This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Entrainment effects in neutron-proton mixtures within the nuclear energy-density functional theory. II. Finite temperatures and arbitrary currents.

V. Allard Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, B-1050 Brussels, Belgium    N. Chamel Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, B-1050 Brussels, Belgium
Abstract

Mutual entrainment effects in hot neutron-proton superfluid mixtures are studied in the framework of the self-consistent nuclear energy-density functional theory. The local mass currents in homogeneous or inhomogeneous nuclear systems, which we derive from the time-dependent Hartree-Fock-Bogoliubov equations at finite temperatures, are shown to have the same formal expression as the ones we found earlier in the absence of pairing at zero temperature. Analytical expressions for the entrainment matrix are obtained for application to superfluid neutron-star cores. Results are compared to those obtained earlier using Landau’s theory. Our formulas, valid for arbitrary temperatures and currents, are applicable to various types of functionals including the Brussels-Montreal series for which unified equations of state have been already calculated, thus laying the ground for a fully consistent microscopic description of superfluid neutron stars.

I Introduction

Formed from the gravitational core-collapse of massive stars during supernova explosions, neutron stars are initially very hot but rapidly cool down by emitting neutrinos. Their very dense matter is thus expected to undergo various phase transitions Blaschke and Chamel (2018). In particular, the core of a mature neutron star is thought to contain a neutron-proton superfluid mixture (see, e.g., Ref. Chamel (2017a) for a recent review). Because a superfluid can flow without resistance and carries no heat, the dynamics of a neutron star must be described by three distinct components at least: the neutron superfluid, the proton superconductor, and the normal fluid. Due to strong nuclear interactions, neutrons and protons cannot flow completely independently and are mutually entrained, similarly to superfluid 4He-3He mixtures Andreev and Bashkin (1975).

Although a fully relativistic treatment is required for an accurate description of the global dynamics of neutron stars, the flows of neutrons and protons remain essentially nonrelativistic at the nuclear length scales of interest here (at such scales, spacetime curvature can also be safely ignored, as shown e.g. in Ref. Glendenning (2000)). Therefore, we shall consider here nonrelativistic superfluid dynamics. The mass current 𝝆𝒒\boldsymbol{\rho_{q}} of one nucleon species (q=n,pq=n,p for neutron, proton) is expressible as a combination of the “superfluid velocities” (momenta per unit mass) 𝑽𝒒\boldsymbol{V_{q}} of both species and of the normal velocity 𝒗𝑵\boldsymbol{v_{N}} of thermal excitations, as Gusakov and Haensel (2005)

𝝆𝒏\displaystyle\boldsymbol{\rho_{n}} =\displaystyle= (ρnρnnρnp)𝒗𝑵+ρnn𝑽𝒏+ρnp𝑽𝒑,\displaystyle(\rho_{n}-\rho_{nn}-\rho_{np})\boldsymbol{v_{N}}+\rho_{nn}\boldsymbol{V_{n}}+\rho_{np}\boldsymbol{V_{p}}\,, (1)
𝝆𝒑\displaystyle\boldsymbol{\rho_{p}} =\displaystyle= (ρpρppρpn)𝒗𝑵+ρpn𝑽𝒏+ρpp𝑽𝒑.\displaystyle(\rho_{p}-\rho_{pp}-\rho_{pn})\boldsymbol{v_{N}}+\rho_{pn}\boldsymbol{V_{n}}+\rho_{pp}\boldsymbol{V_{p}}\,. (2)

It follows from Eqs. (1) and (2) that the normal fluid carries a momentum density given by

𝝆𝒏+𝝆𝒑ρn𝑽𝒏ρp𝑽𝒑=(ρnρnnρnp)(𝒗𝑵𝑽𝒏)+(ρpρppρpn)(𝒗𝑵𝑽𝒑).\displaystyle\boldsymbol{\rho_{n}}+\boldsymbol{\rho_{p}}-\rho_{n}\boldsymbol{V_{n}}-\rho_{p}\boldsymbol{V_{p}}=(\rho_{n}-\rho_{nn}-\rho_{np})(\boldsymbol{v_{N}}-\boldsymbol{V_{n}})+(\rho_{p}-\rho_{pp}-\rho_{pn})(\boldsymbol{v_{N}}-\boldsymbol{V_{p}})\,. (3)

As shown in Ref. Gusakov and Andersson (2006), the relativistic entrainment matrix, denoted by YqqY_{qq^{\prime}} and relating the nucleon four-currents to the superfluid four-velocities, can be inferred from its nonrelativistic counterpart ρqq\rho_{qq^{\prime}}.

The (symmetric) entrainment matrix ρqq\rho_{qq^{\prime}} is a key microscopic ingredient for modeling the dynamics of neutron stars, see, e.g. Refs. Andersson and Comer (2007); Chamel (2017a); Graber et al. (2017); Haskell and Sedrakian (2018) and references therein. It should be stressed that the entrainment matrix itself may depend on the superfluid flows, and this could play an important role on the dynamics of neutron stars Gusakov and Kantor (2013). Although observed neutron stars are usually cold, meaning that their internal temperature TT is much lower than the Fermi temperatures TFqT_{\text{F}q}, thermal effects may still be significant for the superfluid dynamics since the associated critical temperatures TcqT_{\text{c}q} are typically much lower than TFqT_{\text{F}q}. In particular, it has been recently shown that the temperature-dependence of the entrainment matrix may have implications for neutron-star oscillations Dommes et al. (2019); Kantor et al. (2020).

The entrainment matrix of a neutron-proton superfluid mixture at finite temperatures was first calculated in Ref. Gusakov and Haensel (2005) within Landau’s theory of Fermi liquids suitably extended to deal with superfluid systems Larkin and Migdal (1963); Leggett (1965). Calculations were performed assuming VqV_{q} are small compared to the corresponding Fermi velocities VFqV_{\text{F}q}, and thus considering first-order current perturbations of the static state. The same approach was later extended to relativistic mixtures allowing for the presence of hyperons Gusakov et al. (2009). Landau parameters were calculated using a relativistic σωρ\sigma-\omega-\rho mean-field model including scalar self-interactions but ignoring pairing. Numerical results for the relativistic entrainment matrix were obtained using the Lagrangian parametrization of Ref. Glendenning (1985), and employing the same empirical fits for the dependence on the critical temperatures as in Ref. Gusakov and Haensel (2005). More recently, some nonlinear effects of the superfluid flows have been taken into account in the calculations of the neutron-proton entrainment matrix Leinson (2018). However, Landau’s theory, on which all these studies rely, is not self-consistent, as emphasized in Ref. Gusakov and Haensel (2005). Moreover this approach cannot be easily transposed to inhomogeneous systems such as the inner crust of neutron stars, where superfluid neutrons coexist with nuclear clusters.

We have recently calculated the entrainment matrix of neutron-proton mixtures at low temperatures  Chamel and Allard (2019) within the self-consistent nuclear energy-density functional theory Duguet (2014). This theory has been already applied by different groups to determine the equation of state of cold dense matter using the same functional in all regions of neutron stars (crust, mantle, and core), thus ensuring a unified and thermodynamically consistent treatment, see, e.g. Refs. Douchin and Haensel (2001); Potekhin et al. (2013); Sharma et al. (2015); Pearson et al. (2018); Mutafchieva et al. (2019); Pearson et al. (2020); Mondal et al. (2020). Moreover, this theory has been also employed to compute the properties of superfluid neutrons in neutron-star crusts (see, e.g., Refs. Monrozeau et al. (2007); Chamel et al. (2010); Pastore (2015) for pairing gaps, critical temperatures, and specific heat; Refs. Chamel (2017b); Watanabe and Pethick (2017); Kashiwaba and Nakatsukasa (2019) for superfluid fractions) and the dynamics of quantized vortices Avogadro et al. (2007); Wlazłowski et al. (2016); Bulgac (2019). In this second paper, we extend our previous analysis to finite temperatures and arbitrary currents. The dependence of the entrainment matrix on temperature and superflows are taken into account fully self-consistently within the time-dependent Hartree-Fock-Bogoliubov (TDHFB) method.

After introducing the TDHFB method in Sect. II and deriving the general expressions for the local currents and superfluid velocities valid for any (homogeneous or inhomogeneous) nuclear system, calculations of the entrainment matrix in the outer core of neutron stars are presented in Sect. III. Landau’s approximations are also discussed. Throughout the paper, we shall ignore the small difference between the neutron and proton masses, and the nucleon mass will be denoted by mm.

II Time-dependent Hartree-Fock-Bogoliubov equations

II.1 Matrix formulation

The TDHFB method is discussed, e.g. in the classical textbook of Ref. Blaizot and Ribka (1986). The energy EE of a nucleon-matter element of volume VV is expressed as a function of the one-body density matrix nqijn_{q}^{ij} and pairing tensor κqij\kappa_{q}^{ij} defined by the following thermal averages of the creation and destruction operators, cqic_{q}^{i\dagger} and cqic_{q}^{i} (using the symbol \dagger for Hermitian conjugation), for nucleons of charge type qq in a quantum state ii (using the symbol * for complex conjugation):

nqij=cqjcqi=nqji,n_{q}^{ij}=\langle c_{q}^{j\dagger}c_{q}^{i}\rangle=n^{ji*}_{q}\,, (4)
κqij=cqjcqi=κqji.\kappa_{q}^{ij}=\langle c_{q}^{j}c_{q}^{i}\rangle=-\kappa_{q}^{ji}\,. (5)

Introducing the generalized Bogoliubov transformation111In Ref. Blaizot and Ribka (1986), the matrices were denoted by Xji=𝒰ijX_{j}^{i}=\mathcal{U}_{ij} and Yji=𝒱ijY_{j}^{i}=\mathcal{V}_{ij}.

(bqibqi)=j(𝒰ij(q)𝒱ij(q)𝒱ij(q)𝒰ij(q))(cqjcqj),\displaystyle\begin{pmatrix}b_{q}^{i}\\ b_{q}^{i\dagger}\end{pmatrix}=\sum_{j}\begin{pmatrix}\mathcal{U}^{(q)*}_{ij}&\mathcal{V}^{(q)*}_{ij}\\ \mathcal{V}^{(q)}_{ij}&\mathcal{U}^{(q)}_{ij}\end{pmatrix}\begin{pmatrix}c_{q}^{j}\\ c_{q}^{j\dagger}\end{pmatrix}\,, (6)

such that bqjbqi=δijfi(q)\langle b_{q}^{j\dagger}b_{q}^{i}\rangle=\delta^{ij}f^{(q)}_{i} (δij\delta^{ij} is the Kronecker’s symbol) and bqjbqi=bqjbqi=0\langle b_{q}^{j}b_{q}^{i}\rangle=\langle b_{q}^{j\dagger}b_{q}^{i\dagger}\rangle=0, where bqib_{q}^{i\dagger} and bqib_{q}^{i} are creation and destruction operators of a quasiparticle in a quantum state ii, the TDHFB equations, which formally take the same form at any temperature, can be written as Blaizot and Ribka (1986)

i𝒰ki(q)t=j[(hqijλqδij)𝒰kj(q)+Δqij𝒱kj(q)],\displaystyle i\hbar\frac{\partial\mathcal{U}^{(q)}_{ki}}{\partial t}=\sum_{j}\bigl{[}(h_{q}^{ij}-\lambda_{q}\delta^{ij})\mathcal{U}^{(q)}_{kj}+\Delta_{q}^{ij}\mathcal{V}^{(q)}_{kj}\bigr{]}\,, (7)
i𝒱ki(q)t=j[Δqij𝒰kj(q)(hqijλqδij)𝒱kj(q)],\displaystyle i\hbar\frac{\partial\mathcal{V}^{(q)}_{ki}}{\partial t}=\sum_{j}\bigl{[}-\Delta_{q}^{ij*}\mathcal{U}^{(q)}_{kj}-(h_{q}^{ij*}-\lambda_{q}\delta^{ij})\mathcal{V}^{(q)}_{kj}\bigr{]}\,, (8)

where λq\lambda_{q} denotes the chemical potentials. The matrices hqijh_{q}^{ij} and Δqij\Delta_{q}^{ij} of the single-particle Hamiltonian and the pair potential, respectively, are defined as

hqij=Enqji=hqji,\displaystyle h_{q}^{ij}=\frac{\partial E}{\partial n_{q}^{ji}}=h_{q}^{ji*}\,, (9)
Δqij=Eκqij=Δqji.\displaystyle\Delta_{q}^{ij}=\frac{\partial E}{\partial\kappa_{q}^{ij*}}=-\Delta_{q}^{ji}\,. (10)

