varepsilon}_{0}). In the rest of this article, we define

ε¯min{ε0,ε1,ε¯1,ε2,ε¯2,,εN,ε¯N}.\bar{\varepsilon}\coloneqq\min\{\varepsilon_{0},\varepsilon_{1},\bar{\varepsilon}_{1},\varepsilon_{2},\bar{\varepsilon}_{2},\ldots,\varepsilon_{N},\bar{\varepsilon}_{N}\}.

3.1. ()(\star)-property

For i{1,,N}i\in\{1,\ldots,N\}, define the sets

𝒞\displaystyle\mathcal{C}^{-} {fC():fCc(),suppf(,0]},\displaystyle\coloneqq\{f\in C^{\infty}(\mathbb{R}):f^{\prime}\in C_{c}(\mathbb{R}),\ \text{supp}\,f\subseteq(-\infty,0]\},
𝒞+\displaystyle\mathcal{C}^{+} {fC():fCc(),suppf(0,)},\displaystyle\coloneqq\{f\in C^{\infty}(\mathbb{R}):f^{\prime}\in C_{c}(\mathbb{R}),\ \text{supp}\,f\subseteq(0,\infty)\},
ΓBi\displaystyle\Gamma_{B_{i}}^{-} {fC(D¯×D¯):suppf(BiD¯)×(BiD¯),\displaystyle\coloneqq\{f\in C^{\infty}(\overline{D}\times\overline{D}):\text{supp}\,f\subset(B_{i}\cap\overline{D})\times(B_{i}\cap\overline{D}),
f(x,)Cc(D),xBiD¯},\displaystyle\quad\ \ f(x,\cdot)\in C_{c}^{\infty}(D),\ \forall x\in B_{i}\cap\overline{D}\},
ΓBi+\displaystyle\Gamma_{B_{i}}^{+} {fC(D¯×D¯):suppf(BiD¯)×(BiD¯),\displaystyle\coloneqq\{f\in C^{\infty}(\overline{D}\times\overline{D}):\text{supp}\,f\subset(B_{i}\cap\overline{D})\times(B_{i}\cap\overline{D}),
f(,y)Cc(D),yBiD¯}.\displaystyle\quad\ \ f(\cdot,y)\in C_{c}^{\infty}(D),\ \forall y\in B_{i}\cap\overline{D}\}.

Let (g,φ,u,h)(ΓBiΓBi+)×Cc((0,T))×Lm+1(ΩT;Lm+1(D))×(𝒞𝒞+)(g,\varphi,u,h)\in(\Gamma_{B_{i}}^{-}\cup\Gamma_{B_{i}}^{+})\times C_{c}^{\infty}((0,T))\times L_{m+1}(\Omega_{T};L_{m+1}(D))\times(\mathcal{C}^{-}\cup\mathcal{C}^{+}). For θ>0\theta>0, we introduce

ϕθ(t,s,x,y)g(x,y)ρθ(st)φ(t+s2),\displaystyle\phi_{\theta}(t,s,x,y)\coloneqq g(x,y)\rho_{\theta}(s-t)\varphi(\frac{t+s}{2}),

and

Hθ(s,x,z)\displaystyle H_{\theta}(s,x,z) 0Ty(h(u(t,y)z)σyiik(y,u(t,y))ϕθ(t,s,x,y)\displaystyle\coloneqq\int_{0}^{T}\int_{y}\bigg{(}h(u(t,y)-z)\sigma_{y_{i}}^{ik}(y,u(t,y))\phi_{\theta}(t,s,x,y)
0u(t,y)h(rz)σryiik(y,r)drϕθ(t,s,x,y)\displaystyle\quad-\int_{0}^{u(t,y)}h(r-z)\sigma_{ry_{i}}^{ik}(y,r)\mathrm{d}r\phi_{\theta}(t,s,x,y)
0u(t,y)h(rz)σrik(y,r)dryiϕθ(t,s,x,y))dWk(t),\displaystyle\quad-\int_{0}^{u(t,y)}h(r-z)\sigma_{r}^{ik}(y,r)\mathrm{d}r\partial_{y_{i}}\phi_{\theta}(t,s,x,y)\bigg{)}\mathrm{d}W^{k}(t),
(u,w,θ)\displaystyle\mathcal{E}(u,w,\theta) 𝔼t,s,x,yxjyiϕθ(t,s,x,y)uwr~uh(rr~)σrik(y,r)σrjk(x,r~)drdr~\displaystyle\coloneqq-\mathbb{E}\int_{t,s,x,y}\partial_{x_{j}y_{i}}\phi_{\theta}(t,s,x,y)\int_{u}^{w}\int_{\tilde{r}}^{u}h^{\prime}(r-\tilde{r})\sigma_{r}^{ik}(y,r)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}r\mathrm{d}\tilde{r}
𝔼t,s,x,yyiϕθ(t,s,x,y)uwr~uh(rr~)σrik(y,r)σrxjjk(x,r~)drdr~\displaystyle\quad-\mathbb{E}\int_{t,s,x,y}\partial_{y_{i}}\phi_{\theta}(t,s,x,y)\int_{u}^{w}\int_{\tilde{r}}^{u}h^{\prime}(r-\tilde{r})\sigma_{r}^{ik}(y,r)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}r\mathrm{d}\tilde{r}
+𝔼t,s,x,yyiϕθ(t,s,x,y)wuh(rw)σrik(y,r)σxjjk(x,w)dr\displaystyle\quad+\mathbb{E}\int_{t,s,x,y}\partial_{y_{i}}\phi_{\theta}(t,s,x,y)\int_{w}^{u}h^{\prime}(r-w)\sigma_{r}^{ik}(y,r)\sigma_{x_{j}}^{jk}(x,w)\mathrm{d}r
𝔼t,s,x,yxjϕθ(t,s,x,y)uwr~uh(rr~)σryiik(y,r)σrjk(x,r~)drdr~\displaystyle\quad-\mathbb{E}\int_{t,s,x,y}\partial_{x_{j}}\phi_{\theta}(t,s,x,y)\int_{u}^{w}\int_{\tilde{r}}^{u}h^{\prime}(r-\tilde{r})\sigma_{ry_{i}}^{ik}(y,r)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}r\mathrm{d}\tilde{r}
𝔼t,s,x,yϕθ(t,s,x,y)uwr~uh(rr~)σryiik(y,r)σrxjjk(x,r~)drdr~\displaystyle\quad-\mathbb{E}\int_{t,s,x,y}\phi_{\theta}(t,s,x,y)\int_{u}^{w}\int_{\tilde{r}}^{u}h^{\prime}(r-\tilde{r})\sigma_{ry_{i}}^{ik}(y,r)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}r\mathrm{d}\tilde{r}
+𝔼t,s,x,yϕθ(t,s,x,y)wuh(rw)σryiik(y,r)σxjjk(x,w)dr\displaystyle\quad+\mathbb{E}\int_{t,s,x,y}\phi_{\theta}(t,s,x,y)\int_{w}^{u}h^{\prime}(r-w)\sigma_{ry_{i}}^{ik}(y,r)\sigma_{x_{j}}^{jk}(x,w)\mathrm{d}r
+𝔼t,s,x,yxjϕθ(t,s,x,y)uwh(ur~)σyiik(y,u)σrjk(x,r~)dr~\displaystyle\quad+\mathbb{E}\int_{t,s,x,y}\partial_{x_{j}}\phi_{\theta}(t,s,x,y)\int_{u}^{w}h^{\prime}(u-\tilde{r})\sigma_{y_{i}}^{ik}(y,u)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}
+𝔼t,s,x,yϕθ(t,s,x,y)uwh(ur~)σyiik(y,u)σrxjjk(x,r~)dr~\displaystyle\quad+\mathbb{E}\int_{t,s,x,y}\phi_{\theta}(t,s,x,y)\int_{u}^{w}h^{\prime}(u-\tilde{r})\sigma_{y_{i}}^{ik}(y,u)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}
𝔼t,s,x,yϕθ(t,s,x,y)h(uw)σyiik(y,u)σxjjk(x,w),\displaystyle\quad-\mathbb{E}\int_{t,s,x,y}\phi_{\theta}(t,s,x,y)h^{\prime}(u-w)\sigma_{y_{i}}^{ik}(y,u)\sigma_{x_{j}}^{jk}(x,w),

where in the integrand u=u(t,y)u=u(t,y) and w=w(t,x)w=w(t,x). For simplicity, here and below we write t\int_{t} in place of 0Tdt\int_{0}^{T}\cdot\mathrm{d}t (and similarly for s\int_{s}), x\int_{x} in place of Ddx\int_{D}\cdot\mathrm{d}x (and similarly for y\int_{y}), and z\int_{z} in place of dz\int_{\mathbb{R}}\cdot\mathrm{d}z. However, to avoid confusion, we use the usual notation if the integral is taken on a different domain or is a stochastic integral.

Remark 3.3.

Since suppφ(0,T)\text{supp}\,\varphi\subset(0,T), for a sufficiently small θ\theta, the function HθH_{\theta} has a similar form as [DGG19, (3.7)]. The definition of the sets ΓBi+\Gamma_{B_{i}}^{+} and ΓBi\Gamma_{B_{i}}^{-} indicates suppHθ(s,,z)BiD¯\text{supp}\,H_{\theta}(s,\cdot,z)\subset B_{i}\cap\overline{D} for all (s,z)[0,T]×(s,z)\in[0,T]\times\mathbb{R}. Furthermore, there exists a modification of HθH_{\theta} which is smooth in (s,x,z)(s,x,z) (see [Kun97, Exercise 3.15]). Throughout this paper, we will use this smooth version and still denote it by HθH_{\theta}.

Fix a constant μ(3m+5)/(4m+4)\mu\coloneqq(3m+5)/(4m+4), which is chosen so that μ((m+3)/(2m+2),1)\mu\in((m+3)/(2m+2),1).

Definition 3.4.

We say that a function wLm+1(ΩT;Lm+1(D))w\in L_{m+1}(\Omega_{T};L_{m+1}(D)) has the ()(\star)-property, if

  1. (i)

    For each i{0,1,,N}i\in\{0,1,\ldots,N\} and all

    (g,φ,u,h)ΓBi×Cc((0,T))×Lm+1(ΩT;Lm+1(D))×𝒞(g,\varphi,u,h)\in\Gamma_{B_{i}}^{-}\times C_{c}^{\infty}((0,T))\times L_{m+1}(\Omega_{T};L_{m+1}(D))\times\mathcal{C}^{-}

    satisfying u0u\geq 0 for almost all (ω,t,x)ΩT×D(\omega,t,x)\in\Omega_{T}\times D, and for all sufficiently small θ(0,1)\theta\in(0,1), we have Hθ(,,w(,))L1(ΩT×D)H_{\theta}(\cdot,\cdot,w(\cdot,\cdot))\in L_{1}(\Omega_{T}\times D) and

    𝔼s,xHθ(s,x,w(s,x))Cθ1μ+(u,w,θ)\mathbb{E}\int_{s,x}H_{\theta}(s,x,w(s,x))\leq C\theta^{1-\mu}+\mathcal{E}(u,w,\theta)

    for a constant CC independent of θ\theta.

  2. (ii)

    For each i{0,1,,N}i\in\{0,1,\ldots,N\} and all

    (g,φ,u,h)ΓBi+×Cc((0,T))×Lm+1(ΩT;Lm+1(D))×𝒞+(g,\varphi,u,h)\in\Gamma_{B_{i}}^{+}\times C_{c}^{\infty}((0,T))\times L_{m+1}(\Omega_{T};L_{m+1}(D))\times\mathcal{C}^{+}

    and sufficiently small θ(0,1)\theta\in(0,1), we have Hθ(,,w(,))L1(ΩT×D)H_{\theta}(\cdot,\cdot,w(\cdot,\cdot))\in L_{1}(\Omega_{T}\times D) and

    𝔼s,xHθ(s,x,w(s,x))Cθ1μ+(u,w,θ)\mathbb{E}\int_{s,x}H_{\theta}(s,x,w(s,x))\leq C\theta^{1-\mu}+\mathcal{E}(u,w,\theta)

    for a constant CC independent of θ\theta.

Remark 3.5.

Differing from the ()(\star)-property in [DGG19, DGT20, DG20], we adjust test functions gg, uu and hh to apply the divergence theorem with the Dirichlet boundary condition (see the proof of 4.4). 3.12 provides the justification for our distinct consideration of assertions (i) and (ii) in 3.4.

Remark 3.6.

If gΓBi+g\in\Gamma_{B_{i}}^{+}, define g~(x,y)g(y,x)\tilde{g}(x,y)\coloneqq g(y,x), then we have g~ΓBi\tilde{g}\in\Gamma_{B_{i}}^{-}. Moreover, if we relabel xyx\leftrightarrow y in assertion (ii) of 3.4, it becomes an estimate to

𝔼s,yHθ(s,y,w(s,y))\displaystyle\mathbb{E}\int_{s,y}H_{\theta}(s,y,w(s,y))
=𝔼s,y[0Tx(h(u(t,x)z)σxiik(x,u(t,x))g~(x,y)ρθ(st)φ(t+s2)\displaystyle=\mathbb{E}\int_{s,y}\Bigg{[}\int_{0}^{T}\int_{x}\bigg{(}h(u(t,x)-z)\sigma_{x_{i}}^{ik}(x,u(t,x))\tilde{g}(x,y)\rho_{\theta}(s-t)\varphi(\frac{t+s}{2})
0u(t,x)h(rz)σrxiik(x,r)drg~(x,y)ρθ(st)φ(t+s2)\displaystyle\quad-\int_{0}^{u(t,x)}h(r-z)\sigma_{rx_{i}}^{ik}(x,r)\mathrm{d}r\tilde{g}(x,y)\rho_{\theta}(s-t)\varphi(\frac{t+s}{2})
0u(t,x)h(rz)σrik(x,r)drxig~(x,y)ρθ(st)φ(t+s2))dWk(t)]z=w(s,y).\displaystyle\quad-\int_{0}^{u(t,x)}h(r-z)\sigma_{r}^{ik}(x,r)\mathrm{d}r\partial_{x_{i}}\tilde{g}(x,y)\rho_{\theta}(s-t)\varphi(\frac{t+s}{2})\bigg{)}\mathrm{d}W^{k}(t)\Bigg{]}_{z=w(s,y)}.

This is used in the proof of 3.11 for the case that uu has the ()(\star)-property.

The following lemmas are introduced from [DGG19, DG20], and the proofs are similar no matter the space is DD or 𝕋d\mathbb{T}^{d}. We omit the proofs here.

Lemma 3.7.

Under 2.4-2.5 in 2.4, for all λ((m+3)/(2m+2),1)\lambda\in((m+3)/(2m+2),1), k¯\bar{k}\in\mathbb{N} and sufficiently small θ(0,1)\theta\in(0,1), we have

𝔼zHθL([0,T];Hm+1k¯(D×))m+1Cθλ(m+1)𝒩m(u),\displaystyle\mathbb{E}\|\partial_{z}H_{\theta}\|_{L_{\infty}([0,T];H_{m+1}^{\bar{k}}(D\times\mathbb{R}))}^{m+1}\leq C\theta^{-\lambda(m+1)}\mathcal{N}_{m}(u),

where

𝒩m(u)𝔼0T(1+u(t)Lm+12(D)m+1+u(t)L2(D)m+1)dt,\mathcal{N}_{m}(u)\coloneqq\mathbb{E}\int_{0}^{T}\Big{(}1+\|u(t)\|_{L_{\frac{m+1}{2}}(D)}^{m+1}+\|u(t)\|_{L_{2}(D)}^{m+1}\Big{)}\mathrm{d}t,

and the constant C=C(N0,k,d,T,λ,|D|,m,h,g,φ)C=C(N_{0},k,d,T,\lambda,|D|,m,h,g,\varphi) is independent of θ\theta. In particular, we have

𝔼zHθL([0,T];Hm+1k¯(D×))m+1Cθλ(m+1)(1+uLm+1(DT)m+1).\displaystyle\mathbb{E}\|\partial_{z}H_{\theta}\|_{L_{\infty}([0,T];H_{m+1}^{\bar{k}}(D\times\mathbb{R}))}^{m+1}\leq C\theta^{-\lambda(m+1)}\Big{(}1+\|u\|_{L_{m+1}(D_{T})}^{m+1}\Big{)}.
Lemma 3.8.

Let wL2(ΩT×D)w\in L_{2}(\Omega_{T}\times D). Then, for all sufficiently small θ(0,1)\theta\in(0,1), we have

𝔼s,xHθ(s,x,w(s,x))=limλ0𝔼s,x,zHθ(s,x,z)ρλ(w(s,x)z).\displaystyle\mathbb{E}\int_{s,x}H_{\theta}(s,x,w(s,x))=\lim_{\lambda\rightarrow 0}\mathbb{E}\int_{s,x,z}H_{\theta}(s,x,z)\rho_{\lambda}(w(s,x)-z).
Lemma 3.9.

Let {wn}n\{w_{n}\}_{n\in\mathbb{N}} be a sequence bounded in Lm+1(ΩT×D)L_{m+1}(\Omega_{T}\times D) satisfying the ()(\star)-property uniformly in nn, which means the constant CC in 3.4 (i) and (ii) are independent of nn. Suppose that wnw_{n} converges to a function ww for almost all (ω,t,x)ΩT×D(\omega,t,x)\in\Omega_{T}\times D. Then, ww has the ()(\star)-property.

3.2. L1L_{1}-estimates

Now, we give the L1L_{1}-estimates of two entropy solutions uu and u~\tilde{u} using Kruzhkov’s doubling variables technique (cf. [Kru70]), which can eliminate the coupling effect of uu~u-\tilde{u}. One key point is to select the appropriate function η\eta such that η(z)0\eta(\cdot-z)\in\mathcal{E}_{0} for any z0z\geq 0 to approximate the positive part function. Using the convolution, the non-negative zz can be replaced by another entropy solution under suitable conditions.

In this subsection, we fix i{0,1,,N}i\in\{0,1,\ldots,N\}. For the sake of brevity, we define BBiB\coloneqq B_{i}, ψψi\psi\coloneqq\psi_{i} and ϱε(xy)ϱε,i(xy)\varrho_{\varepsilon}(x-y)\coloneqq\varrho_{\varepsilon,i}(x-y) which are introduced in the definition of the spatial mollifier in Section 3. For a non-negative φCc((0,T))\varphi\in C_{c}^{\infty}((0,T)) satisfying φL(0,T)tφL1(0,T)1\|\varphi\|_{L_{\infty}(0,T)}\lor\|\partial_{t}\varphi\|_{L_{1}(0,T)}\leq 1, we define the non-negative test functions

ϕε(t,x,y)ϱε(xy)φ(t)ψ(x)𝟏D¯(x),ϕθ,ε(t,x,s,y)ρθ(st)ϕε(s+t2,x,y).\phi_{\varepsilon}(t,x,y)\coloneqq\varrho_{\varepsilon}(x-y)\varphi(t)\psi(x)\mathbf{1}_{\overline{D}}(x),\quad\phi_{\theta,\varepsilon}(t,x,s,y)\coloneqq\rho_{\theta}(s-t)\phi_{\varepsilon}(\frac{s+t}{2},x,y).
Remark 3.10.

Compare to the test functions ϕθ\phi_{\theta} in Section 3. We want to take g(x,y)=𝟏D¯(x)ψ(x)ϱε(xy)g(x,y)=\mathbf{1}_{\overline{D}}(x)\psi(x)\varrho_{\varepsilon}(x-y). In this case, with ε(0,ε¯)\varepsilon\in(0,\bar{\varepsilon}) (see 3.2 for the definition of ε¯\bar{\varepsilon}), we have gΓBg\in\Gamma_{B}^{-} and the function g~(x,y)g(y,x)\tilde{g}(x,y)\coloneqq g(y,x) is in ΓB+\Gamma_{B}^{+}.

To derive the L1L_{1}-estimates, we need the following lemma.

Lemma 3.11.

Let 0ξ,ξ~Lm+1(Ω,0;Lm+1(D))0\leq\xi,\tilde{\xi}\in L_{m+1}(\Omega,\mathcal{F}_{0};L_{m+1}(D)). Suppose that uu and u~\tilde{u} are the entropy solutions to the Dirichlet problems Π(Φ,ξ)\Pi(\Phi,\xi) and Π(Φ~,ξ~)\Pi(\tilde{\Phi},\tilde{\xi}), respectively. Let Assumptions 2.1, 2.4 and 2.5 hold for both Φ\Phi and Φ~\tilde{\Phi}. If u~\tilde{u} or uu has the ()(\star)-property, for δ(0,1)\delta\in(0,1), ε(0,ε¯)\varepsilon\in(0,\bar{\varepsilon}), λ[0,1]\lambda\in[0,1], α(0,1(m/2))\alpha\in(0,1\land(m/2)), and every non-negative φCc((0,T))\varphi\in C_{c}^{\infty}((0,T)) such that

φL(0,T)tφL1(0,T)1,\|\varphi\|_{L_{\infty}(0,T)}\lor\|\partial_{t}\varphi\|_{L_{1}(0,T)}\leq 1,

we have

(3.6) 𝔼t,x,y(u~(t,x)u(t,y))+ϱε(xy)tφ(t)ψ(x)\displaystyle-\mathbb{E}\int_{t,x,y}(\tilde{u}(t,x)-u(t,y))^{+}\varrho_{\varepsilon}(x-y)\partial_{t}\varphi(t)\psi(x)
𝔼t,xφ(t)Δxψ(x)(Φ~(u~(t,x))Φ(u(t,x)))+\displaystyle\leq\mathbb{E}\int_{t,x}\varphi(t)\Delta_{x}\psi(x)(\tilde{\Phi}(\tilde{u}(t,x))-\Phi(u(t,x)))^{+}
+Cε1m+1𝔼𝔞(u)L2(DT)2\displaystyle\quad+C\varepsilon^{\frac{1}{m+1}}\mathbb{E}\|\nabla\llbracket\mathfrak{a}\rrbracket(u)\|_{L_{2}(D_{T})}^{2}
+C(ε,δ,λ,α)𝔼(1+uLm+1(DT)m+1+u~Lm+1(DT)m+1)\displaystyle\quad+C\mathfrak{C}(\varepsilon,\delta,\lambda,\alpha)\mathbb{E}(1+\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\tilde{u}\|_{L_{m+1}(D_{T})}^{m+1})
+Cε2𝔼(𝟏|u|Rλ(1+u)Lm(DT)m+𝟏|u~|Rλ(1+u~)Lm(DT)m)\displaystyle\quad+C\varepsilon^{-2}\mathbb{E}\Big{(}\big{\|}\mathbf{1}_{|u|\geq R_{\lambda}}(1+u)\big{\|}_{L_{m}(D_{T})}^{m}+\big{\|}\mathbf{1}_{|\tilde{u}|\geq R_{\lambda}}(1+\tilde{u})\big{\|}_{L_{m}(D_{T})}^{m}\Big{)}
+C𝔼t,x,y𝟏BD¯(x)φ(t)(ε2i,j|xiyjϱε(xy)|\displaystyle\quad+C\mathbb{E}\int_{t,x,y}\mathbf{1}_{B\cap\overline{D}}(x)\varphi(t)\Big{(}\varepsilon^{2}\sum_{i,j}|\partial_{x_{i}y_{j}}\varrho_{\varepsilon}(x-y)|
+εi|xiϱε(xy)|+ϱε(xy))(u~(t,x)u(t,y))+.\displaystyle\quad+\varepsilon\sum_{i}|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|+\varrho_{\varepsilon}(x-y)\Big{)}(\tilde{u}(t,x)-u(t,y))^{+}.

where

Rλ\displaystyle R_{\lambda} sup{R[0,]:|𝔞(r)𝔞~(r)|λ,|r|<R},\displaystyle\coloneqq\sup\big{\{}R\in[0,\infty]:|\mathfrak{a}(r)-\tilde{\mathfrak{a}}(r)|\leq\lambda,\ \forall|r|<R\big{\}},
(ε,δ,λ,α)\displaystyle\mathfrak{C}(\varepsilon,\delta,\lambda,\alpha) ε2δ2β+δβε1+εκ¯+εβ~+ε1m+1+ε2κ¯δ1\displaystyle\coloneqq\varepsilon^{-2}\delta^{2\beta}+\delta^{\beta}\varepsilon^{-1}+\varepsilon^{\bar{\kappa}}+\varepsilon^{\tilde{\beta}}+\varepsilon^{\frac{1}{m+1}}+\varepsilon^{2\bar{\kappa}}\delta^{-1}
+ε2δ2α+ε2λ2+ε1λ,\displaystyle\quad+\varepsilon^{-2}\delta^{2\alpha}+\varepsilon^{-2}\lambda^{2}+\varepsilon^{-1}\lambda,

and the constant CC depends only on N0N_{0}, KK, dd, TT, |D||D| and α\alpha.

Remark 3.12.

Estimate 3.6 is not symmetric for uu and u~\tilde{u} (See 3.15 for the reason we focus on such terms) due to the ()(\star)-property of u~\tilde{u} or uu and the different status of xx and yy in test function ϕε(t,x,y)\phi_{\varepsilon}(t,x,y). Therefore, it is necessary to consider the ()(\star)-property separately as in 3.4. This is a key point of our proof, which is different from [DGG19, DGT20, DG20].

Proof.

We first prove the case that u~\tilde{u} has the ()(\star)-property. With 2.7, we have u,u~0u,\tilde{u}\geq 0 for almost all (ω,t,x)ΩT×D(\omega,t,x)\in\Omega_{T}\times D. For each δ>0\delta>0, define the function ηδC2()\eta_{\delta}\in C^{2}(\mathbb{R}) by

ηδ(0)=ηδ(0)=0,ηδ′′(r)=ρδ(r).\eta_{\delta}(0)=\eta_{\delta}^{\prime}(0)=0,\quad\eta_{\delta}^{\prime\prime}(r)=\rho_{\delta}(r).

Thus, we have

|ηδ(r)r+|δ,suppηδ′′[0,δ],|ηδ′′(r)|dr2,|ηδ′′|2δ1.|\eta_{\delta}(r)-r^{+}|\leq\delta,\quad\mathrm{supp}\,\eta_{\delta}^{\prime\prime}\subset[0,\delta],\quad\int_{\mathbb{R}}|\eta_{\delta}^{\prime\prime}(r)|\mathrm{d}r\leq 2,\quad|\eta_{\delta}^{\prime\prime}|\leq 2\delta^{-1}.