The fermionic algebra of the particle operators (cqic^{i}_{q} and cqic_{q}^{i\dagger}) and the quasiparticle operators (bqib^{i}_{q} and bqib_{q}^{i\dagger}) yields the following identities

k(𝒰ik(q)𝒰jk(q)+𝒱ik(q)𝒱jk(q))=δij,k(𝒰ki(q)𝒰kj(q)+𝒱ki(q)𝒱kj(q))=δij,\displaystyle\sum_{k}\left(\mathcal{U}^{(q)}_{ik}\mathcal{U}^{(q)*}_{jk}+\mathcal{V}^{(q)}_{ik}\mathcal{V}^{(q)*}_{jk}\right)=\delta_{ij}\,,\qquad\sum_{k}\left(\mathcal{U}^{(q)*}_{ki}\mathcal{U}^{(q)}_{kj}+\mathcal{V}^{(q)}_{ki}\mathcal{V}^{(q)*}_{kj}\right)=\delta_{ij}, (11)
k(𝒰ik(q)𝒱jk(q)+𝒱ik(q)𝒰jk(q))=0,k(𝒰ki(q)𝒱kj(q)+𝒱ki(q)𝒰kj(q))=0.\displaystyle\sum_{k}\left(\mathcal{U}^{(q)}_{ik}\mathcal{V}^{(q)}_{jk}+\mathcal{V}^{(q)}_{ik}\mathcal{U}^{(q)}_{jk}\right)=0\,,\qquad\sum_{k}\left(\mathcal{U}^{(q)*}_{ki}\mathcal{V}^{(q)}_{kj}+\mathcal{V}^{(q)}_{ki}\mathcal{U}^{(q)*}_{kj}\right)=0\,. (12)

The one-body density matrix and the pairing tensor can be expressed in terms of the quasiparticle components as

nqij=k[fk(q)𝒰ki(q)𝒰kj(q)+(1fk(q))𝒱ki(q)𝒱kj(q)],\displaystyle n_{q}^{ij}=\sum_{k}\left[f^{(q)}_{k}\mathcal{U}^{(q)}_{ki}\mathcal{U}^{(q)*}_{kj}+(1-f^{(q)}_{k})\mathcal{V}^{(q)*}_{ki}\mathcal{V}^{(q)}_{kj}\right]\,, (13)
κqij=k[fk(q)𝒰ki(q)𝒱kj(q)+(1fk(q))𝒱ki(q)𝒰kj(q)].\displaystyle\kappa_{q}^{ij}=\sum_{k}\left[f^{(q)}_{k}\mathcal{U}^{(q)}_{ki}\mathcal{V}^{(q)*}_{kj}+(1-f^{(q)}_{k})\mathcal{V}^{(q)*}_{ki}\mathcal{U}^{(q)}_{kj}\right]\,. (14)

II.2 Coordinate-space formulation

The energy EE is generally further assumed to depend on nqijn_{q}^{ij} and κqij\kappa_{q}^{ij} only through the following local densities and currents222The energy may be a functional of other densities and currents. We consider here only those relevant for calculating the entrainment couplings in homogeneous nuclear matter using the most popular functionals.:

(i) the nucleon number density at position 𝒓\boldsymbol{r} and time tt

nq(𝒓,t)=σ=±1nq(𝒓,σ;𝒓,σ;t),\displaystyle n_{q}(\boldsymbol{r},t)=\sum_{\sigma=\pm 1}n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r},\sigma;t)\,, (15)

(ii) the pair density (in general a complex number) at position 𝒓\boldsymbol{r} and time tt

n~q(𝒓,t)=σ=±1n~q(𝒓,σ;𝒓,σ;t),\displaystyle\widetilde{n}_{q}(\boldsymbol{r},t)=\sum_{\sigma=\pm 1}\widetilde{n}_{q}(\boldsymbol{r},\sigma;\boldsymbol{r},\sigma;t)\,, (16)

(ii) the kinetic energy density (in units of 2/2m\hbar^{2}/2m) at position 𝒓\boldsymbol{r} and time tt

τq(𝒓,t)=σ=±1d3𝒓δ(𝒓𝒓)nq(𝒓,σ;𝒓,σ;t),\displaystyle\tau_{q}(\boldsymbol{r},t)=\sum_{\sigma=\pm 1}\int\,{\rm d}^{3}\boldsymbol{r^{\prime}}\,\delta(\boldsymbol{r}-\boldsymbol{r^{\prime}})\boldsymbol{\nabla}\cdot\boldsymbol{\nabla^{\prime}}n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma;t)\,, (17)

(iii) and the momentum density (in units of \hbar) at position 𝒓\boldsymbol{r} and time tt

𝒋𝒒(𝒓,t)=i2σ=±1d3𝒓δ(𝒓𝒓)()nq(𝒓,σ;𝒓,σ;t),\displaystyle\boldsymbol{j_{q}}(\boldsymbol{r},t)=-\frac{i}{2}\sum_{\sigma=\pm 1}\int\,{\rm d}^{3}\boldsymbol{r^{\prime}}\,\delta(\boldsymbol{r}-\boldsymbol{r^{\prime}})(\boldsymbol{\nabla}-\boldsymbol{\nabla^{\prime}})n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma;t)\,, (18)

where the particle and pair density matrices in coordinate space are respectively defined by Dobaczewski et al. (1984)

nq(𝒓,σ;𝒓,σ;t)=<cq(𝒓,σ;t)cq(𝒓,σ;t)>,n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma^{\prime};t)=<c_{q}(\boldsymbol{r^{\prime}},\sigma^{\prime};t)^{\dagger}c_{q}(\boldsymbol{r},\sigma;t)>\,, (19)
n~q(𝒓,σ;𝒓,σ;t)=σ<cq(𝒓,σ;t)cq(𝒓,σ;t)>,\widetilde{n}_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma^{\prime};t)=-\sigma^{\prime}<c_{q}(\boldsymbol{r^{\prime}},-\sigma^{\prime};t)c_{q}(\boldsymbol{r},\sigma;t)>\,, (20)

where cq(𝒓,σ;t)c_{q}(\boldsymbol{r},\sigma;t)^{\dagger} and cq(𝒓,σ;t)c_{q}(\boldsymbol{r},\sigma;t) are the creation and destruction operators for nucleons of charge type qq at position 𝒓\boldsymbol{r} with spin σ\sigma at time t. Introducing single-particle basis wavefunctions φi(q)(𝒓,σ)\varphi^{(q)}_{i}(\boldsymbol{r},\sigma), these matrices can be alternatively written in terms of nqijn^{ij}_{q} and κqij\kappa^{ij}_{q} as

nq(𝒓,σ;𝒓,σ;t)=i,jnqijφi(q)(𝒓,σ)φj(q)(𝒓,σ),n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma^{\prime};t)=\sum_{i,j}n^{ij}_{q}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\,, (21)
n~q(𝒓,σ;𝒓,σ;t)=σi,jκqijφi(q)(𝒓,σ)φj(q)(𝒓,σ).\widetilde{n}_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma^{\prime};t)=-\sigma^{\prime}\sum_{i,j}\kappa^{ij}_{q}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},-\sigma^{\prime})\,. (22)

Examples of nuclear energy-density functionals depending on the above local densities and currents are those constructed from zero-range effective nucleon-nucleon interactions of the Skyrme type Bender et al. (2003); Stone and Reinhard (2007). The present formalism is also applicable to more general classes of functionals, such as those proposed in Ref. Chamel et al. (2009). The pair density matrix is related to the order parameter Ψq(𝒓,t)\Psi_{q}(\boldsymbol{r},t) of the superfluid phase at position 𝒓\boldsymbol{r} and time tt as follows (see, e.g., Eq.(2.4.24) of Ref. Leggett (2006))

Ψq(𝒓,t)n~q(𝒓,1;𝒓,1;t)=n~q(𝒓,+1;𝒓,+1;t)=12n~q(𝒓,t).\Psi_{q}(\boldsymbol{r},t)\equiv\widetilde{n}_{q}(\boldsymbol{r},-1;\boldsymbol{r},-1;t)=\widetilde{n}_{q}(\boldsymbol{r},+1;\boldsymbol{r},+1;t)=\frac{1}{2}\widetilde{n}_{q}(\boldsymbol{r},t)\,. (23)

The matrices (9) and (10) of the single-particle Hamiltonian and pair potential are given by

hqij(t)\displaystyle h_{q}^{ij}(t) =\displaystyle= d3𝒓[δEδnq(𝒓,t)nq(𝒓,t)nqji+δEδτq(𝒓,t)τq(𝒓,t)nqji+δEδ𝒋𝒒(𝒓,t)𝒋𝒒(𝒓,t)nqji]\displaystyle\int{\rm d}^{3}\boldsymbol{r}\,\left[\frac{\delta E}{\delta n_{q}(\boldsymbol{r},t)}\frac{\partial n_{q}(\boldsymbol{r},t)}{\partial n_{q}^{ji}}+\frac{\delta E}{\delta\tau_{q}(\boldsymbol{r},t)}\frac{\partial\tau_{q}(\boldsymbol{r},t)}{\partial n_{q}^{ji}}+\frac{\delta E}{\delta\boldsymbol{j_{q}}(\boldsymbol{r},t)}\cdot\frac{\partial\boldsymbol{j_{q}}(\boldsymbol{r},t)}{\partial n_{q}^{ji}}\right] (24)
=\displaystyle= σd3𝒓φi(q)(𝒓,σ)hq(𝒓,t)φj(q)(𝒓,σ),\displaystyle\sum_{\sigma}\int{\rm d}^{3}\boldsymbol{r}\,\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)^{*}h_{q}(\boldsymbol{r},t)\varphi^{(q)}_{j}(\boldsymbol{r},\sigma)\,,
Δqij(t)\displaystyle\Delta_{q}^{ij}(t) =\displaystyle= d3𝒓δEδn~q(𝒓,t)n~q(𝒓,t)κqij\displaystyle\int{\rm d}^{3}\boldsymbol{r}\,\frac{\delta E}{\delta\widetilde{n}_{q}(\boldsymbol{r},t)^{*}}\frac{\partial\widetilde{n}_{q}(\boldsymbol{r},t)^{*}}{\partial\kappa_{q}^{ij*}} (25)
=\displaystyle= σσd3𝒓φi(q)(𝒓,σ)Δq(𝒓,t)φj(q)(𝒓,σ),\displaystyle-\sum_{\sigma}\sigma\int{\rm d}^{3}\boldsymbol{r}\,\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)^{*}\Delta_{q}(\boldsymbol{r},t)\varphi^{(q)}_{j}(\boldsymbol{r},-\sigma)^{*}\,,

where

hq(𝒓,t)\displaystyle h_{q}(\boldsymbol{r},t) =\displaystyle= 22mq(𝒓,t)+Uq(𝒓,t)i2[𝑰𝒒(𝒓,t)+𝑰𝒒(𝒓,t)],\displaystyle-\boldsymbol{\nabla}\cdot\frac{\hbar^{2}}{2m_{q}^{\oplus}(\boldsymbol{r},t)}\boldsymbol{\nabla}+U_{q}(\boldsymbol{r},t)-\frac{i}{2}\biggl{[}\boldsymbol{I_{q}}(\boldsymbol{r},t)\cdot\boldsymbol{\nabla}+\boldsymbol{\nabla}\cdot\boldsymbol{I_{q}}(\boldsymbol{r},t)\biggr{]}\,, (26)
22mq(𝒓,t)=δEδτq(𝒓,t),Uq(𝒓,t)=δEδnq(𝒓,t),𝑰𝒒(𝒓,t)=δEδ𝒋𝒒(𝒓,t),\displaystyle\frac{\hbar^{2}}{2m_{q}^{\oplus}(\boldsymbol{r},t)}=\frac{\delta E}{\delta\tau_{q}(\boldsymbol{r},t)},\qquad U_{q}(\boldsymbol{r},t)=\frac{\delta E}{\delta n_{q}(\boldsymbol{r},t)},\qquad\boldsymbol{I_{q}}(\boldsymbol{r},t)=\frac{\delta E}{\delta\boldsymbol{j_{q}}(\boldsymbol{r},t)}\,, (27)
Δq(𝒓,t)=2δEδn~q(𝒓,t).\displaystyle\Delta_{q}(\boldsymbol{r},t)=2\frac{\delta E}{\delta\widetilde{n}_{q}(\boldsymbol{r},t)^{*}}\,. (28)

The factor of 22 in Eq. (28) arises from the antisymmetry of the pairing tensor κqij\kappa_{q}^{ij} (taking the derivative with respect to κqij\kappa_{q}^{ij*} is equivalent to taking the derivative with respect to κqji-\kappa_{q}^{ji*}). Because 𝑰𝒒\boldsymbol{I_{q}} is a vector, it must obviously depend itself on 𝒋𝒒\boldsymbol{j_{q}}. This may also be the case for all the other fields. For instance, the potential UqU_{q} derived from the Brussels-Montreal functionals BSk19-26 Goriely et al. (2010, 2013) depends on jn2j_{n}^{2}, jp2j_{p}^{2} and 𝒋𝒏𝒋𝒑\boldsymbol{j_{n}}\cdot\boldsymbol{j_{p}}.

Since the energy EE is real, it can only depend on the pair density through its square modulus |n~q(𝒓,t)|2|\widetilde{n}_{q}(\boldsymbol{r},t)|^{2}. The pairing potential (28) can thus be written as

Δq(𝒓,t)=2δEδ|n~q(𝒓,t)|2n~q(𝒓,t)=4δEδ|n~q(𝒓,t)|2Ψq(𝒓,t).\Delta_{q}(\boldsymbol{r},t)=2\frac{\delta E}{\delta|\widetilde{n}_{q}(\boldsymbol{r},t)|^{2}}\widetilde{n}_{q}(\boldsymbol{r},t)=4\frac{\delta E}{\delta|\widetilde{n}_{q}(\boldsymbol{r},t)|^{2}}\Psi_{q}(\boldsymbol{r},t)\,. (29)

The last equality shows that Δq(𝒓,t)\Delta_{q}(\boldsymbol{r},t) has the same phase as the order parameter Ψq(𝒓,t)\Psi_{q}(\boldsymbol{r},t). Using Eq. (22), the matrix elements (25) of the pairing field (29) will thus generally take the following form:

Δqij=12k,lvijkl(q)κqkl,\Delta_{q}^{ij}=\frac{1}{2}\sum_{k,l}v^{(q)}_{ijkl}\kappa^{kl}_{q}\,, (30)

with

vijkl(q)4σ,σσσd3𝒓δEδ|n~q(𝒓,t)|2φi(q)(𝒓,σ)φj(q)(𝒓,σ)φk(q)(𝒓,σ)φl(q)(𝒓,σ).v^{(q)}_{ijkl}\equiv 4\sum_{\sigma,\sigma^{\prime}}\sigma\sigma^{\prime}\int{\rm d}^{3}\boldsymbol{r}\,\frac{\delta E}{\delta|\widetilde{n}_{q}(\boldsymbol{r},t)|^{2}}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)^{*}\varphi^{(q)}_{j}(\boldsymbol{r},-\sigma)^{*}\varphi^{(q)}_{k}(\boldsymbol{r},\sigma^{\prime})\varphi^{(q)}_{l}(\boldsymbol{r},-\sigma^{\prime})\,. (31)

Let us note that vijkl(q)=vklij(q)=vjikl(q)=vijlk(q)v^{(q)}_{ijkl}=v^{(q)*}_{klij}=-v^{(q)}_{jikl}=-v^{(q)}_{ijlk}. In the traditional formulation of the TDHFB equations (see, e.g., Ref. Blaizot and Ribka (1986)), vijkl(q)v^{(q)}_{ijkl} represents the matrix elements of the effective (in-medium) two-body pairing interaction.

II.3 Mass currents and superfluid velocities

The TDHFB Eqs. (7) and (8) can be conveniently rewritten as Blaizot and Ribka (1986)

inqijt=k(hqiknqkjnqikhqkj+κqikΔqkjΔqikκqkj),\displaystyle i\hbar\frac{\partial n_{q}^{ij}}{\partial t}=\sum_{k}\left(h_{q}^{ik}n_{q}^{kj}-n_{q}^{ik}h_{q}^{kj}+\kappa_{q}^{ik}\Delta_{q}^{kj*}-\Delta_{q}^{ik}\kappa_{q}^{kj*}\right)\,, (32)
iκqijt=k[(hqikλqδik)κqkj+κqik(hqkjλqδkj)ΔqiknqkjnqikΔqkj]+Δqij.\displaystyle i\hbar\frac{\partial\kappa_{q}^{ij}}{\partial t}=\sum_{k}\left[(h_{q}^{ik}-\lambda_{q}\delta^{ik})\kappa_{q}^{kj}+\kappa_{q}^{ik}(h_{q}^{kj*}-\lambda_{q}\delta^{kj})-\Delta_{q}^{ik}n_{q}^{kj*}-n_{q}^{ik}\Delta_{q}^{kj}\right]+\Delta_{q}^{ij}\,. (33)

As shown in Appendix A, Eq. (32) can be translated in coordinate space by the same continuity equations as in the absence of pairing (a similar conclusion was previously drawn in Ref. Gusakov (2010) within Landau’s theory)

ρq(𝒓,t)t+𝝆𝒒(𝒓,t)=0,\displaystyle\frac{\partial\rho_{q}(\boldsymbol{r},t)}{\partial t}+\boldsymbol{\nabla}\cdot\boldsymbol{\rho_{q}}(\boldsymbol{r},t)=0\,, (34)

where the nucleon mass current is given by Chamel and Allard (2019)

𝝆𝒒(𝒓,t)=mmq(𝒓,t)𝒋𝒒(𝒓,t)+ρq(𝒓,t)𝑰𝒒(𝒓,t).\displaystyle\boldsymbol{\rho_{q}}(\boldsymbol{r},t)=\frac{m}{m_{q}^{\oplus}(\boldsymbol{r},t)}\hbar\boldsymbol{j_{q}}(\boldsymbol{r},t)+\rho_{q}(\boldsymbol{r},t)\frac{\boldsymbol{I_{q}}(\boldsymbol{r},t)}{\hbar}\,. (35)

The effective mass mq(𝒓,t)m_{q}^{\oplus}(\boldsymbol{r},t) and the vector field 𝑰𝒒(𝒓,t)\boldsymbol{I_{q}}(\boldsymbol{r},t) are defined by Eq. (27). As shown in our previous work Chamel and Allard (2019), the nucleon mass current can be expressed solely in terms of the momentum densities as

𝝆𝒒(𝒓,t)\displaystyle\boldsymbol{\rho_{q}}(\boldsymbol{r},t) =\displaystyle= 𝒋𝒒(𝒓,t){1+22[δEnucjδX0(𝒓,t)δEnucjδX1(𝒓,t)]ρ(𝒓,t)}\displaystyle\hbar\boldsymbol{j_{q}}(\boldsymbol{r},t)\Biggl{\{}1+\frac{2}{\hbar^{2}}\Biggl{[}\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}(\boldsymbol{r},t)}-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}(\boldsymbol{r},t)}\Biggr{]}\rho(\boldsymbol{r},t)\Biggr{\}} (36)
𝒋(𝒓,t)22[δEnucjδX0(𝒓,t)δEnucjδX1(𝒓,t)]ρq(𝒓,t),\displaystyle-\hbar\boldsymbol{j}(\boldsymbol{r},t)\frac{2}{\hbar^{2}}\Biggl{[}\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}(\boldsymbol{r},t)}-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}(\boldsymbol{r},t)}\Biggr{]}\rho_{q}(\boldsymbol{r},t)\,,

where EnucjE^{j}_{\rm nuc} represents the nuclear-energy terms contributing to the mass currents, and we have introduced the following fields

X0(𝒓,t)=n0(𝒓,t)τ0(𝒓,t)j0(𝒓,t)2,X_{0}(\boldsymbol{r},t)=n_{0}(\boldsymbol{r},t)\tau_{0}(\boldsymbol{r},t)-j_{0}(\boldsymbol{r},t)^{2}\,, (37)
X1(𝒓,t)=n1(𝒓,t)τ1(𝒓,t)j1(𝒓,t)2.X_{1}(\boldsymbol{r},t)=n_{1}(\boldsymbol{r},t)\tau_{1}(\boldsymbol{r},t)-j_{1}(\boldsymbol{r},t)^{2}\,. (38)

Let us recall that the subscripts 0 and 11 denote isoscalar and isovector quantities, respectively, namely sums over neutrons and protons for the former (e.g. n0n=nn+npn_{0}\equiv n=n_{n}+n_{p}) and differences between neutrons and protons for the latter (e.g. n1=nnnpn_{1}=n_{n}-n_{p}).

The so-called “superfluid velocity” of the nucleon species qq at position 𝒓\boldsymbol{r} and time tt is defined by (see, e.g., Eq. (2.4.21) of Ref. Leggett (2006))

𝑽𝒒(𝒓,t)=2mϕq(𝒓,t),\displaystyle\boldsymbol{V_{q}}(\boldsymbol{r},t)=\frac{\hbar}{2m}\boldsymbol{\nabla}\phi_{q}(\boldsymbol{r},t)\,, (39)

where ϕq(𝒓,t)\phi_{q}(\boldsymbol{r},t) is the phase of the associated condensate defined through the order parameter (23)

Ψq(𝒓,t)=|Ψq(𝒓,t)|exp(iϕq(𝒓,t)).\displaystyle\Psi_{q}(\boldsymbol{r},t)=|\Psi_{q}(\boldsymbol{r},t)|\exp(i\phi_{q}(\boldsymbol{r},t))\,. (40)

III Entrainment effects in neutron-star cores

III.1 Exact solution of the TDHFB equations in homogeneous matter

In this section, we consider an homogeneous neutron-proton mixture with stationary nucleon currents in the normal rest frame (𝒗𝑵=𝟎\boldsymbol{v_{N}}=\boldsymbol{0}). The latter assumption ensures that the entropy densities sqs_{q} are independent of time. Recalling that Blaizot and Ribka (1986)

sq=kBVi[fi(q)lnfi(q)+(1fi(q))ln(1fi(q))],\displaystyle s_{q}=-\frac{k_{\rm B}}{V}\sum_{i}\left[f^{(q)}_{i}\ln f^{(q)}_{i}+(1-f^{(q)}_{i})\ln(1-f^{(q)}_{i})\right]\,, (41)

where kBk_{\rm B} denotes Boltzmann’s constant, the quasiparticle distribution functions fi(q)f^{(q)}_{i} are therefore also independent of time.

The single-particle wave functions are given by plane waves:

φj(𝒓,σ)=1Vexp(i𝒌j𝒓)χj(σ),\displaystyle\varphi_{j}(\boldsymbol{r},\sigma)=\frac{1}{\sqrt{V}}\exp\left(i\boldsymbol{k}_{j}\cdot\boldsymbol{r}\right)\chi_{j}(\sigma)\,, (42)

where χj(σ)=δσjσ\chi_{j}(\sigma)=\delta_{\sigma_{j}\sigma} denotes the Pauli spinor. As can be seen from Eqs. (21), and (24), the density matrix (4) and the single-particle Hamiltonian matrix (9) are both diagonal in this basis.

The superfluid velocities, which are necessarily spatially uniform and independent of time, are conveniently written as

𝑽𝒒𝑸𝒒m.\displaystyle\boldsymbol{V_{q}}\equiv\frac{\hbar\boldsymbol{Q_{q}}}{m}\,. (43)

This corresponds to a superfluid phase ϕq(𝒓)=2𝑸𝒒𝒓\phi_{q}(\boldsymbol{r})=2\,\boldsymbol{Q_{q}}\cdot\boldsymbol{r} (modulo some arbitrary constant term without any physical consequence). Inserting Eq. (42) in Eq. (23) using Eqs. (16) and (22), the order parameter (23) thus reduces to

Ψq(𝒓,t)=|Ψq(t)|exp(2i𝑸𝒒𝒓)=14Vi,jκqijexp[i(𝒌i+𝒌j)𝒓](σjσi).\displaystyle\Psi_{q}(\boldsymbol{r},t)=|\Psi_{q}(t)|\exp\left(2i\boldsymbol{Q_{q}}\cdot\boldsymbol{r}\right)=\frac{1}{4V}\sum_{i,j}\kappa_{q}^{ij}\exp\left[i\left(\boldsymbol{k}_{i}+\boldsymbol{k}_{j}\right)\cdot\boldsymbol{r}\right](\sigma_{j}-\sigma_{i})\,. (44)

One simple choice is to consider that κijq\kappa^{q}_{ij} is non-zero only if the states ii and jj have opposite spins and wave vectors 𝒌i\boldsymbol{k}_{i} and 𝒌j\boldsymbol{k}_{j} are such that 𝒌i+𝒌j=2𝑸𝒒\boldsymbol{k}_{i}+\boldsymbol{k}_{j}=2\boldsymbol{Q_{q}}. We can always arrange states such that 𝒌i=𝒌+𝑸𝒒\boldsymbol{k}_{i}=\boldsymbol{k}+\boldsymbol{Q_{q}} and 𝒌j=𝒌+𝑸𝒒\boldsymbol{k}_{j}=-\boldsymbol{k}+\boldsymbol{Q_{q}}. For convenience, we introduce the following shorthand notation

k(𝒌+𝑸𝒒,σ),k¯(𝒌+𝑸𝒒,σ).\displaystyle k\equiv(\boldsymbol{k}+\boldsymbol{Q_{q}},\sigma)\,,\qquad\qquad\bar{k}\equiv(-\boldsymbol{k}+\boldsymbol{Q_{q}},-\sigma)\,. (45)