Fix (z,t,y)[0,)×DT(z,t,y)\in[0,\infty)\times D_{T}. Since u~\tilde{u} is the entropy solution to Π(Φ~,ξ~)\Pi(\tilde{\Phi},\tilde{\xi}) and

(ηδ(z),ρθ(t)φ(+t2),ϱε(y)ψ()𝟏D¯())0×Cc((0,T))×C(D¯)\big{(}\eta_{\delta}(\cdot-z),\rho_{\theta}(\cdot-t)\varphi(\frac{\cdot+t}{2}),\varrho_{\varepsilon}(\cdot-y)\psi(\cdot)\mathbf{1}_{\overline{D}}(\cdot)\big{)}\in\mathcal{E}_{0}\times C_{c}^{\infty}((0,T))\times C^{\infty}(\overline{D})

for ε(0,ε¯)\varepsilon\in(0,\bar{\varepsilon}) and a sufficiently small θ\theta, using the entropy inequality 2.3 of u~\tilde{u} with (ηδ(rz),ϕθ,ε(t,,,y))\big{(}\eta_{\delta}(r-z),\phi_{\theta,\varepsilon}(t,\cdot,\cdot,y)\big{)} instead of (η(r),ϕ)\big{(}\eta(r),\phi\big{)}, we have

s,xηδ(u~z)sϕθ,ε\displaystyle-\int_{s,x}\eta_{\delta}(\tilde{u}-z)\partial_{s}\phi_{\theta,\varepsilon}
s,x𝔞~2ηδ(z)(u~)Δxϕθ,ε+s,xaijηδ(z)(x,u~)xixjϕθ,ε\displaystyle\leq\int_{s,x}\llbracket\tilde{\mathfrak{a}}^{2}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(\tilde{u})\Delta_{x}\phi_{\theta,\varepsilon}+\int_{s,x}\llbracket a^{ij}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(x,\tilde{u})\partial_{x_{i}x_{j}}\phi_{\theta,\varepsilon}
+s,xaxjijηδ(z)friηδ(z)(x,u~)xiϕθ,ε\displaystyle\quad+\int_{s,x}\llbracket a_{x_{j}}^{ij}\eta_{\delta}^{\prime}(\cdot-z)-f_{r}^{i}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(x,\tilde{u})\partial_{x_{i}}\phi_{\theta,\varepsilon}
s,xηδ(u~z)bi(x,u~)xiϕθ,ε+s,xηδ(u~z)F(x,u~)ϕθ,ε\displaystyle\quad-\int_{s,x}\eta_{\delta}^{\prime}(\tilde{u}-z)b^{i}(x,\tilde{u})\partial_{x_{i}}\phi_{\theta,\varepsilon}+\int_{s,x}\eta_{\delta}^{\prime}(\tilde{u}-z)F(x,\tilde{u})\phi_{\theta,\varepsilon}
+s,xηδ(u~z)fxii(x,u~)ϕθ,εs,xfrxiiηδ(z)(x,u~)ϕθ,ε\displaystyle\quad+\int_{s,x}\eta_{\delta}^{\prime}(\tilde{u}-z)f_{x_{i}}^{i}(x,\tilde{u})\phi_{\theta,\varepsilon}-\int_{s,x}\llbracket f_{rx_{i}}^{i}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(x,\tilde{u})\phi_{\theta,\varepsilon}
+s,x12ηδ′′(u~z)k=1|σxiik(x,u~)|2ϕθ,εs,xηδ′′(u~z)|x𝔞~(u~)|2ϕθ,ε\displaystyle\quad+\int_{s,x}\frac{1}{2}\eta_{\delta}^{\prime\prime}(\tilde{u}-z)\sum_{k=1}^{\infty}|\sigma_{x_{i}}^{ik}(x,\tilde{u})|^{2}\phi_{\theta,\varepsilon}-\int_{s,x}\eta_{\delta}^{\prime\prime}(\tilde{u}-z)|\nabla_{x}\llbracket\tilde{\mathfrak{a}}\rrbracket(\tilde{u})|^{2}\phi_{\theta,\varepsilon}
+0Tx(ηδ(u~z)ϕθ,εσxiik(x,u~)σrxiikηδ(z)(x,u~)ϕθ,ε\displaystyle\quad+\int_{0}^{T}\int_{x}\Big{(}\eta_{\delta}^{\prime}(\tilde{u}-z)\phi_{\theta,\varepsilon}\sigma_{x_{i}}^{ik}(x,\tilde{u})-\llbracket\sigma_{rx_{i}}^{ik}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(x,\tilde{u})\phi_{\theta,\varepsilon}
σrikηδ(z)(x,u~)xiϕθ,ε)dWk(s),\displaystyle\quad-\llbracket\sigma_{r}^{ik}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(x,\tilde{u})\partial_{x_{i}}\phi_{\theta,\varepsilon}\Big{)}\mathrm{d}W^{k}(s),

where u~=u~(s,x)\tilde{u}=\tilde{u}(s,x). Notice that all the expressions are continuous in (z,t,y)(z,t,y). We take z=u(t,y)z=u(t,y) by convolution and integrate over (t,y)DT(t,y)\in D_{T}. By taking expectations, we have

(3.7) 𝔼t,x,s,yηδ(u~u)sϕθ,ε\displaystyle-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}(\tilde{u}-u)\partial_{s}\phi_{\theta,\varepsilon}
𝔼t,x,s,y𝔞~2ηδ(u)(u~)Δxϕθ,ε+𝔼t,x,s,yaijηδ(u)(x,u~)xixjϕθ,ε\displaystyle\leq\mathbb{E}\int_{t,x,s,y}\llbracket\tilde{\mathfrak{a}}^{2}\eta_{\delta}^{\prime}(\cdot-u)\rrbracket(\tilde{u})\Delta_{x}\phi_{\theta,\varepsilon}+\mathbb{E}\int_{t,x,s,y}\llbracket a^{ij}\eta_{\delta}^{\prime}(\cdot-u)\rrbracket(x,\tilde{u})\partial_{x_{i}x_{j}}\phi_{\theta,\varepsilon}
+𝔼t,x,s,yaxjijηδ(u)friηδ(u)(x,u~)xiϕθ,ε\displaystyle\quad+\mathbb{E}\int_{t,x,s,y}\llbracket a_{x_{j}}^{ij}\eta_{\delta}^{\prime}(\cdot-u)-f_{r}^{i}\eta_{\delta}^{\prime}(\cdot-u)\rrbracket(x,\tilde{u})\partial_{x_{i}}\phi_{\theta,\varepsilon}
𝔼t,x,s,yηδ(u~u)bi(x,u~)xiϕθ,ε+𝔼t,x,s,yηδ(u~u)F(x,u~)ϕθ,ε\displaystyle\quad-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(x,\tilde{u})\partial_{x_{i}}\phi_{\theta,\varepsilon}+\mathbb{E}\int_{t,x,s,y}\eta_{\delta}^{\prime}(\tilde{u}-u)F(x,\tilde{u})\phi_{\theta,\varepsilon}
+𝔼t,x,s,yηδ(u~u)fxii(x,u~)ϕθ,ε𝔼t,x,s,yfrxiiηδ(u)(x,u~)ϕθ,ε\displaystyle\quad+\mathbb{E}\int_{t,x,s,y}\eta_{\delta}^{\prime}(\tilde{u}-u)f_{x_{i}}^{i}(x,\tilde{u})\phi_{\theta,\varepsilon}-\mathbb{E}\int_{t,x,s,y}\llbracket f_{rx_{i}}^{i}\eta_{\delta}^{\prime}(\cdot-u)\rrbracket(x,\tilde{u})\phi_{\theta,\varepsilon}
+𝔼t,x,s,y12ηδ′′(u~u)k=1|σxiik(x,u~)|2ϕθ,ε𝔼t,x,s,yηδ′′(u~u)|x𝔞~(u~)|2ϕθ,ε\displaystyle\quad+\mathbb{E}\int_{t,x,s,y}\frac{1}{2}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)\sum_{k=1}^{\infty}|\sigma_{x_{i}}^{ik}(x,\tilde{u})|^{2}\phi_{\theta,\varepsilon}-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)|\nabla_{x}\llbracket\tilde{\mathfrak{a}}\rrbracket(\tilde{u})|^{2}\phi_{\theta,\varepsilon}
+t,y𝔼[0Tx(ηδ(u~z)ϕθ,εσxiik(x,u~)σrxiikηδ(z)(x,u~)ϕθ,ε\displaystyle\quad+\int_{t,y}\mathbb{E}\Bigg{[}\int_{0}^{T}\int_{x}\Big{(}\eta_{\delta}^{\prime}(\tilde{u}-z)\phi_{\theta,\varepsilon}\sigma_{x_{i}}^{ik}(x,\tilde{u})-\llbracket\sigma_{rx_{i}}^{ik}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(x,\tilde{u})\phi_{\theta,\varepsilon}
σrikηδ(z)(x,u~)xiϕθ,ε)dWk(s)]z=u,\displaystyle\quad-\llbracket\sigma_{r}^{ik}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(x,\tilde{u})\partial_{x_{i}}\phi_{\theta,\varepsilon}\Big{)}\mathrm{d}W^{k}(s)\Bigg{]}_{z=u},

where u=u(t,y)u=u(t,y) and u~=u~(s,x)\tilde{u}=\tilde{u}(s,x).

Similarly, for each (z,s,x)[0,)×DT(z,s,x)\in[0,\infty)\times D_{T}, since

(ηδ(z),ρθ(s)φ(s+2),ϱε(x)ψ(x)𝟏D¯(x))×Cc((0,T))×Cc(D)\big{(}\eta_{\delta}(z-\cdot),\rho_{\theta}(s-\cdot)\varphi(\frac{s+\cdot}{2}),\varrho_{\varepsilon}(x-\cdot)\psi(x)\mathbf{1}_{\overline{D}}(x)\big{)}\in\mathcal{E}\times C_{c}^{\infty}((0,T))\times C_{c}^{\infty}(D)

for ε(0,ε¯)\varepsilon\in(0,\bar{\varepsilon}) and a sufficiently small θ\theta, we apply the entropy inequality of uu with η(r)ηδ(zr)\eta(r)\coloneqq\eta_{\delta}(z-r) and ϕ(t,y)ϕθ,ε(t,x,s,y)\phi(t,y)\coloneqq\phi_{\theta,\varepsilon}(t,x,s,y). After substituting z=u~(s,x)z=\tilde{u}(s,x) by convolution, integrating over (s,x)DT(s,x)\in D_{T} and taking expectations, we have

(3.8) 𝔼t,x,s,yηδ(u~u)tϕθ,ε\displaystyle-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}(\tilde{u}-u)\partial_{t}\phi_{\theta,\varepsilon}
𝔼t,x,s,y𝔞2ηδ(u~)(u)Δyϕθ,ε𝔼t,x,s,yaijηδ(u~)(y,u)yiyjϕθ,ε\displaystyle\leq-\mathbb{E}\int_{t,x,s,y}\llbracket\mathfrak{a}^{2}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)\rrbracket(u)\Delta_{y}\phi_{\theta,\varepsilon}-\mathbb{E}\int_{t,x,s,y}\llbracket a^{ij}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)\rrbracket(y,u)\partial_{y_{i}y_{j}}\phi_{\theta,\varepsilon}
𝔼t,x,s,yayjijηδ(u~)friηδ(u~)(y,u)yiϕθ,ε\displaystyle\quad-\mathbb{E}\int_{t,x,s,y}\llbracket a_{y_{j}}^{ij}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)-f_{r}^{i}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)\rrbracket(y,u)\partial_{y_{i}}\phi_{\theta,\varepsilon}
+𝔼t,x,s,yηδ(u~u)bi(y,u)yiϕθ,ε𝔼t,x,s,yηδ(u~u)F(y,u)ϕθ,ε\displaystyle\quad+\mathbb{E}\int_{t,x,s,y}\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(y,u)\partial_{y_{i}}\phi_{\theta,\varepsilon}-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}^{\prime}(\tilde{u}-u)F(y,u)\phi_{\theta,\varepsilon}
𝔼t,x,s,yηδ(u~u)fyii(y,u)ϕθ,ε+𝔼t,x,s,yfryiiηδ(u~)(y,u)ϕθ,ε\displaystyle\quad-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}^{\prime}(\tilde{u}-u)f_{y_{i}}^{i}(y,u)\phi_{\theta,\varepsilon}+\mathbb{E}\int_{t,x,s,y}\llbracket f_{ry_{i}}^{i}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)\rrbracket(y,u)\phi_{\theta,\varepsilon}
+𝔼t,x,s,y12ηδ′′(u~u)k=1|σyiik(y,u)|2ϕθ,ε𝔼t,x,s,yηδ′′(u~u)|y𝔞(u)|2ϕθ,ε\displaystyle\quad+\mathbb{E}\int_{t,x,s,y}\frac{1}{2}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)\sum_{k=1}^{\infty}|\sigma_{y_{i}}^{ik}(y,u)|^{2}\phi_{\theta,\varepsilon}-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)|\nabla_{y}\llbracket\mathfrak{a}\rrbracket(u)|^{2}\phi_{\theta,\varepsilon}
s,x𝔼[0Ty(ηδ(zu)ϕθ,εσyiik(y,u)σryiikηδ(z)(y,u)ϕθ,ε\displaystyle\quad-\int_{s,x}\mathbb{E}\Bigg{[}\int_{0}^{T}\int_{y}\Big{(}\eta_{\delta}^{\prime}(z-u)\phi_{\theta,\varepsilon}\sigma_{y_{i}}^{ik}(y,u)-\llbracket\sigma_{ry_{i}}^{ik}\eta_{\delta}^{\prime}(z-\cdot)\rrbracket(y,u)\phi_{\theta,\varepsilon}
σrikηδ(z)(y,u)yiϕθ,ε)dWk(t)]z=u~,\displaystyle\quad-\llbracket\sigma_{r}^{ik}\eta_{\delta}^{\prime}(z-\cdot)\rrbracket(y,u)\partial_{y_{i}}\phi_{\theta,\varepsilon}\Big{)}\mathrm{d}W^{k}(t)\Bigg{]}_{z=\tilde{u}},

where u=u(t,y)u=u(t,y) and u~=u~(s,x)\tilde{u}=\tilde{u}(s,x). Note that the stochastic integral term in 3.7 is zero due to the support of ρθ\rho_{\theta}. Meanwhile, we use the ()(\star)-property (i) in 3.4 of u~\tilde{u} for the last term of 3.8 with h(r)=ηδ(r)h(r)=-\eta_{\delta}^{\prime}(-r) (then h𝒞h\in\mathcal{C}^{-}) and g(x,y)=𝟏D¯(x)ψ(x)ϱε(xy)g(x,y)=\mathbf{1}_{\overline{D}}(x)\psi(x)\varrho_{\varepsilon}(x-y). Adding inequalities 3.7-3.8 and taking the limit θ0+\theta\rightarrow 0^{+}, we have

(3.9) 𝔼t,x,yηδ(u~u)tϕεI+𝒜++,-\mathbb{E}\int_{t,x,y}\eta_{\delta}(\tilde{u}-u)\partial_{t}\phi_{\varepsilon}\leq I+\mathcal{A}+\mathcal{B}+\mathcal{E},

where

I\displaystyle I 𝔼t,x,y𝔞~2ηδ(u)(u~)Δxϕε𝔼t,x,y𝔞2ηδ(u~)(u)Δyϕε\displaystyle\coloneqq\mathbb{E}\int_{t,x,y}\llbracket\tilde{\mathfrak{a}}^{2}\eta_{\delta}^{\prime}(\cdot-u)\rrbracket(\tilde{u})\Delta_{x}\phi_{\varepsilon}-\mathbb{E}\int_{t,x,y}\llbracket\mathfrak{a}^{2}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)\rrbracket(u)\Delta_{y}\phi_{\varepsilon}
𝔼t,x,yηδ(u~u)(|x𝔞~(u~)|2+|y𝔞(u)|2)ϕε,\displaystyle\quad-\mathbb{E}\int_{t,x,y}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)\big{(}|\nabla_{x}\llbracket\tilde{\mathfrak{a}}\rrbracket(\tilde{u})|^{2}+|\nabla_{y}\llbracket\mathfrak{a}\rrbracket(u)|^{2}\big{)}\phi_{\varepsilon},
𝒜\displaystyle\mathcal{A} 𝔼t,x,yaijηδ(u)(x,u~)xixjϕε𝔼t,x,yaijηδ(u~)(y,u)yiyjϕε\displaystyle\coloneqq\mathbb{E}\int_{t,x,y}\llbracket a^{ij}\eta_{\delta}^{\prime}(\cdot-u)\rrbracket(x,\tilde{u})\partial_{x_{i}x_{j}}\phi_{\varepsilon}-\mathbb{E}\int_{t,x,y}\llbracket a^{ij}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)\rrbracket(y,u)\partial_{y_{i}y_{j}}\phi_{\varepsilon}
+𝔼t,x,yaxjijηδ(u)(x,u~)xiϕε𝔼t,x,yayjijηδ(u~)(y,u)yiϕε\displaystyle\quad+\mathbb{E}\int_{t,x,y}\llbracket a_{x_{j}}^{ij}\eta_{\delta}^{\prime}(\cdot-u)\rrbracket(x,\tilde{u})\partial_{x_{i}}\phi_{\varepsilon}-\mathbb{E}\int_{t,x,y}\llbracket a_{y_{j}}^{ij}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)\rrbracket(y,u)\partial_{y_{i}}\phi_{\varepsilon}
𝔼t,x,yηδ(u~u)bi(x,u~)xiϕε+𝔼t,x,yηδ(u~u)bi(y,u)yiϕε\displaystyle\quad-\mathbb{E}\int_{t,x,y}\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(x,\tilde{u})\partial_{x_{i}}\phi_{\varepsilon}+\mathbb{E}\int_{t,x,y}\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(y,u)\partial_{y_{i}}\phi_{\varepsilon}
+𝔼t,x,y12ηδ(u~u)(k=1|σxiik(x,u~)|2+k=1|σyiik(y,u)|2)ϕε,\displaystyle\quad+\mathbb{E}\int_{t,x,y}\frac{1}{2}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)\Big{(}\sum_{k=1}^{\infty}|\sigma_{x_{i}}^{ik}(x,\tilde{u})|^{2}+\sum_{k=1}^{\infty}|\sigma_{y_{i}}^{ik}(y,u)|^{2}\Big{)}\phi_{\varepsilon},
\displaystyle\mathcal{B} 𝔼t,x,yfriηδ(u)(x,u~)xiϕε+𝔼t,x,yfriηδ(u~)(y,u)yiϕε\displaystyle\coloneqq-\mathbb{E}\int_{t,x,y}\llbracket f_{r}^{i}\eta_{\delta}^{\prime}(\cdot-u)\rrbracket(x,\tilde{u})\partial_{x_{i}}\phi_{\varepsilon}+\mathbb{E}\int_{t,x,y}\llbracket f_{r}^{i}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)\rrbracket(y,u)\partial_{y_{i}}\phi_{\varepsilon}
+𝔼t,x,yηδ(u~u)(fxii(x,u~)fyii(y,u))ϕε\displaystyle\quad+\mathbb{E}\int_{t,x,y}\eta_{\delta}^{\prime}(\tilde{u}-u)\big{(}f_{x_{i}}^{i}(x,\tilde{u})-f_{y_{i}}^{i}(y,u)\big{)}\phi_{\varepsilon}
𝔼t,x,y(frxiiηδ(u)(x,u~)fryiiηδ(u~)(y,u))ϕε\displaystyle\quad-\mathbb{E}\int_{t,x,y}\big{(}\llbracket f_{rx_{i}}^{i}\eta_{\delta}^{\prime}(\cdot-u)\rrbracket(x,\tilde{u})-\llbracket f_{ry_{i}}^{i}\eta_{\delta}^{\prime}(\tilde{u}-\cdot)\rrbracket(y,u)\big{)}\phi_{\varepsilon}
+𝔼t,x,yηδ(u~u)(F(x,u~)F(y,u))ϕε,\displaystyle\quad+\mathbb{E}\int_{t,x,y}\eta_{\delta}^{\prime}(\tilde{u}-u)\big{(}F(x,\tilde{u})-F(y,u)\big{)}\phi_{\varepsilon},

and

i=19i\displaystyle\mathcal{E}\coloneqq\sum_{i=1}^{9}\mathcal{E}_{i} 𝔼t,x,yxjyiϕεuu~r~uηδ(r~r)σrik(y,r)σrjk(x,r~)drdr~\displaystyle\coloneqq-\mathbb{E}\int_{t,x,y}\partial_{x_{j}y_{i}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\int_{\tilde{r}}^{u}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\sigma_{r}^{ik}(y,r)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}r\mathrm{d}\tilde{r}
𝔼t,x,yyiϕεuu~r~uηδ(r~r)σrik(y,r)σrxjjk(x,r~)drdr~\displaystyle\quad-\mathbb{E}\int_{t,x,y}\partial_{y_{i}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\int_{\tilde{r}}^{u}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\sigma_{r}^{ik}(y,r)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}r\mathrm{d}\tilde{r}
+𝔼t,x,yyiϕεu~uηδ(u~r)σrik(y,r)σxjjk(x,u~)dr\displaystyle\quad+\mathbb{E}\int_{t,x,y}\partial_{y_{i}}\phi_{\varepsilon}\int_{\tilde{u}}^{u}\eta_{\delta}^{\prime\prime}(\tilde{u}-r)\sigma_{r}^{ik}(y,r)\sigma_{x_{j}}^{jk}(x,\tilde{u})\mathrm{d}r
𝔼t,x,yxjϕεuu~r~uηδ(r~r)σryiik(y,r)σrjk(x,r~)drdr~\displaystyle\quad-\mathbb{E}\int_{t,x,y}\partial_{x_{j}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\int_{\tilde{r}}^{u}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\sigma_{ry_{i}}^{ik}(y,r)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}r\mathrm{d}\tilde{r}
𝔼t,x,yϕεuu~r~uηδ(r~r)σryiik(y,r)σrxjjk(x,r~)drdr~\displaystyle\quad-\mathbb{E}\int_{t,x,y}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\int_{\tilde{r}}^{u}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\sigma_{ry_{i}}^{ik}(y,r)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}r\mathrm{d}\tilde{r}
+𝔼t,x,yϕεu~uηδ(u~r)σryiik(y,r)σxjjk(x,u~)dr\displaystyle\quad+\mathbb{E}\int_{t,x,y}\phi_{\varepsilon}\int_{\tilde{u}}^{u}\eta_{\delta}^{\prime\prime}(\tilde{u}-r)\sigma_{ry_{i}}^{ik}(y,r)\sigma_{x_{j}}^{jk}(x,\tilde{u})\mathrm{d}r
+𝔼t,x,yxjϕεuu~ηδ(r~u)σyiik(y,u)σrjk(x,r~)dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\partial_{x_{j}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-u)\sigma_{y_{i}}^{ik}(y,u)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}
+𝔼t,x,yϕεuu~ηδ(r~u)σyiik(y,u)σrxjjk(x,r~)dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-u)\sigma_{y_{i}}^{ik}(y,u)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}
𝔼t,x,yϕεηδ(u~u)σyiik(y,u)σxjjk(x,u~),\displaystyle\quad-\mathbb{E}\int_{t,x,y}\phi_{\varepsilon}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)\sigma_{y_{i}}^{ik}(y,u)\sigma_{x_{j}}^{jk}(x,\tilde{u}),

and u=u(t,y)u=u(t,y) and u~=u~(t,x)\tilde{u}=\tilde{u}(t,x) in the integrand. The term II contains 𝔞\mathfrak{a}, the term 𝒜\mathcal{A} involves σ\sigma, and the term \mathcal{B} encompasses either ff or FF. Term \mathcal{E} is derived from the ()(\star)-property. Now, we estimate these terms. The following estimates are similar to the proof of [DGG19, Theorem 4.1] and [DG20, Theorem 4.1]. The differences are caused by introducing the function ψ\psi and the Dirichlet boundary condition. Therefore, we only focus on the application of the divergence theorem and the term about ψ\psi. First, we estimate the term II. From

yi0u~𝔞2(r)ηδ(u~r)dr=0,\partial_{y_{i}}\int_{0}^{\tilde{u}}\mathfrak{a}^{2}(r)\eta_{\delta}^{\prime}(\tilde{u}-r)\mathrm{d}r=0,

the support of ηδ\eta_{\delta}^{\prime} and ϱε(x)Cc(D)\varrho_{\varepsilon}(x-\cdot)\in C_{c}^{\infty}(D) for all (x,ε)(BD¯)×(0,ε¯)(x,\varepsilon)\in(B\cap\overline{D})\times(0,\bar{\varepsilon}), we have

I\displaystyle I =𝔼t,x,y𝟏uu~xiyiϕεuu~uu~𝟏rr~𝔞~2(r~)ηδ(r~r)dr~dr\displaystyle=-\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\partial_{x_{i}y_{i}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\mathbf{1}_{r\leq\tilde{r}}\mathfrak{\tilde{\mathfrak{a}}}^{2}(\tilde{r})\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\mathrm{d}\tilde{r}\mathrm{d}r
𝔼t,x,y𝟏uu~xiyiϕεuu~uu~𝟏rr~𝔞2(r)ηδ(r~r)dr~dr\displaystyle\quad-\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\partial_{x_{i}y_{i}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\mathbf{1}_{r\leq\tilde{r}}\mathfrak{a}^{2}(r)\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\mathrm{d}\tilde{r}\mathrm{d}r
+𝔼t,x,yφxi(ϱεxiψ)uu~𝔞~2(r~)ηδ(r~u)dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\varphi\partial_{x_{i}}(\varrho_{\varepsilon}\partial_{x_{i}}\psi)\int_{u}^{\tilde{u}}\mathfrak{\tilde{\mathfrak{a}}}^{2}(\tilde{r})\eta_{\delta}^{\prime}(\tilde{r}-u)\mathrm{d}\tilde{r}
+𝔼t,x,yφyi(ϱεxiψ)uu~𝔞2(r)ηδ(u~r)dr\displaystyle\quad+\mathbb{E}\int_{t,x,y}\text{$\varphi$}\partial_{y_{i}}(\varrho_{\varepsilon}\partial_{x_{i}}\psi)\int_{u}^{\tilde{u}}\mathfrak{a}^{2}(r)\eta_{\delta}^{\prime}(\tilde{u}-r)\mathrm{d}r
𝔼t,x,yηδ(u~u)(|x𝔞~(u~)|2+|y𝔞(u)|2)ϕεi=15Ii.\displaystyle\quad-\mathbb{E}\int_{t,x,y}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)\big{(}|\nabla_{x}\llbracket\tilde{\mathfrak{a}}\rrbracket(\tilde{u})|^{2}+|\nabla_{y}\llbracket\mathfrak{a}\rrbracket(u)|^{2}\big{)}\phi_{\varepsilon}\eqqcolon\sum_{i=1}^{5}I_{i}.