These quantum numbers define the conjugate states that are paired. Indeed, it follows from the definition (10) that the only nonzero matrix elements of the pair potential are of the form Δqkk¯=Δqk¯k\Delta_{q}^{k\bar{k}}=-\Delta_{q}^{\bar{k}k}. In the absence of current (𝑸𝒒=𝟎\boldsymbol{Q_{q}}=\boldsymbol{0}), the conjugate state k¯\bar{k} is the time-reversed state of kk. The presence of a non-vanishing current (𝑸𝒒𝟎\boldsymbol{Q_{q}}\neq\boldsymbol{0}) breaks the time-reversal symmetry. The nonzero elements of the 𝒰(q)\mathcal{U}^{(q)} and 𝒱(q)\mathcal{V}^{(q)} matrices satisfying Eqs. (11) and (12) are of the form 𝒰kk(q)=𝒰k¯k¯(q)\mathcal{U}^{(q)}_{kk}=\mathcal{U}^{(q)}_{\bar{k}\bar{k}} and 𝒱kk¯(q)=𝒱k¯k(q)\mathcal{V}^{(q)}_{k\bar{k}}=-\mathcal{V}^{(q)}_{\bar{k}k}. Substituting i/ti\hbar\partial/\partial t by the quasiparticle energies 𝔈k(q)\mathfrak{E}^{(q)}_{k}, the TDHFB Eqs. (7) and (8) finally reduce to

(ξk(q)Δk(q)Δk(q)ξk¯(q))(𝒰kk(q)𝒱kk¯(q))=𝔈k(q)(𝒰kk(q)𝒱kk¯(q)),\displaystyle\begin{pmatrix}\xi^{(q)}_{k}&\Delta^{(q)}_{k}\\ \Delta^{(q)*}_{k}&-\xi^{(q)*}_{\bar{k}}\end{pmatrix}\begin{pmatrix}\mathcal{U}^{(q)}_{kk}\\ \mathcal{V}^{(q)}_{k\bar{k}}\end{pmatrix}=\mathfrak{E}^{(q)}_{k}\begin{pmatrix}\mathcal{U}^{(q)}_{kk}\\ \mathcal{V}^{(q)}_{k\bar{k}}\end{pmatrix}\,, (46)

where ξk(q)ϵk(q)λq\xi^{(q)}_{k}\equiv\epsilon^{(q)}_{k}-\lambda_{q} (ϵk(q)\epsilon^{(q)}_{k} denoting the eigenvalues of the single-particle Hamiltonian matrix) are explicitly given by

ξk(q)=22mq(𝒌+𝑸𝒒)2+Uq+𝑰q(𝒌+𝑸𝒒)λq.\displaystyle\xi^{(q)}_{k}=\frac{\hbar^{2}}{2m_{q}^{\oplus}}\left(\boldsymbol{k}+\boldsymbol{Q_{q}}\right)^{2}+U_{q}+\boldsymbol{I}_{q}\cdot\left(\boldsymbol{k}+\boldsymbol{Q_{q}}\right)-\lambda_{q}\,. (47)

The matrix elements Δk(q)Δqkk¯=Δk¯(q)\Delta^{(q)}_{k}\equiv\Delta_{q}^{k\bar{k}}=-\Delta^{(q)}_{\bar{k}} are given by the following equation

Δk(q)=12lvkk¯ll¯(q)κqll¯.\Delta^{(q)}_{k}=\frac{1}{2}\sum_{l}v^{(q)}_{k\bar{k}l\bar{l}}\,\kappa_{q}^{l\bar{l}}\,. (48)

Using Eqs. (13), (15), (18), and (21), the nucleon number and momentum densities read

nq=1Vknqkk=1Vk[|𝒰kk(q)|2fk(q)+|𝒱k¯k(q)|2(1fk¯(q))],\displaystyle n_{q}=\frac{1}{V}\sum_{k}n_{q}^{kk}=\frac{1}{V}\sum_{k}\left[|\mathcal{U}^{(q)}_{kk}|^{2}f^{(q)}_{k}+|\mathcal{V}^{(q)}_{\bar{k}k}|^{2}\left(1-f^{(q)}_{\bar{k}}\right)\right]\,, (49)
𝒋𝒒=1Vk𝒌knqkk=1Vk(𝒌+𝑸𝒒)[|𝒰kk(q)|2fk(q)+|𝒱k¯k(q)|2(1fk¯(q))],\displaystyle\boldsymbol{j_{q}}=\frac{1}{V}\sum_{k}\boldsymbol{k}_{k}n_{q}^{kk}=\frac{1}{V}\sum_{k}\left(\boldsymbol{k}+\boldsymbol{Q_{q}}\right)\left[|\mathcal{U}^{(q)}_{kk}|^{2}f^{(q)}_{k}+|\mathcal{V}^{(q)}_{\bar{k}k}|^{2}\left(1-f^{(q)}_{\bar{k}}\right)\right]\,, (50)

respectively, where the quasiparticle distribution is given by Blaizot and Ribka (1986)

fk(q)=[1+exp(β𝔈k(q))]1=12[1tanh(β2𝔈k(q))].f^{(q)}_{k}=\left[1+\exp\left(\beta\mathfrak{E}^{(q)}_{k}\right)\right]^{-1}=\frac{1}{2}\left[1-\tanh\left(\frac{\beta}{2}\mathfrak{E}^{(q)}_{k}\right)\right]\,. (51)

where β(kBT)1\beta\equiv\left(k_{\textrm{B}}T\right)^{-1}.

The solutions of Eq. (46), readily obtained by diagonalizing the HFB matrix, are given by333Equation (46) actually admits two kinds of solutions corresponding to the eigenvalues 𝔈k±(q)=(ξk(q)ξk¯(q))/2±εk(q)2+|Δk(q)|2\mathfrak{E}^{(q)}_{k\pm}=(\xi^{(q)}_{k}-\xi^{(q)}_{\bar{k}})/2\pm\sqrt{\varepsilon^{(q)2}_{k}+|\Delta^{(q)}_{k}|^{2}}. Those associated with 𝔈k(q)\mathfrak{E}^{(q)}_{k-} are such that the expressions (53) and (54) of |𝒰kk(q)|2|\mathcal{U}^{(q)}_{kk}|^{2} and |𝒱kk¯(q)|2|\mathcal{V}^{(q)}_{k\bar{k}}|^{2} are swapped. However, these solutions lead to the same values for the nucleon number density (49) and the momentum density (50) using the fact that 𝔈k(q)=𝔈k¯+(q)\mathfrak{E}^{(q)}_{k-}=-\mathfrak{E}^{(q)}_{\bar{k}+}. Therefore, they give the same mass current (36) and, consequently, the same entrainment matrix.

𝔈k(q)=ξk(q)ξk¯(q)2+εk(q)2+|Δk(q)|2,\displaystyle\mathfrak{E}^{(q)}_{k}=\frac{\xi^{(q)}_{k}-\xi^{(q)}_{\bar{k}}}{2}+\sqrt{\varepsilon^{(q)2}_{k}+|\Delta^{(q)}_{k}|^{2}}\,, (52)
|𝒰kk(q)|2=12(1+εk(q)εk(q)2+|Δk(q)|2),\displaystyle|\mathcal{U}^{(q)}_{kk}|^{2}=\frac{1}{2}\left(1+\frac{\varepsilon^{(q)}_{k}}{\sqrt{\varepsilon^{(q)2}_{k}+|\Delta^{(q)}_{k}|^{2}}}\right)\,, (53)
|𝒱kk¯(q)|2=12(1εk(q)εk(q)2+|Δk(q)|2),\displaystyle|\mathcal{V}^{(q)}_{k\bar{k}}|^{2}=\frac{1}{2}\left(1-\frac{\varepsilon^{(q)}_{k}}{\sqrt{\varepsilon^{(q)2}_{k}+|\Delta^{(q)}_{k}|^{2}}}\right)\,, (54)

where

εk(q)ξk(q)+ξk¯(q)2=εk¯(q).\varepsilon^{(q)}_{k}\equiv\frac{\xi^{(q)}_{k}+\xi^{(q)}_{\bar{k}}}{2}=\varepsilon^{(q)}_{\bar{k}}\,. (55)

Using Eq. (47), we have

εk(q)=22mq(𝒌2+𝑸𝒒2)+Uq+𝑰q𝑸𝒒λq,\varepsilon^{(q)}_{k}=\frac{\hbar^{2}}{2m_{q}^{\oplus}}\left(\boldsymbol{k}^{2}+\boldsymbol{Q_{q}}^{2}\right)+U_{q}+\boldsymbol{I}_{q}\cdot\boldsymbol{Q_{q}}-\lambda_{q}\,, (56)
ξk(q)ξk¯(q)2=𝒌𝕍𝒒,\frac{\xi^{(q)}_{k}-\xi^{(q)}_{\bar{k}}}{2}=\hbar\boldsymbol{k}\cdot\boldsymbol{\mathbb{V}_{q}}\,, (57)

where we have introduced the effective superfluid velocity

𝕍𝒒=mq𝑸𝒒+𝑰𝒒=mmq𝑽𝒒+𝑰𝒒.\boldsymbol{\mathbb{V}_{q}}=\frac{\hbar}{m_{q}^{\oplus}}\boldsymbol{Q_{q}}+\frac{\boldsymbol{I_{q}}}{\hbar}=\frac{m}{m_{q}^{\oplus}}\boldsymbol{V_{q}}+\frac{\boldsymbol{I_{q}}}{\hbar}\,. (58)

For standard Skyrme functionals, the effective mass mqm_{q}^{\oplus} depends only on the nucleon densities, whereas the potential UqU_{q} depends on the pairing gaps Δk(q)\Delta^{(q)}_{k} (which in turn depend also on 𝑸𝒏\boldsymbol{Q_{n}} and 𝑸𝒑\boldsymbol{Q_{p}}). For the extended Skyrme functionals proposed in Ref. Chamel et al. (2009), the potential UqU_{q} depends also explicitly on jn2j_{n}^{2}, jp2j_{p}^{2} and 𝒋𝒏𝒋𝒑\boldsymbol{j_{n}}\cdot\boldsymbol{j_{p}}. In general, the dependence of the energies (56) on the superfluid velocities may be therefore quite complicated.

Using Eqs. (31) and (42), it can be shown that the effective pairing interaction vkk¯ll¯(q)v^{(q)}_{k\bar{k}l\bar{l}} is independent of the wave vectors, and depends only on the spins. The only nonzero elements are given by (denoting the spins with arrows for clarity)

v(q)=4VδEδ|n~q|2<0,v^{(q)}_{\downarrow\uparrow\downarrow\uparrow}=\frac{4}{V}\frac{\delta E}{\delta|\widetilde{n}_{q}|^{2}}<0\,, (59)

and any other element obtained by permutation of the spin indices. It thus follows from Eq. (48), that Δk(q)\Delta^{(q)}_{k} is also independent of the wave vectors 𝒌\boldsymbol{k} (but Δk(q)\Delta^{(q)}_{k} still depends on the given wave vectors 𝑸𝒒\boldsymbol{Q_{q}}). Dropping the wave vector 𝒌\boldsymbol{k} as a subscript, introducing the pairing gap

ΔqΔ(q)=1Vd3𝒓|Δq(𝒓)|0,\Delta_{q}\equiv\Delta^{(q)}_{\downarrow\uparrow}=\frac{1}{V}\int d^{3}\boldsymbol{r}\,|\Delta_{q}(\boldsymbol{r})|\geq 0\,, (60)

and using Eqs. (53) and (54), Eq. (48) reduces to the gap equation

Δq=2VδEδ|n~q|2𝒌Δqεk(q)2+Δq2(fk+fk¯1).\Delta_{q}=\frac{2}{V}\frac{\delta E}{\delta|\widetilde{n}_{q}|^{2}}\sum_{\boldsymbol{k}}\frac{\Delta_{q}}{\sqrt{\varepsilon_{k}^{(q)2}+\Delta_{q}^{2}}}(f_{k}+f_{\bar{k}}-1)\,. (61)

The summation is only over the wave vectors 𝒌\boldsymbol{k}, the summation over the spins has been already carried out. Note that the right-hand side of this equation explicitly depends on the wave vectors 𝑸𝒒\boldsymbol{Q_{q}} through Eqs. (51), (52), (56) and (57).