Terms I3I_{3} and I4I_{4} are arisen from introducing ψ\psi. The term I3I_{3} can be written as

I3\displaystyle I_{3}
=𝔼t,x,yφ(t)ϱε(xy)Δxψ(x)uu~𝔞~2(r~)sgn+(r~u)dr~\displaystyle=\mathbb{E}\int_{t,x,y}\varphi(t)\varrho_{\varepsilon}(x-y)\Delta_{x}\psi(x)\int_{u}^{\tilde{u}}\mathfrak{\tilde{\mathfrak{a}}}^{2}(\tilde{r})\mbox{sgn}^{+}(\tilde{r}-u)\mathrm{d}\tilde{r}
+𝔼t,x,yφ(t)ϱε(xy)Δxψ(x)uu~𝟏0r~uδ𝔞~2(r~)(ηδ(r~u)sgn+(r~u))dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\varphi(t)\varrho_{\varepsilon}(x-y)\Delta_{x}\psi(x)\int_{u}^{\tilde{u}}\mathbf{1}_{0\leq\tilde{r}-u\leq\delta}\mathfrak{\tilde{\mathfrak{a}}}^{2}(\tilde{r})\big{(}\eta_{\delta}^{\prime}(\tilde{r}-u)-\mbox{sgn}^{+}(\tilde{r}-u)\big{)}\mathrm{d}\tilde{r}
+𝔼t,x,yφ(t)xiϱε(xy)xiψ(x)uu~𝔞~2(r~)sgn+(r~u)dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\varphi(t)\partial_{x_{i}}\varrho_{\varepsilon}(x-y)\partial_{x_{i}}\psi(x)\int_{u}^{\tilde{u}}\mathfrak{\tilde{\mathfrak{a}}}^{2}(\tilde{r})\mbox{sgn}^{+}(\tilde{r}-u)\mathrm{d}\tilde{r}
+𝔼t,x,yφ(t)xiϱε(xy)xiψ(x)uu~𝟏0r~uδ𝔞~2(r~)(ηδ(r~u)sgn+(r~u))dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\varphi(t)\partial_{x_{i}}\varrho_{\varepsilon}(x-y)\partial_{x_{i}}\psi(x)\int_{u}^{\tilde{u}}\mathbf{1}_{0\leq\tilde{r}-u\leq\delta}\mathfrak{\tilde{\mathfrak{a}}}^{2}(\tilde{r})\big{(}\eta_{\delta}^{\prime}(\tilde{r}-u)-\mbox{sgn}^{+}(\tilde{r}-u)\big{)}\mathrm{d}\tilde{r}
i=14I3,i,\displaystyle\eqqcolon\sum_{i=1}^{4}I_{3,i},

where

sgn+(x){1,x>0;0,otherwise.\mbox{sgn}^{+}(x)\coloneqq\begin{cases}1,&x>0;\\ 0,&\text{otherwise}.\end{cases}

Combining the boundness of Δψ\Delta\psi and φ\varphi, the definition of ϱε\varrho_{\varepsilon} and 2.1, we obtain that

|I3,2|+|I3,4|\displaystyle|I_{3,2}|+|I_{3,4}| δ𝔼t,x,y(ϱε(xy)+|xiϱε(xy)|)sup0r~uδ𝔞~2(r~)\displaystyle\lesssim\delta\mathbb{E}\int_{t,x,y}\big{(}\varrho_{\varepsilon}(x-y)+|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|\big{)}\sup_{0\leq\tilde{r}-u\leq\delta}\mathfrak{\tilde{\mathfrak{a}}}^{2}(\tilde{r})
δ(1+ε1)𝔼(1+uLm(DT)m).\displaystyle\lesssim\delta(1+\varepsilon^{-1})\mathbb{E}\big{(}1+\|u\|_{L_{m}(D_{T})}^{m}\big{)}.

Therefore, noticing ε<1\varepsilon<1, we have

I3\displaystyle I_{3} I3,1+𝔼t,x,yφ(t)xiϱε(xy)xiψ(x)(Φ~(u~)Φ~(u))+\displaystyle\leq I_{3,1}+\mathbb{E}\int_{t,x,y}\varphi(t)\partial_{x_{i}}\varrho_{\varepsilon}(x-y)\partial_{x_{i}}\psi(x)(\tilde{\Phi}(\tilde{u})-\tilde{\Phi}(u))^{+}
+Cδε1𝔼(1+uLm(DT)m).\displaystyle\quad+C\delta\varepsilon^{-1}\mathbb{E}\big{(}1+\|u\|_{L_{m}(D_{T})}^{m}\big{)}.

With the same method, we also have

I4\displaystyle I_{4} 𝔼t,x,yφ(t)xiϱε(xy)xiψ(x)(Φ(u~)Φ(u))++Cδε1𝔼(1+u~Lm(DT)m).\displaystyle\leq-\mathbb{E}\int_{t,x,y}\text{$\varphi$}(t)\partial_{x_{i}}\varrho_{\varepsilon}(x-y)\partial_{x_{i}}\psi(x)(\Phi(\tilde{u})-\Phi(u))^{+}+C\delta\varepsilon^{-1}\mathbb{E}\big{(}1+\|\tilde{u}\|_{L_{m}(D_{T})}^{m}\big{)}.

Using the triangle inequality, the definition of ϱε\varrho_{\varepsilon}, the boundness of xiψ\partial_{x_{i}}\psi and the fact

|Φ(r)Φ~(r)|λ|r|m+12+𝟏|r|Rλ|r|m,r,|\Phi(r)-\tilde{\Phi}(r)|\lesssim\lambda|r|^{\frac{m+1}{2}}+\mathbf{1}_{|r|\geq R_{\lambda}}|r|^{m},\quad\forall r\in\mathbb{R},

we have

𝔼t,x,yφ(t)xiϱε(xy)xiψ(x)((Φ~(u~)Φ~(u))+(Φ(u~)Φ(u))+)\displaystyle\mathbb{E}\int_{t,x,y}\text{$\varphi$}(t)\partial_{x_{i}}\varrho_{\varepsilon}(x-y)\partial_{x_{i}}\psi(x)\big{(}(\tilde{\Phi}(\tilde{u})-\tilde{\Phi}(u))^{+}-(\Phi(\tilde{u})-\Phi(u))^{+}\big{)}
𝔼t,x,yφ(t)xiϱε(xy)xiψ(x)((Φ(u)Φ~(u))++(Φ~(u~)Φ(u~))+)\displaystyle\leq\mathbb{E}\int_{t,x,y}\text{$\varphi$}(t)\partial_{x_{i}}\varrho_{\varepsilon}(x-y)\partial_{x_{i}}\psi(x)\big{(}(\Phi(u)-\tilde{\Phi}(u))^{+}+(\tilde{\Phi}(\tilde{u})-\Phi(\tilde{u}))^{+}\big{)}
ε1λ𝔼(uLm+1(DT)m+1+u~Lm+1(DT)m+1)\displaystyle\lesssim\varepsilon^{-1}\lambda\mathbb{E}\big{(}\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\tilde{u}\|_{L_{m+1}(D_{T})}^{m+1}\big{)}
+ε1𝔼(𝟏|u|RλuLm(DT)m+𝟏|u~|Rλu~Lm(DT)m).\displaystyle\quad+\varepsilon^{-1}\mathbb{E}\big{(}\big{\|}\mathbf{1}_{|u|\geq R_{\lambda}}u\big{\|}_{L_{m}(D_{T})}^{m}+\big{\|}\mathbf{1}_{|\tilde{u}|\geq R_{\lambda}}\tilde{u}\big{\|}_{L_{m}(D_{T})}^{m}\big{)}.

Similarly, for I3,1I_{3,1}, we have

(3.10) 𝔼t,x,yφ(t)ϱε(xy)Δxψ(x)((Φ~(u~)Φ~(u))+(Φ~(u~)Φ(u))+)\displaystyle\mathbb{E}\int_{t,x,y}\varphi(t)\varrho_{\varepsilon}(x-y)\Delta_{x}\psi(x)\big{(}(\tilde{\Phi}(\tilde{u})-\tilde{\Phi}(u))^{+}-(\tilde{\Phi}(\tilde{u})-\Phi(u))^{+}\big{)}
λuLm+1(DT)m+1+𝔼𝟏|u|RλuLm(DT)m.\displaystyle\lesssim\lambda\|u\|_{L_{m+1}(D_{T})}^{m+1}+\mathbb{E}\big{\|}\mathbf{1}_{|u|\geq R_{\lambda}}u\big{\|}_{L_{m}(D_{T})}^{m}.

To estimate the new term in 3.10, using 6.8 in 6.2, we have

𝔼t,x,yφ(t)ϱε(xy)Δxψ(x)(Φ~(u~(t,x))Φ(u(t,y)))+\displaystyle\mathbb{E}\int_{t,x,y}\varphi(t)\varrho_{\varepsilon}(x-y)\Delta_{x}\psi(x)(\tilde{\Phi}(\tilde{u}(t,x))-\Phi(u(t,y)))^{+}
𝔼t,xφ(t)Δxψ(x)(Φ~(u~(t,x))Φ(u(t,x)))+\displaystyle\leq\mathbb{E}\int_{t,x}\varphi(t)\Delta_{x}\psi(x)(\tilde{\Phi}(\tilde{u}(t,x))-\Phi(u(t,x)))^{+}
+Cε1m+1𝔼(1+uLm+1(DT)m+1+𝔞(u)L2(DT)2).\displaystyle\quad+C\varepsilon^{\frac{1}{m+1}}\mathbb{E}(1+\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\nabla\llbracket\mathfrak{a}\rrbracket(u)\|_{L_{2}(D_{T})}^{2}).

For I5I_{5}, using 2.2 (ii) and [DGG19, Remark 3.1], we have

(3.11) I5\displaystyle I_{5} 2t,x,yηδ(u~u)x𝔞~(u~)y𝔞(u)ϕε\displaystyle\leq-2\int_{t,x,y}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)\nabla_{x}\llbracket\tilde{\mathfrak{a}}\rrbracket(\tilde{u})\cdot\nabla_{y}\llbracket\mathfrak{a}\rrbracket(u)\phi_{\varepsilon}
=2t,x,yϕεxi𝔞~(u~)yiuu~ηδ(u~r)𝔞(r)dr\displaystyle=2\int_{t,x,y}\phi_{\varepsilon}\partial_{x_{i}}\llbracket\tilde{\mathfrak{a}}\rrbracket(\tilde{u})\cdot\partial_{y_{i}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{u}-r)\mathfrak{a}(r)\mathrm{d}r
=2t,x,yxiyiϕε0u~ur~ηδ(r~r)𝔞~(r~)𝔞(r)dr~dr\displaystyle=2\int_{t,x,y}\partial_{x_{i}y_{i}}\phi_{\varepsilon}\int_{0}^{\tilde{u}}\int_{u}^{\tilde{r}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\tilde{\mathfrak{a}}(\tilde{r})\mathfrak{a}(r)\mathrm{d}\tilde{r}\mathrm{d}r
=2t,x,y𝟏uu~xiyiϕεuu~uu~ηδ(r~r)𝔞~(r~)𝔞(r)dr~dr.\displaystyle=2\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\partial_{x_{i}y_{i}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\tilde{\mathfrak{a}}(\tilde{r})\mathfrak{a}(r)\mathrm{d}\tilde{r}\mathrm{d}r.

Then, we have

I1+I2+I5\displaystyle I_{1}+I_{2}+I_{5} 2t,x,y𝟏uu~|xiyiϕε|uu~uu~ηδ(r~r)|𝔞(r)𝔞~(r~)|2dr~dr.\displaystyle\leq 2\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}|\partial_{x_{i}y_{i}}\phi_{\varepsilon}|\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)|\mathfrak{a}(r)-\mathfrak{\tilde{\mathfrak{a}}}(\tilde{r})|^{2}\mathrm{d}\tilde{r}\mathrm{d}r.

Based on the estimates of |𝔞(r)𝔞~(r~)|2|\mathfrak{a}(r)-\mathfrak{\tilde{\mathfrak{a}}}(\tilde{r})|^{2} in the proof of [DGG19, Theorem 4.1] which using 2.1, combining the proceeding estimates and noticing ε<1\varepsilon<1, we have

(3.12) IC(δε1+ε1m+1+ε2λ2+ε1λ+ε2δ2α)𝔼(1+uLm+1(DT)m+1+u~Lm+1(DT)m+1)\displaystyle I\leq C(\delta\varepsilon^{-1}+\varepsilon^{\frac{1}{m+1}}+\varepsilon^{-2}\lambda^{2}+\varepsilon^{-1}\lambda+\varepsilon^{-2}\delta^{2\alpha})\mathbb{E}\big{(}1+\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\tilde{u}\|_{L_{m+1}(D_{T})}^{m+1}\big{)}
+Cε2𝔼(𝟏|u|Rλ(1+u)Lm(DT)m+𝟏|u~|Rλ(1+u~)Lm(DT)m)\displaystyle\quad+C\varepsilon^{-2}\mathbb{E}\Big{(}\big{\|}\mathbf{1}_{|u|\geq R_{\lambda}}(1+u)\big{\|}_{L_{m}(D_{T})}^{m}+\big{\|}\mathbf{1}_{|\tilde{u}|\geq R_{\lambda}}(1+\tilde{u})\big{\|}_{L_{m}(D_{T})}^{m}\Big{)}
+𝔼t,xφ(t)Δxψ(x)(Φ~(u~(t,x))Φ(u(t,x)))++Cε1m+1𝔼𝔞(u)L2(DT)2,\displaystyle\quad+\mathbb{E}\int_{t,x}\varphi(t)\Delta_{x}\psi(x)(\tilde{\Phi}(\tilde{u}(t,x))-\Phi(u(t,x)))^{+}+C\varepsilon^{\frac{1}{m+1}}\mathbb{E}\|\nabla\llbracket\mathfrak{a}\rrbracket(u)\|_{L_{2}(D_{T})}^{2},

where α(0,1(m/2))\alpha\in(0,1\land(m/2)). Now, we focus on the terms 𝒜\mathcal{A}. With the fact that ϕε(t,x,)Cc(D)\phi_{\varepsilon}(t,x,\cdot)\in C_{c}^{\infty}(D) for any (t,x,ε)DT×(0,ε¯)(t,x,\varepsilon)\in D_{T}\times(0,\bar{\varepsilon}), using the divergence theorem in yy, we have

𝔼t,x,yyiyjϕε0u~ηδ(u~r)aij(y,r)dr+𝔼t,x,yyiϕε0u~ηδ(u~r)ayjij(y,r)dr=0.\mathbb{E}\int_{t,x,y}\partial_{y_{i}y_{j}}\phi_{\varepsilon}\int_{0}^{\tilde{u}}\eta_{\delta}^{\prime}(\tilde{u}-r)a^{ij}(y,r)\mathrm{d}r+\mathbb{E}\int_{t,x,y}\partial_{y_{i}}\phi_{\varepsilon}\int_{0}^{\tilde{u}}\eta_{\delta}^{\prime}(\tilde{u}-r)a_{y_{j}}^{ij}(y,r)\mathrm{d}r=0.

Then, from the support of ηδ\eta_{\delta}^{\prime}, we have

𝒜\displaystyle\mathcal{A} =𝔼t,x,y𝟏uu~xiyjϕεuu~uu~ηδ(r~r)(aij(y,r)+aij(x,r~))dr~dr\displaystyle=-\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\partial_{x_{i}y_{j}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\big{(}a^{ij}(y,r)+a^{ij}(x,\tilde{r})\big{)}\mathrm{d}\tilde{r}\mathrm{d}r
𝔼t,x,yxiϕεηδ(u~u)bi(x,u~)+𝔼t,x,yyiϕεηδ(u~u)bi(y,u)\displaystyle\quad-\mathbb{E}\int_{t,x,y}\partial_{x_{i}}\phi_{\varepsilon}\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(x,\tilde{u})+\mathbb{E}\int_{t,x,y}\partial_{y_{i}}\phi_{\varepsilon}\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(y,u)
+𝔼t,x,yxiϕεuu~axjij(x,r~)ηδ(r~u)dr~+𝔼t,x,yyiϕεuu~ayjij(y,r)ηδ(u~r)dr\displaystyle\quad+\mathbb{E}\int_{t,x,y}\partial_{x_{i}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}a_{x_{j}}^{ij}(x,\tilde{r})\eta_{\delta}^{\prime}(\tilde{r}-u)\mathrm{d}\tilde{r}+\mathbb{E}\int_{t,x,y}\partial_{y_{i}}\phi_{\varepsilon}\int_{u}^{\tilde{u}}a_{y_{j}}^{ij}(y,r)\eta_{\delta}^{\prime}(\tilde{u}-r)\mathrm{d}r
+𝔼t,x,y𝟏uu~φ(t)xi(ϱε(xy)xjψ(x))uu~ηδ(r~u)aij(x,r~)dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\varphi(t)\partial_{x_{i}}(\varrho_{\varepsilon}(x-y)\partial_{x_{j}}\psi(x))\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime}(\tilde{r}-u)a^{ij}(x,\tilde{r})\mathrm{d}\tilde{r}
+𝔼t,x,y𝟏uu~φ(t)yjϱε(xy)xiψ(x)uu~uu~ηδ(r~r)aij(y,r)dr~dr\displaystyle\quad+\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\varphi(t)\partial_{y_{j}}\varrho_{\varepsilon}(x-y)\partial_{x_{i}}\psi(x)\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)a^{ij}(y,r)\mathrm{d}\tilde{r}\mathrm{d}r
+𝔼t,x,y12ηδ(u~u)(k=1|σxiik(x,u~)|2+k=1|σyiik(y,u)|2)ϕε\displaystyle\quad+\mathbb{E}\int_{t,x,y}\frac{1}{2}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)\Big{(}\sum_{k=1}^{\infty}|\sigma_{x_{i}}^{ik}(x,\tilde{u})|^{2}+\sum_{k=1}^{\infty}|\sigma_{y_{i}}^{ik}(y,u)|^{2}\Big{)}\phi_{\varepsilon}
i=16𝒜i.\displaystyle\eqqcolon\sum_{i=1}^{6}\mathcal{A}_{i}.

Using 2.4-2.5 in 2.4, we have

(3.13) 9+𝒜6\displaystyle\mathcal{E}_{9}+\mathcal{A}_{6} =𝔼t,x,y12ηδ(u~u)k=1(σxjjk(x,u~)σyiik(y,u))2ϕε\displaystyle=\mathbb{E}\int_{t,x,y}\frac{1}{2}\eta_{\delta}^{\prime\prime}(\tilde{u}-u)\sum_{k=1}^{\infty}\big{(}\sigma_{x_{j}}^{jk}(x,\tilde{u})-\sigma_{y_{i}}^{ik}(y,u)\big{)}^{2}\phi_{\varepsilon}
ε2κ¯δ1𝔼(1+uLm+1(DT)m+1)+δ2.\displaystyle\lesssim\varepsilon^{2\bar{\kappa}}\delta^{-1}\mathbb{E}(1+\|u\|_{L_{m+1}(D_{T})}^{m+1})+\delta^{2}.

Next, with 2.4-2.5 in 2.4, we have

𝒜4+𝒜5\displaystyle\mathcal{A}_{4}+\mathcal{A}_{5}
=𝔼t,x,y𝟏uu~φϱεxixjψuu~ηδ(r~u)aij(x,r~)dr~\displaystyle=\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\varphi\varrho_{\varepsilon}\partial_{x_{i}x_{j}}\psi\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime}(\tilde{r}-u)a^{ij}(x,\tilde{r})\mathrm{d}\tilde{r}
+𝔼t,x,y𝟏uu~φ(xjϱεxiψ)uu~uu~ηδ(r~r)(aij(x,r~)aij(y,r))dr~dr\displaystyle\quad+\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\varphi(\partial_{x_{j}}\varrho_{\varepsilon}\partial_{x_{i}}\psi)\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)(a^{ij}(x,\tilde{r})-a^{ij}(y,r))\mathrm{d}\tilde{r}\mathrm{d}r
𝔼t,x,y𝟏BD¯(x)φ(t)(εi|xiϱε(xy)|+ϱε(xy))(u~u)+\displaystyle\lesssim\mathbb{E}\int_{t,x,y}\mathbf{1}_{B\cap\overline{D}}(x)\varphi(t)\Big{(}\varepsilon\sum_{i}|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|+\varrho_{\varepsilon}(x-y)\Big{)}\cdot(\tilde{u}-u)^{+}
+δβε1𝔼u~L1(DT).\displaystyle\quad+\delta^{\beta}\varepsilon^{-1}\mathbb{E}\|\tilde{u}\|_{L_{1}(D_{T})}.

Moreover, if |rr~|δ|r-\tilde{r}|\leq\delta, from the definition of aija^{ij} and 2.5 in 2.4, we have

xiyjϕε(aij(x,r~)+aij(y,r)σrik(x,r~)σrjk(y,r))\displaystyle\partial_{x_{i}y_{j}}\phi_{\varepsilon}\big{(}a^{ij}(x,\tilde{r})+a^{ij}(y,r)-\sigma_{r}^{ik}(x,\tilde{r})\sigma_{r}^{jk}(y,r)\big{)}
=12φψxiyjϱε(σrik(x,r~)σrik(y,r))(σrjk(x,r~)σrjk(y,r))\displaystyle=\frac{1}{2}\varphi\psi\partial_{x_{i}y_{j}}\varrho_{\varepsilon}(\sigma_{r}^{ik}(x,\tilde{r})-\sigma_{r}^{ik}(y,r))(\sigma_{r}^{jk}(x,\tilde{r})-\sigma_{r}^{jk}(y,r))
+12φyjϱεxiψ(σrik(x,r~)(σrjk(x,r~)σrjk(y,r))σrjk(y,r)(σrik(x,r~)σrik(y,r)))\displaystyle\quad+\frac{1}{2}\varphi\partial_{y_{j}}\varrho_{\varepsilon}\partial_{x_{i}}\psi\Big{(}\sigma_{r}^{ik}(x,\tilde{r})(\sigma_{r}^{jk}(x,\tilde{r})-\sigma_{r}^{jk}(y,r))-\sigma_{r}^{jk}(y,r)(\sigma_{r}^{ik}(x,\tilde{r})-\sigma_{r}^{ik}(y,r))\Big{)}
𝟏BD¯(x)φ(t)[(ε2+δ2β)i,j|xiyjϱε(xy)|+(ε+δβ)j|yjϱε(xy)|].\displaystyle\lesssim\mathbf{1}_{B\cap\overline{D}}(x)\varphi(t)\Big{[}(\varepsilon^{2}+\delta^{2\beta})\sum_{i,j}|\partial_{x_{i}y_{j}}\varrho_{\varepsilon}(x-y)|+(\varepsilon+\delta^{\beta})\sum_{j}|\partial_{y_{j}}\varrho_{\varepsilon}(x-y)|\Big{]}.

Therefore,

(3.14) 𝒜1+1\displaystyle\mathcal{A}_{1}+\mathcal{E}_{1}
𝔼t,x,y𝟏BD¯(x)φ(t)(ε2i,j|xiyjϱε(xy)|+εi|xiϱε(xy)|)(u~u)+\displaystyle\lesssim\mathbb{E}\int_{t,x,y}\mathbf{1}_{B\cap\overline{D}}(x)\varphi(t)\Big{(}\varepsilon^{2}\sum_{i,j}|\partial_{x_{i}y_{j}}\varrho_{\varepsilon}(x-y)|+\varepsilon\sum_{i}|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|\Big{)}(\tilde{u}-u)^{+}
+(δ2βε2+δβε1)𝔼u~L1(DT).\displaystyle\quad+(\delta^{2\beta}\varepsilon^{-2}+\delta^{\beta}\varepsilon^{-1})\mathbb{E}\|\tilde{u}\|_{L_{1}(D_{T})}.

Similarly, we have

𝒜3+2+4\displaystyle\mathcal{A}_{3}+\mathcal{E}_{2}+\mathcal{E}_{4}
=𝔼t,x,y𝟏uu~φxiϱεψuu~uu~ηδ(r~r)(axjij(x,r~)ayjij(y,r))drdr~\displaystyle=\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\varphi\partial_{x_{i}}\varrho_{\varepsilon}\psi\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)(a_{x_{j}}^{ij}(x,\tilde{r})-a_{y_{j}}^{ij}(y,r))\mathrm{d}r\mathrm{d}\tilde{r}
+𝔼t,x,yφϱεxiψuu~axjij(x,r~)ηδ(r~u)dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\varphi\varrho_{\varepsilon}\partial_{x_{i}}\psi\int_{u}^{\tilde{u}}a_{x_{j}}^{ij}(x,\tilde{r})\eta_{\delta}^{\prime}(\tilde{r}-u)\mathrm{d}\tilde{r}
+𝔼t,x,y(𝟏uu~φxiϱεψ\displaystyle\quad+\mathbb{E}\int_{t,x,y}\Big{(}\mathbf{1}_{u\leq\tilde{u}}\varphi\partial_{x_{i}}\varrho_{\varepsilon}\psi
uu~uu~ηδ(r~r)(σrik(x,r~)σryjjk(y,r)σrik(y,r)σrxjjk(x,r~))drdr~)\displaystyle\quad\cdot\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\big{(}\sigma_{r}^{ik}(x,\tilde{r})\sigma_{ry_{j}}^{jk}(y,r)-\sigma_{r}^{ik}(y,r)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\big{)}\mathrm{d}r\mathrm{d}\tilde{r}\Big{)}
+𝔼t,x,y𝟏uu~φϱεxiψuu~uu~ηδ(r~r)σryjjk(y,r)σrik(x,r~)drdr~,\displaystyle\quad+\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\varphi\varrho_{\varepsilon}\partial_{x_{i}}\psi\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\sigma_{ry_{j}}^{jk}(y,r)\sigma_{r}^{ik}(x,\tilde{r})\mathrm{d}r\mathrm{d}\tilde{r},

with relabeling iji\leftrightarrow j in 4\mathcal{E}_{4}. From 2.4-2.5 in 2.4, we have

(3.15) 𝒜3+2+4\displaystyle\mathcal{A}_{3}+\mathcal{E}_{2}+\mathcal{E}_{4}
δβε1𝔼(uL1(DT)+u~L1(DT))\displaystyle\lesssim\delta^{\beta}\varepsilon^{-1}\mathbb{E}(\|u\|_{L_{1}(D_{T})}+\|\tilde{u}\|_{L_{1}(D_{T})})
+𝔼t,x,y𝟏BD¯(x)φ(t)(εi|xiϱε(xy)|+ϱε(xy))(u~u)+.\displaystyle\quad+\mathbb{E}\int_{t,x,y}\mathbf{1}_{B\cap\overline{D}}(x)\varphi(t)\Big{(}\varepsilon\sum_{i}|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|+\varrho_{\varepsilon}(x-y)\Big{)}(\tilde{u}-u)^{+}.

To estimate 𝒜2+3+7\mathcal{A}_{2}+\mathcal{E}_{3}+\mathcal{E}_{7}, define

𝒜2\displaystyle\mathcal{A}_{2} =𝔼t,x,yxiϕεηδ(u~u)bi(x,u~)\displaystyle=-\mathbb{E}\int_{t,x,y}\partial_{x_{i}}\phi_{\varepsilon}\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(x,\tilde{u})
+𝔼t,x,yyiϕεηδ(u~u)bi(y,u)𝒜2,1+𝒜2,2.\displaystyle\quad+\mathbb{E}\int_{t,x,y}\partial_{y_{i}}\phi_{\varepsilon}\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(y,u)\eqqcolon\mathcal{A}_{2,1}+\mathcal{A}_{2,2}.

Using the definition of bib^{i} and 2.4-2.5 in 2.4 and relabeling iji\leftrightarrow j in 7\mathcal{E}_{7}, we have

𝒜2,2+7\displaystyle\mathcal{A}_{2,2}+\mathcal{E}_{7} =𝔼t,x,yφyiϱεψuu~ηδ(r~u)σyjjk(y,u)(σrik(y,u)σrik(x,u))dr~\displaystyle=\mathbb{E}\int_{t,x,y}\varphi\partial_{y_{i}}\varrho_{\varepsilon}\psi\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-u)\sigma_{y_{j}}^{jk}(y,u)\big{(}\sigma_{r}^{ik}(y,u)-\sigma_{r}^{ik}(x,u)\big{)}\mathrm{d}\tilde{r}
+𝔼t,x,yφyiϱεψuu~ηδ(r~u)σyjjk(y,u)(σrik(x,u)σrik(x,r~))dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\varphi\partial_{y_{i}}\varrho_{\varepsilon}\psi\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-u)\sigma_{y_{j}}^{jk}(y,u)\big{(}\sigma_{r}^{ik}(x,u)-\sigma_{r}^{ik}(x,\tilde{r})\big{)}\mathrm{d}\tilde{r}
+𝔼t,x,yφϱεxiψuu~ηδ(r~u)σyjjk(y,u)σrik(y,u)dr~\displaystyle\quad+\mathbb{E}\int_{t,x,y}\varphi\varrho_{\varepsilon}\partial_{x_{i}}\psi\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-u)\sigma_{y_{j}}^{jk}(y,u)\sigma_{r}^{ik}(y,u)\mathrm{d}\tilde{r}
𝔼t,x,yφϱεxiψuu~ηδ(r~u)σyjjk(y,u)(σrik(y,u)σrik(x,r~))dr~\displaystyle\quad-\mathbb{E}\int_{t,x,y}\varphi\varrho_{\varepsilon}\partial_{x_{i}}\psi\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-u)\sigma_{y_{j}}^{jk}(y,u)\big{(}\sigma_{r}^{ik}(y,u)-\sigma_{r}^{ik}(x,\tilde{r})\big{)}\mathrm{d}\tilde{r}
𝔼t,x,yφyiϱεψηδ(u~u)σyjjk(y,u)(ylxl)01σrxlik(x+θ(yx),u)dθ\displaystyle\leq\mathbb{E}\int_{t,x,y}\varphi\partial_{y_{i}}\varrho_{\varepsilon}\psi\eta_{\delta}^{\prime}(\tilde{u}-u)\sigma_{y_{j}}^{jk}(y,u)(y_{l}-x_{l})\int_{0}^{1}\sigma_{rx_{l}}^{ik}(x+\theta(y-x),u)\mathrm{d}\theta
+Cδβε1(1+𝔼uL1(DT))\displaystyle\quad+C\delta^{\beta}\varepsilon^{-1}(1+\mathbb{E}\|u\|_{L_{1}(D_{T})})
+𝔼t,x,yφϱεxiψηδ(u~u)bi(y,u)+C(δβ+ε)(1+𝔼uL1(DT)).\displaystyle\quad+\mathbb{E}\int_{t,x,y}\varphi\varrho_{\varepsilon}\partial_{x_{i}}\psi\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(y,u)+C(\delta^{\beta}+\varepsilon)(1+\mathbb{E}\|u\|_{L_{1}(D_{T})}).

Similarly, we have

𝒜2,1+3\displaystyle\mathcal{A}_{2,1}+\mathcal{E}_{3}
=𝔼t,x,yφyiϱεψuu~ηδ(u~r)σxjjk(x,u~)(σrik(y,r)σrik(x,u~))dr\displaystyle=-\mathbb{E}\int_{t,x,y}\varphi\partial_{y_{i}}\varrho_{\varepsilon}\psi\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{u}-r)\sigma_{x_{j}}^{jk}(x,\tilde{u})\big{(}\sigma_{r}^{ik}(y,r)-\sigma_{r}^{ik}(x,\tilde{u})\big{)}\mathrm{d}r
𝔼t,x,yφϱεxiψuu~ηδ(u~r)σrik(x,u~)σxjjk(x,u~)dr\displaystyle\quad-\mathbb{E}\int_{t,x,y}\varphi\varrho_{\varepsilon}\partial_{x_{i}}\psi\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{u}-r)\sigma_{r}^{ik}(x,\tilde{u})\sigma_{x_{j}}^{jk}(x,\tilde{u})\mathrm{d}r
𝔼t,x,yφyiϱεψηδ(u~u)σxjjk(x,u~)(ylxl)01σrxlik(x+θ(yx),u~)dθ\displaystyle\leq-\mathbb{E}\int_{t,x,y}\varphi\partial_{y_{i}}\varrho_{\varepsilon}\psi\eta_{\delta}^{\prime}(\tilde{u}-u)\sigma_{x_{j}}^{jk}(x,\tilde{u})(y_{l}-x_{l})\int_{0}^{1}\sigma_{rx_{l}}^{ik}(x+\theta(y-x),\tilde{u})\mathrm{d}\theta
+Cδβε1(1+𝔼u~L1(DT))𝔼t,x,yφϱεxiψηδ(u~u)bi(x,u~).\displaystyle\quad+C\delta^{\beta}\varepsilon^{-1}(1+\mathbb{E}\|\tilde{u}\|_{L_{1}(D_{T})})-\mathbb{E}\int_{t,x,y}\varphi\varrho_{\varepsilon}\partial_{x_{i}}\psi\eta_{\delta}^{\prime}(\tilde{u}-u)b^{i}(x,\tilde{u}).

From 2.4-2.6 in 2.4, we have

|σyjjk(y,u)01σrxlik(x+θ(yx),u)dθσxjjk(x,u~)01σrxlik(x+θ(yx),u~)dθ|\displaystyle\Big{|}\sigma_{y_{j}}^{jk}(y,u)\int_{0}^{1}\sigma_{rx_{l}}^{ik}(x+\theta(y-x),u)\mathrm{d}\theta-\sigma_{x_{j}}^{jk}(x,\tilde{u})\int_{0}^{1}\sigma_{rx_{l}}^{ik}(x+\theta(y-x),\tilde{u})\mathrm{d}\theta\Big{|}
|xy|(1+|u|+|u~|)+|σyjjk(y,u)σrylik(y,u)σxjjk(x,u~)σrxlik(x,u~)|\displaystyle\lesssim|x-y|(1+|u|+|\tilde{u}|)+|\sigma_{y_{j}}^{jk}(y,u)\sigma_{ry_{l}}^{ik}(y,u)-\sigma_{x_{j}}^{jk}(x,\tilde{u})\sigma_{rx_{l}}^{ik}(x,\tilde{u})|
(|xy|+|xy|κ¯)(1+|u|+|u~|)+|uu~|,\displaystyle\lesssim(|x-y|+|x-y|^{\bar{\kappa}})(1+|u|+|\tilde{u}|)+|u-\tilde{u}|,

and

|bi(y,u)bi(x,u~)||uu~|+|xy|κ¯+|xy|(1+|u|).|b^{i}(y,u)-b^{i}(x,\tilde{u})|\lesssim|u-\tilde{u}|+|x-y|^{\bar{\kappa}}+|x-y|(1+|u|).

Therefore, using the support of ηδ\eta_{\delta}^{\prime}, we have

(3.16) 𝒜2+3+7\displaystyle\mathcal{A}_{2}+\mathcal{E}_{3}+\mathcal{E}_{7}
(δβε1+εκ¯)𝔼(1+uL1(DT)+u~L1(DT))\displaystyle\lesssim(\delta^{\beta}\varepsilon^{-1}+\varepsilon^{\bar{\kappa}})\mathbb{E}(1+\|u\|_{L_{1}(D_{T})}+\|\tilde{u}\|_{L_{1}(D_{T})})
+𝔼t,x,y𝟏BD¯(x)(εi|xiϱε(xy)|+ϱε(xy))φ(t)(u~u)+.\displaystyle\quad+\mathbb{E}\int_{t,x,y}\mathbf{1}_{B\cap\overline{D}}(x)\Big{(}\varepsilon\sum_{i}|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|+\varrho_{\varepsilon}(x-y)\Big{)}\varphi(t)(\tilde{u}-u)^{+}.

The remaining terms in 3.9 are \mathcal{B}, 5\mathcal{E}_{5}, 6\mathcal{E}_{6} and 8\mathcal{E}_{8}. Using 2.5 in 2.4 and the support of ηδ\eta_{\delta}^{\prime}, we have

5\displaystyle\mathcal{\mathcal{E}}_{5} 𝔼t,x,y𝟏BD¯(x)φ(t)ϱε(xy)(u~u)+,\displaystyle\lesssim\mathbb{E}\int_{t,x,y}\mathbf{1}_{B\cap\overline{D}}(x)\varphi(t)\varrho_{\varepsilon}(x-y)(\tilde{u}-u)^{+},

and

(3.17) 6+8\displaystyle\mathcal{E}_{6}+\mathcal{E}_{8}
𝔼t,x,yϕεu~uηδ(u~r)σryiik(y,u~)σxjjk(x,u~)dr+Cδ𝔼(1+u~L1(DT))\displaystyle\leq\mathbb{E}\int_{t,x,y}\phi_{\varepsilon}\int_{\tilde{u}}^{u}\eta_{\delta}^{\prime\prime}(\tilde{u}-r)\sigma_{ry_{i}}^{ik}(y,\tilde{u})\sigma_{x_{j}}^{jk}(x,\tilde{u})\mathrm{d}r+C\delta\mathbb{E}(1+\|\tilde{u}\|_{L_{1}(D_{T})})
+𝔼t,x,yϕεuu~ηδ(r~u)σyiik(y,u)σrxjjk(x,u)dr~+Cδ𝔼(1+uL1(DT))\displaystyle\quad+\mathbb{E}\int_{t,x,y}\phi_{\varepsilon}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-u)\sigma_{y_{i}}^{ik}(y,u)\sigma_{rx_{j}}^{jk}(x,u)\mathrm{d}\tilde{r}+C\delta\mathbb{E}(1+\|u\|_{L_{1}(D_{T})})
𝔼t,x,yϕεηδ(u~u)|σyiik(y,u)σrxjjk(x,u)σryiik(y,u~)σxjjk(x,u~)|\displaystyle\lesssim\mathbb{E}\int_{t,x,y}\phi_{\varepsilon}\eta_{\delta}^{\prime}(\tilde{u}-u)\big{|}\sigma_{y_{i}}^{ik}(y,u)\sigma_{rx_{j}}^{jk}(x,u)-\sigma_{ry_{i}}^{ik}(y,\tilde{u})\sigma_{x_{j}}^{jk}(x,\tilde{u})\big{|}
+δ𝔼(1+uL1(DT)+u~L1(DT))\displaystyle\quad+\delta\mathbb{E}(1+\|u\|_{L_{1}(D_{T})}+\|\tilde{u}\|_{L_{1}(D_{T})})
(δ+εκ¯)𝔼(1+uL1(DT)+u~L1(DT))+𝔼t,x,y𝟏BD¯(x)φ(t)ϱε(xy)(u~u)+.\displaystyle\lesssim(\delta+\varepsilon^{\bar{\kappa}})\mathbb{E}(1+\|u\|_{L_{1}(D_{T})}+\|\tilde{u}\|_{L_{1}(D_{T})})+\mathbb{E}\int_{t,x,y}\mathbf{1}_{B\cap\overline{D}}(x)\varphi(t)\varrho_{\varepsilon}(x-y)(\tilde{u}-u)^{+}.

From 2.7-2.10 in 2.4, we have

(3.18) \displaystyle\mathcal{B} =𝔼t,x,y𝟏uu~φ(t)xiϱε(xy)ψ(x)uu~uu~ηδ(r~r)(fri(y,r)fri(x,r~))dr~dr\displaystyle=\mathbb{E}\int_{t,x,y}\mathbf{1}_{u\leq\tilde{u}}\varphi(t)\partial_{x_{i}}\varrho_{\varepsilon}(x-y)\psi(x)\int_{u}^{\tilde{u}}\int_{u}^{\tilde{u}}\eta_{\delta}^{\prime\prime}(\tilde{r}-r)\big{(}f_{r}^{i}(y,r)-f_{r}^{i}(x,\tilde{r})\big{)}\mathrm{d}\tilde{r}\mathrm{d}r
𝔼t,x,yφ(t)ϱε(xy)xiψ(x)uu~fri(x,r~)ηδ(r~u)dr~\displaystyle\quad-\mathbb{E}\int_{t,x,y}\varphi(t)\varrho_{\varepsilon}(x-y)\partial_{x_{i}}\psi(x)\int_{u}^{\tilde{u}}f_{r}^{i}(x,\tilde{r})\eta_{\delta}^{\prime}(\tilde{r}-u)\mathrm{d}\tilde{r}
+𝔼t,x,yηδ(u~u)(fxii(x,u~)fyii(y,u))ϕε\displaystyle\quad+\mathbb{E}\int_{t,x,y}\eta_{\delta}^{\prime}(\tilde{u}-u)\big{(}f_{x_{i}}^{i}(x,\tilde{u})-f_{y_{i}}^{i}(y,u)\big{)}\phi_{\varepsilon}
𝔼t,x,yϕε(uu~frxii(x,r~)ηδ(r~u)dr~+uu~fryii(y,r)ηδ(u~r)dr)\displaystyle\quad-\mathbb{E}\int_{t,x,y}\phi_{\varepsilon}\Big{(}\int_{u}^{\tilde{u}}f_{rx_{i}}^{i}(x,\tilde{r})\eta_{\delta}^{\prime}(\tilde{r}-u)\mathrm{d}\tilde{r}+\int_{u}^{\tilde{u}}f_{ry_{i}}^{i}(y,r)\eta_{\delta}^{\prime}(\tilde{u}-r)\mathrm{d}r\Big{)}
+𝔼t,x,yηδ(u~u)(F(x,u~)F(y,u))ϕε\displaystyle\quad+\mathbb{E}\int_{t,x,y}\eta_{\delta}^{\prime}(\tilde{u}-u)\big{(}F(x,\tilde{u})-F(y,u)\big{)}\phi_{\varepsilon}
(εβ~+δβε1)𝔼(1+uL1(DT)+u~L1(DT))\displaystyle\lesssim(\varepsilon^{\tilde{\beta}}+\delta^{\beta}\varepsilon^{-1})\mathbb{E}(1+\|u\|_{L_{1}(D_{T})}+\|\tilde{u}\|_{L_{1}(D_{T})})
+𝔼t,x,y𝟏BD¯(x)φ(t)(ε|xiϱε(xy)|+ϱε(xy))(u~u)+.\displaystyle\quad+\mathbb{E}\int_{t,x,y}\mathbf{1}_{B\cap\overline{D}}(x)\varphi(t)\Big{(}\varepsilon|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|+\varrho_{\varepsilon}(x-y)\Big{)}(\tilde{u}-u)^{+}.

Combining 3.9 with |ηδ(r)r+|δ|\eta_{\delta}(r)-r^{+}|\leq\delta, and 3.12-3.18, one has 3.6.

For the case uu has the ()(\star)-property, the proof is a similar procedure but using a different assertion of the ()(\star)-property. Specifically, for each (z,t,x)[0,)×DT(z,t,x)\in[0,\infty)\times D_{T}, since

(ηδ(z),ρθ(t)φ(+t2),ϱε(x)ψ(x)𝟏D¯(x))×Cc((0,T))×Cc(D)\big{(}\eta_{\delta}(z-\cdot),\rho_{\theta}(\cdot-t)\varphi(\frac{\cdot+t}{2}),\varrho_{\varepsilon}(x-\cdot)\psi(x)\mathbf{1}_{\overline{D}}(x)\big{)}\in\mathcal{E}\times C_{c}((0,T))\times C_{c}^{\infty}(D)

for ε(0,ε¯)\varepsilon\in(0,\bar{\varepsilon}) and a sufficiently small θ\theta, we apply the entropy inequality 2.3 of u(s,y)u(s,y) with (ηδ(zr),ϕθ,ε(t,x,,))\big{(}\eta_{\delta}(z-r),\phi_{\theta,\varepsilon}(t,x,\cdot,\cdot)\big{)} instead of (η(r),ϕ)\big{(}\eta(r),\phi\big{)}. Taking z=u~(t,x)z=\tilde{u}(t,x) by convolution, integrating over (t,x)DT(t,x)\in D_{T} and taking expectations, we acquire an estimate of 𝔼t,x,s,yηδ(u~(t,x)u(s,y))tϕθ,ε-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}(\tilde{u}(t,x)-u(s,y))\partial_{t}\phi_{\theta,\varepsilon}.

Similarly, fix (z,s,y)[0,)×DT(z,s,y)\in[0,\infty)\times D_{T}. Since

(ηδ(z),ρθ(s)φ(s+2),ϱε(y)ψ()𝟏D¯())0×Cc((0,T))×C(D¯)\big{(}\eta_{\delta}(\cdot-z),\rho_{\theta}(s-\cdot)\varphi(\frac{s+\cdot}{2}),\varrho_{\varepsilon}(\cdot-y)\psi(\cdot)\mathbf{1}_{\overline{D}}(\cdot)\big{)}\in\mathcal{E}_{0}\times C_{c}((0,T))\times C^{\infty}(\overline{D})

for all sufficiently small θ\theta, we use 2.3 of u~(t,x)\tilde{u}(t,x) with (ηδ(rz),ϕθ,ε(,,s,y))\big{(}\eta_{\delta}(r-z),\phi_{\theta,\varepsilon}(\cdot,\cdot,s,y)\big{)} instead of (η(r),ϕ)\big{(}\eta(r),\phi\big{)}. Then, taking z=u(s,y)z=u(s,y) by convolution, integrating over (s,y)DT(s,y)\in D_{T} and taking expectations, we obtain an estimate of 𝔼t,x,s,yηδ(u~(t,x)u(s,y))sϕθ,ε-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}(\tilde{u}(t,x)-u(s,y))\partial_{s}\phi_{\theta,\varepsilon}.

Note that ϕθ,ε\phi_{\theta,\varepsilon} only acts on the set {s,t[0,T]:s>t}\{s,t\in[0,T]:s>t\}, the stochastic integral term in the estimate of 𝔼t,x,s,yηδ(u~(t,x)u(s,y))tϕθ,ε-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}(\tilde{u}(t,x)-u(s,y))\partial_{t}\phi_{\theta,\varepsilon} vanishes, while the one in the estimate of 𝔼t,x,s,yηδ(u~(t,x)u(s,y))sϕθ,ε-\mathbb{E}\int_{t,x,s,y}\eta_{\delta}(\tilde{u}(t,x)-u(s,y))\partial_{s}\phi_{\theta,\varepsilon} may not be zeros. Therefore, we apply assertion (ii) of the ()(\star)-property of uu with h(r)=ηδ(r)h(r)=\eta_{\delta}^{\prime}(r) (then h𝒞+h\in\mathcal{C}^{+}) , g(x,y)=𝟏D¯(y)ψ(y)ϱε(yx)g(x,y)=\mathbf{1}_{\overline{D}}(y)\psi(y)\varrho_{\varepsilon}(y-x) (then gΓB+g\in\Gamma_{B}^{+}) and relabel xyx\leftrightarrow y in the integral, then the stochastic integral terms is controlled by Cθ1μ+(u~,u,θ)C\theta^{1-\mu}+\mathcal{E}(\tilde{u},u,\theta), in the integrand of which u=u(t,y)u=u(t,y) and u~=u~(t,x)\tilde{u}=\tilde{u}(t,x). After combining two estimates and taking the limit θ0+\theta\rightarrow 0^{+}, there is only one time variable in the integrand. The remaining terms can be estimated as above. Hence, this lemma is proved. ∎

Remark 3.13.

In the whole proof of 3.11, the divergence theorem is applied mostly in yy with ϱε(x)Cc(D)\varrho_{\varepsilon}(x-\cdot)\in C_{c}^{\infty}(D) for all (x,ε)(BD¯)×(0,ε¯)(x,\varepsilon)\in(B\cap\overline{D})\times(0,\bar{\varepsilon}), except 3.11, in which the divergence theorem in xx is used with the zero boundary condition of u~\tilde{u}.

Theorem 3.14.

(L1L_{1}-estimates)Let 0ξ,ξ~Lm+1(Ω,0;Lm+1(D))0\leq\xi,\tilde{\xi}\in L_{m+1}(\Omega,\mathcal{F}_{0};L_{m+1}(D)). Suppose uu and u~\tilde{u} are the entropy solutions to the Dirichlet problems Π(Φ,ξ)\Pi(\Phi,\xi) and Π(Φ~,ξ~)\Pi(\tilde{\Phi},\tilde{\xi}), respectively. Let Assumptions 2.1, 2.4 and 2.5 hold for both Φ\Phi and Φ~\tilde{\Phi}. If uu or u~\tilde{u} has the ()(\star)-property, then,

  1. (i)

    if furthermore Φ=Φ~\Phi=\tilde{\Phi}, then

    (3.19) esssupt[0,T]𝔼(u~(t,)u(t,))+L1(D)C𝔼(ξ~ξ)+L1(D),\underset{t\in[0,T]}{\mathrm{ess\,sup}}\,\mathbb{E}\|(\tilde{u}(t,\cdot)-u(t,\cdot))^{+}\|_{L_{1}(D)}\leq C\mathbb{E}\|(\tilde{\xi}-\xi)^{+}\|_{L_{1}(D)},

    where the constant CC depends only on N0N_{0}, KK, dd, TT and |D||D|.

  2. (ii)

    for all δ(0,1)\delta\in(0,1), ε(0,ε¯)\varepsilon\in(0,\bar{\varepsilon}), λ[0,1]\lambda\in[0,1] and α(0,1(m/2))\alpha\in(0,1\land(m/2)), we have

    (3.20) 𝔼0Tx(u~(τ,x)u(τ,x))+dτ\displaystyle\mathbb{E}\int_{0}^{T}\int_{x}(\tilde{u}(\tau,x)-u(\tau,x))^{+}\mathrm{d}\tau
    C𝔼x(ξ~(x)ξ(x))++Csup|h|2ε𝔼ξ()ξ¯(+h)L1(D)\displaystyle\leq C\mathbb{E}\int_{x}(\tilde{\xi}(x)-\xi(x))^{+}+C\sup_{|h|\leq 2\varepsilon}\mathbb{E}\big{\|}\xi(\cdot)-\bar{\xi}(\cdot+h)\big{\|}_{L_{1}(D)}
    +Csup|h|2ε𝔼ξ~()ξ~¯(+h)L1(D)\displaystyle\quad+C\sup_{|h|\leq 2\varepsilon}\mathbb{E}\Big{\|}\tilde{\xi}(\cdot)-\bar{\tilde{\xi}}(\cdot+h)\Big{\|}_{L_{1}(D)}
    +Cε1m+1𝔼(𝔞(u)L2(DT)2+𝔞~(u~)L2(DT)2)\displaystyle\quad+C\varepsilon^{\frac{1}{m+1}}\mathbb{E}\big{(}\|\nabla\llbracket\mathfrak{a}\rrbracket(u)\|_{L_{2}(D_{T})}^{2}+\|\nabla\llbracket\tilde{\mathfrak{a}}\rrbracket(\tilde{u})\|_{L_{2}(D_{T})}^{2}\big{)}
    +C(ε,δ,λ,α)𝔼(1+uLm+1(DT)m+1+u~Lm+1(DT)m+1)\displaystyle\quad+C\mathfrak{C}(\varepsilon,\delta,\lambda,\alpha)\mathbb{E}(1+\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\tilde{u}\|_{L_{m+1}(D_{T})}^{m+1})
    +Cε2𝔼(𝟏|u|Rλ(1+u)Lm(DT)m+𝟏|u~|Rλ(1+u~)Lm(DT)m),\displaystyle\quad+C\varepsilon^{-2}\mathbb{E}\Big{(}\big{\|}\mathbf{1}_{|u|\geq R_{\lambda}}(1+u)\big{\|}_{L_{m}(D_{T})}^{m}+\big{\|}\mathbf{1}_{|\tilde{u}|\geq R_{\lambda}}(1+\tilde{u})\big{\|}_{L_{m}(D_{T})}^{m}\Big{)},

    where (ε,δ,λ,α)\mathfrak{C}(\varepsilon,\delta,\lambda,\alpha) and RλR_{\lambda} are introduced in 3.11,

    (3.21) ξ¯(x)\displaystyle\bar{\xi}(x) {ξ(x),xD;0,xD,\displaystyle\coloneqq\begin{cases}\xi(x),&x\in D;\\ 0,&x\notin D,\end{cases}

    and the constant CC depends only on N0N_{0}, KK, dd, TT and |D||D|.

Remark 3.15.

Since the positive part function is not an even function, it requires us to prove estimates with the ()(\star)-property of different entropy solutions uu or u~\tilde{u}. Using this fact, we obtain the L1L_{1}-estimates with only one of the entropy solutions has the ()(\star)-property, which is a key point in proving the uniqueness in the proof of 2.6.