III.2 Entrainment matrix from the TDHFB solution

Using the solution of the TDHFB equations, the momentum density (50) can be alternatively written as

𝒋𝒒=nq𝑸𝒒+1V𝒌𝒌(fk(q)fk¯(q)).\displaystyle\boldsymbol{j_{q}}=n_{q}\,\boldsymbol{Q_{q}}+\frac{1}{V}\sum_{\boldsymbol{k}}\boldsymbol{k}(f^{(q)}_{k}-f^{(q)}_{\bar{k}})\,. (62)

The first term in the right-hand side coincides with the expression (29) adopted in our previous work Chamel and Allard (2019), thus demonstrating the validity of this identification. The second term accounts for quasiparticle excitations (note that the summation over spin states has been already carried out). Remarking that the component of 𝒌\boldsymbol{k} orthogonal to 𝕍𝒒\boldsymbol{\mathbb{V}_{q}} does not contribute to the sum (since fk(q)=fk¯(q)f^{(q)}_{k}=f^{(q)}_{\bar{k}} in this case), the momentum density can be expressed as

𝒋𝒒=mnq𝑽𝒒mqnq𝒴q𝕍𝒒,\boldsymbol{j_{q}}=\frac{mn_{q}}{\hbar}\boldsymbol{V_{q}}-\frac{m_{q}^{\oplus}n_{q}}{\hbar}\mathcal{Y}_{q}\boldsymbol{\mathbb{V}_{q}}\,, (63)

with the 𝒴q\mathcal{Y}_{q} function defined as

𝒴q(T,𝕍𝒒)mqnq𝕍q21V𝒌𝒌𝕍𝒒(fk(q)fk¯(q)).\displaystyle\mathcal{Y}_{q}(T,\boldsymbol{\mathbb{V}_{q}})\equiv-\frac{\hbar}{m_{q}^{\oplus}n_{q}\mathbb{V}_{q}^{2}}\frac{1}{V}\sum_{\boldsymbol{k}}\boldsymbol{k}\cdot\boldsymbol{\mathbb{V}_{q}}(f^{(q)}_{k}-f^{(q)}_{\bar{k}})\,. (64)

Substituting Eq. (51) yields

𝒴q(T,𝕍𝒒)=mqnq𝕍q2[1V𝒌𝒌𝕍𝒒sinh(β𝒌𝕍𝒒)cosh(β𝔈𝒌(q))+cosh(β𝒌𝕍𝒒)].\displaystyle\mathcal{Y}_{q}(T,\boldsymbol{\mathbb{V}_{q}})=\frac{\hbar}{m_{q}^{\oplus}n_{q}\mathbb{V}_{q}^{2}}\left[\frac{1}{V}\sum_{\boldsymbol{k}}\frac{\boldsymbol{k}\cdot\boldsymbol{\mathbb{V}_{q}}\sinh\left(\beta\hbar\boldsymbol{k}\cdot\boldsymbol{\mathbb{V}_{q}}\right)}{\cosh\left(\beta\mathfrak{E}^{(q)}_{\boldsymbol{k}}\right)+\cosh\left(\beta\hbar\boldsymbol{k}\cdot\boldsymbol{\mathbb{V}_{q}}\right)}\right]\,. (65)

In terms of the effective superfluid velocity (58), the mass current (35) reduces to

𝝆𝒒=ρq(1𝒴q)𝕍𝒒,\displaystyle\boldsymbol{\rho_{q}}=\rho_{q}\left(1-\mathcal{Y}_{q}\right)\boldsymbol{\mathbb{V}_{q}}\,, (66)

while the momentum density 𝒋𝒒\boldsymbol{j_{q}} becomes

𝒋𝒒=ρq(1𝒴q)𝑽𝒒mqnq2𝒴q𝑰𝒒.\displaystyle\boldsymbol{j_{q}}=\frac{\rho_{q}}{\hbar}\left(1-\mathcal{Y}_{q}\right)\boldsymbol{V_{q}}-\frac{m_{q}^{\oplus}n_{q}}{\hbar^{2}}\mathcal{Y}_{q}\boldsymbol{I_{q}}\,. (67)

Using this expression of 𝒋𝒒\boldsymbol{j_{q}} combined with the general expression of the vector field 𝑰𝒒\boldsymbol{I_{q}} Chamel and Allard (2019)

𝑰𝒒=δEnucjδ𝒋𝒒=2(𝒋𝒑+𝒋𝒏)(δEnucjδX0δEnucjδX1)4𝒋𝒒δEnucjδX1\displaystyle\boldsymbol{I_{q}}=\frac{\delta E^{j}_{\rm nuc}}{\delta\boldsymbol{j_{q}}}=-2\left(\boldsymbol{j_{p}}+\boldsymbol{j_{n}}\right)\left(\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}\right)-4\boldsymbol{j_{q}}\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}} (68)

leads to a self-consistent system of equations for 𝒋𝒒\boldsymbol{j_{q}} and 𝑽𝒒\boldsymbol{V_{q}}, whose solutions are

𝑰𝒒=qqq𝑽𝒒,\displaystyle\boldsymbol{I_{q}}=\sum_{q^{\prime}}\mathcal{I}_{qq^{\prime}}\boldsymbol{V_{q^{\prime}}}\,, (69)
nn\displaystyle\mathcal{I}_{nn} =2ρn(1𝒴n)Θ[δEnucjδX1(82δEnucjδX0mpnp𝒴p1)δEnucjδX0],\displaystyle=\frac{2}{\hbar}\rho_{n}\left(1-\mathcal{Y}_{n}\right)\Theta\left[\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}\left(\frac{8}{\hbar^{2}}\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}m_{p}^{\oplus}n_{p}\mathcal{Y}_{p}-1\right)-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}\right]\,, (70)
pp\displaystyle\mathcal{I}_{pp} =2ρp(1𝒴p)Θ[δEnucjδX1(82δEnucjδX0mnnn𝒴n1)δEnucjδX0],\displaystyle=\frac{2}{\hbar}\rho_{p}\left(1-\mathcal{Y}_{p}\right)\Theta\left[\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}\left(\frac{8}{\hbar^{2}}\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}m_{n}^{\oplus}n_{n}\mathcal{Y}_{n}-1\right)-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}\right]\,, (71)
np\displaystyle\mathcal{I}_{np} =2ρp(1𝒴p)Θ(δEnucjδX1δEnucjδX0),\displaystyle=\frac{2}{\hbar}\rho_{p}\left(1-\mathcal{Y}_{p}\right)\Theta\left(\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}\right)\,, (72)
pn\displaystyle\mathcal{I}_{pn} =2ρn(1𝒴n)Θ(δEnucjδX1δEnucjδX0),\displaystyle=\frac{2}{\hbar}\rho_{n}\left(1-\mathcal{Y}_{n}\right)\Theta\left(\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}\right)\,, (73)
Θ\displaystyle\Theta [122(δEnucjδX0+δEnucjδX1)(mnnn𝒴n+mpnp𝒴p)\displaystyle\equiv\left[1-\frac{2}{\hbar^{2}}\left(\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}+\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}\right)\left(m_{n}^{\oplus}n_{n}\mathcal{Y}_{n}+m_{p}^{\oplus}n_{p}\mathcal{Y}_{p}\right)\right.
+(42)2δEnucjδX0δEnucjδX1mnnnmpnp𝒴n𝒴p]1.\displaystyle\qquad\;\;\left.+\left(\frac{4}{\hbar^{2}}\right)^{2}\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}m_{n}^{\oplus}n_{n}m_{p}^{\oplus}n_{p}\mathcal{Y}_{n}\mathcal{Y}_{p}\right]^{-1}\,. (74)

Substituting Eq. (69) into (58), the entrainment matrix can be readily obtained from Eq. (66):

ρnn(T,𝕍𝒒)=ρn(1𝒴n)(mmn+nn),\displaystyle\rho_{nn}(T,\boldsymbol{\mathbb{V}_{q}})=\rho_{n}\left(1-\mathcal{Y}_{n}\right)\left(\frac{m}{m_{n}^{\oplus}}+\frac{\mathcal{I}_{nn}}{\hbar}\right)\,, (75)
ρpp(T,𝕍𝒒)=ρp(1𝒴p)(mmp+pp),\displaystyle\rho_{pp}(T,\boldsymbol{\mathbb{V}_{q}})=\rho_{p}\left(1-\mathcal{Y}_{p}\right)\left(\frac{m}{m_{p}^{\oplus}}+\frac{\mathcal{I}_{pp}}{\hbar}\right)\,, (76)
ρnp(T,𝕍𝒒)=ρn(1𝒴n)np,ρpn(T,𝕍𝒒)=ρp(1𝒴p)pn.\displaystyle\rho_{np}(T,\boldsymbol{\mathbb{V}_{q}})=\rho_{n}\left(1-\mathcal{Y}_{n}\right)\frac{\mathcal{I}_{np}}{\hbar}\,,\qquad\qquad\rho_{pn}(T,\boldsymbol{\mathbb{V}_{q}})=\rho_{p}\left(1-\mathcal{Y}_{p}\right)\frac{\mathcal{I}_{pn}}{\hbar}\,. (77)

Using Eqs. (72) and (73), one can notice that the entrainment matrix is manifestly symmetric (i.e. ρnp=ρpn\rho_{np}=\rho_{pn}). Let us emphasize that Eqs. (75)-(77) give the exact expression for the entrainment matrix within the TDHFB theory in homogeneous nuclear matter. No approximation has been made at this point. In particular, the full dependence of the entrainment matrix elements on the currents is taken into account.

If the currents are small enough such that 𝔈k(q)>0\mathfrak{E}^{(q)}_{k}>0, the quasiparticle distributions (51) vanish at T=0T=0, hence also the functions 𝒴q\mathcal{Y}_{q}, as can be seen from Eq. (64). In this regime, Eqs. (75)-(77) reduce to the expressions we derived earlier ignoring nuclear pairing within the time-dependent Hartree-Fock (TDHF) equations Chamel and Allard (2019), namely

ρnnTDHF=ρn[1+22(δEnucjδX0δEnucjδX1)ρp],\displaystyle\rho^{\text{TDHF}}_{nn}=\rho_{n}\left[1+\frac{2}{\hbar^{2}}\left(\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}\right)\rho_{p}\right]\,, (78)
ρppTDHF=ρp[1+22(δEnucjδX0δEnucjδX1)ρn],\displaystyle\rho^{\text{TDHF}}_{pp}=\rho_{p}\left[1+\frac{2}{\hbar^{2}}\left(\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}\right)\rho_{n}\right]\,, (79)
ρnpTDHF=ρpnTDHF=ρnρp22(δEnucjδX1δEnucjδX0).\displaystyle\rho^{\text{TDHF}}_{np}=\rho^{\text{TDHF}}_{pn}=\rho_{n}\rho_{p}\frac{2}{\hbar^{2}}\left(\frac{\delta E^{j}_{\rm nuc}}{\delta X_{1}}-\frac{\delta E^{j}_{\rm nuc}}{\delta X_{0}}\right)\,. (80)

This allows us to rewrite Eq. (66) into the following alternative form

𝝆𝒒=qρqqTDHF(𝑽𝒒mqm𝒴q𝕍𝒒).\displaystyle\boldsymbol{\rho_{q}}=\sum_{q^{\prime}}\rho_{qq^{\prime}}^{\text{TDHF}}\left(\boldsymbol{V_{q^{\prime}}}-\frac{m_{q^{\prime}}^{\oplus}}{m}\mathcal{Y}_{q^{\prime}}\boldsymbol{\mathbb{V}_{q^{\prime}}}\right)\,. (81)

Finally, let us remark that the relativistic entrainment matrix introduced in Ref. Gusakov and Andersson (2006) can be directly calculated from Eqs. (75), (76), (77) using their Eq. (17):

Ynn\displaystyle Y_{nn} =\displaystyle= ρnnρnp(λp/(mc2))(mc)2(1+λn/(mc2)),\displaystyle\frac{\rho_{nn}-\rho_{np}(\lambda_{p}/(mc^{2}))}{(mc)^{2}(1+\lambda_{n}/(mc^{2}))}\,, (82)
Ypp\displaystyle Y_{pp} =\displaystyle= ρppρnp(λn/(mc2))(mc)2(1+λp/(mc2)),\displaystyle\frac{\rho_{pp}-\rho_{np}(\lambda_{n}/(mc^{2}))}{(mc)^{2}(1+\lambda_{p}/(mc^{2}))}\,, (83)
Ynp\displaystyle Y_{np} =\displaystyle= Ypn=ρnp(mc)2.\displaystyle Y_{pn}=\frac{\rho_{np}}{(mc)^{2}}\,. (84)

III.3 Landau’s approximations

In previous studies of entrainment effects Gusakov and Haensel (2005); Leinson (2018), the mass current was defined as

𝝆𝒒=mVknqkk1𝒌ξk(q)\displaystyle\boldsymbol{\rho_{q}}=\frac{m}{V}\sum_{k}n_{q}^{kk}\frac{1}{\hbar}\boldsymbol{\nabla_{k}}\xi^{(q)}_{k} (85)

(𝝆𝒒\boldsymbol{\rho_{q}}, nqkkn_{q}^{kk} and ξk(q)\xi^{(q)}_{k} were, respectively denoted by 𝑱𝒒\boldsymbol{J_{q}}, 𝒩𝒌+𝑸𝒒(q)\mathcal{N}^{(q)}_{\boldsymbol{k}+\boldsymbol{Q_{q}}} and H𝒌+𝑸𝒒(q)H^{(q)}_{\boldsymbol{k}+\boldsymbol{Q_{q}}}, in Ref. Gusakov and Haensel (2005), and by 𝒋𝒂\boldsymbol{j_{a}}, n~𝒌(a)\tilde{n}_{\boldsymbol{k}}^{(a)} and ε~𝒌(a)\tilde{\varepsilon}_{\boldsymbol{k}}^{(a)}, in Ref. Leinson (2018)). Note that (1/)𝒌ξk(q)(1/\hbar)\boldsymbol{\nabla_{k}}\xi^{(q)}_{k} represents the group velocity of the single-particle state kk. Using Eqs. (47) and (49), Eq. (85) can be expressed as