Proof.

We first assume that u~\tilde{u} has the ()(\star)-property. Let 0<s<τ<T0<s<\tau<T be Lebesgue points of the function

t𝔼x,y(u~(t,x)u(t,y))+ψ(x)ϱε(xy),t\rightarrow\mathbb{E}\int_{x,y}(\tilde{u}(t,x)-u(t,y))^{+}\psi(x)\varrho_{\varepsilon}(x-y),

and fix a constant γ(0,(τs)(Tτ))\gamma\in(0,(\tau-s)\lor(T-\tau)). Choose a sequence of functions {ϕn}n\{\phi_{n}\}_{n\in\mathbb{N}} and the limit V(γ)V_{(\gamma)} as in the proof of 2.7, take φ=ϕn\varphi=\phi_{n} in 3.6 (using the ()(\star)-property of u~\tilde{u}) and pass to the limit nn\rightarrow\infty. Then, taking γ0+\gamma\rightarrow 0^{+} and using 4.3, we have

𝔼x,y(u~(s,x)u(s,y))+ϱε(xy)ψ(x)\displaystyle-\mathbb{E}\int_{x,y}(\tilde{u}(s,x)-u(s,y))^{+}\varrho_{\varepsilon}(x-y)\psi(x)
+𝔼x,y(u~(τ,x)u(τ,y))+ϱε(xy)ψ(x)\displaystyle+\mathbb{E}\int_{x,y}(\tilde{u}(\tau,x)-u(\tau,y))^{+}\varrho_{\varepsilon}(x-y)\psi(x)
𝔼sτxΔxψ(x)(Φ~(u~(t,x))Φ(u(t,x)))+dt+M+C𝔼0τx,y𝟏BD¯(x)\displaystyle\leq\mathbb{E}\int_{s}^{\tau}\int_{x}\Delta_{x}\psi(x)(\tilde{\Phi}(\tilde{u}(t,x))-\Phi(u(t,x)))^{+}\mathrm{d}t+M+C\mathbb{E}\int_{0}^{\tau}\int_{x,y}\mathbf{1}_{B\cap\overline{D}}(x)
(ε2i,j|xiyjϱε(xy)|+εi|xiϱε(xy)|+ϱε(xy))(u~(t,x)u(t,y))+dt\displaystyle\quad\cdot\Big{(}\varepsilon^{2}\sum_{i,j}|\partial_{x_{i}y_{j}}\varrho_{\varepsilon}(x-y)|+\varepsilon\sum_{i}|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|+\varrho_{\varepsilon}(x-y)\Big{)}(\tilde{u}(t,x)-u(t,y))^{+}\mathrm{d}t

holds for almost all s(0,τ)s\in(0,\tau), where

M\displaystyle M Cε1m+1𝔼𝔞(u)L2(DT)2+C(ε,δ,λ,α)𝔼(1+uLm+1(DT)m+1+u~Lm+1(DT)m+1)\displaystyle\coloneqq C\varepsilon^{\frac{1}{m+1}}\mathbb{E}\|\nabla\llbracket\mathfrak{a}\rrbracket(u)\|_{L_{2}(D_{T})}^{2}+C\mathfrak{C}(\varepsilon,\delta,\lambda,\alpha)\mathbb{E}(1+\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\tilde{u}\|_{L_{m+1}(D_{T})}^{m+1})
+Cε2𝔼(𝟏|u|Rλ(1+u)Lm(DT)m+𝟏|u~|Rλ(1+u~)Lm(DT)m).\displaystyle\quad+C\varepsilon^{-2}\mathbb{E}\Big{(}\big{\|}\mathbf{1}_{|u|\geq R_{\lambda}}(1+u)\big{\|}_{L_{m}(D_{T})}^{m}+\big{\|}\mathbf{1}_{|\tilde{u}|\geq R_{\lambda}}(1+\tilde{u})\big{\|}_{L_{m}(D_{T})}^{m}\Big{)}.

Then, for γ~(0,τ)\tilde{\gamma}\in(0,\tau), by averaging over s(0,γ~)s\in(0,\tilde{\gamma}), setting γ~0+\tilde{\gamma}\rightarrow 0^{+} and using 6.1, we have

(3.22) 𝔼x,y(u~(τ,x)u(τ,y))+ϱε(xy)ψ(x)\displaystyle\mathbb{E}\int_{x,y}(\tilde{u}(\tau,x)-u(\tau,y))^{+}\varrho_{\varepsilon}(x-y)\psi(x)
𝔼x,y(ξ~(x)ξ(y))+ϱε(xy)ψ(x)\displaystyle\leq\mathbb{E}\int_{x,y}(\tilde{\xi}(x)-\xi(y))^{+}\varrho_{\varepsilon}(x-y)\psi(x)
+𝔼0τxΔxψ(x)(Φ~(u~(t,x))Φ(u(t,x)))+dt+M+C𝔼0τx,y𝟏BD¯(x)\displaystyle\quad+\mathbb{E}\int_{0}^{\tau}\int_{x}\Delta_{x}\psi(x)(\tilde{\Phi}(\tilde{u}(t,x))-\Phi(u(t,x)))^{+}\mathrm{d}t+M+C\mathbb{E}\int_{0}^{\tau}\int_{x,y}\mathbf{1}_{B\cap\overline{D}}(x)
(ε2i,j|xiyjϱε(xy)|+εi|xiϱε(xy)|+ϱε(xy))(u~(t,x)u(t,y))+dt.\displaystyle\quad\cdot\Big{(}\varepsilon^{2}\sum_{i,j}|\partial_{x_{i}y_{j}}\varrho_{\varepsilon}(x-y)|+\varepsilon\sum_{i}|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|+\varrho_{\varepsilon}(x-y)\Big{)}(\tilde{u}(t,x)-u(t,y))^{+}\mathrm{d}t.

To prove 3.19, taking λ=0\lambda=0 and Rλ=R_{\lambda}=\infty, we have

𝔼(𝟏|u|Rλ(1+u)Lm(DT)m+𝟏|u~|Rλ(1+u~)Lm(DT)m)=0,\mathbb{E}\Big{(}\big{\|}\mathbf{1}_{|u|\geq R_{\lambda}}(1+u)\big{\|}_{L_{m}(D_{T})}^{m}+\big{\|}\mathbf{1}_{|\tilde{u}|\geq R_{\lambda}}(1+\tilde{u})\big{\|}_{L_{m}(D_{T})}^{m}\Big{)}=0,

and (ε,δ,λ,α)\mathfrak{C}(\varepsilon,\delta,\lambda,\alpha) becomes

(ε,δ,α)ε2δ2β+δβε1+εκ¯+εβ~+ε1/(m+1)+ε2κ¯δ1+ε2δ2α.\mathfrak{C}(\varepsilon,\delta,\alpha)\coloneqq\varepsilon^{-2}\delta^{2\beta}+\delta^{\beta}\varepsilon^{-1}+\varepsilon^{\bar{\kappa}}+\varepsilon^{\tilde{\beta}}+\varepsilon^{1/(m+1)}+\varepsilon^{2\bar{\kappa}}\delta^{-1}+\varepsilon^{-2}\delta^{2\alpha}.

Since β((2κ¯)1,1]\beta\in((2\bar{\kappa})^{-1},1], we can choose ϑ((m2)1(2β)1,κ¯)\vartheta\in((m\land 2)^{-1}\vee(2\beta)^{-1},\bar{\kappa}) and α((2ϑ)1,1(m/2))\alpha\in((2\vartheta)^{-1},1\land(m/2)). Let δ=ε2ϑ\delta=\varepsilon^{2\vartheta} and ε0+\varepsilon\rightarrow 0^{+}, we have (ε,δ,α)0+\mathfrak{C}(\varepsilon,\delta,\alpha)\rightarrow 0^{+}. Notice that ε|xiϱε|\varepsilon|\partial_{x_{i}}\varrho_{\varepsilon}| and ε2|xixjϱε|\varepsilon^{2}|\partial_{x_{i}x_{j}}\varrho_{\varepsilon}| are all approximations of the identity up to a constant. Adding over ψi\psi_{i} from partition of unity, with the continuity of translations in L1L_{1}, we have

𝔼x(u~(τ,x)u(τ,x))+𝔼x(ξ~(x)ξ(x))++C0τ𝔼x(u~(t,x)u(t,x))+dt\mathbb{E}\int_{x}(\tilde{u}(\tau,x)-u(\tau,x))^{+}\leq\mathbb{E}\int_{x}(\tilde{\xi}(x)-\xi(x))^{+}+C\int_{0}^{\tau}\mathbb{E}\int_{x}(\tilde{u}(t,x)-u(t,x))^{+}\mathrm{d}t

holds for almost all τ[0,T]\tau\in[0,T]. Hence, 3.19 follows from Gronwall’s inequality.

Now, we prove 3.20. Notice that

𝔼x,y(ξ(x)ξ(y))+ϱε(xy)ψ(x)\displaystyle\mathbb{E}\int_{x,y}(\xi(x)-\xi(y))^{+}\varrho_{\varepsilon}(x-y)\psi(x) dϱε(h)𝔼BD(ξ(x)ξ(xh))+dxdh\displaystyle\leq\int_{\mathbb{R}^{d}}\varrho_{\varepsilon}(h)\cdot\mathbb{E}\int_{B\cap D}(\xi(x)-\xi(x-h))^{+}\mathrm{d}x\mathrm{d}h
sup|h|ε𝔼BD(ξ¯(x)ξ¯(xh))+dx.\displaystyle\leq\sup_{|h|\leq\varepsilon}\mathbb{E}\int_{B\cap D}(\bar{\xi}(x)-\bar{\xi}(x-h))^{+}\mathrm{d}x.

Fixing s1(0,T]s_{1}\in(0,T] and integrating 3.22 over τ(0,s1)\tau\in(0,s_{1}), we have

𝔼0s1x,y(u~(τ,x)u(τ,y))+ϱε(xy)ψ(x)dτ\displaystyle\mathbb{E}\int_{0}^{s_{1}}\int_{x,y}(\tilde{u}(\tau,x)-u(\tau,y))^{+}\varrho_{\varepsilon}(x-y)\psi(x)\mathrm{d}\tau
T𝔼x(ξ~(x)ξ(x))+ψ(x)+Tsup|h|2ε𝔼BD(ξ¯(x)ξ¯(xh))+dx\displaystyle\leq T\mathbb{E}\int_{x}(\tilde{\xi}(x)-\xi(x))^{+}\psi(x)+T\sup_{|h|\leq 2\varepsilon}\mathbb{E}\int_{B\cap D}(\bar{\xi}(x)-\bar{\xi}(x-h))^{+}\mathrm{d}x
+𝔼0s10τxΔxψ(x)(Φ~(u~(t,x))Φ(u(t,x)))+dtdτ+TM\displaystyle\quad+\mathbb{E}\int_{0}^{s_{1}}\int_{0}^{\tau}\int_{x}\Delta_{x}\psi(x)(\tilde{\Phi}(\tilde{u}(t,x))-\Phi(u(t,x)))^{+}\mathrm{d}t\mathrm{d}\tau+TM
+C𝔼0s10τx,y[𝟏BD¯(x)(ε2i,j|xiyjϱε(xy)|\displaystyle\quad+C\mathbb{E}\int_{0}^{s_{1}}\int_{0}^{\tau}\int_{x,y}\bigg{[}\mathbf{1}_{B\cap\overline{D}}(x)\cdot\Big{(}\varepsilon^{2}\sum_{i,j}|\partial_{x_{i}y_{j}}\varrho_{\varepsilon}(x-y)|
+εi|xiϱε(xy)|+ϱε(xy))(u~(t,x)u(t,y))+]dtdτ.\displaystyle\quad+\varepsilon\sum_{i}|\partial_{x_{i}}\varrho_{\varepsilon}(x-y)|+\varrho_{\varepsilon}(x-y)\Big{)}(\tilde{u}(t,x)-u(t,y))^{+}\bigg{]}\mathrm{d}t\mathrm{d}\tau.

Notice that ε|xiϱε|\varepsilon|\partial_{x_{i}}\varrho_{\varepsilon}| and ε2|xixjϱε|\varepsilon^{2}|\partial_{x_{i}x_{j}}\varrho_{\varepsilon}| are approximations of the identity up to a constant. Taking ε0\varepsilon\rightarrow 0 and adding with different ψi\psi_{i}, from the partition of unity, we have

𝔼0s1x(u~(τ,x)u(τ,x))+dτ\displaystyle\mathbb{E}\int_{0}^{s_{1}}\int_{x}(\tilde{u}(\tau,x)-u(\tau,x))^{+}\mathrm{d}\tau
𝔼x(ξ~(x)ξ(x))++sup|h|2ε𝔼D(ξ¯(x)ξ¯(xh))+dx\displaystyle\lesssim\mathbb{E}\int_{x}(\tilde{\xi}(x)-\xi(x))^{+}+\sup_{|h|\leq 2\varepsilon}\mathbb{E}\int_{D}(\bar{\xi}(x)-\bar{\xi}(x-h))^{+}\mathrm{d}x
+M+𝔼0s10tx(u~(τ,x)u(τ,x))+dτdt.\displaystyle\quad+M+\mathbb{E}\int_{0}^{s_{1}}\int_{0}^{t}\int_{x}(\tilde{u}(\tau,x)-u(\tau,x))^{+}\mathrm{d}\tau\mathrm{d}t.

Using Gronwall’s inequality, we acquire 3.20.

For the case that uu in (u~u)+(\tilde{u}-u)^{+} has the ()(\star)-property, using 3.6 with the ()(\star)-property of uu and following the proceeding method, we obtain the desired estimates. ∎

4. Approximation

We approximate the function Φ\Phi to make the approximate equations non-degenerate. The following proposition is taken from [DGG19, DG20] and we refer to [DGG19, Proposition 5.1] for the proof.

Proposition 4.1.

Let Φ\Phi satisfy 2.1 with a constant K>1K>1. Then, for all nn there exists an increasing function ΦnC()\Phi_{n}\in C^{\infty}(\mathbb{R}) with bounded derivatives, satisfying 2.1 with constant 3K3K, such that 𝔞n(r)2/n\mathfrak{a}_{n}(r)\geq 2/n, and

(4.1) sup|r|n|𝔞(r)𝔞n(r)|4/n.\sup_{|r|\leq n}|\mathfrak{a}(r)-\mathfrak{a}_{n}(r)|\leq 4/n.

Define ξnξn\xi_{n}\coloneqq\xi\wedge n. Denote by (,)(\cdot,\cdot) the inner product in L2(D)L_{2}(D).

Definition 4.2.

An L2L_{2}-solution unu_{n} to Π(Φn,ξn)\Pi(\Phi_{n},\xi_{n}) is a continuous L2(D)L_{2}(D)-valued process, such that unL2(ΩT;H01(D))u_{n}\in L_{2}(\Omega_{T};H_{0}^{1}(D)), Φn(un)L2(ΩT;L2(D))\nabla\Phi_{n}(u_{n})\in L_{2}(\Omega_{T};L_{2}(D)), and the equality

(un(t,),ϕ)\displaystyle(u_{n}(t,\cdot),\phi) =(ξn,ϕ)0t((Φn(un),ϕ)+(aij(,un)xjun+bi(,un)\displaystyle=(\xi_{n},\phi)-\int_{0}^{t}\Big{(}(\nabla\Phi_{n}(u_{n}),\nabla\phi)+(a^{ij}(\cdot,u_{n})\partial_{x_{j}}u_{n}+b^{i}(\cdot,u_{n})
+fi(,un),xiϕ)+(F(,un),ϕ))ds0t(σk(,un),ϕ)dWk(s)\displaystyle\quad+f^{i}(\cdot,u_{n}),\partial_{x_{i}}\phi)+(F(\cdot,u_{n}),\phi)\Big{)}\mathrm{d}s-\int_{0}^{t}(\sigma^{k}(\cdot,u_{n}),\nabla\phi)\mathrm{d}W^{k}(s)

holds for all ϕCc(D)\phi\in C_{c}^{\infty}(D), almost surely for all t[0,T]t\in[0,T].

Differing from 2.2, with a strong regularity of the solution unu_{n}, we can consider the Dirichlet boundary condition in the sense of trace. From 2.4, 2.8 and 2.10 in 2.4, we have the linear growth of σxii\sigma_{x_{i}}^{i}, fxiif_{x_{i}}^{i} and FF in rr. Combining with 2.2 in 2.1, for all p2p\geq 2, the L2L_{2}-solution unu_{n} to Π(Φn,ξn)\Pi(\Phi_{n},\xi_{n}) has the following a priori estimates

(4.2) 𝔼suptTunL2(D)p+𝔼𝔞n(un)L2(DT)p\displaystyle\mathbb{E}\sup_{t\leq T}\|u_{n}\|_{L_{2}(D)}^{p}+\mathbb{E}\|\nabla\llbracket\mathfrak{a}_{n}\rrbracket(u_{n})\|_{L_{2}(D_{T})}^{p} C(1+𝔼ξnL2(D)p),\displaystyle\leq C(1+\mathbb{E}\|\xi_{n}\|_{L_{2}(D)}^{p}),
(4.3) 𝔼suptTunLm+1(D)m+1+𝔼Φn(un)L2(DT)2\displaystyle\mathbb{E}\sup_{t\leq T}\|u_{n}\|_{L_{m+1}(D)}^{m+1}+\mathbb{E}\|\nabla\Phi_{n}(u_{n})\|_{L_{2}(D_{T})}^{2} C(1+𝔼ξnLm+1(D)m+1).\displaystyle\leq C(1+\mathbb{E}\|\xi_{n}\|_{L_{m+1}(D)}^{m+1}).

The proof of the above two estimates is almost the same as [DG20, Lemma A.1] with the Dirichlet boundary condition of unu_{n}, and we omit it here. It is worth noting that the fact 𝔞n2/n>0\mathfrak{a}_{n}\geq 2/n>0 and 4.2 indicate

(4.4) 𝔼unL2(DT)pC(n)(1+𝔼ξnL2(D)p).\mathbb{E}\|\nabla u_{n}\|_{L_{2}(D_{T})}^{p}\leq C(n)(1+\mathbb{E}\|\xi_{n}\|_{L_{2}(D)}^{p}).
Remark 4.3.

Note that for all (η,φ,ϱ)×Cc([0,T))×Cc(D)(\eta,\varphi,\varrho)\in\mathcal{E}\times C_{c}^{\infty}([0,T))\times C_{c}^{\infty}(D) or (η,φ,ϱ)0×Cc([0,T))×C(D¯)(\eta,\varphi,\varrho)\in\mathcal{E}_{0}\times C_{c}^{\infty}([0,T))\times C^{\infty}(\overline{D}) and ϕφ×ϱ0\phi\coloneqq\varphi\times\varrho\geq 0, applying Itô’s formula (see e.g. [Kry13]) to unDη(un)ϕdxu_{n}\mapsto\int_{D}\eta(u_{n})\phi\mathrm{d}x, with 4.2-4.3 and 2.1, we have that the L2L_{2}-solution unu_{n} is also an entropy solution to Π(Φn,ξn)\Pi(\Phi_{n},\xi_{n}). Using 2.7, when 0ξLm+1(Ω,0;Lm+1(D))0\leq\xi\in L_{m+1}(\Omega,\mathcal{F}_{0};L_{m+1}(D)), we have un0u_{n}\geq 0 for almost all (ω,t,x)ΩT×D(\omega,t,x)\in\Omega_{T}\times D.

Proposition 4.4.

Let 0ξLm+1(Ω,0;Lm+1(D))0\leq\xi\in L_{m+1}(\Omega,\mathcal{F}_{0};L_{m+1}(D)) and Assumptions 2.1, 2.4 and 2.5 hold. For each nn\in\mathbb{N}, let unu_{n} be an L2L_{2}-solution of Π(Φn,ξn)\Pi(\Phi_{n},\xi_{n}). Then, unu_{n} has the ()(\star)-property. If in addition 𝔼ξL2(D)2(m+1)/m<\mathbb{E}\|\xi\|_{L_{2}(D)}^{2(m+1)/m}<\infty, the constants CC in 3.4 are independent of nn.

With the help of 4.3, 4.4, and 3.14 (i), following almost the same argument as [DG20, Proposition 5.4], we have the existence and uniqueness of the L2L_{2}-solution unu_{n}. Here, we omit the proof.

Proposition 4.5.

Let 0ξLm+1(Ω,0;Lm+1(D))0\leq\xi\in L_{m+1}(\Omega,\mathcal{F}_{0};L_{m+1}(D)) and Assumptions 2.1, 2.4 and 2.5 hold. Then, for each nn\in\mathbb{N}, Π(Φn,ξn)\Pi(\Phi_{n},\xi_{n}) admits a unique L2L_{2}-solution unu_{n}.

Proof of 4.4.

We first prove 3.4 (i). Fix i{0,1,,N}i\in\{0,1,\ldots,N\}. For the sake of brevity, we define BBiB\coloneqq B_{i}, ψψi\psi\coloneqq\psi_{i} and ϱε(xy)ϱε,i(xy)\varrho_{\varepsilon}(x-y)\coloneqq\varrho_{\varepsilon,i}(x-y) which are introduced in the definition of the spatial mollifier in Section 3. Fix sufficiently small γ>0\gamma>0. Since yϱγ(xy)Cc(D)y\mapsto\varrho_{\gamma}(x-y)\in C_{c}^{\infty}(D) for all (x,γ)(BD¯)×(0,ε¯)(x,\gamma)\in(B\cap\overline{D})\times(0,\bar{\varepsilon}), for a function fL2(D)f\in L_{2}(D), let f(γ)(x)Df(z)ϱγ(xz)dzf^{(\gamma)}(x)\coloneqq\int_{D}f(z)\varrho_{\gamma}(x-z)\mathrm{d}z. Then, on BD¯B\cap\overline{D}, un(γ)u_{n}^{(\gamma)} satisfies (pointwise) the equation

dun(γ)\displaystyle\mathrm{d}u_{n}^{(\gamma)} =[Δ(Φn(un))(γ)+xi(aij(,un)xjun+bi(,un)+fi(,un))(γ)\displaystyle=\Big{[}\Delta(\Phi_{n}(u_{n}))^{(\gamma)}+\partial_{x_{i}}\big{(}a^{ij}(\cdot,u_{n})\partial_{x_{j}}u_{n}+b^{i}(\cdot,u_{n})+f^{i}(\cdot,u_{n})\big{)}^{(\gamma)}
+(F(,un))(γ)]dt+xi(σik(,un))(γ)dWk(t).\displaystyle\quad+\big{(}F(\cdot,u_{n})\big{)}^{(\gamma)}\Big{]}\mathrm{d}t+\partial_{x_{i}}\big{(}\sigma^{ik}(\cdot,u_{n})\big{)}^{(\gamma)}\mathrm{d}W^{k}(t).

Note that

𝔼s,xHθ(s,x,un(s,x))=limλ0𝔼s,x,zHθ(s,x,z)𝟏BD¯(x)ρλ(un(s,x)z),\mathbb{E}\int_{s,x}H_{\theta}(s,x,u_{n}(s,x))=\lim_{\lambda\rightarrow 0}\mathbb{E}\int_{s,x,z}H_{\theta}(s,x,z)\mathbf{1}_{B\cap\overline{D}}(x)\rho_{\lambda}(u_{n}(s,x)-z),

and

|𝔼s,x,zHθ(s,x,z)𝟏BD¯(x)(ρλ(un(s,x)z)ρλ(un(γ)(s,x)z))|\displaystyle\Big{|}\mathbb{E}\int_{s,x,z}H_{\theta}(s,x,z)\mathbf{1}_{B\cap\overline{D}}(x)\big{(}\rho_{\lambda}(u_{n}(s,x)-z)-\rho_{\lambda}(u_{n}^{(\gamma)}(s,x)-z)\big{)}\Big{|}
C(𝔼unun(γ)L1([0,T]×(BD¯))2)12(𝔼zHθL(DT×)2)12γ00.\displaystyle\leq C\Big{(}\mathbb{E}\|u_{n}-u_{n}^{(\gamma)}\|_{L_{1}([0,T]\times(B\cap\overline{D}))}^{2}\Big{)}^{\frac{1}{2}}\Big{(}\mathbb{E}\|\partial_{z}H_{\theta}\|_{L_{\infty}(D_{T}\times\mathbb{R})}^{2}\Big{)}^{\frac{1}{2}}\xrightarrow{\gamma\rightarrow 0}0.

With 3.3, we have 𝔼Hθ(s,x,z)X=0\mathbb{E}H_{\theta}(s,x,z)X=0 for any sθ\mathcal{F}_{s-\theta}-measurable bounded random variable XX. Then,

𝔼s,x,zHθ(s,x,z)𝟏BD¯(x)ρλ(un(γ)(s,x)z)\displaystyle\mathbb{E}\int_{s,x,z}H_{\theta}(s,x,z)\mathbf{1}_{B\cap\overline{D}}(x)\rho_{\lambda}(u_{n}^{(\gamma)}(s,x)-z)
=𝔼s,x,zHθ(s,x,z)𝟏BD¯(x)(ρλ(un(γ)(s,x)z)ρλ(un(γ)(sθ,x)z)).\displaystyle=\mathbb{E}\int_{s,x,z}H_{\theta}(s,x,z)\mathbf{1}_{B\cap\overline{D}}(x)\Big{(}\rho_{\lambda}(u_{n}^{(\gamma)}(s,x)-z)-\rho_{\lambda}(u_{n}^{(\gamma)}(s-\theta,x)-z)\Big{)}.

Using Itô’s formula, we have

s,x,zHθ(s,x,z)(ρλ(un(γ)(s,x)z)ρλ(un(γ)(sθ,x)z))=i=15Nλ,γ(i),\displaystyle\int_{s,x,z}H_{\theta}(s,x,z)\Big{(}\rho_{\lambda}(u_{n}^{(\gamma)}(s,x)-z)-\rho_{\lambda}(u_{n}^{(\gamma)}(s-\theta,x)-z)\Big{)}=\sum_{i=1}^{5}N_{\lambda,\gamma}^{(i)},

where

Nλ,γ(1)\displaystyle N_{\lambda,\gamma}^{(1)} s,x,zHθ(s,x,z)sθsρλ(un(γ)(t,x)z)Δx(Φn(un))(γ)dt,\displaystyle\coloneqq\int_{s,x,z}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(u_{n}^{(\gamma)}(t,x)-z)\Delta_{x}(\Phi_{n}(u_{n}))^{(\gamma)}\mathrm{d}t,
Nλ,γ(2)\displaystyle N_{\lambda,\gamma}^{(2)} s,x,zHθ(s,x,z)sθsρλ(un(γ)(t,x)z)xi(aij(,un)xjun+bi(,un))(γ)dt,\displaystyle\coloneqq\int_{s,x,z}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(u_{n}^{(\gamma)}(t,x)-z)\partial_{x_{i}}\big{(}a^{ij}(\cdot,u_{n})\partial_{x_{j}}u_{n}+b^{i}(\cdot,u_{n})\big{)}^{(\gamma)}\mathrm{d}t,
Nλ,γ(3)\displaystyle N_{\lambda,\gamma}^{(3)} s,x,zHθ(s,x,z)sθsρλ(un(γ)(t,x)z)(xifi(,un)+F(,un))(γ)dt,\displaystyle\coloneqq\int_{s,x,z}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(u_{n}^{(\gamma)}(t,x)-z)\big{(}\partial_{x_{i}}f^{i}(\cdot,u_{n})+F(\cdot,u_{n})\big{)}^{(\gamma)}\mathrm{d}t,
Nλ,γ(4)\displaystyle N_{\lambda,\gamma}^{(4)} s,x,zHθ(s,x,z)sθsρλ(un(γ)(t,x)z)xi(σik(,un))(γ)dWk(t),\displaystyle\coloneqq\int_{s,x,z}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(u_{n}^{(\gamma)}(t,x)-z)\partial_{x_{i}}\big{(}\sigma^{ik}(\cdot,u_{n})\big{)}^{(\gamma)}\mathrm{d}W^{k}(t),
Nλ,γ(5)\displaystyle N_{\lambda,\gamma}^{(5)} 12s,x,zHθ(s,x,z)sθsρλ(un(γ)(t,x)z)k=1|xi(σik(,un))(γ)|2dt.\displaystyle\coloneqq\frac{1}{2}\int_{s,x,z}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime\prime}(u_{n}^{(\gamma)}(t,x)-z)\sum_{k=1}^{\infty}|\partial_{x_{i}}\big{(}\sigma^{ik}(\cdot,u_{n})\big{)}^{(\gamma)}|^{2}\mathrm{d}t.

Using the divergence theorem in xx, we have Nλ,γ(1)=i=13Nλ,γ(1,i)N_{\lambda,\gamma}^{(1)}=\sum_{i=1}^{3}N_{\lambda,\gamma}^{(1,i)}, where

Nλ,γ(1,1)\displaystyle N_{\lambda,\gamma}^{(1,1)} s,x,zxHθ(s,x,z)sθsρλ(un(γ)(t,x)z)x(Φn(un))(γ)dt,\displaystyle\coloneqq-\int_{s,x,z}\nabla_{x}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(u_{n}^{(\gamma)}(t,x)-z)\nabla_{x}(\Phi_{n}(u_{n}))^{(\gamma)}\mathrm{d}t,
Nλ,γ(1,2)\displaystyle N_{\lambda,\gamma}^{(1,2)} s,x,zHθ(s,x,z)sθsρλ(un(γ)(t,x)z)xun(γ)(t,x)x(Φn(un))(γ)dt,\displaystyle\coloneqq-\int_{s,x,z}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime\prime}(u_{n}^{(\gamma)}(t,x)-z)\nabla_{x}u_{n}^{(\gamma)}(t,x)\nabla_{x}(\Phi_{n}(u_{n}))^{(\gamma)}\mathrm{d}t,
Nλ,γ(1,3)\displaystyle N_{\lambda,\gamma}^{(1,3)} s,zDHθ(s,x,z)sθsρλ(un(γ)(t,x)z)x(Φn(un))(γ)νdtdS,\displaystyle\coloneqq\int_{s,z}\int_{\partial D}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(u_{n}^{(\gamma)}(t,x)-z)\nabla_{x}(\Phi_{n}(u_{n}))^{(\gamma)}\cdot\nu\mathrm{d}t\mathrm{d}S,

and ν(x)\nu(x) is the unit normal vector of D\partial D at xx. Using integration by parts in zz and 4.3, we have

𝔼|Nλ,γ(1,1)|\displaystyle\mathbb{E}|N_{\lambda,\gamma}^{(1,1)}| =𝔼|s,x,z𝟏{s>θ}xzHθ(s,x,z)sθsρλ(un(γ)(t,x)z)x(Φn(un))(γ)dt|\displaystyle=\mathbb{E}\Big{|}\int_{s,x,z}\mathbf{1}_{\{s>\theta\}}\nabla_{x}\partial_{z}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}(u_{n}^{(\gamma)}(t,x)-z)\nabla_{x}(\Phi_{n}(u_{n}))^{(\gamma)}\mathrm{d}t\Big{|}
Cθ(𝔼xzHθL(DT×)2)12(𝔼x(Φn(un))(γ)L1(DT)2)12Cθ1μ.\displaystyle\leq C\theta(\mathbb{E}\|\nabla_{x}\partial_{z}H_{\theta}\|_{L_{\infty}(D_{T}\times\mathbb{R})}^{2})^{\frac{1}{2}}(\mathbb{E}\|\nabla_{x}(\Phi_{n}(u_{n}))^{(\gamma)}\|_{L_{1}(D_{T})}^{2})^{\frac{1}{2}}\leq C\theta^{1-\mu}.

Similarly, integrating by parts twice in zz on Nλ,γ(1,2)N_{\lambda,\gamma}^{(1,2)}, we have

limγ0𝔼|Nλ,γ(1,2)|\displaystyle\lim_{\gamma\rightarrow 0}\mathbb{E}|N_{\lambda,\gamma}^{(1,2)}| Cθ1μlimγ0(𝔼xun(γ)(t,x)x(Φn(un))(γ)L1(DT)m+1m)mm+1\displaystyle\leq C\theta^{1-\mu}\lim_{\gamma\rightarrow 0}(\mathbb{E}\|\nabla_{x}u_{n}^{(\gamma)}(t,x)\nabla_{x}(\Phi_{n}(u_{n}))^{(\gamma)}\|_{L_{1}(D_{T})}^{\frac{m+1}{m}})^{\frac{m}{m+1}}
Cθ1μ(𝔼xunx(Φn(un))L1(DT)m+1m)mm+1.\displaystyle\leq C\theta^{1-\mu}(\mathbb{E}\|\nabla_{x}u_{n}\nabla_{x}(\Phi_{n}(u_{n}))\|_{L_{1}(D_{T})}^{\frac{m+1}{m}})^{\frac{m}{m+1}}.
=Cθ1μ(𝔼𝔞n(un)L2(DT)2(m+1)m)mm+1C(n)θ1μ.\displaystyle=C\theta^{1-\mu}(\mathbb{E}\|\nabla\llbracket\mathfrak{a}_{n}\rrbracket(u_{n})\|_{L_{2}(D_{T})}^{\frac{2(m+1)}{m}})^{\frac{m}{m+1}}\leq C(n)\theta^{1-\mu}.

From the Dirichlet boundary condition of unu_{n}, we have

limγ0Nλ,γ(1,3)\displaystyle\lim_{\gamma\rightarrow 0}N_{\lambda,\gamma}^{(1,3)} =s,zD𝟏{s>θ}Hθ(s,x,z)sθsρλ(0z)x(Φn(un))(γ)νdtdS\displaystyle=\int_{s,z}\int_{\partial D}\mathbf{1}_{\{s>\theta\}}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(0-z)\nabla_{x}(\Phi_{n}(u_{n}))^{(\gamma)}\cdot\nu\mathrm{d}t\mathrm{d}S
=s,z𝟏{z<0}D𝟏{s>θ}Hθ(s,x,z)sθsρλ(0z)x(Φn(un))(γ)νdtdS.\displaystyle=\int_{s,z}\mathbf{1}_{\{z<0\}}\int_{\partial D}\mathbf{1}_{\{s>\theta\}}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(0-z)\nabla_{x}(\Phi_{n}(u_{n}))^{(\gamma)}\cdot\nu\mathrm{d}t\mathrm{d}S.

Since suppρλ[0,)\text{supp}\,\rho_{\lambda}^{\prime}\subset[0,\infty), the integrand only acts when z(,0]z\in(-\infty,0]. However, based on the non-negativity of uu and the definition of 𝒞\mathcal{C}^{-}, we have for all (h,z)𝒞×(,0](h,z)\in\mathcal{C}^{-}\times(-\infty,0],

h(u(t,y)z)=0,a.s.(t,ω,y)ΩT×D.h(u(t,y)-z)=0,\quad\text{a.s.}\ (t,\omega,y)\in\Omega_{T}\times D.

which indicates limγ0Nλ,γ(1,3)=0\lim_{\gamma\rightarrow 0}N_{\lambda,\gamma}^{(1,3)}=0. Therefore,

limsupγ0𝔼|Nλ,γ(1)|C(n)θ1μ.\underset{\gamma\rightarrow 0}{\lim\sup}\mathbb{E}|N_{\lambda,\gamma}^{(1)}|\leq C(n)\theta^{1-\mu}.

Now we estimate Nλ,γ(2)+Nλ,γ(5)N_{\lambda,\gamma}^{(2)}+N_{\lambda,\gamma}^{(5)}. As the estimate of Nλ,γ(1,3)N_{\lambda,\gamma}^{(1,3)}, using the divergence theorem in xx and combining with the definition of aija^{ij} and bib^{i}, we have

limsupγ0𝔼|Nλ,γ(2)+Nλ,γ(5)|\displaystyle\underset{\gamma\rightarrow 0}{\lim\sup}\,\mathbb{E}|N_{\lambda,\gamma}^{(2)}+N_{\lambda,\gamma}^{(5)}|
𝔼|s,x,zxiHθ(s,x,z)sθsρλ(un(t,x)z)(aij(,un)xjun)dt|\displaystyle\leq\mathbb{E}\Big{|}\int_{s,x,z}\partial_{x_{i}}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)\big{(}a^{ij}(\cdot,u_{n})\partial_{x_{j}}u_{n}\big{)}\mathrm{d}t\Big{|}
+𝔼|s,x,zxiHθ(s,x,z)sθsρλ(un(t,x)z)(bi(,un))dt|\displaystyle\quad+\mathbb{E}\Big{|}\int_{s,x,z}\partial_{x_{i}}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)\big{(}b^{i}(\cdot,u_{n})\big{)}\mathrm{d}t\Big{|}
+𝔼|12s,x,zHθ(s,x,z)sθsρλ(un(t,x)z)k=1|(σxiik(,un))|2dt|.\displaystyle\quad+\mathbb{E}\Big{|}\frac{1}{2}\int_{s,x,z}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\rho_{\lambda}^{\prime\prime}(u_{n}(t,x)-z)\sum_{k=1}^{\infty}|\big{(}\sigma_{x_{i}}^{ik}(\cdot,u_{n})\big{)}|^{2}\mathrm{d}t\Big{|}.

Using the identity

ρλ(un(t,x)z)aij(x,un)xjun\displaystyle\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)a^{ij}(x,u_{n})\partial_{x_{j}}u_{n} =xjaijρλ(z)(x,un(t,x))\displaystyle=\partial_{x_{j}}\llbracket a^{ij}\rho_{\lambda}^{\prime}(\cdot-z)\rrbracket(x,u_{n}(t,x))
axjijρλ(z)(x,un(t,x)),\displaystyle\quad-\llbracket a_{x_{j}}^{ij}\rho_{\lambda}^{\prime}(\cdot-z)\rrbracket(x,u_{n}(t,x)),

and

𝔼|s,x,zxiHθ(s,x,z)sθsxjaijρλ(z)(x,un(t,x))dt|\displaystyle\mathbb{E}\Big{|}\int_{s,x,z}\partial_{x_{i}}H_{\theta}(s,x,z)\int_{s-\theta}^{s}\partial_{x_{j}}\llbracket a^{ij}\rho_{\lambda}^{\prime}(\cdot-z)\rrbracket(x,u_{n}(t,x))\mathrm{d}t\Big{|}
Cθ(𝔼zxixjHθL(DT×)2)12(𝔼aijρλ(z)(,un)L1(DT)2)12,\displaystyle\leq C\theta(\mathbb{E}\|\partial_{z}\partial_{x_{i}}\partial_{x_{j}}H_{\theta}\|_{L_{\infty}(D_{T}\times\mathbb{R})}^{2})^{\frac{1}{2}}(\mathbb{E}\|\llbracket a^{ij}\rho_{\lambda}(\cdot-z)\rrbracket(\cdot,u_{n})\|_{L_{1}(D_{T})}^{2})^{\frac{1}{2}},

with the linear growth of σxii\sigma_{x_{i}}^{i}, bib^{i} and and the boundness of axjija_{x_{j}}^{ij} and aija^{ij} derived from 2.4-2.5 and 2.7 in 2.4, we have

limsupγ0𝔼|Nλ,γ(2)+Nλ,γ(5)|Cθ1μ(1+𝔼unL2(DT)2(m+1)m)mm+1C(n)θ1μ.\underset{\gamma\rightarrow 0}{\lim\sup}\mathbb{E}|N_{\lambda,\gamma}^{(2)}+N_{\lambda,\gamma}^{(5)}|\leq C\theta^{1-\mu}(1+\mathbb{E}\|u_{n}\|_{L_{2}(D_{T})}^{\frac{2(m+1)}{m}})^{\frac{m}{m+1}}\leq C(n)\theta^{1-\mu}.

For Nλ,γ(3)N_{\lambda,\gamma}^{(3)}, with the linear growth of fxiif_{x_{i}}^{i}, FF and the boundness of frif_{r}^{i} and frxiif_{rx_{i}}^{i} derived from 2.7-2.10 in 2.4, we similarly obtain

limsupγ0𝔼|Nλ,γ(3)|Cθ1μ(1+𝔼unL2(DT)2)2C(n)θ1μ.\underset{\gamma\rightarrow 0}{\lim\sup}\mathbb{E}|N_{\lambda,\gamma}^{(3)}|\leq C\theta^{1-\mu}(1+\mathbb{E}\|u_{n}\|_{L_{2}(D_{T})}^{2})^{2}\leq C(n)\theta^{1-\mu}.

Using Itô’s isometry and taking γ0\gamma\rightarrow 0, since

(4.5) s,x,z,ysθs0zσryiik(y,r)h(rz)drϕθρλ(un(t,x)z)xjσjk(x,un(t,x))dt\displaystyle\int_{s,x,z,y}\int_{s-\theta}^{s}\int_{0}^{z}\sigma_{ry_{i}}^{ik}(y,r)h(r-z)\mathrm{d}r\phi_{\theta}\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)\partial_{x_{j}}\sigma^{jk}(x,u_{n}(t,x))\mathrm{d}t
=s,x,z,ysθs0zσrik(y,r)h(rz)dryiϕθρλ(un(t,x)z)xjσjk(x,un(t,x))dt,\displaystyle=-\int_{s,x,z,y}\int_{s-\theta}^{s}\int_{0}^{z}\sigma_{r}^{ik}(y,r)h(r-z)\mathrm{d}r\partial_{y_{i}}\phi_{\theta}\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)\partial_{x_{j}}\sigma^{jk}(x,u_{n}(t,x))\mathrm{d}t,

we have

limγ0𝔼Nλ,γ(4)=i=16Ii,\lim_{\gamma\rightarrow 0}\mathbb{E}N_{\lambda,\gamma}^{(4)}=\sum_{i=1}^{6}I_{i},

where

I1\displaystyle I_{1} s,x,z,ysθs(zu(t,y)σryiik(y,r)h(rz)drϕθρλ(un(t,x)z)\displaystyle\coloneqq-\int_{s,x,z,y}\int_{s-\theta}^{s}\Big{(}\int_{z}^{u(t,y)}\sigma_{ry_{i}}^{ik}(y,r)h(r-z)\mathrm{d}r\phi_{\theta}\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)
σxjjk(x,un(t,x)))dt,\displaystyle\quad\cdot\sigma_{x_{j}}^{jk}(x,u_{n}(t,x))\Big{)}\mathrm{d}t,
I2\displaystyle I_{2} s,x,z,ysθs(zu(t,y)σryiik(y,r)h(rz)drϕθρλ(un(t,x)z)\displaystyle\coloneqq-\int_{s,x,z,y}\int_{s-\theta}^{s}\Big{(}\int_{z}^{u(t,y)}\sigma_{ry_{i}}^{ik}(y,r)h(r-z)\mathrm{d}r\phi_{\theta}\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)
σrjk(x,un(t,x))xjun(t,x))dt,\displaystyle\quad\cdot\sigma_{r}^{jk}(x,u_{n}(t,x))\partial_{x_{j}}u_{n}(t,x)\Big{)}\mathrm{d}t,
I3\displaystyle I_{3} s,x,z,ysθs(zu(t,y)σrik(y,r)h(rz)dryiϕθρλ(un(t,x)z)\displaystyle\coloneqq-\int_{s,x,z,y}\int_{s-\theta}^{s}\Big{(}\int_{z}^{u(t,y)}\sigma_{r}^{ik}(y,r)h(r-z)\mathrm{d}r\partial_{y_{i}}\phi_{\theta}\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)
σxjjk(x,un(t,x)))dt,\displaystyle\quad\cdot\sigma_{x_{j}}^{jk}(x,u_{n}(t,x))\Big{)}\mathrm{d}t,
I4\displaystyle I_{4} s,x,z,ysθs(zu(t,y)σrik(y,r)h(rz)dryiϕθρλ(un(t,x)z)\displaystyle\coloneqq-\int_{s,x,z,y}\int_{s-\theta}^{s}\Big{(}\int_{z}^{u(t,y)}\sigma_{r}^{ik}(y,r)h(r-z)\mathrm{d}r\partial_{y_{i}}\phi_{\theta}\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)
σrjk(x,un(t,x))xjun(t,x))dt,\displaystyle\quad\cdot\sigma_{r}^{jk}(x,u_{n}(t,x))\partial_{x_{j}}u_{n}(t,x)\Big{)}\mathrm{d}t,
I5\displaystyle I_{5} s,x,z,ysθsh(u(t,y)z)ϕθσyiik(y,u(t,y))ρλ(un(t,x)z)σxjjk(x,un(t,x))dt,\displaystyle\coloneqq\int_{s,x,z,y}\int_{s-\theta}^{s}h(u(t,y)-z)\phi_{\theta}\sigma_{y_{i}}^{ik}(y,u(t,y))\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)\sigma_{x_{j}}^{jk}(x,u_{n}(t,x))\mathrm{d}t,
I6\displaystyle I_{6} s,x,z,ysθs(h(u(t,y)z)ϕθσyiik(y,u(t,y))ρλ(un(t,x)z)\displaystyle\coloneqq\int_{s,x,z,y}\int_{s-\theta}^{s}\Big{(}h(u(t,y)-z)\phi_{\theta}\sigma_{y_{i}}^{ik}(y,u(t,y))\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)
σrjk(x,un(t,x))xjun(t,x))dt.\displaystyle\quad\cdot\sigma_{r}^{jk}(x,u_{n}(t,x))\partial_{x_{j}}u_{n}(t,x)\Big{)}\mathrm{d}t.

For I2+I4I_{2}+I_{4}, notice that

ρλ(un(t,x)z)σrjk(x,un(t,x))xjun(t,x)\displaystyle\rho_{\lambda}^{\prime}(u_{n}(t,x)-z)\sigma_{r}^{jk}(x,u_{n}(t,x))\partial_{x_{j}}u_{n}(t,x) =xj0un(t,x)ρλ(r~z)σrjk(x,r~)dr~\displaystyle=\partial_{x_{j}}\int_{0}^{u_{n}(t,x)}\rho_{\lambda}^{\prime}(\tilde{r}-z)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}
0un(t,x)ρλ(r~z)σrxjjk(x,r~)dr~.\displaystyle\quad-\int_{0}^{u_{n}(t,x)}\rho_{\lambda}^{\prime}(\tilde{r}-z)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}.

We can apply the divergence theorem in xx and the Dirichlet boundary condition and integrate by parts in zz. Moreover, Since h𝒞h\in\mathcal{C}^{-}, the integrand is non-zero only when u(t,y)<zu(t,y)<z. Using suppρλ+\text{supp}\,\rho_{\lambda}\subset\mathbb{R}_{+} and the non-negativity of uu, we have

(4.6) I2+I4\displaystyle I_{2}+I_{4}
=s,x,z,ysθszu(t,y)σryiik(y,r)h(rz)drxjϕθu(t,y)un(t,x)ρλ(r~z)σrjk(x,r~)dr~dt\displaystyle=-\int_{s,x,z,y}\int_{s-\theta}^{s}\int_{z}^{u(t,y)}\sigma_{ry_{i}}^{ik}(y,r)h^{\prime}(r-z)\mathrm{d}r\partial_{x_{j}}\phi_{\theta}\int_{u(t,y)}^{u_{n}(t,x)}\rho_{\lambda}(\tilde{r}-z)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t
s,x,z,ysθszu(t,y)σryiik(y,r)h(rz)drϕθu(t,y)un(t,x)ρλ(r~z)σrxjjk(x,r~)dr~dt\displaystyle\quad-\int_{s,x,z,y}\int_{s-\theta}^{s}\int_{z}^{u(t,y)}\sigma_{ry_{i}}^{ik}(y,r)h^{\prime}(r-z)\mathrm{d}r\phi_{\theta}\int_{u(t,y)}^{u_{n}(t,x)}\rho_{\lambda}(\tilde{r}-z)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t
s,x,z,ysθszu(t,y)σrik(y,r)h(rz)dryixjϕθu(t,y)un(t,x)ρλ(r~z)σrjk(x,r~)dr~dt\displaystyle\quad-\int_{s,x,z,y}\int_{s-\theta}^{s}\int_{z}^{u(t,y)}\sigma_{r}^{ik}(y,r)h^{\prime}(r-z)\mathrm{d}r\partial_{y_{i}x_{j}}\phi_{\theta}\int_{u(t,y)}^{u_{n}(t,x)}\rho_{\lambda}(\tilde{r}-z)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t
s,x,z,ysθszu(t,y)σrik(y,r)h(rz)dryiϕθu(t,y)un(t,x)ρλ(r~z)σrxjjk(x,r~)dr~dt.\displaystyle\quad-\int_{s,x,z,y}\int_{s-\theta}^{s}\int_{z}^{u(t,y)}\sigma_{r}^{ik}(y,r)h^{\prime}(r-z)\mathrm{d}r\partial_{y_{i}}\phi_{\theta}\int_{u(t,y)}^{u_{n}(t,x)}\rho_{\lambda}(\tilde{r}-z)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t.

Similarly, we have

I6\displaystyle I_{6} =s,x,z,ysθsh(u(t,y)z)ϕθσyiik(y,u(t,y))xj0un(t,x)ρλ(r~z)σrjk(x,r~)dr~dt\displaystyle=-\int_{s,x,z,y}\int_{s-\theta}^{s}h^{\prime}(u(t,y)-z)\phi_{\theta}\sigma_{y_{i}}^{ik}(y,u(t,y))\partial_{x_{j}}\int_{0}^{u_{n}(t,x)}\rho_{\lambda}(\tilde{r}-z)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t
+s,x,z,ysθsh(u(t,y)z)ϕθσyiik(y,u(t,y))0un(t,x)ρλ(r~z)σrxjjk(x,r~)dr~dt\displaystyle\quad+\int_{s,x,z,y}\int_{s-\theta}^{s}h^{\prime}(u(t,y)-z)\phi_{\theta}\sigma_{y_{i}}^{ik}(y,u(t,y))\int_{0}^{u_{n}(t,x)}\rho_{\lambda}(\tilde{r}-z)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t
=s,x,z,ysθsh(u(t,y)z)xjϕθσyiik(y,u(t,y))u(t,y)un(t,x)ρλ(r~z)σrjk(x,r~)dr~dt\displaystyle=\int_{s,x,z,y}\int_{s-\theta}^{s}h^{\prime}(u(t,y)-z)\partial_{x_{j}}\phi_{\theta}\sigma_{y_{i}}^{ik}(y,u(t,y))\int_{u(t,y)}^{u_{n}(t,x)}\rho_{\lambda}(\tilde{r}-z)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t
+s,x,z,ysθsh(u(t,y)z)ϕθσyiik(y,u(t,y))u(t,y)un(t,x)ρλ(r~z)σrxjjk(x,r~)dr~dt.\displaystyle\quad+\int_{s,x,z,y}\int_{s-\theta}^{s}h^{\prime}(u(t,y)-z)\phi_{\theta}\sigma_{y_{i}}^{ik}(y,u(t,y))\int_{u(t,y)}^{u_{n}(t,x)}\rho_{\lambda}(\tilde{r}-z)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t.

For I1I_{1}, I3I_{3} and I5I_{5}, we integrate by parts in zz. Therefore, we have

limλ0limγ0𝔼Nλ,γ(4)=(u,un,θ).\lim_{\lambda\rightarrow 0}\lim_{\gamma\rightarrow 0}\mathbb{E}N_{\lambda,\gamma}^{(4)}=\mathcal{E}(u,u_{n},\theta).

Hence,

𝔼s,xHθ(s,x,un(s,x))C(n)θ1μ+(u,un,θ).\mathbb{E}\int_{s,x}H_{\theta}(s,x,u_{n}(s,x))\leq C(n)\theta^{1-\mu}+\mathcal{E}(u,u_{n},\theta).

Furthermore, inspired by 4.2, if 𝔼ξL2(D)2(m+1)m<\mathbb{E}\|\xi\|_{L_{2}(D)}^{\frac{2(m+1)}{m}}<\infty, we can choose CC independent of nn.

To prove (ii) in 3.4, note that for all gΓB+g\in\Gamma_{B}^{+}, we have g(,y)Cc(D)g(\cdot,y)\in C_{c}(D) for all yBD¯y\in B\cap\overline{D}. It is easy to prove following the proceeding proof. The reason is that the boundary terms vanish using the divergence theorem in xx, and other differences in the proof are 4.5, I2+I4I_{2}+I_{4} and I6I_{6}. For 4.5, with h𝒞+h\in\mathcal{C}^{+}, we have for all (y,z)D×[0,),(y,z)\in D\times[0,\infty),

0zσryiik(y,r)h(rz)dr=0zσrik(y,r)h(rz)dr=0.\int_{0}^{z}\sigma_{ry_{i}}^{ik}(y,r)h(r-z)\mathrm{d}r=\int_{0}^{z}\sigma_{r}^{ik}(y,r)h(r-z)\mathrm{d}r=0.