𝝆𝒒\displaystyle\boldsymbol{\rho_{q}} =mmq{1Vk(𝒌+𝑸𝒒)[|𝒰kk(q)|2fk(q)+|𝒱kk¯(q)|2(1fk¯(q))]}\displaystyle=\frac{m}{m_{q}^{\oplus}}\hbar\Biggl{\{}\frac{1}{V}\sum_{k}\left(\boldsymbol{k}+\boldsymbol{Q_{q}}\right)\left[|\mathcal{U}^{(q)}_{kk}|^{2}f^{(q)}_{k}+|\mathcal{V}^{(q)}_{k\bar{k}}|^{2}\left(1-f^{(q)}_{\bar{k}}\right)\right]\Biggr{\}}
+m{1Vk[|𝒰kk(q)|2fk(q)+|𝒱kk¯(q)|2(1fk¯(q))]}𝑰𝒒.\displaystyle\qquad\qquad+m\Biggl{\{}\frac{1}{V}\sum_{k}\left[|\mathcal{U}^{(q)}_{kk}|^{2}f^{(q)}_{k}+|\mathcal{V}^{(q)}_{k\bar{k}}|^{2}\left(1-f^{(q)}_{\bar{k}}\right)\right]\Biggr{\}}\frac{\boldsymbol{I_{q}}}{\hbar}\,. (86)

It can be seen from Eqs. (49) and (50) that Eq (III.3) coincides with our general expression (35) of the mass current. To compare our results to those obtained earlier within Landau’s theory of Fermi liquids, we assume that the superfluid velocities VqV_{q} are small compared to the corresponding Fermi velocities VFqkFq/mqV_{\textrm{F}q}\equiv\hbar k_{\textrm{F}q}/m_{q}^{\oplus}, where kFq=(3π2nq)1/3k_{\textrm{F}q}=(3\pi^{2}n_{q})^{1/3} denotes the Fermi wave number. We thus expand the quasiparticle energy (52) as follows:

𝔈k(q)𝔈˘𝒌(q)+𝒌𝕍𝒒,\displaystyle\mathfrak{E}^{(q)}_{k}\approx\breve{\mathfrak{E}}^{(q)}_{\boldsymbol{k}}+\hbar\boldsymbol{k}\cdot\boldsymbol{\mathbb{V}_{q}}\,, (87)
𝔈˘𝒌(q)ε˘𝒌(q)2+Δ˘q2=𝔈˘𝒌(q),\displaystyle\breve{\mathfrak{E}}^{(q)}_{\boldsymbol{k}}\equiv\sqrt{\breve{\varepsilon}^{(q)2}_{\boldsymbol{k}}+\breve{\Delta}_{q}^{2}}=\breve{\mathfrak{E}}^{(q)}_{-\boldsymbol{k}}\,, (88)

where the single-particle energy ε𝒌(q)\varepsilon^{(q)}_{\boldsymbol{k}} is now evaluated in the static ground state ignoring any dependence on the pairing gaps, and expanding linearly around the Fermi surface

ε˘𝒌(q)VFq(kkFq),\displaystyle\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}\equiv\hbar V_{\text{F}q}(k-k_{\text{F}q})\,, (89)

which coincides with Eq. (6) of Ref. Leinson (2018). In this expression, the reduced chemical potential defined by μqλqUq\mu_{q}\equiv\lambda_{q}-U_{q} has been replaced by the Fermi energy at T=0T=0, namely μq2kFq2/(2mq)\mu_{q}\approx\hbar^{2}k_{\text{F}q}^{2}/(2m_{q}^{\oplus}) (in general, μq\mu_{q} depends on the temperature, the gaps and the currents). The quasiparticle distribution function thus becomes

fk12{1tanh[β2(𝔈˘𝒌(q)+𝒌𝕍𝒒)]}f𝒌+𝑸𝒒(q).\displaystyle f_{k}\approx\frac{1}{2}\Biggl{\{}1-\tanh\left[\frac{\beta}{2}\left(\breve{\mathfrak{E}}^{(q)}_{\boldsymbol{k}}+\hbar\boldsymbol{k}\cdot\boldsymbol{\mathbb{V}_{q}}\right)\right]\Biggr{\}}\equiv f^{(q)}_{\boldsymbol{k}+\boldsymbol{Q_{q}}}\,. (90)

Similarly, fk¯f𝒌+𝑸𝒒(q)f_{\bar{k}}\approx f^{(q)}_{-\boldsymbol{k}+\boldsymbol{Q_{q}}}. In the continuum limit, replacing the discrete summation over 𝒌\boldsymbol{k} by an integral, the function 𝒴q(T,𝕍𝒒)\mathcal{Y}_{q}(T,\boldsymbol{\mathbb{V}_{q}}) introduced in Eq. (64) thus reads

𝒴q(T,𝕍𝒒)m˘qnq𝕍qdΩ𝒌4π+dε˘𝒌(q)𝒟(ε˘𝒌(q))(f𝒌+𝑸𝒒(q)f𝒌+𝑸𝒒(q))(ε˘𝒌(q)VFq+kFq)cosθ𝒌,\mathcal{Y}_{q}(T,\boldsymbol{\mathbb{V}_{q}})\approx-\frac{\hbar}{\breve{m}_{q}^{\oplus}n_{q}\mathbb{V}_{q}}\int\frac{d\Omega_{\boldsymbol{k}}}{4\pi}\int_{-\infty}^{+\infty}\text{d}\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}\mathcal{D}(\breve{\varepsilon}^{(q)}_{\boldsymbol{k}})\left(f^{(q)}_{\boldsymbol{k}+\boldsymbol{Q_{q}}}-f^{(q)}_{-\boldsymbol{k}+\boldsymbol{Q_{q}}}\right)\left(\frac{\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}}{\hbar V_{\text{F}q}}+k_{\text{F}q}\right)\cos\theta_{\boldsymbol{k}}\,, (91)

where the first integration is over the solid angle in 𝒌\boldsymbol{k}-space, θ𝒌\theta_{\boldsymbol{k}} is the angle between 𝒌\boldsymbol{k} and 𝕍𝒒\boldsymbol{\mathbb{V}_{q}}, and 𝒟(ε˘𝒌(q))\mathcal{D}(\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}) is the level density444Note that 𝒟(ε˘𝒌(q))\mathcal{D}(\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}) denotes the level density per one spin state since summation over spins is already taken into account in Eq. (64). In the Landau’s theory, the level density is further assumed to be constant and approximated by its value on the Fermi surface, namely 𝒟(ε˘𝒌(q))𝒟(0)=kFqm˘q/(2π22)\mathcal{D}(\breve{\varepsilon}^{(q)}_{\boldsymbol{k}})\approx\mathcal{D}(0)=k_{\text{F}q}\breve{m}_{q}^{\oplus}/(2\pi^{2}\hbar^{2}). Moreover, the term ε˘𝒌(q)/(VFq)\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}/(\hbar V_{\text{F}q}) is also evaluated on the Fermi surface, and therefore is dropped. With all these approximations, the function 𝒴q\mathcal{Y}_{q} finally reduces to Eq. (70) of Ref. Leinson (2018) (where 𝒴\mathcal{Y} was denoted by Φ~\tilde{\Phi}):

𝒴q(T,𝕍𝒒)3kFq𝕍qdΩ𝒌4π0+𝑑ε˘𝒌(q)(f𝒌+𝑸𝒒(q)f𝒌+𝑸𝒒(q))cosθ𝒌.\displaystyle\mathcal{Y}_{q}(T,\boldsymbol{\mathbb{V}_{q}})\approx-\frac{3}{\hbar k_{F_{q}}\mathbb{V}_{q}}\int\frac{{\rm d}\Omega_{\boldsymbol{k}}}{4\pi}\int_{0}^{+\infty}d\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}\left(f^{(q)}_{\boldsymbol{k}+\boldsymbol{Q_{q}}}-f^{(q)}_{-\boldsymbol{k}+\boldsymbol{Q_{q}}}\right)\cos\theta_{\boldsymbol{k}}\,. (92)

Note that a factor of 2 was absorbed by integrating over half the energy domain since the function to integrate is invariant under the change ε˘𝒌(q)ε˘𝒌(q)\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}\rightarrow-\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}. Similar approximations for the gap equations (61) yield

Δ˘q4δEδ|n~q|2𝒟(0)dΩ𝒌4π0+𝑑ε˘𝒌(q)Δ˘q𝔈˘𝒌(q)(f𝒌+𝑸𝒒(q)+f𝒌+𝑸𝒒(q)1).\displaystyle\breve{\Delta}_{q}\approx 4\frac{\delta E}{\delta|\widetilde{n}_{q}|^{2}}\mathcal{D}(0)\int\frac{d\Omega_{\boldsymbol{k}}}{4\pi}\int_{0}^{+\infty}d\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}\frac{\breve{\Delta}_{q}}{\breve{\mathfrak{E}}^{(q)}_{\boldsymbol{k}}}(f^{(q)}_{\boldsymbol{k}+\boldsymbol{Q_{q}}}+f^{(q)}_{-\boldsymbol{k}+\boldsymbol{Q_{q}}}-1)\,. (93)

Let us remark that the gap equations are thus decoupled from the particle number conservation (49) since the reduced chemical potentials are approximated by the corresponding Fermi energies at T=0T=0. Further assuming Δ˘qμq\breve{\Delta}_{q}\ll\mu_{q}, Eq. (93) can be expressed as Leinson (2018)

ln(Δ˘q(0)Δ˘q)=dΩ𝒌4π0+dε˘𝒌(q)f𝒌+𝑸𝒒(q)+f𝒌+𝑸𝒒(q)𝔈˘𝒌(q),\displaystyle\ln\left(\frac{\breve{\Delta}^{(0)}_{q}}{\breve{\Delta}_{q}}\right)=\int\frac{{\rm d}\Omega_{\boldsymbol{k}}}{4\pi}\int_{0}^{+\infty}{\rm d}\breve{\varepsilon}^{(q)}_{\boldsymbol{k}}\frac{f^{(q)}_{\boldsymbol{k}+\boldsymbol{Q_{q}}}+f^{(q)}_{-\boldsymbol{k}+\boldsymbol{Q_{q}}}}{\breve{\mathfrak{E}}^{(q)}_{\boldsymbol{k}}}\,, (94)

where Δ˘q(0)\breve{\Delta}^{(0)}_{q} denotes the solution of Eq. (93) at T=0T=0 in the absence of currents.

Substituting Eq. (92) in Eqs. (70)-(III.2), and evaluating all other quantities for the superfluids at rest, the entrainment matrix (75)-(77) can be recast in a form similar to Eq. (30) of Ref. Leinson (2018):

ρqq(T,𝕍𝒒)=ρq(1𝒴q)γqq=ρq(1𝒴q)γqq,\displaystyle\rho_{qq^{\prime}}(T,\boldsymbol{\mathbb{V}_{q}})=\rho_{q}\left(1-\mathcal{Y}_{q}\right)\gamma_{qq^{\prime}}=\rho_{q^{\prime}}\left(1-\mathcal{Y}_{q^{\prime}}\right)\gamma_{q^{\prime}q}\,, (95)
γnn=mm˘nS[(1+1nn3)(1+1pp3𝒴p)(1np3)2𝒴p],\displaystyle\gamma_{nn}=\frac{m}{\breve{m}_{n}^{\oplus}S}\left[\left(1+\frac{\mathcal{F}_{1}^{nn}}{3}\right)\left(1+\frac{\mathcal{F}_{1}^{pp}}{3}\mathcal{Y}_{p}\right)-\left(\frac{\mathcal{F}_{1}^{np}}{3}\right)^{2}\mathcal{Y}_{p}\right]\,, (96)
γpp=mm˘pS[(1+1pp3)(1+1nn3𝒴n)(1pn3)2𝒴n],\displaystyle\gamma_{pp}=\frac{m}{\breve{m}_{p}^{\oplus}S}\left[\left(1+\frac{\mathcal{F}_{1}^{pp}}{3}\right)\left(1+\frac{\mathcal{F}_{1}^{nn}}{3}\mathcal{Y}_{n}\right)-\left(\frac{\mathcal{F}_{1}^{pn}}{3}\right)^{2}\mathcal{Y}_{n}\right]\,, (97)
γnp=m3Sm˘nm˘p(npnn)1/21np(1𝒴p),\displaystyle\gamma_{np}=\frac{m}{3S\sqrt{\breve{m}_{n}^{\oplus}\breve{m}_{p}^{\oplus}}}\left(\frac{n_{p}}{n_{n}}\right)^{1/2}\mathcal{F}_{1}^{np}\left(1-\mathcal{Y}_{p}\right)\,, (98)
γpn=m3Sm˘pm˘n(nnnp)1/21pn(1𝒴n),\displaystyle\gamma_{pn}=\frac{m}{3S\sqrt{\breve{m}_{p}^{\oplus}\breve{m}_{n}^{\oplus}}}\left(\frac{n_{n}}{n_{p}}\right)^{1/2}\mathcal{F}_{1}^{pn}\left(1-\mathcal{Y}_{n}\right)\,, (99)

where 1qq\mathcal{F}_{1}^{qq^{\prime}} denotes the dimensionless =1\ell=1 Landau parameter (derivatives are calculated in the absence of currents)