For z<0z<0, using 2.4 in 2.4, 4.2, 4.3 and the definition of 𝒞+\mathcal{C}^{+}, the boundary term arising in the divergence theorem in yy will disappear when λ0\lambda\rightarrow 0. Therefore, we have 4.5.

As for I2+I4I_{2}+I_{4} and I6I_{6}, we can apply

xj0u(t,y)ρλ(r~z)σrjk(x,r~)dr~dt0u(t,y)ρλ(r~z)σrxjjk(x,r~)dr~dt=0\partial_{x_{j}}\int_{0}^{u(t,y)}\rho_{\lambda}(\tilde{r}-z)\sigma_{r}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t-\int_{0}^{u(t,y)}\rho_{\lambda}(\tilde{r}-z)\sigma_{rx_{j}}^{jk}(x,\tilde{r})\mathrm{d}\tilde{r}\mathrm{d}t=0

instead of using the support of hh. Therefore, this proposition is proved. ∎

5. Existence and Uniqueness

Now, we give the proof of our main theorem.

Proof of 2.6.

In this part, we will use the L1L_{1}-estimates to prove that {un}n\{u_{n}\}_{n\in\mathbb{N}} constructed in Section 4 is a Cauchy sequence.

For n,n1n,n^{\prime}\geq 1, let unu_{n} and unu_{n^{\prime}} be the L2L_{2}-solutions of Π(Φn,ξn)\Pi(\Phi_{n},\xi_{n}) and Π(Φn,ξn)\Pi(\Phi_{n^{\prime}},\xi_{n^{\prime}}), respectively. 4.3 shows that unu_{n} and unu_{n^{\prime}} are also entropy solutions. 4.4 indicates that {un}n\{u_{n}\}_{n\in\mathbb{N}} has the ()(\star)-property. Without loss of generality, we assume that nnn\leq n^{\prime}. Since β((2κ¯)1,1]\beta\in((2\bar{\kappa})^{-1},1], we can choose ϑ((m2)1(2β)1,κ¯)\vartheta\in((m\land 2)^{-1}\vee(2\beta)^{-1},\bar{\kappa}) and α((2ϑ)1,1(m/2))\alpha\in((2\vartheta)^{-1},1\land(m/2)). Let δ=ε2ϑ\delta=\varepsilon^{2\vartheta} and λ=8/n\lambda=8/n. Using 4.1, we have RλnR_{\lambda}\geq n. Applying 3.14 with unu_{n} and unu_{n^{\prime}} and using 4.3 and the triangle inequality

𝔼ξn()ξ¯n(+h)L1(D)\displaystyle\mathbb{E}\|\xi_{n}(\cdot)-\bar{\xi}_{n}(\cdot+h)\|_{L_{1}(D)}
𝔼ξ()ξ¯(+h)L1(D)+2𝔼ξξnL1(D),n,\displaystyle\leq\mathbb{E}\|\xi(\cdot)-\bar{\xi}(\cdot+h)\|_{L_{1}(D)}+2\mathbb{E}\|\xi-\xi_{n}\|_{L_{1}(D)},\quad\forall n\in\mathbb{N},

we have

𝔼0TD|un(τ,x)un(τ,x)|dxdτ\displaystyle\mathbb{E}\int_{0}^{T}\int_{D}|u_{n^{\prime}}(\tau,x)-u_{n}(\tau,x)|\mathrm{d}x\mathrm{d}\tau
M(ε)+C𝔼ξξnL1(D)+C𝔼ξξnL1(D)+Cε2n2+Cε1n1\displaystyle\leq M(\varepsilon)+C\mathbb{E}\|\xi-\xi_{n^{\prime}}\|_{L_{1}(D)}+C\mathbb{E}\|\xi-\xi_{n}\|_{L_{1}(D)}+C\varepsilon^{-2}n^{-2}+C\varepsilon^{-1}n^{-1}
+Cε2𝔼(𝟏|un|n(1+un)Lm(DT)m+𝟏|un|n(1+un)Lm(DT)m),\displaystyle\quad+C\varepsilon^{-2}\mathbb{E}\Big{(}\big{\|}\mathbf{1}_{|u_{n}|\geq n}(1+u_{n})\big{\|}_{L_{m}(D_{T})}^{m}+\big{\|}\mathbf{1}_{|u_{n^{\prime}}|\geq n}(1+u_{n^{\prime}})\big{\|}_{L_{m}(D_{T})}^{m}\Big{)},

where M(ε)0M(\varepsilon)\rightarrow 0 as ε0+\varepsilon\rightarrow 0^{+}. For any ε0>0\varepsilon_{0}>0, we select sufficiently small ε(0,ε¯)\varepsilon\in(0,\bar{\varepsilon}) such that M(ε)ε0M(\varepsilon)\leq\varepsilon_{0}. Then, using 4.3, we can choose n0n_{0} sufficiently large so that for n0nnn_{0}\leq n\leq n^{\prime}, we have

C𝔼ξnξL1(D)+C𝔼ξξnL1(D)+Cε2n2+Cε1n1\displaystyle C\mathbb{E}\|\xi_{n^{\prime}}-\xi\|_{L_{1}(D)}+C\mathbb{E}\|\xi-\xi_{n}\|_{L_{1}(D)}+C\varepsilon^{-2}n^{-2}+C\varepsilon^{-1}n^{-1}
+Cε2𝔼(𝟏|un|n(1+un)Lm(DT)m+𝟏|un|n(1+un)Lm(DT)m)ε0.\displaystyle+C\varepsilon^{-2}\mathbb{E}\Big{(}\big{\|}\mathbf{1}_{|u_{n}|\geq n}(1+u_{n})\big{\|}_{L_{m}(D_{T})}^{m}+\big{\|}\mathbf{1}_{|u_{n^{\prime}}|\geq n}(1+u_{n^{\prime}})\big{\|}_{L_{m}(D_{T})}^{m}\Big{)}\leq\varepsilon_{0}.

Therefore, we have

limn,nun(t,x)un(t,x)L1(ΩT×D)=0.\lim_{n,n^{\prime}\rightarrow\infty}\|u_{n^{\prime}}(t,x)-u_{n}(t,x)\|_{L_{1}(\Omega_{T}\times D)}=0.

Moreover, by taking a subsequence, we may assume

(5.1) limnun=u,a.s.(ω,t,x)ΩT×D.\lim_{n\rightarrow\infty}u_{n}=u,\quad\mbox{a.s.}\ (\omega,t,x)\in\Omega_{T}\times D.

In addition, the sequence {|un(t,x)|q}n\{|u_{n}(t,x)|^{q}\}_{n\in\mathbb{N}} is uniformly integrable on ΩT×D\Omega_{T}\times D for all q(0,m+1)q\in(0,m+1). Now, we verify that uu is an entropy solution to Π(Φ,ξ)\Pi(\Phi,\xi) under 2.2.

Firstly, with the definition of ξn\xi_{n}, we have that {un}n\{u_{n}\}_{n\in\mathbb{N}} is weak convergence in the Banach space Lm+1(ΩT;Lm+1(D))L_{m+1}(\Omega_{T};L_{m+1}(D)). Applying the Banach-Saks Theorem, taking a subsequence and using 4.3, we have

𝔼uLm+1(ΩT;Lm+1(D))\displaystyle\mathbb{E}\|u\|_{L_{m+1}(\Omega_{T};L_{m+1}(D))} lim infnunLm+1(ΩT;Lm+1(D))\displaystyle\leq\liminf_{n\rightarrow\infty}\|u_{n}\|_{L_{m+1}(\Omega_{T};L_{m+1}(D))}
C(1+lim infnξnLm+1(Ω;Lm+1(D)))\displaystyle\leq C(1+\liminf_{n\rightarrow\infty}\|\xi_{n}\|_{L_{m+1}(\Omega;L_{m+1}(D))})
C(1+ξLm+1(Ω;Lm+1(D))).\displaystyle\leq C(1+\|\xi\|_{L_{m+1}(\Omega;L_{m+1}(D))}).

To prove 2.2 (ii) of uu, let fCb()f\in C_{b}(\mathbb{R}). From 2.1 and 4.3, we have

supn𝔼0TD|𝔞nf(un)|2dxdt\displaystyle\sup_{n}\mathbb{E}\int_{0}^{T}\int_{D}|\llbracket\mathfrak{a}_{n}f\rrbracket(u_{n})|^{2}\mathrm{d}x\mathrm{d}t supn𝔼0TD(|un|+|un|m+12)2dxdt<.\displaystyle\lesssim\sup_{n}\mathbb{E}\int_{0}^{T}\int_{D}(|u_{n}|+|u_{n}|^{\frac{m+1}{2}})^{2}\mathrm{d}x\mathrm{d}t<\infty.

Combining 4.2 with the fact that 𝔞nf(un)L2(ΩT;H01(D))\llbracket\mathfrak{a}_{n}f\rrbracket(u_{n})\in L_{2}(\Omega_{T};H_{0}^{1}(D)), we have

supn𝔼t𝔞nf(un)H1(D)2<.\sup_{n}\mathbb{E}\int_{t}\|\llbracket\mathfrak{a}_{n}f\rrbracket(u_{n})\|_{H^{1}(D)}^{2}<\infty.

With the pointwise convergence and uniform integrability of unu_{n} and 4.1, by taking a subsequence, we obtain the weak convergence of 𝔞nf(un)\llbracket\mathfrak{a}_{n}f\rrbracket(u_{n}) and 𝔞n(un)\llbracket\mathfrak{a}_{n}\rrbracket(u_{n}) in L2(ΩT;H01(D))L_{2}(\Omega_{T};H_{0}^{1}(D)) as nn\rightarrow\infty, and the limits are 𝔞f(u)\llbracket\mathfrak{a}f\rrbracket(u) and 𝔞(u)\llbracket\mathfrak{a}\rrbracket(u), respectively. On the other hand, for all ϕCc([0,T)×D)\phi\in C_{c}^{\infty}([0,T)\times D) and AA\in\mathcal{F}, based on the strong convergence of f(un)ϕf(u_{n})\phi and weak convergence of 𝔞n(un)\llbracket\mathfrak{a}_{n}\rrbracket(u_{n}), we have

𝔼[𝟏At,xxi𝔞f(u)ϕ]\displaystyle\mathbb{E}\bigg{[}\mathbf{1}_{A}\int_{t,x}\partial_{x_{i}}\llbracket\mathfrak{a}f\rrbracket(u)\phi\bigg{]} =limn𝔼[𝟏At,xxi𝔞nf(un)ϕ]\displaystyle=\lim_{n\rightarrow\infty}\mathbb{E}\bigg{[}\mathbf{1}_{A}\int_{t,x}\partial_{x_{i}}\llbracket\mathfrak{a}_{n}f\rrbracket(u_{n})\phi\bigg{]}
=limn𝔼[𝟏At,xf(un)xi𝔞n(un)ϕ]\displaystyle=\lim_{n\rightarrow\infty}\mathbb{E}\bigg{[}\mathbf{1}_{A}\int_{t,x}f(u_{n})\partial_{x_{i}}\llbracket\mathfrak{a}_{n}\rrbracket(u_{n})\phi\bigg{]}
=𝔼[𝟏At,xf(u)xi𝔞(u)ϕ].\displaystyle=\mathbb{E}\bigg{[}\mathbf{1}_{A}\int_{t,x}f(u)\partial_{x_{i}}\llbracket\mathfrak{a}\rrbracket(u)\phi\bigg{]}.

For 2.2 (iii), let AA\in\mathcal{F}. Combining 4.3 with Itô’s product rule, we have

(5.2) 𝔼[𝟏A0TDη(un)tϕdxdt]\displaystyle-\mathbb{E}\bigg{[}\mathbf{1}_{A}\int_{0}^{T}\int_{D}\eta(u_{n})\partial_{t}\phi\mathrm{d}x\mathrm{d}t\bigg{]}
=𝔼𝟏A[Dη(ξn)ϕ(0)dx+0TD(𝔞n2η(un)Δϕ+aijη(x,un)xixjϕ)dxdt\displaystyle=\mathbb{E}\mathbf{1}_{A}\Big{[}\int_{D}\eta(\xi_{n})\phi(0)\mathrm{d}x+\int_{0}^{T}\int_{D}\big{(}\llbracket\mathfrak{a}_{n}^{2}\eta^{\prime}\rrbracket(u_{n})\Delta\phi+\llbracket a^{ij}\eta^{\prime}\rrbracket(x,u_{n})\partial_{x_{i}x_{j}}\phi\big{)}\mathrm{d}x\mathrm{d}t
+0TD(axjijηfriη(x,un)η(un)bi(x,un))xiϕdxdt\displaystyle\quad+\int_{0}^{T}\int_{D}\big{(}\llbracket a_{x_{j}}^{ij}\eta^{\prime}-f_{r}^{i}\eta^{\prime}\rrbracket(x,u_{n})-\eta^{\prime}(u_{n})b^{i}(x,u_{n})\big{)}\partial_{x_{i}}\phi\mathrm{d}x\mathrm{d}t
+0TD(frxiiη(x,un)+η(un)fxii(x,un)+η(un)F(x,un))ϕdxdt\displaystyle\quad+\int_{0}^{T}\int_{D}\big{(}-\llbracket f_{rx_{i}}^{i}\eta^{\prime}\rrbracket(x,u_{n})+\eta^{\prime}(u_{n})f_{x_{i}}^{i}(x,u_{n})+\eta^{\prime}(u_{n})F(x,u_{n})\big{)}\phi\mathrm{d}x\mathrm{d}t
+0TD(12η(un)k=1|σxiik(x,un)|2ϕη(un)|𝔞n(un)|2ϕ)dxdt\displaystyle\quad+\int_{0}^{T}\int_{D}\Big{(}\frac{1}{2}\eta^{\prime\prime}(u_{n})\sum_{k=1}^{\infty}|\sigma_{x_{i}}^{ik}(x,u_{n})|^{2}\phi-\eta^{\prime\prime}(u_{n})|\nabla\llbracket\mathfrak{a}_{n}\rrbracket(u_{n})|^{2}\phi\Big{)}\mathrm{d}x\mathrm{d}t
+0TD(η(un)ϕσxiik(x,un)σrxiikη(x,un)ϕσrikη(x,un)xiϕ)dxdWk(t)].\displaystyle\quad+\int_{0}^{T}\int_{D}\Big{(}\eta^{\prime}(u_{n})\phi\sigma_{x_{i}}^{ik}(x,u_{n})-\llbracket\sigma_{rx_{i}}^{ik}\eta^{\prime}\rrbracket(x,u_{n})\phi-\llbracket\sigma_{r}^{ik}\eta^{\prime}\rrbracket(x,u_{n})\partial_{x_{i}}\phi\Big{)}\mathrm{d}x\mathrm{d}W^{k}(t)\Big{]}.

Since (η)1/2Cb()(\eta^{\prime\prime})^{1/2}\in C_{b}(\mathbb{R}). As the proof in checking (ii), we have

xi(η)1/2𝔞n(un)=(η(un))1/2xi𝔞n(un),\partial_{x_{i}}\llbracket(\eta^{\prime\prime})^{1/2}\mathfrak{a}_{n}\rrbracket(u_{n})=(\eta^{\prime\prime}(u_{n}))^{1/2}\partial_{x_{i}}\llbracket\mathfrak{a}_{n}\rrbracket(u_{n}),

and can assume that xi(η)1/2𝔞n(un)\partial_{x_{i}}\llbracket(\eta^{\prime\prime})^{1/2}\mathfrak{a}_{n}\rrbracket(u_{n}) converges weakly to xi(η)1/2𝔞(u)\partial_{x_{i}}\llbracket(\eta^{\prime\prime})^{1/2}\mathfrak{a}\rrbracket(u) in L2(ΩT;L2(D))L_{2}(\Omega_{T};L_{2}(D)). Then, we also have the weakly convergence in L2(ΩT×D,μ¯)L_{2}(\Omega_{T}\times D,\bar{\mu}), where dμ¯𝟏Bϕddtdx\mathrm{d}\bar{\mu}\coloneqq\mathbf{1}_{B}\phi\mathrm{d}\mathbb{P}\otimes\mathrm{d}t\otimes\mathrm{d}x, which indicates

𝔼𝟏Bt,xϕη(u)|𝔞(u)|2lim infn𝔼𝟏Bt,xϕη(un)|𝔞n(un)|2.\mathbb{E}\mathbf{1}_{B}\int_{t,x}\phi\eta^{\prime\prime}(u)|\nabla\llbracket\mathfrak{a}\rrbracket(u)|^{2}\leq\liminf_{n\rightarrow\infty}\mathbb{E}\mathbf{1}_{B}\int_{t,x}\phi\eta^{\prime\prime}(u_{n})|\nabla\llbracket\mathfrak{a}_{n}\rrbracket(u_{n})|^{2}.

Therefore, taking inferior limit on 5.2 and using 4.1 and 2.4, with the almost sure convergence and uniformly integrability of unu_{n}, we have that uu satisfies 2.3 almost surely. Therefore, uu is actually an entropy solution.

Now, we focus on the uniqueness. For n¯\bar{n}\in\mathbb{N}, define ξn¯ξn¯\xi_{\bar{n}}\coloneqq\xi\wedge\bar{n} and denote by un¯u_{\bar{n}} the entropy solution of Π(Φ,ξn¯)\Pi(\Phi,\xi_{\bar{n}}) constructed in the proof of existence. From the construction of un¯u_{\bar{n}}, with 3.9 and 4.4, the entropy solution un¯u_{\bar{n}} has the ()(\star)-property. Let u~\tilde{u} be an entropy solution of Π(Φ,ξ~)\Pi(\Phi,\tilde{\xi}). Note that

𝔼u~(t,)un¯(t,)L1(D)\displaystyle\mathbb{E}\|\tilde{u}(t,\cdot)-u_{\bar{n}}(t,\cdot)\|_{L_{1}(D)}
=𝔼(u~(t,)un¯(t,))+L1(D)+𝔼(un¯(t,)u~(t,))+L1(D).\displaystyle=\mathbb{E}\|(\tilde{u}(t,\cdot)-u_{\bar{n}}(t,\cdot))^{+}\|_{L_{1}(D)}+\mathbb{E}\|(u_{\bar{n}}(t,\cdot)-\tilde{u}(t,\cdot))^{+}\|_{L_{1}(D)}.

The estimate of the first part on the right hand side is obtained using 3.14 in the case that uu in (u~u)+(\tilde{u}-u)^{+} has the ()(\star)-property. Similarly, the second part can be estimated using 3.14 in the case that u~\tilde{u} in (u~u)+(\tilde{u}-u)^{+} has the ()(\star)-property. Combining these two estimates, we have

esssupt[0,T]𝔼u~(t,)un¯(t,)L1(D)C𝔼ξ~ξn¯L1(D),\underset{t\in[0,T]}{\mathrm{ess\,sup}}\,\mathbb{E}\|\tilde{u}(t,\cdot)-u_{\bar{n}}(t,\cdot)\|_{L_{1}(D)}\leq C\mathbb{E}\|\tilde{\xi}-\xi_{\bar{n}}\|_{L_{1}(D)},

where the constant CC depends only on N0N_{0}, KK, dd, TT and |D||D|. Taking the limit n¯\bar{n}\rightarrow\infty, we obtain 2.6 (i). Following this method and using 3.14 (i), we complete the proof of 2.6 (iii). ∎

6. Some auxiliary estimates

Lemma 6.1.

Suppose uu is an entropy solution to the Dirichlet problem Π(Φ,ξ)\Pi(\Phi,\xi). Under Assumptions 2.1, 2.4 and 2.5, if ξLm+1(Ω,0;Lm+1(D))\xi\in L_{m+1}(\Omega,\mathcal{F}_{0};L_{m+1}(D)), we have

(6.1) limγ0+1γ𝔼0γx|u(t,x)ξ(x)|2\displaystyle\lim_{\gamma\rightarrow 0^{+}}\frac{1}{\gamma}\mathbb{E}\int_{0}^{\gamma}\int_{x}|u(t,x)-\xi(x)|^{2} dt=0.\displaystyle\mathrm{d}t=0.
Proof.

From the partition of unity in Section 3, we can fix i{0,1,,N}i\in\{0,1,\ldots,N\} and define BBiB\coloneqq B_{i}, ψψi\psi\coloneqq\psi_{i} and ϱεϱε,i\varrho_{\varepsilon}\coloneqq\varrho_{\varepsilon,i}. Notice that dist(suppψ,B)>0\text{dist}(\text{supp}\,\psi,\partial B)>0. When ε\varepsilon is small enough, we have suppϱε(x)B\text{supp}\,\varrho_{\varepsilon}(\cdot-x)\subset B for all xsuppψx\in\text{supp}\,\psi. Then, from the definition of ϱε\varrho_{\varepsilon}, we have ψ()ϱε(y)Cc(D)\psi(\cdot)\varrho_{\varepsilon}(y-\cdot)\in C_{c}^{\infty}(D) for all yD¯y\in\overline{D} and sufficient small ε>0\varepsilon>0. Now, we only need to prove

limγ0+1γ𝔼0γx|u(t,x)ξ(x)|2ψ(x)dt=0.\lim_{\gamma\rightarrow 0^{+}}\frac{1}{\gamma}\mathbb{E}\int_{0}^{\gamma}\int_{x}|u(t,x)-\xi(x)|^{2}\psi(x)\mathrm{d}t=0.

We split it into three parts

(6.2) 1γ𝔼0γx|u(t,x)ξ(x)|2ψ(x)dt\displaystyle\frac{1}{\gamma}\mathbb{E}\int_{0}^{\gamma}\int_{x}|u(t,x)-\xi(x)|^{2}\psi(x)\mathrm{d}t
2𝔼Dd|ξ¯(y)ξ(x)|2ψ(x)ϱε(yx)dydx\displaystyle\leq 2\mathbb{E}\int_{D}\int_{\mathbb{R}^{d}}|\bar{\xi}(y)-\xi(x)|^{2}\psi(x)\varrho_{\varepsilon}(y-x)\mathrm{d}y\mathrm{d}x
+2γ𝔼0γDD|u(t,x)ξ¯(y)|2ψ(x)ϱε(yx)dydxdt\displaystyle\quad+\frac{2}{\gamma}\mathbb{E}\int_{0}^{\gamma}\int_{D}\int_{D}|u(t,x)-\bar{\xi}(y)|^{2}\psi(x)\varrho_{\varepsilon}(y-x)\mathrm{d}y\mathrm{d}x\mathrm{d}t
+2γ𝔼0γDDy,ε1|u(t,x)|2ψ(x)ϱε(yx)dydxdt,\displaystyle\quad+\frac{2}{\gamma}\mathbb{E}\int_{0}^{\gamma}\int_{D}\int_{D_{y,\varepsilon}^{1}}|u(t,x)|^{2}\psi(x)\varrho_{\varepsilon}(y-x)\mathrm{d}y\mathrm{d}x\mathrm{d}t,

where γ[0,T)\gamma\in[0,T) and Dy,ε1{yd:ϱε(yx)>0,xD}DD_{y,\varepsilon}^{1}\coloneqq\{y\in\mathbb{R}^{d}:\varrho_{\varepsilon}(y-x)>0,\ \exists x\in D\}\setminus D. See 3.21 for the definition of ξ¯\bar{\xi}. Notice that |Dy,ε1|=O(ε).|D_{y,\varepsilon}^{1}|=O(\varepsilon). We first estimate the third term on the right hand side as

(6.3) 2γ𝔼0γDDy,ε1|u(t,x)|2ψ(x)ϱε(yx)dydxdt\displaystyle\frac{2}{\gamma}\mathbb{E}\int_{0}^{\gamma}\int_{D}\int_{D_{y,\varepsilon}^{1}}|u(t,x)|^{2}\psi(x)\varrho_{\varepsilon}(y-x)\mathrm{d}y\mathrm{d}x\mathrm{d}t
=2γ𝔼0γDx,ε2Dy,ε1|u(t,x)|2ψ(x)ϱε(yx)dydxdt\displaystyle=\frac{2}{\gamma}\mathbb{E}\int_{0}^{\gamma}\int_{D_{x,\varepsilon}^{2}}\int_{D_{y,\varepsilon}^{1}}|u(t,x)|^{2}\psi(x)\varrho_{\varepsilon}(y-x)\mathrm{d}y\mathrm{d}x\mathrm{d}t
Cesssupt(0,γ)𝔼Dx,ε2|u(t,x)|2dx,\displaystyle\leq C\underset{t\in(0,\gamma)}{\mathrm{ess\,sup}}\,\mathbb{E}\int_{D_{x,\varepsilon}^{2}}|u(t,x)|^{2}\mathrm{d}x,

where Dx,ε2{xD:ϱε(yx)>0,yDy,ε1}D_{x,\varepsilon}^{2}\coloneqq\{x\in D:\varrho_{\varepsilon}(y-x)>0,\ \exists y\in D_{y,\varepsilon}^{1}\}. We also have |Dx,ε2|=O(ε)|D_{x,\varepsilon}^{2}|=O(\varepsilon). Now, we choose a non-negative function wεCc(d)w_{\varepsilon}\in C_{c}^{\infty}(\mathbb{R}^{d}) such that wε(x)=1w_{\varepsilon}(x)=1 for all xDx,ε2x\in D_{x,\varepsilon}^{2} and |suppwε|Cε|\text{supp}\,w_{\varepsilon}|\leq C\varepsilon. Suppose that s(0,γ)s\in(0,\gamma) is a Lebesgue point of the function

t𝔼x|u(t,x)|2wε(x),t\mapsto\mathbb{E}\int_{x}|u(t,x)|^{2}w_{\varepsilon}(x),

and θ(0,Tγ)\theta\in(0,T-\gamma). Define V(θ):[0,T]+V_{(\theta)}:[0,T]\rightarrow\mathbb{R}^{+} by V(θ)(0)1V_{(\theta)}(0)\coloneqq 1 and V(θ)θ1𝟏[s,s+θ)V_{(\theta)}^{\prime}\coloneqq-\theta^{-1}\mathbf{1}_{[s,s+\theta)}. We take a sequence of non-negative functions φθ,nCc([0,T))\varphi_{\theta,n}\in C_{c}^{\infty}([0,T)) satisfying

φθ,nL(0,T)tφθ,nL1(0,T)1,\|\varphi_{\theta,n}\|_{L_{\infty}(0,T)}\vee\|\partial_{t}\varphi_{\theta,n}\|_{L_{1}(0,T)}\leq 1,

such that

limnφθ,nV(θ)H1(0,T)=0.\lim_{n\rightarrow\infty}\|\varphi_{\theta,n}-V_{(\theta)}\|_{H^{1}(0,T)}=0.

For each δ>0\delta>0, define ηδC2()\eta_{\delta}\in C^{2}(\mathbb{R}) by

(6.4) ηδ(0)=ηδ(0)=0,ηδ(r)2𝟏[0,δ1)(|r|)+(|r|+δ1+2)𝟏[δ1,δ1+2)(|r|).\eta_{\delta}(0)=\eta_{\delta}^{\prime}(0)=0,\quad\eta_{\delta}^{\prime\prime}(r)\coloneqq 2\cdot\mathbf{1}_{[0,\delta^{-1})}(|r|)+(-|r|+\delta^{-1}+2)\cdot\mathbf{1}_{[\delta^{-1},\delta^{-1}+2)}(|r|).

It is easy to find that ηδ(r)r2\eta_{\delta}(r)\rightarrow r^{2} as δ0+\delta\rightarrow 0^{+}. Using the entropy inequality 2.3 for uu with η=ηδ0\eta=\eta_{\delta}\in\mathcal{E}_{0} and ϕn(t,x)=φθ,n(t)wε(x),\phi_{n}(t,x)=\varphi_{\theta,n}(t)w_{\varepsilon}(x), letting nn\rightarrow\infty and taking expectations, with 2.1 and 2.4-2.10 in 2.4, we have

1θss+θ𝔼Dηδ(u)wε(x)dxdt\displaystyle\frac{1}{\theta}\int_{s}^{s+\theta}\mathbb{E}\int_{D}\eta_{\delta}(u)w_{\varepsilon}(x)\mathrm{d}x\mathrm{d}t
𝔼Dηδ(ξ)wε(x)dx+𝔼0s+θDηδ(u)|𝔞(u)|2wε(x)dxdt\displaystyle\leq\mathbb{E}\int_{D}\eta_{\delta}(\xi)w_{\varepsilon}(x)\mathrm{d}x+\mathbb{E}\int_{0}^{s+\theta}\int_{D}\eta_{\delta}^{\prime\prime}(u)|\nabla\llbracket\mathfrak{a}\rrbracket(u)|^{2}w_{\varepsilon}(x)\mathrm{d}x\mathrm{d}t
+C𝔼0s+θD(1+|u|m+1)(i,j|xixjwε|+i|xiwε|+wε)dxdt.\displaystyle\quad+C\mathbb{E}\int_{0}^{s+\theta}\int_{D}(1+|u|^{m+1})\Big{(}\sum_{i,j}|\partial_{x_{i}x_{j}}w_{\varepsilon}|+\sum_{i}|\partial_{x_{i}}w_{\varepsilon}|+w_{\varepsilon}\Big{)}\mathrm{d}x\mathrm{d}t.

Taking δ0+\delta\rightarrow 0^{+} and then letting θ0+\theta\rightarrow 0^{+}, we have

𝔼D|u(s,x)|2wε(x)dxdt\displaystyle\mathbb{E}\int_{D}|u(s,x)|^{2}w_{\varepsilon}(x)\mathrm{d}x\mathrm{d}t
𝔼D|ξ(x)|2wε(x)dx+2𝔼0sD|𝔞(u)|2wε(x)dxdt\displaystyle\leq\mathbb{E}\int_{D}|\xi(x)|^{2}w_{\varepsilon}(x)\mathrm{d}x+2\mathbb{E}\int_{0}^{s}\int_{D}|\nabla\llbracket\mathfrak{a}\rrbracket(u)|^{2}w_{\varepsilon}(x)\mathrm{d}x\mathrm{d}t
+C𝔼0sD(1+|u|m+1)(i,j|xixjwε|+i|xiwε|+wε)dxdt\displaystyle\quad+C\mathbb{E}\int_{0}^{s}\int_{D}(1+|u|^{m+1})\Big{(}\sum_{i,j}|\partial_{x_{i}x_{j}}w_{\varepsilon}|+\sum_{i}|\partial_{x_{i}}w_{\varepsilon}|+w_{\varepsilon}\Big{)}\mathrm{d}x\mathrm{d}t

hold for almost all s(0,γ)s\in(0,\gamma). Combining 6.3 and taking γ0+\gamma\rightarrow 0^{+}, we have

(6.5) lim supγ0+2γ𝔼0γDDy,ε1|u(t,x)ξ¯(y)|2ψ(x)ϱε(yx)dydxdt\displaystyle\limsup_{\gamma\rightarrow 0^{+}}\frac{2}{\gamma}\mathbb{E}\int_{0}^{\gamma}\int_{D}\int_{D_{y,\varepsilon}^{1}}|u(t,x)-\bar{\xi}(y)|^{2}\psi(x)\varrho_{\varepsilon}(y-x)\mathrm{d}y\mathrm{d}x\mathrm{d}t
Clim supγ0+esssupt(0,γ)𝔼Dx,ε2|u(t,x)|2dxC𝔼Dsuppwε|ξ|2dx.\displaystyle\leq C\limsup_{\gamma\rightarrow 0^{+}}\underset{t\in(0,\gamma)}{\mathrm{ess\,sup}}\,\mathbb{E}\int_{D_{x,\varepsilon}^{2}}|u(t,x)|^{2}\mathrm{d}x\leq C\mathbb{E}\int_{D\cap\text{supp}\,w_{\varepsilon}}|\xi|^{2}\mathrm{d}x.

Now, we estimate the second term on the right hand side of 6.2. For γ[0,T]\gamma\in[0,T], choose a decreasing, non-negative function ϖC([0,T])\varpi\in C^{\infty}([0,T]) such that

ϖ(0)=2,ϖ2𝟏[0,2γ],tϖ1γ𝟏[0,γ].\varpi(0)=2,\quad\varpi\leq 2\cdot\mathbf{1}_{[0,2\gamma]},\quad\partial_{t}\varpi\leq-\frac{1}{\gamma}\cdot\mathbf{1}_{[0,\gamma]}.

Note that ψ()ϱε(y)Cc(D)\psi(\cdot)\varrho_{\varepsilon}(y-\cdot)\in C_{c}^{\infty}(D) for all yD¯y\in\overline{D} and sufficient small ε>0\varepsilon>0. For fixed (y,z)D×(y,z)\in D\times\mathbb{R}, using the entropy inequality 2.3 with ϕ(t,x)=ϖ(t)ψ(x)ϱε(yx)\phi(t,x)=\varpi(t)\psi(x)\varrho_{\varepsilon}(y-x) and η(r)=ηδ(rz)\eta(r)=\eta_{\delta}(r-z) defined in 6.4, with Assumptions 2.1 and 2.4, we have

t,xηδ(uz)tϖ(t)ψ(x)ϱε(yx)\displaystyle-\int_{t,x}\eta_{\delta}(u-z)\partial_{t}\varpi(t)\psi(x)\varrho_{\varepsilon}(y-x)
2xηδ(ξz)ψ(x)ϱε(yx)+Cε2t,x(1+|u|m+1+|z|m+1)ϖ(t)\displaystyle\leq 2\int_{x}\eta_{\delta}(\xi-z)\psi(x)\varrho_{\varepsilon}(y-x)+\frac{C}{\varepsilon^{2}}\int_{t,x}(1+|u|^{m+1}+|z|^{m+1})\varpi(t)
t,xηδ(uz)|x𝔞(u)|2ϕ+0Tx(ηδ(uz)ϕσxiik(x,u)\displaystyle\quad-\int_{t,x}\eta_{\delta}^{\prime\prime}(u-z)|\nabla_{x}\llbracket\mathfrak{a}\rrbracket(u)|^{2}\phi+\int_{0}^{T}\int_{x}\Big{(}\eta_{\delta}^{\prime}(u-z)\phi\sigma_{x_{i}}^{ik}(x,u)
σrxiikηδ(z)(x,u)ϕσrikηδ(z)(x,u)xiϕ)dWk(t).\displaystyle\quad-\llbracket\sigma_{rx_{i}}^{ik}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(x,u)\phi-\llbracket\sigma_{r}^{ik}\eta_{\delta}^{\prime}(\cdot-z)\rrbracket(x,u)\partial_{x_{i}}\phi\Big{)}\mathrm{d}W^{k}(t).

Notice that all the terms are continuous in zz\in\mathbb{R}. Replacing zz by ξ(y)\xi(y) by convolution, taking expectations, integrating over yDy\in D and taking δ0+,γ0+\delta\rightarrow 0^{+},\gamma\rightarrow 0^{+}, with the definition of ϖ\varpi, we have

(6.6) lim supγ0+1γ0γ𝔼x,y|u(t,x)ξ(y)|2ψ(x)ϱε(yx)dt\displaystyle\limsup_{\gamma\rightarrow 0^{+}}\frac{1}{\gamma}\int_{0}^{\gamma}\mathbb{E}\int_{x,y}|u(t,x)-\xi(y)|^{2}\psi(x)\varrho_{\varepsilon}(y-x)\mathrm{d}t
2𝔼x,y|ξ(x)ξ(y)|2ψ(x)ϱε(xy).\displaystyle\leq 2\mathbb{E}\int_{x,y}|\xi(x)-\xi(y)|^{2}\psi(x)\varrho_{\varepsilon}(x-y).

Combining 6.2 with 6.5-6.6, we have

lim supγ0+1γ𝔼0γx|u(t,x)ξ(x)|2ψ(x)dt\displaystyle\limsup_{\gamma\rightarrow 0^{+}}\frac{1}{\gamma}\mathbb{E}\int_{0}^{\gamma}\int_{x}|u(t,x)-\xi(x)|^{2}\psi(x)\mathrm{d}t
2𝔼Dd|ξ¯(y)ξ(x)|2ψ(x)ϱε(yx)dydx\displaystyle\leq 2\mathbb{E}\int_{D}\int_{\mathbb{R}^{d}}|\bar{\xi}(y)-\xi(x)|^{2}\psi(x)\varrho_{\varepsilon}(y-x)\mathrm{d}y\mathrm{d}x
+4𝔼x,y|ξ(x)ξ(y)|2ψ(x)ϱε(xy)+C𝔼Dsuppwε|ξ|2dx.\displaystyle\quad+4\mathbb{E}\int_{x,y}|\xi(x)-\xi(y)|^{2}\psi(x)\varrho_{\varepsilon}(x-y)+C\mathbb{E}\int_{D\cap\text{supp}\,w_{\varepsilon}}|\xi|^{2}\mathrm{d}x.

Since ξLm+1(Ω×D)\xi\in L_{m+1}(\Omega\times D), the right hand side goes to 0 as ε0+\varepsilon\rightarrow 0^{+}. The proof is complete. ∎

Lemma 6.2.

Let uLm+1(Ω×DT)u\in L_{m+1}(\Omega\times D_{T}) and for some ε(0,1)\varepsilon\in(0,1). Denote by K~\tilde{K} the constant in 3.1. Let ϱ:d\varrho:\mathbb{R}^{d}\rightarrow\mathbb{R} be a non-negative function, integrating to 11 and supported on a ball of radius K~ε\tilde{K}\varepsilon centered at the origin. Under 2.1, one has

(6.7) 𝔼t,x,y|u(t,x)u(t,y)|ϱ(xy)\displaystyle\mathbb{E}\int_{t,x,y}|u(t,x)-u(t,y)|\varrho(x-y)
Cε1m+1𝔼(1+uLm+1(DT)m+1+𝔞(u)L1(DT)),\displaystyle\leq C\varepsilon^{\frac{1}{m+1}}\mathbb{E}(1+\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\nabla\llbracket\mathfrak{a}\rrbracket(u)\|_{L_{1}(D_{T})}),
(6.8) 𝔼t,x,y|Φ(u(t,x))Φ(u(t,y))|ϱ(xy)\displaystyle\mathbb{E}\int_{t,x,y}|\Phi(u(t,x))-\Phi(u(t,y))|\varrho(x-y)
Cε1m+1𝔼(1+uLm+1(DT)m+1+𝔞(u)L2(DT)2),\displaystyle\leq C\varepsilon^{\frac{1}{m+1}}\mathbb{E}(1+\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\nabla\llbracket\mathfrak{a}\rrbracket(u)\|_{L_{2}(D_{T})}^{2}),

where CC depends on dd, KK, K~\tilde{K} and TT.

Proof.

We first prove 6.8. Define a set

Dε{yD:y+zD,for all zdwith |z|K~ε}.D_{-\varepsilon}\coloneqq\{y\in D:y+z\in D,\ \text{for all }z\in\mathbb{R}^{d}\ \text{with }|z|\leq\tilde{K}\varepsilon\}.

Notice that |DDε|=O(ε)|D\setminus D_{-\varepsilon}|=O(\varepsilon), combining with 2.1 and Hölder’s inequality, we have

(6.9) 𝔼t,x,y|Φ(u(t,x))Φ(u(t,y))|ϱ(xy)\displaystyle\mathbb{E}\int_{t,x,y}|\Phi(u(t,x))-\Phi(u(t,y))|\varrho(x-y)
𝔼tDεd|Φ(u(t,y+z))Φ(u(t,y))|ϱ(z)dzdy\displaystyle\leq\mathbb{E}\int_{t}\int_{D_{-\varepsilon}}\int_{\mathbb{R}^{d}}|\Phi(u(t,y+z))-\Phi(u(t,y))|\varrho(z)\mathrm{d}z\mathrm{d}y
+𝔼t,xDDε|Φ(u(t,x))Φ(u(t,y))|ϱ(xy)dy\displaystyle\quad+\mathbb{E}\int_{t,x}\int_{D\setminus D_{-\varepsilon}}|\Phi(u(t,x))-\Phi(u(t,y))|\varrho(x-y)\mathrm{d}y
Cε𝔼tDεdϱ(z)01|𝔞(u)𝔞(u)|(y+λz)dλdzdy\displaystyle\leq C\varepsilon\mathbb{E}\int_{t}\int_{D_{-\varepsilon}}\int_{\mathbb{R}^{d}}\varrho(z)\int_{0}^{1}|\mathfrak{a}(u)\nabla\llbracket\mathfrak{a}\rrbracket(u)|(y+\lambda z)\mathrm{d}\lambda\mathrm{d}z\mathrm{d}y
+(𝔼t,xDDε|Φ(u(t,x))Φ(u(t,y))|m+1mϱ(xy)dy)mm+1\displaystyle\quad+\Big{(}\mathbb{E}\int_{t,x}\int_{D\setminus D_{-\varepsilon}}|\Phi(u(t,x))-\Phi(u(t,y))|^{\frac{m+1}{m}}\varrho(x-y)\mathrm{d}y\Big{)}^{\frac{m}{m+1}}
(𝔼t,xDDεϱ(xy)dy)1m+1\displaystyle\quad\cdot\Big{(}\mathbb{E}\int_{t,x}\int_{D\setminus D_{-\varepsilon}}\varrho(x-y)\mathrm{d}y\Big{)}^{\frac{1}{m+1}}
Cε1m+1𝔼(1+uLm+1(DT)m+1+𝔞(u)L2(DT)2).\displaystyle\leq C\varepsilon^{\frac{1}{m+1}}\mathbb{E}(1+\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\nabla\llbracket\mathfrak{a}\rrbracket(u)\|_{L_{2}(D_{T})}^{2}).

Moreover, using 2.1 as in the proof of [DGG19, Lemma 3.1], we have

(6.10) 𝔼t,x,y|u(t,x)u(t,y)|ϱ(xy)\displaystyle\mathbb{E}\int_{t,x,y}|u(t,x)-u(t,y)|\varrho(x-y)
C𝔼t,x,y𝟏|u(t,x)||u(t,y)|1|𝔞(u(t,x))𝔞(u(t,y))|ϱ(xy)\displaystyle\leq C\mathbb{E}\int_{t,x,y}\mathbf{1}_{|u(t,x)|\vee|u(t,y)|\geq 1}|\llbracket\mathfrak{a}\rrbracket(u(t,x))-\llbracket\mathfrak{a}\rrbracket(u(t,y))|\varrho(x-y)
+C(𝔼t,x,y𝟏|u(t,x)||u(t,y)|1|𝔞(u(t,x))𝔞(u(t,y))|ϱ(xy))2m+1.\displaystyle\quad+C\Big{(}\mathbb{E}\int_{t,x,y}\mathbf{1}_{|u(t,x)|\vee|u(t,y)|\leq 1}|\llbracket\mathfrak{a}\rrbracket(u(t,x))-\llbracket\mathfrak{a}\rrbracket(u(t,y))|\varrho(x-y)\Big{)}^{\frac{2}{m+1}}.

Besides, as 6.9, we have

𝔼t,x,y|𝔞(u(t,x))𝔞(u(t,y))|ϱ(xy)\displaystyle\mathbb{E}\int_{t,x,y}|\llbracket\mathfrak{a}\rrbracket(u(t,x))-\llbracket\mathfrak{a}\rrbracket(u(t,y))|\varrho(x-y)
Cε𝔼tDεdϱ(z)01|𝔞(u)(y+λz)|dλdzdy\displaystyle\leq C\varepsilon\mathbb{E}\int_{t}\int_{D_{-\varepsilon}}\int_{\mathbb{R}^{d}}\varrho(z)\int_{0}^{1}|\nabla\llbracket\mathfrak{a}\rrbracket(u)(y+\lambda z)|\mathrm{d}\lambda\mathrm{d}z\mathrm{d}y
+(𝔼t,xDDε|𝔞(u(t,x))𝔞(u(t,y))|2ϱ(xy)dy)12\displaystyle\quad+\Big{(}\mathbb{E}\int_{t,x}\int_{D\setminus D_{-\varepsilon}}|\llbracket\mathfrak{a}\rrbracket(u(t,x))-\llbracket\mathfrak{a}\rrbracket(u(t,y))|^{2}\varrho(x-y)\mathrm{d}y\Big{)}^{\frac{1}{2}}
(𝔼t,xDDεϱ(xy)dy)12\displaystyle\quad\cdot\Big{(}\mathbb{E}\int_{t,x}\int_{D\setminus D_{-\varepsilon}}\varrho(x-y)\mathrm{d}y\Big{)}^{\frac{1}{2}}
Cε12𝔼(1+uLm+1(DT)m+1+𝔞(u)L2(DT)2).\displaystyle\leq C\varepsilon^{\frac{1}{2}}\mathbb{E}(1+\|u\|_{L_{m+1}(D_{T})}^{m+1}+\|\nabla\llbracket\mathfrak{a}\rrbracket(u)\|_{L_{2}(D_{T})}^{2}).

Combining with 6.10, we obtain inequality 6.7. ∎

Acknowledgement.

The research of K. Du was partially supported by National Natural Science Foundation of China (12222103), by National Key R&D Program of China (2018YFA0703900), and by Natural Science Foundation of Shanghai (20ZR1403600).

References

  • [ABK00] Boris P. Andreianov, Philippe Bénilan, and Stanislav N. Kruzhkov, L1L^{1}-theory of scalar conservation law with continuous flux function, J. Funct. Anal. 171 (2000), no. 1, 15–33. MR 1742856
  • [BDPR08] Viorel Barbu, Giuseppe Da Prato, and Michael Röckner, Existence and uniqueness of nonnegative solutions to the stochastic porous media equation, Indiana Univ. Math. J. 57 (2008), no. 1, 187–211. MR 2400255
  • [BDPR16] by same author, Stochastic porous media equations, Lecture Notes in Mathematics, vol. 2163, Springer, [Cham], 2016. MR 3560817
  • [BGV20] L’ubomír Baňas, Benjamin Gess, and Christian Vieth, Numerical approximation of singular-degenerate parabolic stochastic PDEs, arXiv preprint arXiv:2012.12150 (2020).
  • [Bre11] Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829
  • [BVW12] Caroline Bauzet, Guy Vallet, and Petra Wittbold, The Cauchy problem for conservation laws with a multiplicative stochastic perturbation, J. Hyperbolic Differ. Equ. 9 (2012), no. 4, 661–709. MR 3021756
  • [BVW14] by same author, The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation, J. Funct. Anal. 266 (2014), no. 4, 2503–2545. MR 3150169
  • [BVW15] by same author, A degenerate parabolic-hyperbolic Cauchy problem with a stochastic force, J. Hyperbolic Differ. Equ. 12 (2015), no. 3, 501–533. MR 3401975
  • [Car99] José Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999), no. 4, 269–361. MR 1709116
  • [CDK12] Gui-Qiang Chen, Qian Ding, and Kenneth H. Karlsen, On nonlinear stochastic balance laws, Arch. Ration. Mech. Anal. 204 (2012), no. 3, 707–743. MR 2917120
  • [Cio20] Ioana Ciotir, Stochastic porous media equations with divergence Itô noise, Evol. Equ. Control Theory 9 (2020), no. 2, 375–398. MR 4097646
  • [Cli23] Andrea Clini, Porous media equations with nonlinear gradient noise and Dirichlet boundary conditions, Stochastic Process. Appl. 159 (2023), 428–498. MR 4555282
  • [Daf05] Constantine M. Dafermos, Hyperbolic conservation laws in continuum physics, second ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2005. MR 2169977
  • [DG19] Konstantinos Dareiotis and Benjamin Gess, Supremum estimates for degenerate, quasilinear stochastic partial differential equations, Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019), no. 3, 1765–1796. MR 4010951
  • [DG20] by same author, Nonlinear diffusion equations with nonlinear gradient noise, Electron. J. Probab. 25 (2020), Paper No. 35, 43. MR 4089785
  • [DGG19] K. Dareiotis, M. Gerencsér, and B. Gess, Entropy solutions for stochastic porous media equations, J. Differential Equations 266 (2019), no. 6, 3732–3763. MR 3912697
  • [DGT20] Konstantinos Dareiotis, Benjamin Gess, and Pavlos Tsatsoulis, Ergodicity for stochastic porous media equations with multiplicative noise, SIAM J. Math. Anal. 52 (2020), no. 5, 4524–4564. MR 4154312
  • [DHV16] Arnaud Debussche, Martina Hofmanová, and Julien Vovelle, Degenerate parabolic stochastic partial differential equations: quasilinear case, Ann. Probab. 44 (2016), no. 3, 1916–1955. MR 3502597
  • [DSZ16] Nicolas Dirr, Marios Stamatakis, and Johannes Zimmer, Entropic and gradient flow formulations for nonlinear diffusion, J. Math. Phys. 57 (2016), no. 8, 081505, 13. MR 3534824
  • [FG19] Benjamin Fehrman and Benjamin Gess, Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise, Arch. Ration. Mech. Anal. 233 (2019), no. 1, 249–322. MR 3974641
  • [FG21a] by same author, Path-by-path well-posedness of nonlinear diffusion equations with multiplicative noise, J. Math. Pures Appl. (9) 148 (2021), 221–266. MR 4223353
  • [FG21b] by same author, Well-posedness of the Dean-Kawasaki and the nonlinear Dawson-Watanabe equation with correlated noise, arXiv preprint arXiv:2108.08858 (2021).
  • [FN08] Jin Feng and David Nualart, Stochastic scalar conservation laws, J. Funct. Anal. 255 (2008), no. 2, 313–373. MR 2419964
  • [GH18] Benjamin Gess and Martina Hofmanová, Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE, Ann. Probab. 46 (2018), no. 5, 2495–2544. MR 3846832
  • [GS15] Benjamin Gess and Panagiotis E. Souganidis, Scalar conservation laws with multiple rough fluxes, Commun. Math. Sci. 13 (2015), no. 6, 1569–1597. MR 3351442
  • [GS17a] by same author, Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws, Comm. Pure Appl. Math. 70 (2017), no. 8, 1562–1597. MR 3666564
  • [GS17b] by same author, Stochastic non-isotropic degenerate parabolic-hyperbolic equations, Stochastic Process. Appl. 127 (2017), no. 9, 2961–3004. MR 3682120
  • [Hen21] Sebastian Hensel, Finite time extinction for the 1D stochastic porous medium equation with transport noise, Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), no. 4, 892–939. MR 4333506
  • [Kim03] Jong Uhn Kim, On a stochastic scalar conservation law, Indiana Univ. Math. J. 52 (2003), no. 1, 227–256. MR 1970028
  • [Kru70] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) (1970), 228–255. MR 267257
  • [Kry13] N. V. Krylov, A relatively short proof of Itô’s formula for SPDEs and its applications, Stoch. Partial Differ. Equ. Anal. Comput. 1 (2013), no. 1, 152–174. MR 3327504
  • [Kun97] Hiroshi Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1997, Reprint of the 1990 original. MR 1472487
  • [LL06a] Jean-Michel Lasry and Pierre-Louis Lions, Jeux à champ moyen. I - Le cas stationnaire, Comptes Rendus Mathématique 343 (2006), no. 9, 619–625.
  • [LL06b] by same author, Jeux à champ moyen. II - Horizon fini et contrôle optimal, Comptes Rendus Mathématique 343 (2006), no. 10, 679–684.
  • [LL07] by same author, Mean field games, Jpn. J. Math. 2 (2007), no. 1, 229–260. MR 2295621
  • [LPS13] Pierre-Louis Lions, Benoît Perthame, and Panagiotis E. Souganidis, Scalar conservation laws with rough (stochastic) fluxes, Stoch. Partial Differ. Equ. Anal. Comput. 1 (2013), no. 4, 664–686. MR 3327520
  • [LPS14] by same author, Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case, Stoch. Partial Differ. Equ. Anal. Comput. 2 (2014), no. 4, 517–538. MR 3274890
  • [LT21] Ruoyang Liu and Shanjian Tang, The obstacle problem for stochastic porous media equations, arXiv preprint arXiv:2111.10736 (2021).
  • [LW12] Yachun Li and Qin Wang, Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic-hyperbolic equations, J. Differential Equations 252 (2012), no. 9, 4719–4741. MR 2891345
  • [RRW07] Jiagang Ren, Michael Röckner, and Feng-Yu Wang, Stochastic generalized porous media and fast diffusion equations, J. Differential Equations 238 (2007), no. 1, 118–152. MR 2334594
  • [Ser99] Denis Serre, Systems of conservation laws. 1, Cambridge University Press, Cambridge, 1999, Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N. Sneddon. MR 1707279
  • [T2̈0] Jonas M. Tölle, Stochastic evolution equations with singular drift and gradient noise via curvature and commutation conditions, Stochastic Process. Appl. 130 (2020), no. 5, 3220–3248. MR 4080744
  • [V0́7] Juan Luis Vázquez, The porous medium equation, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007, Mathematical theory. MR 2286292
  • [VW09] Guy Vallet and Petra Wittbold, On a stochastic first-order hyperbolic equation in a bounded domain, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 (2009), no. 4, 613–651. MR 2590159