1qq=62[(12δqq)δEnucjδX1|0δEnucjδX0|0]m˘qnqm˘qnq,\displaystyle\mathcal{F}_{1}^{qq^{\prime}}=\frac{6}{\hbar^{2}}\left[\left(1-2\delta_{qq^{\prime}}\right)\frac{\delta E^{j}_{\textrm{nuc}}}{\delta X_{1}}\biggr{|}_{0}-\frac{\delta E^{j}_{\textrm{nuc}}}{\delta X_{0}}\biggr{|}_{0}\right]\sqrt{\breve{m}_{q}^{\oplus}n_{q}\breve{m}_{q^{\prime}}^{\oplus}n_{q^{\prime}}}\,, (100)

and the function SS is given by

S\displaystyle S =Θ1=(1+1nn3𝒴n)(1+1pp3𝒴p)(1np3)2𝒴n𝒴p.\displaystyle=\Theta^{-1}=\left(1+\frac{\mathcal{F}^{nn}_{1}}{3}\mathcal{Y}_{n}\right)\left(1+\frac{\mathcal{F}^{pp}_{1}}{3}\mathcal{Y}_{p}\right)-\left(\frac{\mathcal{F}^{np}_{1}}{3}\right)^{2}\mathcal{Y}_{n}\mathcal{Y}_{p}\,. (101)

Simplifying the exact solution (75)-(77) using Landau’s approximations, we have thus recovered the entrainment matrix derived earlier in Refs. Leinson (2018); Gusakov and Haensel (2005). It should be stressed that the above formulas do not account for the full dependence of the entrainment matrix on the currents unlike Eqs. (75)-(77). In particular, the nonlinear effects contained in the single-particles energies have been ignored, compare Eqs. (56) and (89) recalling that the mean fields themselves have a highly nonlinear dependence on the currents.

IV Conclusions

We have studied the dynamics of nuclear superfluid systems at finite temperatures and finite currents in the framework of the self-consistent time-dependent nuclear-energy density functional theory. Considering the TDHFB equations in coordinate space, we have derived general expressions for the local nucleon mass currents (35) and local superfluid velocities (39), which are valid for both homogeneous systems (such as the outer core of neutron stars) and inhomogeneous systems (such as the crust of neutron stars, atomic nuclei and vortices). Remarkably, the mass currents are found to have the same formal expressions at any temperature, and coincide with the ones we derived earlier in the absence of pairing from the TDHF equations at zero temperature Chamel and Allard (2019).

Focusing on homogeneous neutron-proton superfluid mixtures, we have shown that the TDHFB equations can be solved exactly for arbitrary temperatures and currents. Using this solution, we have been able to express the Andreev-Bashkin mutual entrainment matrix in analytic form. The formal simplicity of our expression (75)-(77) are however deceptive: the entrainment coupling coefficients depend themselves on the currents in a very complicated way through the self-consistency of the TDHFB equations. We have explicitly demonstrated that our expression reduces to that obtained earlier in Ref. Leinson (2018) within Landau’s theory.

Our formulas are applicable to a large class of nuclear energy-density functionals. These include the Brussels-Montreal functionals based on generalized Skyrme effective interactions, for which unified equations of state for all regions of neutron stars have been calculated Potekhin et al. (2013); Mutafchieva et al. (2019); Pearson et al. (2018, 2020), thus paving the way for a fully consistent microscopic treatment of the dynamics of superfluid neutron stars. The formalism we have developed here in the nuclear context may also be easily transposed to the less exotic kinds of superfluids studied in terrestrial laboratories and described by similar TDHFB equations.

The relativistic entrainment matrix introduced in Ref. Gusakov and Andersson (2006) is given by Eqs. (82), (83), and (84). However, it would be worth carrying out the same analysis within a fully relativistic self-consistent microscopic framework, using the relativistic finite temperature HFB method Li et al. (2015).

Acknowledgements.
The authors thank T. Duguet and J. Sauls for valuable discussions. This work was financially supported by the Fonds de la Recherche Scientifique (Belgium) under Grant No. PDR T.004320. This work was also partially supported by the European Cooperation in Science and Technology action (EU) CA16214.

Appendix A Continuity equations

Making use of the completeness relations

iφi(q)(𝒓,σ)φi(q)(𝒓,σ)=δ(𝒓𝒓)δσσ,\displaystyle\sum_{i}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)^{*}\varphi^{(q)}_{i}(\boldsymbol{r^{\prime}},\sigma^{\prime})=\delta(\boldsymbol{r}-\boldsymbol{r^{\prime}})\delta_{\sigma\sigma^{\prime}}\,, (102)

and using Eqs. (24) and (25), we can demonstrate the following identities:

i,jhqij(t)φi(q)(𝒓,σ)φj(q)(𝒓,σ)=hq(𝒓,t)δ(𝒓𝒓)δσσ,\displaystyle\sum_{i,j}h_{q}^{ij}(t)\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}=h_{q}(\boldsymbol{r},t)\delta(\boldsymbol{r}-\boldsymbol{r^{\prime}})\delta_{\sigma\sigma^{\prime}}\,, (103)
i,jΔqij(t)φi(q)(𝒓,σ)(σ)φj(q)(𝒓,σ)=Δq(𝒓,t)δ(𝒓𝒓)δσσ.\displaystyle\sum_{i,j}\Delta_{q}^{ij}(t)\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)(-\sigma^{\prime})\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},-\sigma^{\prime})=\Delta_{q}(\boldsymbol{r},t)\delta(\boldsymbol{r}-\boldsymbol{r^{\prime}})\delta_{\sigma\sigma^{\prime}}\,. (104)

Multiplying Eq. (32) by φi(q)(𝒓,σ)φj(q)(𝒓,σ)\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*} and summing over indices ii and jj yields

iti,jnqijφi(q)(𝒓,σ)φj(q)(𝒓,σ)=\displaystyle i\hbar\frac{\partial}{\partial t}\sum_{i,j}n_{q}^{ij}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}= (105)
i,j,k(hqikφi(q)(𝒓,σ)φj(q)(𝒓,σ)nqkjnqikφi(q)(𝒓,σ)φj(q)(𝒓,σ)hqkj)\displaystyle\qquad\qquad\sum_{i,j,k}\left(h_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}n_{q}^{kj}-n_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}h_{q}^{kj}\right) (106)
+i,j,k(κqikφi(q)(𝒓,σ)φj(q)(𝒓,σ)ΔqkjΔqikφi(q)(𝒓,σ)φj(q)(𝒓,σ)κqkj).\displaystyle\qquad\quad+\sum_{i,j,k}\left(\kappa_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\Delta_{q}^{kj*}-\Delta_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\kappa_{q}^{kj*}\right)\,. (107)

The summation in (105) yields the density matrix nq(𝒓,σ;𝒓,σ;t)n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma^{\prime};t), as can be seen from Eq. (21). The next two summations in Eq. (106) can be simplified using Eq. (103) and the orthonormality property of the single-particle wavefunctions

σd3𝒓φi(q)(𝒓,σ)φj(q)(𝒓,σ)=δij.\displaystyle\sum_{\sigma}\int{\rm d}^{3}\boldsymbol{r}\,\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r},\sigma)^{*}=\delta_{ij}\,. (108)

We can thus write

i,j,k\displaystyle\sum_{i,j,k} hqikφi(q)(𝒓,σ)φj(q)(𝒓,σ)nqkj=i,j,k,lhqikφi(q)(𝒓,σ)δklφj(q)(𝒓,σ)nqlj\displaystyle h_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}n_{q}^{kj}=\sum_{i,j,k,l}h_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\delta_{kl}\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\,n_{q}^{lj}
=σ′′d3𝒓′′i,j,k,lhqikφi(q)(𝒓,σ)φk(q)(𝒓′′,σ′′)φl(q)(𝒓′′,σ′′)φj(q)(𝒓,σ)nqlj\displaystyle=\sum_{\sigma^{\prime\prime}}\int\,{\rm d}^{3}\boldsymbol{r^{\prime\prime}}\,\sum_{i,j,k,l}h_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{k}(\boldsymbol{r^{\prime\prime}},\sigma^{\prime\prime})^{*}\varphi^{(q)}_{l}(\boldsymbol{r^{\prime\prime}},\sigma^{\prime\prime})\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}n_{q}^{lj}
=hq(𝒓,t)σ′′d3𝒓′′δ(𝒓𝒓′′)δσσ′′nq(𝒓′′,σ′′;𝒓,σ;t)\displaystyle=h_{q}(\boldsymbol{r},t)\sum_{\sigma^{\prime\prime}}\int\,{\rm d}^{3}\boldsymbol{r^{\prime\prime}}\,\delta(\boldsymbol{r}-\boldsymbol{r^{\prime\prime}})\delta_{\sigma\sigma^{\prime\prime}}\,n_{q}(\boldsymbol{r^{\prime\prime}},\sigma^{\prime\prime};\boldsymbol{r^{\prime}},\sigma^{\prime};t)
=hq(𝒓,t)nq(𝒓,σ;𝒓,σ;t).\displaystyle=h_{q}(\boldsymbol{r},t)\,n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma^{\prime};t)\,. (109)

Similarly, we have

i,j,k\displaystyle\sum_{i,j,k} nqikφi(q)(𝒓,σ)φj(q)(𝒓,σ)hqkj=i,j,k,lnqikφi(q)(𝒓,σ)δklφj(q)(𝒓,σ)hqlj\displaystyle n_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}h_{q}^{kj}=\sum_{i,j,k,l}n_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\delta_{kl}\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}h_{q}^{lj}
=σ′′d3𝒓′′i,j,k,lnqikφi(q)(𝒓,σ)φk(q)(𝒓′′,σ′′)φl(q)(𝒓′′,σ′′)φj(q)(𝒓,σ)hqlj\displaystyle=\sum_{\sigma^{\prime\prime}}\int\,{\rm d}^{3}\boldsymbol{r^{\prime\prime}}\,\sum_{i,j,k,l}n_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{k}(\boldsymbol{r^{\prime\prime}},\sigma^{\prime\prime})^{*}\varphi^{(q)}_{l}(\boldsymbol{r^{\prime\prime}},\sigma^{\prime\prime})\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}h_{q}^{lj}
=σ′′d3𝒓′′nq(𝒓,σ;𝒓′′,σ′′;t)hq(𝒓′′,t)δ(𝒓′′𝒓)δσσ′′\displaystyle=\sum_{\sigma^{\prime\prime}}\int\,{\rm d}^{3}\boldsymbol{r^{\prime\prime}}\,n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime\prime}},\sigma^{\prime\prime};t)h_{q}(\boldsymbol{r^{\prime\prime}},t)\delta(\boldsymbol{r^{\prime\prime}}-\boldsymbol{r^{\prime}})\delta_{\sigma^{\prime}\sigma^{\prime\prime}}
=d3𝒓′′nq(𝒓,σ;𝒓′′,σ;t)hq(𝒓′′,t)δ(𝒓′′𝒓).\displaystyle=\int\,{\rm d}^{3}\boldsymbol{r^{\prime\prime}}\,n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime\prime}},\sigma^{\prime};t)h_{q}(\boldsymbol{r^{\prime\prime}},t)\delta(\boldsymbol{r^{\prime\prime}}-\boldsymbol{r^{\prime}})\,. (110)

Let us recall that hq(𝒓′′,t)h_{q}(\boldsymbol{r^{\prime\prime}},t) involves the operator ′′\boldsymbol{\nabla^{\prime\prime}} so that it cannot be factored out of the integral. However, the hermiticity of the Hamiltonian matrix, hqij=hqjih_{q}^{ij}=h_{q}^{ji*}, implies the following identity Chamel and Allard (2019):

hq(𝒓′′,t)δ(𝒓′′𝒓)=hq(𝒓,t)δ(𝒓′′𝒓).\displaystyle h_{q}(\boldsymbol{r^{\prime\prime}},t)\delta(\boldsymbol{r^{\prime\prime}}-\boldsymbol{r^{\prime}})=h_{q}(\boldsymbol{r^{\prime}},t)^{*}\delta(\boldsymbol{r^{\prime\prime}}-\boldsymbol{r^{\prime}})\,. (111)

Finally, Eq. (110) becomes

i,j,knqikφi(q)(𝒓,σ)φj(q)(𝒓,σ)hqkj=hq(𝒓,t)nq(𝒓,σ;𝒓,σ;t).\displaystyle\sum_{i,j,k}n_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}h_{q}^{kj}=h_{q}(\boldsymbol{r^{\prime}},t)^{*}n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma^{\prime};t)\,. (112)

Likewise, the two summations in Eq. (107) can be expressed as follows using Eqs. (22) and (104):

i,j,k\displaystyle\sum_{i,j,k} κqikφi(q)(𝒓,σ)φj(q)(𝒓,σ)Δqkj=i,j,k,lκqikφi(q)(𝒓,σ)δklφj(q)(𝒓,σ)Δqlj\displaystyle\kappa_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\Delta_{q}^{kj*}=\sum_{i,j,k,l}\kappa_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\delta_{kl}\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\Delta_{q}^{lj*}
=σ′′d3𝒓′′i,j,k,lκqikφi(q)(𝒓,σ)φk(q)(𝒓′′,σ′′)(σ′′)(σ′′)φl(q)(𝒓′′,σ′′)φj(q)(𝒓,σ)Δqlj\displaystyle=\sum_{\sigma^{\prime\prime}}\int\,{\rm d}^{3}\boldsymbol{r^{\prime\prime}}\,\sum_{i,j,k,l}\kappa_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{k}(\boldsymbol{r^{\prime\prime}},-\sigma^{\prime\prime})(-\sigma^{\prime\prime})(-\sigma^{\prime\prime})\varphi^{(q)}_{l}(\boldsymbol{r^{\prime\prime}},-\sigma^{\prime\prime})^{*}\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\Delta_{q}^{lj*}
=Δq(𝒓,t)σ′′d3𝒓′′n~q(𝒓,σ;𝒓′′,σ′′;t)δ(𝒓𝒓′′)δσσ′′\displaystyle=-\Delta_{q}(\boldsymbol{r^{\prime}},t)^{*}\sum_{\sigma^{\prime\prime}}\int\,{\rm d}^{3}\boldsymbol{r^{\prime\prime}}\,\widetilde{n}_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime\prime}},\sigma^{\prime\prime};t)\delta(\boldsymbol{r^{\prime}}-\boldsymbol{r^{\prime\prime}})\delta_{\sigma^{\prime}\sigma^{\prime\prime}}
=n~q(𝒓,σ;𝒓,σ;t)Δq(𝒓,t),\displaystyle=-\widetilde{n}_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma^{\prime};t)\Delta_{q}(\boldsymbol{r^{\prime}},t)^{*}\,, (113)
i,j,k\displaystyle\sum_{i,j,k} Δqikφi(q)(𝒓,σ)φj(q)(𝒓,σ)κqkj=i,j,k,lΔqikφi(q)(𝒓,σ)δklφj(q)(𝒓,σ)κqlj\displaystyle\Delta_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\kappa_{q}^{kj*}=\sum_{i,j,k,l}\Delta_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\delta_{kl}\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\kappa_{q}^{lj*}
=σ′′d3𝒓′′i,j,k,lΔqikφi(q)(𝒓,σ)φk(q)(𝒓′′,σ′′)(σ′′)(σ′′)φl(q)(𝒓′′,σ′′)φj(q)(𝒓,σ)κqlj\displaystyle=\sum_{\sigma^{\prime\prime}}\int\,{\rm d}^{3}\boldsymbol{r^{\prime\prime}}\,\sum_{i,j,k,l}\Delta_{q}^{ik}\varphi^{(q)}_{i}(\boldsymbol{r},\sigma)\varphi^{(q)}_{k}(\boldsymbol{r^{\prime\prime}},-\sigma^{\prime\prime})(-\sigma^{\prime\prime})(-\sigma^{\prime\prime})\varphi^{(q)}_{l}(\boldsymbol{r^{\prime\prime}},-\sigma^{\prime\prime})^{*}\varphi^{(q)}_{j}(\boldsymbol{r^{\prime}},\sigma^{\prime})^{*}\kappa_{q}^{lj*}
=Δq(𝒓,t)σ′′d3𝒓′′δ(𝒓𝒓′′)δσσ′′n~q(𝒓,σ;𝒓′′,σ′′;t)\displaystyle=-\Delta_{q}(\boldsymbol{r},t)\sum_{\sigma^{\prime\prime}}\int\,{\rm d}^{3}\boldsymbol{r^{\prime\prime}}\,\delta(\boldsymbol{r}-\boldsymbol{r^{\prime\prime}})\delta_{\sigma\sigma^{\prime\prime}}\widetilde{n}_{q}(\boldsymbol{r^{\prime}},\sigma^{\prime};\boldsymbol{r^{\prime\prime}},\sigma^{\prime\prime};t)^{*}
=Δq(𝒓,t)n~q(𝒓,σ;𝒓,σ;t).\displaystyle=-\Delta_{q}(\boldsymbol{r},t)\widetilde{n}_{q}(\boldsymbol{r^{\prime}},\sigma^{\prime};\boldsymbol{r},\sigma;t)^{*}\,. (114)

Collecting terms, multiplying by δ(𝒓𝒓)\delta(\boldsymbol{r}-\boldsymbol{r^{\prime}}), integrating over 𝒓\boldsymbol{r^{\prime}} and summing over spins σ=σ\sigma^{\prime}=\sigma lead to

inq(𝒓;t)t=\displaystyle i\hbar\frac{\partial n_{q}(\boldsymbol{r};t)}{\partial t}= σd3𝒓δ(𝒓𝒓)[hq(𝒓,t)nq(𝒓,σ;𝒓,σ;t)hq(𝒓,t)nq(𝒓,σ;𝒓,σ;t)]\displaystyle\sum_{\sigma}\int\,{\rm d}^{3}\boldsymbol{r^{\prime}}\,\delta(\boldsymbol{r}-\boldsymbol{r^{\prime}})\left[h_{q}(\boldsymbol{r},t)n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma;t)-h_{q}(\boldsymbol{r^{\prime}},t)^{*}n_{q}(\boldsymbol{r},\sigma;\boldsymbol{r^{\prime}},\sigma;t)\right]
+Δq(𝒓,t)n~q(𝒓;t)n~q(𝒓;t)Δq(𝒓,t).\displaystyle+\Delta_{q}(\boldsymbol{r},t)\widetilde{n}_{q}(\boldsymbol{r};t)^{*}-\widetilde{n}_{q}(\boldsymbol{r};t)\Delta_{q}(\boldsymbol{r},t)^{*}\,. (115)

As shown in Ref. Chamel and Allard (2019), the integral can be equivalently expressed as the divergence of a particle flux. The last two terms cancel each other if the pairing potential is calculated self-consistently from Eq. (29). Finally, multiplying by m/(i)m/(i\hbar) leads to the same Eq. (34) as previously derived in Ref. Chamel and Allard (2019) ignoring pairing.

References

  • Blaschke and Chamel (2018) D. Blaschke and N. Chamel, in Astrophysics and Space Science Library, edited by L. Rezzolla, P. Pizzochero, D. I. Jones, N. Rea, and I. Vidaña (2018), vol. 457 of Astrophysics and Space Science Library, p. 337.
  • Chamel (2017a) N. Chamel, Journal of Astrophysics and Astronomy 38, 43 (2017a).
  • Andreev and Bashkin (1975) A. F. Andreev and E. P. Bashkin, Sov. Phys. JETP 42, 164 (1975).
  • Glendenning (2000) N. K. Glendenning, Compact stars : nuclear physics, particle physics, and general relativity (Springer, 2000).
  • Gusakov and Haensel (2005) M. E. Gusakov and P. Haensel, Nuclear Physics A 761, 333 (2005).
  • Gusakov and Andersson (2006) M. E. Gusakov and N. Andersson, MNRAS 372, 1776 (2006).
  • Andersson and Comer (2007) N. Andersson and G. L. Comer, Living Reviews in Relativity 10, 1 (2007).
  • Graber et al. (2017) V. Graber, N. Andersson, and M. Hogg, International Journal of Modern Physics D 26, 1730015-347 (2017).
  • Haskell and Sedrakian (2018) B. Haskell and A. Sedrakian, in Astrophysics and Space Science Library, edited by L. Rezzolla, P. Pizzochero, D. I. Jones, N. Rea, and I. Vidaña (2018), vol. 457 of Astrophysics and Space Science Library, p. 401.
  • Gusakov and Kantor (2013) M. E. Gusakov and E. M. Kantor, MNRAS 428, L26 (2013).
  • Dommes et al. (2019) V. A. Dommes, E. M. Kantor, and M. E. Gusakov, MNRAS 482, 2573 (2019).
  • Kantor et al. (2020) E. M. Kantor, M. E. Gusakov, and V. A. Dommes, Phys. Rev. Lett. 125, 151101 (2020).
  • Larkin and Migdal (1963) A. I. Larkin and A. B. Migdal, Sov. Phys. JETP-USSR 17, 1146 (1963).
  • Leggett (1965) A. J. Leggett, Physical Review 140, 1869 (1965).
  • Gusakov et al. (2009) M. E. Gusakov, E. M. Kantor, and P. Haensel, Phys. Rev. C 80, 015803 (2009).
  • Glendenning (1985) N. K. Glendenning, ApJ 293, 470 (1985).
  • Leinson (2018) L. B. Leinson, MNRAS 479, 3778 (2018).
  • Chamel and Allard (2019) N. Chamel and V. Allard, Phys. Rev. C 100, 065801 (2019).
  • Duguet (2014) T. Duguet, The Nuclear Energy Density Functional Formalism (2014), vol. 879, p. 293.
  • Douchin and Haensel (2001) F. Douchin and P. Haensel, Astronomy& Astrophysics 380, 151 (2001).
  • Potekhin et al. (2013) A. Y. Potekhin, A. F. Fantina, N. Chamel, J. M. Pearson, and S. Goriely, A&A 560, A48 (2013).
  • Sharma et al. (2015) B. K. Sharma, M. Centelles, X. Viñas, M. Baldo, and G. F. Burgio, A&A 584, A103 (2015).
  • Pearson et al. (2018) J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C. Ducoin, A. K. Dutta, and S. Goriely, MNRAS 481, 2994 (2018).
  • Mutafchieva et al. (2019) Y. D. Mutafchieva, N. Chamel, Z. K. Stoyanov, J. M. Pearson, and L. M. Mihailov, Phys. Rev. C 99, 055805 (2019).
  • Pearson et al. (2020) J. M. Pearson, N. Chamel, and A. Y. Potekhin, Phys. Rev. C 101, 015802 (2020).
  • Mondal et al. (2020) C. Mondal, X. Viñas, M. Centelles, and J. N. De, Phys. Rev. C 102, 015802 (2020).
  • Monrozeau et al. (2007) C. Monrozeau, J. Margueron, and N. Sandulescu, Phys. Rev. C 75, 065807 (2007).
  • Chamel et al. (2010) N. Chamel, S. Goriely, J. M. Pearson, and M. Onsi, Phys. Rev. C 81, 045804 (2010).
  • Pastore (2015) A. Pastore, Phys. Rev. C 91, 015809 (2015), eprint 1412.8410.
  • Chamel (2017b) N. Chamel, Journal of Low Temperature Physics 189, 328 (2017b).
  • Watanabe and Pethick (2017) G. Watanabe and C. J. Pethick, Phys. Rev. Lett. 119, 062701 (2017).
  • Kashiwaba and Nakatsukasa (2019) Y. Kashiwaba and T. Nakatsukasa, Phys. Rev. C 100, 035804 (2019).
  • Avogadro et al. (2007) P. Avogadro, F. Barranco, R. A. Broglia, and E. Vigezzi, Phys. Rev. C 75, 012805 (2007).
  • Wlazłowski et al. (2016) G. Wlazłowski, K. Sekizawa, P. Magierski, A. Bulgac, and M. M. Forbes, Phys. Rev. Lett. 117, 232701 (2016), eprint 1606.04847.
  • Bulgac (2019) A. Bulgac, Physica Status Solidi B Basic Research 256, 1800592 (2019).
  • Blaizot and Ribka (1986) J. Blaizot and G. Ribka, Quantum Theory of Finite Systems (The MIT Press, 1986).
  • Dobaczewski et al. (1984) J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A 422, 103 (1984).
  • Bender et al. (2003) M. Bender, P.-H. Heenen, and P.-G. Reinhard, Reviews of Modern Physics 75, 121 (2003).
  • Stone and Reinhard (2007) J. R. Stone and P. G. Reinhard, Progress in Particle and Nuclear Physics 58, 587 (2007).
  • Chamel et al. (2009) N. Chamel, S. Goriely, and J. M. Pearson, Phys. Rev. C 80, 065804 (2009).
  • Leggett (2006) A. Leggett, Quantum Liquids (Oxford University Press, 2006).
  • Goriely et al. (2010) S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82, 035804 (2010).
  • Goriely et al. (2013) S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88, 024308 (2013).
  • Gusakov (2010) M. E. Gusakov, Phys. Rev. C 81, 025804 (2010).
  • Li et al. (2015) J. J. Li, J. Margueron, W. H. Long, and N. Van Giai, Phys. Rev. C 92, 014302 (2015).